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NOTATION

A Slope of logarithmic velocity law

4 Factor in equation for flat-plate shape parameter, Equation (42)

Bl,B 2  Intercepts of logarithmic velocity laws, Equations (6) and (9)

SFactor in equation for flat-plate shape parameter, Equation (42)

CD  Dissipation integral defined in Equation (89)

CD  Dissipation integral defined in Equation (94)

C General shear-stress factor given in Equation (82)

CS  General shear-stress factor defined in Equation (84)

C Shear-stress integral defined in Equation (192)

c1,C2  Constants in Equation (26)

c3, c 4  Constants in Equation (35)

E Entrainment factor, Equation (115)

e Subscript denoting equilibrium conditions

G Rotta's shape parameter defined in Equation (21)

G Velocity-defect energy shape parameter defined in Equation (54)

G Velocity-defect shape parameter defined in Equation (169)

G Velocity-defect shape parameter defined in Equation (172)

H Shape parameter, H = 6 /0

H Energy shape parameter defined in Equation (45)

H Entrainment shape parameter defined in Equation (60)

H Shape parameter defined in Equation (140)

H Shape parameter defined in Equation (141)

II Velocity-defect integral defined in Equation (32)

M Pressure-gradient coefficient, Equation (82)

m Relative position in boundary layer, m = s/6

N Coefficient in Equation (82)

n Power-law exponent, Equation (16)

P Coefficient in Equation (82)

p Pressure

I I



Re  Momentum-thickness Reynolds number, Re = UO/v

s y-position in boundary layer

U Velocity at outer edge of boundary layer

u Mean tangential velocity component in boundary layer

u' Fluctuating tangential velocity

u u at position y = s

u Shear velocity, uT = p

u, General shear velocity, u. = /p

v Mean normal velocity component

v' Fluctuating normal velocity

w Coles' wake factor

x Streamwise distance

y Normal distance from wall

o Subscript denoting flat-plate conditions

0.3 Subscript denoting conditions at m = 0.3

a l a2  Constants in Equation (28)

8 Clauser's pressure-gradient parameter defined in Equation (70)

y Velocity ratio, (u/U)y=6, Equation (25)

6 Boundary-layer thickness

6 Displacement thickness

C Factor in Equation (114)

o Momentum thickness

o Energy thickness defined in Equation (44)

x Constant in Equation (202)

v Kinematic viscosity

p Density

T Shear stress in boundary layer

T T at y = s

T Wall shear stress
w

T Characteristic shear stress, Equation (3)

Factor in Equation (201)
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ABSTRACT

Shape parameter differential equations are developed for

turbulent boundary layers in pressure gradients incorporating

two-parameter velocity profiles. Energy and entrainment

methods are included. Shear stress factors are explicitly

developed for equilibrium and quasi-equilibrium conditions.

ADMINISTRATIVE INFORMATION

This work was funded by the Naval Ordnance Systems Command under

Subproject UR 109 01 03.

INTRODUCTION

The analytical prediction of turbulent boundary layers in pressure

gradients has been the subject of intensive investigation not only because

of the engineering applications but also because of the difficulties in

developing methods suitable for all types of pressure distributions. The

fundamental problem of the turbulent boundary layer is common to that of all

turbulent flow: the lack of an adequate theory on the mechanics of turbu-

lent motion.

Rotta1 - 3 has critically examined the various predictive methods which

have appeared in the literature in recent years. The 1968 Stanford Con-

ference4 tested the ability of current methods to predict existing experi-

mental results from given pressure distributions.

Among the trends which may be ascertained from the Stanford Con-

ference are:

1. The virtual abandonment of traditional 6-H formulations (0 =

momentum thickness, H = shape parameter) when utilizing two-parameter

velocity profiles such as the Coles law of the wake. However results are

still given in terms of 6 and H.

2. The use of shear stress factors, (e.g., the dissipation integral

for the energy equation) derived from equilibrium pressure gradients for

use in non-equilibrium pressure gradients.

References are listed on page 43.

1
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It is now proposed to return to the traditional 6-H methods even for

two-parameter velocity profiles in deriving shape parameter equations for

the various integral methods. Analytical relations are obtained for the

various shape parameters for two-parameter velocity profiles. Analytical

expressions are also derived for the various shear-stress factors under

equilibrium pressure gradients. Consideration is given to applying

equilibrium shear-stress factors to non-equilibrium pressure gradients.

VELOCITY SIMILARITY LAWS FOR BOUNDARY LAYER FLOW
WITH PRESSURE GRADIENTS

The velocity similarity laws, the law of the wall and the velocity

defect law, provide an analytical basis for pipe flow and boundary layer

flow on flat plates (in zero pressure gradient). The extension to

boundary-layer flow with pressure gradients may be made to proceed as

follows:

INNER LAW OR LAW OF THE WALL

In addition to pressure gradient dp/dx, the mean velocity component

u parallel to the smooth wall (roughness and other effects may also be in-

cluded) is considered to be dependent on the usual local quantities: normal

distance from the wall y, shearing stress at the wall T , density p and

kinematic viscosity v of the fluid or

u = f Tw p, v,y, ddp (1)

Non-dimensional ratios may be formed

u [ V (2)
u dx

T pu

where uT = Vrw/P , shear velocity.

OUTER LAW OR VELOCITY DEFECT LAW

In the boundary layer away from the wall, the velocity defect U - u

at a relative position in the boundary y/6 develops as a consequence of



the cumulative effect of the pressure gradients which may be represented by

some appropriate characteristic value of the shearing stress T*. Mickley

et al.5 uses the value of shearing stress T at the inner edge of the outer

layer as T*; for adverse pressure gradients T* becomes the maximum value of
6

T and for zero pressure gradient T . Likewise McDonald and Stoddart use
w

the maximum value of T as T* for adverse pressure gradients. The density p

is an additional physical parameter. Analytically then

U - u = f[y/6,p,r*] (3)

where 6 is boundary layer thickness and U is value of u at y = 6.

Non-dimensionally

U-u= FF l (4)

where u, is _T*/p.

For flat plates (zero pressure gradient) T* T w and u, u .

LOGARITHMIC LAW

Within the boundary layer the ranges of validity of the inner and

outer laws are considered to overlap which results in logarithmic functions

for both the inner and outer laws for the common region. Equating the

derivatives of u with respect to y for the inner and outer laws,

Equations (2) and (4), produces

_ a u/u aU-u( u.-u
- (y A (5)S (u T y/v) u(y/) A (

Then integrating

uy v dp
- A kn r + B v 3 gi (6)

u v 1 3 dx
T

Experimentally Patel 7 shows B1 = B1,0 for v/pu 3 (dp/dx) < 0.01 where

B1,0 = B1[0] for flat plates (zero pressure gradient).

Also

III I11 I ~ -- --- - - - ---- ----- ~ 7



U-u y
-- - A n + B2,0 (7)

U-u yU - A n +--- B2 ,0 (8)
T T

or

U-uu - A an y  B2  (9)
u6 2

where B2 = (u*/UT) B2 ,0 and B2,0 = B2 for flat plates (zero pressure

gradient).

The value of B2 then depends on the history of the effects of the

pressure gradients up to the station being considered or B2 = f[xl. For

specially adjusted pressure gradients termed equilibrium pressure gradients,

B2 can be held constant with respect to x. Boundary layers on flat plates

in zero pressure gradient may be considered as a special case of equilibrium

boundary layers with B2 = B2, 0 . In general even for equilibrium pressure

gradients B2 J B2 , 0 . Towards separation B2

LAW OF THE WAKE

It was observed by Coles8 that the experimental data for the outer

law outside the overlapping region had similarity in its deviation from

the logarithmic law such that

U -u _ A Bn Y +W xu2 - w (10)

where w[y/6] is considered as a universal function termed the wake

function. The wake function given in tabular form by Coles8 was fitted

with a sigmoidal function by Hinze9

w = 1+ sin [ - = 1 - cos [Y- (11)
16 21 16

II I I



A polynomial fit is given by Moses 1 0 as

w -2 [3( - 2

In an earlier analysis Rottall used as a first approximation a linear

function

w-2Y
6

(12)

(13)

1
The wake function is normalized so Jo wd[y/6] = 1. Also w[1l] = 2.

BOUNDARY LAYER PARAMETERS

GENERAL

Analytical models of the velocity profile are designated one-

parameter if

and two-parameter if

where 6,

= f , H] (14)

-=f , H, R]

momentum thickness = (1 - u/U) (u/U)dy;
o

6 , displacement thickness = (1 - u/U)dy;
o

H, shape parameter (due to Gruschwitz) = 6 /6; and

R., momentum thickness Reynolds number = UO/v.

POWER LAW

An example of a one-parameter velocity profile is the familiar

power law

U ( n

(15)

(16)

which produces

,( ,,' h 
'

... . .



H = 2 n + 1 (17)

6 H- 1
- H 1 (18)S H+

T H - 1
6 =-H(H+) (19)

Then

H-i

S HH+ 
(20)

As shown in Figure 5 of Reference 12 the power law model provides a sur-

prisingly close fit to experimental velocity profiles in pressure gradients.

VELOCITY SIMILARITY LAWS

The velocity similarity laws provide a two-parameter velocity pro-

file.

A useful shape parameter is Rotta's shape parameter (also called

Clauser's shape parameter)

1 2 d(

GE (21)

If the velocity defect law is assumed to hold also to the wall, G is

constant for constant B2 of equilibrium boundary layers. Also from the

definitions

U H-1 w H-1G ( = (22)
Fru omH the law of2 Hthe wake

From the law of the wake

I I I I



2 2
4 A + 3.18 A B2 + 0.75 B 2

G = (23)
2 A + B2

WALL SHEARING STRESS

The coefficient of wall shearing stress or local skin friction is

expressed by

= f[H Re (24)
pU

1 13

As shown by Rotta and Patel, the law of the wake provides an im-

plicit relationship for (Tw/pU2)[H, R]. However an explicit relationship

obtained in Reference 12 is a generalization of the procedure of Ludwieg
14

and Tillmann or

4
T T H +1w w o

U2 = U 2 YoH (25)

where (Tw/pU2) is the flat plate value for the same R,, (Tw/U 2) = f[R].

Y = (u/U) , Yo, and H are the flat plate values.
0 15 1chl6

Empirically both Uram and Felsch express Y as

y = c1 - c2 log H (26)

(Here log is taken as log1 0 .)
Uram gives cl = 0.9058 and c2 = 1.818 while Felsch gives cl = 0.93 and

c 2 = 1.95.

At separation, T /pU = 0, Uram's constants give H = 3.15 and

Felsch's constants give H = 3 which is closer to test data than H = 4 given

by the law of the wake. Nashl 7 uses H = 3 at separation in a modified

skin-friction formula for pressure gradients. Also Equation (25) with

Felsch's constants for Y gives a very close fit to Nash's recommendation.

7
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WALL SHEARING STRESS FOR FLAT PLATES

As shown in Reference 12, (T/pU2)o[RO] is derived from the

Schoenherr formula for the total drag of flat plates as

T w 0.0146

SU2 (log[2 R ])(1/2 log [2 R,] + 0.4343)

Formulas of type

w

p U
0

(27)

(28)

(a R + a2) 2

may also be derived as follows:

Adding the overlapping inner and outer logarithmic laws, Equations

(6) and (9) produces

u 6
U T= A tn T + B + B2
u v 1 2 (29)

Since u 6/v = (u T/U) (6/6) Re by definition

U U e- A n - + A kn R - A £n + B + B2u u 0 6 1 2

If the velocity defect law is assumed to hold to the wall

u 
6 UT

I1 (1
u ) u I
S G = H
U U H

where

(30)

(31)

(32)

0

From the law of the wake

I I I _ II I



1
I1 =A + -B 2

Then for flat plates denoted by subscript o

U-- = A Zn Re + A an H - A £n Iu o 1,0
+ B1 + B2

1 2,0

£n H c3 + c
o 4u

T

U
u -= a log Re + a2

w

U2o02 al log R0

where

2.3026 A
1 =1-c 4 A

and

+ a 2 ) 2

B1 + B2, 0
+ c 3 A-kn A +

1-c 4 A

SHAPE PARAMETER FOR FLAT PLATES

Since from Equation (22)

H
o

H -1
o

1

G wo

then from Equation (37)

H a1 a2

H -- log R + --

(33)

then

(34)

(35)

(36)

(37)

(38)

1/2 B2 , 0)

(40)

(41)

"T'"~ '".-~-~'..I~.~.~--~n --- -------~- -: -. 1-~- II IIIIII I I I



H

S-= Z log Re + (42)
o

or

H = -A log Re 1) (43)

where A = and 2 =
G G

o o

ENERGY THICKNESS AND SHAPE PARAMETER

The energy thickness 6 is defined as

* E 6 u - dy (44)

0

The energy shape parameter H is defined as

H E 6 /6 (45)

For one-parameter velocity profiles

H = f [H] (46)

while for two-parameter velocity profiles

H = f [H, R0  (47)

The simplest relation is from the power-law velocity profile, a

one-parameter velocity profile, which is

4
* 4H 3

H =4H = 1 (48)
H--
3

Closer empirical fits (one-parameter) have been obtained by various

investigators.18-22

II II I ,



From Weighardt:

* 1.269 H
H -

H - 0.379

From Fernholz:

* 1.272 H IH 4

H - 0.37 + 10

1.25 < H < 1.7

1.35 < H <

5 x 10 < R <

From Moses et al.:

* 1.02 + 0.87 H + 0.095 H2

From Goldberg:

* 3.6 H
H 7

2.78 H - 1

From Nicoll and Escudier:

* 0.0971
H = 1.431 - H9

H
0.775

H

A two-parameter relation H = f [H,R may be

1.25 < H < 2.8

< Re < 8 x 104
0

obtained from the

velocity similarity laws as follows. A velocity-defect law energy shape

parameter G is defined as follows

. -(u)3 d
G 1 o

i(U-u) d(y)

(54)

From the appropriate definitions

2

.* U)
u

-3U G+2

(55)

Then, from Equation (22)

(49)

2.8

2.5 x 104

(50)

(51)

(52)

(53)

U

I n I I I I I I a II I I I I '



H =3 - H + (H (56)

Equation (56) was also obtained by Rotta.1

From the law of the wake

S12 A3 + 11.04 A 2 B2  4.71 A B22 + 0.63 B2

G = (57)
2 A + B2

G and G are then related through Equations (57) and (23) with B2
being the implicit parameter. At separation B2 + m and G /G2 + 1.12. An

explicit numerical fit gives closely

G 1.5= 1.12 + G (58)
G2

Then with Equation (56) and Equation (22)

H = 3 - H + .12 (H- + 1.5 (H-1) 2 (59)

where the variation with R0 is obtained through Tw/PU
2 given by Equation

(25).

The comparison in Figure 1 shows excellent agreement between the

two-parameter relation and the empirical one-parameter relations of

Fernholz and of Nicoll and Escudier.

ENTRAINMENT THICKNESS AND SHAPE PARAMETER

The entrainment thickness is defined as 6 - 6 and the entrainment

shape parameter H as

H - H (60)6 o

For one-parameter velocity profiles

H = f [H] (61)

I I
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Figure 1 - Comparison of Energy Shape Parameters
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while for two-parameter velocity profiles

H = f [H, RJ (62)

The power law velocity profile gives

2H
i =2H (63)H - 1

An empirical fit by Head4 yields the one-parameter relation

H = 1.535 (H-0.7)-2.715 + 3.3 (64)

A relation H = f[HR] may be obtained from the velocity similarity

laws. From the definition

e U (= U I 1 1- G (65)

Then from Equation (22)

S = ( ) H2 (66)
6 G

and from Equation (60)

H = () H (67)

This relation was also obtained by Michel et al.
4

11 and G may be related through Equations (33) and (23) with B2

being the implicit parameter. At separation B2 -* and G/I1 - 1.5. A

close numerical fit gives

- = 1.5 + 3.8 (68)
I 3/21 G

Then from Equation (67) 3

= H(H+2) 3.8 H 7 / 2 T w (69)
2(H-1) (H-1)5/2 P U2 )

II II I I



2
For H = 3, T /pU = 0 and H = 3.75.

The comparison in Figure 2 shows close agreement between the two-

parameter values and the empirical fit of Head.

EQUILIBRIUM PRESSURE GRADIENTS

EFFECT OF PRESSURE GRADIENT PARAMETER

It has been shown theoretically by Rotta and experimentally by

Clauser that similarity is maintained if the pressure gradient parameter

T dx (70)i dx
w

is kept constant with respect to x or dB/dx = 0.

Then G and consequently B2 are constant. Empirically Nash 2 3 obtains

G = 6.1 /1.81 + S -1.7 (71)

Felsch l6 obtains

G = 6 ]1.8 + 5 -1.5 (72)

and Alber 4J24

G = 6.1 1l.81 + B -0.40, B > 0

(73)
G = 6.5 8 + 7.8067, < 0

SHAPE PARAMETER

For equilibrium pressure gradients Equation (34) is stated as

U_ = A £n R + A £n H - A £n I + B + B (74)u 0 1 1 2

From Equation (22)

H 1 U A A A B1 B2
H- G =  n R + -n H - - n + -- + -- (75)

15
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2-PARAMETER Re=10 3

7

6

2-PARAMETER Re 105

1.0 1.2 1.4 1.6 1,8 2.0 2.4 2.6 2.8

H
Figure 2 - Comparison of Entrainment Shape Parameters



In general A is constant and B1 is constant for smooth surfaces.

For equilibrium boundary layers G, II and B2 are constant with respect to

x for a particular 8.

Differentiating Equation (75) with respect to x produces

A(H-1) 2 [H+(H+l)8 Tw 2
dH pUS = - 2 (76)

G H + A(H-1)

for equilibrium boundary layers.

An alternate form from Equation (22) is

1

G n R T [H+ (H+l) U2

dH a
Sd = - 1 (77)

G H2 12 1

where T /pU2 is given by Equation (25).

INTEGRAL METHODS

GENERAL

Integral methods for solving the turbulent boundary layers in

pressure gradients refer to methods based on integrated forms of the

equation of motion (momentum equation) and/or the equation of continuity,

using various weighting factors which for incompressible two-dimensional

flow are

au au dU I aTu - + v U + - - (78)
ax y dx p Dy

au ax
a- + - = 0 (79)
x both laminar and turbulent contributionsy

The shearing stress T includes both laminar and turbulent contributions

------- ----- - --------- -- m lmm 3A II 1]1 111 1~



du
= du p uv (80)

where u'v' = Reynolds turbulent shear stress. The Reynolds turbulent nor-

mal stresses are not included though these may become quite significant

close to separation. Also close to separation ap/ay # 0.

The classical integral form is von Karmgn's momentum equation ob-

tained by integrating the equation of motion without using any weighting

factor

de O dU w
d--+ (H+2) = (81)

pU

The purpose of other integrated forms is to obtain eventually the

variation of H with x or dH/dx. The energy equation uses u as a weighting

factor. The entrainment equation integrates the equation of continuity.

The moment-of-momentum equation uses y as the weighting factor. The partial

momentum equations partially integrate the equation of motion to differently

specified sublevels within the boundary layer. Details of these equations

follow.

The shape parameter equation may take the following forms

S-=- M H,R 6 - + N [H,R U P ,R CS  (82)

or

e dH=- M[H,R -dU HROCS - N[HR J U2 (83)

where M, N, P are coefficients, CS is the generalized shear-stress factor

and

CS
CS  2 (84)

w /U
2

W

i



EQUILIBRIUM SHEAR-STRESS FACTORS

To obtain CS[H,R 0 ] for equilibrium boundary layers, edH/dx from

Equation (83) is first converted to form

d PCs +N (85)dx H S 2

and equated to Equation (76) to produce

BM N A(H-1) [H+(H+l1)]Cs' + - + (86)CSe - HP [GH + A(H-1) 2] P

where CS, e represents the equilibrium value of CS'

CS,e may be considered a function of H and R6 if 8 is related to G

by Equation (71) and G is a function of H and Re through Equation (22).

ENERGY METHOD

GENERAL

The energy equation is obtained by multiplying the equation of

motion Equation (78) by u and integrating over the whole boundary layer

d (3 *) 2 u (87)
dx = dy (87)

* *
In terms of energy shape parameter H - e /e and employing the momentum
equation for dO/dx

-dH = .H-IH* 6 dU H* w
x U dx pU

where

CD 2 T dy (89)

called the dissipation integral, the shear-stress work integral or the

production integral.
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SHAPE PARAMETER EQUATION

The objective is to convert the energy shape parameter equation,

Equation (88), to a shape parameter equation of forms Equations (82) or

(83).

For a two-parameter velocity profile

H = H [H, £n R0J (90)

Then expanding into partial derivatives

* * * d in R
dH H dH aH (91)-=+ 8 d (91)
d aH dx a in R dx

or

* * * T

dH DH dH aH w (H+1) dU (92)
7 R -d7 3 in R P U2 'U dx(

and finally

S- (H-1)H + (H+1) aH aH dU
dx + (H+) n R 3H* U dx

H[ c '

* aH ^ H w (93)- H + n C H p(93)
R D * P 2

where
1

CD 2 T 8(u/U) (94)
D -F- 8(y/6)w

Then from Equation (82)

M =- (H-1)H + (H+1) Hn R H (95)
a ln R 60 aH

N =-H + H (96)
3 An R aH

and



(97)

is obtained from Equation (86) since CD,e
equation.

= CS, e for the energy

POWER-LAW ENERGY THICKNESS

Here

Then

* 4H
H = f[ 3H- 

dH 4

(3H-1)

M = H(H-1) (3H-1)

N = H(3H-1)

1= (3H-1)
4

and

C - 4[(H-1)8+H]
D,e 3H- 1

2
4 A(H-1) [H+(H+1) 8]

(3H-1) 2 [GH + A(H-1) 2 ]

FERNHOLZ ENERGY THICKNESS

Here

* 1.272 H -4 4
H H - 0.37x 10 H

Then

dH
dHn

0.4706
(H-0. 2.16

(H-0.37)

M = (H-I) (H-0.37)[1.272 H + 5.4 x

x 10 - 3 H3

10 - 4 (H-0.37)H4]

I~-I-- - - ----- --------- -- ;- ~s-, baB------- -- I I l tI

CD, e

(48)

(98)

(99)

(100)

(101)

(102)

(50)

(103)

0.4706 - 2.16 x 10- 3 (H-0.37) 2 H3
(104)

P= - -
aH



M
H-
H-I

dH -

dH

(H -0.37)2

0.4706 -2.16 x 10- 3 (H -0.37) 2 H3

dH
dHS [(H 1) H

CD,e H J+

TWO-PARAMETER ENERGY THICKNESS

Here

H = 3 -H + 1.12(H-1)2 + 1.5 (H-I) 2

With Equation (25)

H* 1.12(H 21)
-H 1 + +H2

1.w 2 C2 (H-I1)

2 2.3 H+1 ) HY
pU o/

and with Equations (37) and (42)

H = 1.5(H-1)
kn R e

(109)

1 2 n
T2
"w 1 2 2 (Ho-1) c2 Yo

2 2.3 2.3(H +1) 2.3 H Y H +1
o

M, N, P, and CD, e are obtained from Equations (95), (96), (97), and (86).

Figure 3 shows how close the M values are for the various formu-

lations.

and

(105)

(106)

(107)

(59)

(108)

I
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Figure 3 - Energy Method, M = f[H, R3]; Comparison of Various Procedures



EXISTING RELATIONS FOR DISSIPATION
INTEGRAL

Truckenbrodt25 approximates

0.0112
CD 1/6 (110)R

from the analyses of Rotta.11

Walz suggests for equilibrium boundary layers

* 4.81C 0.00962 + 0.1644 (H -1.5) 4
(

8 1

D,e R (0.2317H -0.2644)

where H is determined by Fernholz, Equation (50).

A fit of experimental shear-stress data by Escudier and Spalding2 7

results in

T

CD = 1.094 2 + 0.004214 H -0.004572 (112)
pU

Escudier et al. 2 8 propose

2 w 2.715CD (2 + 1) + 0.0113 (1 - C) (113)D 3 2 •
pU

where

2* 2 * 2C -=  H - + H -1) (114)

Figure 4 compares the dissipation integral for the various formulations.

ENTRAINMENT METHOD

GENERAL

The entrainment equation was first proposed by Head29,4 on the basis

of physical reasoning regarding the growth or entrainment of the developing

boundary layer. It has since been found out that it can be derived by

integrating the equation of continuity, Equation (79). Michel et al. 4

I r
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introduced a shear-stress factor by considering the equation of motion

Equation (78) at y = 6. The entrainment equation then resembles the

energy equation and is given by

1 d [1 ( TEd pU[U(6-6)] - a - E (115)
Udx pU 7u

In terms of the entrainment shape parameter H = (6 - 6 )/8 and employing

the momentum equation for dO/dx

T dU

d6 (H+1)H - H + E (116)dx U dx H 2
pU

SHAPE PARAMETER EQUATION

The objective is to convert the entrainment shape parameter

equation, Equation (116), to a shape parameter equation of forms Equations

(82) or (83).

For a two-parameter velocity profile

H = f[H, kn R] (117)

Then expanding into partial derivatives

~~H ~d kn RdH H dH H a 0  (118)8 8  + n (118)dx 9H dx ' Dn R dx

dH H dH H w (+l) dU (119)
dx aH dx a n R0 U2 U dr

and finally

dH a H HOdU
dx (a n R0 aI U dx

S+ aH R a 2 (120)
0 H p U

I I I II I



E [(T/T 1E --=-
7L a(u/)J 6

p U2

Then from Equation (82)

M =- (H+1) + R --

N =- H + ) M

aH
p -laH

and E is obtained from Equation (86) since E = CS,
e e Se

method.

(121)

(122)

(123)

(124)

for the entrainment

The actual evaluation of Ee and the accompanying shape parameter

equation depends on the particular relation for entrainment thickness.

Some examples are now presented:

POWER-LAW ENTRAINMENT THICKNESS

Here

Then

= 2H2H
H-1

(63)

(125)

(126)

(127)

(128)

dH 2.-

dH 2
(H-1)

M =- H(H 2 -1)

N = H(H-1)

(H-1)
2

2

2H (H+1) + + 2A [H+(H+1)B]
e (H-) H 2

GH + A(H-1)
(129)

where

and

II ~,~~,.... rz 1112~ 1 1~...,, I I11Alll I" =11. , I , "MI I



HEAD ENTRAINMENT THICKNESS

Here

I = 1.535 (H-0.7)-2.715 + 3.3

B. -3.715-r.=- 4.168 (H-0.7)

M = 0.3683

N = 0.3683

(H+1)(H-0.7) [1 + 2.15 (H-0.7)2.715]

(H-0.7) 1 + 2.164(H-0.7)2.715]

3.715
(H-0.7)
4.168

and

r(H+1) H A ( H- 1) 2 H+ ( H+ 1)

E= H + 1 -2 He L J GH + A(H-1)2

TWO-PARAMETER ENTRAINMENT THICKNESS

Here

- H(H+2) 3.8 H7 / 2  Tw 3/4
2(H-1) (H 5 / 2 --U

(H-1) pU2)3/

With Equation (25)

3H H 2-2H-2 3.8 H7/2 w 3/4
H 2(H-1)2 (H-1) 5 / 2 7

and with Equations (37) and (42)

5.7 H7 / 2

(H-I) 5 1 2

( \3/4 T 1/2

L 7777)o
(p U 2 2.3 U

U p~0

+ 2(Ho- 1) 2
2.3(Ho+ 2.3HoYO

(136)

Hn Y
Ho+ °j

M, N, P, and Ee are obtained from Equations (122), (123), (124), and (86).

Figure 5 shows large differences in M between the various formulations.

Then

(64)

(130)

(131)

(132)

(133)

(134)

(69)

S2H-7 

3c2

2H(H-1) - 2.3(Ho+1)HY]

aH
a £n RO

(135)
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EXISTING RELATIONS FOR ENTRAINMENT FACTOR

Empirically Head
4 obtains

E = 0.0306 1.535(H-0.7) -2.715 + 0.3] -0.653 (137)

Also Nicoll and Ramaprian3 0 include Statford's data for separating flow and

obtain an empirical fit

E = 0.035 )/H-l.25 (138)

Figure 6 compares the various entrainment factors.

PARTIAL MOMENTUM METHODS

GENERAL

Another group of integrated equations which are transformable into

shape parameter equations may be obtained by integrating the equation of

motion, Equation (78), to some intermediate value of y, say s[x]. s may be

s = m6 where m is a constant which was used by Moses 4 or s = 8 which was

used by Furuya and Nakamura.4 Another possibility is s[u/U = const] which

will not be treated here.

Integrating the equation of motion, Equation (78), to y = s produces

d s (a us sUN2 us f s  s-
S _)2 dy f -- - dy + 2 2 dy - - dy - s - -=

s w= 2 2 (139)
pU pU

where
u = u at y = s

TS = T at y = s.
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Two new shape parameters are introduced:

A f-U dy

HE

ri
s )2 dy
O-) dy

Then Equation (139) becomes

d ud a
d (Ro) - (HO)
d- U dx

+ (2f

s
= U
pU

H = f[H,Yn R0]

F = f[H,kn R0]

HF+ (H+1) a n R0

1 3 Yn R a

u
U

dH
oBU-

a Us aH

aH U ah

H-1
aR

a knR

a s aH
aM U aH

Then

and

(140)

(141)

u
s ^
--H

U
s U dU
T / Udx

With

T
w.2

PU

and

(142)

(143)

(144)

6 dU
U dx

(145)

T
s

1
T T

w w

P U 2

+ )
+ @ n R +

M -- MM - M

us^s
U H
U



[ H s ^ _H s
HfH+(H+1) H+ a+ (

Sa in R U a ,n RM =- (146)
afi u ^aH

-f U aHH ss H5H aHu u_ss ^ HN =- (147)3 Us aH

For power-aw velocity profiles Equation ( (148)

H+^c = -f.- (149)POaER-LAn VELOCITY PROFILE (s = s )For power-law velocity profiles Equation (16)H+1

2H 2H =2 (150)and for s = me H+1H = 2- m2 (151)H-1

and H+I

^2
dH m 2 - H(H-1) £nm (152)

(H-1)

Since
H-1

u 2
6 (153)

H-1

-- = m 2 (154)
U

33

IIII ln I I nnnn ~ rI ---- .7'7Z'_-



For power-law velocity profiles

H= (H- (H (155)

and for s = m6

= (H+i Hm (156)

d mH r 2 1- (H-l) [2 -(H21) £n m (157)

Therefore from Equations (146), (147), and (148)

M H(H+) 1 - m-H (158)£n m

N = (H-l) (+-H
n m +m (159)

(H-l)P (H-H (160)
m £n m

POWER-LAW VELOCITY PROFILE (s = e)

From Equations (150) and (19)

H+1

2H H 21H - (H-l) (H+) (161)

and

H+I
dH [ H-1 2 H H-1
dH H(H+l)j H-1 n H(H+l) - (162)

Also
H-1

us H-l12

U H(H+1)2 (163)

1 H-1H]-l
H= -- H(H+1) (164)T H 1

I '



M =

P =-

I H-1 H-1 H-1
=-I H(H+1) I H+1

n [( )]

H(H+1) - (H-i[) H-1 -H

In H(H+I 1)

(H-) I H- 1 -H

n [H(H+l)[.I-H
n "H(H +I)

H-1

H (H+1 )J n H(H+i1)

TWO-PARAMETER VELOCITY PROFILE (s = m6)

The objective is to obtain H[H,R]6 and H[H,R ].

shape parameter G defined as

Let us introduce

(169)
s/6 Uu- d I

G -

U-u d(

From appropriate definitions

H = () () - HG = (H+H)

Then for s = m6

H = (H+H)m - HG

and

dH

Then

(165)

(166)

(167)

(168)

- HG (170)

Ir a ..,, ~,,~,~,-, mnmn n II _ lnlnaln a I

(171)



Likewise let us introduce shape parameter 6 defined as

s/6

U-u0 

)

u.O(

From appropriate definitions

= (H-l) * + -2 HG = (H-1) -- + (R+H) 1 -2 HG

For s = m6

H = (H-1) + (H+H)m -2 HG

From the law of the wake, Equation (12)

A m(l-£n m) + B2 m - 2

G = I1
A +-B

+ B2

G is related to G through B2 in Equation (23).

An empirical fit for m = 0.3 (m' = 0.3 was used by Moses) gives

0.410G 0.5541 +0.3 G (176)

or from Equation (22)

GO.3 = 0.55410.3

1

+ 0.410 1 2
(H-l) U2 (177)

Unfortunately the condition s = 0 does not lend itself to this type of

analysis.

Then

0.5541 + 0.410H 1
H0.3 = 0.3(H+H) -H

(172)

(173)

(174)

(175)

II II I _ I I

(178)



Since m

f dI G= U 2 d(
0

consequently

= A2 m(n2 m-2 Zn mI+2) -2 A B2 m(kn m-1)

+ A B2 m
3 [(2-m) Zn m +-m - (179)

B2 m 1 - 2m + m +-m -2m +-m6)
2 5 7

For m = 0.3

I1 G0.3 = 1.7573 A2 + 1.2512 A B2 + 0.2571 B22 (180)

G is related to G through B2 by Equation (23). An empirical fit gives for

m = 0.3

0.3 2.04
- 0.686 + (181)

G 2G

or

0.3= 0.686 + 2.04 H (182)
G (H-1) pU 2

Then from Equation (174)

8 = 0.3 H -0.122 H -0.686 - 0. H 2 -2488 w (183)
0.3H-1U

From Equation (10) for m = s/6

S  - A n m + B2  1- w[m]) (184)

A linearized fit of Equation (23) yields

II 311 I 1331 I .. - 1 1 IIIII]I nr a~ll 3 11 r



B2 = 1.364 (G - 4.78)

Then for m = 0.3

0.3 S- 1.069 H1) + 2.232 p U-

Now from Equation (183)

0.3 aH 0.820H
-0.3 -0.122 - (H-1)aH rr

2 c

w (H-2) w -2.488
1 72 (H-2 p U2ypU L pU

(187)

-4.976 r T
-wU

p Uj

and from Equation (178)

H0.3 aH 0.410H
3H = 0.3 -0.2541 - 1
3H aH H- (188)V w _2 H-2 2 c 2

p U2 [- 1 2.3(Ho+l)

H0.3 0 820H2  
T

,n R0  (H-1) U2

_ T w 1/2
1l w

-6.07 -2.08 (HT 3

.3 (H +l)k 2.3H H +1

] (189)

Hn.3 0.410H 2 -4.17 3/2 x
£ an Re (H-1) ( U23pn .

L 1/2
S2 w
2.3 2

pU /2

cH2 +1
2.3HoYo H +1

00 o

(185)

(186)

Also

and

(190)



MOMENT OF MOMENTUM METHOD

If the equation of motion, Equation (78), is multiplied by y and

then integrated from y = 0 to y = 6, a moment of momentum equation is

formed. Unfortunately the resulting equation is awkward to deal with on

the basis of the two-parameter velocity profile in order to obtain a shape

parameter equation. However a convenient form results from a power-law

velocity profile which Tetervin and Lin 3 1 originally obtained

dH H(H+1)(H 2 -1) 0 dU H2 ) (H+) (H2-1)C (191)
dx 2 U dx U 2

where

C E2 ' 2 d(i) (192)
-pU

is the shear-stress integral.

From Equation (83)

H(H+1)(H -1)
M2 (193)

N = H H2 - 1  (194)

p =(H+1) (H 2-1) (195)
P 2 (195)

Then from Equation (86)

C = +2H 2A[H+(H+l) J](H-l) wC + + (196)e H +  (H+1) [GH+A H-1] 2  P U2

Nash and Hicks4 use

C =h 0.025 (N - i (197)
T,e H s

while Nash and Macdonald 3 2 suggest

-7 -:77-7. " 17" ' 1' " Z' 7~~-~rr I I



T

CT, e = (0 + 1.16) w2 (198)

p33

Also McDonald33 proposes

C = (0.93 B + 1.2) 2 (199)
pU

Values of CT for strong adverse pressure gradients are given in

Reference 12 as

(H-1
C k-(.lf+4)2 *0 (200)ToH+1

where

H [ 0.0378 Y52.9 log H -4.18 ' w
H- + 2- 1  2 (201)

Figure 7 compares the shear stress integrals of some of the various formu-

lations.

NONEQUILIBRIUM PRESSURE GRADIENTS

The use of equilibrium stress factors not only ensures agreement for

equilibrium pressure gradients but also for quasi-equilibrium conditions

where the G values do not remain constant but vary in accordance with the

equilibrium G-B relation. Relating equilibrium stress factors to H and R

provides a built-in lag which is characteristic of the response of the

shear-stress distribution to sudden changes in pressure gradients. Lag-

type equations have been proposed by Goldberg2 1 and Nash and Hicks 4 of type

dC
X (S,e - C (202)

constant a djusted to suit the experimental data.

where A is a constant adjusted to suit the experimental data.

I I
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Close to separation ordinary boundary layer conditions seem to fail.

There are three-dimensional cross flows, normal-stress effects and normal

pressure variations. This region merits a study of its own.

I
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