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Brain injury of diverse etiology is frequently encountered
clinically. Management, thus, is diverse. Transient global
ischemic (T'GI) brain injury may result from cardiac arrest
where cerebral perfusion diminishes to the point that blood
supply can no longer meet the metabolic demand of the brain
or from aneurysmal subarachnoid hemorrhage where hem-
orrhage from an intracranial aneurysm elevates the intra-
cranial pressure above the blood pressure leading to momen-
tary perfusion arrest.

Though there are commonalities and differences in the
etiology and pathogenesis of these two brain injuries, whether
they required differential management or they can be
grouped together is not clear. Some risk factors of TGI and
SAH are shared and common and others are unique to the
injury. Shared risk factors include high blood pressure, smok-
ing, alcohol abuse, and stress. The risk factors unique to TGI
are clinical conditions such as cardiac arrest (major cause),
shock that creates prolonged hypoxia or hypoglycemia,
pathologically elevated cerebral metabolic rate, or decreased
cerebral perfusion pressure. The risk factor unique to SAH is
the presence of an intracranial aneurysm. Other contrasting
risk factors are age and gender; whereas old age increases the
risk of TGI, SAH occurs in a younger population with an
average age of 52-55 years. Women harbor significantly more
intracranial aneurysms than men and consequently are more
frequently the victims of SAH. Although the average age of
women with SAH is greater than men, the outcome is similar
[1]. In contrast, more men than women are at risk of ischemic

stroke and women with ischemic stroke are usually older and
more likely to die of stroke than men [2].

Brain injury after TGI can be separated into an initial
ischemic phase that lasts for the duration that the brain blood
supply remains reduced (usually <10 minutes, otherwise
death is inevitable) and the reperfusion phase that begins
immediately after reconstitution of cerebral blood supply
(>10 minutes). The initial phase of brain injury after SAH is
more complex and lasts for 48 to 72 hours. A complex series
of events occurs during this initial (early) phase, including
blood-induced mechanical trauma, oxyhemoglobin (released
upon degradation of blood) induced oxidative stress, inflam-
mation, and ischemia [3]. A delayed phase of brain injury,
unique to SAH, develops 3-7 days after SAH. This injury is
characterized by angiographic vasospasm and delayed cere-
bral ischemia [4].

In order to help understand the management of brain
injury after TGI and SAH, this special issue compares and
contrasts the various mechanisms of brain injury after TGI
and SAH. It presents two original research articles and 7
reviews. The research article by C. S. Jung et al. studies the
correlation of serum and CSF injury markers with ischemic
events in SAH patients and that by S. O. Eicker et al. compares
neuroprotective qualities of vascular endothelial drive growth
factor (VEGF) against stroke and cerebral vasospasm after
SAH. E A. Sehba and R. M. Pluta review the existing TGI and
aSAH animal models and present a modified aSAH model
which effectively mimics the disease and has the potential



of becoming a better resource for studying the brain injury
mechanisms and developing a treatment. M. A. Kamp et al.
review the mechanisms and clinical significance of the alter-
ation in calcium and potassium channel after SAH and TGI.
M. K. Tso and R. L. Macdonald review preclinical studies
on microvascular changes and their therapeutic modification
following SAH and TGI. N. Plesnila compares and contrasts
pathophysiological events occurring in experimental models
of SAH and TGI and evaluates the contribution and impor-
tance of global cerebral ischemia in the pathophysiology
of SAH. M. Koide et al. summarize the current knowledge
regarding the impact of SAH and global ischemia on neu-
rovascular communication. J. A. Frontera reviews clinical tri-
alsin cardiac arrest and SAH and concludes that clinical trials
in SAH assessing acute brain injury are conducted and that
these trials may receive benefit from interventions identified
successfully against brain injury following cardiac arrest.

We hope that the present special issue stimulates further
research in this topic and brings to attention the information
that would provide a better understanding of the manage-
ment of TGI and SAH patients.

Fatima A. Sehba
Ryszard M. Pluta
R. Loch Macdonald
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The discovery of tissue plasminogen activator to treat acute stroke is a success story of research on preventing brain injury following
transient cerebral ischemia (TGI). That this discovery depended upon development of embolic animal model reiterates that proper
stroke modeling is the key to develop new treatments. In contrast to TGI, despite extensive research, prevention or treatment of
brain injury following aneurysmal subarachnoid hemorrhage (aSAH) has not been achieved. A lack of adequate aSAH disease
model may have contributed to this failure. TGI is an important component of aSAH and shares mechanism of injury with it. We
hypothesized that modifying aSAH model using experience acquired from TGI modeling may facilitate development of treatment
for aSAH and its complications. This review focuses on similarities and dissimilarities between TGI and aSAH, discusses the existing
TGI and aSAH animal models, and presents a modified aSAH model which effectively mimics the disease and has a potential of

becoming a better resource for studying the brain injury mechanisms and developing a treatment.

1. Introduction

Stroke is the second major cause of death worldwide.
According to the World Stroke Organization approximately
15 million people suffer from stroke each year. Five million
people die from it, and another 5 million are left perma-
nently disabled [1]. Ischemic stroke constitutes the most and
hemorrhagic stroke 15 to 30% of the total annual stroke
cases [2]. The 21-day to l-month case fatality ranges from
13 to 23% for ischemic stroke, as compared to 25-35% for
hemorrhage stroke [3]. The cost of survivor care and lost
productivity (conservatively estimated to be more than 54
billion dollars annually) necessitates research to reduce stroke
mortality and disability. An essential step in this direction is
developing an experimental model that replicates the human
condition. Numerous animal models addressing causes and
pathophysiology of ischemic and hemorrhagic stroke have
been developed. Whereas research using these models has
clearly influenced the treatment of global ischemic stroke,
it has made relatively small impact on treatment of hemor-
rhagic stroke.

2. Ischemic and Hemorrhagic Brain Injury

Ischemic stroke occurs when blood supply to the brain is
reduced to a level that cerebral function and metabolism are
no longer maintained. Cerebral ischemia could be focal or
global and transient or permanent. A mix of any of them
is also possible; for instance, after aneurysmal subarachnoid
hemorrhage, a patient can develop a transient global ischemia
(evoked by temporary increased ICP) followed by permanent
focal ischemia because of a thrombosis or delayed vasospasm.
Transient focal ischemia (TFI) affects a specific brain region,
and transient global ischemia (TGI) affects the whole brain
for a limited time; both are followed by reperfusion and/or
hyperperfusion. In contrast to transient ischemia, in per-
manent ischemia blood flow is never reestablished to the
part (local) or the whole (global) brain. Hemorrhagic stroke
occurs when blood flow in the brain is reduced due to
the intracranial bleeding. Aneurysmal subarachnoid hemor-
rhage (aSAH), a nontraumatic type of the intradural bleeding,
constitutes 5% of all strokes and occurs when an intracranial
aneurysm bursts and spews blood under high pressure into



the subarachnoid space. Such a violent flow of blood into
a narrow, CSF-filled space results in a dramatic increase in
intracranial pressure and decrease in the cerebral perfusion
pressure (CPP) and cerebral blood flow (CBF) [4-6]. The
ICP-dependent reduction in CBF after SAH is beneficial but
also harmful, beneficial as it saves a patient’s life by allowing a
blood clot to seal the dome of the ruptured aneurysm and stop
the bleeding and harmful as it limits blood flow to the whole
brain for unpredictable time and may result, in the best-case
scenario, in a transient local or global ischemic brain injury
or, in the worst case, brain death. Thus, to best of our knowl-
edge most of aSAH bleeding is associated with transient
global hypoperfusion and/or ischemia. Though a role of TGI
in aSAH outcome has been suspected since early 19th century,
its true nature remains poorly defined and its importance
largely unappreciated. As a consequence, the differences and
similarities between TGI and aSAH are not determined, and
knowledge that TGI researchers have accumulated over the
years is not used to further understanding of the SAH-related
injury to the brain. Three reasons of this oversight are: (1)
events leading to a “spontaneous” TGI and TGI evoked by an
aneurysmal SAH are different, (2) the sudden/abrupt nature
of aSAH event makes association with TGI difficult to study
[5, 7], and (3) until recently, most research on improving
patient outcome has been on delayed cerebral vasospasm
(AKA delayed neurological deficits) and not on events that
occur early after aSAH [8]. Lately, limited improvement in
patient outcome after more than half a century of research
convinced many researchers to reevaluate the significance of
early events and more importantly the influence of early TGI
after aSAH on the outcome [9].

In recognition of this new trend we review animal models
of TGI and aSAH, discuss why ischemic, but not aSAH
models have proven successful in reducing the death and
disability after stroke, and propose a modified aSAH model
that incorporates features of TGI model and could be a better
resource for studying the injury mechanisms and treatment
of aSAH.

3. Animal Models of TGI and SAH

3.1. TGI Models (Table 1). Animal models of TGI induce
either complete or incomplete global ischemia. In complete
global ischemia blood flow is ceased completely, and in the
incomplete global ischemia blood flow decreases to a degree
that cellular metabolism and function can no longer be main-
tained [49, 50]. The injury and survival are proportional to
the duration of global ischemic insult: greater when the insult
is a short and resolvable; lasting 10 to 30 minutes and lower
when the insult is longer or permanent. Thus, permanent TGI
models work best for studying the mechanisms of injury, and
the resolvable TGI models work best for studying therapeutic
interventions. Below we describe the most extensively used
TGI models. See Table 1 for a list of TGI models and animal
species used.

3.1.1. Two-Vessel Occlusion (2-VO) Model. Ischemia in this
model is created by a transient bilateral carotid occlusion.
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Variations that allow investigator to control injury intensity
are available. A mild-to-moderate injury is created by keeping
arterial blood pressure normal during carotid occlusion
[40, 51]. A severe injury is achieved by reducing arterial
blood pressure to 40-50 mmHg during carotid occlusion.
Blood pressure reduction is achieved by phlebotomy or by
pharmacological manipulation [52].

The advantages of 2-VO model include one-stage surgical
preparation, production of high-grade forebrain ischemia,
ability to control ventilation to ensure normoxia and normo-
carbia, ease of reestablishing cerebral circulation, suitability
for chronic studies, and a relatively low failure rate. The
disadvantage is that pharmacologically induced hypotension
may complicate the interpretation of results [78].

3.1.2. Four-Vessel Occlusion Model (4-VO). Ischemia in this
model is created by almost simultaneous occlusion of four
major cerebral vessels: bilateral both vertebral and common
carotid arteries [43]. Usually, first, the vertebral arteries are
electrocoagulated, and then the common carotid arteries
are occluded by tightening the ligatures around them [78].
This model has been extensively studied to assure a high
incidence of successful ischemia with acceptable mortality
rate. Nevertheless, even in the best hands, animal survival rate
following 4-VO is only 50% [43, 79]. A modification of 4-VO
which combines a mild systemic hypotension (80-90 mmHg)
with bilateral carotid occlusion creates less morbidity and
more uniform brain injury [80, 81].

Both 2- and 4-VO models are frequently used to study
TGI (see Table 1). 2-VO model is often preferred over
4-VO model as it requires less surgical manipulations; 4-VO
requires two state surgical preparation and rarely achieves
complete reversal of global ischemia [82].

3.1.3. Bihemispheric Forebrain Compression Ischemia (BFCI).
This model was developed by Kramer and Tuynman in 1967
to define the duration of ischemia tolerated by the brain
[28]. Ischemia here is induced by increasing intracranial
pressure to the level of systolic blood pressure so that cerebral
perfusion is disrupted. The increase in intracranial pressure
is achieved by infusion of artificial cerebrospinal fluid (CSF)
into the cisterna magna. Cushing’s reflex evoked by increased
ICP can be reduced by administration of the ganglion-
blocking drug [83].

TGI produced by BFCI is consistent, reproducible and
successfully created in several animal species. Though BFCI
model is not as extensively used as the 2-VO or 4-VO model,
it provides an excellent foundation for the modified aSAH
model that we later propose in this review (see below).

3.2. SAH Models (Table 2). Brain injury evoked by aSAH
consists of early and delayed events. Early events include rise
in ICP, fall in CBF and CPP at the time of aSAH, and the
delayed events are arterial vasospasm and delayed ischemic
deficits that develop 3-7 days after the initial bleed. Due to
unpredictable nature (not every aneurysm ruptures) of aSAH
[5, 7], the information on ultra-early events is available only
as the patient is admitted and monitored after the initial
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TABLE 1: Experimental models of transient global ischemia.
(a) Complete TGI models
TGI method Key features Species References
Cardiac arrest Epinephrine injection, defibrillation, and
(i) KCl injection CPR are used for resuscitation Mouse, rat and monkey [10-12]
(ii) Ventricular fibrillation Can be used WIFh C.PR to study Cat, dog, pig and monkey [13-16]
resuscitation
Aortic occlusion Inhibits flow throughout the body Rat, rabbit, cat and dog [17-19]
Neck cuff/tourniquet with hypotension Inhibition of blood flow to the head ~ Rat, cat, dog and monkey [20-24]
Extracranial artery occlusion
(0 Ignor;‘fnateljnl‘.i Subglavl‘)arl‘ arteries _ Inhibition of blood flow to the head Cat (25, 26]
(11? .rac iocephalic and subclavian near aortic Monkey (27]
origin
(b) Incomplete TGI models
TGI method Key features Species References
Intracranial hypertension
(i) Fluid infusion in cerebral cistern . L Rabbit, cat, dog and [28-30]
A brain compression injury monkey
(ii) Balloon inflation Rat, cat, dog and monkey [31-34]
Immediate ischemia and reperfusion
Extracranial artery occlusion allows possibility of permanent
occlusion
Bilateral common carotid (2-VO)
N A . Mouse, rat, gerbil, sheep
() Without hypotension Creates mild-to-moderate injury and monkey (35-39]
(ii) With hypotension Rat, rabbit, cat and monkey [40-42]
Bilateral common carotid + vertebral Creates severe injur Rat, rabbit, cat, dog and [43-48]
arteries (4-VO) jury monkey
TABLE 2: Experimental models of aSAH and/or vasospasm.
SAH method Phase studied
Speci iniecti Reference
pectes Artery puncture Blood injection Clot EBI Vasospasm
Single Double
Mouse + + + - + ? [53-55]
Rat + + + - + +/- [56-60]
Rabbit + + + - + +/- [61-63]
Cat + + + + [5, 64-66]
Pig + + + + + [67, 68]
Dog + + + + + [69-73]
Nonhuman primate + + + + +/- [74-77]

aneurysm rupture. Consequently, information obtained is
already delayed, unless rebleed occurs, usually within hours
after the initial bleed. However, because of the lingering
effects of the initial bleed, the data obtained during rebleed
cannot be directly extrapolated as a mimic of the first aSAH
[5, 7]. Nevertheless, information obtained during the rebleed
has been used to develop animal models of aSAH. These
models are widely used to study early and delayed brain injury
after aSAH and are accepted as mimics of clinical aSAH (see
Table 2 for details) [84-86]. aSAH models can be broadly
divided into three categories.

3.2.1. Blood or Hemolysate Injection or Infusion. Injection
model involves introduction of autologous fresh blood
[56, 67,74, 87-89] into the cisterna magna, prechiasmatic
cistern [90], or next to an intracranial [91, 92] or an extracra-
nial artery [84, 93-97]. This model is quite extensively used to
study early and delayed injury after aSAH. In several species
(mouse, rat, and dog), a second blood injection 24 to 48
hours after the first is necessary for development of delayed
vasospasm. Advantages of this model are that it produces
reproducible injury and allows use of saline injected sham
control. Disadvantage is a failure to reproduce the mechanical



trauma, the first insult felt by the cerebral vasculature upon
aneurysm rupture (for review see [98] and references within).

3.2.2. Blood Clot Placement. In this model arterial blood
is withdrawn and allowed to clot ex vivo and then surgi-
cally placed on the adventitial surface of an artery. Both
intracranial (the middle cerebral artery [75]) and extracranial
(femoral [96]) arteries have been used for clot placement.
This model studies delayed vasospasm and not early injury.
Advantages of this technique are the well-defined course of
vasospasm and low animal mortality that permits pharmaco-
logical intervention. Disadvantages are lack of reproducing
mechanical trauma (see above) and the high cost of exper-
iment; this model is predominantly used in larger animals:

dog, pig, and monkey.

3.2.3. Arterial Puncture. This aSAH model involves puncture
of the intracranial artery adjacent to the skull base by an
endovascular filament. The model is considered the best
mimic of human aSAH as it replicates the mechanical trauma
felt by cerebral vasculature upon aneurysm rupture, as well
as the events observed during rebleed in aSAH patients:
rapid fall in cerebral blood flow and blood accumulation into
subarachnoid space [4-6, 98]. However, due to a number of
reasons explained elsewhere this model provides a poor con-
trol of bleeding and high mortality (for review see [98-100]).
Other disadvantages include complicated surgical procedure
that requires a trained person and difficultly in adaptation
to other, larger species. Nevertheless, arterial puncture is
frequently used to study early injury after aSAH especially in
rodents.

4. Success of Embolic Ischemia Model and
Lesson Learnt about aSAH

The research focused on treatment of cerebral ischemia
has been successful. It has provided us with recombinant
tissue plasminogen activator (r-tPA) that, when used within
4.5 hours after ischemic episode, reduces brain injury and
improves the outcome [101]. In contrast, despite extensive
research, a therapy that could be translated to clinical SAH
has not been found. Though several compounds have been
found promising against SAH in animals, none succeed in
clinical trials [98].

A proper disease modeling may have contributed to the
success of TGI research. That varying degree and duration
of CBF reduction produce varying effects on the neurovas-
cular unit has been realized [102], and animal models that
address a specific problem are accordingly developed. Focal
ischemia models study injury following a thrombotic event,
and global ischemia models study injury following cardiac
arrest. Both models focus on developing a time-dependent
intervention. Animal species used range from rodents to the
AHA recommended primates [103, 104]. However, even this
meticulous approach has not always worked. An example
of failure is the free radical-trapping agent NXY-059 that
showed promise as a neuroprotectant in rat and primate
ischemic models but was ineffective in patients [105]. On the
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other hand, a spectacular success was the development of
thrombolytic therapy with recombinant tissue plasminogen
activator (rtPA) against acute transient focal and global
ischemic stroke based on the results of studies using a rabbit
model of embolic stroke [106, 107]. The success of a rabbit
embolic model versus failure of favored ischemic primate
model in development of successful treatment may indicate
that an accurate model of a disease should provide results that
are reproduced across species and successfully translated to
clinic.

5. aSAH Models and Components of Injury

Mortality, neurological deficits, and diminished quality of
life are the most important end points of a brain injury
evoked by TGI and aSAH. However, some and not all of
the mechanisms that TGI and aSAH evoke are shared (see
Table 3). For example fall in CBF creating temporary global
perfusion deficits occurs both in TGI and aSAH, but injury
by a prolonged presence of blood in the subarachnoid space
characterizes SAH only. Thus, in a new desired aSAH model
all components of injury, the presence of controllable TGI,
and an intracranial bleeding need to occur simultaneously.
Unfortunately, the current animal models dissociate TGI
from aSAH, replicate subarachnoid bleed but not a perfusion
deficit that creates TGI, and thus these models only partially
imitate injury produced by aSAH. This shortcoming may
have contributed to a lack of clinical translation of therapies
found successful in animals. A more inclusive model that
incorporates all components of brain injury after aSAH is
required to accelerate the development of adequate treatment
for improving the patient’s outcome.

6. A Modified aSAH Model

A number of different aSAH models are available for studying
injury mechanism and treatment. Each carries its own advan-
tages and disadvantages. One shortcoming common at all is
the lack of requirement of CPP fall at SAH induction to a level
that ensures TGI. As a result these models replicate some but
not all of the components of injury that are present in human
aSAH (discussed above). We here propose a modified aSAH
model that reproduces all of the components of injury after
aSAH and in addition requires limited surgical manipulation,
carries low mortality, can be easily adapted to a number of
species, and makes comparisons and interpretation of data
from different laboratories possible.

After reviewing the existing aSAH models (above) we
have formed an opinion that perhaps an adaptation of Kramer
and Tuynman’s TGI model (explained above), that uses
autologous arterial blood instead of artificial CSF, provides
the best foundation for the modified aSAH model [28].

Below we detail three features essential to this modified
aSAH model. We discuss the reason we consider them
essential and the techniques that can be used to attain them.

6.1. Blood Injection. As blood upon aneurysm rupture is
released under high pressure and pools into subarachnoid
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TABLE 3: Risk factors of TGI versus aneurysmal SAH.

Factor TGI aSAH

High blood pressure Shared Shared
Smoking Shared Shared
Alcohol abuse Shared Shared
Stress Shared Shared
Cardiac arrest or shock that creates prolonged hypoxia or hypoglycemia Stroke only

Pathologically elevated cerebral metabolic rate Stroke only

Decreased cerebral perfusion pressure Stroke only

Age (years) =65 <56
Gender Men prevalence Women prevalence

Intracranial aneurysm

—-/+ +

cisterns, a proper replication requires the same to occur in
the animal model. The location, speed, and volume blood
injection all are important considerations for consistent repli-
cation of aSAH injury in animals used within an experiment
and across laboratories.

6.1.1. Blood Delivery Route. Technical details of each proce-
dure can be found in adequate reference(s) in Table 2.

Several routes have been successfully used for intracra-
nial, subarachnoid injection/infusion of blood. A brief
description of these routes and techniques is presented below.
Details can be found in the references in Table 2.

A Percutaneous Delivery of Blood. This route is often favored
in small and large animals (rabbit, cat, dog, pig, and monkey).
This technique requires good anatomical knowledge and
reasonable but basic surgical skills. Briefly, after proper anes-
thesia and skin preparation (includes shaving the back of the
head, between the ears, and the flexor surface of the neck), a
short bevel 25-/27-gauge needle attached to an insulin syringe
(size depends on the species used, can range from insulin
to 10 cc) is introduced in the midline directly below the
palpable edge of the cranium after significant head flexion.
The needle is slowly advanced until an access to cisterna
magna is confirmed with CSF presence in the syringe. At this
moment a syringe is exchanged for the one that is filled with
fresh, arterial, and preferably nonheparinized blood. Blood is
then quickly (in less than 1min) injected into subarachnoid
space. The volume, time, and speed of injection are guided by
the rise in ICP to mean arterial blood pressure rendering CPP
zero or a drop in CBF below 10 mL/100 g/min. At this moment
the needle is quickly removed, and steady compression is
applied to the neck. The animal’s head is then either returned
to neutral or slightly extended position with the body of
animal (if possible) tilted down for about 5-10 min to allow
blood to flow toward the anterior cisterns. Monitoring of
ICP, CPP, and CBF continues under anesthesia or animal is
awaked after removal of monitoring devices.

A Direct Infusion into the Cisterna Magna. This is another
frequently used route for blood delivery. It requires signifi-
cantly more surgical experience but is still relatively easy (for

detailed description check references in Table 2). In short,
an animal is anesthetized and placed in a prone positioning
with the head tilted forward. The atlantooccipital membrane
is exposed via a skin incision from the midline on the back
of the neck and a delicate dissection of muscles from the
occipital bone and Cl1-2 vertebral bodies. The atlantooccipital
membrane is then punctured with a 27-gauge needle or PE-
10 catheter that is attached to a syringe filled with fresh
autologous blood. The injection follows the same parameters
as the percutaneous infusion. The muscle is reapproached
with sutures and wound closed and covered with antibiotic
creams to speed the healing and prevent infection. Advantage
of this approach is a possibility of sealing the hole by tissue
glue as the needle is removed.

A Direct Anterior Intracisternal (Prechiasmatic) Blood Injec-
tion. This route was traditionally used in large animals (dog,
monkey) [90, 108] and has been recently adapted to rodents
[109-111]. The technique used requires advanced surgical
skills, stereotactic apparatus, and access to radiological equip-
ment. It can be achieved via intra(peri)orbital approach
[110, 111] with or without enucleation [90] or through trans-
parenchymal approach (Table 2) [109]. Approach used to
access prechiasmatic cistern differs among species. In rodents
a prechiasmatic cistern is usually approached by placing
the animal in prone position and advancing a 27-gauge
needle attached to a 1mL syringe with nonheparin blood
stereotactically until the tip reaches the base of the skull and
a proper placement in a prechiasmatic cistern is confirmed
by flow of CSF into the syringe [109]. The orbit and the optic
foramen have also been used to access perichiasmatic cistern.

6.1.2. Blood Injection Parameters: Volume, Length, and Speed.
The volume, length, and speed of blood infusion dictate
the degree of ICP rise and CPP reduction and thus the
intensity of SAH being created. To ensure similarity of SAH
intensity within an experimental group these parameters
need to be standardized and closely monitored. This however
is not a simple task, as intracranial volume differs within
and between species making an investigator’s control on the
injury intensity difficult. Consequently, in current practice
a consensus on the injection parameters that work the best



in a particular species does not exist, and a wide array of
volume, length, and speed options are available and used for
injecting blood in a single species. A downfall of this is that
since the intensity of SAH depends upon the volume, length,
and speed of injection, variations in these parameters makes
a comparison and interpretation of results from different
laboratories difficult, if not impossible. For instance, SAH
in rat has been induced by injecting 100 microL autologous
blood over seconds [110], 0.2 mL of blood for more than 1 min
[109] or 0.3 mL blood for 1 min [111].

On the Model. In a modified aSAH model injection param-
eters should be guided by the changes of ICP and CPP. The
parameters that evoke dramatic but transient reduction in
CPP to near zero should be selected and used for creating
SAH. These parameters will of course differ between species
and even within a species, but the selection criteria (transient
reduction in the CPP to near zero) will remain same. This will
facilitate comparison data obtained in different laboratories
and among different species.

6.1.3. Factors Influencing Choice of Technique Used for SAH
Induction. A number of factors need to be considered before
a technique can be selected for creating aSAH. Some of these
factors are as follows:

(i) Simplicity and Reproducibility. A technique that is
simple and reproducible is increasingly attractive and
has greater chances of becoming a favored method
for studying a problem. A simple technique allows for
a short training period and reduces the chances of
surgeon’s mistake. Reproducibility of injury decreases
the cost of a project by reducing the number of
animal required for an experiment. Above, we have
examined simplicity and reproducibility of available
aSAH techniques.

(ii) Ease of Adaptation. A technique allowing for adapta-
tion in several animal species permits comparison of
results. Several animal species have been used to study
SAH. These range from smaller animals: mice, rats,
rabbits, and gerbils, to larger animals: cats, dogs, pigs,
and nonhuman primates. For animal species used for
a particular SAH technique see Table 2 and associated
references. Primates, due to their higher ranking in
the evolution ladder, are considered the best choice
for replication of human conditions. However, not
every investigator and laboratory is equipped to use
primates. Fortunately, the success of a rabbit embolic
model versus failure of favored primate model proves
that it is the disease modeling and not the closeness
of species to human that translates into a successful
treatment. Replication and cross-validation of results
in more than one animal species are perhaps a
stronger indication of future successful translation in
clinical trial. Such option will only be available if the
technique used to create SAH is applicable in other
species with no or only minimal modifications.

(iii) Low Mortality with Ethically Acceptable Morbidity.
Since computer simulation cannot be used to study
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mechanisms and test therapies, animal research
remains to be the cornerstone of scientific research
and drug development. However, respect for lives
of all creatures is essential and is an important
consideration in animal research. Reducing distress
and suffering in animals is a crucial consideration
in development of an animal model. A number of
steps can be taken to prevent unnecessary animal
suffering during experimentation. These steps include
(1) use of perioperative and postoperative analgesia
and anesthesia; (2) use of proper life support; (3)
aseptic surgical technique; and (4) little amount of
surgical manipulation etc.

Use of perioperative and postoperative analgesia and
anesthesia during surgery reduce distress caused by the
surgical manipulations for inducing SAH. The type and
dose of anesthetic and analgesic depends upon the animal
species being used. An investigator can refer to species-
specific guideline on anesthesia and analgesia provided by
their institution for agents that work best in the species
used. The depth of anesthesia ensures that animal does
not feel pain during surgery. A frequent check of corneal
reflex and limb pinch as well as monitoring of heart rate
is commonly employed to confirm anesthesia depth. Such
as for rat Ketamine-Xylazine combination (50 mg/5 mg/Kg;
intraperitoneal administration) is often used for reducing
perioperative pain and buprenorphine (0.05 mg/Kg, subcuta-
neous administration) twice daily for reducing postoperative
pain. In addition, inspired isoflurane (1% to 2% in oxygen-
supplemented room air) is frequently used during surgery to
maintain deep sedation in rats.

Proper life support during surgery reduces animal mor-
tality. This support includes monitoring and regulation of
breathing, body temperature, and a fluid intake. The increase
in ICP upon blood infusion may increase pressure at the
respiratory centers to the point that animal stops breathing. A
respiratory support that ensures breathing such as intubation
or placement of a nose cone ensures that animal does
not expire. Similarly, unless a project is studying the effect
of temperature on injury, body temperature of animal is
maintained at 37°C (such as by a thermoblanket) from the
start of anesthesia until the animal recovers. For proper
hydration ringer lactate is administered as required.

Aseptic surgical technique protects against infection.
As a minimum requirement, this includes sterilization of
surgical equipments, applying antiseptics such as iodine to
the wounds upon closing and if the project permits, adminis-
tration of antibiotics to prevent infection from occurring and
speed healing.

The amount of surgical manipulation can result into
animal death. In general, the more the surgical steps, the
more invasive the procedure becomes. In contrast, a simple
procedure reduces unnecessary pain and suffering.

On the Model. The technique used for SAH induction should
be simple, reproducible and allow adaption into different
species.
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6.2. Monitoring of SAH Physiology. Physiological monitoring
is an essential feature of modified aSAH model as it confirms
the intensity of SAH. This information can be used to ensure
that all animals within and across an experimental group
receive similar intensity and to interpret the results from
different laboratories.

6.2.1. ICP and CPP Changes. Equilibrium between brain, and
cranial vault volume via controlled intracranial blood and
CSF flow is essential for maintenance of normal ICP. This
equilibrium is disturbed by blood released upon aneurysm
rupture. An ICP rise that occurs at aSAH reflects sub-
arachnoid blood volume, status of brain and cerebrovascular
disturbances. Furthermore, peak ICP value and the pattern
of its decline associate with the intensity of injury after SAH
[7, 112]. Hence, continuous and reliable ICP monitoring via
a simple and easy technique is desired to determine and
control the injury intensity and understand the underlying
pathophysiologic events after aSAH.

ICP Measurement. Symptoms like headache, nausea, vomit-
ing (particularly projecting), and the presence of papilledema
strongly suggest an increased intracranial pressure; however,
they do not allow for close monitoring of ICP changes.
Fortunately, ICP can be assessed by a number of ways;
however all these methods are invasive.

(i) Intraventricular Catheter. In this method a burr hole is
drilled in the frontal region, and under either stereo-
tactic or under radiographic guidance a catheter
is introduced into the frontal horn or the lateral
ventricle and secured to the skin. This method allows
for continuous and accurate assessment of ICP and for
eventual intervention if an ICP increase jeopardizes
CBE

(ii) Intraparenchymal Probe. The placement of an intra-
parenchymal probe with a pressure sensor or a fiber-
optic catheter is an alternative to the ventricular
catheter. However, this method is prone to a reference
drift while recalibration is impossible after the probe
is in place. Furthermore, the local changes of pressure
evoked by metabolic changes related to disease or (a
traumatic probe placement) can dramatically influ-
ence recordings.

(iii) Subdural Bolt. A burr hole is drilled, and a hollow
screw is inserted through the dura, and pulsations of
CSF in a subarachnoid space are recorded via a sensor.

(iv) Epidural Sensor. A burr hole is drilled, and an epidural
sensor is inserted between the skull and the dura to
register dural tension (pulsations).

The accuracy of measurements by subdural bolt or epidural
sensor is lower than those by intraventricular catheter. Addi-
tional caveats are (1) ICP is not uniformly distributed through
the brain, and (2) local pressure measurements made by an

intraparenchymal probe may not match the intraventricular
pressure [113].

On the Model. The intraventricular measurement, despite
being technically demanding, seems to be a method of choice
for the new aSAH model.

6.2.2. Blood Pressure and Heart Rate Changes (“Cushing’s
Reflex”). Cerebral perfusion pressure (CPP) is an important,
if not crucial, clinical tool that provides information on
perfusion of brain [113]. CPP falls as ICP increases. An
ICP rise that is near or above systolic blood pressure leads
to complete perfusion arrest; a reduction of CPP to zero.
Recovery of CPP begins as ICP declines after reaching a peak.
CPP is estimated as the difference between ICP and mean
arterial blood pressure: CPP = MABP — ICP.

Furthermore, an increase in ICP at SAH evokes Cushing’s
reflex, a hypothalamic response to ischemia. During this
reflex systolic blood pressure rises, heart rate decreases,
and respiration becomes irregular (sympathetic stimulation);
each either directly or indirectly influences CPP and CBE
Thus, monitoring of BP and heart rate changes is necessary
to access CPP changes after SAH.

(1) Blood Pressure Measurement. Mean arterial pressure can
be measured by invasive and noninvasive methods.

(i) Invasive Method. This surgical method is based on
experiments conducted by Stephen Hales in 1733, that
showed that blood pressure and heart beat can be
observed by a glass tube inserted into an artery of
horse who inserted a glass tube in artery of horse
and observed changes in blood pressure with the
heart beat [114]. Not much has changed since then,
and to obtain reliable and long-lasting monitoring in
surgical settings under anesthesia, a sterile catheter is
placed into radial or femoral artery. This method is
used mostly for acute experiments and/or in bigger
animals but has been used to measure blood pressure
in small animals: rabbit (ear) and rodents (tail artery).

(ii) Noninvasive Method. This method is further divided
into auscultatory or oscillometric methods.

The auscultatory method is most commonly used for mea-
suring blood pressure in clinics. It is based on Korotkoff’s
1905 discovery of the auscultatory sounds [115]. This method
uses a blood pressure cuff and stethoscope (or more recently
a microphone), which are applied on the arm (monkey), leg,
or tail (rodents) to register animal’s pulse tones. It allows
for single, serial, or continuous measurements but usually
requires anesthesia, which may influence the results. More-
over, if the stethoscope is used, results can be inconsistent and
operator dependent. However, the measurements of systolic
and diastolic pressures allow for an easy and often automated
assessment of mean arterial pressure.

The oscillometric method is widely used for blood pres-
sure measurement in the experimental settings. It measures
oscillations caused by blood flow (i.e., pulse) by means of a
pressure cuff. This simple method does not require a skilled



operator and hence can be automated for blood pressure
recording. However, it does have several, above-mentioned,
limitations related to the use of a cuff.

(2) Heart Rate Monitoring. Sympathetic stimulation during
Cushing reflex leads to reduction in heart rate (bradycardia)
and significant increase of BP. The following techniques
have been used for monitoring heart rate and other cardiac
changes following SAH.

(i) ECG Monitoring. ECG changes are registered when
the ICP increases toward the systolic arterial pressure.

(ii) Transesophageal Echocardiography. Can be used in
large animals to assess wall motion changes and aortic
and pulmonary flow velocities at SAH [116].

(iii) Serum Markers of Myocardial Injury. An increased
serum creatine kinase-MB and cardiac troponin-1
(cTn-1) concentration is often used to diagnose acute
myocardial injury after SAH. However, as CK-MB can
be released from non-cardiac muscle damage, cTn-1is
a superior indicator of myocardial injury [117].

On the Model. In addition to the ICP measurements, BP
monitoring is a required feature of a modified aSAH animal
model. The technique used for monitoring BP and cardiac
changes in the new aSAH animal model will depend upon
nature of experiment and its requirements. If an animal
survival is required, then noninvasive BP monitoring should
be used. Similarly, if the effect of SAH on heart rate is of
concern, then a simple ECG monitoring will work fine.

6.2.3. CBF Changes and Possibility of Repeated Arteriography
or TCD for a Delayed Vasospasm Assessment. CBF mon-
itoring and vasospasm assessment provide useful tools to
examine potential therapeutic options. An animal model pro-
vides these assessments and, in addition, can help establish
the influence of acute phase on the following subacute and
delayed phases of brain injury after aSAH.

CBF Monitoring. CBF can be assessed quantitatively or
qualitatively. *’xenon method is a method for quantitative
assessment of CBE, which was described by Kety-Schmidt
[118]. CBF is calculated from data obtained from several
detectors placed on the head surface after administration
of radioactive xenon gas. This method is widely used in
both clinical and experimental settings. However, it measures
CBF mostly from cortical and subcortical structures of the
middle cerebral artery, and the measurements obtained are
not reproducible by other CBF measurement methods. In
addition, this method is cumbersome, requires significant
investment, knowledge, and experience.

(i) Thermal Diffusion Method. This method estimates
cortical or interstitial blood flow from the temper-
ature difference between the two gold plates at the
tip of the probe placed on or in the brain through a
burr hole [119-121]. This method provides continuous
quantitative real-time CBE. However, measurements
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are made from a limited (local) area only and may not
represent the whole brain (global) CBF changes.

(ii) Transcranial Doppler Method (TCD). This is a non-
invasive method that was introduced by Aaslid et
al. in 1982 [122]. It measures blood flow velocity
and not blood flow. The linear relationship between
CBF and mean flow velocity under most of the
experimental and many clinical conditions allows
for accurate assessment of CBF by TCD method
and permits real-time CBF measurements [121-123].
This method is easy to use, allows for continuous
data collection over a long period of time, can be
used repeatedly, and allows comparison with other
experiments or data sets [113, 123]. The usefulness
of TCD for assessment of CBF and arterial diameter
has been confirmed by numerous experimental and
clinical studies of SAH [121, 124-128]. In addition,
TCD assesses vascular resistance and reactivity as well
as status of autoregulation of CBE. This is of significant
value since CBF is constant in the CPP range of about
50-150 mmHg because of autoregulation, which is
frequently disturbed after aSAH. The limitations of
TCD include indirect CBF measurement and inter-
operator variability.

(iii) Jugular Oximetry. As TCD, jugular oximetry does
not measure CBF directly. Here, CBF is calcu-
lated from arteriojugular oxygen saturation difference
(AJDO,). The measurements assess CBF in relation to
metabolic activity but are adequate only if coupling
between CBF and metabolism is intact. Another
limitation is that oximetry assesses oxygen content in
ajugular bulb that may better represent hemispherical
and not global CBE.

(iv) Cerebral Angiography. Spasm in large cerebral arteries
sets in 3-7 days after SAH. Angiography is frequently
used to assess the presence and severity of delayed
arterial vasospasm. Though this technique is invasive
it can be used repeatedly to follow the development
and effects of pharmacological intervention on the
delayed vasospasm [129].

(v) EEG Monitoring. EEG changes are registered when
the ICP surpassed the systolic arterial pressure and
the electrical silence results of arrest of the cerebral
circulation.

On the Model. CBF measurement is crucial for a modified
aSAH model and should be performed using a technique
that is reliable, simple, easy, noninvasive, and allows repeated
measurements. TCD fulfills this selection criterion.

6.3. Outcome Assessment. An animal outcome is an essential
endpoint of an aSAH study. It confirms the importance
of a pathway being studied in aSAH induced injury and
helps decide whether modification of this pathway would
be beneficial. It is also essential that outcome assessments
studied in animals are relevant to the human condition so that
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treatments found effective in animals can be translated to the
patients [99].

In aSAH patient neurological and functional deficits
develop early and/or after several days. In patients, status at
admission and early deficits are assessed by the Hunt and
Hess, the Glasgow coma (GCS), and the World Federation
of Neurological Surgeons (WENS) grading scales [130]. The
long-term outcome in SAH patients is assessed by Katzman,
Rankin, and/or Barthel scores. In animals, neurological
injury is studied indirectly as diminished response to an
external stimulus or reduced function or directly as death
of brain cells by immunostaining or assays for apoptosis,
autophagy, or neurodegeneration. The methods used for
assessing neurological and functional deficits in SAH animals
are less than perfect and often erroneously incorporate
procedures intended for assessing focal ischemic injury.
Furthermore, though a battery of exams for a number of
species exists, a species-specific limitation for assessments is
often not recognized (for review see [131, 132]). The review
by Jeon and colleagues provides an excellent guide to the
techniques used to assess outcome in rodents after aSAH
[99].

On the Model. A new aSAH animal model should induce con-
sistent and reproducible immediate-gradual and transient-
permanent injury and deficits. Thus, it should use scales and
exams for injury assessment that are similar or equivalent to
the ones used in SAH patients. This strategy will increase the
chances of successful translation of a therapy found beneficial
in animals.

7. Modified aSAH Model

We applied quite a few restrictions to establish an improved
aSAH model and and came up with several must have
essentials and a spectrum of choices rather than a single,
one-fits-all solution. An investigator of course will select the
technique that suits the animal species and the phase of injury
(acute versus delayed) being studied and permitted by the
laboratory environment. The approach that in our opinion
will work the best is as follows.

(1) Blood is injected, so that it pools in the subarachnoid
space and elevates ICP to a level that CPP reduces to
zero creating TGL.

(2) Physiological parameters that change after SAH and
associate with the intensity of injury are monitored:

(i) early ICP change via an intraventricular
catheter;
(ii) early BP change via an oscillometric method;
(iil) early CBF change via TCD;
(iv) delayed vasospasm via repeated arteriography
or TCD.

(3) Outcome assessments are made using scale and exams
that are equivalent to the ones used for assessing
clinical outcome.

(4) Additional attributes are adaptable to other species
(range from rodents to primates) with little modifi-
cation and low mortality and morbidity.

8. Summary

Inadequate disease modeling may have contributed to the
failure of improving outcome in aSAH patients. We presented
here a proposal of a modified model of aSAH that incorpo-
rates all of the components and elements of injury after aSAH,
which may provide a better resource for studying the injury
mechanisms and developing a treatment.
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Subarachnoid hemorrhage (SAH) is the subtype of stroke with one of the highest mortality rates and the least well-understood
pathophysiologies. One of the very early events which may occur after SAH is a significant decrease of cerebral perfusion pressure
(CPP) caused by the excessive increase of intracranial pressure during the initial bleeding. A severely decreased CPP results in global
cerebral ischemia, an event also occurring after cardiac arrest. The aim of the current paper is to review the pathophysiological
events occurring in experimental models of SAH and global cerebral ischemia and to evaluate the contribution and the importance

of global cerebral ischemia for the pathophysiology of SAH.

1. Introduction

Subarachnoid hemorrhage (SAH) is a relatively rare subtype
of stroke (incidence: 10/100,000 person years; 5% of all
first-ever strokes) which is characterized by the presence of
blood in the subarachnoid space, the cerebrospinal fluid-
filled space between the pia arachnoidea, a thin membrane
which covers the brain parenchyma, and the dura mater [1-4].
The vast majority of SAHs (85%) is caused by the spontaneous
rupture of a cerebral aneurysm located at the skull base. The
consequence of blood being released into the subarachnoid
space with a pressure almost equal to systolic blood pressure
is that 20%-25% of patients die almost immediately after SAH
[1]. From those patients reaching a hospital, 33% die within
the first 30 days after hemorrhage and about 33% survive only
with persisting neurological deficits making them dependent
on daily care [2, 5]. The remaining 33% of patients were
independent 18 months after SAH; however, only 1/3 of these
patients reported no reduction in quality of life as compared
to the premorbid state [6]. Accordingly, about 50% of SAHs
are lethal and less than 8% of patients fully recover. Therefore,
SAH is regarded as the subtype of stroke with the worst prog-
nosis; due to the relatively young age at which SAH occurs,
the loss of potential life before the age of 65 is comparable to
that of ischemic stroke, a condition which is more than 20

times more frequent (incidence: 240/100,000 person years)
[7].

Despite large technical and procedural achievements in
the diagnosis of SAH, in the prevention of rebleedings, and in
general intensive care over the past three decades, it is a mat-
ter of debate whether the outcome after SAH improved sig-
nificantly [3, 5, 8, 9]. This disappointing situation may be the
mere reflection of the severity of the disease, however, since
most sequelae of SAH occur with a delay of several hours and
even days, it is generally accepted that a deeper understanding
of the pathophysiology of the secondary insults caused by the
initial hemorrhage may be the key for the development of
novel therapeutic strategies and, hence, for improving patient
outcome.

The CNS-related pathophysiological events following
SAH can be divided into an early component and a delayed
component. The delayed component occurs later than four
days after hemorrhage and is characterized by delayed spasms
oflarge intracranial vessels and possibly cerebral microvessels
leading to cerebral ischemia in distinct areas of the brain,
that is, focal cerebral ischemia. Delayed large artery spam
has been studied extensively over the past 20 years, and
endothelin 1 receptors were found to be the molecular sur-
rogate for posthemorrhagic vasospasm [10]. Unfortunately,
recent clinical evidence suggests that although endothelin



receptor antagonists were able to reduce posthemorrhagic
vasospasm, patient’s outcome did not improve significantly
[11]. Consequently, in recent years, research started to focus
more on the early component of the pathophysiology of SAH
[8, 12]. Another reason for this change of focus is certainly
also that mortality during the first few days after SAH is four
times higher than that during the late phase [1, 13, 14].

One of the main characteristics of early brain injury (EBI)
following SAH is a severe reduction in cerebral blood flow
in various regions of the brain [15] which may cause cortical
spreading depolarization (CSD), spreading ischemia, and
subsequent ischemic brain damage [16]. Interestingly, cere-
bral ischemia occurs under conditions of normal or almost
normal cerebral perfusion pressure (CPP) suggesting that
ischemia is caused by constriction of intracerebral vessels.
Since neither clinical nor experimental evidence suggest that
functionally relevant macrovasospasm is present at this early
stage after SAH, the cerebral perfusion deficit has to be
located on the level of the cerebral microcirculation. Indeed
Uhland colleagues and later Pennings and colleagues demon-
strated already ten years ago that pial microvessels show
pearl-string-like constrictions in SAH patients [17, 18]. Such
microvasospasms were later also found in experimental
studies using histological techniques [19] and in vivo imaging
(20, 21].

Despite these interesting and clinically relevant findings
explaining the occurrence of focal ischemic brain damage in
the cortex and in the basal ganglia and the subsequent func-
tional deficits observed after SAH, some other important
features of the pathophysiology of SAH are still unclear. It
is, for example, still unclear why SAH patients suffer from
global brain edema [22, 23], why glutamate levels increase
after SAH but decrease shortly thereafter [24], why in animal
models of SAH neuronal injury is mainly observed in the
hippocampus and not in the cerebral cortex [25], and why
patients surviving SAH suffer from pronounced memory
deficits [26]. These changes occur on top of early cortical
ischemia and may be associated with global ischemia due to
the exceedingly high increase in intracranial pressure and the
resulting cessation of cerebral perfusion during and shortly
after the initial vessel rupture as suggested by various authors
already decades ago [27, 28]. Since the pathophysiological
changes observed immediately, that is, within the first 60
minutes after SAH, cannot be investigated in patients, the aim
of the current paper is to review the experimental literature
and evaluate whether there is enough evidence to suggest
that global cerebral ischemia is an important feature of the
pathophysiology of SAH.

2. Pathophysiological Findings following
Experimental SAH

A plethora of techniques and species were used during the
past decades to study SAH under experimental conditions
[29-32]. At the time when the emphasis of SAH research was
mainly on delayed cerebral vasospasm, animal models able to
reproduce this condition experimentally were predominantly
developed [29-32]. The model of SAH and vasospasm most
frequently used was the canine “two-hemorrhage” model, in
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FIGURE 1: Perfused mouse brain three hours after experimental SAH
(endovascular perforation model). A large clot formed at the perfo-
ration site (dotted white circle), and blood is distributed from the
bleeding site into the subarachnoid space, preferentially along blood
vessels.

which two injections of blood into the basal cistern were per-
formed 48 hours apart. On the basis of its ability to accurately
predict what occurs in human SAH, a primate model in which
a blood clot is surgically placed around the large cerebral
vessels at the base of the brain was used in dedicated centers
[29]. After more recently scientists became also interested
in early brain injury after SAH, animal models reproducing
the early pathophysiology of SAH became more popular and
more frequently used [30-32]. Among those models, the
intravascular perforation model, where the Circle of Willis is
perforated without craniotomy by an endovascular approach,
seems to be the procedure which reproduces the early
pathophysiology of SAH most adequately [30-33]. Therefore,
most of the data currently reviewed derive from experiments
performed with the filament perforation model.

When inducing SAH experimentally by endovascular
perforation of the Circle of Willis, blood is released into the
subarachnoid space at the skull base where it forms a large
clot (Figure 1). Since the growing clot uses up a significant
proportion of the intracranial volume, the intracranial pres-
sure (ICP) starts to rise immediately after the hemorrhage
to values around 100 mmHg (Figure 2(a)). The immediate
increase in ICP triggers an increase of blood pressure, the
so-called Cushing Reflex (Figure 2(b)), thereby aggravating
the bleeding [34]. The intracranial hypertension results in a
pathological decrease of cerebral perfusion pressure (CPP)
for up to 5 minutes (Figure 2(c)). This CPP decrease results
in a global suspension of cerebral blood flow for 2-3 minutes
[24, 33, 35-37] which is equal to global cerebral ischemia.

The stop of cerebral circulation together with local vaso-
constriction and activation of the coagulation cascade pro-
mote the formation of a blood clot at the bleeding site and,
hence, cessation of hemorrhage as indicated by a gradual
decrease of ICP over the next 2-3 minutes to values around
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FIGURE 2: Intracranial pressure (ICP; (a)), mean arterial blood pressure (MAP; (b)) and cerebral perfusion pressure (CPP; (c)) after SAH in

amouse (t = 0; endovascular perforation model).

30 mmHg. Consequently, CPP recovers to near normal values
of 60 mmHg or more (Figure 2). Interestingly, many groups
report that despite the recovery of CPP, CBF does not neces-
sarily recover and may stay at low levels in both hemispheres
for up to 60 min after SAH [24, 33, 35, 36]. Acute vasocon-
striction of large intracerebral arteries was made responsible
for this phenomenon [33]; however, this early lack of CBF
recovery after SAH is prevented when instead of anesthetics
with a known blood pressure-lowering and Cushing Reflex-
suppressive effect, that is, halothane or isoflurane, anesthetics
are used which maintain systemic blood pressure [38]. Hence,
it remains unclear whether the prolonged CPP-independent
drop of CBF after SAH is a pure experimental phenomenon
or indeed a component of the early pathophysiology of SAH.

No matter if CBF fully recovers or not, SAH results also in
metabolic changes in the brain parenchyma as demonstrated
by in vivo microdialysis [24, 33]. Glutamate increases up to
sixfold already 30 min after SAH and gradually returns to
near baseline values within the next 1.5 hours. This increase in
glutamate is paralleled by an increase in the lactate/pyruvate
ratio, an indicator of tissue ischemia [24]. Since microdialysis

reflects the situation in the brain parenchyma only with a
delay of up to 30 min (depending on sampling conditions),
it is conceivable to conclude that the metabolic changes
observed after SAH by microdialysis occur mainly immedi-
ately after the initial hemorrhage and are therefore a strong
indicator for global cerebral ischemia [24].

Concomitant with the recovery of ICP, CPP, CBE, and tis-
sue metabolism, the posthemorrhagic brain starts to display a
slow but steady increase in brain water content from three to
six hours until at least three days after SAH [25, 39, 40]. The
delayed and slow development of brain edema suggests that
the underlying pathophysiology may be linked to opening of
the blood brain barrier (BBB) rather than to the initial pos-
themorrhagic global ischemia, since brain edema formation
following global ischemia is caused by ischemic cell swelling
and therefore disappears within minutes after reperfusion
[41]. Indeed, injection of blood into the subarachnoid space
of rats—a model devoid of all acute changes in ICP, CPP,
and CBF described earlier—resulted in an increased vascular
permeability brought about by focal disruption of endothe-
lial tight junctions and the subsequent opening of the BBB



in the underlying cortex [42]. The molecular mechanisms
responsible for this BBB opening have not been fully elu-
cidated but involve activation of matrix metalloproteinase
9 and degradation of the microvascular basal lamina [37,
43]. If one takes into consideration that in SAH patients
and in animals subjected to SAH by endovascular puncture
blood is distributed in the whole subarachnoid space, it is
conceivable that under these conditions vasogenic brain
edema will develop in all cortical regions of the brain and may
therefore make a “global” impression. When extrapolating to
the human situation, it is, hence, very likely that the global
edema observed in patients [22, 23, 44] is just the reflection
of blood-induced microvascular leakage and has little or no
pathophysiological link to the global ischemia observed
immediately after the initial bleeding.

SAH in mice and rats is accompanied by a mortality of
35%-50% mainly between 24 and 72 hours after vessel perfo-
ration [25, 29, 30, 33, 37, 45], values well comparable to those
observed in SAH patients [1, 2]. At least in experimental ani-
mals, the reason for this mortality is certainly not related to
focal brain ischemia due to delayed vasospasm since rodents
do not develop symptomatic large artery spasms neither at
the time when mortality occurs nor later [31]. Accordingly,
rebleedings or the sequels of early brain injury (EBI) have
to be involved; however, the underlying mechanisms are by
far not fully understood yet [8, 12, 46]. In any case, SAH-
related mortality is certainly not related to hemorrhage-
induced early global cerebral ischemia since the duration of
global cerebral ischemia typically observed after SAH, that
is, 2-3 minutes, does not cause any mortality in comparable
experimental models of global cerebral ischemia; in these
models, more than 8 minutes of three/four vessel occlusion
are necessary to produce at least some mortality [47, 48].
In addition, mortality after experimental global ischemia
typically occurs between day 3 and day 5 after the insult and
not within the first three days like after experimental SAH.
Accordingly, the mortality observed after SAH in rodents
does not seem to be caused by global ischemia, but rather
by later changes associated with blood-brain barrier opening,
microcirculatory failure, and focal cerebral ischemia.

3. Pathophysiological Findings following
Experimental Global Cerebral Ischemia

Cardiac arrest results in an immediate drop in systemic blood
pressure and a subsequent cessation of cerebral blood flow
resulting in global cerebral ischemia. The lack of cerebral
blood flow results in anaerobic metabolism leading to tissue
acidosis, anoxic depolarization of neuronal cells with release
of glutamate and other neurotransmitters into the extracel-
lular space, and in immediate swelling of glial cells. As a
consequence, extracellular glutamate concentrations increase
by several folds and cytotoxic edema develops [41, 49]. If the
restoration of cardiac function occurs before the respiratory
centers of the brain stem are permanently damaged, survival
is possible [50]. Usually reperfusion of the brain is followed by
a hyperemic response [51], and large as well as small cerebral
vessels are fully perfused within a few minutes [52]. Despite
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sufficient cerebral blood flow, usually neuronal cell death
occurs with a delay of 3-5 days in the hippocampus [53] and
in selective cortical areas resulting mainly in memory and
executive function deficits [54-56]. These events are found
in a very similar manner in experimental animals as well as
in patients who suffered a cardiac arrest.

4. Similarities between Experimental Global
Cerebral Ischemia and SAH

When comparing the pathophysiology observed after global
cerebral ischemia and SAH, it becomes quite obvious that
the early phase of SAH shows some phenomena which are
very similar to those observed after global cerebral ischemia.
In both conditions, cerebral blood flow may come to a
complete stop or is at least reduced below the ischemic
threshold of 20% of physiological cerebral blood flow [33,
35], and extracellular glutamate concentrations are increased
significantly for at least 30-60 min [24, 33, 49]. These changes
in blood flow trigger an acute activation of cerebrovascular
endothelial cells and cause a delayed but transient interaction
of inflammatory cells and platelets with cerebral vessels for
only a few hours [52, 57]. The glutamate releases triggered by
global cerebral ischemia and SAH result in excitotoxicity and
delayed neuronal cell death selectively in the hippocampus
and in subsequent memory and executive function deficits
(25, 49].

Similarities between global cerebral ischemia and SAH
are also found during the reperfusion phase which occurs
after restoration of cerebral blood flow. Provided animals
have a sufficiently high blood pressure [38, 51], reperfusion
occurs within a few minutes and results in full restoration
of flow in large and small cerebral vessels as well as on the
level of the microcirculation [25, 48, 52, 57]. When blood
pressure is not sufficiently high, both conditions result in slow
or lacking reperfusion which results in low survival rates and
exacerbation of delayed brain injury [33, 38, 45, 51].

5. Dissimilarities between Experimental
Global Cerebral Ischemia and SAH

As soon as the acute phase of global cerebral ischemia and
SAH is over, the pathophysiology of both conditions starts
to show a growing number of dissimilarities. The main
reason for this observation is the persisting triggering of
further pathophysiological processes by the presence of blood
in the subarachnoid space following SAH while in global
cerebral ischemia the pathophysiology certainly proceeds,
but no further pathophysiological events are additionally
initiated [41, 51]. One important feature of SAH not found
in global cerebral ischemia is the acute constriction of large
intracranial vessels [19, 33] and the subacute occurrence
of cerebral microvasospasm and microthrombosis [21, 58]
in areas of subarachnoid blood deposition. These vascular
changes may well prolong and/or exacerbate the perfusion
deficits acutely caused by global ischemia and result in
delayed focal cerebral ischemia and the formation of delayed
brain edema as also observed in SAH patients [15, 22, 59].
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6. Summary and Conclusion

The current literature as well as our own results suggests that
the early pathophysiology of SAH consists of two phases:
one related to the brief global ischemia caused by the initial
bleeding and one linked to the vascular damage caused by
the blood ensheathing the brain supplying arteries in the
subarachnoid space. This concept is further supported by
the fact that microvessels in the subarachnoid space adjacent
to the cerebral cortex are functionally impaired, that is, do
not react to CO, (unpublished data), show microvasospasms
[19, 21], are prone to develop microthrombosis [21, 58], and
show progressive opening of the blood-brain barrier [42].
Accordingly, events induced by global cerebral ischemia are
well present after SAH and play an important pathophysi-
ological role but represent only one out of many important
components of the complex pathophysiology of SAH.
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Subarachnoid hemorrhage and transient global cerebral ischemia result in similar pathophysiological changes in the cerebral
microcirculation. These changes include microvascular constriction, increased leukocyte-endothelial interactions, blood brain
barrier disruption, and microthrombus formation. This paper will look at various animal and preclinical studies that investigate
these various microvascular changes, perhaps providing insight in how these microvessels can be a therapeutic target in both

subarachnoid hemorrhage and transient global cerebral ischemia.

1. Introduction

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic
stroke, most commonly caused by a ruptured intracranial
aneurysm. At the time of aneurysm rupture, blood pours
into the subarachnoid space, and the intracranial pressure
(ICP) inside the rigid calvarium increases sharply, causing
a corresponding decrease in cerebral blood flow (CBF). The
patient’s clinical presentation on arrival to the hospital can
depend on the degree and duration of this initial global
cerebral ischemia.

Patients with aneurysmal SAH may develop angiographic
vasospasm and delayed cerebral ischemia (DCI) with onset
3-12 days after the initial rupture [1]. DCI may or may
not be accompanied by large artery vasospasm as seen with
vascular imaging [2]. A multicenter randomized clinical trial
has not shown improvement in neurologic outcome despite
ameliorating the delayed large artery vasospasm [3]. Whether
this is due to efficacy of rescue therapy in the placebo
groups or drug toxicity abrogating beneficial effects in the
clazosentan groups has not been resolved. Nevertheless, as
a result of these results, research in SAH has also inves-
tigated early brain injury and acute microvascular changes
[4]. Nimodipine, an L-type calcium channel antagonist, is

the only pharmacologic agent that has been shown to con-
sistently improve neurologic outcomes in clinical trials of
patients with SAH [5].

Similarly, cardiac arrest (CA) results in global cerebral
ischemia that is transient in clinically relevant cases, since
if cardiac function is not restored, the situation is of patho-
logical interest only. Other causes of transient global cere-
bral ischemia (tGCI) include asphyxia, shock, and complex
cardiac surgery [6]. The clinical presentation depends on the
duration of cardiac arrest and time to initiating cardiopul-
monary resuscitation. After global cerebral ischemia from
SAH or tGCI, a cascade of molecular events occurs, resulting
in variable degrees of brain injury and cerebrovascular
changes.

Global cerebral ischemia in postcardiac arrest has also
been studied extensively for many decades in various animal
models. Other than early induced mild hypothermia (7, 8],
clinical translation of neuroprotective strategies and thera-
peutics has largely been unsuccessful.

The study of the microcirculation after tGCI and SAH
remains a difficult undertaking, but this strategy of study
may reveal potential therapeutic targets and new insights
into disease pathophysiology. The purpose of this paper is to
look at relevant animal and preclinical studies investigating



acute microvascular changes (within the first 48 hours)
occurring after either SAH or tGCI. Cerebral microvessels
may be defined as vessels less than or equal to 100 microm-
eters in diameter [9]. Animal studies of focal ischemia or
studies focused on the large cerebral vessels (i.e., circle of
Willis arteries, basilar artery, etc.) are not included in this
paper. While we acknowledge that tGCI may occur in a
large heterogeneous group of disorders (i.e., traumatic brain
injury, intracerebral hemorrhage, etc.), we have chosen to
focus solely on tGCI secondary to cardiac arrest or mecha-
nisms mimicking cardiac arrest, such as extracranial arterial
occlusion. After providing an overview of various animal
models and general trends in cerebral hemodynamics after
SAH and tGCI, we provide an in-depth review of studies
investigating specific microvascular changes that occur in
these two conditions: (1) microvascular constriction; (2)
increased leukocyte-endothelial cell interactions; (3) blood
brain barrier (BBB) breakdown; and (4) platelet aggregation
and microthrombosis.

2. Animal Models

There are numerous animal models that attempt to mimic
the clinical conditions of SAH or tGCI. Large (nonhuman
primates, cats, dogs, and pigs) and small animals (mice, rats,
gerbils, and rabbits) may be used. It is important to take into
consideration that experimental results may vary depending
on the animal model used.

Techniques used to produce SAH include endovascular
perforation, blood injection, artery avulsion or puncture, and
clot placement. For example, the endovascular perforation
model of SAH in the mouse may have more physiologic
resemblance to the actual clinical scenario of a ruptured
intracranial aneurysm, but the amount of blood in the
subarachnoid space is quite unpredictable from animal to
animal leading to increased variability in the results. The
injection model of SAH (cisterna magna or prechiasmatic
cistern) in the mouse provides the ability to control the
amount of blood introduced into the subarachnoid space,
but may not produce as dramatic rise in ICP compared
to the endovascular perforation model, depending on the
amount injected. As a result, the degree of global cerebral
ischemia seen after SAH may not be as severe in the blood
injection model as reflected by the overall lower mortality rate
compared with the endovascular perforation model [10,11]. A
detailed review of various animal models of SAH has been
published previously [12]. The type of SAH model utilized
must be taken into account when interpreting experimental
results.

Similarly, there are a large variety of animal models and
techniques used to study tGCI. These techniques include
cardiac arrest/asphyxia, thoracotomy with clamping of the
aorta and great vessels, bilateral common carotid artery
and vertebral artery (4 vessel) occlusion, and isolated bilat-
eral common carotid artery occlusion. The severity of the
ischemia depends on the technique used to produce ischemia,
the type of animal, and even the strain of an animal species.
For example, most gerbils are known to lack posterior
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communicating arteries that connect the forebrain and hind-
brain circulations. Thus, bilateral common carotid artery
occlusion produces very severe forebrain ischemia in gerbils
[13]. However, in mice, the presence or absence of posterior
communicating arteries varies depending on the strain used.
BALB/C mice had larger infarct sizes and were more likely
not to have posterior communicating arteries compared with
BDF and CFW mice after concomitant ipsilateral common
carotid artery and middle cerebral artery occlusions [14].
Also, the duration of ischemia and reperfusion can vary
significantly between studies. A comprehensive review of
available animal models of tGCI has been published [15].
Again, interpretation of study results must take into account
the specific model of tGCI utilized.

3. Cerebral Hemodynamic Changes

After SAH, the ICP increases as a result of new subarachnoid
blood occupying volume in the fixed intracranial space,
with a corresponding decrease in cerebral perfusion pressure
(CPP). There are no data on ICP during de novo aneurysm
rupture in humans; but during rebleeding, the ICP frequently
rises substantially [16]. The ICP may rise as high as the
diastolic blood pressure and last for several minutes. Since
not all patients go unconscious at the time of SAH, this
only occurs in a subset of clinical cases. During this period,
there may be a transient absence of forward CBF [17]. The
mean arterial pressure (MAP) typically increases to partially
compensate, but this change does not adequately restore CPP.
The ICP then returns to normal or slightly supranormal levels
over the course of less than an hour [17]. In a rat endovascular
perforation model, CBE which initially drops sharply to 20%
of baseline flow, begins to slowly rise and then stabilizes at
a level below the baseline [18]. The magnitudes of the initial
drop in CBF and increase in ICP are related to the amount of
subarachnoid blood [19]. If the ICP remains persistently high
after SAH, then CBF does not recover and the animal dies
(17].

In tGCI induced by either temporary cardiac arrest or
four-vessel occlusion, there is negligible forward blood flow
in the cerebral circulation. With temporary bilateral common
carotid artery occlusion causing severe forebrain ischemia,
the reduction in CBF is more variable depending on the
intracranial collateral circulation, specifically the presence
and patency of the posterior communicating arteries. Unlike
in SAH, experimental models of tGCI do not produce a
dramatic increase in ICP [20]. Upon reperfusion, there are
two cerebrovascular response patterns seen. The first pattern
is the “no-reflow phenomenon,” which is characterized by
decreased tissue perfusion upon subsequent intra-arterial
injection of contrast or dye after an initial period of ischemia
[21]. Although the no-reflow phenomenon is more com-
monly discussed in the context of coronary artery occlusion
[22], the term was probably first used by Ames et al., in
experiments involving the cerebral circulation in rabbits
undergoing tGCI [23]. This phenomenon has been confirmed
in other studies [24, 25]. The second pattern is postischemic
reactive hyperemia followed by delayed hypoperfusion [21].
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Experimental SAH and tGCI both result in impaired
global CBE However, in SAH, acute cerebral ischemia is
secondary in part to high ICP, which is not present in
tGCI, although other mechanisms may reduce CBF after
ICP declines in SAH. Also, in tGCI, reperfusion involves
restoring blood flow much like an “on” switch, whereas in
SAH models, reperfusion is a much more gradual process as
the ICP normalizes.

4. Microvascular Changes in
Subarachnoid Hemorrhage

4.1. Microvascular Constriction. Although, earlier research
focused more on delayed large vessel vasospasm in SAH,
it is also known that acute microvessel constriction occurs.
Topical application of blood onto the cortical surface of
anesthetized guinea pigs revealed vasoconstriction of pial
vessels [26]. Such constriction was reversed acutely by topical
application of the alpha adrenergic blocker, phenoxybenza-
mine, and prevented by the beta-adrenergic blocker, pro-
pranolol [26]. It appears that acute vasoconstriction occurs
predominantly in the arterioles and not the venules. In
an endovascular perforation model of SAH in mice, pial
surface microvessels observed with in vivo fluorescence
microscopy demonstrated unchanged venular diameter but
approximately 70% of arterioles constricted acutely (3-6
hours) and persisted even at 72 hours after SAH [27]. Smaller
arterioles had more vasoconstriction than larger arterioles.
Pial vessels constricted as early as 5 minutes after injection
of hemolyzed erythrocytes into the cisterna magna of rats,
and this persisted for at least 2 hours [28]. In vivo monitoring
also revealed decreased blood flow in the arterioles as well
as the venules. Erythrocytes take time to lyse after SAH,
so the time course after injection of hemolyzed blood may
not be the same as after actual SAH. Using a prechiasmatic
SAH model in mice, Sabri et al. found an increased degree
of vasoconstriction in the microvessels (10-20 micrometers
in diameter) as well as increased overall wall thickness at
48 hours after SAH, as determined by electron microscopy
[29]. In these experiments, the location of the microvessel
constriction appeared to strongly correlate with regional
distribution of brain injury and neuronal apoptosis [29].

In addition to constriction, arterioles also have been
shown to demonstrate altered reactivity acutely after SAH
and specifically to have impaired vasodilation. In an endovas-
cular perforation model of SAH in rats, cortical surface pial
arteriolar vasodilation in response to either topical adenosine
or sodium nitroprusside was significantly impaired after
SAH, but CO, reactivity was unaffected [30]. In addition, pial
arteriolar vasodilation, which is typically seen in response to
sciatic nerve stimulation, was attenuated during the first 3
days after SAH but returned to control levels by 4 days [30].
Cortical arterioles also demonstrated increased constriction
in response to endothelin-1 20 minutes after injection of
autologous blood into the cisterna magna injection of rats
[31].

Ultrastructural changes in the walls of microvessels are
also observed in experimental SAH. In an endovascular

perforation model of SAH in rats, electron microscopy
revealed partially collapsed capillaries with swollen astrocyte
foot processes and small luminal protrusions emanating from
the endothelial cells [32]. These changes occurred at least 1
hour after SAH. The significance of these luminal protrusions
is unclear.

4.2. Leukocyte-Endothelial Interactions. Leukocyte adhesion
to the microvessel wall may contribute to microvascular
injury. In inflammatory conditions, the cerebral microvas-
culature increases the expression of endothelial adhesion
molecules that attract and bind leukocytes, such as inter-
cellular adhesion molecule-1 (ICAM-1), vascular adhesion
molecule-1 (VCAM-1), P-selectin, and E-selectin [33]. With
leukocytes rolling and then adhering to the microvessels,
they can then traverse the luminal wall and enter the brain
parenchyma by the process of diapedesis [34]. Neutrophils
and macrophages may then cause direct neuronal injury [6].

After SAH induced by prechiasmatic blood injection
in mice, there was a significant increase in endothelial
cell membrane expression of P-selectin, but no difference
in cytosolic P-selectin expression [29]. Although leukocyte
adhesion was not specifically addressed in this study, the
increase in P-selectin expression appeared to colocalize to
regions with increased microthrombi burden [29]. Neu-
trophils appear to contribute to early microvascular injury
after SAH. In an endovascular perforation model of SAH
in rats, neutrophils were found to adhere to the cerebral
microvasculature as soon as 10 minutes after SAH [35].
An inhibitor of neutrophil function, pyrrolidine dithiocar-
bamate (PDTC), decreased neutrophil accumulation in the
parenchyma despite an increase in adherent neutrophils
to the cerebral vasculature, meaning that neutrophils had
impaired ability to undergo diapedesis [35]. In contrast,
pharmacologic reduction of neutrophils (with vinblastine or
antipolymorphonuclear serum) decreased both neutrophil
adherence to cerebral microvessels and penetration into the
brain parenchyma but increased subsequent bleeding. The
treatments in this study also decreased collagenase activity
and maintained the integrity of the BBB.

Intravital microscopy showed a progressive increase in
the number of rolling and adherent leukocytes to venules
at 30 minutes, 2 hours, and 8 hours after SAH induced by
endovascular perforation in mice [36]. This was not seen after
cisternal injection of blood, demonstrating the difference
in results that can occur depending on the animal model
used and suggesting a role for tGCI in the findings, since
tGCI is more prominent in SAH induced by endovascular
perforation compared to cisternal blood injection. Some mice
were treated with a monoclonal antibody against P-selectin
immediately after SAH, and this decreased leukocyte rolling
and adhesion [36]. It is not clear based on preclinical SAH
studies whether leukocyte plugging of microvessels as a result
of increased adherence to the luminal wall is significant
enough to cause ischemia in itself.

4.3. Blood Brain Barrier Disruption. Subarachnoid hem-
orrhage is believed to induce inflammatory states in the



brain. Inflammatory mediators (cytokines including IL-1p,
IL-6, TNF-«, and oxidative damage from neutrophils and
macrophages) may result in direct damage to the microvas-
culature, resulting in damage to the BBB [37]. The BBB
maintains an exclusive intraparenchymal compartment for
the brain, separate from the circulating blood. Unlike in
the systemic microcirculation, the cerebral microvessels have
endothelial cells with tight junctions to prevent passage
of micro- and macromolecules from the blood into the
brain interstitial environment [38]. There is a lack of fen-
estrations between cerebral endothelial cells, which means
that molecules or cells that enter the parenchyma from
the microvessel lumen must migrate through the polarized
endothelial cell itself. There also may be reduced pinocytosis
in cerebral endothelial cells. A basal lamina embedded in
an extracellular matrix encircles the endothelial cells, and
this is then covered by foot processes of local astrocytes. The
cerebral endothelial cell, astrocyte, and neuron form the so-
called neurovascular unit [39]. Damage to the integrity of the
BBB can result in brain edema and brain injury [6].

There are several preclinical studies that suggest that
there is disruption of the BBB after SAH. The time course
of disruption, the magnitude, and to what molecules the
BBB is disrupted to after SAH are not fully investigated. In
an endovascular perforation model of SAH in rats, there
was increased BBB permeability as determined by leakage of
Evan’s blue dye [40]. The BBB disruption was associated with
an increase in brain edema, worse neurological deficit, and
mortality. A pan-caspase inhibitor (z-VAD-FMK) adminis-
tered 1 hour before and 6 hours after SAH prevented BBB dis-
ruption (measured by immunoglobulin extravasation) and
decreased brain edema. Although SAH caused endothelial
cell apoptosis in the basilar artery, endothelial cells of the
microvasculature were not assessed. In a cortical SAH model
in rats, significant impairment of the BBB as determined by
Evan’s blue dye extravasation was observed after SAH [41].
Furthermore, in spontaneously hypertensive rats with SAH,
there was more BBB disruption compared with normotensive
rats with SAH [42]. In a cisterna magna injection model of
SAH in rats, the time course of BBB breakdown, assessed
by Evan’s Blue dye extravasation, was studied [43]. The BBB
breakdown began 36 hours, peaked 48 hours, and resolved
3 days after SAH. In an intracisternal SAH model in cats,
the authors did not observe BBB breakdown 30 minutes
after SAH [44]. Cats subjected to arterial hypertension alone
demonstrated regions of BBB breakdown, whereas animals
subjected to arterial hypertension after SAH did not show
BBB breakdown. This protective effect of hypertension con-
flicts with other studies [41].

Animal studies have investigated mechanisms by which
SAH may compromise the BBB. Various matrix metallopro-
teinases (MMPs) are capable of breaking down the basal
lamina and the associated extracellular matrix surrounding
the endothelial layer [45]. This may lead to blood extravasa-
tion, associated edema, and brain injury. Sehba et al. studied
the integrity of the microvasculature in an endovascular
perforation model of SAH in rats [45]. There was decreased
immunoreactivity to type IV collagen in the microvessel
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basal lamina with corresponding increased levels of MMP-
9 expression starting at 3 hours, peaking at 6 hours, and
subsequently resolving by 48 hours after SAH. These changes
were not observed at 10 minutes or 1 hour after SAH.

Extracellular matrix metalloproteinase inducer (EMM-
PRIN, also known as collagenase stimulatory factor, basigin,
CD147, or human leukocyte activation-associated M6 anti-
gen), is a cell surface protein that can stimulate production
of MMPs [46]. Inhibition of EMMPRIN with a monoclonal
antibody against it decreased brain edema 24 hours after
endovascular perforation SAH in rats [46]. Brain edema was
maximal at 24 hours after SAH and declined thereafter in
this model [46]. In another study, using the endovascular
perforation model of SAH in rats, the tight-junction protein
occludin in endothelial cells and collagen type IV in the
basal lamina were decreased at 24 hour after SAH [47].
Electron microscopy confirmed disruption of the endothelial
tight junctions and increased spaces between endothelial
cells. The investigators found that p53 colocalized with the
proinflammatory transcription factor nuclear factor xB (NF-
xB) and MMP-9, which in turn could degrade occludin [47].
Because a selective p53 inhibitor decreased microvascular
damage, the authors concluded that p53 is an important factor
in BBB disruption.

The direct damage to the microvasculature after SAH
may in part be due to reactive oxygen species produced by
inflammatory cells. In a cisterna magna injection SAH model
in rats, a hydroxyl free radical scavenger, when administered
within 12 hours of SAH, decreased BBB permeability at 48
hours as determined by Evan’s Blue dye extravasation [48].

4.4. Platelet Aggregation and Microthrombosis. In SAH, clot
formation in the microcirculation could occur as a result of
platelet aggregation and then embolization or propagation
from the original bleeding site, which would be the rupture
point in the intracranial aneurysm clinically. In experimental
studies, this feature of active bleeding is a component of the
endovascular perforation model but not the injection models.
However, arterial injury and active bleeding do not seem to be
the only initiator of platelet aggregation, since microthrombi
are formed even in the injection animal model of SAH in
which there is no vessel rupture [29]. Also, SAH predisposes
to the formation of microthrombi, as rats undergoing a
prechiasmatic injection model of SAH were found to be
hypercoagulable [49].

Platelet aggregates are seen in the cerebral microvascula-
ture as early as 10 minutes after SAH induced by endovascular
perforation in rats [50]. The total microclot burden peaked
at 24 hours, but fully resolved by 48 hours. In another
study using the same model of SAH, platelet aggregates
were associated with microvessels that were poorly perfused
[51]. In addition, there was breakdown of the collagen IV
component of the basal lamina [52]. Platelets, upon activa-
tion, can release proteases such as MMP-9 that can digest
collagen IV in the basal lamina. In fact, platelets could be
seen on the abluminal side of cerebral endothelial cells and
in the local parenchyma by 10 minutes after SAH, with large
numbers of platelets seen in the parenchyma by 24 hours
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[52]. The investigators suggest that platelet aggregates may
initiate or cause local endothelial cell injury, damage the BBB,
and allow the extravascular escape of macromolecules and
cells [51]. Sabri et al. found microthrombi throughout the
mouse brain at 48 hours after the prechiasmatic injection
of blood in mice [29]. These findings occurred later after
SAH than demonstrated by some prior studies and in a
model that has less global ischemia than the endovascular
perforation model. The microclots appeared in about one-
third of the constricted microvessels but in none of the
normal microvessels. Also, the more severely constricted the
vessel, the more numerous the microthrombi. There was
a strong correlation between presence of microclots and
regional brain injury.

The importance of the microthrombi to brain injury
and outcome in experimental SAH was suggested in an
endovascular perforation model of SAH in mice [53]. The
number of microthrombi decreased upon administration
of a mutant thrombin-activated urokinase-type plasmino-
gen activator, and this correlated with decreased mortality.
Platelet aggregates in SAH also adhered to leukocytes that
were adherent to the walls of microvessels [36].

5. Microvascular Changes in Transient
Global Cerebral Ischemia

5.1. Microvascular Constriction. In tGCI, the microvessels
undergo significant changes in diameter during the global
ischemia and then also during reperfusion; these changes
affect CBE However, reviews of the studies reveal inconsistent
results. In a study by Pinard et al., a 4-vessel occlusion model
of tGCl in rats was used to study in vivo changes of the surface
pial microvessels [54]. During the 15 minutes of cerebral
ischemia, arteriolar diameter transiently increased and then
decreased. Cerebral autoregulation may explain this transient
arteriolar vasodilation. Administration of 7-nitroindazole,
a neuronal nitric oxide (NO) synthase inhibitor, reduced
this transient vasodilation-implicating NO as an important
participant in cerebral autoregulation. However, sustained
vasodilation was not seen during the ischemic period, but this
may be secondary to passive collapse of the microvessels due
to slow perfusion and relatively low intravascular pressure.
Despite occlusion of 4 vessels, there was residual forward
flow during ischemia, which suggests that this animal model
is one of incomplete global ischemia. Residual flow of
plasma without erythrocytes could be seen in vivo in surface
capillaries during the ischemia [54]. The transient arteriolar
dilatation in response to tGCI was not seen in another study
using a bilateral common carotid artery occlusion model
in gerbils [55]. These investigators observed an initial mild
arteriolar vasoconstriction in the first minute followed by
a more extensive constriction beyond 1.5 minutes. These
changes correlated with changes in cerebral metabolism.
Upon reperfusion in the study by Pinard et al., blood
flow could be observed in the parenchymal arterioles with
significant dilatation beginning 5 minutes after unclamping
of the common carotid arteries, with return to baseline
arteriolar diameter after 15 minutes [54]. Another study used

10 minutes of tGCI induced in cats by a 4-vessel occlusion and
systemic hypotension protocol [20]. In vivo imaging through
a cranial window revealed persistent dilated pial microvessels
upon reperfusion although CBF was reduced [20]. Overall
cerebrovascular resistance was unchanged, meaning that
obstruction to flow must have been present distally in the
penetrating arterioles or other vessels not seen on the cortical
surface [20]. However, a contrasting result was found in a
tGCI model of bilateral common carotid artery occlusion in
gerbils, in which the investigators did not observe vasodila-
tion but rather found decreased diameters in both surface
precapillary arterioles and capillaries during reperfusion after
15 minutes of tGCI [56]. The authors concluded that the
hypoperfusion that typically occurs in tGCI is a result of
increased tone in precapillary arterioles, in contrast to any
conclusion that could be drawn from other studies.

Endothelial protrusions can be seen in tGCI. In a 4-vessel
occlusion model of tGCI in rats with 30 minutes of ischemia,
cerebral endothelial microvilli projecting into the lumen
could be identified throughout the brain, and this occurred
in as little as 10 minutes after initiation of ischemia [57]. The
frequency of microvilli increased with increasing duration
of ischemia [57]. In another study, cerebral endothelial cell
microvilli were also seen after tGCI was induced by occlusion
of the cardiac vessel bundle, mimicking cardiac arrest in rats
[58].

5.2. Leukocyte-Endothelial Interactions. The preclinical stud-
ies investigating leukocyte-endothelial interactions in tGCI
have had mixed results. In a 4-vessel occlusion model of
tGCI in rats, the investigators studied leukocyte-endothelial
interactions in pial vessels via a closed cranial window and
intravital microscopy [59]. At 2 hours after an ischemic
period of 20 minutes, there was no significant increase
in the number of rolling or adherent leukocytes in the
microvessels when compared to the control group, despite
evidence of neuronal injury on histology. In another study,
30 minutes of transient forebrain ischemia was induced in
gerbils by bilateral carotid artery occlusion [60]. Gerbils
were treated with cyclophosphamide to decrease neutrophil
count (and as a side effect, slightly decreased platelets),
but this did not affect the occurrence of the no-reflow
phenomenon upon reperfusion, making leukocyte plugging
of small microvessels less likely as a cause of postischemic
hypoperfusion. Dirnagl et al. studied tGCI in rats with
bilateral common carotid artery occlusion for 10 minutes
followed by 4 hours of reperfusion and found that there was
a trend toward increased leukocyte rolling and adherence to
the endothelium during the postischemic period [61]. Very
few microvessels were plugged with leukocytes and about
half of the rats demonstrated leukocyte extravasation into the
parenchyma during the post-ischemic period. The transition
from hyperemia to post-ischemic hypoperfusion did not
reveal any obvious change in leukocyte behavior, also suggest-
ing that leukocyte plugging would not be a major contributor
to hypoperfusion in the microvasculature. In contrast, other
studies have demonstrated significant leukocyte adherence
to the luminal walls of the microvasculature. Ritter and



colleagues found a significant increase in leukocyte rolling
and adhesion in cerebral cortical venules at 30 minutes after
reperfusion in a bilateral carotid artery occlusion model with
induced hypotension in rats [62]. In a gerbil model of tGCI
with bilateral common carotid artery occlusion for 15 minutes
followed by reperfusion, there was an increase in leukocytes
rolling or adhering to the venular endothelium within 3 hours
of reperfusion, but no observed plugging of the capillaries,
as determined by intravital fluorescence microscopy [63].
However, leukocyte-endothelial interactions had returned to
baseline by 7 hours after ischemia and remained so at 12 hours
and 4 days.

The conflicting results with regard to increased leukocyte-
endothelial adherence after tGCI may be related to the diver-
sity of animal models used, the variability in the duration of
ischemia and reperfusion, as well as the varied resolution of
the in vivo microscopy equipment.

5.3. Blood Brain Barrier Disruption. Transient global cerebral
ischemia is also believed to induce an inflammatory state
that results in BBB disruption. In a bilateral carotid artery
occlusion model of global ischemia in gerbils, the BBB
was disrupted, as determined by extravasation of Evan’s
blue dye and increased brain edema [64]. Brain edema was
present immediately after reperfusion although Evan’s blue
dye leakage was not detected until 2 hours afterwards, and
both were increased 3 hours after reperfusion, which was the
latest time examined. In a 4-vessel occlusion model of global
cerebral ischemia in rats, BBB breakdown, as determined by
leakage of labeled albumin, was greater after longer ischemia
time (60 minutes of global ischemia compared to 15 or 30
minutes) [65]. The degree of associated brain edema was
also dependent on the duration of the initial ischemia. In
a 4-vessel occlusion tGCI model in rats, BBB breakdown
occurred during the ischemic insult, as demonstrated by
leakage of fluorescein dye, beginning after as little as 8
minutes of ischemia and resolving by 30 minutes after
reperfusion, after a preplanned total of 15 minutes of ischemia
[54]. Similar to SAH, oxidative damage to the microvessels
occurs with reperfusion after tGCI. Zheng et al. demonstrated
decreased activities of superoxide dismutase and glutathione
peroxidase in a bilateral common carotid artery occlusion
mouse model of tGCI [66]. Loss of these enzymes that protect
against oxidative damage resulted in cortical microvascular
endothelial damage and mitochondrial injury. The authors
also found that treatment with crocin, an antioxidant, inhib-
ited this oxidative damage and attenuated MMP-9 expression.

5.4. Platelet Aggregation and Microthrombosis. In a circu-
latory arrest model of tGCI, aggregates of platelets were
identified in the intraparenchymal vessels during reperfusion
after 5 minutes of tGCI [67]. Platelet aggregates increased
with increasing time of reperfusion. In a 4-vessel occlusion
model of tGCI in rats, thrombi could be seen in vivo, tem-
porarily obstructing cortical surface arterioles and venules
during the hyperemic phase after reperfusion and causing
turbulent blood flow [54]. In another study, tGCI was induced
by occlusion of the cardiac vessel bundle in rats for 10
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minutes followed by reperfusion [58]. Microthrombi were
most prominent at 3 minutes to 6 hours after reperfusion and
appeared to localize in regions of relative hypoperfusion [58].
The microthrombi were not seen 7 days after tGCI in this
model.

Endothelial injury occurs in tGCI which causes break-
down of the BBB, exposing portions of the basal lamina to
the cerebral circulation. This promotes platelet aggregation
and thrombosis. Another potential initiator of microthrombi
is the relative stasis of blood during the ischemia in both SAH
and tGCl—resulting in in situ thrombosis, although this has
not been confirmed experimentally.

6. Comparison of Microvascular
Changes in SAH and tGCI

Although microvascular constriction is consistently demon-
strated in SAH, such constriction is inconsistent during the
ischemic and reperfusion phases of tGCI. This may be related
to the heterogeneity in animal models utilized. However,
endothelial luminal protrusions have been demonstrated in
both SAH and tGCI, but the significance of this finding is
unclear. Most studies that involve in vivo observations of
microvessels typically focus on surface pial vessels, which are
clearly more accessible and convenient to study. It is, how-
ever, much more difficult to assess penetrating parenchymal
microvessels in vivo, but these vessels may be important in
the pathophysiology of SAH and tGCIL.

SAH and tGCI both are believed to induce inflammatory
states in the brain. While less widely investigated, there does
seem to be evidence that increased leukocyte adherence to
the cerebral microvasculature occurs after SAH. Neutrophil
adherence in tGCI has been inconsistently shown. Leukocyte
rolling has also been inconsistently demonstrated in both
SAH and tGCIL. The no-reflow phenomenon after tGCI
appears not to be directly caused by leukocyte plugging in the
microvasculature.

The majority of studies investigating BBB integrity after
SAH or tGCI do not use in vivo observation of the BBB.
However, BBB disruption is consistently seen in all of these
studies and appears to occur earlier after tGCI (as early as 8
minutes) compared with SAH (3 hours) [45, 54].

Platelet aggregation and presence of microthrombi in the
microvessels occur after both SAH and tGCI. The models of
SAH may induce some degree of tGCI, so it is difficult to
determine how much of the pathophysiology after SAH is due
to the subarachnoid blood itself.

7. Conclusions

Subarachnoid hemorrhage and tGCI share common
pathophysiological changes in the microvasculature. This
includes microvascular constriction during the ischemic
phase, increased leukocyte-endothelial interactions,
disruption of the BBB, and microvascular platelet aggregates
and microthrombosis. The cerebral microvasculature
may be an important target for treatments designed to
reduce brain injury, although there are few such studies
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and limited information about the importance of the
pathophysiologic processes in humans. Due to similar
pathological mechanisms between these two conditions,
however, it may be that treatment strategies for SAH may be
applicable to tGCI and vice versa.
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Vascular endothelial growth factor (VEGF) stimulating angiogenesis was shown to be a potential novel therapeutic approach for
the treatment of ischemic vascular diseases. The goal of the present study was to examine whether transfection of VEGF before
occurrence of major stroke (part I) and cerebral vasospasm after experimental subarachnoid hemorrhage (SAH; part II) develops
neuroprotective qualities. A total of 25 (part I) and 26 (part IT) brains were analyzed, respectively. In part one, a significant reduction
of infarct volume in the VEGF-treated stroke animals (43% reduction, P < 0.05) could be detected. In part two, significant vasos-
pasm was induced in all hemorrhage groups (P < 0.02). Analyzing microperfusion, a significant higher amount of perfused vessels
could be detected (P < 0.01), whereas no significant effect could be detected towards macroperfusion. Histologically, no infarctions
were observed in the VEGF-treated SAH group and the sham-operated group. Minor infarction in terms of vasospasm-induced
small lesions could be detected in the control vector transduced group (P = 0.05) and saline-treated group (P = 0.09). The
present study demonstrates the preconditioning impact of systemic intramuscular VEGF injection in animals after major stroke

and induced severe vasospasm after SAH.

1. Introduction

Cerebral vasospasm and delayed cerebral ischemia contribute
the major part of secondary morbidity and mortality after
severe subarachnoid hemorrhage (SAH) [1-5]. Despite the
current treatment strategies, the rate of related permanent
disability is estimated at 10% to 20% [6-9].

Vascular endothelial growth factor (VEGF) is involved in
neurogenesis, inhibition of apoptosis, learning, and memory
[10]. It can directly promote neuroprotection, but first of
all VEGF is the main factor responsible for angiogenesis
whereby an indirect neuroprotection is discussed. VEGF
expression is increased during cerebral ischemia in humans
and animals [11]. However, endogenous VEGF seems to be
insufficient to protect the brain from ischemic injury com-
pletely. Interestingly, it could be shown that exogenous

administrated VEGF induces angiogenic changes that result
in a reduction of cerebral ischemic injury [12, 13]. For this
reason VEGF was adopted as a potential novel therapeutic
approach for the treatment of ischemic vascular disease,
particularly in ischemic stroke [14-18].

The aim of the present experimental study was to examine
the effect of systemic overexpression of VEGF prior to stroke
and SAH with regard to cerebral infarction, vasospasm, and
perfusion.

2. Material and Methods

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The



experimental study was reviewed and approved by the local
Committee for Animal Experimentation, Recklinghausen,
Germany (approval no. 8.87-50.10.34.08.246). All invasive
procedures were performed under general anesthesia with
intraperitoneal application of xylazine hydrochloride and
ketamine, and all efforts were made to minimize suffering.
The animals were housed under a light/dark cycle with free
access to food and water.

2.1. Construction of Vectors and Transduction. DNA trans-
duction was performed with a VEGF-containing expres-
sion vector. The initial vector (pcDNA3.1/His B/; Invitro-
gen, Karlsruhe, Germany) was first digested with EcoRI.
A VEGEF clone in EcoRI (descending from a pLEN/VEGF
vector, kindly provided from Max-Planck-Institute, Planegg-
Martinsried, Germany) was inserted. Control animals were
injected with an empty expression vector (pcDNA3.1/His
B; Invitrogen, Karlsruhe, Germany). Vector integrity was
confirmed by sequence analysis. Large-scale preparation of
plasmid DNA was performed with the EndoFree GigaPrep
(Qiagen, Hilden, Germany). DNA was solved in 0.9% sterile
saline and stored in aliquots at —20°C.

Weekly gene transfers into both anterior tibial muscles
were performed thrice with 100 ug DNA per leg in a volume
of 50 L normal saline.

2.2. Transient Middle Cerebral Artery Occlusion. Part one
determined the effect of VEGF in stroke protection in order
to verify the effect of VEGF in major stroke. Three groups of
male Wistar rats weighting 250 to 275g (n = 32) received
intramuscular injections of VEGF vector, control vector, or
saline for three times at intervals of seven days. Seven days
after the last gene transfer, the rats underwent 45 min-
utes of transient middle cerebral artery occlusion (tMCAO)
under continuous monitoring of laser Doppler flow (Moor
Instruments, Axminster, UK) [19]. Body temperature was
maintained at 37.0 + 0.5°C. Reperfusion was performed by
removing the filament. Animals were sacrificed after 24 h
reperfusion time.

2.3. Rat Double SAH Model. In part two a total of 80
male Wistar rats weighting 250 to 275g were used. The
animals were randomized to four groups: group (1) receiving
intramuscular injections with a plasmid-containing VEGE
group (2) receiving a VEGF free plasmid, group (3) the saline
group, and group (4) the sham-operated group.

In groups 1 and 2 the VEGF or VEGF free vector was
injected 21, 14, and 7 days before the induction of vasospasm.

One week after the last gene transfer (VEGF vector,
control vector, and sodium) vasospasm was induced by
double blood injection into the cisterna magna as described
previously [20-22]. Animals were positioned prone, and
the atlantooccipital membrane was surgically exposed. The
cisterna magna was punctured under microscopic view
using a 27-gauge cannula, and 0.2 mL of cerebrospinal fluid
was aspirated first and followed by injection of 0.2mL
of autologous blood. The animals were then placed head
down for 10 minutes to avoid leakage of injected blood,
and the operation wound was closed. The procedure was
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repeated on day 2. In animals belonging to the sham-operated
group, the atlantooccipital membrane was exposed; 0.2 mL of
cerebrospinal fluid was aspirated and reinjected. The animals
were positioned head down for 10 minutes, and the operation
wound was closed. This procedure was repeated on day 2.
During the procedure the body temperature was controlled
and maintained at 37.0 + 0.5°C.

The neurological condition was assessed daily according
to amodified Bederson grading scale circling to one side [23].

2.4. Cerebral Angiography and Evaluation. Angiography was
performed on day five after double direct blood injection into
the cisterna magna.

The angiographic studies were performed under intra-
peritoneal general anesthesia as described above. After posi-
tioning the animals supine, a cervical midline incision was
made to expose the common carotid artery bilaterally. As
described previously the artery was tapped using a small can-
nula attached to a microcatheter (27-gauge needle, Prowler
14 microcatheter; Cordis Endovascular, Miami Lakes, FL,
USA), and the angiography was performed under auto-
mated, controlled injection of a total of 0.1mL of contrast
agent (Ultravist 300; Schering AG, Berlin, Germany; Integris
Allura; Philips Medical Systems, Best, The Netherlands) [20].
The angiography was repeated up to four times to achieve
best quality. On the one hand digital imaging was measured,
software based, to evaluate the reduction of large vessel
diameter as described before [24]. On the other hand a
visualization of low-density structures in given regions of
interest (RIO) was determined in order to obtain information
concerning perfusion by the use of minimum intensity
projection (MinIP) [25]. A MinIP in time direction from
the beginning arterial phase to the parenchyma phase was
carried out. The algorithm uses all the data by projecting
the volume of interest into a viewing plane. Before contrast
agent arrived, an individual baseline image was determined
and filtered to reduce background information (OsiriX v.
3.8.1, http://www.osirix-viewer.com/). Major ROIs (including
angiographically visible major vessels, e.g., A. carotis interna)
and smaller cortical ROIs (without angiographically visible
major vessels, e.g., area between A. carotis interna beneath
the junction of A. cerebri media) were defined. The resulting
bidimensional image represents the contrast-perfused ves-
sels/tissue. Measurement of average grey levels in the above-
defined ROIs represents a higher or lower perfusion. These
values of minimal intense projection are inversely correlated
with the amount of perfused vessels.

The animals were sacrificed after the angiography by
intraperitoneal injection of a lethal dose of sodium pento-
barbital (200 mg/kg body weight, Sanofi-Aventis, Frankfurt,
Germany).

2.5. Histology. A 12 uym microtome was used for cresyl
violet staining and hematoxylin and eosin as well as for
TUNEL analysis. Coronal sections of the frontal, parietal,
and occipital brain were taken to detect morphological
alterations in terms of ischemic lesions. In part one recording
of all sections was obtained by a digital camera. Infarct
area and total area of the brain were outlined manually
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FIGURE 1: Cresyl violet staining after 45 minutes of tMCAO and 24 h reperfusion time. (a) Distinct ischemic brain injury after i.m. injection
with saline. (b) Attenuated ischemic brain injury after i.m. injection with VEGE. (c) Infarct volume in the three different groups in mm”.

and volume calculated, software based, in mm® (Leica
QWin, Leica, Germany). In part two the infarctions in
each section were assessed and divided into three groups
as previously published: (1) no infarction, (2) minor infarc-
tion, and (3) territorial infarction [26]. For detection of
apoptotic cells in part one, an in situ cell death detection
kit (Roche Diagnostics, Mannheim, Germany) based on
terminal deoxynucleotidyl transferase-mediated deoxyuri-
dine triphosphate nick end-labeling (TUNEL) technique was
used.

3. Results

3.1 Part One: Attenuated Ischemic Brain Injury after Transient
Focal Cerebral Ischemia. In part one VEGF in major stroke
showed a significant reduction of infarct volume in the
VEGF-treated animals (43% reduction, P < 0.05, Mann-
Whitney U test, Figure 1). Five animals passed away due to
subarachnoid hemorrhage and two as the result of stroke. 25
brains were analyzed (9 in the gene-transferred group, 10 in
the control group, and 6 in the saline group). TUNEL staining
showed no significant differences in the three groups.

3.2. Part Two. A total of 80 animals were examined. 24 ani-
mals died immediately after the double hemorrhage injection

and 12 during the course of the experiment. The clinical
evaluation revealed no delayed neurological deficit over the
5-day observation period in terms of hemiparesis. All animals
were sacrificed on day 5 after the initial bleeding.

3.2.1. Angiographic Analysis of Macroperfusion. Overall, 176
angiographic examinations were performed in 44 animals
belonging to the 4 experimental groups. Angiographic eval-
uation was not possible in 18 animals as a result of technical
problems or mortality from the angiography itself. 96 series
in 26 animals were technically sufficient. Of these, the
angiogram with the highest contrast of each animal was
chosen for further evaluation by an independent observer
(SM) blinded to the groups.

Statistically significant reduction of arterial diameter was
induced with the double hemorrhage model (SAH groups
compared with sham group, P < 0.02, Figure 2). Among
the three SAH groups, there were no statistically significant
differences of relative intracranial filling intensity defined as
macroperfusion (SAH/VEGF compared with SAH/control,
P = 0.56; SAH/VEGF compared with SAH/NaCl, P = 0.51,
t-test).

3.2.2. Angiographic Analysis of Microperfusion. In26 animals,
a complete arterial to venous phase (circulation time) was
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carried out (Figure 3). Comparing the VEGF-treated SAH
group (group 1) with the control vector treated SAH group
(group 2) and the NaCl-injected SAH group a significant
difference was detected (major ROI: P < 0.01 and P < 0.01;
cortical ROI: P < 0.02 and P < 0.01). Differences between
the VEGF-treated and NaCl groups without SAH were not
statistically significant (major ROL: P = 0.94; cortical ROI:
P =0.63).

3.2.3. Morphological Examination. Macroscopic pathological
evaluation revealed clear residuals of SAH in the basal cis-
terns in 26 animals belonging to the SAH groups and in none
of the sham-operated group. Histologically, no infarctions
were observed in the VEGEF-treated group and the sham-
operated group. Minor infarction in terms of vasospasm-
induced small lesions could be detected in the control vector
transduced group (P = 0.05) and saline-treated group (P =
0.09) (Figure 4).

4. Discussion

4.1. Part One. Analyzing therapeutic effect in experimental
cerebral ischemia usually a tMCAO model is used [27,
28]. Therefore the developed VEGF DNA was initially
tested in this experiment under well-defined conditions with
clearly expected ischemic lesions. Different VEGF levels and
accordingly immunohistochemical analysis of VEGF were
not carried out, but a distinct effect on the reduction of
infarct volume in the VEGF-treated animals could be shown
(43% reduction). Based on these results it is assumed that
intramuscular injection of VEGF has a neuroprotective effect
in cerebral ischemia animal model.

4.2. Part Two

4.2.1. SAH Model. The double hemorrhage model was used
because of the higher vasospastic impact in comparison to
other SAH models as described [29]. As previously published,
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FIGURE 4: H&E stained section with cortical microinfarct in the cortical layers in a nontreated animal (a). At higher magnification
mononuclear infiltration can be distinguished (b, arrow). Scale bar corresponds to 1000 ym (a) and 200 ym (b), respectively.

the highest level of measurable vasoconstriction was induced
on day 5 after induction of SAH [20, 30]. Thus, day 5 was
chosen for angiographic studies. Mortality rate in the present
trial was 30%, which is in line with previously published
studies using the double hemorrhage model in rats [20, 31,
32].

4.2.2. Efficacy on Macro- and Microperfusion. Angiographic
evaluation of small vessels in rats is complex, and thus
different techniques have been reported [33-35]. In the
present study, a previously described software-based mea-
surement tool for analysis of small cerebral vessels was
used to detect vasospasm [24]. Using this technique, a
significant induction of vasospasm in all SAH groups could
be detected, which is in line with previously published studies
[20].

In the VEGF-treated group, a significant difference of
cerebral vessel caliber (cerebral macroperfusion) in relation
to the other SAH groups was not measurable. In contrast,
the analysis of cerebral microperfusion using the vascu-
lar density technique as previously described revealed a
significant increase in the VEGF-treated group [25]. One
explanation could be the induction of neoangiogenesis due
to VEGE. This observation is in line with results after the
experimental cerebral ischemia model in animals [35]. Two
major limitations have to be mentioned. First, the blood
pressure during DSA was not measured and therefore may
have affected time to peak and cerebral blood flow values.
However, to detect real hyperperfusion or hypoperfusion a
perfusion imaging in terms of perfusion CT or perfusion
MRI is needed. Second, limitation is the infusion time of
contrast agent. Automated injection facilitated a standardized
condition in our setting.

4.2.3. Morphological Effects. One issue with experimental
models of SAH in small animals is the lack of clear morpho-
logical ischemic damage wherefore part one was performed
in order to evaluate the effect in major stroke [22]. Similarly,
in the present study, only a few ischemic areas in the
nontreated SAH groups could be detected.

4.3. Efficiency of Intramuscular VEGF and Limitation of the
Trial. Hypoxia itself induces an increase of VEGF expression
in ischemic areas of the brain, but this endogenous VEGF
secretion is inadequate to entirely protect the brain injury
[36]. Based on the significant reduction of infarct volume in
part one it is assumed that intramuscular injection of VEGF
has a neuroprotective effect in cerebral ischemia animal
model.

Short half-life and poor penetration over the blood brain
barrier appear to have a lower impact in this model than
frequently described [13, 27]. These findings were corrob-
orated by other investigators who verified that high dose
of intravenous infusion of VEGF after cerebral embolic
ischemia induces leakage of blood brain barrier in the animal
model [37]. Controversially, reduction of edema formation
after VEGF application in a stroke model despite the leakage
of blood brain barrier has been described [38]. The detailed
activity of VEGE, besides the known neoangiogenesis and
mitogenic activity in stroke and particularly in SAH, remains
therefore mostly unknown.

Although VEGF administration appears promising, sev-
eral disadvantages have to be mentioned. VEGF protein is
not stable in vivo, and it has a short half-life. Direct protein
implantation into ischemic lesions via sustained release deliv-
ery systems or focal virus mediated overexpression might
protect the immediately surrounded neuronal tissue, and,
therefore, direct implantation seems to be a good approach
for defined hypoxic-ischemic brain injuries [27, 39]. In SAH,
delayed cerebral ischemia and related infarction are known
to occur diffusely. Therefore, recommendation of treatment
and the target of therapy should address the whole brain. In
consequence, a systemic increase of VEGF using a DNA gene
transfer could be discussed as a potential beneficial approach.

Within the chronic phase of vasospasm, the cerebral cir-
culation adapts to hypoxia with angiogenesis and dilatation
of microvessels [15]. Nevertheless, it is suggested that the rela-
tion between vasoconstrictive factors (free hemoglobin, acti-
vated endothelin-1, and free oxygen radicals) and vasodila-
tory substances (NO) is disturbed in favor of constrictors,
and neoangiogenesis potentially starts too late. In this study
no influence of VEGF on the vasoconstrictive or vasodilatory



elements could be detected directly. On the opposite, a
significant increase of perfusion could be detected. How-
ever, a nonsignificant trend to a lesser extend of ischemic
lesions in histological examinations could be identified, and
a significant increase of microperfusion was detected via an
angiographic approach despite proven vasospasm. Against
this background the indirect neuroprotection by dint of
angiogenesis seems to have a high importance.

The upregulation of VEGF can trigger this angiogenesis
in the early period of vasospasm. This means preconditioning
the cerebrum to forthcoming ischemic event by improvement
of blood supply.

The present study demonstrates the preconditioning
impact of systemic VEGF injection on cerebral microper-
fusion and ischemic lesions in animals after induced severe
vasospasm. These results justify further investigations in
particular with regard to modus of application, dose of
VEGEF injection, time interval of preconditioning, immuno-
histochemical examination (VEGE, CD 34), and detailed
measurement of behavior changes.
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Aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences on brain function including profound effects on
communication between neurons and the vasculature leading to cerebral ischemia. Physiologically, neurovascular coupling
represents a focal increase in cerebral blood flow to meet increased metabolic demand of neurons within active regions of the brain.
Neurovascular coupling is an ongoing process involving coordinated activity of the neurovascular unit—neurons, astrocytes, and
parenchymal arterioles. Neuronal activity can also influence cerebral blood flow on a larger scale. Spreading depolarizations (SD) are
self-propagating waves of neuronal depolarization and are observed during migraine, traumatic brain injury, and stroke. Typically,
SD is associated with increased cerebral blood flow. Emerging evidence indicates that SAH causes inversion of neurovascular
communication on both the local and global level. In contrast to other events causing SD, SAH-induced SD decreases rather
than increases cerebral blood flow. Further, at the level of the neurovascular unit, SAH causes an inversion of neurovascular
coupling from vasodilation to vasoconstriction. Global ischemia can also adversely affect the neurovascular response. Here, we
summarize current knowledge regarding the impact of SAH and global ischemia on neurovascular communication. A mechanistic

understanding of these events should provide novel strategies to treat these neurovascular disorders.

1. Pathophysiology of
Subarachnoid Hemorrhage

Aneurysmal subarachnoid hemorrhage (SAH) is associated
with high morbidity and mortality with limited therapeutic
options [1]. The major contributor to poor outcome of
patients surviving the initial surge in intracranial pressure is
delayed cerebral ischemia (DCI) manifesting 4-10 days after
aneurysm rupture as new and otherwise unexplained neuro-
logical deficits and/or ischemic lesions within the brain [2].
Despite decades of study, mechanisms contributing to SAH-
induced DCI remain controversial. For many years, a delayed
and prolonged vasospasm of large conduit arteries was
thought to be the major contributor to DCI and the ensuing
death and disability observed in SAH patients [3, 4]. Recent
data, however, challenge this view [5-7] and strongly suggest
that additional mechanisms contribute to poor outcomes

after SAH, including early brain injury suffered at the time
of bleed [6, 8-10], blood-brain barrier disruption [11, 12],
inflammation [13-15], and impaired microcirculatory func-
tion [16-19]. Evidence suggests that a pathological inversion
of neurovascular coupling may play an important role in SAH
pathology both in the context of spreading depolarization
waves [20] and at the level of the neurovascular unit in
response to focal neuronal activity [21].

2. Spreading Depression and
Injury Depolarizations

Spreading depression (SD) is the historical term used to
describe intense neuronal and glial depolarization events that
propagate within cortical or subcortical grey matter at a rate
of 2-4 mm/min regardless of functional divisions or arterial



boundaries [22]. Initially implicated in migraine aura, SD-
like depolarization waves also occur in stroke and traumatic
brain injury [23, 24]. The pivotal event during SD is a massive
K" efflux that increases extracellular K concentration to
>40 mM. Massive influx of Ca®*, Na*, and water accompanies
the K" efflux and triggers uncontrolled release of neurotrans-
mitters, most importantly the excitatory amino acid gluta-
mate. Released K™ and glutamate are believed to depolarize
other neurons in the vicinity, and SD slowly propagates in
grey matter by way of contiguity. Therefore, extracellular
medium, including the perivascular space, is flooded with K*
and neurotransmitters that are vasoactive. Because complete
membrane depolarization precludes action potentials and
synaptic transmission, SD is associated with suppression of
all spontaneous or evoked electrical activity. Consequently,
the normal neuronal influence on the vasculature is absent at
least until the ability of neurons to generate action potentials
returns, which can take several minutes. Moreover, there is
ample evidence suggesting that physiological neurovascular
coupling is impaired not only during the depolarization but
for hours after the SD event [25-28].

SD is triggered when a minimum critical volume of brain
tissue is simultaneously depolarized. Therefore, cerebral
ischemia, anoxia, and other forms of brain injury can all trig-
ger SD. Both animal models and clinical studies have clearly
demonstrated the occurrence of SD waves associated with
traumatic brain injury, cerebral ischemia, and subarachnoid
hemorrhage [24, 29-33]. With respect to the emergence of SD
after SAH, a number of potentially interacting factors have
been implicated. These SD promoting factors and influences
from subarachnoid blood include increased extracellular K*
combined with decreased nitric oxide bioavailability [30, 34,
35], oxyhemoglobin [34, 36, 37], and endothelin-1 [37-40].
Such spreading injury depolarizations occur repetitively over
hours and days and propagate throughout the unhealthy,
but not yet depolarized or necrotic tissue (e.g., ischemic
penumbra). Indeed, such injury depolarizations are indistin-
guishable from SD when they often propagate into nonin-
jured tissue. The existence of injury depolarizations has been
recognized for decades, and their detrimental effect on tissue
outcome has been attributed to their profound metabolic
impact. More recently, however, an additional mechanism
was discovered that exacerbates the energy supply-demand
mismatch in injured brain. This novel mechanism, termed
inverse or vasoconstrictive neurovascular coupling, leads to a
reduction in tissue perfusion instead of the usual hyperemia
SD causes in normal brain tissue.

3. Influence of Spreading Depolarizations on
Cerebral Blood Flow

In most species and studies, and under normal physiolog-
ical conditions, SD is typically associated with a profound
hyperemic response that starts shortly after the onset of
depolarization and outlasts it by a few minutes [41-46]. As
SD has a profound metabolic impact on brain tissue [47], this
increase in the flow of nutrients enables neurons to recover
from the massive ion and water imbalance occurring during
SD events. However, the vasomotor impact of SD can also
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be complex. For example, a brief hypoperfusion occasionally
precedes the hyperemia, its onset coinciding with the onset
of depolarization. This initial hypoperfusion is augmented by
nitric oxide (NO) inhibition, particularly when extracellular
potassium ([K'],) is artificially elevated [34, 48-51]. In mice,
the initial vasoconstriction is much more pronounced and
hyperemia is completely absent [41]. Vascular response also
appears to vary depending on vessel caliber and/or cortical
depth. Larger pial surface arterioles respond to SD with
a small initial constriction followed by dilation, whereas
smaller parenchymal arterioles mainly constrict [52]. In gen-
eral, vasoconstrictive tone develops during the depolariza-
tion, followed by a vasodilator tone during repolarization,
and then a second vasoconstrictive phase that can last up to
an hour [53]. The magnitude and time course of these oppos-
ing vasomotor components vary depending on species and
experimental conditions, can be modulated physiologically
and pharmacologically, and determine the final morphology
of the hemodynamic response [53]. Altogether, these obser-
vations suggest that SD exerts multiple opposing vasomotor
effects on blood vessels, with vasodilation predominating in
healthy tissue.

Pathological circumstances such as ischemic stroke or
subarachnoid hemorrhage modulate the magnitude and tim-
ing of the vasomotor components. Under such conditions, the
vascular response becomes predominantly vasoconstrictive,
that is, inverted [46, 54, 55]. This likely represents a shift in
the balance of vasomotor influences to vasoconstriction. As
a result, injury depolarizations cause hypoperfusion rather
than hyperemia that could potentially lead to a downward
spiral of increased brain injury [33, 56, 57]. In ischemic
penumbra, the more ischemic the tissue is (i.e., closer to
the core), the more severe the vasoconstrictive component
becomes [33, 56, 58-60]. Such conditions can be recreated
to transform the CBF response. For example, in the presence
of extravascular hemoglobin and elevated [K'], or low
glucose, mimicking subarachnoid hemorrhage, SD is asso-
ciated with severe vasoconstriction [34]. Induced hypoxia
and hypotension independently augment the hypoperfusion
component of the hemodynamic response to SD and signif-
icantly diminish the hyperemia [61]. Although hypotension
appears to be more potent than hypoxia in this regard,
combined hypoxia and hypotension, most closely mimicking
ischemic penumbra, transforms the predominantly dilator
response into a biphasic one. Neither induced hyperoxia nor
hyperglycemia restores the CBF response [55, 62], suggesting
that cerebral perfusion pressure affects SD-mediated vascular
responses by a mechanism unrelated to tissue energy status.

Despite the fact that SD in normal cortex is not damaging,
this severe vasoconstrictive response can lead to injury and
cell death, even in the absence of any preexisting energy
depletion [36]. Indeed, injury depolarizations worsen tissue
and neurological outcome in focal cerebral ischemia and
other brain injury states including aneurysmal SAH [20, 29,
31,57, 63]. Conversely, drugs that are known to inhibit cortical
spreading depression, such as NMDA receptor antagonists
MK-801, diminish the severity of episodic hypoperfusions
and prevent the expansion of severely hypoperfused cortex,
eventually reducing the infarct size [20, 29, 31, 33, 63].
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However, in vivo studies have shown the efficacy of MK-801 to
prevent SD was greatly diminished when extracellular K* was
elevated [64]. Topical application of vasodilator agents such
as nitric oxide and the L-type voltage-dependent Ca** chan-
nel blocker nimodipine reverts the vasoconstrictive response
to vasodilation [34, 54, 65]. Therefore, mechanisms trans-
forming the CBF response from hyperemia to hypoperfusion
during injury depolarizations may be targeted to interrupt
the vicious cycle and improve tissue outcome. Further, recent
evidence suggests SAH can have a profound impact on the
individual neurovascular unit leading to inversion of neu-
rovascular coupling in the absence of SD.

4. Functional Hyperemia at the Level of
the Neurovascular Unit

Functional hyperemia and neurovascular coupling are terms
often used interchangeably to describe increased cerebral
blood flow (CBF) in brain regions with enhanced neuronal
activity, which forms the basis of functional magnetic res-
onance imaging (fMRI) [66]. This localized vasodilation to
meet activity-dependent metabolic demand involves inter-
play of cells comprising the neurovascular unit—neurons,
astrocytes and intracerebral (parenchymal) arterioles [67-
69]. Astrocytes act as key intermediaries in the neurovascular
response, structurally having close “synapse-like” associa-
tions with neurons as well as processes (astrocytic endfeet)
that completely encase parenchymal arterioles. Over the past
decade, numerous investigators primarily using cortical
brain slices have provided evidence linking increased neu-
ronal activity and nerve-mediated glutamate release to the
activation of astrocytic metabotropic glutamate receptors
(mGluRs), inositol triphosphate-(IP;-) mediated increase in
astrocyte Ca®* and Ca®'-dependent release of vasodilator
influences from astrocytic endfeet [68, 70-75]. Excitatory and
inhibitory interneurons may also modulate the neurovas-
cular coupling process via an influence on astrocyte Ca**
or through direct effects on parenchymal arterioles [76-
78]. Multiple vasodilator mechanisms have been proposed
to contribute neurovascular coupling. Elevations in astrocytic
endfoot Ca** have been linked to increased Ca”*-dependent
phospholipase A, (PLA,) activity and release of vasodilatory
arachidonic acid metabolites. These include prostaglandin
E, (PGE,) produced by cyclooxygenase-1, and epoxye-
icosatrienoic acids (EETs) produced by the cytochrome P450
epoxygenase, CYP 2Cl1 [70, 71, 79-81]. In addition, large
conductance Ca*"-activated K+ (BK) channels are localized
to astrocytic endfeet [82] and play a key role in neurovascular
coupling [69, 83, 84]. Endfoot BK channel activation by mod-
erate increases in astrocytic Ca®" causes localized increases
in K" in the perivascular space that stimulate inwardly rec-
tifying K (K,,) channels located on the smooth muscle
of parenchymal arterioles leading to membrane potential
hyperpolarization and vasodilation [69, 71, 75, 83-85]. In
sum, increased endfoot Ca®" is a critical step linking local
neuronal activity to parenchymal arteriolar dilation.

5. Neurovascular Coupling Can Also Lead to
Pathological Vasoconstriction

In vitro studies have reported that under certain conditions,
neuronal activation can also lead to parenchymal arteriolar
constriction [84, 86-88]. Neurally evoked vasoconstriction
likely represents a pathological phenomenon promoting a
decrease, rather than an increase in blood flow to metabol-
ically active brain tissue. Mulligan and MacVicar [88] were
the first to report this phenomenon in brain slices using the
neurotransmitter norepinephrine or the release of caged Ca**
to increase Ca’* levels in the astrocyte soma. These con-
strictions were abolished by blockers of Ca**-sensitive PLA,
activity and the CYP4a-mediated metabolism of arachidonic
acid to the vasoconstrictor 20-hydroxyeicosatetraenoic acid
(20-HETE). Both neurally mediated vasodilation and vaso-
constriction have been observed in the retina [87]. In the
retina, the balance between constriction and dilation was
dependent upon nitric oxide (NO) levels, with 20-HETE
synthesis contributing to constriction. Work by Girouard et
al. [84] demonstrated that the level of astrocytic endfoot
Ca* and endfoot BK channel activity dictate the polarity
of the diameter changes caused by neuronal stimulation in
cortical brain slices. These investigators observed that modest
increases in endfoot Ca*" (<500 nM) and endfoot BK chan-
nel activity lead to enhanced arteriolar K;,. activity, mem-
brane potential hyperpolarization, and vasodilation. How-
ever, more robust elevations in endfoot Ca?* (>500 nM) lead
to sufficient BK channel-mediated K" efflux from endfeet
causing arteriolar smooth muscle membrane potential depo-
larization and constriction. Further, modest elevation of bulk
extracellular K also caused inversion of neurovascular cou-
pling from vasodilation to vasoconstriction. Thus, several fac-
tors including astrocyte endfoot Ca®" levels, extracellular K*
concentration and endfoot BK channel activity can influence
the polarity and amplitude of the neurovascular response.

6. Inversion of Neurovascular Coupling
from Vasodilation to Vasoconstriction after
Subarachnoid Hemorrhage

To examine the impact of experimental SAH on neurovascu-
lar coupling, our laboratory has used a combination of mul-
tiphoton confocal imaging and infrared-differential inter-
ference contrast (IR-DIC) microscopy to simultaneously
measure astrocytic endfoot Ca** and parenchymal arteriolar
diameter in cortical brain slices from SAH model rats [21].
Neurovascular responses were evoked using electrical field
stimulation (EFS) of neurons using parameters that did not
directly affect astrocytes or parenchymal arterioles. In brain
slices from control and sham-operated animals, neuronal
activation caused the anticipated increase in astrocytic end-
foot Ca** and vasodilation. This vasodilation was greatly
diminished by paxilline, a BK channel blocker, consistent
with involvement of endfoot BK channels [69, 83, 84]. In
marked contrast, a similar level of neuronal activation and
elevation in endfoot Ca** caused vasoconstriction rather



than vasodilation in brain slices from SAH model animals
(Figure 1). This SAH-induced shift in neurovascular coupling
from vasodilation to vasoconstriction likely represents a
pathological response that could locally limit blood flow to
cortical regions and was not due to increased 20-HETE or
prostaglandin production. However, neurally evoked vaso-
constriction after SAH was abolished by block of endfoot BK
channels. Our evidence suggests the inversion of neurovascu-
lar coupling after SAH is due to increased basal endfoot BK
channel activity and increased K™ in the restricted perivascu-
lar space between astrocytic endfeet and parenchymal arteri-
olar smooth muscle. This abnormal elevation of basal perivas-
cular K" combined with “normal” BK channel-mediated
K" efflux stimulated by neuronal activity elevates K™ above
the dilation/constriction threshold, switching the polarity of
arteriolar responses to vasoconstriction. Consistent with this
interpretation, increasing concentrations of extracellular K*
elicit a bimodal response in isolated parenchymal arterioles
[21, 83, 84]. Modest increases in K* (<20 mM) induce smooth
muscle hyperpolarization and arteriolar dilation through
activation of K, channels expressed on arteriolar myocytes
[89]. However, K" increases greater than ~20 mM cause a
depolarizing shift in the K" equilibrium potential (Ey) suffi-
cient to increase the activity of voltage-dependent Ca®* chan-
nels leading to enhanced Ca®* influx and vasoconstriction.
Although the vascular responses are inverted after SAH, both
neurovascular responses (i.e., vasodilation in control animals
and vasoconstriction in SAH animals) involve the same
mechanistic elements: elevated astrocytic endfoot Ca** and
K" efflux mediated by endfoot BK channels with the polarity
of the vascular response dictated by basal perivascular K*
levels.

Our data also indicate fundamental changes in the resting
activity of astrocyte Ca** signaling underlying SAH-induced
elevation in basal perivascular [K'], leading to inversion
of neurovascular coupling. In addition to responding to
neurally released signals, astrocytes exhibit spontaneous Ca*"
oscillations [90]. These Ca>" oscillations occur in both soma
and endfeet and have been observed in isolated brain slices
[90, 91] and in vivo [92-94]. This spontaneous activity occurs
in the presence of Na' channel blocker tetrodotoxin to
inhibit neuronal action potentials and represent intracellular
Ca** release events from the endoplasmic reticulum [91].
An increase in the frequency of spontaneous astrocytic Ca**
events in mouse models of Alzheimer’s disease has been
linked to vascular instability in vivo [94]. In brain slices from
SAH model animals, we observed a marked increase in the
amplitude of these events [21] (Figure 2). After SAH, the mean
peak amplitude of spontaneous Ca** oscillations in astrocyte
endfeet was ~490 nM compared to a mean peak amplitude
~320 nM in brain slices from control animals. In comparison,
neurally-evoked increases in astrocytic Ca** were ~350 nM
in both control and SAH animals. Considering that EFS-
induced increases in astrocytic endfeet Ca** have been shown
to induce K" efflux through endfoot BK channels, sponta-
neous Ca”* events are also likely capable of activating endfoot
BK channels. Based on these observations, it is conceivable
that higher amplitude spontaneous Ca®" events following
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SAH enhance BK channel activity contributing to increased
basal K* in restricted perivascular space (Figure 3). Factors
leading to higher amplitude spontaneous Ca** events after
SAH are not currently known; however, determining their
identity will provide valuable new information in the search
for finding new therapeutic strategies to help SAH patients.

7. Impact of Global Ischemia on
Neurovascular Coupling

Global cerebral ischemia represents a generalized reduction
in brain blood flow caused by, for example, cardiac arrest,
shock, asphyxia, and strokes including SAH. The impact
of global ischemia on brain function can range from rel-
atively mild and temporary cognitive impairment to brain
death, depending on the severity and length of the ischemic
insult. Multiple mechanisms have been implicated in neu-
ronal injury caused by global cerebral ischemia including
neurotransmitter (e.g., glutamate) toxicity, cortical spread-
ing depression, inflammation, and apoptosis [95]. Emerging
evidence indicates that global ischemia may also influence
neurovascular coupling. In rats, moderate, temporary fore-
brain ischemia can be achieved by a combination of bilateral
carotid artery occlusion and controlled hypotension via the
withdrawal of blood. Using this approach, Zhou et al. [96]
examined the impact of 15 minutes of ischemia and reperfu-
sion on the ability of whisker stimulation to increase relative
cerebral blood flow (rCBF) to the somatosensory cortex using
laser speckle imaging. Prior to the ischemic insult, rCBF
to the somatosensory cortex increased ~10% in response
to whisker stimulation. Following ischemia and 20 minutes
of reperfusion, increased rCBF to whisker stimulation was
slightly diminished and response time increased; responses
returned to preischemic levels within two hours. Recently,
Baker et al. examined varying levels of global forebrain
ischemia on the ability of forepaw stimulation to increase
cerebral blood flow in the somatosensory cortex of rats [97].
Neurovascular coupling was attenuated with increasing levels
of ischemia, with severe ischemia (60% reduction in global
cerebral blood flow) causing greater than a 90% reduction
in the neurovascular response. The attenuation of neurovas-
cular coupling associated with severe global ischemia lasts
for several days following reperfusion [98]. Currently, little
information is available regarding the cellular mechanisms
contributing to decreased neurovascular coupling associated
with global ischemia. However, it is likely that ischemia may
impact more than one component of the neurovascular unit.
For example, ischemia has been shown to impair cerebral
artery function that may limit vasodilation [99, 100]. Further,
global ischemia has been shown to alter expression of
K"-selective ion channels and TRPV4 nonselective cation
channels in astrocytes from rat hippocampus [101, 102].
Global cerebral ischemia may also contribute to brain
pathologies associated with SAH. Immediately following
cerebral aneurysm rupture, increased intracranial pressure
caused by the release of blood into the subarachnoid space
can lead to transient global ischemia and contribute to a
cascade of events referred to as “early brain injury” [6, 10].
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FIGURE 1: Inversion of neurovascular coupling in cortical brain slices from SAH model animals. (a) (Upper) Infrared-differential interference
contrast images from brain slices of control, sham-operated, and SAH model rats before/after electrical field stimulation (EFS). Parenchymal
arterioles were preconstricted with U46619 (100 nM). Dashed lines in red display the intraluminal diameter of parenchymal arterioles.
Overlapping pseudocolor-mapped Ca** levels in astrocyte endfeet were obtained by simultaneous imaging using the fluorescent Ca**
indicator fluo-4 and two-photon microscopy. Scale bar: 10 ym. (Lower) Simultaneous recordings of EFS-induced changes in diameter and
estimated endfoot Ca** concentrations obtained from brain slices depicted in upper images. (b)-(d) Summary data of EFS-evoked changes in
arteriolar diameter and astrocytic endfoot Ca®" obtained from control (1 = 53), sham-operated (1 = 11), and SAH model (n = 59) animals.
Diameter changes were expressed as percentage of the diameter in the same point before EFS as 100%. **P < 0.01 by one-way ANOVA
followed by host hoc comparison of means using the Tukey test (modified from Koide et al. [21]).

Further, delayed blood-induced vasospasm of brain sur-
face conduit arteries [103] and enhanced constriction of
resistance-size cerebral arteries and arterioles [18, 104, 105]
may also reduce blood flow to ischemic levels, contributing to
the development of delayed ischemic neuronal deficits. Data
presented above indicate that both SAH and global ischemia
can lead to decreased neurovascular coupling. However, a
marked difference regarding the influence of SAH and global
ischemia on neurovascular coupling is apparent; SAH causes
inversion of the neurovascular response from vasodilation to
vasoconstriction whereas global ischemia causes a decrease
in the magnitude of the dilation to evoked neuronal activity.

8. Conclusions

Subarachnoid hemorrhage is a multifaceted pathology exhib-
iting both acute and long-term injury to the brain. It is
now clear that SAH profoundly impacts neuronal influences
on the vasculature leading to decreased cerebral blood flow
that can exacerbate the extent of brain damage. One type
of SAH-induced impaired neurovascular signaling arises in
the context of SD that can impact large areas of cortical and
subcortical grey matter. In the absence of SAH, SD is most
frequently associated with a hyperemic response, that is, an
increase in cerebral blood flow. However, SAH causes an
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FIGURE 2: Increased amplitude of spontaneous Ca*" oscillations in astrocyte endfeet following SAH. (a)-(b) Representative images of
spontaneous Ca*" oscillation in astrocyte endfeet in brain slices from control and SAH model animals. (b) Time laps images from the area
within the yellow dotted box in Figure 2(a). Scale bar: 10 um. (c) Spontaneous Ca** oscillations in a brain slice from control (upper) and SAH
model (lower) animals. Traces were obtained from 1.2 x 1.2-um regions of interest placed on distinct astrocyte endfeet in 5 min recordings

without stimulation (modified from Koide et al. [21]).

inversion of the SD-induced neurovascular response leading
to vasoconstriction and decreased blood flow to tissue during
a time of high metabolic demand. Recently, it has also
been shown that SAH can cause inversion of neurovascular
coupling at the level of the individual neurovascular unit.
Physiologically, coordinated activity of neurons, astrocytes,
and parenchymal arterioles ensures increase local blood flow
to active neurons in specific regions of the brain engaged
in task-dependent processes. After SAH the neurovascular
response to neuronal activation switches from vasodilation to
vasoconstriction; this also promotes a pathological decrease
in the flow of oxygen and nutrients to metabolically active
neurons. Evidence suggests that elevated perivascular K" due
to the enhanced amplitude of spontaneous Ca** signaling
events in astrocytic endfeet may underlie this inversion of
neurovascular coupling, consistent with a bimodal effect of

extracellular K to cause vasodilation at concentrations below
20mM and constriction when this threshold of 20 mM is
exceeded. Presently mechanisms associated with inversion
of the neurovascular response caused by SAH-induced SD
have not completely been resolved. However, inversion of SD-
induced neurovascular response likely reflects a combination
of increased extracellular K™ and the impact of SAH on the
relative balance of vasoconstrictor and vasodilator influences.
Development of agents and approaches to prevent SAH-
induced inversion of neurovascular coupling may provide a
much needed additional therapeutic option for SAH patients.
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Introduction. Elevated intracranial pressure that occurs at the time of cerebral aneurysm rupture can lead to inadequate cerebral
blood flow, which may mimic the brain injury cascade that occurs after cardiac arrest. Insights from clinical trials in cardiac arrest
may provide direction for future early brain injury research after subarachnoid hemorrhage (SAH). Methods. A search of PubMed
from 1980 to 2012 and clinicaltrials.gov was conducted to identify published and ongoing randomized clinical trials in aneurysmal
SAH and cardiac arrest patients. Only English, adult, human studies with primary or secondary mortality or neurological outcomes
were included. Results. A total of 142 trials (82 SAH, 60 cardiac arrest) met the review criteria (103 published, 39 ongoing). The
majority of both published and ongoing SAH trials focus on delayed secondary insults after SAH (70%), while 100% of cardiac arrest
trials tested interventions within the first few hours of ictus. No SAH trials addressing treatment of early brain injury were identified.
Twenty-nine percent of SAH and 13% of cardiac arrest trials showed outcome benefit, though there is no overlap mechanistically.
Conclusions. Clinical trials in SAH assessing acute brain injury are warranted and successful interventions identified by the cardiac

arrest literature may be reasonable targets of the study.

1. Introduction

For decades, research efforts in subarachnoid hemorrhage
(SAH) have focused on vasospasm and delayed ischemic
neurological deficits. However, brain injury at the time of
aneurysm rupture is a significant predictor of functional
outcome. Indeed, poor admission neurological status (Hunt-
Hess or World Federation of Neurological Surgeons Score),
which reflects acute brain injury, is a larger contributor to
death or severe disability than delayed cerebral ischemia
[1, 2]. However, the mechanism of early brain injury after
aneurysm rupture remains elusive and no current therapies
are available.

One possible mechanism of acute injury was described
in a small case series of 6 patients with observed recurrent
aneurysm rupture either during transcranial Doppler (TCD)
or during craniotomy with open skull but intact dura. The
investigators report a spike in intracranial pressure (ICP) that
developed over 1 minute and then declined over several min-
utes. This abrupt increase in ICP approached levels near mean
arterial pressure and led to a concomitant drop in cerebral

blood flow resulting in circulatory arrest, as documented by
TCD [61]. This study examined aneurysm rebleeding and
does not provide direct evidence that intracranial circulatory
arrest occurs with de novo aneurysm rupture. However, inad-
equate cerebral blood flow is frequently evidenced clinically
by the transient loss of consciousness that occurs at SAH
ictus. This mechanism of global transient circulatory arrest
has been described in animal models of SAH at the time of
initial hemorrhage [62, 63] and mimics the anoxic/hypoxic
ischemic mechanism incurred by cardiac arrest.

In this paper, published and ongoing clinical trials in
cardiac arrest are compared to those in aneurysmal SAH
to identify overlapping or complementary approaches to
treatment as well as new avenues for potential research.

2. Methods

A search of PubMed was conducted in 11/2012 to identify
randomized, controlled trials of aneurysmal SAH and cardiac
arrest. Only human studies of adults (>18 years of age), which
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tested an intervention published in English between 1980
and 2012, were included. Only trials examining mortality or
neurologic outcome as a primary or secondary endpoint were
reviewed. Only trials specific to SAH (not trials that included
other neurocritical diagnoses or brain injury diagnoses) were
included. Cardiac arrest trials included both out-of-hospital
and in-hospital arrest and all arrest rhythms were included.
Post hoc analyses of preexisting trials were not reviewed. If
phase III results of a trial were available, earlier phases of the
same trial were not included in analysis unless the patient
population or methodology differed substantially.

A PubMed search of the term “subarachnoid hemor-
rhage” and “neurologic outcome” with the limits of human,
age > 18, English and randomized, controlled trial yielded
23 results. A PubMed search of the term “subarachnoid
hemorrhage” and “mortality” with the limits of human,
age > 18, English and randomized, controlled trial yielded
78 results. An additional review of articles identified by a
broader search of “subarachnoid hemorrhage” with the limits
of human, age > 18, English and randomized, controlled
trial yielded 244 results. Review of these studies yielded 57
aneurysmal SAH trials that met inclusion criteria and were
analyzed. A pubmed search of the terms “cardiac arrest” and
“neurologic outcome” with the limits of human, English, age
> 18 and randomized, controlled trial yielded 21 results. A
PubMed search of the terms “cardiac arrest” and “mortality”
with the limits of human, English, age > 18 and randomized,
controlled trial yielded 197 results. Review of these studies
yielded 46 cardiac arrest trials that met inclusion criteria and
were analyzed.

Clinicaltrials.gov was searched for ongoing interventional
trials in cardiac arrest and aneurysmal subarachnoid hemor-
rhage. Only ongoing studies that were open and recruiting
or preparing to recruit were included. Terminated studies
were excluded from review. A search of ongoing studies on
clinicaltrials.gov for the term “subarachnoid hemorrhage’,
limited to interventional studies of adults >18 years old,
produced 86 results and a search for the term “cardiac arrest”
limited to interventional studies of adults with neurologic
outcomes produced 46 results. Of these, 25 ongoing SAH
trials and 14 cardiac arrest trials met the criteria for review.

3. Results

3.1 Trials Analyzed. A total of 142 trials (82 SAH, 60 cardiac
arrest) met review criteria. Of these, 103 were published
in peer-reviewed journals and 39 were ongoing studies.
Fifty-seven published randomized, controlled studies were
identified in the SAH population and 46 in the cardiac arrest
population. These studies are reviewed in detail in Tables 1
and 2. Additionally, 25 ongoing SAH trials and 14 ongoing
cardiac trials were reviewed (Tables 3 and 4).

3.2. Interventions Studied. The main hypothetical mecha-
nisms of intervention tested in published SAH trials were
related to treating or preventing delayed cerebral ischemia
(N = 40, 70%), preventing aneurysm rebleeding (N = 5,
9%), improving aneurysm repair technique (N = 5, 9%),

25

improving fluid balance (N = 2,4%), and others (N = 3,5%).
Among ongoing SAH trials, mechanisms of study include
treating or preventing delayed cerebral ischemia (N = 19,
76%), limiting rebleeding (N = 1, 4%), improving aneurysm
repair (N = 1, 4%), seizure control (N = 2, 8%), and other
(N =2, 8%). There are no published or ongoing SAH clinical
trials that focus on treating acute brain injury after aneurysm
rupture.

Conversely, the main mechanisms of intervention studied
in published cardiac arrest trials focused on acute interven-
tion to treat and limit early brain injury. All 46 (100%)
published cardiac arrest trials focused on the acute time
frame (first few hours) after cardiac arrest. Interventions
studied included decreasing cerebral metabolic demand with
hypothermia or barbiturate (N = 6, 13%), high-quality chest
compressions or pressor use to return cerebral blood flow
(N = 16, 35%), electrolyte/metabolic optimization with
calcium, magnesium, sodium bicarbonate or insulin admin-
istration (N = 12, 26%), neuroprotective drugs including
calcium channel blockers (N = 5, 11%), thrombolysis to
treat the underlying cause of cardiac arrest (N = 2, 4%) and
other (N = 5, 11%). Among ongoing cardiac arrest trials,
mechanisms of study include decreasing cerebral metabolic
demand with hypothermia (N = 9, 64%), high-quality
chest compressions to return cerebral blood flow (N =
2, 14%) electrolyte/metabolic optimization with magnesium
(N = 1, 7%), neuroprotective drugs (N = 1, 7%), and
monitoring cerebral oxygenation (N = 1,7%). A detailed list
of interventions from published and ongoing studies in both
the SAH and cardiac arrest population are listed in Table 5.

3.3. Outcome Measures. The most common neurological
outcomes assessed in the SAH trials were delayed cerebral
ischemia (N = 24, 42%), functional outcome (Glasgow
outcome scale, modified Rankin scale or functional outcome
scale, N = 24, 42%), angiographic or transcranial Doppler
vasospasm (N = 6, 11%), and death (N = 4, 7%). Among
cardiac arrest trials, the most often assessed neurological
outcomes were the Pittsburgh cerebral performance score
(N = 18, 40%), Glasgow outcome score or modified Rankin
Score (N = 4, 9%), Glasgow coma score (N = 4, 9%),
awakening and command following (N = 3,7%), cognitive or
neuropsychological testing (N = 1, 2%), “disability” (N = 1,
2%), death (N = 13, 30%), discharge disposition (N = 1, 2%)
and others (N = 1, 2%).

3.4. Trial Results. Of the clinical trials reviewed for SAH,
30% (17/57) showed that the intervention tested had a
statistically significant impact on neurological outcome or
mortality. These include studies of nimodipine [4-6, 8, 110],
phase II data for nicardipine implants during aneurysm
clipping [13], the neuroprotectants edavarone [21] and
nizofenone [20], pravastatin [25], early aneurysm surgery
[28], endovascular coiling [29-31], cilostazol [41], methyl-
prednisolone [44], erythropoietin [45], and fasudil [57, 58].
Similarly, 30% (17/57) of studies showed a positive impact on
delayed cerebral ischemia, infarction, angiographic or TCD
vasospasm, though there was incomplete overlap with the
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TABLE 5: Number of randomized, controlled trials published and ongoing for aneurysmal subarachnoid hemorrhage and cardiac arrest.

Stroke Research and Treatment

Intervention SAH Cardiac arrest
Published Ongoing Published Ongoing
N (%) N (%) N (%) N (%)
Calcium channel blockers 10 (18) 0 4(9) 0
Antifibrinolytics 5(9) 0 0 0
Neuroprotective drugs 5(9) 2(8) 1(2) 1(7)
Statins 4(7) 5(20) 0 0
Aneurysm clip or coil 4(7) 1(4) NA NA
Lipid peroxidation inhibitor 4(7) 1(4) 0 0
Thrombolytics 3(5) 1(4) 2(4) 0
Antiplatelets 3(5) 0 0 0
Steroids 3(5) 0 1(2) 0
Transfusion/blood products/erythropoietin 3(5) 1(4) 0 0
Vasodilators 3(5) 4 (16) 0 0
Pressors or HHH 2(4) 2(8) 9 (19.5) 0
Magnesium 2(4) 0 5(11) 1(7)
Rho-kinase inhibitor (fasudil) 2 (4) 0 0 0
Adrenergic blockade 1(2) 0 0 0
Endovascular therapy 1(2) 0 NA NA
Insulin/glucose control 1(2) 0 2(4) 0
Hypothermia 1(2) 0 5(11) 9 (64)
CSF diversion 0 2(8) 0 0
Antiepileptics 0 2(8) 0 0
Sedation 0 1(4) 0 0
Rehabilitation 0 1(4) 0 0
Blood pressure 0 1(4) 0 0
Other 0 1(4) 0 0
Chest compressions NA NA 7 (15) 2 (14)
Adenosine antagonist 0 0 1(2) 0
Fluid management 0 0 1(2) 0
Barbiturate 0 0 1(2) 0
Cerebral oxygenation 0 0 0 1(7)
Calcium chloride 0 0 3(7) 0
Sodium bicarbonate 0 0 2 (4) 0
Hemofiltration 0 0 1(2) 0
Rhythm analysis 0 0 1(2) 0
Total 57 25 46 14

above studies that showed outcome benefit. Eight studies
found both a significant improvement in delayed cerebral
ischemia/vasospasm/infarction and outcome including stud-
ies of nimodipine [4, 6, 8], nicardipine implants in the basal
cistern [13], edavarone [21], pravastatin [25], fasudil [57],
and erythropoietin [45]. Nine studies found a benefit for
decreasing delayed cerebral ischemia/vasospasm/infarction
but no neurologic outcome benefit including studies of IV
nicardipine [10, 11], eicosapentaenoic acid (omega-3 fatty
acid) [22], the neuroprotectant NA-1 [23], simvastatin [24],
tirilazad [34], intracisternal rTPA [36, 38], and clazosentan

[49, 50]. Three studies found improved neurologic out-
come despite an insignificant effect on delayed cerebral
ischemia/vasospasm/infarction including studies of cilosta-
zol [41], methylprednisolone [44], and fasudil [58].

Among the cardiac arrest trials, 13% (6/46) demon-
strated neurologic or mortality benefit. Improved mortality
rates were demonstrated with mild therapeutic hypothermia
[89], coenzyme QIO [68], vasopressin plus epinephrine plus
methylprednisolone [71], active compression-decompression
CPR [93], and hemofiltration [108]. Improved neurological
outcome was demonstrated with early mild therapeutic
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hypothermia for ventricular fibrillation and pulseless ven-
tricular tachycardia arrests [88, 89], and one study of active
compression-decompression CPR [93], though a larger study
of active compression-decompression was negative [94].

3.5. Trial Overlap. Though nimodipine has demonstrated
mortality and functional outcome benefit in SAH [4-6, 8,
110], it has shown no benefit in cardiac arrest trials [64,
65, 67]. Similarly, intracisternal thrombolysis showed some
benefit in reducing delayed cerebral ischemia and infarction
after SAH [36, 38], but intravenous tenecteplase showed
no long-term benefit and, in fact, increased intracranial
hemorrhage after cardiac arrest [69, 70]. Neither magnesium
[53, 54, 81-85] nor intensive insulin [59, 87] has proven
beneficial after SAH or cardiac arrest. Though hypothermia
[88, 89] has been the single most effective treatment for
cardiac arrest (the number needed to treat to prevent one
death is 7 and the number needed to treat to produce
favorable neurological outcome is 6), it has not proven useful
in the context of aneurysm surgery after SAH [60]. There is
little mechanistic overlap in ongoing randomized, controlled
trials of SAH and cardiac arrest patients.

4. Discussion

In this paper, a direct comparison is made between ran-
domized, controlled clinical trials that evaluate mortality or
neurologic outcome after SAH and cardiac arrest. Though
28% of SAH studies showed some neurologic outcome benefit
in the intervention group, only nimodipine [4-6, 8, 110],
fasudil [57, 58], and endovascular coiling [29-31] have been
found to consistently improve outcome in multiple, multi-
center randomized controlled trials. Smaller studies [8, 41,
58], single center [21, 44], or phase II safety and feasibility
studies [13, 25, 45] have shown outcome benefit, but still
require larger efficacy trials before integration into standard
practice. Among cardiac arrest trials, only mild therapeutic
hypothermia has been shown to improve both mortality and
neurologic outcome [88, 89]. Little overlap in trial results or
mechanisms of study was identified in these different patient
populations.

Methodological differences in the timing, duration, neu-
rological severity, and outcomes studied may explain some
of the differences in trial results between SAH and cardiac
arrest populations. First, the timing of intervention for SAH
and cardiac arrest trials is quite different. With the exception
of aneurysm repair and aneurysm rebleeding trials (some
of which were carried out in the era of delayed surgical
treatment), the vast majority of SAH trials focus on the
delayed cerebral ischemia period. Conversely, all cardiac
arrest trials are directed at intervening against early brain
injury. The difference in time frames studied may explain, in
part, the variable results for mild therapeutic hypothermia
in each population. Unlike the cardiac arrest trials, which
applied hypothermia either prior to ED arrival [88] or within
a median of 105 minutes from return of spontaneous circula-
tion (ROSC) [89] for a duration of 12-24 hours, hypothermia
was applied in the IHAST trial at a median of two days from
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SAH onset and only for a brief time (median 5-6 hours) [60].
Second, patient selection may result in variable trial results
for hypothermia. For example, hypothermia for cardiac arrest
was used for comatose survivors, while relatively neuro-
logically intact patients (WFNS I-III) were studied in the
THAST trial. Finally, outcome measures differ in the cardiac
arrest and SAH literature. Many cardiac trials measure 30-
day or discharge mortality or neurologic outcome, while SAH
trials measure outcomes from 3 months to 1 year. Though
the majority of cardiac arrest trials measure neurologic out-
come using the Pittsburgh cerebral performance scale, while
SAH trials utilize the Glasgow outcome scale or modified
Rankin scale, all of these scales are very similar and provide
gross estimates of disability. Despite the aforementioned
methodological differences, certain interventions, such as
magnesium and intensive insulin, have not proven effective
in either population.

Another reason for variable outcome in clinical trials may
be due to pathophysiological differences in SAH and cardiac
arrest. Though early brain injury in SAH may mechanistically
mirror the cascade of injury occurring after cardiac arrest,
SAH differs from cardiac arrest in that it is not a monophasic
disease. Break down of blood products initiates a distinctive
series of delayed clinical events that characteristically can
lead to ischemia or infarction between SAH days 3-14.
The fact that nimodipine has been so successful in SAH
trials, but shown no effect at similar doses in cardiac arrest
trials suggests it is acting on a distinct pathway. Indeed,
the absolute risk reduction for poor outcome after SAH
in a meta-analysis of 16 trials of nimodipine is 5.3% with
a number needed to treat for benefit of 19 [111]. No such
signal for benefit was seen in cardiac arrest trials [64, 65,
67]. The mechanism of beneficial effect of nimodipine in
SAH has been widely debated and may be related to its
effect on fibrinolysis [112], spreading cortical depression [113],
or excitotoxicity. Though nimodipine improves ischemic
neurological deficits by clinical criteria and CT-documented
infarction (with a pooled relative risks of 0.66 (95% CI 0.59-
0.75) and 0.78 (95% CI 0.70-0.87), resp.) [111], it has little
effect on angiographic vasospasm or cerebral blood flow
[4, 5]. The corollary to this observation is that interventions
that improve angiographic vasospasm, such as clazosentan,
do not necessarily improve cerebral infarction or outcome.
[49, 50, 114, 115]. While angiographic vasospasm seems to
be related to infarction [116], other mechanisms may play a
role in neurological deficits, cerebral infarction, and outcome.
Such pathophysiological differences may make extrapolation
of results from cardiac arrest trials to an SAH population
problematic. Indeed, delayed cerebral ischemia (DCI) may
blunt the positive effect of hypothermia on early brain injury.
Further animal research may better identify mechanistic
differences of early brain injury in cardiac arrest and SAH.

Despite a second wave of neurological injury in SAH,
poor-grade (Hunt Hess 4-5) SAH patients, who are at higher
risk for secondary neurological injury, still have comparable,
if not better, outcomes compared to cardiac arrest patients
who are not cooled. Among Hunt-Hess grade 4-5 patients,
the 12-month mortality rate with aggressive treatment is 43%,
while 40% had no or slight-moderate disability (mRS 0-3)
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[117]. By comparison, the 6-month death rate in the control
(nonhypothermia) group of the HACA trial was 55%, while
good neurologic outcome (defined as Pittsburgh cerebral
performance scale 1-2; good outcome or moderate disability)
occurred in 26-39% [88, 89]. We have additionally shown
that DCI does not predict mortality after SAH with aggressive
vasospasm treatment, while early brain injury (measured by
Hunt-Hess grade) does [1]. Thus, despite secondary neuro-
logic insults and delayed cerebral ischemia risk, poor-grade
SAH patients do at least as well as normothermic cardiac
arrest patients, who may face risks to survival and functional
outcome related to the underlying cause of the cardiac arrest.
Also, the median age of cardiac arrest patients tends to be
older than SAH patients, which may also explain why even
the sickest SAH patients have relatively good outcomes by
comparison. If nihilism can be overcome in the management
of poor-grade SAH patients, the early application of mild
therapeutic hypothermia may improve outcomes further.

There are some limitations to this review that should be
mentioned. A medical librarian was not used and only MED-
LINE/PubMed and clinicaltrials.gov were used to identify
literature for review. An Embase search was not performed.
Additionally, an exhaustive search for all neurologic outcome
based RCTs was not performed, rather only English studies
in humans were included.

In conclusion, while the mechanisms of early brain injury
after SAH and cardiac arrest may be similar, the prepon-
derance of SAH clinical trials do not focus on interventions
addressing early brain injury. Clinical trials in SAH assessing
interventions that have proven successful in the cardiac arrest
literature, such as early mild therapeutic hypothermia, are
warranted.
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Early brain injury (EBI) has become an area of extreme interest in the recent years and seems to be a common denominator in
the pathophysiology of global transient ischemia and subarachnoid hemorrhage (SAH). In this paper, we highlight the importance
of cerebral hypoperfusion and other mechanisms that occur in tandem in both pathologies and underline their possible roles in

triggering brain injury after hemorrhagic or ischemic strokes.

1. Introduction

Aneurysmal subarachnoid hemorrhage (SAH) is associated
with significant morbidity and mortality, accounting for up
to ~5% of all stroke cases [1, 2]. The mortality from SAH is
estimated at 40-45% by 30 days after hemorrhagic onset and
up to 15% mortality before hospital admission [3]. After years
of research and extensive pathophysiological investigations
of SAH, much is known in animal models about pathways
that are activated after SAH and that may contribute to brain
injury. However, few have proven to be effective therapeutic
targets in humans [4, 5].

SAH has been suggested in multiple reports to be com-
plex, multisystem, and multifaceted pathogenesis that likely
has multiple ongoing processes activated contributing to its
final pathogenesis and highly morbid manifestations [4-8].
There are some common effects, however, such as vasocon-
striction of both large and small cerebral arteries. As a result,
it is difficult to research one pathway, one protein, and one
target for potential therapeutic benefits. There has been a
shift in research to understand how all the manifestations
connect, interact, and further contribute to this pathology.

Many strides have been made to understand the common sec-
ondary complications that occur after SAH, especially focus-
ing on complications that occur early on, often known as
early brain injury (EBI) [9, 10]. Some of the complications
that EBI encompasses are delayed neuronal injury/death
(DND), oxidative stress and inflammatory destruction of
the parenchyma, and ischemic deficits leading to cortical
spreading depression (CSD). These complications have been
theorized to play a major role in the pathogenesis and may
contribute significantly to poor morbidity and outcome after
SAH.

Individual studies on several secondary complications
have shed light on shared mechanisms and pathways that may
be activated after or during or even before the hemorrhage,
which may explain a number of these secondary manifes-
tations. Research has also shifted from considering primary
angiographic vasospasm as a major contributor to poor
outcome to other secondary mechanisms that may also occur
early on during the hemorrhage and interact with angi-
ographic vasospasm and predispose the brain to significant
delayed injury and poor outcome [10-13].



Recent research has proposed additional mechanisms
behind brain predisposition to injury and poor outcome,
some of which include global ischemia, delayed cerebral
ischemia (DCI), and cortical spreading depression (CSD)
[14-16]. Recent work has also focused on trying to delineate
the fundamental differences between ischemic deficits and
hemorrhagic insult and how early brain injury (EBI) after
SAH may be linked to transient global ischemia or may be
actually a result of an ischemic deficit introduced early on by
the hemorrhage. Does transient global ischemia occur before
or during the hemorrhage, and thus predisposing the brain
to the secondary complications mentioned? Or is transient
global ischemia a separate entity that has its own manifesta-
tions, mechanisms, and complications, separate from those
pertaining to SAH?

In this paper we discuss the secondary complications
that arise after SAH, its relationship to the pathogenesis, and
recent work that has been done to decipher their triggers
and roles in poor outcome. Additionally, we will discuss the
similarities in pathogenesis between global ischemia and
SAH.

2. Global Cerebral Ischemia and Stroke

Ischemia is generally defined as a diminution of cerebral
blood flow (CBF) below critical thresholds, resulting in a
damage to the entire brain (global ischemia which is neces-
sarily transient if the patient is to survive, and thus it is this
type of global ischemia that is often investigated in animal
models) or a focal region to which perfusion is relatively
low [17, 18]. Global cerebral ischemia occurs when the blood
supply to the entire or large part of the brain is impeded
[19]. Global cerebral ischemia may also arise from a number
of clinical conditions such as cardiac arrest that lasts more
than about 10 minutes [19]. This transient insult may result
in permanent brain damage and other parenchymal changes
that are not completely understood. Since the majority of
global cerebral ischemic insults occur due to cardiac arrest,
a substantial effort has been allotted to establish protocols
for proper management and efficient resuscitation protocols
for cardiac arrest patients [19]. Despite optimal resuscitation
and adequate ongoing supportive measures, the postarrest
period is often accompanied by ongoing cerebral ischemia
or no reflow to multiple regions in the brain. This phase of
cerebral ischemia is followed by a short phase of cerebral
hyperaemia and a prolonged phase of hypoperfusion that
lasts from several hours to days and which correlates with
significant neurocognitive, behavioural, sensory, and motor
deficits [19].

Other types of stroke including SAH are associated with
a similar pattern of ischemic insult to the brain and may
share similarities in cellular pathophysiology. SAH in rats was
associated with an upregulation of vasoconstriction-medi
-ating receptors, endothelin B (ET}y), and serotonin receptors
(5-HT,5) and with reductions in vasodilators like nitric
oxide (NO) [20, 21]. Similarly, in a model of transient global
ischemia in rats, Johansson and colleagues demonstrated
that animals had prolonged neurological deficits as well
as functional upregulation of the same ETy and 5-HT,
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receptors in forebrain cerebral arteries. These findings suggest
the contribution of cerebral artery vasoconstriction, cerebral
hypoperfusion, and neuronal damage to transient global
ischemia, which mimics similar findings in SAH [22].

3. Secondary Complications after SAH

3.1 Early Brain Injury: Delayed Neuronal Injury. Cells die
after stroke primarily by apoptosis or necrosis [23]. Both are
thought to occur after global cerebral ischemia and SAH.
The exact pathways activated in these types of stroke are not
entirely worked out and there may be different contributions
of apoptotic and necrotic cell death. It is documented that
transient global cerebral ischemia can trigger multiple cellu-
lar events and activate pathways which lead to both apoptotic
and necrotic cell death in endothelial, glial, and neuronal cells
[24].

During aneurismal rupture causing SAH, the intracra-
nial pressure can increase enough to cause global cerebral
ischemia. In some cases, if the bleeding continues and the
intracranial pressure does not decrease, then the patient dies
immediately, probably secondary to acute cardiac changes
secondary to the increased intracranial pressure and near-
instantaneous brain death. In survivors, however, the con-
tribution of transient global ischemia to brain injury is
variable. Some patients have very small hemorrhages, do not
loose consciousness, and thus do not have transient global
ischemia. They are still at risk for DCI [25]. Interestingly,
patients who become transiently unconscious at the time of
their SAH and then awaken have likely had a transient global
cerebral ischemic event and may have been at a higher risk of
developing DCI [26]. Patients also only develop acute focal
cerebral ischemia immediately after SAH in about 3% of cases
[27].

Cellular apoptosis is reported to be a mechanism of
EBI after the SAH and has been investigated in several
studies. These studies focused on large cerebral arteries and
found endothelial cell apoptosis after SAH [28, 29]. Neuronal
apoptosis in the cortex and hippocampus has been detected
after SAH in humans [30]. In animal studies, neurons,
astrocytes, and oligodendroglia also exhibited apoptosis after
SAH [31]. In some studies, there were fewer neurons in the
hippocampus and inner cortical layers 5 days after SAH in
rats [32].

The pathways involved in apoptosis after SAH have not
been widely investigated. The apoptotic pathways include
intrinsic (caspase-independent and mitochondrial) and ex-
trinsic (cell-death receptor) pathways [33-35].

Ischemia caused by increased intracranial pressure (ICP)
is probably the first process that activates apoptosis. Apopto-
sis was observed within minutes of SAH in a rat endovascular
perforation model of SAH and persisted for at least 24 hours
[12, 35]. Ischemia following a SAH causes apoptotic cell
death within the brain through several pathways such as
induction of heat shock protein 70 (HSP70) [36]. HSP70 is a
sensitive biomarker, which is activated diffusely throughout
the brain one day after SAH is induced by endovascular
perforation in rats. It continues to be activated 5 days after
the SAH [36]. Ischemia also is associated with excitotoxic
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mechanisms that are mediated through the efflux of the
amino acid glutamate. Glutamate activates the n-methyl-d-
aspartate (NMDA) receptor following ischemia, resulting in
an influx of sodium and calcium into neurons and subsequent
neuronal death [37]. This mechanism has been suggested to
cause neuronal apoptosis in vitro and in vivo [38].

The death receptor pathway has been implicated in
apoptosis after cerebral ischemia and SAH. This pathway
is activated by multiple cell membrane receptors, including
the tumor necrosis factor receptor (TNFR), Fas, and DR3-
5 [6, 29]. The ligands for these receptors include TNF-a,
TNF-related apoptosis-inducing ligand, and Fas ligand. This
pathway is activated by cerebral ischemia [23]. It has been
shown that TNF-« is upregulated in the endothelium of
dog basilar artery after SAH, and the inhibition of this with
broad spectrum apoptosis inhibitors prevented vasospasm
[39]. The dogs also had improved neurological outcomes [39].
TNF-« binding to TNFR activates caspase 8 and in some
cases caspase 10. Downstream caspases are then activated,
including caspases 3 and 9. Caspase 3 is a common essential
component in the apoptotic pathway [39]. Cleaved caspase
3, a component of the intrinsic, caspase-dependent pathway,
was detected in hippocampus and cortex after experimen-
tal SAH [12, 40]. The mitochondrial apoptotic pathway is
likely involved in cerebral ischemia. Akt (protein kinase B)
and mitogen-activated protein kinase (MAPK) are protein
kinases that, when activated, inhibit apoptosis by interacting
with Bax, Bad, glycogen synthase kinase-3, apoptosis signal-
regulating kinase 1, and caspase 9. Akt activity is reduced
after cerebral ischemia and its prevention reduced ischemic
neuronal death [35]. Inhibiting Akt phosphorylation, which
activates it, was associated with EBI after experimental SAH,
and overexpression of Akt reduced brain injury [34, 41]. The
MAPK may also be involved in EBI [35].

Other mechanisms include caspase-independent intrin-
sic cell death pathway involved mitochondrial apoptosis-
inducing factor (AIF), endonuclease G, and Bcl2/adenovi-
rus EIB 19 kDa-interacting protein (BNIP3) [35]. Nuclear
translocation of AIF was found after cerebral ischemia, sug-
gesting the activation of this pathway; however, its role in
SAH is less well studied [42].

Autophagy is a process where cells form a multimem-
brane bound structure called the autophagosome, which
sequesters cytoplasm and cell organelles in order to degrade
them and recycle cytoplasm [43]. It occurs at basal levels
in many tissues and is important in development, differen-
tiation, and remodeling of organs and tissues. Autophagy is
linked to apoptosis, but it is unclear if it causes cell death
or is activated by some apoptotic pathways [44]. Autophagy
has been suggested to provide a neuroprotective role in
maintaining cellular homeostasis [43]. On the other hand,
under certain conditions, it can have deleterious neurode-
generative effects [45]. After experimental SAH, autophagy
has been observed in neurons and astrocytes of the basal
frontal cortex on electron microscopy and in brain ho-
mogenates by an increase in the amount of membrane-
bound microtubule-associated protein I light chain 3 [46].
Cathepsin D, an enzyme associated with degradation of dam-
aged proteins and beclin-1, is also associated with autophagy

and also is significantly higher after SAH [46]. Beclin-1
is a protein that interacts with Bcl-2 which is integral in
the autophagic process [47]. Activation of autophagy with
rapamycin reduced brain injury markers after SAH, whereas
inhibition of autophagy with 3-methyladenine aggravated
brain injury. This suggests that autophagy plays a neuropro-
tective role following SAH [44, 47].

As discussed above, all of the apoptosis pathways are also
likely important in global ischemic deficits after ischemic
stroke [19] and may indeed account for some of the EBI after
SAH. While neurons and other brain cells die by apoptosis
after cerebral ischemia, the predominant mechanism of cell
death is caused by necrosis, especially in the core of the
ischemic brain [24]. Furthermore, activation of the death
receptor pathway in apoptotic-deficient situations causes a
sort of a combined form of cell death called necroptosis.
Reports have demonstrated that neurons in the core tend
to demonstrate liquefaction necrosis, while neurons in the
penumbra tend to undergo apoptosis [23, 48, 49]. Apoptosis
after cerebral ischemia occurs through intrinsic and extrinsic
pathways [48, 50]. In the intrinsic pathway, ischemia results in
the generation of permeability pores in the inner mitochon-
drial membrane, which results in the release of a number of
proapoptotic factors and ultimately results in deoxyribonu-
cleic acid (DNA) fragmentation and necrosis [51, 52]. The
mitochondrial independent pathways after global ischemia
tend to activate death receptors such as TNFR and Fas.
Caspases also tend to play a major role in apoptotic activation
in both cerebral ischemia and SAH [52, 53].

4. Nitric Oxide and Nitric
Oxide Synthases (NOS)

Nitric oxide has a physiological role as a vasodilator and
inhibitor of platelet activation and inflammation [54]. Reduc-
tion in NO is thought to contribute to angiographic vasos-
pasm after SAH [55, 56] as well as to EBI [57, 58]. Within
10 minutes of SAH in rats, there is acute vasoconstriction
probably due to scavenging of NO [58]. NO concentrations
subsequently increase above basal levels at 24 hours after SAH
[59]. Another mechanism by which NO and NO synthases
(NOS) can cause angiographic vasospasm and brain injury
is by endothelial NOS uncoupling. This was demonstrated
in the brain tissue of mice with SAH, in which there also
was increased superoxide and nitrotyrosine production, and
significant reduction in NO formation due to the dysfunction
of eNOS [60]. Thus, while NO from eNOS might cause
vasodilatation and reduce angiographic vasospasm and brain
injury, under some conditions it could also be detrimental
[61].

While most of the studies in SAH rely on pharmacological
manipulations, the contribution of NO to ischemic stroke
and transient global ischemia has been assessed in genetically
manipulated mice [62, 63]. Mice with reduced neuronal or
inducible NOS have reduced infarct sizes, whereas those with
eNOS reduction have more [63].



5. Oxidative Stress

Reactive oxygen and nitrogen (such as peroxynitrite) species
are hypothesized to be important in brain injury after cerebral
ischemia and SAH. Multiple studies show that there is release
of reactive oxygen species (ROS) after experimental and
human SAH [64-69]. Reactive oxygen species can exacerbate
inflammation and generalized oxidative stress after SAH by
increasing lipid peroxidation, causing direct DNA damage
and protein oxidation. These processes in turn activate apop-
totic signals and inflammatory cascades that further damage
the brain [66]. A major source of ROS after SAH is thought
to be oxidation reactions catalyzed by the heme groups of
hemoglobin that are obviously abundant in the subarachnoid
space after SAH [67].

Reactive oxygen species can be generated by NOS iso-
forms (endothelial, neuronal, and inducible NOS). Multiple
reports have demonstrated that under oxidative environ-
ments, NOS, particularly eNOS, can contribute to overpro-
duction of peroxynitrite due to the reaction of NO and super-
oxide anion radicals [70]. Peroxynitrite oxidizes tetrahydro-
biopterin, a cofactor for eNOS, and the zinc-thiolate complex
in eNOS, which can uncouple eNOS and lead to generation of
superoxide anion radicals [70]. Another source of superoxide
anion radicals in the cerebral vasculature is the membrane-
bound enzyme nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase [71]. NADPH oxidase transfer electrons
from NADH or NADPH to molecular oxygen through flavins
that are present in the protein structure of the enzyme. This
also generates superoxide anion radical which seems to be
produced continuously at a low level in cerebral arteries.
Structurally, NADPH oxidase has both membrane bound
and cytosolic subunits. Functionally, it is a constitutively
active enzyme that can mediate vasodilatation, for example,
in rabbit cerebral arterioles in vivo [72]. The role of NADPH
oxidase in the pathophysiology of SAH has not been widely
investigated. In one study, inhibition of NADPH oxidase
with diphenyleneiodonium reduced middle cerebral artery
vasospasm after SAH in rats [73]. Vascular production of
superoxide anion radical and NADPH oxidase activity were
increased 24 hours after SAH in this model, and this was
associated with membrane translocation of p47phox, one of
the NADPH oxidase subunits.

Another source of oxidative stress after SAH may be
xanthine dehydrogenase. This enzyme is found in endothelial
cells where it produces uric acid from purines [74]. Ischemia
can convert it to xanthine oxidase, which produces uric acid,
superoxide anion radical, and hydrogen peroxide. This is
involved in the pathophysiology of brain injury after cerebral
ischemia. After SAH, Marklund and colleagues found that
delayed cerebral ischemia was associated with increased
concentrations of hypoxanthine, allantoin, and uric acid
in cerebral microdialysis samples, possibly due to xanthine
oxidase activity [75]. However, after experimental SAH in
dogs, uric acid was increased in the cerebrospinal fluid, and
this was inhibited with allopurinol [76]. This did not reduce
angiographic vasospasm.

Reactive oxygen species are also postulated to be impor-
tant in cerebral ischemia and infarction. Nitric oxide also can
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be beneficial after ischemia by mediating vasodilation. How-
ever, it can also have toxic effects by, for example, inhibiting
complexes I and II in the mitochondrial transport chain [19].
Also, as mentioned above, it can react with superoxide anion
radical to produce peroxynitrite. Peroxynitrite generation
promotes formation of other ROS such as hydroxyl-free rad-
ical and nitrogen dioxide. These nitrosylate tyrosine residues
in proteins can result in further structural parenchymal
damage [77]. NO has also been shown to upregulate the
activity of poly (ADP-ribose) polymerase which leads to
neuronal death through ATP consumption [77]. Additionally,
in cerebral ischemia, constitutive NOS activity from the
endothelial and neuronal NOS isoforms can be increased
due to activation of various glutamate receptors, resulting in
increased intracellular calcium and cytotoxicity [19]. In gen-
eral, infarct volume and outcomes are worse in mice lacking
eNOS, supporting the beneficial role of vascular endothelial
NO [62]. On the other hand, genetic deletion of nNOS or
iNOS tends to improve outcomes.

6. Inflammation

Inflammation is hypothesized to mediate brain injury and
angiographic vasospasm after SAH [78, 79]. There is an
increase in proinflammatory cytokines, including TNF-«,
interleukin 1-f3 (IL1-B), and IL6 acutely after experimental
SAH [80-82]. Additionally, it has been demonstrated that
pharmacologic inhibition of TNF-a or ILI-f attenuated
EBI and improved blood-brain barrier (BBB) function after
SAH [80, 81]. Another protein involved in proinflamma-
tory cascade activation is NF-«B, a transcription factor in
endothelial cells, that becomes phosphorylated resulting in
the subsequent inactivation of IxB-a [83]. When NF-xB
was activated in the arterial wall, there was an increase in
TNF-«, IL1-3, and adhesion molecules. Pyrrolidine dithio-
carbamate, an inhibitor of NF-«xB, reduced vasospasm and
the increase in the inflammatory cytokines and adhesion
molecules. Leukocytes play a role in the immune response
following SAH through their role in activating cytokines
such as endothelin-1, a power vasoconstrictor that becomes
elevated in experimental and clinical SAH [84]. In a study of
224 patients with SAH, a leukocyte count of greater than 15 x
10°/L was associated with a 3.3-fold increase in the probability
of developing angiographic vasospasm [85].

Selectins are from a family of cellular adhesion molecules
that play a role in the inflammatory response [79]. They are
categorized into leukocyte (L) selectin, platelet (P) selectin,
and endothelial (E) selectin, which together mediate the
capture, rolling, and adhesion of leukocytes in blood vessels
[79]. Functionally, E selectin acts through binding to a carbo-
hydrate site on the leukocytes that helps leukocytes target the
site of inflammation. An increase in selectins in cerebrospinal
fluid of patients with SAH and in animal models of SAH
supports their role in the recruiting of leukocytes to cerebral
vessels and brain after SAH [86]. Immunohistochemistry
of ruptured cerebral aneurysms found increased E selectin
in the aneurysm wall, which could also be a contributor
[87].
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Brain damage after transient global ischemia involves
similar pathways to those activated after SAH [19]. Cerebral
ischemia leads to migration of peripheral neutrophils and
monocytes into the brain. Multiple proinflammatory cytok-
ines are released by neurons and glia, leading to increased
selectin and adhesion molecules on cerebral blood vessels,
similar to what is observed after SAH. Cytokines are also
similarly involved in the pathogenesis of brain injury due to
ischemia. Interleukin-1 beta (IL-13) has been reported to play
a detrimental role in brain injury, while proinflammatory IL-
6 and anti-inflammatory cytokine IL-10 have uncertain roles
[19]. Additionally, TNF-« has been found to either aggravate
ischemic brain injury or to promote development of ischemic
tolerance [19, 88].

7. Blood-Brain Barrier Disruption and
Brain Edema

Brain edema is a well-documented phenomenon that occurs
days after experimental SAH in multiple animal models [6,
89]. Claassen et al. also concluded, based on interpretation
of CT scans, that about 10% of patients had global cerebral
edema within 24 hours of SAH [90]. Global cerebral edema
was an independent risk factor for poor outcome and mor-
tality. Brain edema may develop due to BBB dysfunction,
which is also documented after acute experimental SAH [7,
8, 29]. Multiple processes may contribute to BBB breakdown
after SAH, including endothelial cell apoptosis [29]. Blood
breakdown products such as oxyhemoglobin and oxidative
stress caused by hemoglobin can contribute to BBB disrup-
tion [91]. Additionally, proinflammatory cytokines like TNF-
« and thromboxane A, cause endothelial cell apoptosis and
contribute to BBB dysfunction [92]. Inflammatory cytokines
increase matrix metalloproteinases (MMP) that also disrupt
the BBB. Yan et al. reported that inhibition of p53 ameliorated
endothelial cell apoptosis and attenuated BBB disruption and
brain edema after SAH in rats [93].

Accumulating evidence suggests a role for MMP-9 in the
early disruption of the BBB after SAH [94]. MMP-9 degrades
the extracellular matrix of the cerebral microvessel basal
lamina, which includes collagen IV, laminin, fibronectin,
and interendothelial tight junction proteins such as zona
occludens-1[95-97]. Basal lamina degradation starts as early
as 6 hours and peaks 48 hours after experimental SAH created
by endovascular perforation in rats [98]. Similar to after SAH,
in after cerebral ischemia there is a release of proinflamma-
tory cytokines like TNF-« and IL-15 from glia, leading to
generation of adhesion molecules in the vasculature which
can result in the weakening of the BBB [99, 100]. Thus, BBB
disruption occurs after both a SAH and cerebral ischemia and
predisposes to fluid/protein extravasation into the interstitial
space resulting in cerebral edema.

8. Excitotoxic Amino Acids

Excitatory amino acids may play a role in the pathogenesis
of SAH. Germano et al. reported that the NMDA receptor
antagonist, felbamate, attenuated BBB disruption 48 hours
after SAH [101]. In view of the known action of felbamate, this
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FIGURE 1: Some hypothetical relationships between cerebral ische-
mia due to cardiac arrest (CA) and subarachnoid hemorrhage.

suggests a role for NMDA receptor activation in BBB disrup-
tion after SAH. Additionally, Unterberg et al. found elevated
brain glutamate by intracerebral microdialysis in patients
with delayed ischemic deficits after SAH in humans [102].
Similar findings are observed in cerebral ischemia, where
glutamate and other excitatory amino acids are increased in
brain tissue [19]. The glutamate excitotoxicity hypothesis of
brain injury after cerebral ischemia may not be proven, but
the process likely occurs after SAH, especially in patients
who develop focal ischemia due to delayed angiographic
vasospasm or other complications or those with reduced
cerebral perfusion pressure from brain swelling and edema.
In the excitotoxicity hypothesis, there is brain energy deple-
tion, like in the case with hypoxia-ischemia. Glutamate, one
of the most abundant excitatory amino acids, is rapidly
effluxed into the extracellular compartment due to neuronal
depolarization. It activates NMDA receptors which causes
increased intracellular calcium and sodium [19]. Increased
calcium activates catabolic enzymes and cell death signaling
pathways [38]. Blockade or retardation in the reuptake of
excitotoxic amino acids like cysteine results in the depletion
of antioxidant intracellular glutathione stores, purportedly
causing neuronal injury and death [38]. Furthermore, the use
of antiexcitotoxic agents such as NMDA and AMPA-R antag-
onists conferred neuroprotection through the amelioration of
glutamate-induced excitotoxicity caused by hypoxic ischemic
injury [38]. This success has not been translated into human
ischemic stroke, however. These drugs also are not widely
tested in clinical SAH, in part because they failed in human
ischemic stroke.

9. Summary

The pathophysiology of SAH and cerebral ischemia share
some common mechanisms. Cerebral ischemia is often seen
as a complication of SAH as well. Early brain injury is also
emerging as a key complication and a cause of morbidity
and mortality after SAH. Again, common mechanisms may



be involved in EBI and cerebral ischemia. Indeed part of
EBI may be transient global cerebral ischemia, or at least a
common hypoperfusion mechanism that acts between both
cerebral insults (Figure 1). Further research is required to help
elucidate the differences between EBI in a SAH and ischemic
brain injury.
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Delayed cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) remain severe complications after subarachnoid
hemorrhage (SAH). Although focal changes in cerebral metabolism indicating ischemia are detectable by microdialysis, routinely
used biomarkers are missing. We therefore sought to evaluate a panel of possible global markers in serum and cerebrospinal fluid
(CSF) of patients after SAH. CSF and serum of SAH patients were analyzed retrospectively. In CSF, levels of inhibitory, excitatory,
and structural amino acids were detected by high-performance liquid chromatography (HPLC). In serum, neuron-specific enolase
(NSE) and S100B level were measured and examined in conjunction with CVS and DCI. CVS was detected by arteriography, and
ischemic lesions were assessed by computed tomography (CT) scans. All CSF amino acids were altered after SAH. CSF glutamate,
glutamine, glycine, and histidine were significantly correlated with arteriographic CVS. CSF glutamate and serum S100B were
significantly correlated with ischemic events after SAH; however, NSE did not correlate neither with ischemia nor with vasospasm.
Glutamate, glutamine, glycine, and histidine might be used in CSF as markers for CVS. Glutamate also indicates ischemia. Serum
S100B, but not NSE, is a suitable marker for ischemia. These results need to be validated in larger prospective cohorts.

1. Introduction

Besides acute brain injury [1], one-third of patients suffering
from subarachnoid hemorrhage (SAH) develop secondary
brain injury [2]. This secondary brain injury leading to the
majority of morbidity and mortality after SAH seems to be
due to delayed cerebral vasospasm (CVS), which results in
delayed cerebral ischemia (DCI) [3]. There are a number
of other causes of cerebral ischemia other than CVS after
SAH [4], which may manifest clinically as delayed ischemic
neurological deficits (DINDs).

CVS has been associated with DIND and DCI and was
described for a long time as the underlying pathophysiology
[5-8]. However, recent studies showed that ameliorating CVS
is only partially effective in preventing DCI [9]. This might
be explained by multifactorial mechanisms underlying DCI
and the development of secondary brain injury. It further
implies SAH and biomarker research aiming at a more com-
prehensive detection of secondary events after SAH; that one

should not focus solely on CVS, but rather on evaluating CVS
and DCL

Although extensive research has been conducted over
the last decades on monitoring tissue biochemistry in the
injured brain and some studies have identified predictors
of CVS following SAH (for review, see Lad et al.,, 2012
and Table1) [10], no biomarkers predictive of CVS, DCI,
or outcome have been incorporated into routine clinical
work. Cerebral microdialysis has been demonstrated to be a
useful method detecting biochemical changes associated with
brain ischemia after acute brain injury [11]. Especially, the
excitatory amino acid glutamate (Glu) has been predictive
of ischemia [12]. However, microdialysis remains a focal
indicator for intracerebral events, and its distribution and use
among ICUs worldwide are limited [11]. Therefore, we sought
to evaluate a possible panel of biomarkers in CSF and serum,
including excitatory, inhibitory, and structural amino acids
as well as neuron-specific enolase and S100B, which might
facilitate to detect CVS and/or DCI after SAH and might help
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TABLE 1: Summary of the literature focusing on S100B and NSE as biomarkers after SAH predictive of CVS and/or DCI.
Author Year Serum biomarker Samp.l ¢ CVS assessment CVS bl DCI Bad
collection assessment outcome
Herrmann et First 4 days
ermant e 2000 S100B after ischemic NE NE CT ++ ++
al. [20]
stroke
for (volume
No NSE detection NE ischemia 4
. of lesion)
detection
Oertel et al. First 3 days
[21] 2006 S100B after SALL TCD T NE NE +1
NSE NE NE l
Weiss et al. First 8 days .
(22] 2006 S100B after SAH TCD + arteriography - NE NE ++
(only CVS + S100B
No NSE detection < 0.4 ug/L: no
death)
Sanchez-Peila First 15 days . - . S
etal. [23] 2008 S100B after SAH TCD + arteriography T in “ischemic vasospasm” patients ~ ++ (T)
(only mean
No NSE detection 15 day S100B
value)
Moritz et al. Daily during
[24] 2010 S100B ICU stay TCD - CT ++ ++
NSE 3 cT N + (only NSE
peak value)
NE: not evaluated; T: increase; |: decrease; “—”: no correlation; “+”: positive correlation; “++”: prognostic factor; TCD: transcranial doppler sonography.

to explain pathophysiological changes related to secondary
brain injury after SAH.

2. Material and Methods

Stored serum and cerebrospinal fluid (CSF) samples of
patients suffering from aneurysmal SAH (n = 18) and of
controls (n = 5) with hydrocephalus after intracerebral
hemorrhage, but without aneurysmal SAH, tumor, or trauma,
were retrospectively analyzed. All SAH patients (n = 18)
were Fisher grade III or IV [13] and had suffered from
acute hydrocephalus after SAH which was treated by early
placement of an external ventricular drainage (EVD) before
or during aneurysm treatment. In control patients, a single
CSF sample was collected during placement of EVD. Samples
were immediately centrifuged, and supernatants were stored
at -70°C until further assessment. Samples were collected
between days 0 and 12 after SAH, depending on how long the
EVD remained in situ. For 3 patients no CSF was accessible
past day 9 after SAH. As stored CSF samples were also not
accessible for every day, short time periods of 3 days each
were defined: days 0-3, 4-6, 7-9, and 10-12 after SAH. Of
every patient one sample was taken within each of these
time periods for analysis. Additional selection criteria for
samples drawn within each of the 3-day time periods were,
that CSF collected at the day of arteriography and at the
day CT scans were performed had to be available and were
included for analysis. Serum samples were collected daily
during intensive care stay and analysed from the first sample
taken after admission until day 12 after SAH.

Sample collection and retrospective analysis were ap-
proved by the ethics committee of the University of Frank-
furt/Main.

2.1. Biomarker Detection. In serum neuron-specific enolase
(NSE) and S100B protein were determined using LIAISON
Sangtec 100 assay and LIAISON NSE assay (Byk-Sangtec
Diagnostica, Germany). In CSF high performance liquid
chromatography (HPLC) was performed to detect the levels
of free amino acids including the excitatory amino acids:
aspartate (Asp) and glutamate (Glu), as well as the inhibitory
amino acids: glycine (Gly) and y-aminobutyric acid (GABA).
Furthermore, the structural, nontransmitter AA glutamine
(GIn), histidine (His), and serine (Ser) were detected. Chro-
matography conditions and quantification were previously
described [14].

2.2. Clinical Assessment and Detection of Delayed Cerebral
Vasospasm (CVS) and Cerebral Ischemia (DCI). Patients
suffering from aneurysmal SAH were examined at admission
using the Hunt and Hess classification [15] and the World
Federation of Neurological Surgeons SAH scale (WENS
scale) [16] as well as at discharge using the Glasgow Outcome
Scale (GOS) [17].

All patients underwent either early clipping (n = 13) or
coiling (n = 5) of the detected ruptured aneurysm, within
72 hours after the initial bleed, followed by hypertensive
hypervolemic hemodilution therapy to prevent vasospasm-
induced brain ischemia.

Delayed cerebral vasospasm (CVS) was detected arte-
riographically: an early baseline cerebral arteriography,
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performed between days 0 to 2 after SAH, was compared
with a subsequently performed arteriography 7 + 1 days
after SAH. The time point of the second arteriography
depended on the individual clinical course and was influ-
enced by clinical symptoms and transcranial Doppler sonog-
raphy (TCD) signs for cerebral vasospasm (increase in flow
velocity >30 cm/sec compared to previous days or an overall
increase >200 cm/sec). Arteriographic CVS was quantified
relative to each patient’s baseline arteriogram and was mea-
sured by two blinded examiners as described previously. CVS
was graded as none, mild, moderate, or severe arteriographic
cerebral vasospasm [18].

Delayed cerebral ischemic events (DCIs) were assessed by
follow-up computed tomography (CT) scans and determined
as hypointensive changes reflecting partial or total involve-
ment of the territory of a cerebral artery on CT scans [19].
To differentiate between treatment-induced ischemic events
and SAH-induced delayed cerebral ischemia (DCI) a CT scan
was performed within 24 hours after clipping or coiling. DCI
included all ischemic lesions detected in subsequent follow-
up CT scans, more than 24 hours after treatment. Cerebral
ischemia was graded 0 if no hypointensive changes were
detected. A small perforator infarction was graded as I and
a territorial infarction as grade II.

2.3. Statistical Analysis. Data are presented as mean value +
standard deviation (SD). Statistical analysis of the data was
performed using two-tailed Student’s t-test and analysis of
variance (ANOVA) followed by Tukey’s test for post hoc
comparisons of mean values. Pearson’s correlation coefficient
was used to assess correlations. Statistical significance was
defined as P < 0.05.

3. Results

Of 18 retrospectively analyzed SAH patients, thirteen
developed arteriographic CVS. 6 patients showed cerebral
ischemic events which were related to treatment and visible
in the early CT scans 24 hours after aneurysm treatment.
All treatment-related infarctions were perforator infarctions
and were classified as grade I. One patient with a treatment-
related perforator infarction developed CVS. Follow-up CT
scans of this patient revealed a territorial infarction in the
distribution of the formerly detected CVS. Altogether, five
patients developed DCI on computed tomography several
days after clipping or coiling. These infarctions were all big
territorial infarctions (grade IT). None of the patients showed
small, grade I delayed cerebral ischemia in follow-up CT
scans. All patients who developed DCI suffered also from
moderate or severe arteriographic vasospasm. Furthermore,
patients without signs of arteriographic vasospasm showed
no delayed ischemic events on follow-up CT scans (Table 2).
Clinical examination at admission (WFNS grade as well
as Hunt and Hess grade) was not correlated with outcome
measures (GOS) at discharge.

3.1. Biomarkers. CSF glutamine (Gln), glycine (Gly), ser-
ine (Ser), and histidine (His) concentrations significantly

TABLE 2: Summary of patient characteristics.

Patient Gender CVS DCI Pop ischemia
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M: male; F: female; CVS: cerebral vasospasm; DIND: delayed ischemic neu-
rological deficit detected in alert patients; DCI: delayed cerebral ischemia;
pop ischemia: postoperative/treatment-related ischemia; “+”: with; “=:
without the characteristic measure.
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FIGURE 1: The graph depicts CSF Glu in association with the degree
of ischemia.

increased after SAH. CSF y-aminobutyric acid (GABA)
significantly decreased compared to control values (0.22 +
0.13 yumol/L) after an initial increase (20.6 + 36.4 ymol/L,
n = 18) on days 0-3 after SAH. Glutamate (Glu) showed
in all SAH patients a trend to increase, which did not
reach statistical significance. Furthermore, aspartate (Asp)
remained unchanged after SAH. However, Glu (CC: 0.48;
P =0.03), Gln (CC: 0.47; P = 0.04), Gly (CC: 0.53; P = 0.02),
and His (CC: 0.66; P = 0.001) were correlated with the
occurrence of arteriographic CVS at the day arteriography
was performed. In addition Glu was correlated with the size of
ischemia (CC: 0.51; P = 0.02) (Figure 1) on the day CT scans
are performed. However, no difference could be observed
between treatment-related ischemia or SAH-related DCIL
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FIGURE 2: The graph depicts S100B in serum in association with the
degree of ischemia.

Although Ser significantly increased after SAH, it showed in
addition to Asp no correlation with CVS or ischemia.

In serum, no significant changes could be detected for
S100B during the time course after SAH, and no correlation
was detectable with the development of CVS on the day
arteriography was performed (CC = 0.51; P = 0.052). How-
ever, S1I00B serum levels were associated with ischemic events
detected in follow-up CT scans, irrespective of whether
the ischemic lesion was treatment-related or supposedly
SAH-related DCI. Serum S100B concentrations were further
correlated with the size of ischemic lesions (CC = 0.54;
P = 0.03) (Figure 2). However, NSE in serum was neither
correlated with CVS (P = 0.3) nor with ischemia (P = 0.7).

No association could be detected between clinical param-
eter (WENS as well as Hunt and Hess grades) and the different
CSF amino acid (AA) levels at admission. Furthermore, no
correlation was detectable between CSF AA levels and GOS
outcome parameter at discharge.

4. Discussion

Secondary brain injury exacerbating morbidity and mortality
after SAH seems to be due to CVS and DCI. Delayed ischemic
neurological deficits (DINDs) seem to result from tissue
ischemia. In addition, DIND and DCI have been associated
with vascular territories in which CVS has been documented
arteriographically, suggesting a causal relationship [5-8]. In
accordance with these former studies, 5 patients who derived
from the SAH group with arteriographic vasospasm devel-
oped DCI, detected as delayed ischemic lesions on follow-up
CT scans. Recent reports, however, on CVS after SAH cast
doubt on the assumption that DCI is caused only by CVS
[25, 26]. Vergouwen et al. showed that cerebral infarction
after SAH had a direct effect on outcome independent of
arteriographic CVS and suggested that coexisting factors
might be involved in the pathogenesis of DIND and DCI
[27]. For example, delayed spreading ischemia was suggested
as an additional possible source of DIND [28-30]. However,
data of this study do not suffice to give any hint concerning
this hypothesis. In particular, we did not use MRI to detect
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ischemic lesions. Furthermore, Jordan and Nyquist proposed
that CVS could be an epiphenomena or a contributing factor
to parenchymal destruction [31]. In accordance with these
observations detected associations between CSF amino acids
and CVS, as seen for Gln, Gly, and His, are often not accom-
panied by an association with DCI. Although we agree that
an association between CVS and DCI does not prove a causal
relationship, it seems conspicuous that only patients with
arteriographic vasospasm developed DCI detected as delayed
ischemic lesions on follow-up CT scan in this study. In
this perspective, monitoring brain injury and clinical course
after SAH demands biomarkers to detect delayed cerebral
vasospasm and delayed cerebral ischemia/infarctions. To
identify impending secondary injury and to explain neu-
ropathological changes, markers reflecting global processes
within the brain, as expected from CSF and serum markers,
could be advantageous.

4.1. CSF Marker. After traumatic brain injury the release
of the excitatory amino acid glutamate (Glu) and aspartate
(Asp), measured in interstitial fluid of the brain and in CSE,
was strongly correlated with increased ICP, secondary brain
injury, and poor outcome [32-34]. Asp and Glu have been
reported as markers of cellular degradation [35], and Glu
has been discussed as a predictive biomarker for secondary
brain injury and has been demonstrated to be a useful
parameter in microdialysis for detection of brain ischemia
after SAH [11, 12]. Consistent with this observation Glu CSF
concentrations were correlated with CVS and DCI in this
study. Excitotoxicity has been suggested as a mechanism
of ischemic secondary brain injury, mediated by excessive
calcium influx via glutamate-mediated ion channels [33].
Glu further participates in multiple biochemical pathways.
It plays a role in neuron-glia communications: the released
Glu is taken up into the glia and is converted to glutamine
(Gln) which is transported back to the presynaptic neuron
and then reconverted to Glu. Glu and Gln CSF concentrations
detected were comparable to those described previously
[36]. Furthermore, GABA derives from Glu and vice versa.
Therefore, alterations in glutamate metabolism might take
effect on GABA metabolism [36]. Hutchinson et al. described
increased GABA levels, measured by microdialysis, in SAH
patients who suffered from DCI, while GABA levels under
basal conditions were low. In addition a correlation between
GABA and Glu was observed [37]. In contrast CSF Glu
increased and CSF GABA decreased after SAH in this
patient collective, and no association could be observed.
This difference, between microdialysis and CSF examination
results, might be due to rapid clearance and limited diffusion
of GABA from its neuronal and synaptic origin [38, 39].
Glycine (Gly) also belongs to the inhibitory amino acids
and represents the major amino acid found in collagens and
thus in cell membranes. Next to its function as precursor of
a variety of metabolic products serine (Ser) is also found in
high concentration in cell membranes [40]. Histidine is an
essential amino acid and the precursor of histamine. Further-
more it is involved in synthesis of hemoglobin. Because of
its free radical scavenging characteristics it was reported to
attenuate CVS in a rabbit model of SAH [41]. The release
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and increase of these structural amino acids might be an
indicator for progressive cell membrane degradation. Under
experimental conditions excitatory amino acids release has
normalized rapidly after global ischemia with reperfusion
[42]. Ischemia-induced release of neuroactive amino acids
has been suggested to result from energy substrate depletion
which is related to reduction in regional blood flow [43],
leading to a Ca2+—dependent efflux of neurotransmitters [44]
and to inhibition of the neurotransmitter uptake system [45].
Therefore, the more blood flow is reduced, the more efflux
of amino acids is expected. Thus, excitatory and inhibitory
amino acid detection should increase.

4.2. Serum Marker. S100B and NSE in serum have been
discussed as prognostic marker after SAH [21-24] (Table 1).
Oertel et al. tried to predict CVS and outcome within the first
3 days after SAH by measuring S100B in serum. Although
they did not succeed to differentiate between favorable and
unfavorable outcomes, they found significantly higher S100B
levels in serum in patients who did not develop CVS as well
as in those who died [21]. Moritz et al. showed that serum
S100B but not serum NSE allows for determination of good
and bad outcomes after SAH [24]. Furthermore, serum S100B
allowed the detection of cerebral infarction but not of CVS
[24]. Although the low number of patients with grade II
ischemia as well as the variance in samples led only to a
weak correlation between S100B and degree of ischemia in
this study, we could confirm S100B in serum as an indicator
for cerebral ischemia. S100B concentrations above 0.15 pg/L
were associated with the occurrence and size of ischemic
lesions in follow-up CT scans. Similar to Moritz et al., SI00B
was not associated with arteriographic CVS, and serum NSE
did not correlate neither with ischemia nor with vasospasm.
Therefore, NSE seems not to be useful as a biomarker for
monitoring SAH patients. Herrmann et al. measured S100B
after acute stroke using the same assay. They reported that
patients who suffered from stroke which was completely
reversible within a few days had no increased serum S100B
levels. These findings are comparable with those of patients
of this study who develop CVS but showed no DCI in
follow-up CT scans suggesting a possible pathophysiological
point of no return in DCI development from CVS. The fact
that S100B is correlated only with ischemic events and not
with arteriographic assessed CVS points to possible different
degrees of tissue degradation among the wide range of CVS
going from reversible mild narrowing to severe constriction
leading to ischemia needed to detect SI00B in serum. In
manifest stroke serum S100B levels described a decelerated
increase compared with GFAP [20]. The different expression
patterns have been explained by different release patterns
under pathological conditions: necrotic cell death leading to
leakage from cytosol, breakdown of membrane integrity in
the penumbra of infarcts due to cytotoxic, and vasogenic
edema as well as brain repair mechanisms [20].

4.3. Limitations of the Study. In this study, selection cri-
teria as, for example, Fisher Grade III and IV and acute
hydrocephalus, might lead to study bias. Furthermore, no

MRI data could be used to assess ischemia because of the
retrospective nature of this study. In addition, the cohort is
relatively small and contains only a small amount of patients
with DCI, matching the usual distribution of DCI after SAH.
In addition, outcome of the patients was assessed at discharge.
Therefore the results are limited to short-term and not to
long-term outcome. Furthermore, WENS grade as well as
Hunt and Hess grades was not correlated with short-term
outcome parameter GOS at discharge. This may be due to
the small number of patients in each WFNS/Hunt and Hess
subgroup or the limitation of this study to only “poor grade”
patients.

5. Conclusions

After SAH glutamate, glutamine, glycine, and histidine might
in addition to microdialysis be used in CSF as markers
for arteriographic CVS. Glutamate also indicated ischemia.
Serum S100B, but not NSE, was associated with delayed
cerebral ischemia, but was not correlated with arteriographic
CVS. These results need to be validated in a larger prospective
cohort.
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Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane
potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to
subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects
differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression
of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel
and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels
appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid
hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of

subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.

1. Introduction

Despite current treatment options, delayed cerebral ischemia
following aneurismal subarachnoid hemorrhage (SAH) is
still associated with a high morbidity and mortality [1].
The narrowing of cerebral blood vessels by vasospasm
represents the main cause of delayed cerebral ischemia [2].
Because vasospastic smooth muscle cells are known to be
depolarized compared to controls [3, 4], the expression
and function of ion channels in these cells after SAH
are of great interest. Furthermore, the inhibitor of L-
type calcium channels nimodipine remains gold standard
in treatment and prophylaxis of vasospasm after SAH.
However, recent studies have revealed that several ion
channels of different subfamilies are impacted by SAH and
may contribute to delayed vasospasm. The goal of the
present analysis is to review ion channel expression and
function in healthy cerebral blood vessels as well as after
SAH.

2. Ion Channels Healthy Cerebral Vessels

2.1. Expression and Function of Potassium Channels in Healthy
Cerebral Vessels. Membrane potential of cerebrovascular
smooth muscle cells and thus dilation and constriction
of cerebral arteries are directly dependent on potassium
conductance [5, 6]. Members of four potassium super-
families have been shown to be expressed in smooth
muscle cells of healthy cerebral vessels: inwardly rectifying
(Kir), ATP-dependent- (Karp), voltage-gated (K, ), and large-
conductance calcium-activated (BK) potassium channels.
Ki;2.1 mRNA and protein could be identified in basilar
arteries of rats and dogs [7, 8], whereas the presence of
Karp in cerebrovascular smooth muscle has been determined
electrophysiologically [9] and reviewed in detail by Ploug
et al. 2008 [10]. Transcripts of K, channel subunits K, 1.1
to K, 1.6, K, 2.1, K, 2.2, were detected in healthy rat cerebral
vessels and K,3.1, K, 3.4, and K,4.3 in healthy dog cerebral
vessels but only protein of K, 1.2, K, 1.5, K,2.1, and K,2.2



subunits could be identified [7, 11, 12]. In situ hybridization
revealed the presence of different BK channel splice variants
(X1424, X2492, SS24174 and SS4,g;) in combination with
pBl, 2, and P4 subunits in rat cerebral arteries [13].
Transcripts of both K;;2.1 and K;;2.2 have been identified in
cerebrovascular smooth muscle [14, 15], where they are
thought to play an essential role in neurovascular coupling
by mediating local vasodilation as a response to increased
neuronal activity [16-18].

Functional studies of the physiological role of K, and BK
channels in healthy cerebral vessels show that they contribute
to vascular tone by regulating resting membrane potential
of vascular myocytes, limiting depolarization by promoting
K* efflux [19]. BK channels are particularly vital in cerebral
resistance arteries, where raised intracellular calcium at
depolarization elicits outward BK currents representing a
negative feedback loop, which antagonizes vasoconstriction
[20, 21]. Furthermore, BK channels also play an important
role in the principle vasorelaxation pathway (nitric oxide
synthase pathway), as they are activated by cyclic GMP-
dependent protein kinase (PKG), which is stimulated by
the NO-induced increase of cGMP [22]. Interestingly, a
recent study of mouse cerebral parenchymal arterioles found
small-conductance (SK) and intermediate-conductance (IK)
calcium-activated potassium currents in isolated endothelial
cells in addition to the BK currents in isolated myocytes [23].
Both appear to contribute to vasorelaxation, as superfusion
of the cerebral cortex with SK and IK channel inhibitors
apamin and TRAM-34, respectively, reduces resting cortical
CBF [23].

In healthy cerebral blood vessels activation of Karp chan-
nels causes hyperpolarization of vascular myocytes and thus
vasodilatation [5, 18, 19]. Several antihypertensive drugs
like the vasodilators diazoxide, cromakalim, and pinacidil
exert their therapeutic effect by activating Karp channels
[24, 25]. Karp channels appear to play an important role in
cerebral autoregulation, as in rats their inhibition impairs
healthy autoregulatory vasomotor responses to hypotension
and its reverse. Furthermore, Kyrp channel activation is also
associated with several pathophysiological responses such as
reactive hyperemia in cerebral circulation after hypoxia [26]
(reviewed by Ko et al., 2008 [27]).

2.2. Expression and Function of Calcium Channels in Healthy
Cerebral Vessels. L-type voltage-gated calcium channels
(VGCCs) were traditionally believed to predominantly con-
trol Ca?* influx in cerebrovascular smooth muscle cells;
however recent studies have revealed expression of various
Ca?* channels and their isoforms. Protein and transcripts
of the alphal subunit of the Ca,1.2 (L-type) VGCC are
expressed strongly in basilar arteries of the dog [28] and
the rat [29]. Interestingly, however, in the rat basilar artery
(and lateral branches), transcripts of the low-voltage acti-
vated channel Ca,3.1 were the strongest expressed VGCCs,
exceeding relative mRNA levels of the other four identified
VGCCs in the following order: Ca,3.1 (T-type) > Ca,1.2
(L-type) > Ca,1.3 (L-type) > Ca,3.2 (T-type) > Ca,2.3 (R-
type). The same study found that, at the protein level, Ca, 3.1
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and Ca, 1.2 were both clearly expressed basilar artery smooth
muscle cells, while Ca,3.2 protein expression was much
lower, Ca,2.3 protein was confined to the surface of the
vessel, and Ca, 1.3 protein was not detectable at all. However,
the authors did not find evidence for Ca,2.2 (N-type) VGCC
protein or mRNA expression as was found in basilar arteries
of the dog [28]. In dogs inhibition of L- and T-type Ca’*
channels with nimodipine and mibefradil, respectively leads
to a relaxation of healthy arteries under isometric tension,
whereas blockade, of N-type Ca?" channel has no effect [30].
It is notable that expression of VGCCs appears to be
heterogeneous in cerebrovascular smooth muscle cells: in the
dog basilar artery low-voltage activated (LVA) current made
up more than 50% of the total current in 12% of myocytes,
less than 10% in 26% of myocytes, and between 10% and
50% in 62% of myocytes [28]. Additionally VGCC expression
may vary depending on vessel size: Kuo and coworkers [31]
described a high-voltage-activated Ca®* current showing T-
type channel kinetics, which is insensitive to nifedipine and
nimodipine and is blocked by the T-type blocker mibefradil.
Interestingly, the fraction of this current is higher in smaller
vessels and decreases with vessel size. These currents could
represent low-voltage-activated T-type currents, but also
“intermediate-voltage-” activated R-type currents, which are
insensitive to dihydropyridines but are also antagonized
by mibefradil [32]. This vessel-size-dependent difference
of expression patterns of VGCCs in cerebral blood vessels
implies that the contribution of L-type VGCCs to vaso-
constriction is greatest in large basal cerebral vessels, while
dihydropyridine-insensitive VGCCs play a more important
role in smaller vessels. Other investigators suggest that L-type
Ca?" channels could be responsible for vasomotion, while
non-L-type Ca?* channels control vascular tone [29].

3. Early Ion Channel Dysfunction after SAH

In addition to delayed cerebral vasospasms, acute hypoper-
fusion immediately after rupture of an aneurysm causing
subarachnoid blood represents another characteristic of
SAH pathology [33-35]. Relative hypovolemia, impaired
cerebral circulation due to elevated intracranial pressure,
abnormal autoregulation, as well as early vasospasm have
been discussed as possible etiologies behind acute hypop-
erfusion after SAH [33, 35-38]. Some insights into the
underlying molecular mechanism could be gained from
animal experiments. Data from a rat SAH model found
evidence for acute vasoconstriction after even minor sub-
arachnoid hemorrhage [35]. In cultured primate cerebrovas-
cular smooth muscle cells a significant increase of free
intracellular Ca®" is observed as early as 2 minutes after
exposure to oxyhemoglobin (oxyHb) and sustains for 7
days [39]. Similarly Takenaka and colleagues found that
endothelin, oxyHb, 5-hydroxytryptamine, norepinephrine,
prostaglandin F2 alpha, and leukotrienes C4 and D4 but not
bilirubin produced acute dose-dependent increases in intra-
cellular Ca** concentration [40] in cultured cerebrovascular
smooth muscle cells. Furthermore, Takenaka and coworkers
report that the L-type Ca?* channel blocker verapamil
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does not inhibit the oxyHb-induced rise in intracellular
Ca?*, implying non-L-type calcium channels in acute vaso-
constriction after exposure of the vessel to blood [41].
This finding may be explained by data from Ishiguro and
coworkers [42] that demonstrates that, in isolated cerebral
arteries, acute oxyHb exposure induces vasoconstriction and
suppression of K, currents but does not influence VGCCs.
Long-term (5days) oxyHb exposure on the other hand
enhanced expression of VGCCs, pointing toward important
roles of K, channels in acute vasoconstriction and VGCCs in
delayed vasoconstriction after SAH.

4. Changes in Ion Channel Expression and
Function in Delayed Cerebral Vasospasm

4.1. The Pathophysiological Role of Potassium Channels
in the Genesis of Delayed Cerebral Vasospasm

4.1.1. Voltage-Gated Potassium (K,) Channels in SAH.
Reduced K* conductance causing depolarization of cere-
brovascular myocytes was amongst the earliest hypotheses
behind delayed cerebral vasospasm after SAH, and indeed
many modern studies support this model [43-45]. However,
it has become increasingly evident that members of different
potassium channel families are affected in different ways
after SAH, raising many new questions. Several authors
emphasize a loss of functional voltage-gated K* channel
(K,) in response to SAH, as mainly responsible for the
disturbance of K* conductance. Seven days after SAH, K, 2.2,
and K, 2.1 transcripts and protein were found to be reduced
in basilar arteries of dogs [7, 43]. Immunohistochemical
staining of rabbit cerebral arteries revealed a reduction of
surface-expressed K, 1.5 protein 5 days after oxyHb exposure
[46]. Furthermore, Ishiguro describes redistribution of K, 1.5
protein after oxyHb exposure: in unexposed vessels K, 1.5 was
observed within large defined regions of the cell membrane
and was associated with phosphotyrosine-rich vesicular
compartments adjacent to the plasma membrane, whereas
OxyHDb exposure caused a decrease in K, 1.5 surface staining
and a redistribution of the remaining K, 1.5 into smaller
foci that appeared fused with phosphotyrosine-enriched
vesicles. This stands in support of the hypothesis that oxyHb-
induced suppression of K,1.5 channels is mediated by a
mechanism involving increased tyrosine phosphorylation-
dependent trafficking of the channel from the cell surface
[46].

4.1.2. Inwardly Rectifying Potassium (Ki;) Channels in SAH.
Next to K, channels, expression of an inwardly rectifying
potassium channel is found to be influenced by SAH.
Seven days after SAH, dog basilar artery myocytes display
enhanced expression of K;;2.1 protein and transcripts [7, 45].
Accordingly, blockage of Kj;2.1 channels in arteries under
isometric tension produced a greater contraction in SAH
than in control arteries. It is thus possible that increased
expression of K;j2.1 channels after SAH may represent an
adaptive response reducing disturbance of the cellular K*
balance and consecutively cerebral vasospasm.

4.1.3. Large Conductance Calcium-Activated (BK) Potassium
Channels in SAH. Whether BK channels are impacted by
SAH and contribute to vasospasm is a matter of debate,
as data on this subject has proven to be somewhat con-
tradictory. It has been reported that in dog basilar artery
myocytes, BK current density, kinetics, Ca** and voltage
sensitivity, single-channel conductance, and apparent Ca?*
affinity are unaffected by SAH [44]. Aihara et al. report that
although the expression of the BK channel alpha subunit is
unchanged after SAH, expression of BK channel 31 subunit
mRNA (but not protein) is reduced 7 days after SAH in
dog basilar artery myocytes and correlates with the degree
of vasospasm [7]. Koide et al. found that although SAH does
not alter BK channel density or single channel properties in
rabbits, SAH does cause a distinct reduction in Ca?" spark-
induced transient BK currents, corresponding to decreased
expression of ryanodine receptor type-2 protein [47]. Ca?*
sparks are focal Ca’" releases through ryanodine receptors
(RyRs) in the sarcoplasmic reticulum (SR), which oppose
the contractile actions of global cytosolic Ca?* by activation
of BK channels leading to hyperpolarization and decreased
Ca?* influx through VGCCs [48, 49]. Findings by Koide et
al. suggest that impaired subcellular signaling from the SR to
BK channels at the cell surface, due to reduced expression of
RyRs causing less focal Ca®* spark discharges, could be a key
mechanism in vasospasm after SAH.

4.1.4. ATP-Dependent (Karp) Potassium Channels in SAH.
An important role of Kyrp channels in animal models of
SAH-induced vasospasm appears likely, as several experi-
mental studies have shown that pharmacologic activation
of Karp channels can significantly attenuate vasospasm. The
Karp channel activator levcromakalim increased vasorelax-
ation in rabbit basilar arteries three days after SAH [4] and in
dog basilar arteries seven days after SAH [50]. Furthermore,
the endogenous Karp channel activator calcitonin gene-
related peptide (CGRP) displayed therapeutic effects revers-
ing vasospasm after SAH in rabbits and monkeys [51, 52]
but failed to significantly attenuate vasospasm to a greater
degree than standard of care (nimodipine) in a clinical trial
comprising 117 patients [53].

4.1.5. VGCCs in SAH. The role of VGCCs in vasospasm
may seem obvious in clinical practice where L-type Ca®*
channel blockers, such as nimodipine, are the gold standard
of prophylaxis and treatments of cerebral vasospasm. This
is indeed reflected in experimental investigations offering
evidence in support of a large contribution of L-type
VGCCs to vasoconstriction in certain cerebral blood vessels.
However, recent findings have revealed the importance of R-
type and T-type channels in vasospasm. Although typically
classed with the high-voltage-activated Ca’* channels, R-
type calcium channels are activated at potentials between
those of low and high VGCCs, representing an intermediate
VGCC. This channel is of interest in vasospasm, as its
expression is directly linked to SAH and it may be available
for opening at the depolarized resting potential of vasospastic
cerebrovascular myocytes.



Intravenous administration of nimodipine five minutes
after SAH improves circulation and attenuates vasospasm in
rats [54]. Nicardipine (dihydropyridine) pellets positioned
next to the basal arteries have been shown to reduce the
occurrence of angiographic vasospasm in a dose-dependent
manner in patients suffering from SAH [55, 56]. How-
ever, L-type antagonists alone cannot reverse SAH-induced
vasospasm completely. In this regard, the finding is that
although L-type VGCC antagonists abolish cerebral artery
constriction and block VGCC currents in cerebral artery
myocytes from healthy rabbits, the lack of their efficacy in
rabbits after SAH corresponds to an increase in R-type cur-
rents and alpha, (Ca,2.3 pore forming subunit) protein and
mRNA [57]. This is in line with recent findings by Nikitina
et al. who observed that high-voltage-activated (HVA) Ca**
channel currents were significantly decreased and low-
voltage-activated (LVA) currents increased during vasospasm
4,7, and 21 days after SAH in dogs [28]. This study revealed
an increase in protein expression of T-type (Ca,3.1 and
Ca,3.3 alpha subunits) and R-type VGCCs and a decrease
in L-type (Ca,1.2 and Ca,1.3 alpha subunits) VGCCs
in dog basilar arteries after SAH. Interestingly however,
differently to Nikitina et al., Ishiguro et al. could not observe
an increase in R-type protein and mRNA in the basilar
artery or other larger diameter vessels after SAH, but only
in smaller vessels. Several authors suggest that the func-
tional significance of R-type channels may lie within small
diameter blood vessels and that blood vessels of different
sizes are impacted differently by SAH [58]. Furthermore,
exposure of organ cultured rabbit cerebral arteries to oxyHb
induces the expression of R-type VGCC mRNA in small
vessels rendering the vessels sensitive to SNX-482 (R-type
antagonist) and less sensitive to diltiazem [59]. SNX-482
was also found to attenuate CBF reduction after SAH in
rats [60].

In addition to R-type VGCCs, the low-voltage-activated
(T-type) channels Ca,3.1 and Ca,3.3 have been shown
to be upregulated in the dog basilar artery after SAH
[28]; however the functional significance of this finding
is a matter of debate: the increased expression of T-
type VGCC channels was proposed to be functionally
irrelevant because these channels should be inactivated in
depolarized cells. In fact, T-type channels were reported to
inactivate at resting membrane potentials of most smooth
muscle cells at about —75 to —65mV [17]. Cisternal
application of nicardipine but not of the T-type antagonist
mibefradil reduced CT angiography measured vasospasm in
cynomolgus macaques [61], which is in agreement with the
functional insignificance of T-type VGCCs in depolarized
cells.

5. Changes of Ion Channel Expression
and Function following Transient Global
Ischemia after SAH

Increased ICP and decreased CPP immediately following
SAB cause a transient global ischemia (TGI) [62—64].
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Distinguishing which molecular changes can be attributed to
subarachnoid blood and which to TGI is difficult; however
studies of TGI (without SAH) can be of assistance. Very
little is known about changes in ion channel expression
and function in cerebral vessels following transient global
ischemia. The only study describing direct impact of TGI
on ion channels in cerebral arteries found that in piglets
arteriolar response (i.e., dilation) of Karp channels to their
activators aprikalim and iloprost is impaired 1 hour after
TGI but normalizes over 2—4 hours [65]. Interestingly, this
reduction of cerebral arteriolar dilation to activation of
Karp channels could be prevented with the nonsteroidal
anti-inflammatory drug indomethacin. In addition to this
acute provasoconstrictive effect, TGI has recently been
described to have a delayed provasoconstrictive effect. In
the two-vessel carotid artery occlusion model, transient
forebrain ischemia caused a functional upregulation of
ETp and 5-HTp receptors in the ACA and MCA of the
rat 48 hours after the insult [66]. In the case of SAH-
induced TGI, an upregulation of vasoconstrictor receptors
could contribute to vasospasm and thus to delayed cerebral
ischemia.

More is known about the effects of TGI on neuronal
ion channels. Transient forebrain ischemia in rats leads to
a downregulation of L-type VGCCs in vulnerable hippo-
campal CAl neurons by oxidation modulation, whereas
L-type Ca?* channels in the CA3 are not affected [67].
Interestingly, blockade of L-type but not of N- or P-/
Q-type VGCCs worsened neuronal survival, while, more
importantly, L-type calcium-channel agonists applied after
reperfusion significantly decreased neuronal injury in rats
subjected to forebrain ischemia [67]. These results stand in
strong contrast to the widely accepted view of excitotoxic
mechanisms after brain ischemia, which make glutamate-
induced intracellular calcium overloading responsible for
induction of apoptotic proteins and toxic molecules [68, 69],
but shed light on possible region-specific involvement of
calcium signaling in cell survival. Indeed other studies give
weight to this hypothesis of L-type downregulation after
ischemia and may ultimately lead to a modification of the
view of calcium-mediated neurotoxicity [70-72]. R-type
VGCCs may also mediate neuroprotection in focal ischemia,
as mice lacking the R-type VGCC display larger infarct
volume size than wild-type mice after occlusion of the MCA
[73]. Although N-type VGCCs (but also L-type, P/Q-type)
have been reported to be upregulated in the hippocampus
and cortex after global ischemia [74, 75], neuroprotective
effectiveness of their inhibitors is a matter of debate, as
evidence is contradictory [76]. Furthermore, pharmacologic
inhibition of T-type VGCCs has been shown to have a
neuroprotective effect in hippocampal neurons after global
ischemia in rats and also an in vitro model of ischemia-
induced delayed cell death in rat organotypic hippocampal
slice cultures [77, 78]. However, a 2012 meta-analysis of
effectivity of calcium channel antagonists on ischemic stroke
including 7731 patients in 34 trials concluded that calcium
channel antagonists have no effect on primary outcome or
survival after stroke but that nimodipine at high doses is
associated with poorer outcome [79].
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6. Conclusions

It is apparent that the decrease of K* conductance and the
shift from HVA Ca?* currents to LVA Ca?" in cerebrovascular
myocytes represent key phenomena in SAH-induced vaso-
spasm; however we have yet to put together the pieces to
establish a model of the complex mechanisms behind SAH
pathology. This paper focuses on ion channels and thus on
processes at the cell surface, but one must not overlook the
downstream effects of ion channel signaling via interacting
proteins like protein kinase C (PKC), an important regulator
of VGCCs. Several VGCCs and nearly all K* channels are
highly regulated by PKC. After SAH, hemoglobin alters
expression levels of different PKC isoforms and induces their
translocation from the cytosol to the plasma membrane
(PKC-6 on day 4 and PKC-a on day 7) [80]. It has been
suggested that PKC-§ is involved in initiation of SAH-
induced vasospasm whereas PKC-a plays a role in its
endurance [81, 82]. PKC phosphorylates the Ca, 1.2 subunit
of L-type calcium channels and leads to dual modulation
with inhibitory and stimulatory effects in vascular smooth
muscle cells. R-type VGCCs also underlie PKC-mediated
Ca?*-dependent stimulation [83, 84]. But also calmodulin,
another regulatory protein of voltage-gated Ca’>* channels,
is significantly impacted by SAH, displaying a decrease
within the first 48 hours after SAH [85]. One may speculate
that imbalance of calmodulin-mediated inactivation and
PKC-mediated Ca**-dependent stimulation of R-type Ca**
channels might lead to self-perpetuating Ca?* influx during
vasospasm. The calmodulin antagonist trifluoperazine was
demonstrated to reduce severity of cerebral vasospasm
following SAH but at doses far in excess of the normal
accepted therapeutic range in humans [86].

Transient global ischemia after SAH may contribute to
neurologic injury by downregulation of L-type VGCCs in
the CAIl region of the hippocampus [67] but also may
contribute to the occurrence of vasospasm by the increase of
vasoconstrictor receptors and the functional impairment of
Karp channels in cerebrovascular myocytes [65, 66].

In the effort of developing better pharmacologic ther-
apies and prophylaxes of vasospasm, it is very likely
that patients will ultimately benefit from in vitro studies
investigating ion-channel signaling and protein interaction
partners in great detail. As in every disease, identifying exact
targets in order to develop specific modulators is key, and
the lack thereof may be the root of difficulties in treating
vasospasms with L-type antagonists, such as nicardipine or
nimodipine, which also have substantial modulatory effects
on several other ion channels [87, 88]. Furthermore, the
extent to which vasospasm contributes to poor outcome after
SAH remains a matter of debate. Although several authors
falsely cite CONSCIOUS-1 as evidence that vasospasm does
not contribute to poor outcome (the study was not powered
to detect changes in morbidity, mortality, or clinical out-
come), recent evidence showing that a reduction of cerebral
infarction but not of vasospasm correlated with better
neurological outcome [89] fuels the debate on causality of
the pathological phenomena following SAH. In this regard, it
may be necessary to consider further mechanisms by which

nimodipine enhances clinical outcome. Several experimental
studies of different animal models of cerebral ischemia
have found neuroprotective effects of nimodipine [90-
92]; however clinical studies remain inconclusive. Although
nimodipine was found to have no effect on primary outcome
or survival after stroke in a recent meta-analysis of 34 clinical
trials, one study has found nimodipine to reduce relative risk
of the frequency of CT-scan-documented cerebral infarction
and of ischemic neurologic deficit after aneurysmal SAH but
not of angiographically detected cerebral vasospasm [93].
Taken together, these results underline the need for both
experimental and clinical investigations of the molecular
mechanisms behind the therapeutic effect of nimodipine and
thus calcium channel blockade.
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