
webMethods API Gateway Administration

Version 10.11

October 2021

This document applies to webMethods API Gateway 10.11 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2016-2024 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: YAI-AG-1011-20240221

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Documentation...5
Document Conventions...6
Online Information and Support...6
Data Protection...7

1 Deployment..9
Concepts...10
Deployment Configurations...24

2 Operating API Gateway...95
Administering API Gateway through API Gateway User Interface...96
Starting and Stopping API Gateway...96
Data Management..98
Monitoring API Gateway..172
General Administration Configuration...222
Destination Configuration..323
Audit Logging...364
System Settings...370
Configuring External Accounts..384
Configuration Types and Properties..391

3 Security Configuration...397
Overview of Keystore and Truststore..398
Keystore and Truststore...398
Ports..405
Global IP Access Settings For Ports...427
SAML Issuer..433
Custom Assertions...437
Kerberos Settings..446
Master Password Management..448
OAuth, JWT, and OpenID Configuration...454
Securing API Gateway Communication using TLS..489
Troubleshooting Tips: Securing API Data Store (Elasticsearch)..528

4 Container-based Provisioning..533
Docker Configuration..534
Kubernetes Support...554

5 High Availability, Disaster Recovery, and Fault Tolerance...567
High Availability..568
High Availability and Disaster Recovery..572
High Availability and Fault Tolerance..580

webMethods API Gateway Administration 10.11 iii

6 Performance Tuning and Scaling...623
Hardware and Product Configurations..624
Changing the JVM Heap Size to Tune API Gateway Performance...638
Data Separation...639
Scaling..640

7 API Gateway Configuration with Command Central..647
Overview...648
Install API Gateway using Command Central...648
Manage API Data Store Configurations in Command Central...651
Manage API Gateway Product Configurations in Command Central...................................661
Manage Inter-component and Cluster configurations..670
Command Line to Manage API Data Store..677
Troubleshooting Tips: API Gateway Configuration with Command Central.......................679

iv webMethods API Gateway Administration 10.11

Table of Contents

About this Documentation

■ Document Conventions .. 6

■ Online Information and Support ... 6

■ Data Protection ... 7

webMethods API Gateway Administration 10.11 5

This documentation describes how you can install, and configure API Gateway and other API
Gateway components to effectivelymanageAPIs for services that youwant to expose to consumers,
whether inside your organization or outside to partners and third parties.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

6 webMethods API Gateway Administration 10.11

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/u/softwareag and discover additional Software AG resources.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

webMethods API Gateway Administration 10.11 7

https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com
https://github.com/softwareag/
https://hub.docker.com/u/softwareag
https://hub.docker.com/u/softwareag

8 webMethods API Gateway Administration 10.11

1 Deployment

■ Concepts .. 10

■ Deployment Configurations .. 24

webMethods API Gateway Administration 10.11 9

Concepts

This section provides an overview of the deployment options for API Gateway. Choose a
deployment option that best fits your business needs.

On-Premise Deployment Options

You can deploy API Gateway on-premise in the following ways:

Note:
Running API Gateway in containers is optimal as you can leverage container orchestration
platforms likeKubernetes to orchestrate your deployment, althoughdeployment on virtual and
physical machines are supported.

Cloud Deployment Options

You can deploy API Gateway on the cloud in two ways: either on the SaaS cloud or your private

cloud.

If you choose the SaaS cloud, Software AG hosts and maintains API Gateway, and manages
the infrastructure, which is also the recommended deployment option. Alternatively, you can
choose to deploy API Gateway on a private cloud, which is also fully supported.

If you choose to deploy API Gateway on a private cloud, you can run the application in
containers or on virtual machines. Running API Gateway in containers is favorable as the
containers can be orchestrated with container orchestration platforms like Kubernetes.

10 webMethods API Gateway Administration 10.11

1 Deployment

Security Considerations
Regardless of your deployment infrastructure, it is essential that you secure yourAPImanagement
platform. This section provides the guidelines to choose an API Gateway architecture based on
your security requirements.

On-premise Deployments

Typically, any on-premise deployment comprises two or more layers. The outer most layer,
generally called the Demilitarized Zone (DMZ) protects the inner layer called the trusted zone or
green zone against denial of service, SQL injection, and other malicious attacks. The trusted zone
hosts services. For such a deployment architecture whose major concern is threat protection, you
can implement the DMZ platform security using API Gateway Standard Edition.

DMZ platform security implemented using the API Gateway Standard Edition provides the
following capabilities:

Protects theAPIManagement platform frommalicious attacks such asDenial of Service (DoS).

Protects the APIs from common web vulnerabilities, such as SQL,or JSON injection attacks,
and so on.

Boosts the API security by restricting the attackers from sending malicious payloads. For
example, large payloads, nested convoluted data structures, and so on.

Scans the attachments that are part ofAPIs by integratingwith the enterprise anti-virus software
through a standard protocol (ICAP).

In addition to threat protection, if you require capabilities such as policy enforcement,
request-response transformation, mediation, conditional error processing, and so on, choose the
API Gateway Advanced Edition.

For more information about the two flavors of API Gateway, see “API Gateway Editions” on
page 12.

Note:

TheAPIGateway Standard Edition ismeant for threat protection only and not for deploying
APIs.
Web Application Firewall (WAF) provides general protection against threats whereas API
Gateway Standard Edition provides security designed to protect the deployed APIs. For
more information, see “API Gateway Standard Edition vs Web Application Firewall” on
page 12.

Cloud Deployments

Private cloud vendors follow cloud-native procedure such as Defense in Depth. Most vendors
offer guidelines, but it might vary across providers. They implement combination of security
measures such as networking filters, firewall rules, Web Application Firewall (WAF), and so on.
As a result, most of the threats are mitigated, eliminating the need for API Gateway Standard

webMethods API Gateway Administration 10.11 11

1 Deployment

Edition. However, you can add an additional layer of security by setting up an external port and
threat protection policies directly on API Gateway Advanced Edition.

API Gateway Editions
You can deploy API Gateway in two editions based on your license.

API Gateway: Standard Edition. This edition of API Gateway offers only API protection.

APIGateway: Advanced Edition. This edition of API Gateway offers both API protection and
mediation capabilities.

API Gateway: Advanced Edition key points:API Gateway: Standard Edition key points:

Applicable to all the deployments.Applicable mainly to on-premise
deployments.

Provides security, mediation and other policy
enforcements. For example, request-responseProtects theAPIGateway platform from the

malicious attacks. For example, Denial of transformation, conditional error processing,
and so on.Service (DoS), GlobalDoS, InjectionAttacks,

and so on.
Typically, this layer hosts all the APIs and
therefore, it is the main service virtualization
layer delivering the intended business value.

Typically, this layer is just a gate keeper and
no APIs can be deployed in the standard
edition server.

For more information about the capabilities available in the Standard and Advanced Editions of
API Gateway, see “API Gateway Standard and Advanced Editions Capability Matrix” on page 92

API Gateway Standard Edition vs Web Application Firewall

This section explains the need for API Gateway Standard Edition, in addition to other software
that already exist for the DMZ security such as Web Application Firewall (WAF). API Gateway
Standard Edition is required for the following reasons:

WAF serves a wider set of edge security concerns and its features vary across products.

12 webMethods API Gateway Administration 10.11

1 Deployment

APIGateway Standard Edition provides the necessary threat protection capabilities applicable
in the context of exposing APIs to the external world. There may be an overlap of the features
between the API Gateway and the WAF. However, API Gateway Standard Edition is not a
replacement for WAF.

If you already have a WAF arrangement in place, depending on the comprehensiveness of its
capabilities, you may decide not to use the API Gateway Standard Edition. In such a case, you
might need to punch a hole in the inner firewall to allow the API Gateway-specific traffic,
which is not optimal in comparison to the reverse invoke capability of the API Gateway
Standard Edition, which is considered more secure as you do not have to punch holes in the
inner firewall.

Alternatively, you can combine WAF and API Gateway Standard Edition to leverage the best
of both the worlds.

Reverse Invoke in API Gateway

This section explains what is reverse invoke and how it works in API Gateway.

What is Reverse Invoke?

The reverse invoke flow is as follows:

1. External clients send theAPI requests to theAPIGateway Standard Edition Server in theDMZ.

2. The API Gateway Standard Edition Server collects client information from each request and
evaluates the request against any rules that is defined. Those requests, which do not violate a
rule are passed to the API Gateway Advanced Edition server.

3. The API Gateway Advanced Edition server processes the requests and sends the responses to
the API Gateway Standard Edition Server.

4. The API Gateway Standard Edition server then forwards the responses back to the client.

webMethods API Gateway Administration 10.11 13

1 Deployment

How does Reverse Invoke work?

1. API Gateway Standard Edition server uses an external port to listen to the API requests from
external clients.

2. APIGateway StandardEdition servermaintains its connectionwith theAPIGatewayAdvanced
Edition server through a “registration port”. For security purposes, theAPIGatewayAdvanced
Edition server initiates the outbound connections to the registration port.

3. By limiting the connections to just those established by the API Gateway Advanced Edition
server, this arrangement makes it difficult for attackers to directly penetrate the internal
network, even if they subvert a system in the DMZ.

4. For maximum benefit, Software AG highly recommends that you configure the inner firewall
to deny all inbound connections.With this configuration, you isolate the servers on the corporate
network from the DMZ. This capability is themain advantage of using API Gateway Standard
Edition server over traditional third-party proxy servers.

Note:
The reverse invoke method is used in Paired Deployment. For more information on paired
deployment setup, see “Paired Deployment” on page 36

API Gateway Components
API Gateway consists of the following components:

14 webMethods API Gateway Administration 10.11

1 Deployment

The following table lists the purpose and characteristics of the API Gateway components:

CharacteristicsPurposeComponent

Policy Enforcement EngineIntegration
Server

Stateless engine

Two or more instances can operate as a
cluster

Supports vertical and horizontal scaling

It runs an embedded Apache Tomcat server
to host API Gateway console UI

Persistence layer for API
configurations and API analytics

Elasticsearch Stateful persistence

Externalized Elasticsearch is supported

Needs quorum (odd number of instances)
to operate in a cluster

Note:
Best practice is to separate the API
analytics in a dedicated cluster.

Supports horizontal scaling and data-
sharing

Dashboard for the API analyticsKibana Stateless engine

Externalized Kibana is supported

Two instances can operate in a cluster

webMethods API Gateway Administration 10.11 15

1 Deployment

CharacteristicsPurposeComponent

Scaling more than two is generally not
required

In-Memory Distributed CachingCluster
Coordinator

Stateful engine for cluster coordination and
service result caching

Two options:

Ignite

Terracotta Server Array (TSA)

Ignite is embedded and scales as you scale
the Integration Server.

TSA operates in an active-passive setup,
typically, two instances are sufficient. Scaling
more than two is not required and an
anti-pattern .

Note:
All the components can run in containers.

For more information on the supported versions of external Elasticsearch, Kibana, and Terracotta
ServerArray, see “APIGateway, Elasticsearch, Kibana, and TSACompatibilityMatrix” on page 93.

Deployment Models
The following sections explain the API Gateway deployment models based on its purpose. For
example, API Gateway is set up differently for development and production environments.

Development Environment

Single Node Deployment

A minimal deployment with a single API Gateway instance for development purposes.

API Gateway single node deployment consists of the following components:

16 webMethods API Gateway Administration 10.11

1 Deployment

Note:
Cluster coordinator is skipped as it is not required for single node deployment.

Single node deployment is possible on virtual machines or containers.

To deployAPIGateway on a virtualmachine, you have to install API Gatewaymanually using
Software AG installer.

To deployAPIGateway in a container, you have to downloaddocker images from theContainer
Registry or build your own images. Formore details, see “Docker Configuration” on page 534.

However, it is easy to run an instance in a container in comparison to a virtual machine.

For more information about how to set up an API Gateway instance, see the section "Install API
Gateway" in the webMethods API Gateway Quick Start .

Production Environment

High Availability, Disaster Recovery, and Fault Tolerance

Production environments require increased uptime and business continuity, which depend on
High Availability, Disaster Recovery, and Fault Tolerance capabilities explained in the following
diagram.

webMethods API Gateway Administration 10.11 17

1 Deployment

Note:
Unlike high availability and fault tolerance, disaster recovery deals with catastrophic
consequences that render entire IT infrastructures unavailable rather than single component
failures. Since disaster recovery involves data and technology, its main objective is to recover
data as well as get infrastructure components up and running within the shortest time frame
after an unpredicted event.

Deployment Recommendations

Software AG recommends the following cluster deployment options for the production and test
environments:

Disaster Recovery vs Fault Tolerance

BothHighAvailability andDisasterRecovery (HADR) andHighAvailability andFault Tolerance
(HAFT) architectures ensure that the application runswithout any systemdegradation. However,
the unique attributes that differentiate them are cost, design, redundancy level, and behavior on
component faults or failures.

18 webMethods API Gateway Administration 10.11

1 Deployment

Cluster Deployment Options

To achieve high availability, you can cluster your API Gateway. You can cluster API Gateway
nodes using one of the following cluster coordinators:

Apache Ignite operates as an embedded server and scales seamlessly with each node of the
API Gateway runtime.

Terracotta Server Array (TSA) operates in an active-passive setup. Typically, two instances
are sufficient.

The following image depicts the most popular choices in cluster deployment:

For more information about:

High Availability Cluster, see “Cluster Deployment” on page 24.

High Availability + Disaster Recovery, see “High Availability and Disaster Recovery ” on
page 572.

webMethods API Gateway Administration 10.11 19

1 Deployment

High Availability + Fault Tolerance, see “High Availability and Fault Tolerance” on page 580.

External Dependencies
By default,API Gateway is embedded with the third-party software such as Elasticsearch and
Kibana. For production environments,Software AG strongly recommends you to use external
Elasticsearch and Kibana. The key points are as follows:

You can scale each of the component as per your need (as opposed to scaling the embedded
bundle).

You can separate the analytics data from the API configuration data as per the recommended
best practice.

You can improve the efficiency with the data backup or restore procedures.

It also caters to have different Recovery Time Objective (RTO) and Recovery Point Objective
(RPO) for each of the components. And so it helps in restoring API configuration data, which
is much more important and tend to have aggressive RTO when compared to the analytics.

Check the “ compatibility matrix” on page 93 for the supported version(s) of the software.

For details on how to connect to external Elasticsearch and external Kibana, see “ Connecting to
an External Elasticsearch” on page 55 and “Connecting to an External Kibana” on page 63 sections
respectively.

Reference Architectures
The following sections explain the various recommended API Gateway deployment architecture
with respect to high availability.

Recommended High Availability Architecture

20 webMethods API Gateway Administration 10.11

1 Deployment

Note:
Alternatively, you can also use the Terracotta Server Array cluster coordinator in active-passive
quorum.

High Availability and Disaster Recovery (HADR) solution

The architecture of HADR is as follows:

The keypoints about HADR solution are as follows:

Use this setup, if the Recovery Time Objective (RTO) ranges from 15 minutes to an hour or
more.

Each data center or the cloud region hosts an independent cluster of its own.

webMethods API Gateway Administration 10.11 21

1 Deployment

Primary data center serves the traffic and is exposed to the client and you must turn on the
secondary data center only when the primary data center goes down due to a disaster.

Backup snapshots are taken on a periodic basis and stored in a suitable externalized storage
(For example, AWS S3 or Azure Blobs).

For Cold standby mode. Secondary data center remains switched off until failover
operation. Hence, this approach saves cost.

ForWarm standby mode. API Data Store is operational in the secondary data center. As
API Data Store is operational and data is restored from the latest backup snapshots in
secondary data center, this approach reduces RTO, but the cost is higher compared to Cold
standby mode.

After restoring the snapshot, all the API Gateway nodes must be started.

This architecture supports failback to primary data center.

For more details, see “High Availability and Disaster Recovery ” on page 572.

High Availability and Fault Tolerance (HAFT) solution

The architecture of HAFT is as follows:

The keypoints about HAFT solution are as follows:

Use this setup, if the RTO is highly demanding, which ranges from few seconds or minutes.

Each data center or the cloud region hosts an independent or isolated cluster of its own.

HAFT solution can be set up usingHot standby mode orActive-Active mode. The following
table explains the difference between the modes.

ForHot standbymode. You can have only two data centers. Out ofwhich, only the primary
data center serves the client request. Hence, this approach is cost effective compared to
Active-Active mode.

22 webMethods API Gateway Administration 10.11

1 Deployment

ForActive-Active mode. You can have N (Minimum 3) number of data centers and all the
data centers serve the client request. Hence, the cost is more compared to Hot standby
mode.

API assets should be synchronized across the data center through CI-CD deployments.

Cross-DC federation support offered by API Gateway is limited to API consumers and auth
tokens.

API transactions are local to the cluster where the traffic is served and not aggregated. For
aggregated transactions, use a centralized API Data Store.

For more details, see “High Availability and Fault Tolerance” on page 580.

API Analytics
You can view API analytics using one of the following dashboards:

API Gateway Dashboard.

Custom Dashboard. You can implement this outside the Software AG stack. (For example,
using your own setup of Elasticsearch and Kibana).

The data storage location determines the dashboard . If you store analytics data in API Data store,
you can view the analytics using the default embedded dashboards. By default, API Gateway is
shipped with a rich set of purpose-built dashboards. In addition, API Gateway provides custom
dashboard capabilities. Further requirements can be addressed using the custom dashboard
capability.

Alternatively, if you prefer to have full control of where the data is stored and how to view
dashboard, Software AG recommends you to configure an external Elasticsearch destination and
build your own custom dashboards. In such cases, you cannot view the API analytics from the
API Gateway UI and it is very important to set up the data housekeeping procedure. For details,
see “ Data Housekeeping” on page 101.

Containerization
APIGateway supports containerization. Formore information about container-based provisioning,
see “Docker Configuration” on page 534

Product Configurations
For more information about hardware and product configuration guidelines, see “Hardware and
Product Configurations” on page 624.

API Gateway can be configured on startup through a set of external configuration files. For more
information, see “Externalizing Configurations ” on page 65

The following sections provide deployment configurations for API Gateway.

webMethods API Gateway Administration 10.11 23

1 Deployment

Deployment Configurations

The following sections provide deployment configurations for API Gateway.

Cluster Deployment
This section provides information about nodes and clusters in API Gateway and how to configure
an API Gateway cluster after you have installed the product. For installation procedures for the
product, see Installing webMethods Products On Premises.

API Gateway supports clustering to achieve horizontal scalability and reliability.

Each API Gateway cluster node holds all the API Gateway components including API Gateway
user interface, the API Gateway package running in webMethods Integration Server, and an API
Data Store instance for storing assets. The API Data Store is either embedded in the API Gateway
instance or the API Gateway instances store there assets in a separate or external Elasticsearch
cluster. A load balancer distributes the incoming requests to the cluster nodes. You can synchronize
the nodes either through Apache Ignite or Terracotta Server Array.

Note:
API Gateway does not require an external RDBMS for clustering.

As each node of an API Gateway cluster offers the same functionality, nodes can be added or
removed from an existing cluster. The synchronization of any new node happens automatically.
The synchronization includes configuration items, and runtime assets like APIs, policies, and
applications. The synchronized runtime assets become active automatically.

Cluster Deployment Options

You can cluster API Gateway nodes using one of the following cluster coordinators:

Apache Ignite for a peer-to-peer clustered setup.

Here, the API Gateway servers are connected to each other, and synchronized through
distributed caches.

Terracotta Server Array (TSA).

Here, the API Gateway servers do not contact each other, rather each API Gateway server
connects to the TSA, which has its own runtime, typically deployed on its own machine. The
TSA manages the distributed caches that the API Gateway servers use to synchronize.

In the options mentioned, an API Gateway cluster can be deployed as a traditional on-premise
installation on real or virtual machines, as Docker containers, or in Kubernetes clusters.

Peer-to-peer clustering using Apache Ignite

24 webMethods API Gateway Administration 10.11

1 Deployment

This setup depicts a peer to peer clustered environment using Apache Ignite and API Data Store
clustering that is defined across the embedded API Data Store instances. In this setup, Apache
Ignite runs embedded inside each API Gateway instance and is used for distributed caching.

Clustered environment using TSA

This setup depicts a clustered environment using TSA andAPIData Store (Elasticsearch) clustering
that is defined across the embedded API Data Store instances. TSA is used for distributed caching
in this setup.

API Gateway Cluster Configuration

You can enable API Gateway clustering through the API Gateway user interface.

webMethods API Gateway Administration 10.11 25

1 Deployment

Alternatively, you can set up cluster configurations through externalized configuration files. For
details, see “ Using the Externalized Configuration Files” on page 65.

Note:
You cannot configure an API Gateway cluster across multiple data centers, because API Data
Store (Elasticsearch) cannot be clustered across multiple data centers.

Enabling Clustering for API Gateway through the User Interface

Keep the following points in mind when enabling clustering for API Gateway.

You must have API Gateway administrator privileges to enable clustering.

For a cluster configuration, the embedded API Data Store instances should also be clustered
using standard Elasticsearch clustering properties, by modifying the
SAG_root/InternalDataStore/config/elasticsearch.yml file on each instance.

If you are using Terracotta Server Array for clustering, ensure the following:

To be in the same cluster, API Gateways must use the same Terracotta Server Array URLs
and the same cluster name.

An enterprise can have more than one cluster. To isolate multiple clusters on the same
network, each cluster must have a different cluster name or different Terracotta Server
Array or both.

Before you enable clustering using Terracotta, perform the following steps to ensure that
Terracotta Server Array is ready for use by the API Gateways in the cluster.

Install the Terracotta Server Array if you have not done so already. For installation
instructions, see Installing Software AG Products.

Note:
Before you install your Terracotta Server Array, you have to decide how many
Terracotta Servers will make up the array and whether or not you want to mirror
those servers. To guide your decision, review the sections on high availability and
architecture in the product documentation for the Terracotta Server Array or consult
your Software AG representative.

Configure the tc-config.xml file on the Terracotta Server Array. For details on installing
and changing a Terracotta license, see webMethods Integration Server Administrator’s
Guide.

To enable clustering

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Clustering.

26 webMethods API Gateway Administration 10.11

1 Deployment

3. Click the Enabled toggle button to state to enable the cluster.

4. Provide the following information:

DescriptionField

Specifies the cluster type.Select cluster type

You can select one of the following:

None. Specifies a non-clustered set up.

Ignite. Specifies you are using Apache Ignite for the
clustering set up.

Terracotta. Specifies you are using Terracotta Server
Array for the clustering set up.

Specifies the name of the cluster to which API Gateway
belongs.

Cluster name

Keep the following inmindwhen specifying the cluster name:

The cluster name cannot include any periods ".". API
Gateway converts any periods in the name to underscores
when you save the cluster configuration.

The cluster name cannot exceed 32 characters. If it does,
API Gateway uses the first 20 characters of the supplied
name and then a hash for the remaining characters.

Specifies the number ofminutes an inactive session is retained
in the clustered session store.

Session time out (in minutes)

The default is 60 minutes.

Set the clustered session timeout value to be longer than the
session timeout value, which governs how long a server keeps
session information in its memory. (API Gateway displays
the session timeout on theAdministration >System settings
> Configuration page.)

Specifies how API Gateway responds when an error at start
up prevents API Gateway from joining the cluster. Select one
of the following:

Action on clustering failure

Start as stand-alone API Gateway. API Gateway starts
as a stand-alone, unclusteredAPIGateway if it encounters
any errors that prevent it from joining the cluster at start
up.APIGateway continues to receive requests on inbound
ports and serve requests. This is the default setting.

webMethods API Gateway Administration 10.11 27

1 Deployment

DescriptionField

Shut down API Gateway. API Gateway shuts down if it
encounters any errors that prevent it from joining the
cluster at start up.

Enter quiesce mode on stand-alone. APIGateway starts
as a stand-alone, unclustered API Gateway in quiesce
mode if it encounters any errors that prevent it from
joining the cluster at start up. When API Gateway is in
quiesce mode, only the diagnostic port and quiesce port
are enabled.

This field is available and required when you select Ignite as the
cluster type.

Discovery port

Specifies the port that is used to discover the members that
participate in the cluster. Each clustermember opens this port
in order to be discoverable. Each API Gateway server tries to
contact other servers through this port.

When you specify the port number, make sure the port
number ranges between 1024 to 65535.

This field is available and required when you select Ignite as the
cluster type.

Communication port

Specifies the port that is used to communicate between
distributed caches. Each server opens this port to be able to
receive information. Each server distributes cache entries
through this port to other cluster members.

When you specify the port number, make sure the port
number ranges between 1024 to 65535.

This field is available and required when you select Ignite as the
cluster type.

Port range

Specifies the number of ports to include in the range available
to multiple cluster members on the same host. The default
value is 0.

ThePort range parameter applies to both theDiscovery port
and the Communication port.

Generally, each cluster member is deployed on its own host.
However, for trial or demopurposes youmight havemultiple
cluster members on the same host. In such a situation, each
server requires its own discovery and communication port,
and must know the other servers' ports. You can use the Port
range parameter to configure this scenario. This parameter
defines the size of a port range. For example, if you configure

28 webMethods API Gateway Administration 10.11

1 Deployment

DescriptionField

the port with port number 10100 and set Port range as 5, the
resulting port range that is available is 10100 to 10105. When
a server starts, it picks an unused port from the range 10100
to 10105, and uses the port to communicate with the other
servers. Another server on start up can use an unused port
from the same port range to communicate with the other
servers. This allows all servers to use the same cluster
configuration.

This field is available and required when you select Ignite as the
cluster type.

Provisioning target

Specifies whether you want to use host name or Kubernetes
service as the provisioning target.

Select one of the following as provisioning targets and provide
the required details:

Hostnames. Provide the name of the participating host
in the cluster and click .

You can add multiple host names by clicking .

Kubernetes. Provide the following details:

Servicename. Provide the name of the service that
exposes the API Gateway deployment.

Namespace. Provide the name of the Kubernetes
namespacewithinwhich theAPIGateway is deployed.

This field is available and required when you select Terracotta as
the cluster type.

Terracotta server array URLs

Provide the URL (host:port) of the TSA to use with the specific
API Gateway's cluster and click .

You can add multiple TSA URLs by clicking .

5. Click Save.

6. Restart API Gateway.

7. Log on as administrator and navigate to Administration > General > Clustering and verify
that all nodes in the cluster are displayed under Cluster hosts.

Note:

webMethods API Gateway Administration 10.11 29

1 Deployment

You must enable clustering on all nodes in a cluster for the nodes to be included in the
cluster.

Terracotta Server Array Configuration

API Gateway requires a Terracotta Server array installation if you select Terracotta server array
based clustering. For more information, seewebMethods Integration Server Clustering Guide and the
Terracotta documentation located at http://www.terracotta.org/

A sample Terracotta configuration file is as follows:
<?xml version="1.0" encoding="UTF-8" ?>

<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tc-properties>
<property name="l2.nha.dirtydb.autoDelete" value="true"/>
<property name="l2.nha.dirtydb.rolling" value="2"/>
<property name="logging.maxLogFileSize" value="512"/>
<property name="logging.maxBackups" value="20"/>
<property name="l2.nha.tcgroupcomm.reconnect.timeout" value="10000"/>
<property name="l2.l1reconnect.timeout.millis" value="10000"/>

</tc-properties>

<servers>
<mirror-group group-name="group1">

<server host="${host}" name="server1" bind="0.0.0.0">

<data>/opt/softwareag/tsa/server-data</data>
<logs>/opt/softwareag/tsa/server-logs</logs>
<index>/opt/softwareag/tsa/server-index</index>
<authentication/>

<dataStorage size="2g">
<offheap size="2g"/>

</dataStorage>

</server>

<server host="${host}" name="server2" bind="0.0.0.0">

<data>/opt/softwareag/tsa/server-data</data>
<logs>/opt/softwareag/tsa/server-logs</logs>
<index>/opt/softwareag/tsa/server-index</index>
<authentication/>
<dataStorage size="2g">

<offheap size="2g"/>
</dataStorage>

</server>

</mirror-group>

<garbage-collection>
<enabled>true</enabled>
<verbose>false</verbose>
<interval>3600</interval>

</garbage-collection>

30 webMethods API Gateway Administration 10.11

1 Deployment

<restartable enabled="false"/>
<failover-priority>AVAILABILITY</failover-priority>

<client-reconnect-window>360</client-reconnect-window>

</servers>

<clients>
<logs>logs-%i</logs>

</clients>

</tc:tc-config>

API Data Store Cluster Configuration

When running embedded in API Gateway, the API Data store instances have to be clustered by
modifying the SAG_root/InternalDataStore/config/elasticsearch.yml filewithin eachAPIGateway
instance. You must provide the cluster configurations in the elasticsearch.yml file in the
SAG_root/InternalDataStore/config/ folder before starting the Elasticsearch for the very first time.
When you start Elasticsearch, the node auto-bootstraps itself into a new cluster. You cannot change
the configuration after bootstrap and thus, Elasticsearch does notmerge separate clusters together
after they have formed, even if you subsequently try and configure all the nodes into a single
cluster. For more information, see
https://www.elastic.co/guide/en/elasticsearch/reference/7.13/index.html.

Configuring Elasticsearch Cluster

Before you start, ensure that the Elasticsearch is not started after API Gateway installation.

To configure an Elasticsearch cluster

1. If you have started API Gateway before setting up the Elasticsearch cluster configuration,
perform the following steps before proceeding with the configuration:

Log off and exit from API Gateway.

Delete the nodes folder from the Installation Location\InternalDataStore\data folder.

Make the necessary cluster configuration and start API Gateway.

Start Elasticsearch.

A node is created in the Elasticsearch cluster.

2. Open elasticsearch.yml from SAG_root/InternalDataStore/config/elasticsearch.yml in
any node that you want to cluster.

The following configuration is a sample of how the configuration appears initially.
cluster.name:"SAG_EventDataStore"
node.name: node1
path.logs: SAG_root\InternalDataStore/logs

webMethods API Gateway Administration 10.11 31

1 Deployment

network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node1:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']
cluster.initial_master_nodes:["node1"]

discovery.seed_hosts. You provide a list of nodes to the Elasticsearch that it should try to
contact. Once the node contacts a member of the unicast list, it receives a full cluster state that
lists all nodes in the cluster. It then proceeds to contact the master and join the cluster.

path.repo. This is a mandatory configuration for performing backup and restore. This is the
locationwhere the Elasticsearchwrites the snapshots to.Hence, it is important to have a location
that is accessible to all the nodes. The location must be network file system, S3 or Azure in the
clustered setup.

cluster.initial_master_nodes. This parameter must be set so that when you start a cluster
for the first time cluster bootstrapping is performed. The parameter must contain the names
of the master-eligible nodes in the initial cluster and must be defined on every master-eligible
node in the cluster. This setting helps prevent split-brain, the existence of two masters in a
single cluster.

Elasticsearch provides an option to configure the locations where you would want to store
your data and logs. Ensure that you specify the locations that are accessible and have enough
disk space. It is also important to monitor and ensure basic house keeping of the data location
by planning an effective data retention strategy. You can change the defaults using the following
configuration:
path.data: /var/lib/elasticsearch
path.logs: <IS_Installed_Location>/InternalDataStore/logs
// These values can be changed

Elasticsearch, by default, binds to loop back address and hence it is important to change it for
a production deployment. For more details on this configuration, see https://www.elastic.co/
guide/en/elasticsearch/reference/7.13/modules-network.html

3. Provide the name of the cluster in the cluster.name property.

Nodes with same cluster names form a cluster. That is, if there are three nodes in the cluster,
the value in the cluster.name property must be same across all three nodes. In other words,
Elasticsearch forms a cluster with nodes that have the same cluster.name.

For example,
cluster.name:"SAG_EventDataStore"

4. Provide the names of all participating nodes, as seen in the node.name property, and the ports
they use, as seen in the http.port property, in the discovery.seed_hosts property in the
following format:

host_name:port_name

If there are three nodes in the cluster, the value in the discovery.seed_hosts property is as
in the following example:

32 webMethods API Gateway Administration 10.11

1 Deployment

https://www.elastic.co/guide/en/elasticsearch/reference/7.13/modules-network.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.13/modules-network.html

discovery.seed_hosts: ["node1:9340","node2:9340","node3":"9340"]

The names of all nodes appear in the cluster.initial_master_nodes property. The node name
displayed in this property is same as seen in the node.name property.

Sample configuration of a node is as follows:
cluster.name:"SAG_EventDataStore"
node.name: node1
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["hostname1:9340","hostname2:9340","hostname3:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']
cluster.initial_master_nodes:["node1","node2","node3"]

The specified nodes are clustered.

Adding New Nodes to an Elasticsearch Cluster

This section explains how to add a new node to an Elasticsearch cluster. You can add nodes to a
cluster by configuring new nodes to find an existing cluster and start them up.

For example, consider that a new node, node 4, is added to a cluster that already has three nodes
in it namely, node1, node2, and node3.

To add new node to a cluster

1. Open elasticsearch.yml located at SAG_root/InternalDataStore/config, where the newnode
is being added.

The following configuration is a sample of how the configuration appears initially.
cluster.name:"SAG_EventDataStore"
node.name: node4
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node4:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']
cluster.initial_master_nodes:["node4"]

2. Provide the name of the node, as seen in the node.name property, and port number used by
the node, as seen in the http.port property, in the discovery.seed_hosts property in the
following format:

host_name:port_name

For example
node4:9340

Sample configuration after providing the new node details:

webMethods API Gateway Administration 10.11 33

1 Deployment

cluster.name:"SAG_EventDataStore"
cluster.initial_master_nodes:["node1","node2","node3"]
node.name: node4
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node1:9340","node2:9340","node3":"9340","node4:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']

3. Save the configuration. The new node is added to the cluster.

Note:
When you restart an Elasticsearch cluster, you must restart the master node first.

If you want to remove a node from a cluster do the following:

1. Open the elasticsearch.yml file located at SAG_root/InternalDataStore/config/.

2. Remove the node listed in the format host_name:port_name in the discovery.seed_hosts
property.

3. Save the elasticsearch.yml file and restart the Elasticsearch cluster. The specified node is now
removed from the cluster.

Load Balancer Configuration

You can use a custom load balancer for an API Gateway cluster. Here you use the load balancer
nginx.

On a Linux machine, the load balancer configuration file /etc/nginx/nginx.conf is as follows:
user nginx;
worker_processes 1;
error_log /var/log/nginx/error.log debug;
pid /var/run/nginx.pid;

events {
worker_connections 1024;

}

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;

log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

sendfile on;
#tcp_nopush on;
keepalive_timeout 65;
gzip on;

34 webMethods API Gateway Administration 10.11

1 Deployment

upstream apigateway {
server localhost:5555;
server localhost:5556;
server localhost:5557;

}

server {
listen 8000;
location / {

proxy_pass http://apigateway;
}

}
}

Use sudo nginx -s reload or sudo nginx -s start to reload or start nginx. In a test environment,
the command nginx-debug is used for greater debugging. The load needs to be exposed through
the firewall that is protecting the host the firewall is running on. Load balancer should be configured
to ensure sticky UI sessions.

Ports Configuration

By default, API Gateway does provide synchronization of the port configuration across API
Gateway cluster nodes. If you do notwant the ports to be synchronized acrossAPIGateway cluster
nodes, set the portClusteringEnabled parameter available under Username > Administration >
General > Extended settings in API Gateway to false.

Note:
When this parameter is set to true, all the existing port configurations except the diagnostic
port (9999) and the primary port (5555) are removed.

Synchronization of ports configuration does not cover temporary disconnects of a node, therefore,
to get a node synchronized, you must restart it. Also, if you do not remove the port configuration,
the port can be re-synchronized byperforming another update on the same configuration. Therefore,
to activate the ports synchronization, do the following:

1. Set the portClusteringEnabled parameter to true.

2. Restart all the cluster nodes.

Configuring Multiple Instances of API Gateway in a Single Installation

The instance creation script can be used to create another instance of API Gateway in the same
installation. While creating another instance you can choose your preferred HTTP and HTTPS
port for the API Gateway web application using web.http.port and web.https.port respectively
and the back-end REST service endpoint port using primary.port option.

To create a new instance, run the following command:
is_instance.sh create -Dprimary.port=5656 -Dinstance.name=APIGateway
-Dweb.http.port=7474 -Dweb.https.port=7575 -Dpackage.list=WmAPIGateway

webMethods API Gateway Administration 10.11 35

1 Deployment

Paired Deployment
You can configure paired deployment using a reverse invoke setup.

Reverse Invoke Deployment for Paired Gateway Setup

Reverse invoke deployment allows you to securely expose your API end points without exposing
the backend APIs or services. You can configure reverse invoke by initiating a connection from
the backend servers of the API Gateway present in the demilitarized zone (DMZ).

In a normal configuration, your API Gateway accepts requests directly from the clients in DMZ
zone which can cause network security issues. With reverse invoke setup, an additional API
Gateway is used to enhance security. The additional API Gateway is placed in the insecure DMZ
and the actual API Gateway that interacts with the native services, resides in the more secure
green zone.

In a reverse invoke deployment scenario, the external clients send requests to the DMZ API
Gateway. These requests are received by the external port of theDMZAPIGateway and forwarded
to the registration port. The green zone API Gateway interacts with the registration port and
receives the requests, processes the requests through the native service and sends back the responses
to the registration port of the DMZAPIGateway. The responses are then forwarded to the external
port of DMZ API Gateway and from there to the external clients.

Note:

If a request ismade to the external port and if theAPI is not available, the request is delegated
to the registration port. The listener port configured on the green zone API Gateway listens
to the registration port and picks up this request (reverse invoke), processes it, and then
sends back the response to the DMZ API Gateway.
If a request is made to the external port and if the API exists locally, the DMZAPI Gateway
processes the request.
The registration port and the external port operate independently. If you define the
registration port with the HTTP protocol, you can still configure the external port with the
HTTPS protocol.

For more information on ports, see “Ports” on page 405 .

Configuring Reverse Invoke Setup

In this scenario, you can configure the threat protection rules in API Gateway server (Standard
Edition) located in the DMZ. In the API Gateway instance located in the green zone, you can
configure the authentication, authorization, and mediation rules prior to routing the requests to
the native API.

Note:
For a HA setup in API Gateway Standard Edition in DMZ, two nodes are adequate, and
Software AG recommends not to cluster the API Gateway Standard Edition. Hence, policies,
threat protection rules and configurations must be created or deployed to individual nodes to
keep the nodes synchronized.

36 webMethods API Gateway Administration 10.11

1 Deployment

The following figure describes how reverse invoke works. The client requests are sent to the API
Gateway instance in DMZ. These requests are present on the registration port. The green zone
API Gateway listens to these requests through the listener port, processes the request through the
native service application and responds back to the API Gateway instance in DMZ. The API
Gateway instance in DMZ responds to the external clients.

Important:
A connection between API Gateway Server in DMZ and the API Gateway Server in Green zone
is available exceptwhen a request is beingmade to theAPIGateway in green zone or a response
is being returned from the API Gateway in green zone. In other words, DMZ API Gateway
connection utilization is I/O bound. Therefore, if you expect large, simultaneous transactions,
increase the number of registered connections accordingly.

To configure reverse invoke

1. Configure external and registration ports on API Gateway in DMZ.

a. Log on to API Gateway as an Administrator user.

b. Expand the menu options icon, in the title bar, and select Administration.

webMethods API Gateway Administration 10.11 37

1 Deployment

c. Navigate to Security > Ports.

d. Click Add ports.

e. Select API Gateway external option from the Type drop-down menu.

f. Click Add.

g. Provide the following information in the API Gateway external listener configuration
to configure the External port.

External port. Specifies the port number you want to use for the external port.

Use a number that is not already in use. This is the port that clients connect to through
your outer firewall.

Alias. Specifies an alias for the port.

An alias must be between 1 and 255 characters in length and include one or more of
the following: letters (a -z, A-Z), numbers (0-9), underscore (_), period (.), and hyphen
(-).

Description (optional). A description of the port.

Protocol. Specifies the protocol to use for this port (HTTP or HTTPS).

If you select HTTPS, additional security and credential boxes appear for which you
have to provide the required values.

Bind address (optional). Specifies the IP address to which to bind this port.

Specify a bind address if your machine has multiple IP addresses and you want the
port to use this specific address. If you do not specify a bind address, API Gateway
picks one for you.

Backlog. Specifies the number of requests that can remain in the queue for an enabled
port before API Gateway begins rejecting requests.

The default is 200. The maximum value is 65535.

Keep alive timeout. Specifieswhen to close the connection if the server has not received
a request from the client within this timeout value (in milliseconds) or when to close
the connection if the client has explicitly placed a close request with the server.

The default value is 20000ms.

Note:
For more information on ports, see “Ports” on page 405.

h. If you want to configure m-TLS, select HTTPS in the Protocol field under API Gateway
external listener configuration and select one of the following options in the Client
authentication field, in the in Security configuration section.

38 webMethods API Gateway Administration 10.11

1 Deployment

Request client certificate. This option requests for a certificate from the client. However,
even if the client does not provide a valid certificate, the connection is established.

Require client certificate. This option requests for a certificate from the client. If the
client does not provide a valid certificate, the connection is not established. If you select
this option, you must also configure the following fields in the Listener specific
credentials section.

Keystore alias. Select a Keystore.

Key alias(signing). Select a Key alias.

Truststore alias. Select Truststore.

i. Provide the required information to configure the registration port, in the API Gateway
registration listener configuration section.

The important fields to be configured areRegistration port,Alias, andProtocol. Formore
information on ports, see “Ports” on page 405.

j. Configure the Keystore alias, Key alias, and Truststore alias fields. in the Listener
specific credentials section.

2. Click Add.

3. Click the icon in the Enabled column next to the external and registration ports to enable
them.

The port is enabled and a success message appears.

4. Execute the following steps in the green zone API Gateway.

a. Create an API Gateway internal port.

b. Select HTTPS in the Protocol field.

c. In the API Gateway external server section, type the hostname of the DMZ API Gateway
in the Host field.

d. Type the port number of the API Gateway registration port of DMZ API Gateway in the
Port field.

e. In the Registration credentials section, provide the following information.

Keystore alias. Select a Keystore.

Key alias(signing). Select a Key alias.

Truststore alias. Select Truststore.

webMethods API Gateway Administration 10.11 39

1 Deployment

5. Configure the internal port of the API Gateway in green zone with the registration port of API
Gateway in DMZ.

6. Configure load balancer URL in the green zoneAPI Gateway.

a. Expand the menu options icon, in the title bar, and select Administration.

b. Navigate to General > Load balancer.

Provide the configured external server host and port or an external load balancer URL.
The API endpoints expose this port for external consumers. If you have a Load Balancer,
then the requests from the Load Balancer must be directed to API Gateway's external port.

For more information on load balancers, see “Clusters and Load Balancers” on page 222.

7. Create an API in the internal API Gateway Server with routing protocol and endpoint as the
native API. For more information on how to create APIs, see webMethods API Gateway User's
Guide.

8. You can now access the API by using the URL in the format
http://externalserver:externalport/gateway/api-name/resource-path.

Paired Deployment with Integration Server in Green Zone

This is a another scenario of paired deployment using reverse invoke in which you use an
integration server in green zone.

In this scenario, you can configure threat protection, authentication, authorization, andmediation
rules in the API Gateway instance present in DMZ.

The following image describes theworkingmethod. The client requests are sent to theAPIGateway
in DMZ. These requests are present on the registration port. The Integration Server in green zone
listens to the registration port through the listener port, processes the requests, and responds back
to the API Gateway instance in DMZ. The API Gateway instance in DMZ responds to the external
clients.

40 webMethods API Gateway Administration 10.11

1 Deployment

To configure reverse invoke

1. Configure external and registration ports on API Gateway in DMZ.

a. Log on to API Gateway as an Administrator user.

b. Expand the menu options icon, in the title bar, and select Administration.

c. Navigate to Security > Ports.

d. Click Add ports.

e. Select API Gateway external option from the Type drop-down menu.

f. Click Add.

g. Provide the following information in the API Gateway external listener configuration
to configure the External port.

External port. Specifies the port number you want to use for the external port.

Use a number that is not already in use. This is the port that clients connect to through
your outer firewall.

Alias. Specifies an alias for the port.

webMethods API Gateway Administration 10.11 41

1 Deployment

An alias must be between 1 and 255 characters in length and include one or more of
the following: letters (a -z, A-Z), numbers (0-9), underscore (_), period (.), and hyphen
(-).

Description (optional). A description of the port.

Protocol. Specifies the protocol to use for this port (HTTP or HTTPS).

If you select HTTPS, additional security and credential boxes appear for which you
have to provide the required values.

Bind address (optional). Specifies the IP address to which to bind this port.

Specify a bind address if your machine has multiple IP addresses and you want the
port to use this specific address. If you do not specify a bind address, API Gateway
picks one for you.

Backlog. Specifies the number of requests that can remain in the queue for an enabled
port before API Gateway begins rejecting requests.

The default is 200. The maximum value is 65535.

Keep alive timeout. Specifieswhen to close the connection if the server has not received
a request from the client within this timeout value (in milliseconds) or when to close
the connection if the client has explicitly placed a close request with the server.

The default value is 20000ms.

Note:
For more information on ports, see “Ports” on page 405.

h. If you want to configure m-TLS, select HTTPS in the Protocol field under API Gateway
external listener configuration and select one of the following options in the Client
authentication field, in the in Security configuration section.

Request client certificate. This option requests for a certificate from the client. However,
even if the client does not provide a valid certificate, the connection is established.

Require client certificate. This option requests for a certificate from the client. If the
client does not provide a valid certificate, the connection is not established. If you select
this option, you must also configure the following fields in the Listener specific
credentials section.

Keystore alias. Select a Keystore.

Key alias(signing). Select a Key alias.

Truststore alias. Select Truststore.

i. Provide the required information to configure the registration port, in the API Gateway
registration listener configuration section.

42 webMethods API Gateway Administration 10.11

1 Deployment

The important fields to be configured areRegistration port,Alias, andProtocol. Formore
information on ports, see “Ports” on page 405.

j. Configure the Keystore alias, Key alias, and Truststore alias fields. in the Listener
specific credentials section.

2. Click Add.

3. Click the icon in the Enabled column next to the external and registration ports to enable
them.

The port is enabled and a success message appears.

4. Configure Load Balancer URL in API Gateway.

a. Expand the menu options icon, in the title bar, and select Administration.

b. Navigate to General > Load Balancer.

Provide the configured external port or an external Load BalancerURL. TheAPI endpoints
have this port for external consumers. If you have a Load Balancer, then the requests from
the Load Balancer must be directed to API Gateway's External port.

For more information on load balancers, see “Clusters and Load Balancers” on page 222.

5. In the green zone Integration Server, perform the following configurations to set up two-way
SSL.

a. Navigate to Server > Ports.

b. Select the Registration Internal port of the API Gateway.

c. Click Edit HTTPS Port Configuration.

webMethods API Gateway Administration 10.11 43

1 Deployment

d. Select the Yes option in the Enable field.

e. Configure the fields, as required.

f. In the Registration credentials section, configure theKeystore Alias and Truststore Alias
fields.

g. Select Require Client Certificates in the Client Authentication field.

h. Click Save Changes.

44 webMethods API Gateway Administration 10.11

1 Deployment

6. Configure API routing endpoints with registration port alias.

a. Create an API in API Gateway.

For more information on how to create APIs, see webMethods API Gateway User's Guide.

Here, the internal server is an Integration Server and to use the reverse invoke functionality,
you must modify the routing endpoint of the API created on the API Gateway instance in
DMZ as shown in the below syntax.

webMethods API Gateway Administration 10.11 45

1 Deployment

apigateway://{REG_PORT_ALIAS}/rest/api/resource

If the internal server is not an Integration Server, you can specify the routing endpoint as
regular endpoint, where the service is hosted.

Note:
If the routing points to an API that resides in API Gateway, the end point is as follows.

apigateway://{REG_PORT_ALIAS}/gateway/api/resourcewhich in turn invokes the native
service.

7. Configure Internal Server Port on the Integration Server in green zone.

a. Configure the Internal Server Port in the Integration Server where the native API resides.

b. Provide the details of API Gateway and Registration port.

8. You can now access the API by using the URL in the format
http://externalserver:externalport/gateway/api-name/resource-path.

Important: A connection between API Gateway Server in DMZ and the internal server in
Green zone is available except when a request is being made to the internal server in green
zone or a response is being returned from the internal server in green zone. In other words,
DMZ API Gateway connection utilization is I/O bound. Therefore, if you expect large,
simultaneous transactions, increase the number of registered connections accordingly.

Importing a Certificate and Mapping to User

You can import client certificates and CA signing certificates through Integration Server
Administrator to keep them on file, map them to particular user accounts, and specify how they
are to be used. The user mapping to the certificate must be performed on the external server.

Keep the following points in mind before importing and mapping certificates:

To create an SSL connection between Integration Server and an internet resource that serves
as a client, you have to import a copy of the client's SSL signing certificate (CA certificate).

Although Integration Server supports loading certificates for LDAP users, Software AG
recommends using central user management and then configuring LDAP and certificates in
My webMethods Server.

To import a client certificate and map it to a user

1. Open the Integration Server Administrator.

2. Navigate to Security > Certificates.

46 webMethods API Gateway Administration 10.11

1 Deployment

3. Click Configure Client Certificates.

The Configure Client Certificates window is displayed.

4. Type the path of the certificate that you want to import, in the Certificate Path field.

Note:
The certificate must be on the same machine on which the Integration Server is running.

5. Type a user name or click search icon to search for and select a user.

To search a user, perform one of the following tasks, once you click the search icon:

To select a local user, select Local in the Provider list. Select the local user to which you
want to map the certificate. If you have not configured an external user directory, you
cannot view the Provider list.

webMethods API Gateway Administration 10.11 47

1 Deployment

To select a user from an external directory (LDAP or a central user directory), select the
user directory that you want to search, in the Provider list. In the Search field, type the
criteria to find a user and clickGo. Select the user towhomyouwant tomap the certificate.

6. Select one of the following options from the Usage field.

SSL Authentication. Use the certificate to represent the client's authentication credentials
when making an SSL connection with Integration Server.

Verify. Use the certificate's public key to verify the authenticity of documents, messages,
or streams originating from the client and containing a digital signature.

Encrypt. Use the certificate's public key to encrypt outgoing documents, messages, or
streams from Integration Server to the client.

Verify and Encrypt. Use the same certificate to verify the authenticity of documents,
messages, or streams originating from the client and containing a digital signature, and to
encrypt outgoing documents, messages, or streams from Integration Server to the client.

Message Authentication. Use the certificate to represent the client's authentication
credentials when making an SSL connection with Integration Server, when using
message-level rather than transport-level authentication. For example, with web service
messages whose SOAP message headers contain SSL certificate information.

7. Click Import Certificate.

Troubleshooting Tips: API Gateway and DMZ Connectivity

I see several requests waiting for a registration connection

This might occur when the network and connections are unreliable.

On the internal server (Green Zone), configure the property
watt.server.rg.internalregistration.timeout that controls how long the API Gateway server
waits for a connection to the internal server before closing an unresponsive connection to the API
Gateway server.

48 webMethods API Gateway Administration 10.11

1 Deployment

To configure this property:

1. Navigate to User menu > Administration > General > Extended settings.

2. Click Show and hide keys.

3. Select watt.server.rg.internalregistration.timeout property in thewatt properties section.

4. Provide a suitable value as follows:

Provide a value 0 when the network and connections are reliable, so that the connection
between internal server and API Gateway never times out. This is the default value of this
property.

Provide a non-zero value when the network and connections are unreliable or when the
connections breakdown. This value specifies the time afterwhichAPIGateway stops trying
for a unresponsive internal server connection so that the connections time out.

5. Click Save.

Considerations while configuring the watt.server.rg.internalregistration.timeout property:

When you set the property to a value within which if API Gateway does not receive any
requests fromDMZ, then registration internal ports are auto refreshed.When the connectivity
betweenAPIGateway andDMZ is broken after a refresh (disabled and enabled), set the internal
ports manually to resolve the issue.

When you set the property to a value that is lower than watt.net.socketpool.sweeperInterval,
the internal server closes the connection to the API Gateway server and re-establishes a new
connection regularly.

The property watt.net.socketpool.sweeperInterval specifies the frequency, in seconds, at
which the socket pool sweeper performs. The socket pool sweeper sends a ping request to all
APIGateway connections andHTTP client connections. During a sweep it removes any invalid
HTTP client connections. By default, the sweeper sends a ping request every 60 seconds.

As a good practice, Software AG recommends enabling the
watt.net.socketpool.sweeperInterval setting, if you are using the
watt.server.rg.internalregistration.timeout property. Set the value of
watt.server.rg.internalregistration.timeout on the internal server to a value greater than
the ping values defined by the watt.net.socketpool.sweeperInterval server configuration
parameter on the API Gateway server.

In addition to the above parameter setting also increase the connection from internal server by
ensuring that you have enough threads configured in both DMZ and internal server to handle the
load.

I see client requests on the API Gateway server (DMZ) waiting indefinitely for a
connection to the internal server (Green zone).

This might occur when the connections breakdown.

webMethods API Gateway Administration 10.11 49

1 Deployment

Configure the property watt.server.rg.internalsocket.timeout that controls how long the API
Gateway server waits for a connection to the internal server and returns a HTTP 500-Internal
Server Error to the requesting client.

To configure this property:

1. Navigate to User menu > Administration > General > Extended settings.

2. Click Show and hide keys.

3. Select watt.server.rg.internalsocket.timeout property in the watt properties section.

4. Provide a suitable value.

If a connection to the internal server becomes availablewithin the specified timeout period,
API Gateway server forwards the request to the internal server.

If a connection does not become available before the timeout elapses, API Gateway server
returns a HTTP 500-Internal Server error to the requesting client.

5. Click Save.

I see client authentication is not enforced for APIs invoked on API Gateway server
(DMZ) if requests are sent to the external port.

For an API invocation on API Gateway server (DMZ) if requests are sent to the external port you
may observe that there is no client authentication performed and youmay observe that the enforced
IAM policies fail.

To enable client authentication for requests that sent to the external port, you must set the
watt.server.revInvoke.proxyMapUserCerts property as follows:

1. Navigate to User menu > Administration > General > Extended settings.

2. Click Show and hide keys.

3. Select watt.server.revInvoke.proxyMapUserCerts property in the watt properties section and
set it to true.

I see some of the internal API invocations are processed in the API Gateway server
(DMZ) instead of API Gateway server (Green zone) when using an API Gateway
Advanced Edition.

This is observed when you have the paired deployment setup and you have enforced only threat
protection policies in API Gateway server (DMZ) and all other policies in internal server (Green
zone) and you have configured port access restrictions to allow access only to the APIs hosted on
the API Gateway (say with /gateway/, /ws/ , and so on). In such a case you must provide access
to the following APIs in case the APIs are protected by security policies such as OAuth, OpenId
or JWT. Allowing access to these endpoints is important for API Portal and API consumers to
access API Gateway to retrieve the tokens.

pub.apigateway.oauth2:getAccessToken

50 webMethods API Gateway Administration 10.11

1 Deployment

pub.apigateway.oauth2/getAccessToken

pub/apigateway/oauth2/getAccessToken

secure.apigateway.oauth2/approve

secure.apigateway.oauth2:approve

secure/apigateway/oauth2/approve

pub.apigateway.oauth2:authorize

pub.apigateway.oauth2/authorize

pub/apigateway/oauth2/authorize

pub/apigateway/openid/getOpenIDToken

pub/apigateway/openid/openIDCallback

pub/apigateway/jwt/getJsonWebToken

/pub/apigateway/jwt/certs

/pub/apigateway/jwt/configuration

/pub/apigateway/jwt/thirdPartyConfiguration

By default, if API Gateway server (DMZ) has API Gateway Advanced Edition then API requests
are processed on the API Gateway server in DMZ but the actual enforcement happens in the
internal server. Hence, these API requests must be processed on internal server. To resolve this,
configure the extended setting forwardInternalAPIsRequest as follows:

1. Navigate to User menu > Administration > General > Extended settings.

2. Click Show and hide keys.

3. Select the extended setting forwardInternalAPIsRequest and set it to true.

I see that the internal APIs can be accessed through the External Port of API Gateway
server deployed in DMZ

API Gateway supports the safe exposure of APIs by featuring threat protection and enforcing
identity and accessmanagement policies. The reverse invoke capabilities of API Gateway supports
the exposure of APIs that are running entirely behind a firewall or where just the service
implementing the APIs is protected by a firewall.

In cases where you can access the internal APIs through the external port of API Gateway server
in DMZ, you can block requests to internal APIs in API Gateway as follows:

1. Configure the following ports in API Gateway located in DMZ:

5500: API Gateway default HTTP regular port

9200: API Gateway external port (ExtPortAlias)

webMethods API Gateway Administration 10.11 51

1 Deployment

9201: API Gateway registration port (DefaultRegPortAlias)

9202: API Gateway registration port (ApiRegPortAlias)

With the above configuration, the API Gateway instance in DMZ receives requests on the
external port ExtPortAlias. These requests are forwarded to the registration port
DefaultRegPortAlias. DefaultRegPortAlias is connected to an API Gateway internal port that
is defined on the API Gateway in the DMZ. This ensures that requests are not forwarded to
the Integration Server orAPIGateway in the green zone, but processedwithin theAPIGateway
in DMZ. The default registration port is the first one defined for an external port. There is no
specific naming required.

2. Configure the routing policies in the API Gateway instance located in DMZ, as follows.

52 webMethods API Gateway Administration 10.11

1 Deployment

To forward API requests to the backend services, the API routing policies must point to the
ApiRegPortAlias, the second registration port alias defined for the external port.

The endpoint URI of the Straight Through Routing policy leverages the apigateway scheme
and references the ApiRegPortAlias. The resource path of the endpoint URI points to the
sample flow service employee running on the Integration Server in green zone. This flow
service can not be invoked directly from the DMZ external port. All non-API requests are
routed to the internal port of the API Gateway in DMZ where the backend flow services are
not defined.

3. Configure the internal port of the Integration Server in green zone as follows.

webMethods API Gateway Administration 10.11 53

1 Deployment

The registration port ApiRegPortAlias is associated with the internal port of the Integration
Server in the green zone. The figure depicts the port configuration screen with the internal
port connected referencing the registration port ApiRegPortAlias on theAPIGateway inDMZ.

My internal server has run out of registration connections

My internal server has run out of registration port and I see the following error message.

number requests waiting for a registration connection.

Resolution

Each connection consumes a thread, either from the API Gateway in green zone's common thread
pool or from the internal listener's private thread pool, if one is defined. The consumed thread
can only be used to process requests from API Gateway in DMZ.

If you have defined a private thread pool for the internal registration listener, the number of
connections you can specify in the Max Connections box is limited to the maximum number of
threads allowed in the private thread pool for this listener.

If you havemultiple internal registration listeners, eachwith its own private thread pool, the same
rule applies for each internal registration listener.

If you have not defined a private thread pool for an internal registration listener, a reasonable
limit for the Max Connections box is 75% of the number of server threads specified in Server
Thread Pool Max Threads box on the Settings > Resources page. If you have multiple internal
registration listeners and none of them have private thread pools, the sum of all connections
specified in the Max Connections boxes for these listeners should not exceed 75% of the number
of server threads specified in Server Thread Pool Max Threads.

A thread remains open unless it is closed by a firewall, a network glitch, or an exception.

54 webMethods API Gateway Administration 10.11

1 Deployment

Connecting to an External Elasticsearch
This section explains the changes that you must make in the config.properties file to enable API
Gateway to communicate with the external Elasticsearch.

You can also connect to an external Elasticsearch through externalized configurations. For more
details, see “Externalizing Configurations ” on page 65.

Note:
If you use an external Elasticsearch with same version as API Data Store, then you can use the
Kibana or dashboard that is shipped with API Gateway, else they have to be configured
separately. If you have configured Elasticsearch externally, then you have to configure Kibana
externally. To know the compatible Kibana and Filebeat (Beats) versions for your Elasticsearch,
see https://www.elastic.co.

Important:
When you use an external Elasticsearch, you must use the Elasticsearch plugin mapper size.
Without this plugin, API Gateway does not start. To install the mapper size plugin, use the
command sudo bin/elasticsearch-plugin install mapper-size. If you have deployed a
clustered environment and have configured external Elasticsearch onmultiple nodes, youmust
install this plugin on all the nodes that use external Elasticsearch.

To connect to an external Elasticsearch

1. Navigate to WmAPIGateway/config/resources/elasticsearch/config.properties

The config.properties file contains all the properties and Elasticsearch configurations.

2. Configure the following properties:

Property and Description

pg.gateway.elasticsearch.autostart

This property specifies whether the Elasticsearch starts automatically. If an external
Elasticsearch is configured it has to bemanually started. This property needs to be set to false
to avoid API Data Store starting automatically.

Default value: true

pg.gateway.elasticsearch.client.http.response.size

This property specifies the response size, in MB, for API Gateway Elasticsearch client.

Default value: 100

pg.gateway.elasticsearch.config.location

This property specifies the location of the config file if you want to read port details from
some other Elasticsearch config file

webMethods API Gateway Administration 10.11 55

1 Deployment

https://www.elastic.co

Property and Description

pg.gateway.elasticsearch.hosts

Mandatory

This property lists Elasticsearch hosts and ports. The values are comma separated.

Default value: localhost:9240

Note:
Once a host is added to this property, this is the value that is used to connect to Elasticsearch
and the host configured in gateway-es-store.xml is not considered.

pg.gateway.elasticsearch.http.keepAlive

Mandatory

This property creates the persistent connection between client and server.

Default value: true

pg.gateway.elasticsearch.http.connectionTimeout

Mandatory

This property specifies the time, in milliseconds, after which the connection times out.

Default value: 10000

pg.gateway.elasticsearch.http.socketTimeout

Mandatory

This property specifies the wait time, in milliseconds, for a reply once the connection to
Elasticsearch is established after which it times out.

Default value: 30000

pg.gateway.elasticsearch.http.maxRetryTimeout

Mandatory

This property specifies the wait time, in milliseconds, for retries after which it times out.

Default value: 100000

It is advisable to set max retry time for a request to (number of nodes * socketTimeOut
)+connectionTimeout

pg.gateway.elasticsearch.http.keepAlive.maxConnections

Mandatory

56 webMethods API Gateway Administration 10.11

1 Deployment

Property and Description

This property specifies themaximumnumber of persistent connections that can be established
between an API Gateway and Elasticsearch cluster.

Default value: 50

pg.gateway.elasticsearch.http.keepAlive.maxConnectionsPerRoute

Mandatory

This property specifies themaximumnumber of persistent connections that can be established
per HTTP route to an Elasticsearch server.

Default value: 15

pg.gateway.elasticsearch.http.username

This property specifies the user name to connect to Elasticsearch using basic authentication.

pg.gateway.elasticsearch.http.password

This property specifies the password to connect to Elasticsearch using basic authentication.

pg.gateway.elasticsearch.https.keystore.filepath

This property specifies the Keystore file path for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.truststore.filepath

This property specifies the truststore file path for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.keystore.password

This property specifies the Keystore password for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.keystore.alias

This property specifies the Keystore alias for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.truststore.password

This property specifies the truststore password for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.enabled

This property specifies whether you want to enable or disable the HTTPS communication
with Elasticsearch.

Default value: false

webMethods API Gateway Administration 10.11 57

1 Deployment

Property and Description

If this property is set to false none of the above properties related to HTTPS are respected.

pg.gateway.elasticsearch.outbound.proxy.enabled

This property specifieswhether youwant to enable or disable outboundproxy communication.

Default value: true

pg.gateway.elasticsearch.outbound.proxy.alias

This property specifies the outbound proxy alias name used to connect to Elasticsearch.

pg.gateway.elasticsearch.https.enforce.hostname.verification

This property enforces the host name verification for SSL communication.

Default value: false

pg.gateway.elasticsearch.sniff.enable

Mandatory

This property enables sniffers to add the other nodes in an Elasticsearch cluster to the client
so that the client can talk to all nodes.

Default value: true

This configuration must be set to false if you are changing the network when API Gateway
or Elasticsearch is running.

pg.gateway.elasticsearch.tenantId

This property allows you to specify a tenant name of your choice. This value must be same
across all nodes.

The default value of this property is the Integration Server instance name. So, ensure that you
provide same name for all Integration Server nodes in a cluster.

If you modify this value, you must edit the value in all nodes and restart the API Gateway
server for the change to take effect.

pg.gateway.elasticsearch.sniff.timeInterval

Mandatory

This property enables adding the newly added Elasticsearch cluster nodes to existing REST
client in a specified time interval in milliseconds.

Default value: 60000

3. Restart API Gateway for the HTTP client to take effect.

Note:

58 webMethods API Gateway Administration 10.11

1 Deployment

If hosts and ports are changed for Elasticsearch then you have to update the appropriate
Elasticsearch configuration for Kibana separately and restart the Elasticsearch server aswell
as Kibana.

You can also externalize the Elasticsearch tenant ID and configuration by using a master
configuration file. For details, see “Externalizing Configurations ” on page 65.

Configure Kibana With External Elasticsearch

The API Gateway stores its data in an internal Elasticsearch called API Data store by default.
Core data and analytics data are stored separately and the analytics data can be stored in an
external Elasticsearch. This sections explains how to configure API Gateway Kibana with the
external Elasticsearch so that the analytics data can be viewed from the API Gateway Dashboard.

Configure internal Kibana to the external Elasticsearch

1. Navigate to the location <SAGInstaller>\profiles\IS_default\apigateway\config.

2. Open the uiconfiguration properties file located at
<SAGInstaller>\profiles\IS_default\apigateway\config.

3. Set the property apigw.kibana.autostart to false.

4. Open the kibana.yml file and add the following command-

elasticsearch.hosts:"http://<ExternalElasticsearchHost>:<ExternalElasticsearhPort>"

This command connects Kibana to the external Elasticsearch's host and port.

5. Go to Start > Elasticsearch.

6. Start API Gateway.

7. Go to Start > Start API Store <version_number>.

8. Open your REST client.

9. Under Variables, provide the required values in the following fields:

internalESHost-Internal Elasticsearch Host

internalESPort-Internal Elasticsearh Port.

externalESHost-External Elastic Host.

externalESPort-External Elasticsearch Port

10. Make a GET call to the endpoint -

http://localhost:9200/_cat_indices

webMethods API Gateway Administration 10.11 59

1 Deployment

This reindexes your dashboard from API Data store to Elasticsearch and create templates for
"gateway_<tenant-name>_analytics_*" indices.

11. Open API Gateway.

12. Click Administration>Destinations.

13. Select API Gateway option and clear all the checkboxes.

14. Select Elasticsearch>Events and select all the checkboxes.

15. Click Elasicsearch>Configuration.

16. Set Hostname and Port values to the values set in step 11.

Ensure that the index name is gateway_<tenant_name>_analytics. Fox example, if your tenant
name is default, then your indexname should be gateway_default_analytics.

17. Click APIs>Create API.

18. Select your API and select Policies tab.

19. Enforce the Traffic Monitoring policy.

20. Invoke the API.

The events appear in the external Elasticsearch deatination.

Now, the invocations should be visible from the API Gateway analytics page.

Troubleshooting Tips

API Data Store

API Gateway package is not accessible from Integration Server.

The following error message appears:

com.softwareag.apigateway.core.exceptions.DataStoreException

This problem could be because the defaultEncoding extended setting is modified.

CAUTION:
Do notmodify this value. If youmodify this value, your API Gateway instancewill not function
as this value is used in encoding all API Gateway transactions. If you migrate from one setup
to another, ensure you have specified the same value for the defaultEncoding setting as the
source instance. If this values are not same, the target API Gateway instance does not start.

60 webMethods API Gateway Administration 10.11

1 Deployment

This error message appears: com.softwareag.apigateway.core.exceptions.DataStoreException:
com.softwareag.apigateway.core.exceptions.DataStoreException:

Resolution:

Set the value of the defaultEncoding extended setting as UTF-8.

The Event data store on API Gateway is using a lot of disk space.

The Elasticsearch JVM is unable to allocate memory for internal objects. Either other process in
the machine are consuming more memory or Elasticsearch is not given sufficient heap space.

Also JVM has written these information in write.lock file, which is solely used by Elasticsearch
for its internal purpose. Elasticsearch expects this file to be of size 0 and should not be modified.
Since jvm has written the data, it is showing that as error and filling the disk with log.

Resolution:

Increase the Event data store JVM heap size.

I have exceeded the limit for total fields [1000] in index [gateway_default_analytics_
]

I am getting the following error:

2019-09-19 00:29:02UTC [YAI.0300.9999E] errorwhile savingdoc Index - gateway_default_analytics,
typeName - transactionalEvents: POST
http://10.177.129.5:9241/gateway_default_analytics/transactionalEvents: HTTP/1.1 400 BadRequest
{"error":{"root_cause":[{"type":"illegal_argument_exception","reason":"Limit of total fields [1000]
in index [gateway_default_analytics] has been
exceeded"}],"type":"illegal_argument_exception","reason":"Limit of total fields [1000] in index
[gateway_default_analytics] has been exceeded"},"status":400}

Resolution:

Increase the limit for total fields.
PUT /gateway_default_analytics_/_settings{"index.mapping.total_fields.limit": 20000}

I experienced a low disk space issue and my API Gateway has stopped working for
WRITE operations.

I am getting the following issue

Exception: [WARN][o.e.c.r.a.DiskThresholdMonitor] [localhost1568897216386] flood stage disk
watermark [95%] exceeded on
[BOf6SQe2SwyI93vi4RlBNQ][localhost1568897216386][C:\SoftwareAG\InternalDataStore\data\nodes\0]
free: 2.4gb[2.4%], all indices on this nodewill bemarked read-onlySaving an API -> error message
("Saving API failed. com.softwareag.apigateway.core.exceptions.DataStoreException: Error while
saving the document. doc Id - 6d5c7ac0-574a-4a53-acba-a738f21e3142, type name - _doc, message

webMethods API Gateway Administration 10.11 61

1 Deployment

- "index [gateway_default_policy] blocked by: [FORBIDDEN/12/index read-only / allow delete
(api)];" ")

Resolution:

You can clean up the disk space by using the following CURL command:
curl -XPUT -H "Content-Type:
application/json"
http://localhost:9200/_all/_settings
-d '{"index.blocks.read_only_allow_delete":
null}'

My Elasticsearch server is not starting. I get a "bootstrap checks failed" error.

I am getting the following error:

[2020-03-25T09:09:20,298][INFO][o.e.b.BootstrapChecks] [itsbebel00471.jnj.com1585050877659]
bound or publishing to a non-loopback address, enforcing bootstrap checks
[2020-03-25T09:09:20,299][ERROR][o.e.b.Bootstrap] [itsbebel00471.jnj.com1585050877659] node
validation exception [1] bootstrap checks failed [1]: system call filters failed to install; check the
logs and fix your configuration or disable system call filters at your own risk.

Resolution:

Add bootstrap.system_call_filter: false setting to elasticsearch.yml

When I access the audit logs, the internal datastore, crashes.

You get the following error

[2020-03-03T10:03:33,857][ERROR][o.e.ExceptionsHelper] [daeipresal43558.eur.ad

.sag1580968109910] fatal error at
org.elasticsearch.ExceptionsHelper.lambda$maybeDieOnAnotherThread$2(ExceptionsHelper.java:310)
at java.util.Optional.ifPresent(Optional.java:159) at
org.elasticsearch.ExceptionsHelper.maybeDieOnAnotherThread(ExceptionsHelper.java:300) at
org.elasticsearch.http.netty4.Netty4HttpRequestHandler.exceptionCaught(Netty4HttpRequestHandler.java:76)
[2020-03-03T10:03:33,858][ERROR][o.e.ExceptionsHelper] [daeipresal43558.eur.ad
.sag1580968109910] fatal error at
org.elasticsearch.ExceptionsHelper.lambda$maybeDieOnAnotherThread$2(ExceptionsHelper.java:310)
at java.util.Optional.ifPresent(Optional.java:159) at
org.elasticsearch.ExceptionsHelper.maybeDieOnAnotherThread(ExceptionsHelper.java:300) at
org.elasticsearch.http.netty4.Netty4HttpRequestHandler.exceptionCaught(Netty4HttpRequestHandler.java:76)
[2020-03-03T10:03:33,867][ERROR][o.e.b.ElasticsearchUncaughtExceptionHandler] [
daeipresal43558.eur.ad .sag1580968109910] fatal error in thread [Thread-176], exiting
java.lang.OutOfMemoryError: Java heap space

Resolution:

Set the -XX:MaxDirectMemorySize property to 4095m.

62 webMethods API Gateway Administration 10.11

1 Deployment

External Elasticsearch

Kibana dashboard does not work after configuring external Elasticsearch.

Kibana dashboard is not working after configuring external Elasticsearch.

Resolution:

1. Set the apigw.kibana.autostart setting in the uiconfiguration.properties file to false.

This step prevents the Elasticsearch configuration being reset to localhost.

2. In thekibana.ymlfile found in the SAGInstallDir\profiles\IS_default\apigateway\dashboard\
config location, update the following field to the corresponding external Elasticsearch URL:
elasticsearch.hosts: "http://localhost:9240"

Replace localhost with the system name or IP address where Elasticsearch is running and
9240 with the corresponding Elasticsearch port number.

3. In the uiconfiguration.properties file found in the SAGInstallDir\profiles\IS_default\
apigateway\config folder, provide the same external Elasticsearch URL in the following field:
apigw.es.url=http://localhost:11140

This must be same as the value provided in the previous step.

4. Start Kibana by running the kibana.bat (Windows) or kibana.sh (Linux) file from the following
location: SAGInstallLocation\profiles\IS_default\apigateway\dashboard\bin.

Note:
As the Kibana autostart is disabled in the first step, you must start Kibana manually
everytime.

Alternative resolution:

You can externalize the external Elasticsearch and Kibana configurations. For information on
externalizing, see “Externalizing Configurations ” on page 65.

Connecting to an External Kibana
Considerations when you configure an External Kibana:

Ensure the Kibana version is compatible with the Elasticsearch version as Kibana and
Elasticsearch have a one-to-one mapping. For details on version compatibility, see Support
Matrix.

Turn off Kibana auto start in one of the following ways:

By using Externalized configuration files. For details, see “ Using the Externalized
Configuration Files” on page 65. Software AG recommends using this configuration.

webMethods API Gateway Administration 10.11 63

1 Deployment

https://www.elastic.co/support/matrix
https://www.elastic.co/support/matrix

By setting the property apigw.kibana.autostart to false located in C:\API Gateway
instance\profiles\IS_default\apigateway\config\uiconfiguration.properties.

You can have one of the following Kibana configurations:

Default Kibana connected to API Data Store.

External Kibana connected to API Data Store.

You can configure this setup as follows:

For an external Kibana to connect to API Data Store you have to configure the following
properties in the kibana.yml file where you have installed the external Kibana.

DescriptionProperty

Specifies which server port to use.server.port: port number

Example: 9405

Specifies the host to bind the server to.server.host: server host IP address or host name

The default value is localhost, which
means the remote machines will not be
able to connect. To allow connections for
remote users you must set this parameter
to a non-loopback address.

Example: "0.0.0.0"

Specifies the proxy setting to render the
charts from the external Kibana in API
Gateway UI.

server.basePath: server path of the proxy

The server path you specify must not end
with a /.

Value: "/apigatewayui/dashboardproxy"

Specifies the URLs of the Elasticsearch
instance to use for all your queries.

elasticsearch.hosts: http://hostname:port

Example: "http://localhost:9240"

Specifies the index in Elasticsearch, which
Kibana uses to store saved searches,

kibana.index: gateway_tenant_name_dashboard

visualizations, and dashboards. It creates
a new index if it does not exist.

Example: "gateway_default_dashboard"

You can find these values in the kibana.yml file of the internal Kibana installed location C:\API
Gateway instance\profiles\IS_default\apigateway\dashboard\config. You can copy these
values in the kibana.yml file of the external Kibana in the respective installed location.

64 webMethods API Gateway Administration 10.11

1 Deployment

If you are using a Kibana version different than the one shipped with API Gateway that is
compatible with the Elasticsearch version, you have to specify the Kibana version in the
config.json file located at C:\API Gateway instance\IntegrationServer\instances\default\
packages\WmAPIGateway\config\resources\kibana\config\7\. For details on version
compatibility, see Support Matrix.

Embedded Kibana connected to External Elasticsearch to store all API Gateway assets then
configure the following:

Open the kibana.ymlfile located at C:\API Gateway instance\profiles\IS_default\apigateway\
dashboard\config and specify the external Elasticsearch host and port details, which theKibana
has to connect to, as follows:
The Elasticsearch instance to use for all your queries.
elasticsearch.hosts: "http://host_name:port"

External Kibana connected to External Elasticsearch.

You can configure this setup by using externalized configuration files. For details, see “ Using
the Externalized Configuration Files” on page 65.

Note:
When using external Elasticsearch and external Kibana the startup of the components must
follow the following order:

1. Start Elasticsearch and verify the cluster health.
2. Start the API Gateway service.
3. After API Gateway is started and available, start Kibana.

Externalizing Configurations
API Gateway can be configured on startup through a set of external configuration files. These files
are used to manage and provision configurations from a centralized location. The externalized
configuration can be specified eitherwithin a single file providing all the necessary configurations
or multiple files for individual configurations. By using multiple files the configurations can be
split. For example, the cluster configuration can be specified separately from the Kibana or
Terracotta configuration. The externalized configuration can be in YAMLor properties files format.

To consider the externalized configuration files during theAPIGateway startup, the configuration
files need to be referenced in the master configuration file, config-sources.yml.

Both the master configuration and external configuration files are located in the SAGInstallDir\
IntegrationServer\instances\instance_name\packages\WmAPIGateway\resources\configuration
folder.

Using the Externalized Configuration Files

The API Gateway administrator provides configuration settings in one or more external
configuration files and creates themaster configuration file listing the external configuration files.
On startup, API Gateway reads config-sources.yml file and loads all the external configuration
source files that it references. The settings in the externalized configuration files override the
respective internal configuration settings (such as uiconfiguration.properties, server.cnf). Once

webMethods API Gateway Administration 10.11 65

1 Deployment

https://www.elastic.co/support/matrix

the API Gateway configuration space is updated, the rest of the API Gateway package gets loaded
with the updated configuration settings.

Note:
For settings that are not given in the externalized configuration files, API Gateway use the
settings given in the internal configuration files.

The below sample externalized configuration file template contains the configuration settings that
the API Gateway administrator wants to externalize. The given external configuration settings
overwrite the respective internal configuration settings. For the configuration settings that are not
specified in the externalized configuration file, the settings given in the respective internal
configuration files take precedence.
apigw:
elasticsearch:

.....
kibana:

.....
filebeat:
......

cluster:
......

users:
......

masterpassword:
......

ui:
......

alias:
......

Elasticsearch Configuration

Note:
Install and run Elasticsearch, version 7.13.0, if you are configuring an external Elasticsearch.

The Elasticsearch configuration and details section contains all the necessary properties for an
Elasticsearch HTTP client using which API Gateway connects to either an externally running
Elasticsearch server or to the Elasticsearch-powered API Data Store in API Gateway. The key
configurations are as follows:

tenantId. The API Gateway tenant id, using which the Elasticsearch indices are created for
that tenant.

hosts. A comma separated list of Elasticsearch instances. Example: host1:9200,host2:9240.

autostart. Optional. If the value is not provided, by default it would be false. API Gateway
would connect to the given external Elasticsearch hosts. If the value is set to true, API Gateway
automatically starts the API Data Store. In this case, the hosts should point to API Data Store
host and port. The default host for the API Data Store is localhost:9240.

http. The basic authentication credentials and HTTP-connection specific properties.

66 webMethods API Gateway Administration 10.11

1 Deployment

https. If the enabled property within https is set to true, API Gateway uses the other https
properties to connect to the configured hosts.

sniff. These properties help in adding a new Elasticsearch node to the Elasticsearch cluster.

outboundproxy. Outbound proxy settings between API Gateway and Elasticsearch.

clientHttpResponseSize. Maximum Response payload size in MB.

A sample Elasticsearch configuration is as follows:
apigw:
elasticsearch:

tenantId: apigateway
hosts: localhost:9200
autostart: false
http:

username: elastic
password: changeme
keepAlive: true
keepAliveMaxConnections: 10
keepAliveMaxConnectionsPerRoute: 100
connectionTimeout: 1000
socketTimeout: 10000
maxRetryTimeout: 100000

https:
enabled: false
keystoreFilepath: C:/softwares/elasticsearch/config/keystore-new.jks
truststoreFilepath: C:/softwares/elasticsearch/config/truststore-new.ks
keystoreAlias: root-ca
keystorePassword: 6572b9b06156a0ff778c
truststorePassword: manage
enforceHostnameVerification: false

sniff:
enable: false
timeInterval: 1000

outboundProxy:
enabled: false
alias: somealias

clientHttpResponseSize: 1001231

Kibana Configuration

Note:
Install Kibana, version 7.13.0, if configuring an external instance of Kibana.

The Kibana configuration supports setting the Kibana server URL, which can point to either the
one that is run byAPIGateway or any externally running server. It also contains the SSL certificate
related settings that would be used to connect to the SSL protected Elasticsearch server. The key
configurations are as follows:

dashboardInstance. The Kibana server URL in the format scheme://hostname:port. Example:
http://vmabc:5601.

autostart. Optional. If the value is not provided, by default it would be false. API Gateway
would connect to the given external Kibana server. If the value is set to true, API Gateway

webMethods API Gateway Administration 10.11 67

1 Deployment

automatically starts the internal Kibana server. In this case, the hosts should point to internal
Kibana server host and port. The default value is http://localhost:9405.

sslCA. A list of paths to the PEM file for the certificate authority for the Elasticsearch instance.

sslCert. The path to the PEM format certificate for SSL client authentication.

sslKey. The client certificate key used for client authentication. These files are used to verify
the identity of Kibana to the Elasticsearch server when it is SSL protected.

A sample Kibana configuration is as follows:
apigw:
kibana:

dashboardInstance: http://localhost:9405
autostart: true
elasticsearch:

sslCA: C:/softwares/elasticsearch/config/SAG-B1HPWT2.pem
sslCert: C:/softwares/elasticsearch/config/SAG-B1HPWT2.crt
sslKey: C:/softwares/elasticsearch/config/SAG-B1HPWT2.key

Filebeat Configuration

The Filebeat configuration supports configuring the SSL certificate related settings that are used
to connect to the SSL protected Elasticsearch server. The key configurations are as follows:

sslCA. A list of paths to the PEM file for the certificate authority for the Elasticsearch instance.

sslCert. The path to the PEM format certificate for SSL client authentication.

sslKey. The client certificate key used for client authentication. These files are used to verify
the identity of Kibana to Elasticsearch server when it is SSL protected.

A sample Filebeat configuration is as follows:
apigw:
filebeat:

output:
elasticsearch:
sslCA: C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem
sslCert: C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.crt
sslKey: C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.key

Cluster Configuration

This section describes the cluster configuration steps for both peer-to-peer clustering usingApache
Ignite or Terracotta Server Array.

Peer-to-peer cluster configuration based on Apache Ignite technology

With peer-to-peer clustering the cluster members synchronize by using distributed caches.
Therefore, each API Gateway server requires two ports. Hence, these ports have to be accessible
for communication. If you have deployed the cluster on a traditional on-premise installation with
real or virtual machines then the firewall must be open to the server ports.

68 webMethods API Gateway Administration 10.11

1 Deployment

In order to form a cluster, each cluster member requires information about possible other servers.
If the cluster is deployed on a traditional on-premise installation, or as Docker containers, then
you have to specify the names of the participating hosts. This is an initial member list. If you want
to scale the cluster, you can include servers with host name that is not in the initial list. Such a
server contacts any server in the initial list, and then negotiates joining the cluster.

If the cluster is deployed in a Kubernetes environment, the cluster specification requires the
Kubernetes namespace and the name of the Kubernetes service that exposes the API Gateway
deployment. New cluster members are then detected by checking the endpoints attached to the
Kubernetes service.

In order to analyze the service endpoints you must start the API Gateway deployment with a
service account with specific permissions. For details about the service account permissions, see
“API Gateway Clustering on Kubernetes” on page 559.

The cluster configuration contains peer-to-peer cluster and the related Elasticsearch cluster settings.

Note:
The cluster configuration for Elasticsearch clustering settings is only applicable to API Data
Store.

The key configurations are as follows:

aware, name, sessTimeout, actionOnStartupError. These parameters have the samemeaning as
in Terracotta clustering. However, note that in this case they will not be applied to the server
watt properties.

ignite.discoveryPort. The port that is used to discover the participating cluster members.
Each cluster member opens this port in order to be discoverable. Each server tries to contact
other servers through this port. The discoveryPort must be different from the
communicationPort.

ignite.communicationPort. The port that is used to communicate between distributed caches.
Each server opens this port to receive information and distribute distribute cache entries to
other cluster members. The communicationPort must be different from the discoveryPort.

ignite.portRange. The number of ports to include in the range available to multiple cluster
members on the same host. The default value of the portRange parameter is 0.

The portRange parameter applies to both the discoveryPort and the communicationPort. When
you specify a non-zero portRange value, ensure that the resulting ranges for the discovery
port and the communication port do not overlap.

Generally, each cluster member is deployed on its own host. However, for trial or demo
purposes youmight havemultiple cluster members on the same host. In such a situation, each
server requires its own discovery and communication port, and must know the other servers'
ports. You can use the portRange parameter to configure this scenario. The portRange is a
number that defines the size of a port range. For example, if you configure the port with port
number 10100 and portRange as 5, the resulting port range that is available is 10100 to 10105.
When a server starts, it picks an unused port from the range 10100 to 10105, and uses the port
to communicate with the other servers. Another server on start up can use an unused port

webMethods API Gateway Administration 10.11 69

1 Deployment

from the same port range to communicate with the other servers. This allows all servers to use
the same cluster configuration.

ignite.hostnames. The list of initial host names participating in the cluster. The list is
comma-separated.

ignite.k8sServiceName. The name of the service that exposes the API Gateway deployment,
in case of a Kubernetes cluster.

ignite.k8sNamespace. The name of the Kubernetes namespace within which the API Gateway
is deployed, in case of a Kubernetes cluster.

A sample cluster configuration for an on-premise or Docker deployment is as follows:
apigw:
cluster:

aware: true
name: APIGatewayCluster
sessTimeout: 60
actionOnStartupError: standalone
ignite:

hostnames: daeirnd33974,daeirnd33562,daeirnd33974
discoveryPort: 10100
communicationPort: 10400

A sample cluster configuration for Kubernetes cluster is as follows:
apigw:
cluster:

aware: true
name: APIGatewayCluster
sessTimeout: 60
actionOnStartupError: standalone
ignite:

k8sServiceName: api-gateway-service
k8sNamespace: api-gateway-namespace
discoveryPort: 10100
communicationPort: 10400

A sample cluster configuration for multiple servers on the same host is as follows:
apigw:
cluster:

aware: true
name: APIGatewayCluster
sessTimeout: 60
actionOnStartupError: standalone
ignite:

hostnames: localhost
discoveryPort: 10100
communicationPort: 10400
portRange: 3

Cluster configuration using Terracotta Server Array

Note:

70 webMethods API Gateway Administration 10.11

1 Deployment

Install and run the Terracotta server (a version that is compatible with API Gateway 10.11) for
clustering API Gateway instances.

The cluster configuration contains the Terracotta cluster settings. The key configurations are as
follows:

aware, name, tsaUrls, sessTimeout, actionOnStartupError. All are required Terracotta cluster
settings in the server watt properties.

terracottaLicenseFileName. The Terracotta server license file name. The file should be present
in the folder SAGInstallDir/common/conf. API Gateway uses this file to join the Terracotta
cluster.

A sample Cluster configuration is as follows:
apigw:
cluster:

aware: true
name: APIGatewayTSAcluster
tsaUrls: VMYAI105BVT06:9510
terracottaLicenseFileName: terracotta-license.key
sessTimeout: 20
actionOnStartupError: standalone

For terracottaLicenseFileName parameter a valid license file should be present in the
SAGInstallDir/common/conf location, otherwise the parameter is ignored.

Note:
When cluster settings are given in the configuration files, the API Gateway server, on startup,
updates the internal settings with the values from the configuration files but the API Gateway
node does not join the cluster. You must restart the server for the cluster settings to become
effective and for the API Gateway node to join the cluster.

User Configuration

The user configuration supports configuring user and group information on the API Gateway
server. By default, the local users created are assigned to the Everybody group. The key
configurations are as follows:

firstName. First name of the user.

lastName. Last name of the user.

password. Password of the user.

emailAddresses. List of email addresses of the user.

active. Active status of the user.

language. Preferred language of the user.

groups. Names of the groups the user belongs to.

A sample user configuration is as follows:

webMethods API Gateway Administration 10.11 71

1 Deployment

apigw:
users:

tstk:
firstName: "stark"
lastName: "Koop"
password: "oops"
emailAddresses: [tstk@sag.com, tstk@sag.co.uk]
active: true
groups:
- "group1"
- "group2"

fred:
firstName: "Fred"
lastName: "Barker"
password: "oops"
emailAddresses: [fred@sag.com]
active: true
groups: [group1,group2]

bob:
firstName: "Bob"
lastName: "Tate"
password: "oops"
emailAddresses: [bob@sag.com]
active: true

Master Password Configuration

In API Gateway, you would be using passwords while enforcing security related policies, while
connecting to various destinations such as, API Portal, CentraSite, Email, and SNMP, while
configuring the security-related aliases, configuring outbound proxy servers, and so on.

To protect these passwords API Gateway encrypts them. By default, it encrypts them using
Password-Based Encryption (PBE) standard, also known as PKCS5. This encryption method
requires the use of an encryption key or master password that you specify.

The master password configuration supports configuring of encryption key or master password
on the API Gateway server. The key configurations are as follows:

expiry. Expiry interval for the master password.

oldPassword. Current password of the user.

newPassword. New password of the user.

A sample master password configuration is as follows:

apigw:
masterpassword:

expiry: "60"
oldPassword: "old1"
newPassword: "new1"

72 webMethods API Gateway Administration 10.11

1 Deployment

UI Configuration

The UI configuration supports configuring HTTP and HTTPS port on the API Gateway server.

The key HTTP and HTTPS configurations are as follows:

DescriptionParameters

Specifies the maximum size of the request and response HTTP
header, specified in bytes. If not specified, this attribute is set to 8192
(8 KB).

maxHttpHeaderSize

This parameter is applicable
to HTTP and HTTPS.

This property specifies the time, in milliseconds, after which the
connection times out.

connectionTimeout

This parameter is applicable
to HTTP.

This property overrides the server header for the HTTP response.server

This parameter is applicable
to HTTP and HTTPS.

Specifies the maximum number of request processing threads the
connector creates, which determines the maximum number of
simultaneous requests that API Gateway server can handle.

maxSpareThreads

This parameter is applicable
to HTTP and HTTPS.

This flag allows the servlet container to use a different, usually longer
connection timeout during data upload.

disableUploadTimeout

This parameter is applicable
to HTTP and HTTPS.

Specifies theminimumnumber of threads always kept running. This
includes both active and idle threads.

minSpareThreads

This parameter is applicable
to HTTP and HTTPS.

When a SSL port is required by the client, the request is redirected
to this port number.

redirectPort

This parameter is applicable
to HTTP and HTTPS.

Specifies the maximum queue length for incoming connection
requests when all possible request processing threads are in use.

acceptCount

This parameter is applicable
to HTTP and HTTPS.

Any requests received when the queue is full is refused. The default
value is 100.

Specifies the TCP port number on which this connector creates a
server socket and awaits incoming connections.

port

This parameter is applicable
to HTTP and HTTPS.

webMethods API Gateway Administration 10.11 73

1 Deployment

DescriptionParameters

Set to true if you want calls to request.getRemoteHost() to perform
DNS lookup in order to return the actual host name of the remote

enableLookups

This parameter is applicable
to HTTP and HTTPS.

client. Set to false to skip the DNS lookup and return the IP address
in string form instead (thereby improving performance).

Enable or disable API Gateway web-app port.enabled

This parameter is applicable
to HTTP and HTTPS.

Identifies a proxy server and a port on the server throughwhich you
want to route requests.

alias

This parameter is applicable
to HTTP and HTTPS.

Specifies the SSL protocols to use. A single valuemay enablemultiple
protocols. For more information, see JVM documentation. If not
specified, the default is TLS.

sslProtocol

This parameter is applicable
to HTTPS.

Use this attribute to enable SSL traffic on a connector. The default
value is false. To turn on SSL handshake or encryption or decryption

sslEnabled

This parameter is applicable
to HTTPS.

on a connector set this value to true.When turning this value to true,
set the scheme and the secure attributes to pass the correct
request.getScheme() and request.isSecure() values to the servlets.

The keystore file type to use for the server certificate. If not specified,
the default value is JKS.

keystoreType

This parameter is applicable
to HTTPS.

The pathname of the keystore file where the server certificate is
stored. By default, the pathname is the file .keystore in the operating

keystoreFile

This parameter is applicable
to HTTPS.

system home directory of the user that is running Tomcat. If the
keystoreType doesn't need a file use " " (empty string) for this
parameter.

The password used to access the specified keystore file.keystorePass

This parameter is applicable
to HTTPS.

Set this attribute to the name of the protocol you wish to have
returned by calls to request.getScheme().

scheme

This parameter is applicable
to HTTPS.

Set this attribute to true if you wish to have calls to
request.isSecure() to return true for requests received by this
connector.

secure

This parameter is applicable
to HTTPS.

74 webMethods API Gateway Administration 10.11

1 Deployment

Formore information onHTTP andHTTPSport configuration, seeApache Tomcat documentation.

A sample UI configuration is as follows:

apigw:
ui:

http:
maxHttpHeaderSize: "8192"
connectionTimeout: "20001"
server: "SoftwareAG-Runtime"
maxSpareThreads: "78"
disableUploadTimeout: "true"
minSpareThreads: "23"
redirectPort: "19073"
acceptCount: "102"
port: "11072"
enableLookups: "false"
enabled: "true"
alias: "defaultHttp"

https:
maxHttpHeaderSize: "8192"
server: "SoftwareAG-Runtime"
maxSpareThreads: "72"
disableUploadTimeout: "true"
minSpareThreads: "22"
acceptCount: "104"
port: "11075"
enableLookups: "false"
enabled: "true"
alias: "defaultHttps"
sslProtocol: "tls"
sslEnabled: "true"
keystoreType: "xxy"
keystoreFile: "Test2"
keystorePass: "geheim"
scheme: "xScheme"
secure: "true"

Aliases Configuration

An alias in API Gateway holds environment-specific property values to use in policy routing
configuration. API Gateway aliases can be defined through external configuration. The alias
configuration supports configuring aliases on the API Gateway server.

The key configurations are as follows:

name. A unique name for the alias.

description. A description of the alias.

type. Type of the alias. The following aliases configuration are supported:

simple

endpoint

httpTransportSecurityAlias

webMethods API Gateway Administration 10.11 75

1 Deployment

http://tomcat.apache.org/tomcat-8.5-doc/config/http.html#SSL_Support_-_Certificate

soapMessageSecurityAlias

samlIssuerAlias

authServerAlias

webmethodsAlias

transformationAlias

serviceRegistryAlias

clientMetadataMapping

awsConfigurationAlias

isConfigurationAlias

owner. Owner of the alias.

Sample configuration of the supported aliases are as follows:

simple alias configuration:
apigw:
aliases:

simpleAlias1:
type: "simple"
value: "vmspar02w"

endpoint alias configuration:
apigw:
aliases:

endpointAlias1:
type: "endpoint"
endPointURI: "http://vmspar02w:9998"
connectionTimeout: 30
readTimeout: 30
suspendDurationOnFailure: 0
optimizationTechnique: "None"
passSecurityHeaders: false
keystoreAlias: "ksAlias"

httpTransportSecurityAlias configuration:
apigw:
aliases:

httpSec1:
type: "httpTransportSecurityAlias"
authType: "HTTP_BASIC"
authMode: "INCOMING_HTTP_BASIC_AUTH"
httpAuthCredentials:
userName: "Bob"
password: "R3Vlc3NJdA=="
domain: "EUR"

isConfigurationAlias configuration:

76 webMethods API Gateway Administration 10.11

1 Deployment

apigw:
aliases:

myIsAlias:
type: "isConfigurationAlias"
url: "http://localhost:5555"
username: "Administrator"
password: "bXlwYXNz"
keystoreAlias: "DEFAULT_IS_KEYSTORE"
keyAlias: "ssos"
packageName: "WmAPIGateway"
folderName: "test2"
importSwaggerBasedOnTags: "false"
enableMTOM: "true"
enforceWSICompliance: "true"
validateSchemaWithXerces: "true"
contentModelComplianceForWSDL: "Lax"

authServerAlias configuration:
apigw:
aliases:
testAuthServer:

type: "authServerAlias"
description: "Test Auth server"
tokenGeneratorConfig:

expiry: "0"
accessTokenExpInterval: "3600"
authCodeExpInterval: "600"
algorithm: "null"

supportedGrantTypes: ["authorization_code","client_credentials","implicit"]
authServerType: "EXTERNAL"
localIntrospectionConfig:

issuer: "testIssuer"
trustStoreAlias: "DEFAULT_IS_TRUSTSTORE"
certificateAlias: "sso"
jwksuri: "http://mytest.com"
description: "Issuer description"

remoteIntrospectionConfig:
introspectionEndpoint: "http://myendpoint"
clientId: "1234"
clientSecret: "c2VjcmV0"
user: "Administrator"

metadata:
authorizeURL: "http://softwareag.com/authorize"
accessTokenURL: "http://softwareag.com/accessToken"
refreshTokenURL: "http://softwareag.com/authorize/refresh"

sslConfig:
keyStoreAlias: "DEFAULT_IS_KEYSTORE"
keyAlias: "ssos"
trustStoreAlias: "DEFAULT_IS_TRUSTSTORE"

The properties of the supported aliases are as follows:

ParametersType

value. Value of the simple alias.simple

webMethods API Gateway Administration 10.11 77

1 Deployment

ParametersType

endpoint endPointURI. The default URI or components of the
URI such as service name.

connectionTimeout. Time interval (in seconds) after
which a connection attempt times out.

readTimeout. Time interval (in seconds) after which a
socket read attempt times out.

suspendDurationOnFailure. Time to suspend the
request upon a failure.

optimizationTechnique. Type of optimization
technique used for SOAP messages.

passSecurityHeaders. Boolean value whether to pass
security headers or not.

keystoreAlias. Keystore alias name that is used for
the signing or encryption.

keyAlias. Key alias in the particular keyStore .

truststoreAlias. Truststore alias name to validate the
server certificate.

httpTransportSecurityAlias authType. The type of authentication you want to use
while communicating with the native API.

The authentication types supported are:
HTTP_BASIC, NTLM, OAUTH2, KERBEROS, JWT, ALIAS, and
REMOVE_INCOMING_HTTP_HEADERS.

authMode. Authentication mode to use while
communicating with the native API.

The authentication modes supported are: NEW,
INCOMING_HTTP_BASIC_AUTH, INCOMING_WSS_USER,
INCOMING_X509, DELEGATE_INCOMING,
INCOMING_OAUTH_TOKEN, INCOMING_JWT, TRANSPARENT,
and INCOMING_KERBEROS.

httpAuthCredentials. Credentials to use for HTTP
authentication. The authentication credentials
supported are:

userName. Specify a username to access the native
API.

password. Specify a password to access the native
API.

78 webMethods API Gateway Administration 10.11

1 Deployment

ParametersType

domain. Specify a domain to access the native API.

kerberosCredentials.Credentials to use for Kerberos
authentication. The authentication credentials
supported are:

clientPrincipal. A unique identity to which
Kerberos can assign tickets.

clientPassword. Password for the client principal.

servicePrincipal.Aunique identifier of a service
instance.

servicePrincipalNameForm. The format in which
you want to specify the principal name of the
service that is registered with the principal
database. servicePrincipalNameForm value can be
hostbased or username.

requestDelegateToken.Boolean valuewhether the
token needs to be delegated or not.

oauth2Token.OAuth2 token to use for authentication.

transformationAlias fileName. Name of the file.

content. Content of the file.

serviceRegistryAlias endpointURI. Endpoint to use to communicate with
the service registry.

heartBeatInterval. API Gateway pings the service
registry on the configured interval for every API.

username.Username to use in the basic authentication
when communicating with the service registry.

password. Password to use in the basic authentication
when communicating with the service registry.

keystoreAlias. A keystore is a repository of private
key. This keystore contains the private key to use for
the SSL communication with the service registry.

keyAlias. The key alias is the private key to use for
signing when using SSL communication with the
service registry.

trustStoreAlias.A truststore is a repository of public
keys. This truststore contains the public key of the

webMethods API Gateway Administration 10.11 79

1 Deployment

ParametersType

service registry to use for the SSL communicationwith
the service registry.

customHeaders. Custom headers to send while
communicating with the service registry.

discoveryInfo. Contains information like resource
path and HTTP method to use while discovering a
service in service registry.

registrationInfo.Contains information like resource
path and HTTP method to use while registering a
service in service registry.

deRegistrationInfo. Contains information like
resource path and HTTP method to use while
de-registering a service from service registry.

serviceRegistryType.Contains the information about
the type of service registry.

connectionTimeout.The time interval (in seconds) after
which a connection attempt times out while
communicating with service registry.

readTimeout.The time interval (in seconds) afterwhich
a socket read attempt times out while communicating
with service registry.

awsConfigurationAlias region. The configured AWS instance region detail.

accessKey. The access key ID for the AWS instance.
This is used to sign the requests.

secretKey. The secret access key for theAWS instance.
This is used to sign the requests.

samlIssuerAlias issuerCommunicationMode.Mode of communication
to the STS.

issuerPolicy. The webMethods Integration Server
service name.

issuerAuthScheme. The authentication type to use for
communicating to STS.

issuerAuthMode.Mode of communication to STS.

wssCredentials. Credentials for the WSS Username
token.

80 webMethods API Gateway Administration 10.11

1 Deployment

ParametersType

kerberosCredentials. Credentials for the Kerberos
token.

endpoint. The endpoint URI of the STS.

samlVersion. SAML version used for authentication.

wsTrustVersion.WS-Trust version that API Gateway
must use to send the RST to the SAML issuer.

appliesTo. Specify the scope for which this security
token is required.

extendedParameters. Extensions to the
wst:RequestSecurityToken element for requesting
specific types of keys, algorithms, or key and
algorithms, as specified by a given policy in the return
tokens.

signAndEncryptConfig. Private and public keys to use
signature and encryption.

webmethodsAlias serviceName. The webMethods Integration Server
service name.

runAsUser. The user name you want API Gateway to
use to invoke the IS service.

complyToISSpec. Set to true, if you want the input and
the output parameters to comply to the IS Spec
specified.

clientMetadataMapping providerName. Name of the provider.

implNames.Map of specification names to the
implementation names of the service provider.

extendedValuesV2.List of headers that needs to be sent
along with the client management request.

generateCredentials. SpecifieswhetherAPIGateway
should generate clientId and client secret.

supportedApplicationTypes. List of application_type
values supported by the authorization server provider.

soapMessageSecurityAlias authType. Type of authentication.

authMode.Mode of authentication

wssCredentials. Credentials required for the WSS
Username token.

webMethods API Gateway Administration 10.11 81

1 Deployment

ParametersType

kerberosCredentials. Credentials for the Kerberos
token.

samlIssuerConfig. SAML issuer configuration name.

signAndEncryptConfig. Private and public keys to use
for signature and encryption.

isConfigurationAlias url. URL of the Integration Server.

username. User credentials required to access the
Integration Server instance.

password. Password required to access the Integration
Server instance.

keystoreAlias. The text identifier for the Integration
Server keystore file. The keystore contains the private
keys and certificates (including the associated public
keys) of Integration Server.

keyAlias. The alias for a specific key in the specified
keystore.

packageName. Default package name where the alias
is published.

folderName. Default folder name where the alias is
published.

authServerAlias description. Description of the auth server.

tokenGeneratorConfig. Specifies the token information
that would be added as a bearer token in the HTTP
request for client authentication.

supportedGrantTypes. Specifies the list of grant types
that are supported by API Gateway. The grant types
supported are:

authorization_code, client_credentials, and
implicit.

localIntrospectionConfig. Specifies the introspection
endpoint to check that access tokens used in client
requests are currently active and are valid to invoke
the protected resources.

sslConfig. Specifies the SSL configuration information.

82 webMethods API Gateway Administration 10.11

1 Deployment

Consolidating Externalized Configuration Files

You can consolidate the configurations of different inter-components and cluster in a single
configuration file.

A sample consolidated configuration file is as follows:
apigw:
elasticsearch:
tenantId: "apigateway"
hosts: "localhost:9240"
autostart: "true"
http:

username: ""
password: "@secure.elasticsearch.http.password"
keepAlive: "true"
keepAliveMaxConnections: 10
keepAliveMaxConnectionsPerRoute: 100
connectionTimeout: 1000
socketTimeout: 10000
maxRetryTimeout: 100000

https:
enabled: "false"
truststoreFilepath: "C:/softwares/elasticsearch-version/config/truststore-new.ks"

keystoreAlias: "root-ca"
truststorePassword: "@secure.elasticsearch.http.truststore.password"
enforceHostnameVerification: "false"

sniff:
enable: "false"
timeInterval: 1000

outboundProxy:
enabled: "false"
alias: "esoutboundproxyalias"

clientHttpResponseSize: 1001231
kibana:
dashboardInstance: "http://localhost:9405"
autostart: "true"

elasticsearch:
sslCA: "C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem"

filebeat:
output:
elasticsearch:
sslCA: "C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem"

cluster:
aware: "true"
name: "APIGatewayTSAcluster"
tsaUrls: "VMYAI105BVT06:9510"
terracottaLicenseFileName: "terracotta-license.key"
sessTimeout: "20"
actionOnStartupError: "standalone"

users:
tstk:

firstName: "stark"
lastName: "Koop"
password: "oops"
emailAddresses: [tstk@sag.com, tstk@sag.co.uk]
active: true

webMethods API Gateway Administration 10.11 83

1 Deployment

groups:
- "group1"
- "group2"

fred:
firstName: "Fred"
lastName: "Barker"
password: "oops"
emailAddresses: [fred@sag.com]
active: true
groups: [group1,group2]

bob:
firstName: "Bob"
lastName: "Tate"
password: "oops"
emailAddresses: [bob@sag.com]
active: true

masterpassword:
expiry: "60"
oldPassword: "old1"
newPassword: "new1"

ui:
http:

maxHttpHeaderSize: "8192"
connectionTimeout: "20001"
server: "SoftwareAG-Runtime"
maxSpareThreads: "78"
disableUploadTimeout: "true"
minSpareThreads: "23"
redirectPort: "19073"
acceptCount: "102"
port: "11072"
enableLookups: "false"
enabled: "true"
alias: "defaultHttp"

https:
maxHttpHeaderSize: "8192"
server: "SoftwareAG-Runtime"
maxSpareThreads: "72"
disableUploadTimeout: "true"
minSpareThreads: "22"
acceptCount: "104"
port: "11075"
enableLookups: "false"
enabled: "true"
alias: "defaultHttps"
sslProtocol: "tls"
sslEnabled: "true"
keystoreType: "xxy"
keystoreFile: "Test2"
keystorePass: "geheim"
scheme: "xScheme"
secure: "true"

aliases:
simpleAlias1:

type: "simple"
value: "vmspar02w"

endpointAlias1:
type: "endpoint"
endPointURI: "http://vmspar02w:9998"
connectionTimeout: 30

84 webMethods API Gateway Administration 10.11

1 Deployment

readTimeout: 30
suspendDurationOnFailure: 0
optimizationTechnique: "None"
passSecurityHeaders: false
keystoreAlias: "ksAlias"

httpSec1:
type: "httpTransportSecurityAlias"
authType: "HTTP_BASIC"
authMode: "INCOMING_HTTP_BASIC_AUTH"
httpAuthCredentials:

userName: "Bob"
password: "R3Vlc3NJdA=="
domain: "EUR"

myIsAlias:
type: "isConfigurationAlias"
url: "http://localhost:5555"
username: "Administrator"
password: "bXlwYXNz"
keystoreAlias: "DEFAULT_IS_KEYSTORE"
keyAlias: "ssos"
packageName: "WmAPIGateway"
folderName: "test2"
importSwaggerBasedOnTags: "false"
enableMTOM: "true"
enforceWSICompliance: "true"
validateSchemaWithXerces: "true"
contentModelComplianceForWSDL: "Lax"

testAuthServer:
type: "authServerAlias"
description: "Test Auth server"
tokenGeneratorConfig:

expiry: "0"
accessTokenExpInterval: "3600"
authCodeExpInterval: "600"
algorithm: "null"

supportedGrantTypes: ["authorization_code","client_credentials","implicit"]
authServerType: "EXTERNAL"
localIntrospectionConfig:

issuer: "testIssuer"
trustStoreAlias: "DEFAULT_IS_TRUSTSTORE"
certificateAlias: "sso"
jwksuri: "http://mytest.com"
description: "Issuer description"

remoteIntrospectionConfig:
introspectionEndpoint: "http://myendpoint"
clientId: "1234"
clientSecret: "c2VjcmV0"
user: "Administrator"

metadata:
authorizeURL: "http://softwareag.com/authorize"
accessTokenURL: "http://softwareag.com/accessToken"
refreshTokenURL: "http://softwareag.com/authorize/refresh"

sslConfig:
keyStoreAlias: "DEFAULT_IS_KEYSTORE"
keyAlias: "ssos"
trustStoreAlias: "DEFAULT_IS_TRUSTSTORE"

Similarly, you can consolidate separate property files into a single file as shown in the following
sample.

webMethods API Gateway Administration 10.11 85

1 Deployment

apigw.elasticsearch.tenantId=apigateway
apigw.elasticsearch.autostart=true
apigw.elasticsearch.hosts=localhost:9240
apigw.elasticsearch.clientHttpResponseSize=1001231
apigw.elasticsearch.http.keepAlive=true
.
.
.
apigw.kibana.dashboardInstance=http://localhost:9405
apigw.kibana.elasticsearch.sslCert=/path/to/your/client.crt
apigw.kibana.elasticsearch.sslKey=/path/to/your/client.key
apigw.kibana.elasticsearch.sslCA=C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem
.
.
.
.
apigw.filebeat.output.elasticsearch.sslCert=/path/to/your/client.crt
apigw.filebeat.output.elasticsearch.sslKey=/path/to/your/client.key
apigw.filebeat.output.elasticsearch.sslCA=C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem
.
.
.
apigw.cluster.tsaUrls=daeirnd33974:9510
apigw.cluster.actionOnStartupError=standalone
apigw.cluster.name=APIGatewayTSAcluster
apigw.cluster.sessTimeout=20
apigw.cluster.terracottaLicenseFileName=terracotta-license.key

Master configuration YAML file and its usage

The master configuration file, config-sources.yml, contains the paths, metadata, and properties
for the other configuration files. The master configuration file and the other configuration files
should be present in the folder SAGInstallDir\IntegrationServer\instances\instance_name\
packages\WmAPIGateway\resources\configuration. The master configuration file can contain
references to both YAML and Properties file types.

The master configuration file is read by API Gateway on startup. Using this file API Gateway
reads the different configurations provided in the folder. If any entry has an invalid file name or
path it is ignored but the error is logged into the API Gateway logs.

A sample master configuration file is as follows:
######################## Master configuration ############################
This is the master configuration file which contains the configuration
source definitions.
#
#======================= Sources configuration ==========================
sources:
#--------------------- YAML file configuration source --------------------
- type: YAML
allowEdit: true
properties:

location: allExternal-settings.yml
#------------------- Properties file configuration source ----------------
#- type: PROPERTIES
allowEdit: true
properties:

86 webMethods API Gateway Administration 10.11

1 Deployment

location: system-settings.properties
#
#================================== END =================================

The table lists and explains the properties of a configuration file source entry.

DetailProperty

Indicates the type of the configuration source. The applicable types are
YAML, PROPERTIES and CC_YAML.

type

YAML. A YAML configuration file.

PROPERTIES. A properties configuration file.

CC_YAML. A YAML configuration file, which is reserved for
Command Central updates.

Indicates whether this file can be updated from API Gateway and is
useful for hiding passwords.

allowEdit

Valid values are true and false.

If the value is set to true, it hides the clear text passwords.

If the value is set to false, it displays the clear text passwords.

Properties that enable API Gateway to connect to the defined
configuration source. For the 10.5 release only the location property
is supported.

properties

location. An absolute or relative path to a component-specific
configuration file. In case of relative path, the file would be located
relative to the system-defined location SAGInstallDir\
IntegrationServer\instances\instance_name\packages\
WmAPIGateway\resources\configuration.

Important:
For the CC_YAML file type, the location is fixed as cc-config.yml.
This file must not be modified manually as it is updated directly by
Command Central. Instead, use the Command Central interfaces to
modify this file.

Note:
Themaster configuration filename config-sources.yml is system-defined. A filewith a different
name is not treated as the master configuration file.

Hiding Clear Text Passwords in Configuration Files

To prevent unauthorized users from reading the credentials in the configuration files and other
potential threats, the Administrator can enable hiding of such secrets by setting the allowEdit flag
to true in the master configuration file. When allowEdit is set to true the secret values in the

webMethods API Gateway Administration 10.11 87

1 Deployment

configuration files are stored in the Password manager and the plain text values in the files are
replaced with the Password manager keys on API Gateway startup. After this, a user can see only
the password keys in the files. On startup, API Gateway would retrieve the passwords for those
settings from the Password manager using those keys and hence it is advised not to alter any of
the password manager key values in the file. The passwords can be modified at any time and the
same are replaced with the Password manager keys in the next API Gateway startup.

This table provides the list of the settings and their respective Password manager keys.

Password manager key replacementSetting

@secure.elasticsearch.http.passwordapigw:
elasticsearch:
http:
username: elastic

@secure.elasticsearch.http.keystore.passwordapigw:
elasticsearch:
https:
keystorePassword: 6572b9b06156a0ff778c

@secure.elasticsearch.http.truststore.passwordapigw:
elasticsearch:
https:
truststorePassword: 6572b9b06156a0ff778c

Properties File Support for Externalized Configurations

In addition to YAML files, configurations can be saved in Properties files as well. The property
names are the same as those in the YAML configuration files. The property names in Properties
files are delimited by a "." for forming the property name. For example. the tenantId property
under apigw > elasticsearch in YAML, can be specified as apigw.elasticsearch.tenantId in the
properties file.

A sample Properties file is as follows:
apigw.elasticsearch.tenantId=default
apigw.elasticsearch.autostart=false
apigw.elasticsearch.hosts=vmabc\:9240
apigw.elasticsearch.http.password=admin123
apigw.elasticsearch.http.username=admin
apigw.kibana.dashboardInstance=http://localhost:9405
apigw.kibana.elasticsearch.sslCert=/path/to/your/client.crt

Environment Variables Support for Externalized configurations

All the supported externalized configurations can be defined through environment variables. The
environment variable names are the same as the property names. Instead of the . delimiter the _
delimiter is used.

The main purpose of the environment variables is to inject a configuration into an API Gateway
container during startup.

88 webMethods API Gateway Administration 10.11

1 Deployment

A sample externalized configuration with environment variable is as follows:
apigw_elasticsearch_tenantId=default
apigw_elasticsearch_autostart=false
apigw_elasticsearch_hosts=vmabc\:9240
apigw_elasticsearch_http.password=admin123
apigw_elasticsearch_http_username=admin
apigw_kibana_dashboardInstance=http://localhost:9405
apigw_kibana_elasticsearch_sslCert=/path/to/your/client.crt

Configuring Multiple Configuration Files and Its Effects

The master configuration file can have many entries (0 to N) for defining multiple configuration
files as configuration sources. When such a file is used to start API Gateway, the configuration
values from all the files would be merged into a single effective configuration. If the same
configuration value is present in two files, then the value in the file which has a higher preference
is given priority. The order of preference is in the reverse order in which they are defined in the
master configuration file, that is, the configuration values that are defined in the last configuration
file entry would have the highest preference. A sample use case is explained below.

Assume file1.yml has the following configurations.
apigw:
elasticsearch:

tenantId: default

And, file2.properties has the following configurations.
apigw.elasticsearch.tenantId=apigateway

And, file3.yml has the following configurations.
apigw:
elasticsearch:

http:
username: admin
password: admin123

kibana:
dashboardInstance: http://localhost:5601

Then the combined configuration that becomes effective is as follows.

Effective config.yml configuration:
apigw:
elasticsearch:

tenantId: apigateway
http:

username: admin
password: admin123

kibana:
dashboardInstance: http://localhost:5601

webMethods API Gateway Administration 10.11 89

1 Deployment

Limitations

If you have defined cluster configuration in the externalized configuration file, on startup the
API Gateway server updates the internal settings with the values from the externalized
configuration files but the node in the cluster will not be updated. API Gateway server restart
is required for the cluster settings to become effective and to join the cluster.

Default Scenario

By default, on start API Gateway reads the master configuration file and loads all the defined
configuration source files referenced in the master configuration file. If the master configuration
config-sources.yml file does not exist or is not valid, APIGateway falls back to its default behavior,
that is, the values defined in the internal configuration file become effective. Similarly, if any of
the configuration files does not exist or is not valid, then those files are ignored and API Gateway
uses the corresponding internal configuration file. The API Gateway server startup is not blocked
in the above scenarios. Instead, the error logs are logged into API Gateway application logs for
debugging purpose.

Note:
To view the error logs, enable Debug level for the Externalized Configuration facility in the
logging settings.

A sample log for an API Gateway instance using externalized configurations is as follows:
[302]2019-08-16 11:19:02 IST [YAI.0013.8889I] [default][SAG-G43RXF2] Configuration
loaded from configuration sources. APIGatewayConfig:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[301]2019-08-16 11:19:02 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=PROPERTIES, allowEdit=true,
properties={location=components.properties}}:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='null',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[300]2019-08-16 11:19:02 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from Properties file source: ConfigurationSource{type=PROPERTIES,
allowEdit=true, properties={location=components.properties}}

[299]2019-08-16 11:19:02 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='null', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[298]2019-08-16 11:19:02 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from YAML file source: ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}

90 webMethods API Gateway Administration 10.11

1 Deployment

[297]2019-08-16 11:19:02 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Loading
configuration from sources: [ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}, ConfigurationSource{type=PROPERTIES,
allowEdit=true, properties={location=components.properties}}]

[293]2019-08-16 11:19:01 IST [YAI.0013.8889I] [default][SAG-G43RXF2] Configuration
loaded from configuration sources. APIGatewayConfig:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,

clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[292]2019-08-16 11:19:01 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=PROPERTIES, allowEdit=true,

properties={location=components.properties}}:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='null',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[291]2019-08-16 11:19:01 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from Properties file source: ConfigurationSource{type=PROPERTIES,

allowEdit=true, properties={location=components.properties}}

[290]2019-08-16 11:19:01 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=YAML, allowEdit=true,

properties={location=components.yml}}:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='null', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,

clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[289]2019-08-16 11:19:01 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from YAML file source: ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}

[288]2019-08-16 11:19:01 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Loading
configuration from sources: [ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}, ConfigurationSource{type=PROPERTIES,
allowEdit=true, properties={location=components.properties}}]

system-settings.yml

API Gateway ships with a default configuration file system-settings.yml, which contains the
default values for the inter-component and cluster configurations. TheAPIGatewayAdministrator
can start API Gateway with the original (default) configuration values by referring to this file in
the master configuration file (config-sources.yml) with a higher preference.

For more externalized configuration samples, see https://github.com/SoftwareAG/webmethods-
api-gateway/tree/master/samples/externalconfigurations.

Troubleshooting

The following checkpoints may resolve any issues, you may encounter, while externalizing
configurations.

webMethods API Gateway Administration 10.11 91

1 Deployment

https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/externalconfigurations
https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/externalconfigurations

Check whether the master config-sources.yml file exists and it is a valid YAML file.

Check whether the locations of the configuration files are correctly configured in the master
configuration file.

Check whether the configuration files are valid YAML files.

Check whether the configuration files contain the right structure and names for the settings
as provided in the templates.

Check whether the configured external instance (Elasticsearch or Kibana) is running before
starting API Gateway.

Check for the logs by enabling debug level of the Externalized Configuration facility in the
logging settings.

API Gateway Standard and Advanced Editions Capability Matrix
This table lists the capabilities available in the Standard and theAdvanced Editions of APIGateway.

Advanced EditionStandard EditionFeature

Administrators and API
Provider

AdministratorsUsers and Roles

YesYesAdministration

Ports

License management

Load balancing

Keystore configuration

YesNoAdministration

Extended settings

YesNoAlias management

YesNoService management

YesYesPolicy management

Threat protection rules

YesNoPolicy management

Global policies

Policy templates

YesNoExport and Import

92 webMethods API Gateway Administration 10.11

1 Deployment

Advanced EditionStandard EditionFeature

APIs

Global policies

YesNoApplication management

YesNoPlans and packages

YesYesAnalytics

Threat protection rule
violations

YesNoAnalytics

Service

Applications

Consumers

YesNoClustering and auto
synchronization

You can view the type of license by selecting Username > About. The information is displayed
under Product Information section. You can change the type of license at any time from the
Standard Edition to the Advanced Edition.

Note:
For details about API Gateway License management see, webMethods Integration Server
Administrator’s Guide

API Gateway, Elasticsearch, Kibana, and TSA Compatibility
Matrix
As stated earlier, API Gateway uses Elasticseach as its primary data storage. The compatible
Elasticsearch versions for the API Gateway versions depend on the API Gateway data type.

API Gateway data can be broadly classified into following four types:

Core data. This type includes APIs, Applications, Policies, Plans, Packages, Administration
Settings, Security Configurations (Keystores/Trustores) & Tokens (OAuth/API Keys).

Transaction data. This type includes the runtime transactions events and metrics data.

Application logs

Audit logs

webMethods API Gateway Administration 10.11 93

1 Deployment

The table below lists the Elasticsearch versions and corresponding Kibana and Terracotta Server
Array (TSA) versions that support the storage of core data and transaction data of the available
API Gateway versions:

Compatible TSA
version

CompatibleKibana
version

Compatible Elasticsearch
versions

(Transaction data level)

Compatible
Elasticsearch
versions

(Core data level)

API
Gateway
version

4.3.4 through 4.3.97.13.0All7.13.010.11

4.3.4 through 4.3.97.7All7.710.7

4.3.4 through 4.3.87.2.0All7.2.010.5

4.3.4 through 4.3.85.6.x, 4.5.xAll5.6.4, 2.3.210.4

4.3.4 through 4.3.85.6.x, 4.5.xAll5.6.4, 2.3.210.3

4.3.4 through 4.3.85.6.x, 4.5.xAll5.6.4, 2.3.210.2

4.3.4 through 4.3.84.5.xAll2.3.210.1

4.3.4 through 4.3.84.5.xAll2.3.29.12

API Gateway10.11 ships 7.13.0 version of Elasticsearch and Kibana, and 7.13.0 OSS version of
Filebeat.

94 webMethods API Gateway Administration 10.11

1 Deployment

2 Operating API Gateway

■ Administering API Gateway through API Gateway User Interface 96

■ Starting and Stopping API Gateway ... 96

■ Data Management .. 98

■ Monitoring API Gateway ... 172

■ General Administration Configuration .. 222

■ Destination Configuration ... 323

■ Audit Logging ... 364

■ System Settings ... 370

■ Configuring External Accounts ... 384

■ Configuration Types and Properties ... 391

webMethods API Gateway Administration 10.11 95

Administering API Gateway through API Gateway User Interface

This section describes the various administrative tasks that you can perform through the API
Gateway User Interface. The supported administrative tasks are as follows:

General configuration: load balancing, extended settings, service faults, approval settings,
proxy server aliases, and URL aliases.

Security configuration: keystores and trustore, ports, SAML issuer, custom assertions, OAuth
2.0, Kerberos settings, JWT, and OpenID provider.

Destination configuration: targets to which the events and performance metrics data is sent.

Data Management: configure the event types and interval at which data can be archived or
purged.

System setting configuration: configure system-level configuration parameters and
communicate them across nodes in the cluster.

External account configuration: add and configure service registries, AWS accounts, and
Integration Server instances.

You can access the API Gateway UI in the following ways:

Navigate to http://host:portwhere port is the HTTP port of API Gateway configured during
installation. For example, http://host:9072.

Log on to Integration Server administration console and click the homebutton ofWmAPIGateway
package under Packages > Management menu.

Log on to Integration Server administration console and click API Gateway under Solutions
menu.

Starting and Stopping API Gateway

Starting and Stopping API Gateway Using Scripts
You can use the predefined batch files to start API API Gateway. Use the startup.bat file to start
API Gateway.When you use scripts to start API Gateway, the start process is initiated immediately.
You do not have the option to hold the process until all the active sessions end. This method starts
API Gateway immediately.

To start and stop API Gateway using scripts

1. Open Command Prompt.

2. Navigate to C:\SAGInstallDir\IntegrationServer\instances\default\bin.

3. Run shutdown.bat to stop API Gateway.

96 webMethods API Gateway Administration 10.11

2 Operating API Gateway

4. Run startup.bat to start API Gateway.

In the default deployment scenario, when you start API Gateway instance, it automatically
starts the API Data Store and Kibana components as these components are bundled together.
If API Data Store and Kibana fails to start on their own, you have to start these components
manually as follows:

Run the startup.bat file located at SAGInstallDir\instance_name\InternalDataStore\bin
to start the API Data Store.

Run theshutdown.batfile located at SAGInstallDir\instance_name\InternalDataStore\
bin to stop the API Data Store.

Run thekibana.bat (Windows) or kibana.sh (Linux) file located at SAGInstallDir\profiles\
IS_default\apigateway\dashboard\bin to start the Kibana.

Shut down or Restart API Gateway Using User Interface
You can restart API Gateway through the Integration Server user interface. You can also restart
API Gateway in the Quiesce mode if you want to end all the active sessions before API Gateway
restart. This method may take more time to restart (as compared to using scripts) based on the
options you select.

To restart API Gateway from Integration Server user interface

1. Open a browser and type localhost:5555.

Note:
If you have changed the port number during installation, type the new port number.

This launches the WebMethods Integration Server Administrator page.

2. Click and select Shut down or restart.

The Shut down or restart page appears.

webMethods API Gateway Administration 10.11 97

2 Operating API Gateway

3. In the Shut Down or Restart section, select one of the following options:

After all sessions end and click Shut Down or Restart button to either shut down or
restart API Gateway after all the active sessions are completed.

Immediately and click Shut Down button to either shut down or restart API Gateway
immediately.

Important:
You must use the Immediately option only if your API Gateway has a clustered
configuration.With clustered configuration, all the active sessions are transferred to another
API Gateway node. If you select the Immediately option with a clustered configuration,
all your active sessions are lost.

4. Click one of the following buttons to restart API Gateway:

Shut Down. Select this option to shut down API Gateway normally.

Restart. Select this option to restart API Gateway normally.

Restart in Quiesce Mode. Select this option to restart API Gateway in quiesce mode.

Starting in quiesce mode allows you to run only few specific packages. If you restart API
Gateway in quiesce mode, you can only use those packages that are designated to run under
quiesce mode. This mode speeds up API Gateway as only selected packages are running. You
can exit this mode anytime by clicking the Exit Quiesce Mode button.

Data Management

As you create and publish APIs, and administer API Gateway settings as a part of your business,
the data generated from API Gateway gradually grows. The growing volume of data must be
properly managed for optimal access and usage of the required data.

For an effective data management practice, Software AG strongly recommends that you perform
the following :

Data housekeeping. Helps youmaintain a hassle-free database and enhances your data access
experience.

98 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Data backup (Data management for data recovery). Helps you protect your data and lets you
recover it when there is a data loss.

The following sections describe these use cases in detail.

Data housekeeping

Data housekeeping is to limit the data in maintained by API Gateway to avoid any capacity or
performance problems.

API Gateway records analytics and log data for every API invocation. As a result, the amount of
data maintained by API Gateway increases significantly.

Housekeeping involves maintaining the recent analytics and log data in API Gateway. Hence, the
older or obsolete data is removed or purged. You can archive the log and analytics data before
purging it. The archives can be used to meet long-term data retention requirements for forensic
analysis, legal, or compliance purposes.

Data backup for data recovery

To protect against accidental loss of data, you should take regular backups of your data.

Data losses can occur inmany forms, fromhardware failures to data center outages, human errors,
security threats, or other unexpected events. Legal compliance requirements or business continuity
planning may require measures that allow systematic handling of such data loss scenarios.

webMethods API Gateway Administration 10.11 99

2 Operating API Gateway

Backup refers to the practice of making periodic copies of important data to a separate storage
area. If the original data is lost or damaged, then use a copy to recover it.

Types of Data and their Storage
Before we learn how tomanage data, it is important to learn the types of data in API Gateway and
their storage details. The following table list the data that you need to manage:

Where is it stored?How is it stored?Data type

API Data Store (Elasticsearch)DocumentsAPI Gateway assets

API Data Store (Elasticsearch)DocumentsAPI Gateway analytics

On server nodes (File system)FilesPlatform data (configurations)

On server nodes (File system)FilesPlatform logs

Difference between Archive and Backup
This comparison helps you determine the right option to manage the data in your environment:

100 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Data Housekeeping
This section provides you the guidelines and procedures on how to performhousekeeping of your
data and it covers the following:

Requirements

The housekeeping requirements depend on your data size and the number of transactions recorded
per day. You need to analyze the existing data and the approximate transactional data that may
be recorded on a daily basis. Based on your analysis, you must set the housekeeping parameters.
Some of the questions that you need to answer during your analysis are as follows:

API transactions considerations:

What is the data retention period to be set? (for example, 90 days, 120 days, and so on).

Do you need a copy of the older data for long-term retention? (for legal compliance
requirements).

Would you ever require restoring data for a particular period? (for forensic analysis).

What would be the storage locations if you have to export archived data?

Server log considerations. What is the data retention period to be set? (for example, 90 days,
120 days, and so on).

Audit log considerations. What is the data retention period to be set? (for example, 90 days,
120 days, and so on).

webMethods API Gateway Administration 10.11 101

2 Operating API Gateway

Note:
The above questions are just samples that come across as the most common requirements. You
can extend the list with other appropriate questions that will help you determine the complete
set of data retention requirements.

Housekeeping approaches for API transaction data

You can use one of the following approaches to housekeep your API transaction data.

Archive. Archive is the process of moving data that is no longer actively used, to a separate
storage location for long-term retention. You may require archived data for future reference,
forensic analysis, or regulatory compliance.

Purge. Purge is the process of freeing up space in API data store by deleting obsolete data, not
required by the system (data older than the defined retention-period).

Capacity sizing

If you decide to setup archiving, you must first analyze the capacity sizing requirements.

The archiving process has a few capacity sizing requirements. The size of the memory and the
required storage depends on how much data is stored for every archive interval and the data
retention period.

Some of the factors to be considered are as follows:

What is the archive interval?

The archiving frequency to be practiced. This factor impacts the memory sizing.

Should the archives include API payload?

Inclusion of API payload details such as the headers, parameters, request, response, and so
on impacts memory and disk sizing.

What is the archive retention period?

This factor impacts disk sizing.

You must consider other factors based on your data archival requirements.

Purge does not require any additional capacity sizing.

Archive considerations

Ensure that you:

Use a dedicated storage area for archiving that is stored outside the API data store.

Schedule the archive process to be run during non-peak periods as it is generally resource
intensive and may affect the performance.

Perform the process of deleting the older archives after the defined retention period (for
example, after 2 years) either manually or using scripts.

102 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Purge considerations

The pre-requisites for Purge process are as follows:

For long-termdata retention needs, to prevent data loss, youmust archive the older data before
initiating the purge activity.

You must schedule the purge process to be run during non-peak periods.

CAUTION:
Purge results in irrecoverable loss of data, unless the data is archived.

Archive and purge methods

You can automate the archive and purge operations using REST APIs. Alternatively, you can also
archive and purge manually from the API Gateway UI. Software AG strongly recommends you
to use APIs and automate the process of archive and purge.

Archive and Purge using API

You can use the APIs provided by API Gateway to archive and purge data. This method is easy
and helps you automate the archive and purge operations.

Archive transaction and Audit data

You can archive outdated data (for example, data that is older than a year) for forensic analysis
and decision making. Archived data is not the same as backup data. Software AG recommends
that you use a proper naming convention for every archive that you create. You can specify the
period (like from 1 June to 1 July) and the type of events to be archived. For the list of events that
you can archive, see “List of events that can be archived or purged” on page 114.

You can use the following REST API to archive data:
curl -X POST -u "Administrator:manage" -H "content-type:application/json" -H
"Accept:application/json"
"http://localhost:5555/rest/apigateway/apitransactions/archives?"time interval"

The following API archives data of all event types for the period, 3 June 2021 to 4 June 2021:
curl -X POST -u "Administrator:manage" -H "content-type:application/json" -H
"Accept:application/json"
"http://localhost:5555/rest/apigateway/apitransactions/archives?
from=2021-06-03%2000:00:00&until=2021-06-04%2000:00:00&eventType=ALL"

You can schedule archiving using cron jobs or any other scheduling methods. Archiving is a
resource-intensive operation. You must not schedule it during peak hours.

You can monitor the status of an archive job using the following API:
curl -X GET -u "Administrator:manage" -H "content-type:application/json" -H
"Accept:application/json"
"http://localhost:5555/rest/apigateway/apitransactions/jobs/9c0eefde-dc26-4cb7-b0eb-dfe8f3a8a545"

webMethods API Gateway Administration 10.11 103

2 Operating API Gateway

The above command returns the following output, if the archive job completes successfully:
{

"status":"Completed",
"Filename":"\\default-2021-06-14-1623648788446"

}

If the archive job fails, the status field in the above output, displays Failed. You must configure
alerts for failures to get notified about the failed archive jobs. Common reasons for failure include
health of the Elasticsearch cluster, load on the system, and so on. You can look into server logs
and analyze the failure reasons.

Purging data

You can schedule and automate the purge process. You can also purge data manually through
the API Gateway UI. To learn more about how to purge data manually, refer to the “Archive and
Purge using UI” on page 109 section. You can purge the following data using commands.

Analytics data

Backup snapshots

Obsolete or empty indexes

Expired OAuth tokens

Archive data

Purge Analytics Data

You can purge analytics data based on timeline or size. As an example of timeline based purging,
you can purge data older than an year. As an example of size-based purging, you can purge data
greater than 100 GB.

Timeline based purging

You can use the following API to purge the analytics data of the specified event type and period:
curl -X DELETE -u "Administrator:manage" -H "Accept:application/json"
"http://localhost:5555/rest/apigateway/apitransactions?
action=purge&eventType=eventtype&olderThan=timeline"

For the list of events that you can specify with the API, see “List of events that can be archived or
purged” on page 114.

The olderthan field is the timeline field and can have one of the following values:

UsageExampleSyntaxTimeline Name

Purges all data up to last 1 year<1>Year<number>YYear

Purges all data up to last 1 month<1> M<number> MMonth

104 webMethods API Gateway Administration 10.11

2 Operating API Gateway

UsageExampleSyntaxTimeline Name

Purges all data up to last day<1>d<number>dDays

Purge all data up to the given time14h30m2s\<number>h<number>
m<number>s

Time

You can monitor the status of a purge job using the following API:
http://localhost:5555/rest/apigateway/apitransactions/jobs/<job_id>

If the purge is successful, you get the following output.
{
"status": "Completed",
"Filename": "File_name"
}

Purge based on size

You can purge data based on size. When the size of an index exceeds the specified 25 GB limit,
youmust roll over the index.When you roll over an index, a new index is created.When you have
new indexes, you can purge the old indexes. For example, if you have set maximum size for
analytics data as 300 GB, maximum size of an index to be 25 GB, and if your data grows to 325
GB, then you have 13 indexes and the size of each index is 25 GB. Each index contains a primary
and a replica shard. So, when the size of the primary shard of an index equals 12.5 GB, the size of
the replica index will also be 12.5 GB. The total size of the index will be 25 GB. Hence, you must
check the size of the primary shard of an index to decide whether the index needs to be rolled
over.

You must regularly monitor the indexes that need to be purged. For information on calculating
index size, see “Calculating index size” on page 206.

If you regularly roll over indexes, it becomes easier to find the oldest indexes and purge them.
Purging older and obsolete indexes ensure the quick recovery of disk space.

Perform the following steps to purge an index:

1. Find the oldest index using the following API:
curl -X GET
http://localhost:9240/_cat/indices/gateway_default_analytics_transactionalevents*?h=i&s=i:desc

Note:
The above API returns the list of indexes in descending order of index name. API Gateway
follows the pattern, gateway_default_transactionalevents_epoch_00000n, where the date
and time is represented in the epoch format and 'n' denotes any number starting from 1,
which increments during rollover.

API Gateway returns the following pattern, aliasname_yyyyMMddhhmm-00000n when no
target index suffix parameter is provided during roll over. If a target index suffix parameter
is provided during rollover, API Gateway returns aliasname_<targetIndexSuffix>

2. Delete the index returned in the previous step using the following API:

webMethods API Gateway Administration 10.11 105

2 Operating API Gateway

curl -X DELETE http://localhost:9240/indexname

3. To ensure that an index is deleted, run the following commandwith the required index name:
curl -v -X GET http://localhost:9240/indexname

If the deletion is successful, the above API returns the status code 404.

Purge backup snapshots

Data backups are created to safeguard data in a repository for restoring in case of any disasters.
The backup snapshots created over a period of time occupies a considerable disk space. Hence, it
is essential to purge backup snapshots that are older than the data retention period.

For information on purging backup snapshots, see “Deleting a Backup File” on page 142.

Purge obsolete or empty indexes

API Gateway may have empty indexes due to roll-over and purge operations. It is essential to
cleanup the empty indexes. You can delete an index if there are multiple indexes and the index
to be deleted is not a write index. Software AG recommends that you perform the purge operation
after the scheduled backups.

You can use the following API to check the documents stored by the indexes:
curl -X GET "http://localhost:9240/_cat/indices/
gateway_default_analytics_transactionalevents*?s=docs.count:asc&h=i,docs.count"

The API returns the following response:
gateway_default_analytics_transactionalevents_202106111722 0
gateway_default_analytics_transactionalevents_1622725174422-000001 2

If an index's response value is more than 0, it implies that index is not empty and must not be
deleted.

You can use the following API to check if the indexes are write index:
curl -X GET
"http://localhost:9240/_cat/aliases/gateway_default_analytics_transactionalevents?
h=i,is_write_index&s=is_write_index:asc"

The above API returns the following response:
gateway_default_analytics_transactionalevents_1622725174422-000001 false
gateway_default_analytics_transactionalevents_202106111722 true

If an index has a value true, it implies that the index is a write index and should not be deleted.

You can use the following API to delete an index:
curl -X DELETE http://localhost:9240/indexname

106 webMethods API Gateway Administration 10.11

2 Operating API Gateway

You can schedule the purge operation of indexes using a cron job or some other schedulingmethod.
You can schedule index purging on a daily basis. You canmonitor the index delete index by using
the following API:
curl -v -X GET http://localhost:9240/indexname

If the deletion is successful, the above API returns status code 404. You must configure alerts for
failed purge jobs. When a purge job fails, you must check the Elasticsearch logs to troubleshoot.

Purge expired OAuth tokens

You can use the following API to delete expired OAuth tokens.
https://<>/invoke/pub.oauth:removeExpiredAccessTokens

You can schedule the purge operation of indexes using a cron job or some other schedulingmethod.
You can scheduleOAuth token purging on a daily basis. Youmust configure alerts for failed purge
jobs. When a purge job fails, you must check the server logs.

Purge Archive Data

You must delete the archive data after it reaches the maximum retention period. There is no API
to clear the archive data. You must delete archives manually. You can delete archives on a daily
basis.

Important:
API Gateway does not perform the purge operation immediately. Once you initiate the purge
process, API Gateway starts to mark the files for deletion. Once all the files are marked, the
status of the purge operation shows 100% and this implies that the files are deleted internally.
However, the actual disk space which was occupied by the purged files is not freed-up, even
after the purge status shows 100%. When the purge status is 100%, it implies that the files are
internally deleted and it may take up more time to free up the disk space.

If you want to free up the disk space immediately after initiating the purge process, use the
following REST API:

http://Elasticsearch_host:Elasticsearch_port/target_indexes/_forcemerge?
only_expunge_deletes=true

where,

<target>. Comma-separated list of data streams, indexes, and aliases used to limit the request.
This parameter supports wildcards (*). To target all data streams and indices, exclude this
parameter or use * or _all.
only_expunge_deletes. Booleanparameter.When set to true, it expunges only those segments
containing document deletions.

Sample command

http://localhost:9240/gateway_default_analytics_transactionalevents/_forcemerge?only_expunge_deletes=true

You can use the ForceMergeAPI on the following indexes in API Data Store or an Elasticsearch:

Transaction events (gateway_default_transactionalevents)

webMethods API Gateway Administration 10.11 107

2 Operating API Gateway

Lifecycle events (gateway_default_lifecycleevents)
Performance metrics (gateway_default_performancemetrics)
Monitor events (gateway_default_monitorevents)
Threat Protection events (gateway_default_threatprotectionevents)
Policy violation events (gateway_default_policyviolationevents)
Error events (gateway_default_errorevents)
Audit events (gateway_default_auditlogs)
Application logs (gateway_default_log)
Mediator trace span (gateway_default_mediatortracespan and
gateway_default_serverlogtracespans)

To learn more about this API, see Elasticsearch documentation on Force Merge API.

Creating Rollover of indexes that exceed the maximum size

This section explains the steps to find out the indexes exceedingmaximum size and roll them over
using REST APIs.

For information about the roll over process using the apigatewayUtil script and the roll over
conditions, see “Creating Rollover of an Index” on page 131.

To create rollover of an index that has exceeded the given size

1. Run the following command with the required index name:

curl -X POST
"http://localhost:9240/gateway_tenant_index_name/_rollover/new_index_name"
-d '{"settings": {"index.number_of_shards":1,
"index.number_of_replicas":1},"conditions":{"max_size" : "max_index_size"}}'

For example, you can run the following command to roll over the analytics transactional
events index once it exceeds 12.5 GB:
curl -X POST

"http://localhost:9240/gateway_tenant_analytics_transactionalevents/_rollover/new_index_name"
-d '{"settings": {"index.number_of_shards":1,
"index.number_of_replicas":1},"conditions":{"max_size" : "13421772800b"}}'

or, run the following command to roll over the gateway_default_mediatortracespan tracer
index once it exceed 2.5 GB.
curl -X POST

"http://localhost:9240/gateway_tenant_mediatortracespan/_rollover/new_index_name"
-d '{"settings": {"index.number_of_shards":1,
"index.number_of_replicas":1},"conditions":{"max_size" : "2684354560b"}}'

Sample output:
{

"acknowledged": false,
"shards_acknowledged": false,
"old_index": "gateway_default_analytics_transactionalevents_202106091512",
"new_index": "gateway_default_analytics_transactionalevents_202106091514",

108 webMethods API Gateway Administration 10.11

2 Operating API Gateway

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html

"rolled_over": false,
"dry_run": false,
"conditions": {

"[max_size: 12gb]": false
}

}

Restoring Archived Data using API

Restoring is the process of copying backed up data from an archive and restoring it in the database
to replace lost or damaged data. You can restore the archived data in the API Gateway database
as required.

You can use the REST API, apitransactions/archives to restore archived data.

View the list of available archive files using the following REST API:
curl -XGET
"http://daeyaix1bvt01:5555/rest/apigateway/apitransactions/archives"
-H 'accept:application/json' -H "Accept: application/json" -u username:password

Sample response
{"archiveFiles":["default-2021-10-13-1634096748481","default-2021-10-13-1634096810028",
"default-2021-10-13-1634096871380","default-2021-10-13-1634096933197",
"default-2021-10-13-1634097054614","default-2021-10-13-1634097248461"]}

Restore the required archive file using the following REST API:
curl -XPOST
"http://localhost:5555/rest/apigateway/apitransactions/archives/filename"
-H "accept:application/json" -u username:password

Sample command
curl -XPOST
"http://localhost:5555/rest/apigateway/apitransactions/archives/default-2017-02-09-1486644396751"

-H "accept:application/json" -u Administrator:manage

Archive and Purge using UI

This section explains the steps to archive or purge data using the application UI.

For the list of events that you can archive or purge, see “List of events that can be archived or
purged” on page 114.

Note:
You can archive or purge the data in the API Data Store. If you use an external Elasticsearch as
a Data store for API Gateway, the archive or purge operations are performed against that data
store. These operations do not work on the data stores that are configured as destinations for
transactions & logs.

webMethods API Gateway Administration 10.11 109

2 Operating API Gateway

Archiving Data

Pre-requisites:

To archive data in the API Gateway database, you must have the Manage purge and restore
runtime event functional privilege in API Gateway.

Archiving is the process of moving data that is no longer actively used for long-term retention so
that it can be used at a later time. You can archive data based on the type of data or the age of the
data in the API Gateway database.

To archive data

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Manage Data.

3. Click Archive and purge.

4. Select the event types for which the data has to be archived.

For the list of events that you can archive or purge, see “List of events that can be archived or
purged” on page 114.

5. Select Archive.

6. Select one of the following options to archive the required data.

Select Range. Select a period during which you want the data to be archived.

To archive selected types of data from a particular date till the current date, select the
required date in the From date field.

To archive selected types of data from the beginning (events start date) till a particular
date, select the required date in the To date field.

If you select both From date and To date, all the data in the selected range is archived.

110 webMethods API Gateway Administration 10.11

2 Operating API Gateway

API Gateway archives the selected type of data for the given date range.

Select Older than. Type a number and a time period. For example, if you type 1Y, data
older than 1 year is selected for archiving. If you select 1M, data older than one month is
selected for archiving.

webMethods API Gateway Administration 10.11 111

2 Operating API Gateway

7. Click Submit.

The archive job is triggered and a job is created in the Job listing table.

By default, the archives are stored in the following location: SAGInstallPath/profiles/IS_
default/workspace/temp/default.

You can modify this location from the Configuration tab on the Manage Data section. To
learn more about the procedure, see “Archive and Purge Configuration” on page 116.
Alternatively, you can also use the backupsharedFilelocation property in the Extended
settings section to modify the location.

You can provide the maximum number of backups that can be archived using the
maxBackupslimitproperty in theExtended settings section. The default value of this setting
is 10. If you try to archive a backup after you reach the limit, you receive an error. To avoid
errors, you can increase the default value from 10 to a higher value. If you do not provide a
value in this field, then infinite number of archives are stored.

Purging Data

Pre-requisites:

To purge data from the API Gateway database, you must have the Manage purge and restore
runtime event functional privilege in API Gateway.

112 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Purging is the process of systematically deleting unwanted data from the database. You can purge
data based on the type of data or the age of the data in the API Gateway database.

To purge data

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Manage Data.

3. Click Archive and purge.

4. Select the event types for which the data has to be purged.

For the list of events that you can archive or purge, see “List of events that can be archived or
purged” on page 114.

5. Select Purge.

6. Select one of the following options to purge (delete) the required data.

Select Range. Select a period during which you want the data to be purged.

To purge selected types of data from a particular date till the current date, select the
required date in the From date field.

To purge selected types of data from the beginning (events start date) till a particular
date, select the required date in the To date field.

If you select both From date and To date, all the data in the selected range is archived.

Select Older than. Type a number and a time period. For example, if you type 1Y, data
older than 1 year is selected for purging. If you select 1M, data older than one month is
selected for purging.

7. Click Submit.

The purge operation is triggered and a job is created in the job table. You can monitor the
status of the purge operation, in the job table.

Restoring Archived Data using UI

Pre-requisites:

To restore data in theAPIGateway database, youmust have theManage purge and restore runtime
event functional privilege in API Gateway.

To restore archived data

webMethods API Gateway Administration 10.11 113

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Manage Data.

3. Click Restore.

You can view a list of archives in the job table.

4. Click the Restore icon for the archive job from which you want to restore data.

You can view the status of the restore job on the Archive and Purge page.

The selected data is restored in the API Gateway database, once the job is completed.

List of events that can be archived or purged

The following data can be archived or purged using Archive & Purge in API Gateway database:

DescriptionEvent name

Archives or purges the auditable event data.Audit logs

114 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionEvent name

Archives or purges the runtime error event data.Error events

Archives or purges the API Gateway's lifecycle data.Lifecycle events

Archives or purges the runtime monitoring data.Monitor events

Archives or purges the runtime performance metrics data.Performance metrics

Archives or purges the policy compliance violation data.Policy violation events

Archives or purges the threat protection data.Threat protection events

Archives or purges the API transactional data.Transaction events

Archives or purges the aggregated logs.Application logs

Archives or purges the stage-wise trace data.Mediator trace span

Archives or purges the server log data.Server log trace

Archives or purges the aggregated request and response trace
data.

Request response trace

Job Listing

You can view the status and other details of each archive and purge job in the job listing. You can
view this table only if you have created at least one archive job or purge job. The job listing table
displays the following details.

webMethods API Gateway Administration 10.11 115

2 Operating API Gateway

DescriptionColumn Name

Displays an auto-assigned unique ID for each archive and purge job.Job ID

Specifies the action performed by the task. It displays one of the
following actions based on the action performed:

Action

Archive

Purge

ArchiveandPurge

Restore

Displays the name of the archive file, created. By default, the name is
default-archive creation date-archive creation time. You cannot

Archive filename

change the default name. For a purge job the file name would display
asN/A.

Displays the status of the archive or purge job. The status can be one
of the following:

Status

Failed. The archive or purge job failed.

Completed. The archive or purge job is successfully completed.

In Progress. The archive or purge job is running.

Displays the date and time when the archive or purge job starts.Created

Allows you to refresh the status.Refresh

When you click refresh for an archive or purge job, the value of the
Status column is updated.

Archive and Purge Configuration

By default, the archived files are stored in the installation_location/profiles/IS_default/
workspace/temp/default location. However, you can store the archives in your preferred location.
You can use the backupsharedFilelocation field to set a different location to save archived files.
This setting performs the same operation as the backupsharedFilelocation extended setting.

Software AG recommends you to configure an alternate storage location for archived files. If you
use the default location, it uses the API Gateway disk space.

To configure the archive and purge settings

1. Expand the menu options icon , in the title bar, and select Administration.

116 webMethods API Gateway Administration 10.11

2 Operating API Gateway

2. Select Manage Data.

3. Click Configuration.

4. Type a new location to store the archives, in the backupsharedFilelocation field.

You must provide the complete path of the location in which you want to store the archives.
API Gateway creates a folder called default, in the specified location and stores all the archive
files in default folder, created in the specified location. For example, if you specify the location
as C:\SoftwareAG\APIGateway, a folder called default is created in the APIGateway folder and
archives are stored in this location.

5. Purge throttle per second controls the number of documents to be purged per second. The
default value is 1000. If the date range you selected for purge has 10000 documents, then it
takes 10 seconds to complete the purge operation. The default value of 1000 must work for
most of the cases. Increasing the value will increase the purge performance (speed). On a flip
side, this may cause memory pressure on API Data store (Elasticsearch) if the size of the
documents being purged are high.

Data Backup
This section covers the following topics related to data backup:

Backup Requirements Analysis

To analyze the backup requirements, you must first determine the following values:

Recovery Point Objective (RPO): Determines the frequency in which the backups must be
created. Basically, this value is the age of files thatmust be recovered frombackup for a business
operation to resume after a disaster.

For example, if the age of data, that you can afford to lose, just before a disaster is 30 minutes
then the RPO is 30 minutes. It means that you have to create a backup for every 30 minutes.

Recovery Time Objective (RTO): Determines the time that datamust be restored frombackup.

For example, if data has to be restored in 15 minutes from the time of disaster, then the RTO
is 15 minutes.

webMethods API Gateway Administration 10.11 117

2 Operating API Gateway

The RPO value could be different for each data type. For example, the RPO for the API assets data
could be one hour whereas the RPO for API analytics could be 24 hours.

Based on your backup requirements, you must ensure the pre-requisites are available.

Backup Repository Capacity Sizing

The size of backup repository depends on the size of data stored in API Data Store on a regular
basis. The following questions help you calculate the backup repository size:

What is the backup frequency?

The backup frequency impacts thememory size and it has to be taken into account for analyzing
memory size.

The recommended backup frequency for:

Assets data. More frequent. For example, 1 hour. The assets data is very critical for the
business to run seamlessly; and it is lesser in size.

Analytics data. Lesser frequent than the assets data. For example, 24 hours. The analytics
data is larger in size.

Are the API payload details included in the backup?

If you choose to backup the headers, parameters, requests, and responses of API payloads, it
impacts the memory and disk size.

How long the backup snapshots to be stored?

The retention period of backup snapshots impacts the disk size requirement. You could retain
backup snapshots for a maximum of 30 to 90 days based on your requirement after which you
can archive or purge.

Backup Considerations

118 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Software AG recommends that you follow these points for a seamless backup and restore process:

1. Store the backup of API assets, API analytics, and platform data in different repositories,
preferably outside the API Data Store folder.

2. Schedule your backup periodically.

3. Additional Elasticsearch plugins might be required if youwant to store the backup files in one
of the supported cloud storage spaces.

Backup Operation

For creating a complete API Gateway data backup, you must create a backup of

Assets data and Analytics data. You can create a backup of the assets and analytics manually
or by scheduling a cron job. The frequency in which the assets and analytics data is backed up
is different. So, they are taken in separate snapshots. For information on taking a backup of
API Data Store, see “Data Store Backup” on page 119.

Software AG recommends that you automate the backup process.

Platform Data. You can take a backup of the platform data using the apigatewayUtil script
or manually take a backup of the configuration files. Formore information on creating backup
of the platform data, see “Platform Data Backup” on page 152.

Typically, there is no need to back up the platform data periodically as these are mostly one-time
configurations required at the time of setup or provisioning. You can perform a file backup when
there are changes. For details on restoring platformdata, see “Restoring PlatformData” on page 166.

Data Store Backup

The API Data Store is backed up using the apigatewayUtil script. This script comes along with the
installation of the application, and you can find the same from the SAGInstallDir/
IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin folder.

Taking backup using the script involves the following steps:

API Gateway backups are snapshots of data taken incrementally. This backup process only copies
data to the repository that was not already copied by an earlier snapshot, avoiding unnecessary
duplication of work or storage space. Hence, you can safely take snapshots very frequently with
minimal overhead. For example, if you create backup files daily, the backup file you create has
only the data that has undergone change and the data created since your last backup, that is the
previous day.

This process of incrementing the data with snapshots only applies within a single repository
because no data is shared between repositories.

webMethods API Gateway Administration 10.11 119

2 Operating API Gateway

Format to run apigatewayutil Script

The apigatewayUtil script is always followed by:

a command, based on the operation that has to be performed. For example, create backup to
create a backup and list backup to view the list of backup files.

list of parameters to support the operation alongwith their corresponding values. For example,
include assets to include assets in the backup file.

For example,

If you need information on the parameters that you can use with the apigatewayUtil script and
their syntaxes, run the following command:

Linux
./apigatewayUtil.bat -help

Windows
apigatewayUtil.bat -help

Configuring a Backup Repository

A repository is a folder, network location, or cloud location where you store the data backup files.
The default repository that comes with the API Gateway installation is located at SAGInstallDir/
InternalDataStore/archives. This repository is called default. However, you can create additional
repositories for backup storage based on your requirements.

Configure the required repositories using the configure command. You can configure more than
one repository in one Elasticsearch instance with unique names. You can specify the required
repository name using the repoName parameterwhen performing backup and restore operations.

You can configure your backup repository in one of the following locations:

Local file system

Network file system

Cloud

120 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Configuring a Local File System Repository

The local file system functions as the default repository. If you do not create a repository, the
backup files are stored in the SAGInstallDir/InternalDataStore/archives/ folder, by default.

Note:
For a clustered API Gateway setup, ensure that the backup repository must be accessible for all
cluster nodes.

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin.

2. Run the following command to configure local file system repository:

Linux
./apigatewayUtil.sh configure fs_path -path backup_location

Windows
apigatewayUtil.bat configure fs_path -path backup_location

For example,
apigatewayUtil.bat configure fs_path -path D:/localapigatewayBackup

This command creates a backup folder called localapigatewayBackup in the D drive.

3. Restart API Data Store.

You can now use the configured local repository to store backup files. For information about
backing up, “Creating API Data Store Backup” on page 125.

4. Optional. Run the following command to list the available list of repositories and verifywhether
the repository you created appears in the list:

Linux
./apigatewayUtil.sh list manageRepo

Windows
apigatewayUtil.bat list manageRepo

You can specify the log file location and log level for the repository creation using the
logFileLocation and logLevelparameters. For information on these parameters, see “Specifying
Log File Details” on page 144

Configuring a Network File System Repository

You can specify a folder that is safe in the network as a repository to store your backup files.

webMethods API Gateway Administration 10.11 121

2 Operating API Gateway

If you are performing this for a clustered setup, ensure that all nodes in the cluster can access the
repository.

To configure a network file system repository

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin.

2. Run the following command to create a network repository:

Linux
./apigatewayUtil.sh configure fs_path -path network_location

Windows
apigatewayUtil.bat configure fs_path -path network_location

For example,
apigatewayUtil.bat configure fs_path -path //10.2.35.121/apigatewayBackup

This command creates a repository called localapigatewayBackup at the specified network
location.

You can specify the log file location and log level for the repository creation using the
logFileLocation and logLevelparameters. For information on these parameters, see “Specifying
Log File Details” on page 144

3. Restart API Data Store.

You can now use the configured network repository to store backup files. For information on
backing up, “Creating API Data Store Backup” on page 125.

4. Optional. Run the following command to list the available list of repositories and verifywhether
the repository you created appears in the list:

Linux
./apigatewayUtil.sh list manageRepo

Windows
apigatewayUtil.bat list manageRepo

You can specify the log file location and log level for the repository listing using the
logFileLocation and logLevelparameters. For information on these parameters, see “Specifying
Log File Details” on page 144

Configuring a Cloud Repository in Amazon S3

You can configure the following types of cloud repositories:

122 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Amazon S3

Azure storage. For information on setting up a Azure cloud repository, see https://
www.elastic.co/guide/en/cloud/current/ec-azure-snapshotting.html.

This section explains the steps to configure an Amazon S3 repository. To configure a repository,
ensure that you have installed the Amazon S3 plugin in Elasticsearch.

To configure an Amazon S3 cloud repository

1. From the command prompt, go to SAGInstallDir/InternalDataStore/bin.

2. Run the following command to create Elasticsearch keystore:

Linux
./elasticsearch-keystore create

Windows
elasticsearch-keystore.bat create

3. Run the following command to add theAmazon S3 repository access key to your Elasticsearch
keystore:

Linux
./elasticsearch-keystore add s3.client.default.access_key

Windows
elasticsearch-keystore.bat add s3.client.default.access_key

4. When prompted for the Amazon S3 repository access key, type the access key value and press
Enter.

Enter value for s3.client.default.access_key: 123-test-123d-123

5. Run the following command to add the Amazon S3 repository secret key:

Linux
./elasticsearch-keystore add s3.client.default.secret_key

Windows
elasticsearch-keystore.bat add s3.client.default.secret_key

6. When prompted for the Amazon S3 repository secret key, type the secret key value and press
Enter.

Enter value for s3.client.default.secret_key: tests1232sk12312t

webMethods API Gateway Administration 10.11 123

2 Operating API Gateway

https://www.elastic.co/guide/en/cloud/current/ec-azure-snapshotting.html
https://www.elastic.co/guide/en/cloud/current/ec-azure-snapshotting.html

Important:
You must restart Elasticsearch once you provide the secret key.

7. Go to
SAGInstallDir/IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin/conf.

8. Open the gateway-s3-repo.cnf file and specify Amazon S3 values for the following fields:

type=s3
bucket=<s3-bucket-name>
region=<s3-region>
access_key=<s3-access-key>
secret_key=<s3-secret-key>
base_path=<s3-base-path>

For example,
type=s3
bucket=s3 bucket
region=ap-south-1
access_key=apikey
secret_key=secretKey
base_path=basepath/repo

9. Run the following command:

Linux
./apigatewayUtil.sh configure manageRepo -file file_path

Windows
apigatewayUtil.bat configure manageRepo -file file_path

For example,
./apigatewayUtil.sh configure manageRepo -file
SAGInstallDir/IntegrationServer/instances/
instance_name/packages/WmAPIGateway/cli/bin/conf/gateway-s3-repo.cnf

You can specify the log file location and log level for the repository creation using the
logFileLocation and logLevelparameters. For information on these parameters, see “Specifying
Log File Details” on page 144.

10. Restart API Data Store.

You can now use the configured cloud repository to store backup files. For information on
backing up, “Creating API Data Store Backup” on page 125.

11. Optional. Run the following command to list the available list of repositories and verifywhether
the repository you created appears in the list:

Linux
./apigatewayUtil.sh list manageRepo

124 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Windows
apigatewayUtil.bat list manageRepo

You can specify the log file location and log level for the repository listing using the
logFileLocation and logLevelparameters. For information on these parameters, see “Specifying
Log File Details” on page 144.

Creating API Data Store Backup

After you have configured the backup repositories, you can create backups.

Pre-requisites:

Ensure that you have the API Gateway running during backup.

Ensure that you configure a repository to store your backupfiles. For information about creating
and configuring a repository, see “Configuring a Backup Repository” on page 120.

To take backup

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin.

Note:
Replace defaultwith the corresponding instance name.

2. Run the following command to create a backup in the default location:

Linux
./apigatewayUtil.sh create backup

Windows
apigatewayUtil.bat create backup

The following sample shows the creation of a backup on Windows. The backup is created in
the default location, SAGInstallDir/InternalDataStore/archives/.
C:\SoftwareAG\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>apigatewayUtil.bat
create backup
Initiated backup process for default-2021-may-17-22-23-2-266000000 file

You can include the following parameters to customize the backup as per your requirements.

DescriptionParameter

Name of the backup file. You can provide alphanumeric values and the
following special characters: !, @, $, % , (,). The name can be based on date
and time for unique identification.

name

webMethods API Gateway Administration 10.11 125

2 Operating API Gateway

DescriptionParameter

If you do not provide any name for the backup file, the script generates a
namewith the current time and the value provided for the tenant parameter.
For example, default-2021-may-17-22-23-2-266000000.

Note:
Do not use uppercase in the name.

Name of the tenant in which the data exists.tenant

If you do not provide this parameter, the value is picked from
pg.gateway.elasticsearch.tenantIdproperty in config.propertiesfile located
at IntegrationServer\instances\instance_name\packages\WmAPIGateway\
config\resources\elasticsearch.

Name of the repositorywhere the backupmust be saved. If you do not specify
this value, then the backup is stored in the default location.

repoName

If you do not provide this parameter, the value is picked from the tenant
parameter.

Type of data you want to include in the backup file. All indexes, irrespective
of their types, are included in the backup file if you do not provide any
parameters.

include

Available options for this parameter are:

Assets. To include all API Gateway assets in the backup being created.

Audit. To include the audit data in the backup.

Analytics.To include analytics data in the backup.

License. To include the license data in the backup. This data provides
the transaction usage analytics across all stages of the application.

Log. To include log data in the backup. The log index stores the
application logs when log aggregation is enabled in API Gateway. It
stores logs at Integration Server level, API Data Store level, and platform
level.

If you include one or more of the above entries in your backup, the
corresponding item is added as a suffix to your backup file name. That is, if
you provide include assets audit parameter in your backup command, and if
your backup name is backup01, then the backup file name is created as
backup01 -assets audit.

If you have different retention period for core data and analytics data, then
you can use this parameter to create backup of a particular type of data. For
example, if you have an RPO of 30 mins for core data and 4 hours for all data

126 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

(including analytics), then you run the following command for every 30mins
and the full backup command every 4 hours:
apigatewayUtil.bat create backup
-tenant mytenant
-name mytenant_2021June031230
-include assets -repoName myrepo

The names of indexes that you can providewith this parameter for the above
data types are listed in the section, “List of Indexes that can be included in
backup” on page 146.

Option to specify whether you want to activate debugging when creating a
backup. Available levels are:

debug

true. Displays detailed information on the backup process when the
script is run. Inmost cases, the output printedwith the debug parameter
is helpful to troubleshoot the issue.

false. Does not display detailed information. The value is considered as
false, when this parameter is not provided.

Level of log that you want to create. Log levels indicate the severity of logs.
Available levels are:

logLevel

Info. Provides the list of regular events that occur during the process.
These events are informative.

Debug. Provides the events that could be useful, if you have to debug the
process.

Warning. Indicates unexpected events that occurred during the process.
Usually, these events do not interrupt or have an immediate effect on the
process.

Error. Indicates the events that stop the functionality from working as
designed.

Trace. Provides the list of events in a much detailed manner that could
be useful for debugging.

You can specify one of the log levelwith the logLevelparameter. For example,
to create a log file of Warning level when listing backup files, you can run the
following command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error level logs are
saved.When you provideDebug as the log level, thenDebug, Info,Warning
and Error level logs are saved. When you provide Trace as log level, then
all level logs are saved.

webMethods API Gateway Administration 10.11 127

2 Operating API Gateway

DescriptionParameter

This parameter is optional. If you do not specify the parameter, then the Info
level logs are saved by default.

Location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you can provide
the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter, the logs are
saved in the following location SAGInstallDir/IntegrationServer/instances/
instance_name/packages/WmAPIGateway/cli/logs/APIGWUtility.log.

The parameters listed above are optional. To create a backup file in the repository that you
configured, use the repoName parameter to provide the repository name. That is,
apigatewayUtil.bat create backup -repoName repository_name

For example,
apigatewayUtil.bat create backup -repoName s3_repo

After running the script, you can check the backup status using the status backup command
and view the list of backup files in your repository. For information on verifying backup status,
see “Verifying Backup Status” on page 139 and for information on viewing the list of backup
files, see “Viewing Backup Files List” on page 136.

Important:
From the Data housekeeping perspective, Software AG recommends that you schedule the
execution of these commands through cron jobs or other scheduling options. The frequency
of the backup depends on your RPO needs.

Advanced Backup Options

The following sections explain the advanced backup options.

Creating Backup of specific Indexes

API Data Store contains multiple indexes. Different indexes are used to store different types of
data. So, to take a backup of a particular data, you can take a backup of a specific index or set of
indexes. For the list of indexes available in API Data Store, see “List of Indexes that can be included
in backup” on page 146.

To take a backup of the required indexes

128 webMethods API Gateway Administration 10.11

2 Operating API Gateway

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin.

Note:
Replace defaultwith the corresponding instance name.

2. Run the following command to create a backup of specific indexes in the default location:

Linux
./apigatewayUtil.sh create backup -indices list of indexes separated by comma

Windows
apigatewayUtil.bat create backup -indices list_of_indexes separated by comma

The following sample shows the creation of a backup of the file indexes,
gateway_default_aliases-000001 and gateway_default_truststores-000001, onWindows. The backup
is created in the default location, SAGInstallDir/InternalDataStore/archives/.
C:\SoftwareAG\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>apigatewayUtil.bat
create backup

-indices gateway_default_aliases-000001, gateway_default_truststores-000001
Initiated backup process for default-2021-may-17-22-23-2-266000000 file

For the list of indexes that you can provide with the indices parameter, see “List of Indexes
that can be backed up individually” on page 149.

Similar to the list of parameters used during backup creation, you can provide parameters
except the include parameter. So, the list of parameters to customize the backup of specific
indexes as per your requirements are:

DescriptionParameter

Name of the backup file. You can provide alphanumeric
values and the following special characters: !, @, $, % , (,).

name

If you do not provide any name for the backup file, the script
generates a name with the current time and the value
provided for the tenant parameter. For example,
default-2021-may-17-22-23-2-266000000.

Note:
Do not use uppercase in the name.

Name of the tenant in which the data exists.tenant

If you do not provide this parameter, the value is picked from
pg.gateway.elasticsearch.tenantId property in
config.properties file located at IntegrationServer\
instances\instance_name\packages\WmAPIGateway\config\
resources\elasticsearch.

webMethods API Gateway Administration 10.11 129

2 Operating API Gateway

DescriptionParameter

Name of the repository where the backup must be saved.repoName

If you do not provide this parameter, the value is picked from
the tenant parameter.

Option to specify whether you want to activate debugging
when creating a backup. Available levels are:

debug

true. Displays detailed information on the backupprocess
when the script is run. In most cases, the output printed
with the debug parameter is helpful to troubleshoot the
issue.

false. Does not display detailed information. The value
is considered as false, when this parameter is not
provided.

Level of log that you want to create. Log levels indicate the
severity of logs. Available levels are:

logLevel

Info. Provides the list of regular events that occur during
the process. These events are informative.

Debug. Provides the events that could be useful, if you
have to debug the process.

Warning. Indicates unexpected events that occurredduring
the process. Usually, these events do not interrupt or have
an immediate effect on the process.

Error. Indicates the events that stop the functionality from
working as designed.

Trace. Provides the list of events in a much detailed
manner that could be useful for debugging.

You can specify one of the log level with the logLevel
parameter. For example, to create a log file of Warning level
when listing backup files, you can run the following
command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error
level logs are saved. When you provide Debug as the log
level, then Debug, Info, Warning and Error level logs are
saved. When you provide Trace as log level, then all level
logs are saved.

This parameter is optional. If you do not specify the
parameter, then the Info level logs are saved by default.

130 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

Location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you
can provide the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the
parameter, the logs are saved in the following location
SAGInstallDir/IntegrationServer/instances/instance_name/
packages/WmAPIGateway/cli/logs/APIGWUtility.log.

Creating Rollover of an Index

When data on a particular index exceeds a certain limit, it is essential to rollover the index and
create a new index. In API Gateway, it is essential to monitor the indexes for transactional events.
For transactional events, you must rollover the index, when the index size exceeds 25 GB. When
an index is rolled over, a new index is created with two primary and a replica for each shard.

You can perform rollover for the following indexes:

performancemetrics

policyviolationevents

monitorevents

errorevents

threatprotectionevents

webMethods API Gateway Administration 10.11 131

2 Operating API Gateway

transactionalevents

lifecycleevents

auditlogs

log

serverlogtrace

mediatortrace

requestresponsetrace

To create rollover of an index

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin.

Note:
Replace defaultwith the corresponding instance name.

2. Run the following command to create a backup of specific indexes in the default location:

Linux
./apigatewayUtil.sh rollover index -type name of the index to roll over

Windows
apigatewayUtil.bat rollover index -type name of the index to roll over

The following sample shows the roll over of index, performancemetrics, on Windows.
C:\SoftwareAG\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>apigatewayUtil.bat
rollover index
-type performancemetrics

Rollover is completed successfully
Old Index: gateway_default_analytics_performancemetrics_202108140608
New Index: gateway_default_analytics_performancemetrics_202108140612
Rolled over: true
Dry Run: false
Conditions: [{}]

You can include the following optional parameters to customize the roll over command as per
your requirements.

DescriptionParameter

Name of the tenant in which the data exists.tenant

If you do not provide this parameter, the value is picked from
pg.gateway.elasticsearch.tenantId property in
config.properties file located at IntegrationServer\

132 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

instances\instance_name\packages\WmAPIGateway\config\
resources\elasticsearch.

Suffix to be included in the name of the rolled over index. If
you do not provide this parameter, the rollover timestamp is

targetIndexSuffix

added as a suffix to the rolled over index. You can provide a
suffix such as the date distinguish the index.

For example, if you provide the following command:
apigatewayutil.bat rollover index
-type performancemetrics -targetIndexSuffix 15aug2021

the suffix is added to the rolled over index
Rollover is completed successfully
Old Index:
gateway_default_analytics_performancemetrics_14aug2021
New Index:
gateway_default_analytics_performancemetrics_15aug2021
Rolled over: true
Dry Run: false
Conditions: [{}]

Option to check whether the current index matches with any
of the specified conditions.

dryRun

Possible values are:

true. Performs check on the current index against the
specified conditions.

false. Does not check the current index. This is the default
value and the value of the parameter is considered as false,
if do not specify this parameter.

You can specify one of the conditions listed in the “Conditions
that can be givenwith rollover command” on page 135 section.

For example, to check if the size of the current log index is 6
GB, you can run the command as seen here:
apigatewayutil.bat rollover index -type
log -dryRun true -maxSize 6GB

Sample result:
Dry run executed successfully.
Old Index: gateway_default_log_1628582905777-000001
New Index: gateway_default_log_202108271018
Rolled over: false
Dry Run: true
Conditions: [{[max_size: 6gb]=false}]

webMethods API Gateway Administration 10.11 133

2 Operating API Gateway

DescriptionParameter

Note:
This parameter does not perform rollover. It displays results
based on the check performed.

Level of log that you want to create. Log levels indicate the
severity of logs. Available levels are:

logLevel

Info. Provides the list of regular events that occur during
the process. These events are informative.

Debug. Provides the events that could be useful, if you have
to debug the process.

Warning. Indicates unexpected events that occurred during
the process. Usually, these events do not interrupt or have
an immediate effect on the process.

Error. Indicates the events that stop the functionality from
working as designed.

Trace. Provides the list of events in amuchdetailedmanner
that could be useful for debugging.

You can specify one of the log level with the logLevel
parameter. For example, to create a log file of Warning level
when listing backupfiles, you can run the following command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error
level logs are saved.When you provideDebug as the log level,
then Debug, Info, Warning and Error level logs are saved.
When you provide Trace as log level, then all level logs are
saved.

This parameter is optional. If you do not specify the parameter,
then the Info level logs are saved by default.

Location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you
can provide the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter,
the logs are saved in the following location SAGInstallDir/
IntegrationServer/instances/instance_name/packages/
WmAPIGateway/cli/logs/APIGWUtility.log.

134 webMethods API Gateway Administration 10.11

2 Operating API Gateway

The specified indexes are rolled over when any one of these conditions is satisfied.

Conditions that can be given with rollover command

In addition to the above parameters you can provide the following conditions based on which the
specified indexes must be rolled over:

DescriptionCondition

Maximum age of the indexes.maxAge

The specified indexes are rolled over if they are older than the
value provided for this condition. For the list of possible values
for this field, see https://www.elastic.co/guide/en/elasticsearch/
reference/master/api-conventions.html#time-units.

For example, to roll over themonitorevents index if it is older
than 2 minutes, you can provide
apigatewayutil.bat rollover index
-type monitorevents -maxAge 2m

Maximum number of the documents in the indexes.maxDocs

The specified indexes are rolled over if the number of
documents in the indexes are more than or equal to the value
provided for this condition.

For example, to roll over the monitorevents index if the
number of documents in the index is more than or equal to
100, you can provide
apigatewayutil.bat rollover index
-type monitorevents -maxDocs 100

Maximum size of the indexes.maxSize

The specified indexes are rolled over if their size is equal to or
more than the value provided in this condition. For the list of
possible values for this field, see https://www.elastic.co/guide/
en/elasticsearch/reference/master/api-conventions.html#byte-
units.

For example, to roll over the monitorevents index if its size
is more than 1 GB, you can provide
apigatewayutil.bat rollover index
-type monitorevents -maxAge 1gb

Maximum size of the primary shard of the indexes.maxPrimaryShardSize

webMethods API Gateway Administration 10.11 135

2 Operating API Gateway

https://www.elastic.co/guide/en/elasticsearch/reference/master/api-conventions.html#time-units
https://www.elastic.co/guide/en/elasticsearch/reference/master/api-conventions.html#time-units
https://www.elastic.co/guide/en/elasticsearch/reference/master/api-conventions.html#byte-units
https://www.elastic.co/guide/en/elasticsearch/reference/master/api-conventions.html#byte-units
https://www.elastic.co/guide/en/elasticsearch/reference/master/api-conventions.html#byte-units

DescriptionCondition

The specified indexes are rolled over if the size of their primary
shards is equal to or more than the value provided for this
condition.

For example, to roll over the monitorevents index if the size
of the index's primary shard is more than or equal to 1 GB,
you can provide
apigatewayutil.bat rollover index
-type monitorevents -maxPrimaryShardSize 1GB

Viewing Backup Files List

You can view the list of backup files in a location using the list backup command.

To view the list of backup files

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin.

Note:
Replace defaultwith the corresponding instance name.

2. Run the following command:

Linux
./apigatewayUtil.sh list backup

Windows
apigatewayUtil.bat list backup

The available list of backup files appears as follows:
C:\SoftwareAG\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>apigatewayUtil.bat
list backup
Backups available in default are

default-2021-april-12-11-38-4-420000000
sample
backup12april-analytics
default-2021-april-12-16-49-30-247000000
default-2021-may-17-22-23-2-266000000
default-2021-may-17-22-24-53-611000000

You can provide the following parameters based on your requirement:

136 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

Name of the tenant for which you want to view the list of
backup files.

tenant

If you do not provide this parameter, the value is picked from
pg.gateway.elasticsearch.tenantId property in
config.properties file located at IntegrationServer\
instances\instance_name\packages\WmAPIGateway\config\
resources\elasticsearch.

Name of the repository for which you want to view the list of
backup files.

repoName

If you do not provide this value when running the list
command, then the value is picked from the tenant parameter
and the list of backup files from that repository appears.

Option to specify the status of backup files and filter backup
files based on their status. For example, if you want to view

status

the list of backup files whose status is Partial, then you can
run the command as seen here:
apigatewayUtil.bat list backup -status partial

For information on possible states of backup files, see
“Verifying Backup Status” on page 139.

Option to display detailed status of the backup files in a given
repository. Possible values are:

verbose

true. The backup files appear with the following details:

snapshot. Name of the backup file.

status. Status of the backup process.

startTime. Time when the backup process was
initiated.

endTime. Time when the backup process was
completed.

Duration. Time taken for the backup creation.

Indices. Name of the indexes included in the backup.

Successful shards. Number of successful shards in
backup.

Failed shards. Number of failed shards in backup.

Total shards. Total number of shards in backup.

webMethods API Gateway Administration 10.11 137

2 Operating API Gateway

DescriptionParameter

false. The backup files appear without the details listed
above.

When you do not provide this parameter, the value for the
parameter is considered as false, the backup files appear
without the list of details seen above.

Option to specify the format in which the details must appear.
Works in combination with the verbose parameter. Available
options are:

format

JSON

Text

For example, if you run the following command, the backup
status details are displayed in plain text format:
apigatewayUtil.bat status backup -name
samplebackup -verbose true -format text

Level of log that you want to create. Log levels indicate the
severity of logs. Available levels are:

logLevel

Info. Provides the list of regular events that occur during
the process. These events are informative.

Debug. Provides the events that could be useful, if you have
to debug the process.

Warning. Indicates unexpected events that occurred during
the process. Usually, these events do not interrupt or have
an immediate effect on the process.

Error. Indicates the events that stop the functionality from
working as designed.

Trace. Provides the list of events in amuchdetailedmanner
that could be useful for debugging.

You can specify one of the log level with the logLevel
parameter. For example, to create a log file of Warning level
when listing backupfiles, you can run the following command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error
level logs are saved.When you provideDebug as the log level,
then Debug, Info, Warning and Error level logs are saved.
When you provide Trace as log level, then all level logs are
saved.

138 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

This parameter is optional. If you do not specify the parameter,
then the Info level logs are saved by default.

Location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you
can provide the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter,
the logs are saved in the following location SAGInstallDir/
IntegrationServer/instances/instance_name/packages/
WmAPIGateway/cli/logs/APIGWUtility.log.

Verifying Backup Status

When you run the create backup command, the backup process is initiated. You can then verify
the status of a backup file using the status backup command. This command checks the status
of a backup file and displays one of the following results:

DescriptionStatus

The backupfile is successfully createdwith the given parameters.Success

The backup process has failed. You can diagnose the cause of
failure using the -debug true parameter along with the create

Failed

backup command or by checking the logs. Formore information,
see “Troubleshooting a Failed Backup” on page 156.

The backup process is still in progress. This message usually
appears when the backup data is large and you verify the status
as soon as you initiate the backup process.

In progress

The backup of the data is partially complete. You can
troubleshoot such instances by following the steps given in
“Troubleshooting a Failed Backup” on page 156.

Partial

The specified backup file does not exist. Verify the file name
and repository.

Unavailable

To verify the status of a backup

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin.

Note:

webMethods API Gateway Administration 10.11 139

2 Operating API Gateway

Replace defaultwith the corresponding instance name.

2. Run the following command:

Linux
./apigatewayUtil.sh status backup -name backup-file-name

Windows
apigatewayUtil.bat status backup -name backup-file-name

The backup status appears as shown below:
C:\SoftwareAG\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>apigatewayUtil.bat
status backup -name

default-2021-april-12-11-38-4-420000000
The status of the default-2021-april-12-11-38-4-420000000 is SUCCESS

You can specify tenant and repository when verifying the backup status via the following
parameters:

DescriptionParameter

Name of the tenant that you want to verify backup status.tenant

If you do not provide this parameter, the value is picked from
pg.gateway.elasticsearch.tenantId property in
config.properties file located at IntegrationServer\
instances\instance_name\packages\WmAPIGateway\config\
resources\elasticsearch.

Name of the repository where the backup can be found.repoName

If you do not provide this parameter, the value is picked from
the tenant parameter.

Option to display detailed status of the backup files in a given
repository. Possible values are:

verbose

true. The backup files appear with the following details:

snapshot. Name of the backup file.

status. Status of the backup process.

startTime. Timewhen the backupprocesswas initiated.

endTime. Time when the backup process was
completed.

Duration. Time when for the backup creation.

Indices. Name of the indexes included in the backup.

140 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

Successful shards. Number of successful shards in
backup.

Failed shards. Number of failed shards in backup.

Total shards. Number of successful shards in backup.

false. The backup files appear without the details listed
above.

When you do not provide this parameter, the value for the
parameter is considered as false, the backup files appear
without the list of details seen above.

Option to specify the format in which the details must appear.
Works in combination with the verbose parameter. Available
options are:

format

JSON

Text

For example, if you run the following command, the backup
status details are displayed in plain text format:
apigatewayUtil.bat status backup -name
samplebackup -verbose true -format text

Level of log that you want to create. Log levels indicate the
severity of logs. Available levels are:

logLevel

Info. Provides the list of regular events that occur during
the process. These events are informative.

Debug. Provides the events that could be useful, if you have
to debug the process.

Warning. Indicates unexpected events that occurred during
the process. Usually, these events do not interrupt or have
an immediate effect on the process.

Error. Indicates the events that stop the functionality from
working as designed.

Trace. Provides the list of events in amuch detailedmanner
that could be useful for debugging.

You can specify one of the log level with the logLevel
parameter. For example, to create a log file of Warning level
when listing backup files, you can run the following command:
apigatewayUtil.bat list backup -logLevel warning

webMethods API Gateway Administration 10.11 141

2 Operating API Gateway

DescriptionParameter

When you provide Error as the log level, then only the error
level logs are saved.When you provideDebug as the log level,
then Debug, Info, Warning and Error level logs are saved.
When you provide Trace as log level, then all level logs are
saved.

This parameter is optional. If you do not specify the parameter,
then the Info level logs are saved by default.

Location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you
can provide the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter,
the logs are saved in the following location SAGInstallDir/
IntegrationServer/instances/instance_name/packages/
WmAPIGateway/cli/logs/APIGWUtility.log

If you run the status backup command without the tenant and repoName parameters, then
the given backup file is checked in the default tenant and repository.

Deleting a Backup File

You can delete backups that are older than your data retention period and no more required.

As stated earlier, API Gateway backups are snapshots of data taken incrementally. These snapshots
are logically independent from each other, even within a single repository. Hence, deleting a
backup file does not affect the integrity of any other backup file.

CAUTION:
Use the delete backup command instead of deleting manually.

To delete a backup file

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin.

Note:
Replace defaultwith the corresponding instance name.

2. Run the following command to delete a backup file:

Linux

142 webMethods API Gateway Administration 10.11

2 Operating API Gateway

./apigatewayUtil.sh delete backup -name backup-file-name

Windows
apigatewayUtil.bat delete backup -name backup-file-name

Tip:
To determine the backup files for deleting, you can view the list of backup files with the
verbose parameter set as true. For information on viewing the list of backup files, see
“Viewing Backup Files List” on page 136.

You can provide the following parameters based on your requirements:

DescriptionParameter

Name of the tenant in which the backup file is located.tenant

If you do not provide this parameter, the value is picked
from pg.gateway.elasticsearch.tenantId property in
config.properties file located at IntegrationServer\
instances\instance_name\packages\WmAPIGateway\config\
resources\elasticsearch.

Name of the repository from which you want to delete the
backup file.

repoName

If you do not provide this parameter, the value is picked
from the tenant parameter.

Option to delete the backup files that were created earlier
than the given number of days. You must provide this

olderThan

parameter with the required number of days as seen in the
following example:
apigatewayUtil.bat delete backups -olderThan 10

This command deletes the backup files that were created
earlier than the past 10 days.

Level of log that you want to create. Log levels indicate the
severity of logs. Available levels are:

logLevel

Info. Provides the list of regular events that occur during
the process. These events are informative.

Debug. Provides the events that could be useful, if you
have to debug the process.

Warning. Indicates unexpected events that occurred
during the process. Usually, these events do not interrupt
or have an immediate effect on the process.

webMethods API Gateway Administration 10.11 143

2 Operating API Gateway

DescriptionParameter

Error. Indicates the events that stop the functionality
from working as designed.

Trace. Provides the list of events in a much detailed
manner that could be useful for debugging.

You can specify one of the log level with the logLevel
parameter. For example, to create a log file of Warning level
when listing backup files, you can run the following
command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error
level logs are saved. When you provide Debug as the log
level, then Debug, Info, Warning and Error level logs are
saved. When you provide Trace as log level, then all level
logs are saved.

This parameter is optional. If you do not specify the
parameter, then the Info level logs are saved by default.

Location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you
can provide the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup

-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the
parameter, the logs are saved in the following location
SAGInstallDir/IntegrationServer/instances/instance_
name/packages/WmAPIGateway/cli/logs/APIGWUtility.log.

Specifying Log File Details

Log files created during backup and restore are used tomonitor the process and diagnose problems
encountered during the process. You can specify the required level of log and the location where
the log file must be saved using the following parameters with the apigatewayUtil script:

DescriptionParameter

Allows you to specify the required level of log that youwant to create.
Log levels indicate the severity of logs. Available levels are:

logLevel

Info. Provides the list of regular events that occur during the
process. These events are informative.

144 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

Debug. Provides the events that could be useful, if you have to
debug the process.

Warning. Indicates unexpected events that occurred during the
process. Usually, these events do not interrupt or have an
immediate effect on the process.

Error. Indicates the events that stop the functionality from
working as designed.

Trace. Provides a much detailed events that could be useful for
debugging.

You can specify one of the log level with the logLevel parameter.
For example, to create a log file of Warning level when listing backup
files, you can run the following command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error level
logs are saved. When you provide Debug as the log level, then
Debug, Info, Warning and Error level logs are saved. When you
provide Trace as log level, then all level logs are saved.

This parameter is optional. If you do not specify the parameter, then
the Info level logs are saved by default.

Allows you to provide the location where you want to save the log
file.

logFileLocation

For example, to save the log file in C:/apiglogs/backups, you can
provide the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter, the
logs are saved in the following location SAGInstallDir/
IntegrationServer/instances/instance_name/packages/
WmAPIGateway/cli/logs/APIGWUtility.log.

Viewing Exit Codes for Backup Script Operations

When you automate running the apigatewayUtil script, the script returns an exit code to indicate
the process status. The following table lists the possible exit codes:

DescriptionExit codes

Command execution successful.0

webMethods API Gateway Administration 10.11 145

2 Operating API Gateway

DescriptionExit codes

Command execution failed due to some internal error.1

Backup process in progress8

Status of the backup process is failed.9

Status of the backup process is success.10

Backup file not found.11

Specified backup files are successfully deleted.12

Unable to delete the specified backup files.13

Unable to roll over indexes.14

To view the exit codes in command prompt

1. Run the following command immediately after running the apigatewayUtil script with any
command:

echo %ERRORLEVEL%

For example,
C:\SoftwareAG_1011\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>

apigatewayUtil.bat create backup -name backup-apis
Initiated backup process for backup-apis

C:\SoftwareAG_1011\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>echo
%ERRORLEVEL%

0

List of Indexes that can be included in backup

This sections lists the indexes that you can provide with the include parameter to include them
in a backup file .

Index nameIndex type

gateway_default_monitoreventsAnalytics

gateway_default_lifecycleevents

gateway_default_threatprotectionevents

gateway_default_policyviolationevents

gateway_default_performancemetrics

gateway_default_errorevents

146 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Index nameIndex type

gateway_default_transactionalevents

gateway_default_approverAssets

gateway_default_strategies

gateway_default_plans

gateway_default_searchquery

gateway_default_jndisettings

gateway_default_publishinfo

gateway_default_applications

gateway_default_assertion

gateway_default_stages

gateway_default_uipolicy

gateway_default_apis

gateway_default_oauth2token

gateway_default_rollback

gateway_default_migrationinfos

gateway_default_microgatewayregistrationinfo

gateway_default_microgatewayassets

gateway_default_outboundproxysettings

gateway_default_truststores

gateway_default_registeredapplications

gateway_default_policyactions

gateway_default_kerberossettings

gateway_default_oauth2materializedtoken

gateway_default_ispackages

gateway_default_policy

gateway_default_subscriptions

gateway_default_oauth2scopedata

webMethods API Gateway Administration 10.11 147

2 Operating API Gateway

Index nameIndex type

gateway_default_gatewayscopes

gateway_default_promotions

gateway_default_quotaaccumulator

gateway_default_jmsconnectionalias

gateway_default_oauth2accesstoken

gateway_default_urlaliases

gateway_default_keystore

gateway_default_portalgateways

gateway_default_accessprofiles

gateway_default_documents

gateway_default_users

gateway_default_jmstrigger

gateway_default_aliases

gateway_default_deploymentmap

gateway_default_oauth2clientregistration

gateway_default_configurations

gateway_default_passmandata

gateway_default_internalsettings

gateway_default_egpolicyindexlists

gateway_default_groups

gateway_default_oauth2scopes

gateway_default_oauth2refreshtoken

gateway_default_approvalconfiguration

gateway_default_webserviceendpointalias

gateway_default_approvalrequest

gateway_default_reversemaps

gateway_default_packages

148 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Index nameIndex type

gateway_default_accesscontrollist

gateway_default_rule

gateway_default_promotionsets

gateway_default_proxybypass

gateway_default_bindingassertion

gateway_default_tokenassertion

gateway_default_mediatortracespan

gateway_default_serverlogtracespans

gateway_default_requestresponsetracespans

gateway_default_dashboardDashboard

gateway_default_notificationsLicense

gateway_default_apiusagedetails

gateway_default_monthlyaggregateddetails

gateway_default_licensemetrics

gateway_default_notificationcriteria

gateway_default_auditlogsAudit

gateway_default_logLog

gateway_default_cachestatisticsTrace Cache

gateway_default_serverlogtracespans

gateway_default_mediatortracespan

gateway_default_requestresponsetracespans

List of Indexes that can be backed up individually

This section lists the indexes that you can back up individually or combined together using the
indices parameter:

license_licensemetrics

rule

microgatewayassets

webMethods API Gateway Administration 10.11 149

2 Operating API Gateway

stages

approver

urlaliases

oauth2authcode

registeredapplications

migrationinfos

analytics_monitorevents

hints

truststores

kerberossettings

audit_auditlogs

outboundproxysettings

dashboard-event-log

accesscontrollist

analytics_policyviolationevents

jmstrigger

serverlogtracespans

microgatewayregistrationinfo

appmesh

analytics_performancemetrics

keystore

mediatortracespan

appmesh_deployment_api

strategies

analytics_threatprotectionevents

gatewayscopes

aliases

internalsettings

portalgateways

150 webMethods API Gateway Administration 10.11

2 Operating API Gateway

ispackages

tokenassertion

deploymentmap

groups

jndisettings

oauth2token

uipolicy

license_monthlyaggregateddetails

license_notifications

license_apiusagedetails

approvalconfiguration

analytics_lifecycleevents

configurations

oauth2refreshtoken

documents

searchquery

plans

policy

oauth2scopedata

egpolicyindexlists

license_notificationcriteria

promotionsets

applications

rollback

requestresponsetracespans

webhooks

passmandata

oauth2accesstoken

bindingassertion

webMethods API Gateway Administration 10.11 151

2 Operating API Gateway

dashboard

assertion

publishinfo

analytics_transactionalevents

oauth2materializedtoken

policyactions

log

apis

accessprofiles

quotaaccumulator

promotions

analytics_errorevents

jmsconnectionalias

webserviceendpointalias

packages

proxybypass

reversemaps

oauth2clientregistration

cache_cachestatistics

approvalrequest

subscriptions

oauth2scopes

users

For information on creating a backup of required indexes, see “Creating Backup of specific
Indexes” on page 128.

Platform Data Backup

Software AG recommends that you backup the platform data immediately after the initial setup
and once after every platform configuration deployment changes. For example, Changing the JVM
heap memory.

152 webMethods API Gateway Administration 10.11

2 Operating API Gateway

When you perform platform data backup of a cluster, you must backup the data of each node
though the configuration is expected to be consistent among the nodes.

The list of API Gateway configuration data and their respective location is as follows:

Is this
supported
by
externalization?

LocationFile nameConfiguration

NoSAGInstallDir/
InternalDataStore/config/

elasticsearch.ymlElasticsearch
configuration

YesSAGInstallDir/
IntegrationServer/

config.propertiesElasticsearch
client
configuration instances/ instance_name/

packages/WmAPIGateway/
config/ resources/
elasticsearch/

NoSAGInstallDir/profiles/
instance_name/ apigateway/
dashboard/config/

kibana.ymlKibana
configuration

NoSAGInstallDir/
profiles/instance_name/
apigateway/config/

uiconfiguration.propertiesUI
configurations

YesSAGInstallDir/profiles/
instance_name/

mpw.datMaster
password

configuration/security/
passman/

NoIf the portClusteringEnabled
extended setting is set to false, you

Server Ports
configuration

must create the server ports in each
instance.

YesSAGInstallDir/
profiles/instance_name/

com.softwareag.catalina.connector.

http.pid-apigateway.properties

WebApp
settings

configuration/

com.softwareag.catalina.connector. com.softwareag.platform.
config.propsloader/

https.pid-apigateway.properties

NoSAGInstallDir/profiles/
instance_name/
configuration/

Custom settings on memorycustom_wrapper.

conf

webMethods API Gateway Administration 10.11 153

2 Operating API Gateway

You can back up the platformdata using the export platformConfiguration command. This script
backs up the platform configurations that are covered using Externalized configuration feature
(indicated in the last column of the above table). You can backup other configurations manually.

For information on using the export platformConfiguration command, see “Creating Platform
Data Backup using Script” on page 154.

For the list of data that must be backed up manually, see “Creating Platform Data Backup
Manually” on page 155.

Creating Platform Data Backup using Script

The script saves the platform data backup in the YML format.

Pre-requisites:

Ensure that you have the API Gateway running during backup.

Ensure that you have the repository where you want to save the platform data backup.

To take backup of platform data

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin.

2. Run the following command to create a backup in the default location:

Linux
./apigatewayUtil.sh export platformConfiguration -url URL of the instance
-username User name to access the URL -password Password to access the URL
-filePath Location where the backup must be saved

Windows
apigatewayUtil.bat export platformConfiguration -url URL of the instance
-username User name to access the URL -password Password to access the URL
-filePath Location where the backup must be saved

You can include the following parameters to customize the backup as per your requirements.

DescriptionParameter

Password required to access the specified instance (from where the
platform data backup is taken). If you want to avoid providing the

password

password in clear text when running the apigatewayutil script, you can
skip this parameter. When you run the commandwithout the password
parameter, then you will be prompted to enter the password. You can
provide the password in hidden characters.

Allows you to specify the required level of log that you want to create.
Log levels indicate the severity of logs. Available levels are:

logLevel

154 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

Info. Provides the list of regular events that occur during the process.
These events are informative.

Debug. Provides the events that could be useful, if you have to debug
the process.

Warning. Indicates unexpected events that occurred during the
process. Usually, these events do not interrupt or have an immediate
effect on the process.

Error. Indicates the events that stop the functionality from working
as designed.

Trace. Provides a much detailed events that could be useful for
debugging.

You can specify one of the log level with the logLevel parameter. For
example, to create a log file of Warning level when listing backup files,
you can run the following command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error level logs
are saved. When you provide Debug as the log level, then Debug, Info,
Warning and Error level logs are saved. When you provide Trace as log
level, then all level logs are saved.

This parameter is optional. If you do not specify the parameter, then the
Info level logs are saved by default.

Allows you to provide the location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you can provide
the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter, the logs
are saved in the following location SAGInstallDir/IntegrationServer/
instances/instance_name/packages/WmAPIGateway/cli/logs/
APIGWUtility.log

Creating Platform Data Backup Manually

The backup script, apigatewayUtil, does not backup the following configuration data. For the
backup of configuration data, you need to create copies of the following files in a Version Control
system or a Network File Storage system:

webMethods API Gateway Administration 10.11 155

2 Operating API Gateway

File locationFile nameConfiguration

SAGInstallDir/profiles/instance_name/
apigateway/config/

uiconfiguration.propertiesUI
configurations

SAGInstallDir/profiles/instance_name/
configuration/
com.softwareag.platform.config.propsloader/

com.softwareag.catalina.connector.

http.pid-apigateway.properties

com.softwareag.catalina.connector.

WebApp
settings

https.pid-apigateway.properties

Location used by users to save the file.File name specified by users.Custom ESB
packages

Generally, the customized packages are saved
in the following location: SAGInstallDir\
IntegrationServer\tenant\packages\

SAGInstallDir/profiles/instance_name/
configuration/

Custom settings on memorycustom_wrapper.
conf

Backup folders monitoring

You must manually monitor the folders, in which you maintain the backup files, to identify any
possible failures. This process cannot be automated and thus, this has to manually monitored.

Troubleshooting a Failed Backup

To diagnose any problems and troubleshoot the failing backup operations, you can activate debug
loggingwhen creating a backup. The debug log is activated by setting the debug parameter to true.

Linux
./apigatewayUtil.sh create backup -debug true

Windows
apigatewayUtil.sh create backup -debug true

The activated debug logging provides detailed information on the backup process on the console.
You can find further details in the logs created in the SAGInstallDir\InternalDataStore\logs
folder.

Important:
When taking backup in synchronousmode, if you encounter a socket time out error then backup
in asynchronous mode.

Troubleshooting Tips: API Data Store Backup

156 webMethods API Gateway Administration 10.11

2 Operating API Gateway

I see an error while executing apigatewayUtil.bat create backup command

The apigatewayUtil.bat create backup command fails to execute with the following
BeanCreationException error:

org.springframework.beans.factory.BeanCreationException: Error creating bean with name
'elasticSearchClient' defined in URL file:E:/ESB/WM/IntegrationServer/instances/default/
packages/WmAPIGateway/config/resources/beans/gateway-es-store.xml : Invocation of initmethod
failed; nested exception isNoNodeAvailableException[None of the configured nodes are available:
[

Resolution:

Ensure that you have provided a valid elasticsearch hostname and port number in the
config.properties file located at SAGInstallDir\IntegrationServer\instances\default\packages\
WmAPIGateway\config\resources\elasticsearch.

When the Elasticsearch is clustered, I am unable to backup the API Gateway database

When I attempt to backup the API Gateway database with the following commands, they fail:

apigatewayUtil.bat create backup

apigatewayUtil.bat status backup

apigatewayUtil.bat list backup

apigatewayUtil.bat list manageRepo

This is because of the path.repo specified in the elasticsearch.yml. The path.repo was pointing to a
local file instead of a shared file location.

Resolution:

In the Elasticsearch cluster environment, it ismandatory to specify a shared file location as path.repo
in the elasticsearch.yml located at SAGInstallDir\InternalDataStore\config.

Error occurs when I access the backup repository

When I access the backup repository after some configuration changes, I see the following error

message:

Error While getting all snapshots or repository - default.Message-[default] could not read repository data
from index blb.

In such scenarios, you can delete the repository and create a fresh one to store your backup files

by following the steps given in Resolution 1. Or, you can move the existing backup files to a new

repository by following the steps in Resolution 2.

Resolution 1:

webMethods API Gateway Administration 10.11 157

2 Operating API Gateway

Perform the following steps to delete the problematic repository and create a new one.

1. Run the following command to delete the repository:

Linux
./apigatewayUtil.sh delete manageRepo -repoName repository_name

Windows
apigatewayUtil.bat delete manageRepo -repoName repository_name

For example,
apigatewayUtil.bat delete manageRepo -repoName myrepo

The repository is deleted.

2. Create a newbackup repository. For details on the commands see - “Creating Backup of specific
Indexes” on page 128

You can now store your backup in a new repository.

Resolution 2:

Perforn the following steps to move the backup files to another repository.

1. Stop API Data Store.

2. Create a new repository to move the required backup files.

3. Copy the backup to the new repository.

4. Start API Data Store.

5. Verify if the backup was created. For more information see - “Verifying Backup Status” on
page 139

When I modify a Network File System repository, how do I ensure that all Internal
Data Store yaml files are updated without corrupting the repository.

In such scenarios, you can copy the existing backup file to the new repository or if you do no need
the backup file you can delete the backup file in the existing repository.

Resolution 1:

Perform the following steps to copy the backup file to the new repository.

1. Stop API Data Store.

2. Copy all the exsisting backup files to a new repository.

3. Start API Data Store.

Note:
Software AG recommends not to run any command before copying the old backup.

158 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Resolution 2:

Perform the following steps to delete the backup file in the existing repository.

1. Stop API Data Store.

2. Delete all old repository.

Linux
./apigatewayUtil.sh delete manageRepo -repoName repository_name

Windows
apigatewayUtil.bat delete manageRepo -repoName repository_name

For example,
apigatewayUtil.bat delete manageRepo -repoName myrepo

The repository is deleted.

3. Start API Data Store.

Restore Operation

When you setup a new API Gateway instance or a node, you can restore the data that you have
backed up from an earlier instance to recreate the same instance.

Similar to the backup operation, youmust perform the following processes for complete restoring
of the API Gateway data:

Restore using the apigatewayUtil script - to restore the API Data Store. For information on the
script, see “Restoring Data Store Backup” on page 159.

Manual restore - to restore the API Gateway configuration data. For more information, see
“Restoring Platform Data” on page 166.

Pre-requisites

Before you perform a data restore, ensure that the:

Backup snapshots are taken as per the specified RPO.

Required snapshots are available in the corresponding repositories.

API Gateway components are up and running.

Restoring Data Store Backup

You can restore the data from backup snapshots using the apigatewayUtil script.

Important:

webMethods API Gateway Administration 10.11 159

2 Operating API Gateway

If your restore operation fails for some reason and if the error message instructs you to use the
perform_open_indices command, follow the steps given in the section “Troubleshooting a
Failed Restore” on page 167.

To restore API Data Store

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin.

Note:
Replace defaultwith the corresponding instance name.

2. Run the following command to restore a backup file:

Linux
./apigatewayUtil.sh restore backup -name backup-file-name

Windows
apigatewayUtil.bat restore backup -name backup-file-name

The specified backup is restored. Since, the repoName parameter is not specified in the above
command, the value is picked from the tenantparameter.

You can include the following parameters as per your requirements:

DescriptionParameter

Name of the tenant from which you want to restore.tenant

If you do not provide this parameter, the value is picked from
pg.gateway.elasticsearch.tenantIdproperty in config.propertiesfile located
at IntegrationServer\instances\instance_name\packages\WmAPIGateway\
config\resources\elasticsearch.

Name of the repository from which you want to restore the backup file.repoName

If you do not provide this parameter, the value is picked from the
tenantparameter.

In case you have more than one repository, you must provide this parameter
with the name of the repository that you want to restore from.

Option to specifywhether the restore process is performed in a synchronously
or asynchronously. The possible values are:

sync

true. The restore process is synchronous. That is, the script will wait until
the restore is completed. Depending on the size of the data being restored,
this could be a time-consuming process.

160 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

false. The process is asynchronous. That is, the script does not wait for the
completion of the restore operation. Rather, the restore request will be
issued, and the script will complete. This is the default value. You can
later check the status of the restore process using the status restore
command. For information on viewing the restore status, see “Verifying
Restore Status” on page 164.

Option to specify whether that the tenant name in the backup file is different
from the tenant name on which the restore is being performed. Hence, this

srcTenant

must be used in combination with the tenant parameter that specifies the
tenant name to which the data backup is being restored. That is,
apigatewayUtil.sh restore backup
-name backup_file_name
-srcTenant backup_tenant_name
-tenant tenant_name

If you do not provide the tenant parameter, then the script assumes the tenant
name as the value for srcTenant.

Note:
The srcTenant, aggregate, and restoreClusterState parametersmust be used
with caution and only in cases where it is deemed necessary. For normal
incremental backup and restore operations, these parameters do not play
a significant role.

Option to include any of the following based on your input:include

analytics. Restores the analytics data, logs, and events data.

assets. Restores assets.

license. Restores license metrics.

audit. Restores audit logs.

log. Restores log data.

You can provide one or more of the above values separated by commas, and
without spaces. For example, to restore analytics and assets, you can provide
./apigatewayUtil.sh restore
backup -name backup_file_name
-repoName repository_name
-include analytics,assets

Option to specify whether the existing license, logs, audit, and analytics data
should be merged with the restored data. The possible values are:

aggregate

true. The existing data is mergedwith the restored data. If some analytics
data is present in the current instance, and you restore from a backup,

webMethods API Gateway Administration 10.11 161

2 Operating API Gateway

DescriptionParameter

which also has analytics data, and if you provide -aggregate true, then
the script restores the analytics data from the backup into a new index
and includes it in the index alias for analytics. So you can find the existing
analytics data as well the analytics data from the restored backup file in
your instance.

false. The existing data is replacedwith the restored data. This is the default
value.

Note:
This parameter is not applicable for assets data. That is, you cannot
aggregate assets data. Hence, if you had provided -include assets in your
restore command, then the parameter is ignored because it is not applicable.

Option to specify whether the global state settings such as templates and
cluster state must be restored. The cluster state includes information such as

restoreClusterState

persistent cluster settings, index templates, pipelines, and so on. It must be
restored only in a new Elasticsearch instance. The possible values for this
parameter are:

true. The global state settings are restored.

false. The global state settings are not restored. This is the default value.

Do not use this parameter for normal restore operations. Use only when
restoring backup from a different Elasticsearch or when the -srcTenant
parameter is specified.

Note:
If you have secured Data Store using Search Guard, you cannot restore the
global cluster state of the Data Store. The global cluster state includes
information such as persistent cluster settings, index templates, pipelines,
and so on. To restore the global cluster state, you must either perform the
restore with the cluster state first, then secure the Data Store, or disable
Search Guard, perform the restore with cluster state, and then enable the
security plugin. However, you can still perform a restorewithout the global
cluster state with the Search Guard plugin enabled. For information on
Restoring data and the usage of restore parameters, refer the Restore using
script section.

Level of log that you want to create. Log levels indicate the severity of logs.
Available levels are:

logLevel

Info. Provides the list of regular events that occur during the process.
These events are informative.

Debug. Provides the events that could be useful, if you have to debug the
process.

162 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionParameter

Warning. Indicates unexpected events that occurred during the process.
Usually, these events do not interrupt or have an immediate effect on the
process.

Error. Indicates the events that stop the functionality from working as
designed.

Trace. Provides the list of events in a much detailed manner that could
be useful for debugging.

You can specify one of the log levelwith the logLevel parameter. For example,
to create a log file of Warning level when listing backup files, you can run the
following command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error level logs are
saved.When you provideDebug as the log level, thenDebug, Info,Warning
and Error level logs are saved. When you provide Trace as log level, then
all level logs are saved.

This parameter is optional. If you do not specify the parameter, then the Info
level logs are saved by default.

Location where you want to save the log file.logFileLocation

For example, to save the log file in C:/apiglogs/backups, you can provide the
location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter, the logs are
saved in the following location SAGInstallDir/IntegrationServer/instances/
instance_name/packages/WmAPIGateway/cli/logs/APIGWUtility.log

The parameters listed above are optional. To restore a backup from the repository that you
configured, use the repoName parameter, and provide the repository name. That is,

Linux
./apigatewayUtil.sh restore backup -name backup_file_name
-repoName repository_name

Windows
apigatewayUtil.bat restore backup -name backup12april -repoName S3_repo

Note:

webMethods API Gateway Administration 10.11 163

2 Operating API Gateway

If you are providing the srcTenant parameter, or setting the aggregate or
restoreClusterState as true, then Software AG recommends that you take a backup of the
node that you need to restore before performing the restore.

3. Restart API Data Store.

In cluster setups, restart all nodes in the cluster.

Verifying Restore Status

When you run the restore backup command, the restore process is initiated. You can then verify
the status of a restore operation using the status restore command. This command checks the
status of the given backup file and displays one of the following results:

DescriptionStatus

The restore of the given backup is successfully restored with the given
parameters.

Success

The restore process has failed. If the error message instructs to perform
open indices, follow the steps in the section, “Troubleshooting a Failed
Restore” on page 167.

Failed

The restore process is still in progress. This usually happenswhen the data
being restore is large and you verify the status as soon as you initiate the
restore process.

In progress

The restore process is completed. However, there are some warning
messages. You can check the warning messages in the log file found in the
SAGInstallDir\InternalDataStore\logs folder.

Completed with
warnings

To verify the status of a restore operation

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin/.

2. Run the following command:

Linux
./apigatewayUtil.sh status restore -name backup-file-name

Windows
apigatewayUtil.bat status restore -name backup-file-name

The restore status appears as shown below:
C:\SoftwareAG\IntegrationServer\instances\default\packages\WmAPIGateway\cli\bin>apigatewayutil.bat

status restore -name sample

164 webMethods API Gateway Administration 10.11

2 Operating API Gateway

The restore of sample is completed successfully

You can include the following parameters as per your requirements:

DescriptionParameter

Name of the tenant that you want to verify restore status.tenant

If you do not provide this parameter, the value is picked from
pg.gateway.elasticsearch.tenantIdproperty in config.propertiesfile located
at IntegrationServer\instances\instance_name\packages\WmAPIGateway\
config\resources\elasticsearch.

Name of the repository that you want to verify.repoName

If you do not provide this parameter, the value is picked from the
tenantparameter.

Allows you to specify the required level of log that you want to create. Log
levels indicate the severity of logs. Available levels are:

logLevel

Info. Provides the list of regular events that occur during the process.
These events are informative.

Debug. Provides the events that could be useful, if you have to debug
the process.

Warning. Indicates unexpected events that occurred during the process.
Usually, these events do not interrupt or have an immediate effect on the
process.

Error. Indicates the events that stop the functionality from working as
designed.

Trace. Provides a much detailed events that could be useful for
debugging.

You can specify one of the log levelwith the logLevelparameter. For example,
to create a log file of Warning level when listing backup files, you can run the
following command:
apigatewayUtil.bat list backup -logLevel warning

When you provide Error as the log level, then only the error level logs are
saved.When you provideDebug as the log level, thenDebug, Info,Warning
and Error level logs are saved. When you provide Trace as log level, then
all level logs are saved.

This parameter is optional. If you do not specify the parameter, then the Info
level logs are saved by default.

Allows you to provide the location where you want to save the log file.logFileLocation

webMethods API Gateway Administration 10.11 165

2 Operating API Gateway

DescriptionParameter

For example, to save the log file in C:/apiglogs/backups, you can provide
the location as seen in the following example:
apigatewayUtil.bat create backup -name samplebackup
-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the parameter, the logs are
saved in the following location SAGInstallDir/IntegrationServer/instances/
instance_name/packages/WmAPIGateway/cli/logs/APIGWUtility.log.

If you run the status restore commandwithout the tenant and repoName parameters, then
system checks for the given backup file in the default tenant and repository.

Restoring Platform Data

The platform data can be restored based on the corresponding backup method.

Restoring Platform Data backed up using the Script

To restore the platform data backed up using the script

1. Copy the YML file, that was exported with the platform data, to the location
SAGInstallDir\IntegrationServer\instances\instance_name\packages\WmAPIGateway\resources\configuration.

Alternatively, you can copy the backup YML file to a location and specify the location in the
Master configuration file, config-sources.yml, located at SAGInstallDir\IntegrationServer\
instances\instance_name\packages\WmAPIGateway\resources\configuration.

2. Restart API Gateway.

In cluster setups, restart all nodes in the cluster.

Restoring the manually backed up Platform data

To restore the platform data backed up manually

1. Copy the required configuration files from the repository, to the respective location in the API
Gateway installation. For the list of configuration files and their locations, see the table provided
in the section, “Platform Data Backup” on page 152.

2. Restart API Gateway.

In cluster setups, restart all nodes in the cluster.

166 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Troubleshooting a Failed Restore

When a restore fails, you can analyze and understand the reason for failure from the errormessage
that appears after the operation. If the error message instructs you to use the
perform_open_indices command, follow the steps given in this section.

When you perform a restore operation, the indices in the API Data Store are closed to avoid any
overwriting of data. After the restore process is over, the indices are opened so that the application
starts using the Data Store. However, if a restore operation fails, you must open the indices for
the regular operations to continue. For example, if a restore operation fails due to insufficient
memory, then the error message that appears instructs you to perform open indices.

If the error message does not display enough details, you can check the logs for further details.
You can check the logs saved during the process in the SAGInstallDir\InternalDataStore\logs
folder.

To open indices

1. From the command prompt, go to
SAGInstallDir/IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin.

2. Run the following command to delete a backup file:

Linux
./apigatewayUtil.sh perform open_indices

Windows
apigatewayUtil.bat perform open_indices

You can specify the log file location and log level for the above operation using these parameters:

DescriptionParameter

Allows you to specify the required level of log that youwant
to create. Log levels indicate the severity of logs. Available
levels are:

logLevel

Info. Provides the list of regular events that occur during
the process. These events are informative.

Debug. Provides the events that could be useful, if you
have to debug the process.

Warning. Indicates unexpected events that occurred
during the process. Usually, these events do not interrupt
or have an immediate effect on the process.

Error. Indicates the events that stop the functionality
from working as designed.

webMethods API Gateway Administration 10.11 167

2 Operating API Gateway

DescriptionParameter

Trace. Provides a much detailed events that could be
useful for debugging.

You can specify one of the log level with the logLevel
parameter. For example, to create a log file of Warning level
when listing backup files, you can run the following
command:
apigatewayUtil.bat list backup -logLevel warning

When you provideError as the log level, then only the error
level logs are saved. When you provide Debug as the log
level, then Debug, Info, Warning and Error level logs are
saved. When you provide Trace as log level, then all level
logs are saved.

This parameter is optional. If you do not specify the
parameter, then the Info level logs are saved by default.

Allows you to provide the location where you want to save
the log file.

logFileLocation

For example, to save the log file in C:/apiglogs/backups,
you can provide the location as seen in the following
example:
apigatewayUtil.bat create backup -name samplebackup

-logFileLocation C:/apiglogs/backups

This parameter is optional. If you do not specify the
parameter, the logs are saved in the following location
SAGInstallDir/IntegrationServer/instances/instance_
name/packages/WmAPIGateway/cli/logs/APIGWUtility.log.

Adding New Nodes to an Elasticsearch Cluster

This section explains how to add a new node to an Elasticsearch cluster. You can add nodes to a
cluster by configuring new nodes to find an existing cluster and start them up.

For example, consider that a new node, node 4, is added to a cluster that already has three nodes
in it namely, node1, node2, and node3.

To add new node to a cluster

1. Open elasticsearch.yml located at SAG_root/InternalDataStore/config, where the newnode
is being added.

The following configuration is a sample of how the configuration appears initially.

168 webMethods API Gateway Administration 10.11

2 Operating API Gateway

cluster.name:"SAG_EventDataStore"
node.name: node4
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node4:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']
cluster.initial_master_nodes:["node4"]

2. Provide the name of the node, as seen in the node.name property, and port number used by
the node, as seen in the http.port property, in the discovery.seed_hosts property in the
following format:

host_name:port_name

For example
node4:9340

Sample configuration after providing the new node details:
cluster.name:"SAG_EventDataStore"
cluster.initial_master_nodes:["node1","node2","node3"]
node.name: node4
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node1:9340","node2:9340","node3":"9340","node4:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']

3. Save the configuration. The new node is added to the cluster.

Note:
When you restart an Elasticsearch cluster, you must restart the master node first.

If you want to remove a node from a cluster do the following:

1. Open the elasticsearch.yml file located at SAG_root/InternalDataStore/config/.

2. Remove the node listed in the format host_name:port_name in the discovery.seed_hosts
property.

3. Save the elasticsearch.yml file and restart the Elasticsearch cluster. The specified node is now
removed from the cluster.

API Data Store

API Gateway package is not accessible from Integration Server.

The following error message appears:

com.softwareag.apigateway.core.exceptions.DataStoreException

webMethods API Gateway Administration 10.11 169

2 Operating API Gateway

This problem could be because the defaultEncoding extended setting is modified.

CAUTION:
Do notmodify this value. If youmodify this value, your API Gateway instancewill not function
as this value is used in encoding all API Gateway transactions. If you migrate from one setup
to another, ensure you have specified the same value for the defaultEncoding setting as the
source instance. If this values are not same, the target API Gateway instance does not start.

This error message appears: com.softwareag.apigateway.core.exceptions.DataStoreException:
com.softwareag.apigateway.core.exceptions.DataStoreException:

Resolution:

Set the value of the defaultEncoding extended setting as UTF-8.

The Event data store on API Gateway is using a lot of disk space.

The Elasticsearch JVM is unable to allocate memory for internal objects. Either other process in
the machine are consuming more memory or Elasticsearch is not given sufficient heap space.

Also JVM has written these information in write.lock file, which is solely used by Elasticsearch
for its internal purpose. Elasticsearch expects this file to be of size 0 and should not be modified.
Since jvm has written the data, it is showing that as error and filling the disk with log.

Resolution:

Increase the Event data store JVM heap size.

I have exceeded the limit for total fields [1000] in index [gateway_default_analytics_
]

I am getting the following error:

2019-09-19 00:29:02UTC [YAI.0300.9999E] errorwhile savingdoc Index - gateway_default_analytics,
typeName - transactionalEvents: POST
http://10.177.129.5:9241/gateway_default_analytics/transactionalEvents: HTTP/1.1 400 BadRequest
{"error":{"root_cause":[{"type":"illegal_argument_exception","reason":"Limit of total fields [1000]
in index [gateway_default_analytics] has been
exceeded"}],"type":"illegal_argument_exception","reason":"Limit of total fields [1000] in index
[gateway_default_analytics] has been exceeded"},"status":400}

Resolution:

Increase the limit for total fields.
PUT /gateway_default_analytics_/_settings{"index.mapping.total_fields.limit": 20000}

I experienced a low disk space issue and my API Gateway has stopped working for
WRITE operations.

I am getting the following issue

170 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Exception: [WARN][o.e.c.r.a.DiskThresholdMonitor] [localhost1568897216386] flood stage disk
watermark [95%] exceeded on
[BOf6SQe2SwyI93vi4RlBNQ][localhost1568897216386][C:\SoftwareAG\InternalDataStore\data\nodes\0]
free: 2.4gb[2.4%], all indices on this nodewill bemarked read-onlySaving an API -> error message
("Saving API failed. com.softwareag.apigateway.core.exceptions.DataStoreException: Error while
saving the document. doc Id - 6d5c7ac0-574a-4a53-acba-a738f21e3142, type name - _doc, message
- "index [gateway_default_policy] blocked by: [FORBIDDEN/12/index read-only / allow delete
(api)];" ")

Resolution:

You can clean up the disk space by using the following CURL command:
curl -XPUT -H "Content-Type:
application/json"
http://localhost:9200/_all/_settings
-d '{"index.blocks.read_only_allow_delete":

null}'

My Elasticsearch server is not starting. I get a "bootstrap checks failed" error.

I am getting the following error:

[2020-03-25T09:09:20,298][INFO][o.e.b.BootstrapChecks] [itsbebel00471.jnj.com1585050877659]
bound or publishing to a non-loopback address, enforcing bootstrap checks
[2020-03-25T09:09:20,299][ERROR][o.e.b.Bootstrap] [itsbebel00471.jnj.com1585050877659] node
validation exception [1] bootstrap checks failed [1]: system call filters failed to install; check the
logs and fix your configuration or disable system call filters at your own risk.

Resolution:

Add bootstrap.system_call_filter: false setting to elasticsearch.yml

When I access the audit logs, the internal datastore, crashes.

You get the following error

[2020-03-03T10:03:33,857][ERROR][o.e.ExceptionsHelper] [daeipresal43558.eur.ad

.sag1580968109910] fatal error at
org.elasticsearch.ExceptionsHelper.lambda$maybeDieOnAnotherThread$2(ExceptionsHelper.java:310)
at java.util.Optional.ifPresent(Optional.java:159) at
org.elasticsearch.ExceptionsHelper.maybeDieOnAnotherThread(ExceptionsHelper.java:300) at
org.elasticsearch.http.netty4.Netty4HttpRequestHandler.exceptionCaught(Netty4HttpRequestHandler.java:76)
[2020-03-03T10:03:33,858][ERROR][o.e.ExceptionsHelper] [daeipresal43558.eur.ad
.sag1580968109910] fatal error at
org.elasticsearch.ExceptionsHelper.lambda$maybeDieOnAnotherThread$2(ExceptionsHelper.java:310)
at java.util.Optional.ifPresent(Optional.java:159) at
org.elasticsearch.ExceptionsHelper.maybeDieOnAnotherThread(ExceptionsHelper.java:300) at
org.elasticsearch.http.netty4.Netty4HttpRequestHandler.exceptionCaught(Netty4HttpRequestHandler.java:76)
[2020-03-03T10:03:33,867][ERROR][o.e.b.ElasticsearchUncaughtExceptionHandler] [

webMethods API Gateway Administration 10.11 171

2 Operating API Gateway

daeipresal43558.eur.ad .sag1580968109910] fatal error in thread [Thread-176], exiting
java.lang.OutOfMemoryError: Java heap space

Resolution:

Set the -XX:MaxDirectMemorySize property to 4095m.

Monitoring API Gateway

Monitoring is an important part of maintaining the reliability, availability, and performance of
API Gateway. The API Gateway monitoring service enables you to

view the health and performance of the application.

discover, analyze, and debug the application issues before they adversely impact the system.
This improves business continuity and reduce application downtime.

understand the behavior of the application, scale for business volumes, and benefit from the
cost optimization.

ThroughAPI Gatewaymonitoring, you canmonitor the health and resources of the followingAPI
Gateway components:

API Gateway Server

API Data Store

Terracotta Server Array

Kibana

You can monitor API Gateway at:

Cluster-level

Node-level

In a Highly Available (HA) set up, multiple API Gateway instances operate as a cluster. The HA
set up ensures that there is no single point of failure in amultiple node deployment such asmultiple
virtual machines or Kubernetes pods.

172 webMethods API Gateway Administration 10.11

2 Operating API Gateway

The cluster-level monitoring ensures service availability, that is, availability of access and
functionality (serving API requests) of API Gateway. Service availability must be measured
only at the cluster-level, for example, one node down in the cluster does not mean a service
outage.

The node-level monitoring ensures the ability of a particular instance of API Gateway
components to serve the functionality (API requests) in the node. Node-health must be dealt
within isolation by setting up probes per instance of each API Gateway component.

Cluster-level Monitoring
The cluster-level monitoring ensures service availability, that is, availability of access and
functionality (serving API requests) of API Gateway. Through cluster-level monitoring, you can
check:

If the runtime is available and ready to serve the traffic.

If the API Gateway administrator console is accessible.

How do I monitor the cluster health of API Gateway?

You can set up the Readiness Probe, Runtime Service Health Probe, and Administration Service
Health Probe to monitor the cluster health.

SolutionType of ImpactRequirement

Use Readiness Probe.Business Impact. To know if there
is an outage in API Gateway.

For API Gateway, is there an
endpoint that returns yes or no about
its service availability, that is,
readiness for serving the incoming
API requests?

Use Administration
Service Health Probe.

Operational Impact. To know if
the administrator user console
is available.

For API Gateway, is there an
endpoint that indicates the
availability of the administrator user
consoles?

Use Runtime Service
Health Probe.

Technical Impact. To know the
details aboutwhere the fault lies
when there is a cluster failure.

For API Gateway, is there an
endpoint that indicates the cluster
health and its details?

webMethods API Gateway Administration 10.11 173

2 Operating API Gateway

How do the probes help in cluster-level monitoring?

AdministrationService
Health Probe

Runtime Service
Health Probe

Readiness Probe

Indicates if the API
Gateway administrator

Reports on the overall
cluster health and

Indicates if the traffic-serving
port of APIGateway is ready
to accept requests.

What is it?

console is available and
accessible.

indicates if the
components of API
Gateway are in an
operational state.

To continuously report
on the availability of the

To continuously report
on the cluster health

To continuously check and
report on the service
availability of API Gateway.

When is it used?

administrator console
and API analytics.

with the details of the
components involved in
clustering.

Note:
The points in the table are also applicable to scenarios where the cluster health is NOT OK, for
example, API Data Store or Terracotta failure. Such scenarios do not always mean an outage.
API Gateway may still be able to process the requests.

How do I set up probes?

Prerequisites:

You must have a valid API Gateway user credential for using the Readiness Probe, Runtime
Service Health Probe, and Administration Service Health Probe.

All the cluster-level probes must be setup to target API Gateway load balancer endpoint.

SoftwareAG recommends to set up a dedicated port formonitoringwith an appropriate private
thread pool.

Readiness Probe at Cluster-Level

To monitor the readiness of API Gateway, that is to check if API Gateway is ready to accept the
requests, use the following REST endpoint:

GET /rest/apigateway/health

The following table shows the response code and the description.

174 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionResponse

Readiness check is successful. Readiness probe
continues to reply OK if API Gateway remains in an
operational state to serve the requests.

200 OK

Readiness check failed and denotes a problem.500 Internal server error

Several factors can contribute to the delay when the
Readiness Probe initiates, which may result in the

timeout or no response as the request
did not reach the probe

timeout errors. To know the reasons for timeout errors,
see “Causes for timeout errors” on page 203 for more
information.

Note:
As this is a Readiness Probe and only the response status code is essential, by design, JSON
payload is not returned in the response for both success and failure scenarios.

Runtime Service Health Probe at Cluster-Level

To monitor the runtime service health of API Gateway, that is to check the cluster health of API
Gateway, use the following REST endpoint:

GET /rest/apigateway/health/engine

The following table shows the response code and the description.

DescriptionResponse

Runtime service health check is successful.200 OK

Runtime service health check failed and denotes a problem. The
response JSON indicates the problem.

500 Internal server error

Several factors can contribute to the delaywhen the Runtime Service
Health Probe initiates, which may result in the timeout errors. To

timeout or no response as
the request did not reach
the probe know the reasons for timeout errors, see “Causes for timeout

errors” on page 203 for more information.

The response JSON of each health check request displays a status field in the response.

The overall status of API Gateway cluster can be green, yellow, and red.

DescriptionStatus

Indicates that the cluster is in a healthy state.green

Indicates that API Gateway does not have adequate resources to run.yellow

Indicates the cluster failure and an outage.red

webMethods API Gateway Administration 10.11 175

2 Operating API Gateway

The overall status of API Gateway cluster is assessed based on the API Data Store status, API
Gateway resource status, and the cluster status within nodes.

API Data Store status

DescriptionStatus

Indicates that API Data Store is in a healthy state. When the status
of API Data Store signals green or yellow, the overall status of API
Gateway is green.

green

Indicates cluster failure and an outage. When the status of API Data
Store signals red, the overall status of API Gateway is red.

red

Indicates a node failure in the cluster. However, the cluster is still
functioning and operational.

yellow

API Gateway resource status

DescriptionStatus

Indicates that API Gateway resource types like memory, disk space,
and service threads are available to run.

green

Indicates that API Gateway does not have adequate resources to run.
When the API Gateway resource status is yellow, the overall status
of API Gateway is yellow.

yellow

Cluster status within nodes

DescriptionStatus

Indicates that cluster is in a healthy state. The cluster status is green
only when Terracotta Server Array is up and running. When the

green

status of the cluster signals green, the overall status of API Gateway
is green.

Indicates cluster failure and an outage.When the status of the cluster
signals red, the overall status of API Gateway is red.

red

A sample HTTP response is as follows:
{

"status": "green",
"elasticsearch": {

"cluster_name": "api_gateway_cluster",
"status": "green",
"number_of_nodes": "3",
"number_of_data_nodes": "3",
"timed_out": "false",
"active_shards": "200",
"initializing_shards": "0",

176 webMethods API Gateway Administration 10.11

2 Operating API Gateway

"unassigned_shards": "0",
"task_max_waiting_in_queue_millis": "0",
"node": "localhost:9240",
"response_time_ms": "4"

},
"is": {

"status": "green",
"diskspace": {

"status": "up",
"free": "14206386176",
"inuse": "17994313728",
"threshold": "3220069990",
"total": "32200699904"

},
"memory": {

"status": "up",
"freemem": "420766624",
"maxmem": "2147483648",
"threshold": "161061273",
"totalmem": "1610612736"

},
"servicethread": {

"status": "up",
"avail": "397",
"inuse": "3",
"max": "400",
"threshold": "40"

},
"response_time_ms": "309"

},
"cluster": {

"status": "green",
"isClusterAware": "true",
"nodes": "3",
"response_time_ms": "518"

}
}

The overall cluster status of API Gateway is green since all components work as expected.

Administration Service Health Probe at Cluster Level

To check the availability and health status of the API Gateway administration service (UI,
Dashboards) at the cluster level, use the following REST endpoint:

GET /rest/apigateway/health/admin

The following table shows the response code and the description.

DescriptionResponse

Administration service health check is successful.200 OK

Denotes a problem. The response JSON indicates the
problem.

500 Internal server error

webMethods API Gateway Administration 10.11 177

2 Operating API Gateway

DescriptionResponse

Several factors can contribute to the delay when you
initiate theAdministration ServiceHealth Probe,which

timeout or no response as the request
did not reach the probe

may result in the timeout errors. To know the reasons
for timeout errors, see “Causes for timeout errors” on
page 203 for more information.

The overall Administration Service Health Probe status can be green or red based on the API
Gateway administration service's status and Kibana status.

Kibana status

DescriptionStatus

Indicates that Kibana's port is accessible. When the status signals
green, the overall status of Administration Service Health Probe is
green.

green

Indicates that either Kibana's port is inaccessible or Kibana's
communication with API Data Store is not established. When the

red

status signals red, the overall status of Administration ServiceHealth
Probe is red.

API Gateway administration service status

DescriptionStatus

Indicates that APIGateway administration service is available.When
the status signals green, the overall status of Administration Service
Health Probe is green.

green

Indicates that API Gateway administration service is not available.
When the status signals red, the overall status of Administration
Service Health Probe is red.

red

A sample HTTP response is as follows:
{

"status": "green",
"ui": {

"status": "green",
"response_time_ms": "40"

},
"kibana": {

"status": {
"overall": {

"state": "green",
"nickname": "Looking good",
"icon": "success",
"uiColor": "secondary"

}

178 webMethods API Gateway Administration 10.11

2 Operating API Gateway

},
"response_time_ms": "36"

}
}

The overall status is green since API Gateway administration service and Kibana is in a healthy
state.

Troubleshooting: Cluster-level Monitoring

During cluster-level monitoring, when you encounter a problem, check if the server nodes are up
and running. Using a test client such as Postman, hit a particular node rather than the external
load balancer endpoint. If it works, then it means that the load balancer is experiencing issues or
there can be connectivity issues between the load balancer and the nodes.

Node-level Monitoring
The node-levelmonitoring ensures the ability of a particular instance of APIGateway components
to serve the functionality (API requests) in the node. The node health is monitored by setting up
probes per instance of each API Gateway component in the node.

The node-health monitoring enables you to check the following during the application start-up:

If the bootstrap of the node is completed.

If the node joined the cluster.

If the node is ready to serve the requests.

If the node is unhealthy, it identifies the problem and checks if the server component requires
a restart.

The node-health monitoring enables you to check the following when the application in the node
runs:

If the application is available.

If the application is under load.

If the application is performing well.

If there are any errors.

If the application is unhealthy, it identifies the problem and checks if the server component
requires a restart.

You can monitor the node-health at:

Application level

Infrastructure level

webMethods API Gateway Administration 10.11 179

2 Operating API Gateway

Application level

At the application level, you can monitor the state, that is cluster status and console access of the
application along with the resource utilization of the application of the following API Gateway
components:

API Gateway Server

API Data Store

Terracotta Server Array

Kibana

Note:

It is not required that all the components are hosted on the same node. Few components
such asAPIData Store, Terracotta Server Array and so on can be hosted on dedicated nodes.
You can check both the cluster status and console access only for API Gateway server and
only the cluster status for API Data Store and Terracotta Server Array.

Infrastructure level

180 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Note:
Startup probe is available in the recent versions of Kubernetes and is a recommended alternative
to the Runtime Service Health Probe during the bootstrapping of the application. The endpoint
is the same as that of the Runtime Service Health Probe but the Startup probe in Kubernetes
itself is configuredwith slightly different characteristics like initial delay for the first check, failure
threshold and so on.

At the Infrastructure level, you can monitor both containerized workloads (Docker containers)
and non-containerized workloads (Virtual machine installations).

Note:
Most health checks are infrastructure-agnostic and can be used on both the types of infrastructure.

The overall node-level monitoring is explained in the following diagram.

webMethods API Gateway Administration 10.11 181

2 Operating API Gateway

The node-level monitoring in detail with the state and resource information of each component
is explained in the following diagram.

182 webMethods API Gateway Administration 10.11

2 Operating API Gateway

How do I monitor the node health of API Gateway?

You can set up the Readiness probe, Runtime Service Health Probe, and Administration Service
Health Probe to monitor the overall health status of a particular node of API Gateway.

SolutionImpactRequirement

Use Readiness Probe.For Load Balancer or Kubernetes
service to know if the node is

For a running instance of an API
Gateway or its components, is there

healthy for it to be added to the loadan endpoint that returns yes or no
distribution pool for routing the
incoming requests.

about its readiness for serving the
incoming API requests?

Set upMetrics
collection.

To monitor capacity and
performance.

For a running instance of an API
Gateway or its components, is there
an endpoint that returns themetrics
about the application and the
resource utilization at the level of
the container or the virtualmachine?

Use Runtime Service
Health Probe and

To know the details about where
the fault lies when there is a cluster

For a running instance of API
Gateway or its components, is there

AdministrationService
Health Probe.

failure, so that the node can be
manually restarted. Kubernetes
does it automatically.

an endpoint that indicates the cluster
health and the status of the runtime
components?

How do the probes help in node-level monitoring?

AdministrationService
Health Probe

Runtime Service
Health Probe

Readiness Probe

Indicates if the API
Gateway administrator

Reports on the
overall cluster health

Indicates if the traffic-serving
port of a particular API

What is it?

consoles are availableand indicates if theGateway node is ready to
accept requests. and accessible on a

particular APIGateway
node.

components of a
particular API
Gateway node are in
an operational state.

To check if a node requires a restart or if there
is a problem that needs immediate attention.

To check if a particular node of
API Gateway can be added to
the load balancer.

When is it used?

If the Readiness Probe fails, the pod is removed from the endpoints of the
service. Hence, traffic is not served until it is ready. The pod is not shutdown
or restarted.

How does it help
in containerized
workloads?

If the Readiness Probe fails, the node can be removed from the endpoints of
the load balancer. Hence, traffic is not served until it becomes ready.

How does it help
in

webMethods API Gateway Administration 10.11 183

2 Operating API Gateway

AdministrationService
Health Probe

Runtime Service
Health Probe

Readiness Probe

non-containerized
setup?

Monitoring

The sections in the following diagram are explained in detail as part of monitoring API Gateway
components.

Metrics

You can monitor the resources of API Gateway server, API Data Store, Terracotta, and Kibana
with various metrics. A metric is a measurement related to health, capacity, or performance of a
given resource such as CPU, Disk, and so on. Metrics are classified in to two types:

Application metrics. This refers to the metrics related to your API Gateway component.

Infrastructure metrics. This refers to the infrastructure, where the application runs. This is
further classified into System metrics and Container Metrics. At the infrastructure level, you
can monitor both containerized workloads (Docker containers) with container metrics and
non-containerized workloads (Virtual machine installations) with system metrics.

Software AG offers you the capability to monitor both application metrics and infrastructure
metrics. You can gain insight into the consumption and availability of resources, which in turn
helps you identify and analyze the root cause and debug the issues quickly. This helps you to
determine when to scale up the applications. This improves the overall business continuity and
reduce the application downtime.

The following diagram explains the different types of metrics.

184 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Application Monitoring

You can check the availability of each component in the node individually in the following sections.

Monitoring API Gateway

As part of application monitoring, you can monitor the state, that is the cluster status and console
access of API Gateway along with the resources.

webMethods API Gateway Administration 10.11 185

2 Operating API Gateway

How do I monitor the health of API Gateway?

Prerequisites:

You must have a valid API Gateway user credential for using the Readiness Probe, Runtime
Service Health Probe, and Administration Service Health Probe.

All the node level probes must be setup to target the local instance, typically, localhost.

SoftwareAG recommends to set up a dedicated port formonitoringwith an appropriate private
thread pool.

Readiness Probe at Node-Level

To monitor the readiness of API Gateway, that is to check if the traffic-serving port of a particular
API Gateway node is ready to accept requests, use the following REST endpoint:

GET /rest/apigateway/health

The following table shows the response code and the description.

DescriptionResponse

Readiness check is successful. Readiness probe continues to reply OK if
API Gateway remains in an operational state to serve the requests.

200 OK

Readiness check failed and denotes a problem.500 Internal server
error

Several factors can contribute to the delay when the Readiness Probe
initiates, which may result in the timeout errors. To know the reasons for

timeout or no
response as the

timeout errors, see “Causes for timeout errors” on page 203 for more
information.

request did not
reach the probe

Note:
As this is a Readiness Probe and only the response status code is essential, by design, JSON
payload is not returned in the response for both success and failure scenarios.

Runtime Service Health Probe at Node-Level

Tomonitor the runtime service health of of API Gateway, that is to check the overall cluster health
and to identify if the components of a particular API Gateway node are in an operational state,
use the following REST endpoint:

GET /rest/apigateway/health/engine

The following table shows the response code and the description.

186 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionResponse

Runtime service health check is successful.200 OK

Runtime service health check failed and denotes a problem. The response
JSON indicates the problem.

500 Internal server
error

Several factors can contribute to the delaywhen the Runtime ServiceHealth
Probe initiates, whichmay result in the timeout errors. To know the reasons

timeout or no
response as the

for timeout errors, see “Causes for timeout errors” on page 203 for more
information.

request did not
reach the probe

The response JSON of each health check request displays a status field in the response.

The overall status of API Gateway node can be green ,yellow, or red.

DescriptionStatus

Indicates that the cluster within the node is in a healthy state.green

Indicates that API Gateway does not have adequate resources to run.yellow

Indicates the cluster failure in the node and an outage.red

The overall status ofAPIGateway node is assessed based on theAPIData Store status, APIGateway
resource status, and the Terracotta server status.

API Data Store status

DescriptionStatus

Indicates that API Data Store is in a healthy state. When the status
of API Data Store signals green or yellow, the overall status of API
Gateway is green.

green

Indicates that APIData Store is not in a healthy state.When the status
of API Data Store signals red, the overall status of API Gateway is
red.

red

Indicates a node failure in the cluster. However, the cluster is still
functioning and operational.

yellow

API Gateway resource status

DescriptionStatus

Indicates that API Gateway resource types like memory, disk space,
and service threads are available to run.

green

webMethods API Gateway Administration 10.11 187

2 Operating API Gateway

DescriptionStatus

Indicates that API Gateway does not have adequate resources to run.
When the API Gateway resource status is yellow, the overall status
of API Gateway is yellow.

yellow

Terracotta Server Array status

DescriptionStatus

Indicates that Terracotta server is in a healthy state. When the status
of Terracotta server signals green, the overall status of API Gateway
is green.

green

Indicates that Terracotta server is not in a healthy state. When the
status of Terracotta server signals red, the overall status of API
Gateway is red.

red

A sample HTTP response is as follows:
{

"status": "green",
"elasticsearch": {

"cluster_name": "SAG_EventDataStore",
"status": "yellow",
"number_of_nodes": "1",
"number_of_data_nodes": "1",
"timed_out": "false",
"active_shards": "95",
"initializing_shards": "0",
"unassigned_shards": "92",
"task_max_waiting_in_queue_millis": "0",
"port_9240": "ok",
"response_time_ms": "526"

},
"is": {

"status": "green",
"diskspace": {

"status": "up",
"free": "908510568448",
"inuse": "104799719424",
"threshold": "101331028787",
"total": "1013310287872"

},
"memory": {

"status": "up",
"freemem": "425073672",
"maxmem": "954728448",
"threshold": "92222259",
"totalmem": "922222592"

},
"servicethread": {

"status": "up",
"avail": "72",
"inuse": "3",

188 webMethods API Gateway Administration 10.11

2 Operating API Gateway

"max": "75",
"threshold": "7"

},
"response_time_ms": "258"

},
"terracotta": {

"status": "green",
"nodes": "1",
"healthy_nodes": "1",
"response_time_ms": "22"

}
}

The overall engine status is green since all components work as expected.

Administration Service Health Probe at Node-Level

To check the availability and health status of the API Gateway administration service (UI,
Dashboards) on a particular API Gateway node, use the following rest endpoint:

GET /rest/apigateway/health/admin

The following table shows the response code and the description.

DescriptionResponse

Administration service health check is successful.200 OK

Denotes a problem. The response JSON indicates the problem.500 Internal
server error

Several factors can contribute to the delaywhen you initiate theAdministration
Service Health Probe, which may result in the timeout errors. To know the

timeout or no
response as the

reasons for timeout errors, see “Causes for timeout errors” on page 203 for
more information.

request did not
reach the probe

The overall Administration Service Health Probe status can be green or red based on the API
Gateway administration service's status and Kibana's status.

Kibana status

DescriptionStatus

Indicates that Kibana's port is accessible. When the status signals
green, the overall status of Administration Service Health Probe is
green.

green

Indicates that either Kibana's port is inaccessible or Kibana's
communication with API Data Store is not established. When the

red

status signals red, the overall status of Administration ServiceHealth
Probe is red.

API Gateway administration service status

webMethods API Gateway Administration 10.11 189

2 Operating API Gateway

DescriptionStatus

Indicates that APIGateway administration service is available.When
the status signals green, the overall status of Administration Service
Health Probe is green.

green

Indicates that API Gateway administration service is not available.
When the status signals red, the overall status of Administration
Service Health Probe is red.

red

A sample HTTP response is as follows:
{

"status": "green",
"ui": {

"status": "green",
"response_time_ms": "40"

},
"kibana": {

"status": {
"overall": {

"state": "green",
"nickname": "Looking good",
"icon": "success",
"uiColor": "secondary"

}
},
"response_time_ms": "36"

}
}

The overall status is green since API Gateway administration service and Kibana is in a healthy
state.

How do I collect metrics?

To check the usage of the application and system parameters, use the following metrics endpoint:
GET /metrics. When the endpoint is called, API Gateway gathers metrics and returns the data in
the Prometheus format.

Note:
Prometheus is a non- Software AG dashboarding tool that helps in trend analysis. For more
information, see https://prometheus.io/.

Prometheus metrics are exposed through the following endpoint.
[http|https]://host:port/metrics

The metrics endpoint by default is available on the following ports:

Default primary port (http). 5555

Default secure port (https). 5543

190 webMethods API Gateway Administration 10.11

2 Operating API Gateway

https://prometheus.io/

Default diagnostic port (debug port). 9999

A sample for the metrics endpoint is as follows:
http://server:5555/metrics

Authentication for the metrics endpoint

By default, the authentication is disabled when running API Gateway as Docker container.

For on-premise installations, the following environment variable can be set to switch off the
authentication for the metrics endpoint:
SAG_IS_METRICS_ENDPOINT_ACL=Anonymous

The endpoint also exposes the Integration Server Prometheus metrics. For more details on the
Integration Server Prometheusmetrics, see DevelopingMicroservices with webMethodsMicroservices
Runtime.

Exposing API Gateway Prometheus Metrics over a dedicated port

The metrics endpoint can be made available on a custom port. After creating the port, add the
following service to the port's allow list:
wm.server.query:getPrometheusStats

Similarly, the metrics endpoint can be removed from the default ports (5555 or 5543 or 9999) by
removing the service from the allow or deny lists.

Application Metrics

Monitor the following metrics to analyze API Gateway health.

Threads statistics

Service errors

Memory usage of JVM

HTTP or HTTPS requests

Note:
The threshold values, configurations, and severities that are mentioned throughout this section
are the guidelines that Software AG suggests for an optimal performance of API Gateway. You
can modify these thresholds or define actions based on your operational requirements.

For details about how to generate thread dump, heap dump and log locations, see
“Troubleshooting: Monitoring API Gateway” on page 199.

If themetrics return an exceeded threshold value, consider the severity asmentioned and perform
the possible actions that Software AG recommends to identify and debug the problem and contact
Software AG for further support.

Monitor the Threads statistics

webMethods API Gateway Administration 10.11 191

2 Operating API Gateway

DescriptionMetric

Checks the percentage of total number of threads used for service
execution where the threads are obtained from the server thread pool.

sag_is_service_threads

If the threads usage is above the recommended threshold value for
more than 15minutes, consider the severity as mentioned:

Above 80% threshold, Severity: ERROR

Above 90% threshold, Severity: CRITICAL

The steps to identify the causes of higher threads usage are as follows:

1. Identify the process that consumes the highest number of threads.

2. Generate the thread dump.

3. Analyze thread dump to identify the thread locks.

4. Analyze the logs of all API Gateway instances in the node.

Monitor the Service errors

DescriptionMetric

Checks the number of services that results in errors or exceptions.sag_is_number_
service_errors

If service errors are encountered, consider the severity as ERROR.

The steps to identify the causes of service errors are as follows:

1. Check the cluster status of API Gateway using the following REST
endpoint: GET /rest/apigateway/health/engine to know if API
Gateway is healthy and is in a cluster mode.

2. Check the server logs for any exception from SAGInstallDirectory\
IntegrationServer\instances\instance_name\logs\server.log.

Monitor the Memory usage of JVM

DescriptionMetric

Checks the percentage of total used memory of JVM.sag_is_used_
memory_bytes

If the memory usage is above the recommended threshold value for
more than 15minutes, consider the severity as mentioned:

Above 80% threshold, Severity: ERROR

Above 90% threshold, Severity: CRITICAL

192 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionMetric

The steps to identify the causes of higher memory usage of JVM are as
follows:

1. Check the cluster status of API Gateway using the following REST
endpoint: GET /rest/apigateway/health/engine to know if API
Gateway is healthy and is in a cluster mode.

2. Generate the heap dump.

3. Analyze the logs of all the API Gateway instances.

4. Identify the server that has an issue and restart the server if required.

5. Perform the following actions after restarting the server:

a. Check for the readiness of API Gateway.

b. Check the cluster status of API Gateway using the following
REST endpoint:GET /rest/apigateway/health/engine to know
if API Gateway is healthy and is in a cluster mode.

c. Check the resource availability of all the required system
resources like memory, heap, and disk.

d. Check API Data Store connectivity with API Gateway server.

e. Check the Terracotta client logs for errors in Terracotta
communication for a cluster set up.

Monitor the HTTP or HTTPS requests

DescriptionMetric

Checks the percentage of total number of HTTP or HTTPS requests
since the last statistics poll.

sag_is_http_requests

The statistics poll interval is controlled by the
watt.server.stats.pollTime server configuration parameter and the
default interval is 60 seconds.

If the total number of HTTP or HTTPS requests since the last statistics
poll is above the threshold limit that is based on the Throughput Per
Second (TPS) value, consider the severity as ERROR.

Log monitoring

In addition to the metrics, to monitor the logs regularly, perform the following steps:

1. Check for the availability of all logs frequently.

webMethods API Gateway Administration 10.11 193

2 Operating API Gateway

2. Check if the log rotation works as configured for all file types.

3. Check the size of the log file to know if it is greater than the configured values.

To monitor the logs in different levels, check the availability of logs in FATAL, ERROR or
WARNING level.

API Operational Metrics

API Gateway provides API operational (Prometheus) metrics to report metric statistics for API
calls, error, and error rates.

The following table describes the Prometheus metrics including, the description of the metric,
metric type, and the Prometheus label for the metric.

Prometheus labelMetric typeDescriptionPrometheus metric
name

codeCounterThe total number of API invocations
per HTTP response code.

sag_apigw_apicalls_total

env
Note:

The API invocations are
counted per node and not for
the complete cluster.
The count starts from zero
when the server starts.
Counts only the API
invocations within an API
Gateway instance.

Sample apicall metrics is as follows:
HELP sag_apigw_apicalls_total
Total number of API
invocations per response code
TYPE sag_apigw_apicalls_total
counter
sag_apigw_apicalls_total
{code="200" ,env="default"} 32
1635169035001

Prometheus labels

DescriptionPrometheus label

The code label shows the HTTP response code for the API calls counted.
For each HTTP response code that occurred during the lifetime of the API
Gateway server, the metrics response will contain a separate counter entry.

code

Sample apicall metrics with HTTP response code is as follows:

194 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionPrometheus label
HELP sag_apigw_apicalls_total Total number of API invocations
per response code
TYPE sag_apigw_apicalls total counter
sag_apigw_apicalls_total {code="200" ,env="default"} 32
1635169035001

In the example shown, 32 API calls are returned with the HTTP response
code 200.

The name of the customer environment.env

The value of the env label is taken from the
pg.gateway.elasticsearch.tenantId property in the config.properties file
located at SAGInstallDir/IntegrationServer/instances/instance_name/
packages/WmAPIGateway/config/resources/elasticsearch.

Infrastructure Metrics

Infrastructuremetrics include systemmetrics and containermetrics. For information about container
metrics, see “Container Metrics” on page 197.

SystemMetrics

Monitor the following system metrics to analyze API Gateway health:

CPU usage

Disk usage

Memory usage

Monitor the CPU usage

DescriptionMetric

Checks the percentage of CPU used by the Operating System.sag_is_server_
proc_sys_percent

Checks the percentage of CPU used by the Integration Server JVM.sag_is_server_
proc_cpu_percent

If the CPU usage of both the metrics is above the recommended
threshold value for more than 15minutes, consider the severity as
mentioned:

Above 80% threshold, Severity: ERROR

Above 90% threshold, Severity: CRITICAL

The steps to identify the causes of higher CPU usage is as follows:

1. Identify the process that consumes the highest CPU.

webMethods API Gateway Administration 10.11 195

2 Operating API Gateway

DescriptionMetric

2. Generate the thread dump.

3. Analyze thread dump to identify the thread locks.

4. Analyze the logs of all the API Gateway instances in the node.

5. If CPU spikes happen due to excess load, SoftwareAG recommends
you to monitor the load and scale up and scale downAPI Gateway
if required. Formore details about scaling, see “Scaling” onpage 640.

Monitor the Disk usage

DescriptionMetric

Checks the percentage of total available disk space in megabytes.sag_is_server_
total_disk_mbytes

Checks the percentage of used disk space in megabytes.sag_is_server_
used_disk_mbytes

If the disk usage of both themetrics is above the recommended threshold
value, consider the severity as mentioned:

Above 80% threshold, Severity: ERROR

Above 90% threshold, Severity: CRITICAL

The steps to identify the causes of higher disk usage are as follows:

1. The events archived inAPIGateway are stored in the tempdirectory
in the following location: SAGInstallDirectory\profiles\IS_
instance_name\workspace\temp. Check the size of the tempdirectory
and clean up the space to reduce the disk usage.

2. Check if the log rotation works as configured for the following file
types: server, audit, error, session, wrapper, osgi, and API Gateway
and check the size of the log files that consume more disk space to
know if it is greater than the configured values.

3. Purge the events periodically to clean up the disk space for optimal
performance of API Gateway.

For more details about Purging, see “Archive and Purge using
API” on page 103.

Monitor the Memory usage

DescriptionMetric

Checks the percentage of total amount of physical memory available in
megabytes.

sag_is_server_
total_memory_mbytes

196 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionMetric

Checks the percentage of total amount of physical memory used in
megabytes.

sag_is_server_
used_memory_mbytes

If the memory usage of both the metrics is above the recommended
threshold value for more than 15 minutes, consider the severity as
mentioned:

Above 80% threshold, Severity: ERROR

Above 90% threshold, Severity: CRITICAL

The steps to identify the causes of higher memory usage is as follows:

1. Identify the process that consumes more memory.

2. Check the cluster status of API Gateway using the following REST
endpoint: GET /rest/apigateway/health/engine to know if API
Gateway is healthy and responding.

3. Generate the heap dump.

4. Analyze the logs of all the API Gateway instances and identify the
file that consumes more memory.

5. Identify the server that has an issue and restart the server if required.

6. Perform the following actions after restarting the server:

a. Check for the readiness of API Gateway.

b. Check the cluster status of API Gateway using the following
REST endpoint: GET /rest/apigateway/health/engine to know
if API Gateway is healthy and is in a cluster mode.

c. Check the resource availability of all the required system
resources like memory, heap, disk.

d. Check the Terracotta client logs for errors in Terracotta
communication for a cluster set-up.

For more details about the API Gateway metrics, see Developing Microservices with webMethods
Microservices Runtime.

Container Metrics

If you have installed API Gateway through Docker or Kubernetes, Software AG recommends
monitoring the following metrics to check if the container is healthy. When the metrics exceed the
threshold value, consider the severity as mentioned and perform the possible actions that
Software AG recommends to identify, analyze, and debug the problem.

webMethods API Gateway Administration 10.11 197

2 Operating API Gateway

DescriptionMetric

If the status of the pod is not ready for more than 10minutes, consider
the severity as CRITICAL.

PodNotReady

If the application inside the pod is not up in 1minute, consider the severity
as CRITICAL.

PodRestarting

If API Gateway pod is restarting continuously for 15minutes, consider
the severity as CRITICAL.

PodCrashLooping

Perform the following actions to identify the problem when all the three
events occur:

Check the cluster status of API Gateway using the following REST
endpoint: GET /rest/apigateway/health/engine to know if API
Gateway and its components are healthy and are in a cluster mode.

Check the possible cause for the pod restart, if it is due to the pod
reallocation, node auto scaling and so on.

Check the node pool resource availability.

Check the previous logs of the pod for any exception.

Check the pod events to find the status of the pod.

Check the Terracotta client logs for errors in Terracotta communication
to know if the tenant is in cluster mode.

If the status of the new node is not ready in Kubernetes cluster for more
than 15minutes, consider the severity as CRITICAL.

NodeNotReady

Perform the following actions to identify the problem:

Check the settings of Autoscale.

Check the logs for the provisioning of the new node.

Check if there is any issue with the provisioning of the new pod.

Ensure that the status of the node is ready.

Ensure that the pod reallocation is completed.

If there is any mismatch with the replicas, that is, if the pods replicas
count does not match with the pods that are in a ready state for more
than 10minutes, consider the severity as CRITICAL.

DeploymentReplicas
Mismatch

Perform the following actions to identify the problem:

If replicas mismatch, Kubernetes spawns a new pod and checks if the
pod is stuck in any state (init, crash loop back)

198 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionMetric

If the pod is stuck in any state, Kubernetes deletes the pod and ensures
that a new and a healthy pod is created.

Check the pod events to find the status of the pod, for errors.

Check the previous logs of the pod for any exception.

Check the cluster status of API Gateway using the following REST
endpoint: GET /rest/apigateway/health/engine to know if API
Gateway and its components are healthy and are in a cluster mode.

Check the node pool resource availability.

Check the status of the new node if it is in a ready state.

Check if there is any issue with the provisioning of the new pod.

Additionally, for any reason, if a pod restarts, perform the following steps to verify the health of
the new pod.

Check for the readiness of the pod.

Check the cluster status of API Gateway using the following REST endpoint: GET /rest/
apigateway/health/engine to know if API Gateway and its components are healthy and are
in a cluster mode.

Check the possible cause for the pod restart, if it is due to the pod reallocation, node auto
scaling and so on.

Check the previous logs of the pod for any exception.

Check the pod events to find the reason for the restart.

Check the Terracotta client logs for errors in Terracotta communication, if the tenant is in
cluster mode.

Analyze Trend

You can use external tools for dashboarding operations and visualizing metrics and logs.

Troubleshooting: Monitoring API Gateway

During API Gateway monitoring, when you encounter a problem, check if the components of
the node or the containers are up and running.

To identify the process ID of the application and to generate thread dump and heap dump for
monitoring various system and application metrics, see:

“How Do I Generate Thread Dump?” on page 200.

“How Do I Generate Heap Dump?” on page 202.

webMethods API Gateway Administration 10.11 199

2 Operating API Gateway

API Gateway and API Data Store logs are located at the following locations:

SAGInstallDirectory\IntegrationServer\instances\instance_name\logs

SAGInstallDirectory\profiles\IS_instance_name\logs

SAGInstallDirectory\InternalDataStore\logs

For information about the logs, see “Application Log Configurations” on page 284.

How Do I Generate Thread Dump?

Thread dumps are vital artifacts to diagnose CPU spikes, deadlocks, memory problems,
unresponsive applications, poor response times, and other systemproblems. Thread dump is used
to analyze thread contention issues and it provides information on the exact status of each thread
and information about the call stack of each thread. There are various platforms to generate a
thread dump. This section explains few platforms from where you can take a thread dump. You
can choose any platform according to your requirement.

Prerequisites:

Java 7 version and above is considered for generating dumps.

To check the Process ID (PID) of the API Gateway JAVA application:
Linux: Run the following command ps –ef | grep java
Windows: JAVA PID is available in the Task Manager

Generate Thread Dump using jstack

jstack is an effective command line tool to capture thread dumps. The jstack tool is located in the
JRE or JDK_HOME\bin folder.

Run the following command to generate thread dump:
jstack -l pid > file_path

where:

pid. Process Id of the application, whose thread dump should be generated.

file_path. File path, where the thread dump has to be generated.

Example:
jstack -l 37320 > /opt/tmp/threadDump.txt

37320 is the PID and the opt/tmp/threadDump.txt is the location where the thread dump of the
process is generated.

Note:
The following shell script generates the thread dumps automatically multiple times:

i=1
while [$i -le 5]

200 webMethods API Gateway Administration 10.11

2 Operating API Gateway

do
echo jstack -l <PID> > ThreadDump$i
sleep 10
i=`expr $i + 1`

done

Generate Thread Dump using jVisualVM

Java VisualVM is a graphical user interface tool that provides detailed information about the
applications while they are running on a specified Java Virtual Machine (JVM). jVisualVM is
located in JDK_HOME\bin\jvisualvm.exe

1. Launch the jVisualVM.

2. Select your java application from the list in the left pane.

The left pane of the window lists all the java applications that are running on your system.

3. Click on the Threads tab in the right pane.

4. Click Thread Dump button.

The thread dump is generated.

Example:

Note:
This tool also has the capability to generate thread dumps from the java processes that are
running in remote host as well. To connect to the jVisualVM, the java process (remote process)
must be started with the JMX port using the following command:

java -Dcom.sun.management.jmxremote.port=3333 \
-Dcom.sun.management.jmxremote.ssl=false \
-Dcom.sun.management.jmxremote.authenticate=false \
YourJavaApp

Generate Thread Dump using JCMD

The JCMD tool is located in theJRE or JDK_HOME\bin folder. To generate thread dumpusing JCMD:

Run the following JCMD command to generate thread dump:

webMethods API Gateway Administration 10.11 201

2 Operating API Gateway

jcmd <pid> Thread.print > file_path

where:

pid. Process Id of the application, whose thread dump should be generated.

file_path. File path, where the thread dump is generated.

Example:
jcmd 37320 Thread.print > /opt/tmp/threadDump.txt

37320 is the PID and the opt/tmp/threadDump.txt is the location where the thread dump of the
process is generated.

How Do I Generate Heap Dump?

HeapDumps are vital artifacts to diagnosememory-related problems such as slowmemory leaks,
garbage collection problems, and java.lang.OutOfMemoryError. They are also vital artifacts to
optimize the memory consumption. There are various platforms to generate a heap dump. This
section explains few platforms from where you can generate a heap dump. You can choose any
platform according to your requirement.

Prerequisites:

Java 7 version and above is considered for generating dumps.

To check the Process ID (PID) of the API Gateway JAVA application :
Linux: Run the following command ps –ef | grep java
Windows: JAVA PID is available in the Task Manager

Generate Heap Dump using jmap

The jmap tool is located in the JRE or JDK_HOME\bin folder. jmap tool generates heap dumps into
a specified file location. To generate a heap dump:

Run the following command:
jmap -dump:format=b,file=file_path.bin PID

where:

pid. Process Id of the application, whose heap dump should be generated.

file_path. File path, where the heap dump has to be generated.

Example:
jmap -dump:format=b,file=/opt/tmp/heapdump.bin 37320

37320 is the PID and the opt/tmp/heapdump.txt is the locationwhere the heap dump of the process
is generated.

202 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Generate Heap Dump using jVisualVM

Java VisualVM is a graphical user interface tool that provides detailed information about the
applications while they are running on a specified Java Virtual Machine (JVM). jVisualVM is
located in JDK_HOME\bin\jvisualvm.exe

1. Launch the jVisualVM.

2. Select your java application from the list in the left pane.

The left pane of the window lists all the java applications that are running on your system.

3. Click on the Monitor tab in the right pane.

4. Click Heap Dump button.

The Heap dump is generated.

Example:

HeapDumpOnOutOfMemoryError

When an application runs out of memory, it is ideal to generate heap dump right at that point to
diagnose the problem. You can identify the objects that were occupying the memory and also the
percentage of memory they were occupying when java.lang.OutOfMemoryError occurred. The
following JVMparameter can be set while starting the Java application to generate the heap dump
whenever Out Of Memory (OOM) exception occurs in the application.
-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=file_path

where file_path is the location and the name of the file, where the heap dump is generated.

Causes for timeout errors

The following factors can contribute to the delay when the Readiness Probe, Runtime Service
Health Probe, or Administration Service Health Probe initiates resulting in the timeout errors.

Poor capacity (CPU-RAM) or sizing of the components.

Nodes are not up and running.

Poor configurations may result in license validation issues, or ports connectivity issues.

Firewall or proxy issues may result in communication failure between the components.

webMethods API Gateway Administration 10.11 203

2 Operating API Gateway

Virtualized or containerized environments may run slowly due to overprovisioning.

Other programs that run on the machines such as antivirus, and so on.

Monitoring API Data Store

As part of application monitoring, you can monitor the state, that is the cluster status of API Data
Store along with the resources.

How do I monitor the health of API Data Store?

Prerequisites:

Youmust have a validAPIGateway user credential for using the Readiness Probe and Liveness
Probe.

All the node level probes must be setup to target the local instance, typically, localhost.

SoftwareAG recommends to set up a dedicated port formonitoringwith an appropriate private
thread pool.

Readiness Probe at Node-Level

Tomonitor the readiness ofAPIData Store, that is to check if APIData Store has started successfully,
use the following REST endpoint:

GET HTTP://host:port/_cluster/health

The following table shows the response code and the description.

204 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionResponse

Readiness check is successful.200 OK

Readiness check failed and denotes a problem. The response JSON indicates
the problem.

500 Internal server
error

If readiness probe fails, you can perform one of the following actions:

If you have installed API Gateway directly, check the API Data Store
logs to find the status or exception.

If you have installedAPIGateway through docker image or Kubernetes,
ensure that the existing pod is resolved or a new pod is created
(automatically) and ready for serving the requests.

Several factors can contribute to the delay when the Readiness Probe
initiates, which may result in the timeout errors. To know the reasons for

timeout or no
response as the

timeout errors, see “Causes for timeout errors” on page 203 for more
information.

request did not
reach the probe

Liveness Probe at Node-Level

As API Data Store works in a cluster-based environment, the result of the Liveness Probe is
determined by the cluster health. You can check the cluster status using the same endpoint
mentioned for the Readiness Probe.

How do I collect metrics?

Metrics collection is reported in the Prometheus data format. Prometheus is a non- Software AG
dashboarding tool that helps in trend analysis. For more information, see https://prometheus.io/.
The Prometheus metrics names can differ in your environment if you are using a different
Prometheus exporter like ES exporter.

Application Metrics

Monitor the following metrics to analyze API Data Store health.

Index size

Cluster health

Number of shards

GC monitoring

Note:
The threshold values, configurations, and severities that are mentioned throughout this section
are the guidelines that Software AG suggests for an optimal performance of API Data Store.
You canmodify these threshold values or define actions based on your operational requirements.

webMethods API Gateway Administration 10.11 205

2 Operating API Gateway

https://prometheus.io/

For details about how to generate thread dump and heap dump, see “Troubleshooting:
Monitoring API Data Store” on page 214.

If the metrics return an exceeded threshold value, consider the severity as mentioned and
perform the possible actions that Software AG recommends to identify and debug the problem
and contact Software AG for further support.

Index Size

Storing all data in a single index will slow down Elasticsearch's performance. Hence, the data
must be split into multiple smaller indexes and stored. Advantages of small indexes include:

Faster start-up of Elasticsearch. Multiple smaller indexes instead of one huge index allows
Elasticsearch to start up faster.

Faster response. When you store all data in a single index, then Elasticsearch slows down
since it spends a lot of time in shard allocation. Chunking of data in smaller units helps in
avoiding this time consumption.

Each index has two divisions; the primary shard and the replica shard. The data is first stored in
primary shard. Elasticsearch replicates the data in the primary shard as replica shard. For example,
when you allot 25 GB for an index, the space is equally divided for both divisions of an index. As
per the example, the size of all indexes total up to a maximum of 300 GB. That is, 150 GB is for
primary data and the 150 GB for replica shards. Replication of primary data enables Elasticsearch
to make it highly available.

When data on a particular index exceeds a certain limit, it is essential to roll over the index and
create a new index. The acceptable size limit of an index depends on its type. Software AG
recommends that you specify 25 GB (12.5 for each shard) for the transactional events indexes and
5 GB (2.5 for each shard) for tracer indexes. For the list of tracer indexes, see “List of Indexes that
can be included in backup” on page 146.

It is essential to monitor the transactional events indexes to prevent them exceeding 25 GB of size.
For information on calculating index size, see “Calculating index size” on page 206.

You must rollover an index when the size of the primary shard is 12.5 GB. That is, if the size of
the primary index is 12.5 GB, then the size of replicawill also be 12.5 GB. Hence, youmustmonitor
the size of primary index and perform rollovers as and when required.

When you rollover an index, a new index is created with a primary and a replica for each shard.
The naming convention of the new index is Index_name_YYYYMMDDHHMM. For example,
gateway_default_analytics_transactionalEvents_YYYYMMDDHHMM. For information on
creating a rollover, see “Creating Rollover of an Index” on page 131.

Calculating index size

The query used to calculate the index size returns the primary shard of an index. Hence, youmust
calculate the actual index size by multiplying the returned size by two. For example, if you want
to purge indexes that are beyond 25 GB, then you must purge the indexes whose size are 12.5 GB.

1. Run the following command:

206 webMethods API Gateway Administration 10.11

2 Operating API Gateway

http://localhost:9240/_cat/indices/gateway_tenant_index_name?
v&s=i&format=json&pretty

For example,
http://localhost:9240/_cat/indices/
gateway_default_analytics_transactionalevents_1639736462002-000001?
v&s=i&format=json&pretty

Sample output.:
[
{
"health" : "yellow",
"status" : "open",
"index" : "gateway_default_analytics_transactionalevents_1639736462002-000001",
"uuid" : "2tmWIIAcQ1KeSqIg9iPU0g",
"pri" : "5",
"rep" : "1",
"docs.count" : "663",
"docs.deleted" : "0",
"store.size" : "909.8kb",
"pri.store.size" : "909.8kb"
}
]

API Data Store Cluster Health

To ensure optimal health andperformance ofAPIData Store, SoftwareAG recommendsmonitoring
the API Data Store cluster health regularly.

DescriptionCommand

This command retrieves API Data Store cluster health status.curl -X GET
http://localhost:9240/_cluster
/health?pretty

This JSON path expression retrieves the cluster health status from
the response.

$.status

This JSON path expression retrieves the number of nodes in the
cluster from the response.

$.number_of_nodes

The response JSON of the health check request displays a status field in the response. The status
can have the values green, yellow or red. The cluster health status is displayed based on the
following color codes:

DescriptionStatus

Indicates that the cluster is in a healthy state. When API Data Store
is handling huge data, it takes some time to display the cluster health
status.

green

webMethods API Gateway Administration 10.11 207

2 Operating API Gateway

DescriptionStatus

Indicates that the cluster is not in a healthy state. Identify the cause
and rectify it. During this time, APIData Store processes the requests

yellow

for the index that is available. If there are unassigned shards, then
identify the unassigned shards, check the reason for the unallocation
and resolve the issue.

Run the following command to retrieve the list of unassigned
shards.
curl -X GET “http://localhost:9240/_cat/
shards?h=index,shard,primaryOrReplica,state,docs,store,ip,
node,segments.count,unassigned
.at,unassigned.details,unassigned.for,
unassigned.reason,help,s=index&v”

Run the following command to check the unallocated reason for
specific shards.
curl -X GET "http://localhost:9240/_cluster/allocation/
explain" -d ‘{ "index" :"index name","primary" :
"true|false","shard":
"shardnumber"}’reason,help,s=index&v”

Indicates that API Data Store nodes are down or not reachable or
the API Data Store master is not discovered. If the number of nodes

red

does not match the number of API Data Store nodes configured,
identify the node that did not join the cluster and identify the root
cause for the node to not join the cluster. Based on the root cause,
identify if your API Data Store is down. If your API Data Store is
down and not reachable, check the connectivity.

A sample HTTP response is as follows:
{
"cluster_name": "SAG_apidatastore_cluster",
"status": "green",
"timed_out": false,
"number_of_nodes": 3,
"number_of_data_nodes": 3,
"active_primary_shards": 101,
"active_shards": 202,
"relocating_shards": 0,
"initializing_shards": 0,
"unassigned_shards": 0,
"delayed_unassigned_shards": 0,
"number_of_pending_tasks": 0,
"number_of_in_flight_fetch": 0,
"task_max_waiting_in_queue_millis": 0,
"active_shards_percent_as_number": 100.0
}

The overall cluster status is green since all API Data Store nodes work as expected.

208 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Number of shards

To ensure proper allocation of shards to nodes, Software AG recommends to monitor the number
of shards regularly.

DescriptionCommand

This command retrieves the number of shards on API Data Store.curl -X GET
"http://localhost:9240/_cluster
/health?pretty" If the total number of active shards from the response exceeds the

heap space * nodes * 20 count, then increase the heap space of
API Data Store nodes or add a newAPI Data Store node. Formore
information on adding a new API Data Store node, see “Adding
New Nodes to an Elasticsearch Cluster” on page 33.

API Data Store considers a maximum of 20 active shards per GB
of heap space as healthy. Perform any of the following actions to
maintain the total number of active shards:

Scale up the API Data Store node.

If you are not able to scale up the API Data Store node, then
increase the heap size as the last option. The heap space should
not be more than half of systemmemory (RAM). For example,
if the system memory is 16 GB, you can allocate a maximum
of 8 GB for API Data Store.

To increase the heap space,modify the parameters Xms2g and Xmx2g
in the jvm.options file located at SAG_Install_Directory\
InternalDataStore\config.

Garbage Collection (GC) Monitoring

The GCmetric provides the GC run-time in seconds. Youmust check GC run-time once every five
minutes. The average GC run-time should not exceed one second.

DescriptionMetric

The quotient of both the metrics gives the GC run time.elasticsearch_jvm_gc_
collection_seconds_sum

If the quotient is more than 1 second, it implies that GC is taking
longer time to run and this slows down API Data Store requestelasticsearch_jvm_gc_

collection_seconds_count processing. You must collect the logs and get the mapping of API
index and transaction index.

Infrastructure Metrics

Infrastructuremetrics include systemmetrics and containermetrics. For information about container
metrics, see “Container Metrics” on page 213.

webMethods API Gateway Administration 10.11 209

2 Operating API Gateway

SystemMetrics

Monitor the following system metrics to analyze API Data Store health.

CPU usage

Disk usage

Memory usage

Monitor the CPU usage

To ensure that CPU is not over utilized, you must monitor the CPU health regularly. You can
monitor the CPUusage at two levels: process level andOS level. If the process level CPU is utilized
beyond the threshold limits, you can share the load. However, if the OS level CPU has reached its
limits, you must contact your IT team.

DescriptionCommand / Metric

This command retrieves the CPU utilization by the API Data Store
pods.

curl -X GET
http://localhost:9240
/_nodes/stats/process?pretty

This JSON path expression retrieves the percentage of CPU usage by
an API Data Store pod.

$.nodes.nodeid
.process.cpu.percent

If a pod is using 80% of the CPU space for more than 15minutes,
consider the severity asWARNING and perform the following steps to
identify the causes of higher CPU usage.

1. Identify the process that consumes the highest CPU.

2. Generate the thread dump.

3. Analyze the thread dump to identify the thread locks.

If a pod is using 90% of the CPU space for more than 15minutes, look
for the following Prometheus metrics:

elasticsearch_os_cpu_percent

elasticsearch_process_cpu_percent

If elasticsearch_os_cpu_percent ismore than 90%, consider the severity
as CRITICAL and perform the following steps to identify the causes of
higher CPU usage.

elasticsearch_os_
cpu_percent

1. Restart the pod.

2. Check the readiness and liveliness of the pod.

If elasticsearch_process_cpu_percent is more than 90%, consider the
severity as CRITICAL and add a new node to the cluster. To learnmore

elasticsearch_process_
cpu_percent

210 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionCommand / Metric

about how to add a newAPI Data Store node, see “AddingNewNodes
to an Elasticsearch Cluster” on page 33.

Monitor the Disk usage

To ensure that all nodes have enough disk space, Software AG recommends to monitor the disk
space regularly.

DescriptionCommand

This command retrieves the disk space of theAPIData Store nodes.
It lists the disk space available in all nodes.

curl -X GET
http://localhost:9240
/_nodes/stats/fs

For more information about Elasticsearch node statistics, see
Elasticsearch documentation.

This JSON path expression retrieves the total disk space.$.nodes..fs.total.total_in_bytes

This JSON path expression retrieves the free disk space.$.nodes..fs.total.free_in_bytes

This JSON path expression retrieves the available disk space..nodes..fs.total.available_in_bytes

Disk-based shard allocations

Note:
500GB(HA) / 150GB(single node) is used as an example for maximum data retention here.

DescriptionCommand

This command retrieves the configured disk-based shard allocations in
API Data Store. To learn more about disk-based shard allocations, see
Elasticsearch documentation.

curl -X GET
http://localhost:9240
/_cluster/settings?pretty

The shard allocation is based on the thresholds known as Low, High, and
Floodwatermark.

The default threshold for this level is 80%. Once the threshold is reached,
API Data Store does not allocate new shards to nodes that have used

Shard allocation: Low

$.persitent.cluster.routing
.allocation.disk.
watermark.low

more than 80% disk space. You can calculate if the disk usage is low by
using the expression (average disk usage of the API Data Store cluster
/ standalone). If the result of this expression exceeds the defined threshold
(80%), the disk has reached the Low stage. If your disk usage has reached
low, perform the following steps:

1. Query the transaction event index size and verify if the index is above
525 GB(HA) / 175 GB(single node). If it is already breached, monitor
if the purge scripts are running and the index size is decreasing.

webMethods API Gateway Administration 10.11 211

2 Operating API Gateway

https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-nodes-info.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.13/modules-cluster.html#disk-based-shard-allocation

DescriptionCommand

2. Verify if the size of each transaction event index is equal to the sum
of used space (range of 25 GB). If this does not match, some other
external items like increased logs size or heap dump are occupying
a lot of space. Clear the logs and heap dump.

3. Repeat the above steps until the transaction event index is less than
525 GB and the average disk usage of the cluster becomes less than
80%.

The default threshold for this level is 85%. Once the threshold is reached,
APIData Store attempts to relocate shards away from a nodewhose disk

Shard allocation: High

$.persitent.cluster.routing
.allocation.disk.
watermark.high

usage is above 85%. You can calculate if the disk usage is low by using
the expression (average disk usage of the API Data Store cluster /
standalone). If the result of this expression exceeds the defined threshold
(85%), the disk has reached the High stage. If your disk usage has reached
High, perform the following steps:

1. Query the transaction event index and verify if the index is above
525 GB(HA) / 175 GB(single node). If it is already breached, monitor
if the purge scripts are running and the index size is decreasing.

2. Verify if the size of each transaction event index is equal to the sum
of used space (range of 25 GB). If this does not match, some other
external items like increased logs size or heap dump are occupying
a lot of space. Clear the logs and heap dump.

3. Repeat the above steps until the transaction event index is less than
525 GB and the average disk usage of the cluster becomes less than
85%

The default threshold for this level is 90%. Once the threshold is reached,
API Data Store enforces a read-only index block

Shard allocation: Flood

$.persitent.cluster.routing
.allocation.disk.
watermark.flood

(index.blocks.read_only_allow_delete) on every index that has one or
more shards allocated on the node that has at least one disk exceeding
the flood stage. This is the last resort to prevent nodes from running out
of disk space.

You can calculate if the disk usage is in flood stage, by using the
expression (average disk usage of the API Data Store cluster /
standalone). If the result of this expression exceeds the defined threshold
(90%), the disk is in the Flood stage. If your disk usage has reached the
Flood stage, perform the following steps:

Monitor the purging of data and ensure the purging happens and
the disk space occupancy is reduced.

If this situation is due to a spike in the requests count and size, follow
up with the customer to understand the reason for the sudden spike

212 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionCommand

and inform the customer to compress the payload for transaction
logging or not to store the request or response.

This command retrieves information about specific metrics like fs, http,
os, process, and so on.

curl -X GET
http://localhost:9240
/_nodes/stats/metric

Formore information about the correspondingmetrics, see Elasticsearch
documentation.

Monitor the Memory usage

DescriptionCommand

This URL retrieves the memory status utilized by the API Data Store
pods.

http://HOST:9240/
_nodes/nodeid/stats/os

This URL retrieves the node id of the corresponding API. This returns
the node id, node name, and the node IP address.

http:URL/nodes?
v&full_id=true&h=id,name,ip

This JSON expression retrieves the percentage of memory that is free.$.nodes.nodeid
.os.mem.free_percent

If a pod is using 85% of the available memory, consider the severity as
WARNING, and identify the process that consumes more memory and
generate the heap dump.

If a pod is using 90% of the available memory, consider the severity as
CRITICAL, and perform the following steps to identify the reason.

1. Identify the process that consumes more memory.

2. Generate the heap dump.

3. Restart the pod.

4. Check the readiness and liveliness of the pod.

Container Metrics

If you have installed API Gateway through Docker or Kubernetes, Software AG recommends
monitoring the followingmetrics to check if API Data Store container is healthy.When themetrics
exceed the threshold value, consider the severity as mentioned below and perform the possible
actions that Software AG recommends to identify, analyze, and debug the problem.

DescriptionMetric

If the pod status is not ready formore than 10minutes, consider the severity
as CRITICAL and check the pod console log to find a status or exception.

PodNotReady

Ensure that either the issue with the existing pod is resolved or a new pod
is created.

webMethods API Gateway Administration 10.11 213

2 Operating API Gateway

https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html

DescriptionMetric

If the pod replicas' count is not equal to number to pods in ready state,
even after 10minutes, consider the severity as CRITICAL and check the
pod console log, and identify and resolve the new pod provisioning issue.

DeploymentReplicas
Mismatch

If a newly created or scaled pod is not ready in the Kubernetes cluster even
after 15minutes of deployment, consider the severity as CRITICAL and

NodeNotReady

check the autoscaling settings and node provisioning events, logs, and
identify and resolve the issue discovered from the logs.

If the Statefulset replicas mismatch for longer than 5minutes, consider the
severity as CRITICAL and check the pod console logs to find the status or
exception and resolve the same.

StatefulSetReplicas
Mismatch

Note:
Statefulset is a workload API that manages the deployment and scaling
of a set of pods.

If API Data Store pods are stopping and restarting continuously for more
than 10 minutes, consider the severity as CRITICAL and describe the pod

PodCrashLooping

status and check for any error. Restart the pod and check the startup logs.
Check the availability of system resources and cluster health.

If only 10% of the persistent volume is free at any given point of time,
consider the severity as CRITICAL and check cluster health and perform
the same clean up that you would perform for the API Data Store metrics.

PVC_Usage

If the persistent volume status shows XXX at any given point of time,
consider the severity as CRITICAL and check the API Data Store cluster
status.

PVC_Error

Analyze Trend

You can use external tools for dashboarding operations and visualizing metrics and logs.

Troubleshooting: Monitoring API Data Store

DuringAPIData Storemonitoring, when you encounter any problem, check if the components
of the node or the containers are up and running.

To identify the process ID of the application and to generate thread dump and heap dump for
monitoring various system and application metrics:

see “How Do I Generate Thread Dump?” on page 200.

see “How Do I Generate Heap Dump?” on page 202.

API Data Store logs are located at SAGInstallDirectory\InternalDataStore\logs

214 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Monitoring Terracotta

As part of applicationmonitoring, you canmonitor the state, that is the cluster health of Terracotta
Server Array.

How do I monitor the health of Terracotta Server Array?

Liveness Probe at Node-Level

To monitor the liveness of Terracotta server, that is to check the cluster health status of Terracotta,
run the following script:

SAGInstallDirectory/Terracotta/server/bin/server-stat.sh

Check the following condition from the response to verify the liveness of the server.
<server>.health = OK
AND

<server>.role = ACTIVE/PASSIVE

Following is one of the responses based onwhich Terracotta instance (active or passive), the health
check is done:
server.health: OK
server.role: ACTIVE
server.initialState: START-STATE
server.state: ACTIVE-COORDINATOR
server.port: 9540
server.group name: TSA API Gateway

or

webMethods API Gateway Administration 10.11 215

2 Operating API Gateway

server.health: OK
server.role: PASSIVE
server.initialState: START-STATE
server.state: PASSIVE-STANDBY
server.port: 9540
server.group name: TSA API Gateway

The following table shows the response code and the description.

DescriptionResponse

Runtime service health check is successful.200 OK

Runtime service health check failed and denotes a problem. If the Runtime
service health check fails, restart Terracotta server.

500 Internal server
error

Several factors can contribute to the delaywhen the Runtime ServiceHealth
Probe initiates, whichmay result in the timeout errors. To know the reasons

timeout or no
response as the

for timeout errors, see “Causes for timeout errors” on page 203 for more
information.

request did not
reach the probe

Readiness Probe - Node Level

To monitor the readiness of Terracotta server, that is to check if Terracotta server is ready to serve
the requests, use the same script that ismentioned for the liveness check andmonitor the readiness.

Infrastructure Metrics

Infrastructuremetrics include systemmetrics and containermetrics. For information about container
metrics, see “Container Metrics” on page 218.

SystemMetrics

Monitor the following metrics to analyze the health of Terracotta server.

CPU usage

Disk usage

Memory usage

If the metrics return an exceeded threshold value, consider the severity as mentioned below and
perform the possible actions that Software AG recommends to identify and debug the problem
and contact Software AG for further support.

Note:
The threshold values, configurations, and severities that are mentioned throughout this section
are the guidelines that Software AG suggests for an optimal performance of API Gateway. You
can modify these thresholds or define actions based on your operational requirements.

To generate thread dump and heap dump for monitoring various system metrics, see
“Troubleshooting: Monitoring Terracotta Server Array” on page 219.

216 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionMonitor

If the CPU usage of the system is above the recommended threshold value,
consider the severity as mentioned:

CPU usage

Above 80% threshold for 15minutes continuously, Severity:WARNING

Above 90% threshold for 15minutes continuously, Severity: CRITICAL

The steps to identify the causes of higher CPU usage are as follows:

1. Identify the process that consumes the highest CPU.

2. Generate the thread dump.

3. Analyze the thread dump and logs to identify the problem.

4. Monitor the process closely. If the process fails, it should recreate.

5. Check if the active-passive quorum is intact using the following script:
SAGInstallDirectory/Terracotta/server/bin/server-stat.sh

6. Check if API Gateway clients can establish the connection to Terracotta
cluster using the followingREST endpointGET /rest/apigateway/health/
engine

If the disk usage of the Terracotta server shows a higher value, rotate logs
based on a fixed size and fix the number of rotated files to be persisted.

Disk usage

If thememory usage is above the recommended threshold value, consider the
severity as mentioned:

Memory usage

Above 80% threshold, Severity:WARNING

Above 90% threshold, Severity: CRITICAL

The steps to identify the causes of higher memory usage are as follows:

Identify the process that consumes more memory.

Start the TerracottaManagementConsole (TMC) and check the heapusage,
off-heap usage and warnings.

Analyze the memory dump and Terracotta logs to identify the issue.

Monitor the process closely.

Check if the active-passive quorum is intact using the following script:
SAGInstallDirectory/Terracotta/server/bin/server-stat.sh

Check if API Gateway clients can establish the connection to Terracotta
cluster using the followingREST endpointGET /rest/apigateway/health/
engine

webMethods API Gateway Administration 10.11 217

2 Operating API Gateway

Container Metrics

If you have installed Terracotta through Docker or Kubernetes, Software AG recommends
monitoring the following metrics to check if Terracotta container is healthy

DescriptionMetric

If the status of the pod is not ready for more then 10minutes, consider the
severity as CRITICAL and perform the following actions to identify the
problem:

PodNotReady

1. Check the console logs of the pod to find the status for any exception.

2. Identify issue with the provisioning of the pod.

If the Statefulset replicas mismatch is longer than 5minutes, consider the
severity as CRITICAL and perform the following actions to identify the
problem:

StatefulSet
ReplicasMismatch

1. Check the console logs of the pod to find the status for any exception.

2. Identify issue with the provisioning of the pod.

Checks and creates a new pod if the application inside the pod is not up.PodRestarting

If the application inside the pod is not up in 1minute, consider the severity
as CRITICAL. Kubernetes creates a new pod to maintain the availability.

Perform the following actions to identify the problem:

1. Check the previous logs of the pod and ensure that you check the logs
for all the pods that are running.

2. Check the Terracotta client logs for errors in Terracotta communication,
if the tenant is in cluster mode.

Pod restart verification procedure

For any reason, if the pod is restarted, check the following to verify the health of the new pod.

1. Wait for 150 seconds for the alternate pod (passive) to take an active role.

2. If the alternate pod does not take an active role, it can lead to 2 active pods under following
circumstances:

The passive pod can turn active and also the new pod can turn active simultaneously.

Note:
Terracotta heals itself by sending a zap signal to one of the pods.

When 2 pods are active, it may be due to the reason that the pod that was transitioning
from passive to active is stuck and in this case, its readiness or liveliness checks returns an

218 webMethods API Gateway Administration 10.11

2 Operating API Gateway

unhealthy status and an appropriate action that is defined for an unhealthy pod is
performed.

Analyze Trend

You can use external tools for dashboarding operations and visualizing metrics and logs.

Troubleshooting: Monitoring Terracotta Server Array

During Terracotta Server Array monitoring, when you encounter a problem, check if the
components of the node or the containers are up and running.

Terracotta logs are located at:

Client log: SAGInstallDirectory\IntegrationServer\instances\instance_name\logs

Server log: SAGInstallDirectory\tsa

To generate thread dump and heap dump for monitoring various system and application
metrics:

see “How Do I Generate Thread Dump?” on page 200.

see “How Do I Generate Heap Dump?” on page 202.

Monitoring Kibana

Health check

webMethods API Gateway Administration 10.11 219

2 Operating API Gateway

You can ping the following port to check the health of Kibana.
tcp-socket:9405

If the port is accessible, you can understand that Kibana is in a healthy state.

Troubleshooting Tips: Monitoring Performance

I see performance degradation when the Log Invocation policy is configured to log
API Data Store or an external Elasticsearch

When the Log Invocation policy is configured forAPIs,APIGatewaydisplays only some transaction
events in the Analytics tab of an API, while ignoring others. This issue occurs during times of high
transaction event loads.

Resolution:

Increase the following extended settings andwatt properties values to get the desired performance
improvements:

events.collectionPool.maxThreads

events.collectionPool.minThreads

events.collectionQueue.size

events.reportingPool.maxThreads

events.reportingPool.minThreads

events.reportingQueue.size

Increase the following JVM heap size in the wrapper.conf file located atSAGInstallDir\profiles\
IS_default\configuration:

wrapper.java.initmemory

wrapper.java.maxmemory

I see that the runtime events widget does not render transaction events with a huge
payload

Runtime events widget under API-specific analytics dashboard does not display the transactional
events and a shard failure error appears when there are huge Base64 encoded payloads.

Resolution:

To avoid encountering errors while handling huge Base64 encoded payloads:

Set the index.highlight.max_analyzed_offset index level setting to maximum.

Sample to set the index.highlight.max_analyzed_offset index level setting to maximum is as
follows:

220 webMethods API Gateway Administration 10.11

2 Operating API Gateway

curl -X PUT "localhost:9240/<index_name>/settings?pretty" -H 'Content-Type:
application/json' -d' { "index.highlight.max_analyzed_offset" :50000000
}

Set the indices.query.bool.max_clause_count property value to 2048 in the elasticsearch.yml
file located at SAG_Installdir/InternalDataStore/config.

Increasing the indices.query.bool.max_clause_count property value to 2048 does not impact
the transactional flow performance. But by increasing this value, you are allowing API Data
Store to run queries and aggregations over many fields which might consumemore resources
to run these queries.

I see that I am not able to substitute credentials when using Kibana keystore

Substituting credentials when using Kibana keystore does not work in the API GatewayUI.When
navigating to the API Gateway Analytics page, the user is asked for Elasticsearch credentials in
an authentication window.

Resolution:

To resolve this issue, use plain text passwords while authenticating Kibana keystore.

I see the low disk space issue, and API Gateway stops working for the WRITE
operations.

This error occurs when there is low disk space.

The following errormessages are seen in theSAG_EventDataStore.log file in the SAGInstallDir\
InternalDataStore\logs :

Exception: [WARN] [o.e.c.r.a.DiskThresholdMonitor] [localhost1568897216386] flood stage
disk watermark [95%] exceeded on [BOf6SQe2SwyI93vi4RlBNQ] [localhost1568897216386]
[C:\SoftwareAG\InternalDataStore\data\nodes\0] free: 2.4gb [2.4%], all indices on this node
will be marked read-only.

Saving an API -> error message ("Saving API failed.
com.softwareag.apigateway.core.exceptions.DataStoreException: Error while saving the
document. doc Id - 6d5c7ac0-574a-4a53-acba-a738f21e3142, type name - _doc,message - "index
[gateway_default_policy] blocked by: [FORBIDDEN/12/index read-only / allow delete (api)];"
")

Resolution:

Increase the disk space in all nodes or clean up disk space by clearing unwanted data. If you
do not perform this step, then there is a chance that this error might appear again.

Make a REST call to:
curl -XPUT -H "Content-Type: application/json"
http://localhost:9200/_all/_settings -d '
{"index.blocks.read_only_allow_delete": null}

webMethods API Gateway Administration 10.11 221

2 Operating API Gateway

You can optimize the usage of disk space using the Watermark property of Elasticsearch. For
information about the property, see
https://www.elastic.co/guide/en/elasticsearch/reference/current/disk-allocator.html

General Administration Configuration

In addition to the administrative tasks like Security configuration, DataManagement, Destination
configuration, External account configuration,APIGateway supports various general administration
configurations and system settings.

You must have the API Gateway's manage general administration configurations functional
privilege assigned to perform the following configurations in the general configuration section of
API Gateway:

Configure API Gateway to communicate with a load balancer that allows API Gateway to
provide the endpoints of the API with the load balancer URL.

Configure the extended settings which are advanced parameters required for your server to
operate properly.

Configure API fault settings for errors being returned by the API Gateway to the applications.

Configure approval settings.

Configure Proxy server aliases.

Configure URL aliases.

Configure the custom content-types.

Configure cache to boost performance.

Configure log levels and the destination where the aggregated logs are collected.

Configure API Gateway and Terracotta license file path.

Configure cluster settings.

Configure API callback request settings.

Configure transaction alerts settings.

Clusters and Load Balancers
Load balancing enables the distribution of messages received across the API Gateway nodes.
Clustering helps in attaining the high availability functionality aswell as load balancing. In addition,
a cluster provides fault tolerance that ensures recovery of events and metrics in case a node goes
down. If you have a web service that is hosted at two or more endpoints, you can use the load
balancing option to distribute requests across the nodes. Requests are distributed across multiple
nodes and are routed based on the round-robin execution strategy.

222 webMethods API Gateway Administration 10.11

2 Operating API Gateway

In a load balanced system, calls from an application are distributed across two or more different
instances of API Gateway, referred to as nodes. Each node is an instance of API Gateway running
on an instance of Integration Server.

If you cluster API Gateway instances, you must configure API Gateway with the load balancer
URL appropriately for it to report the API address at the load balancer URL instead of having
direct access address with API Gateway.

Load Balancer URLs

Load balancer URLs are the URLs of the load balancer where the requests are sent by the
applications. When an API is activated on a node of a cluster, the endpoint of the API is provided
as the load balancer URL instead of the Gateway end point. API Gateway stores this load balancer
URL endpoint. Since all nodes of an API Gateway cluster are syncronized with APIs, each API
Gateway accepts the message when routed from the load balancer to any node in the cluster.

A load balancer URL consists of a host name (or IP address) and port number of the load balancer
in the following format:

http://hostname:portnumber

or

http://IP-address:portnumber

For example, if the host name of the load balancer is ExampleHost, and its port number is 80, the
load balancer URL would be http://ExampleHost:80

Youmust configure any one node in a cluster with the same load balancer URL. The load balancer
URLS are automatically synchronized on all the nodes in a cluster.

Note:

When a Load Balancer URL is updated in API Gateway, a logout and re-login or opening
a new session reflects the updated artifacts URL under Specifications. The artifacts
downloaded without a new session also show the updated endpoints.
You can also configure the load balancer URL to use the Web application URL, HTTPS
protocol, or WebSocket port configuration.

Configuring Load Balancer URLs

You have to configure the load balancer URLs to define the endpoints for API Gateway.

To configure the load balancer URLs

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Load balancer.

3. Provide the following information in the API runtime invocation URLs section:

webMethods API Gateway Administration 10.11 223

2 Operating API Gateway

DescriptionField

Specifies the primary HTTP load balancer URL. For the URL, you
can specify either the IP address or host name of the load balancer
with the port number, as follows:

Load balancer URL
(HTTP)

http://IP-address:portnumber or http://hostname:portnumber

Specifies the primary HTTPS load balancer URL. For the URL, you
can specify either the IP address or host name of the load balancer
with the port number, as follows:

Load balancer URL
(HTTPS)

http://IP-address:portnumber or http://hostname:portnumber

Specifies the WebSocket load balancer URL. For the URL, you can
specify either the IP address or host name of the load balancer with
the port number, as follows:

Load balancer URL
(WS)

http://IP-address:portnumber or http://hostname:portnumber

4. Provide the following information in the Web application URLs section:

DescriptionField

Specifies the Web application load balancer URL.Web application load
balancer URL

If a value is not specified, thenAPIGatewayuses the default hostname
and port number during publish of an API Gateway asset from
CentraSite to API Gateway. For example, http://myHostname:9072.

5. Click Save.

Configuring Extended Settings
You must have the API Gateway's manage user administration functional privilege assigned to
configure the extended settings.

You can configure advanced parameter settings in the Extended settings section. These parameters
affect the operation of your server. You must not change these settings unless requested to do so
by Software AG Global Support. You can configure the watt parameter settings in this section.

To configure the extended settings

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Extended settings.

224 webMethods API Gateway Administration 10.11

2 Operating API Gateway

3. Click Show and hide keys. This displays all the configurable parameters.

4. You can configure any of the following parameters in the Extended keys section by providing
the required values. The configured values are listed under Extended settings at the top of the
page.

Parameter and Description

allowEGInvokeOnly

Specifies whether the SOAP APIs with Transport policy set to http, can be invoked using the
reverse invoke method when you set the external port as https, and the Registration and
Internal ports as http. Ensure you enable this setting in the system where the SOAP API is
created.

Note:
This setting affects only the behavior of SOAP APIs. You can invoke the REST APIs using
the reverse invoke method, irrespective of this setting, given the above said conditions are
true.

Possible values:

true. You can invoke SOAP APIs using the reverse invoke method if the external port is
set as https, and the Registration and Internal ports are set as http.

false. You cannot invoke SOAP APIs using the reverse invoke method.

allowExceedMaxWindowSize

Specifieswhether the number of records retrieved by Elasticsearch in a single request exceeds
the configured value or not.

Possible values:

true. The number of records retrieved in a single request can exceed the maximum value
configured in Elasticsearch. This is the default value.

false. Displays an errormessagewhen the number of records retrieved in a single request
exceeds the configured value.

apiDocumentsRestrictedExtension

Specifies the list of restricted file extensions to prevent users from uploading files with those
extensions as the input document for an API. For example, a file with the .exe file extension
could contain executable code that run on demand when it is downloaded. If files with the
.exe file extension are restricted, users cannot upload a file with the .exe extension in API
Gateway.

By default, several standard file extensions are blocked, including any file extensions that are
treated as executable files by Windows Explorer. The file extensions blocked by default are:

.bat - Batch file

webMethods API Gateway Administration 10.11 225

2 Operating API Gateway

Parameter and Description

.bin - Binary file

.dll - Windows dynamic link library

.exe - Executable program

You can remove any or all of the default file extensions.

apiDocumentsUploadSizeLimitInMB

Specifies the maximum document size, in MB, that can be uploaded as an input document
for an API.

Default value is 5.

This prevents users from uploading huge files that might slow down the system.

apig_MENConfiguration_tickInterval

Specifies the time interval (in seconds) between each interval processor iteration.

The value, you provide, must be an evenly divisible fraction of the smallest policy interval,
which is one minute.

Default value is 15.

Note:
Exercise caution when you modify this setting as this is a system level setting.

apig_rest_service_redirect

Specifies whether the incoming API requests must be redirected to the directives, /ws and
/mediator for providing Mediator compatible endpoints.

Possible values:

true. The incoming API requests are redirected to the directives, /ws or /mediator to
provide Mediator compatible endpoints.

false. The incoming API requests are not redirected to the /ws or /mediator directives.
This is the default value.

apig_schemaValidationPoolSize

Specifies the pool size for the XML schema parsers. API Gateway uses parsers to validate the
XML payload against the XML schema when you have selected Schema in the Validate API
Specification policy of the API.

The default value is 10. Provide a bigger value to increase the performance of API Gateway
in validating the XML schema of APIs.

apiGroupingPossibleValues

226 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

Specifies the names of API groups. You can organize your APIs by associating them to the
relevant API groups. The groups provided, by default, are:

Finance Banking and Insurance

Sales and Ordering

Search

Transportation and Warehousing

You can add, edit, or delete API groups based on your requirement.

apiKeyExpirationPeriod

Specifies the time for which an API Key is valid. You can provide the value in seconds,
minutes, days, months, or years. For example, 8 seconds, 8s, 10 months, 10m, 15 minutes,
15min.

The expiration date is computed as follows:

When a new application is created: Expiration date = The time when an application is
created + The value specified in the apiKeyExpirationPeriod parameter.

When an API access key is regenerated: Expiration date = The time when the API key is
regenerated + The value specified in the apiKeyExpirationPeriod parameter.

If you do not specify a value, then the API key never expires.

apiKeyHeader

Specifies theHTTPheader name fromwhichAPIGateway retrieves theAPI key from incoming
client requests.

The default value is x-Gateway-APIKey.

apiMaturityStatePossibleValues

Specifies the API maturity state values that can be set for an API. You can search for APIs
based on their maturity status.

The default values provided are Beta, Deprecated, Experimental, Production, and Test.

appMesh.microgateway.logLevel

Specifies the log level of Microgateways that are deployed through API Gateway.

The default value is ERROR.

Possible values: TRACE, DEBUG, INFO, WARN, ERROR, FATAL

backupSharedFileLocation

webMethods API Gateway Administration 10.11 227

2 Operating API Gateway

Parameter and Description

Specifies the file location where the data backup file has to be archived. The default location
is SAGInstallPath/profiles/IS_default/workspace/temp/default.

The files are saved with the corresponding timestamp in the specified location. Only the
run-time events are included in the archives.

clusterNotifierCacheStaleInterval

Specifies the time interval after which data in the ClusterNotifierCache is considered stale
and is removed from the cache.

The default value is 900 seconds. If you provide a non-numeric value, APIGateway interprets
the value as the default value of 900 seconds. If you provide a value less than 60 seconds, API
Gateway interprets the value as the lower limit of 60 seconds.

The ClusterNotifierCache maintains a data structure which has an entry for each active
member in a cluster. This data structure is used to communicate changes on API definitions,
applications, policies, and so on, between the cluster members.When a cluster member shuts
downgracefully it removes its entry from the data structure.However, when a clustermember
process is killed the entry remains, and other cluster members continue posting notifications
to the entry. In order to avoid endless growing resulting in performance degradation the
cluster data structure is monitored for absent cluster members. If a cluster member has not
reactedwithin the configured clusterNotifierCacheStaleInterval it is regarded as stale, and
its data is removed from the ClusterNotifierCache.

customCertificateHeader

Specifies the header name of the request header in which the client certificate can be passed.
API Gateway checks for the existence of this header and fetches the certificate and identifies
the application.

The default value is X-Client-Cert.

The certificate included in the custom header can be in the following formats:

Base64 encoded PEM certificate with BEGIN CERTIFICATE and END CERTIFICATE
delimiters.

Non-Base64 encodedPEMcertificatewith BEGINCERTIFICATE andENDCERTIFICATE
delimiters.

PEM certificate can bewithout BEGINCERTIFICATE and ENDCERTIFICATEdelimiters
if a single certificate is added.

URL encoded PEM certificate with BEGIN CERTIFICATE and END CERTIFICATE
delimiters.

URL encoded PEM certificate can be without the BEGIN CERTIFICATE and END
CERTIFICATE delimiters if a single certificate is added.

228 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

PEM formatted certificates are defined to be Base64 encoded. Here, the certificate with
delimiters are Base64 encoded to avoid the stripping off of the delimiters.

decodeAllDelimitersInURI

Specifies whether the encoded characters of URL in the incoming client requests must be
decoded or not. The URLs are encoded as per the URI specs or user's requirements.

Possible values:

true. The encoded characters in the URL of incoming requests are decoded.

false. The encoded characters in theURLof the incoming client requests are not decoded.
This is the default value.

defaultEncoding

Specifies the format for encoding the design time and run time invocation data.

The default value is UTF-8.

If you want to modify this value, Software AG recommends that you do it before starting
API Gateway.

You can change the value in the gateway-core.xml file located in the folder:
SAGInstallDir\IntegrationServer\instances\instance-name\packages\WmAPIGateway\config\resources\beans.

The property to be modified is: <entry key="defaultEncoding" value="UTF-8"/>.

Note:
Changing this value after starting API Gateway might make API Gateway non-functional.
If API Gateway is clustered, then the same value should be updated in all nodes of API
Gateway.

defaultLanguage

Specifies the display language for the user interface of API Gateway. You can change the
display language to your preferred language at any time.

The default value is en.

defaultSearchResultSize

Specifies the default size in the search request for the events, and metrics data.

The default value is 1000. If you provide a value -1 it displays all the search results.

disableRemoteEntityReference

Specifies whether remote entity references are resolved when creating a SOAP API.

Possible values:

webMethods API Gateway Administration 10.11 229

2 Operating API Gateway

Parameter and Description

true. Disables the resolving of remote entity references when creating SOAP APIs.

false. Enables the resolving of remote entity references when creating SOAP APIs.

enableHotdeploy

Specifies whether the hot deploy functionality is enabled or disabled. When this setting is
enabled, you can modify APIs that are active.

Possible values:

true. Enables the hot deploy function. This is the default value.

false. Disables the hot deploy function.

Note:
Ensure to refresh your browser when you modify this setting to reflect the changes to the
ongoing user sessions.

enableImportBackup

This parameter provides an option to secure an API before overwriting it.

Available values are:

true. If you set the value to true, the existingAPI is restored in the event of an error during
the import. This is the default value.

false. If you set the value to false, the feature to secure an existingAPI before overwriting
is disabled. If the overwrite fails due to an error during the import, the existing API has
to be deleted.

enableTeamWork

Specifies whether the Team Support feature in API Gateway is enabled.

Possible values:

true. Enables the Team Support feature.

false. Disables the Team Support featured. This is the default value.

For details on the feature, see webMethods API Gateway User's Guide.

esScrollTimeout

Specifies the time, in milliseconds, that the search results for each request must be kept active
in Elasticsearch.

When the allowExceedMaxWindowSize setting is enabled, the Scroll feature of the
Elasticsearch is enabled to allow Elasticsearch to accept multiple search requests and return

230 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

multiple results. That is, you can perform multiple search requests using the same query till
you get the desired number of records from Elasticsearch.

When you send a search request, Elasticsearch returns the result and keeps the result active
for the time specified in the esScrollTimeOut setting. If a request exceeds the time specified
in the esScrollTimeOut setting, then the subsequent search requests also fail with a Invalid
Scroll ID error message. For more information on the Scroll feature, refer
https://www.elastic.co/guide/en/elasticsearch/reference/current/
search-request-body.html#request-body-search-scroll.

events.collectionPool.maxThreads

Specifies the maximum number of threads to be used for the event data collection pool.

Each thread in this pool is assigned a task of collecting the events like transactions, error and
performance metrics, and processing them for sending to destinations such as API Gateway,
Elasticsearch, API Portal, and so on.

Specifying more number of threads implies that the processing of events for sending to the
desired destinations is faster. At the same time, it increases the usage of system resources,
which could result in slower service execution.

This valuemust be greater than or equal to the value of events.CollectionPool.minThreads.

Default value is 8.

events.collectionPool.minThreads

Specifies the minimum number of threads to be used for the event data collection pool.

Each thread in this pool is assigned a task of collecting the events like transaction, error and
performancemetrics and processing them for sending to the desired destinations such as API
Gateway, Elasticsearch, API Portal, and so on.

Specifying less number of threads implies that processing of events for sending to the desired
destinations is slower.

Default value is 1.

events.collectionQueue.size

Specifies the size of the collection queue to be used during event data collection. This is used
in connection with the events.collectionPool.minThreads and
events.collectionPool.maxThreads settings.

When events like transaction, error events, and performance metrics are generated during
API invocations, they are put in the collection queue for further processing. Each thread in
the collection pool is assigned a task of collecting these events and processing them for sending
to the desired destinations such as API Gateway, Elasticsearch, API Portal, and so on.

webMethods API Gateway Administration 10.11 231

2 Operating API Gateway

Parameter and Description

If the queue capacity is reached, then any additional event data would be lost. Hence it is
better to increase this size when there is an increase in incoming traffic.

Specifying a large collection queue size and small collection thread pool size might cause
delay in processing the events data but ensures all the data are processed.

On the other hand, specifying a small collection queue size and large collection thread pool
size might cause faster processing of the events data but keeps the CPUs busier and at the
same time when the traffic increases there is a possibility of data loss when the collection
queue size is full.

Default value is 10000.

events.reportingPool.maxThreads

Specifies the maximum number of threads to be used for the event data reporting pool.

Each thread in this pool is assigned a task of sending the events like transaction, error and
performance metrics to the desired destinations such as API Gateway, Elasticsearch, API
Portal, and so on.

Specifyingmore number of threads implies that sending of events to the desired destinations
is faster. At the same time it increases the usage of system resources, which could result in
slower service execution.

This valuemust be greater than or equal to the value of events.ReportingPool.minThreads.

Default value is 4.

events.reportingPool.minThreads

Specifies the minimum number of threads to be used for the event data reporting pool.

Each thread in this pool is assigned a task of sending the events like transaction, error and
performance metrics to the desired destinations such as API Gateway, Elasticsearch, API
Portal, and so on.

Specifying less number of threads implies that sending of events to the desired destinations
is slower.

Default value is 2.

events.reportingQueue.size

Specifies the size of the reporting queue to be used during event data reporting. This is used
in connection with the events.reportingPool.minThreads and
events.reportingPool.maxThreads settings.

When events like transaction, error events, and performance metrics are generated during
API invocations, they are put in the collection queue for further processing. Each thread in
the collection pool is assigned a task of collecting these events, processing them and put in

232 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

the reporting queue for sending to the desired destinations such asAPIGateway, Elasticsearch,
API Portal, and so on.

If the reporting queue capacity is reached, then any additional event data would be lost.
Hence it is better to increase this size when there is an increase in incoming traffic.

Specifying a large reporting queue size and small reporting thread pool size might cause
delay in processing the events data but ensures all the data are processed.

On the other hand, specifying a small reporting queue size and large reporting thread pool
size might cause faster processing of the events data but keeps the CPUs busier and at the
same time when the traffic increases there is a possibility of data loss when the collection
queue size is full.

Default value is 5000.

eventsRefreshInterval

Specifies the refresh interval for the events indices in seconds.

The default value is 10.

forwardInternalAPIsRequest

This parameter is required in the case of a paired gateway deployment scenario using an
Advanced Edition license at DMZ.

Specifies whether the incoming requests are forwarded to internal APIs that are deployed in
the green zone.

Possible values:

true. API Gateway forwards the incoming requests to the internal APIs that are deployed
in the green zone.

false. API Gateway does not forward the incoming requests. This is the default value.

Following are the internal APIs and their URIs for which this parameter is required and its
value must be set to true:

getOAuthToken - /pub/apigateway/oauth2/getAccessToken

OAuth Authorization - /pub/apigateway/oauth2/authorize

getOpenIdToken - /pub/apigateway/openid/getOpenIDToken

openIDCallbackService - /pub/apigateway/openid/openIDCallback

getJWTToken - /pub/apigateway/jwt/getJsonWebToken

forwardQueryParams

webMethods API Gateway Administration 10.11 233

2 Operating API Gateway

Parameter and Description

Specifieswhether API Gateway should forward the query parameter sent by client and query
parameters configured in Request Processing stage to the native service if the
${sys:resource_path} variable is not present in the Routing policy URL.

true. API Gateway forwards the query parameters sent by client and query parameters
configured in Request Processing stage to the native service even if the
${sys:resource_path} is not present in the Routing policy URL.

false. API Gateway does not forward the query parameters to the native service if the
${sys:resource_path} is not available in the Routing policy. This is the default value.

gatewayClientInvokingToken

Specifies the value of the client token that can invoke the backend APIs in API Gateway.

The default value is apigateway.

invokeESB_asUser

Specifies the username of the userwho runs IS services via polices configured inAPIGateway.

If the Run as User value is included in the policy level for Invoke webMethods IS service
section, then the value provided in the policy overrides the user provided in this setting.

If no value is provided in either of the above mentioned fields, then the user authenticated
from the incoming request is used for invoking the IS service.

maxAllowedZipFileSize

Specifies themaximum size of zip files that can be uploaded to create an API from theCreate
API screen.

Default value is 100000000.

maxBackupsLimit

Specifies the maximum number of backups that are archived. The default value is 10. If you
do not provide a value, then infinite number of archives are kept.

The archives are saved in the location provided in the backupSharedFileLocation setting.

maxRegexLengthInSearchQuery

Specifies themaximum length of Regex parameter that you can use in Regex expression query.

Default value is 37000. This value can be increased based on the requirement.

maxWindowSize

Specifies the maximum number of search results that Elasticsearch can return for a single
search request.

234 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

Using the index.max_result_window property in Elasticsearch, you can configure the
maximum number of records to be retrieved in a single Elasticsearch request. To knowmore
about the property, refer
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html.

Default value is 10000.

If the value configured in the index.max_result_window setting of Elasticsearch is different
from that of the default value, then it is recommended that you provide the same value in
this field.

If you have a value greater than the configured value, then Elasticsearch displays an error
message. Also, youmust enable the allowExceedMaxWindowSize setting if the total number
of results to be retrieved is more than the value specified here.

For example, if you have specified 1000 in this setting and the total number of records to be
retrieved is 20000, then API Gateway sends 20 requests to retrieve all records provided the
allowExceedMaxWindowSize setting is enabled. In the above example, if the
allowExceedMaxWindowSize setting is not enabled, an error message is displayed as the
value is lesser than the default value.

paginationPossibleValues

Specifies the list of possible values of the pagination size, that is, number of items listed per
page.

The default values displayed for pagination options are 10,20,30,40,50. For example, if you
select 20, then 20 items are displayed per page.

For example, if you change the values to 5,10,15,20,25 then pagination options displayed
are 5, 10, 15, 20 and 25. So now when you select 15, the items displayed per page would be
15.

On modifying the value, you have to logout and re-login for the changes to reflect.

pg_Cache_autoScalerRunInterval

Specifies the run interval, in minutes, for the Auto Scaler thread.

Default value is 120minutes.

The Auto Scaler thread checks for systemmemory load and adjusts the percentage of objects
kept in the cache automatically.

pg_Cache_averageObjectSize

Specifies the value used to calculate the average size, in bytes, of the objects that can be loaded
into cache.

The default value is 64.

webMethods API Gateway Administration 10.11 235

2 Operating API Gateway

Parameter and Description

Software AG recommends you not to modify this value.

pg_Cache_boundedCacheResizeRunInterval

Specifies the run interval, in minutes, for the bounded cache resize thread.

The default value is 30minutes.

The bounded cache stores a predefined number of objects in memory. The cache value is
configured in terms of percentage and it varies based on the new objects added to database.
The bounded cache resize thread computes the memory size at the configured interval. For
example, if you specify 50, the cache memory is calculated once every 50 minutes.

pg_Cache_maxCacheSize

Specifies the maximum number of objects that are kept in the unbounded cache memory.

The default value is 1048576MB.

Internally, unbounded cache is also a bounded cache with a configured maximum limit.

pg_Cache_minCachePercent

Specifies the minimum cache percent value. API Gateway maintains the configured memory
size. That is, if the value that is computed by the auto scaler thread goes below this value,
API Gateway resets the cache percent to the value specified for this setting.

The default value is 20.

The auto scaler thread computes the percentage of objects to be stored in cache. If it computes
a lower percentage, say 2%, the value is reset based on the pg_Cache_minCachePercent value.

pg_Cache_minCacheSize

Specifies the minimum number of objects that are kept in the unbounded cache memory.

The default value is 1024.

For example, if there are 20 objects, and cache size is set to 100%, then the computed cache
size is 20. When the actual size becomes lower than the value specified in this setting, then
the value is reset to the pg_Cache_minCacheSize value.

pg_Cache_statisticsProcessorRunInterval

Specifies the run interval, inminutes, for the statistics processor thread. The statistics processor
thread stores the cache statistics are in Elasticsearch.

The default value is 15minutes.

The cache statistics analytics page displays details about the cache statistics.

pg_Dataspace_GossipInterval

236 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

Specifies how frequently each node should gossip with one another.

By default, the value is set to 3 seconds.

pg_Dataspace_TimeToFail

Specifies the maximum permissible interval between two consecutive gossips.

By default, the value is set to 30 seconds.

pg_Dataspace_WarmupTime

Specifies the maximum permissible rehashing interval from start-up or shut down of the
server.

By default, the value is set to 300 seconds.

pg_JWT_isHTTPS

Specifieswhether the transport protocol overwhich the JSONWebTokens (JWTs) are granted
authorization is restricted to HTTPS.

Possible values:

true. Restricts the transport protocol to HTTPS. This is set by default.

false. Allows HTTP and HTTPS transport protocols.

pg_oauth2_createDefaultScopes

Specifies whether default scopes must be created.

Possible values:

true.When local authorization server is configured as the default authorization server,
thenAPIGateway automatically creates a scope in Integration Server duringAPI creation,
and creates a scope mapping between the OAuth scope in the local authorization server
and the API. This setting is useful in cases where a service is published from Centrasite.

false. API Gateway does not create a scope automatically. Users must manually create
and map scopes for the services published from Centrasite. This is the default value.

pg_oauth2_isHTTPS

Specifies whether the transport protocol over which the OAuth 2.0 access tokens are granted
authorization is restricted to HTTPS.

Possible values:

true. Restricts the transport protocol to HTTPS. This is set by default.

false. Allows HTTP and HTTPS protocols.

webMethods API Gateway Administration 10.11 237

2 Operating API Gateway

Parameter and Description

pg_OpenID_isHTTPS

Specifies the transport protocol overwhich theOpenID (ID) tokens are granted authorization
is restricted to HTTPS.

Possible values:

true. Restricts the transport protocol to HTTPS. This is set by default.

false. Allows HTTP and HTTPS protocols.

pg_xslt_disableDoctypeDeclarations

Specifies whether the xslt doc type declarations must be disabled or not.

Possible values:

true. Disables the xslt doc type declarations. This is the default value.

false. Enables the xslt doc type declarations.

pg_xslt_enableDOM

Specifies whether the DOM parsing must be enabled.

Possible values:

true. Enables the DOM parsing.

false. Disables the DOM parsing and enables other parsers.

pg_xslt_enableSecureProcessing

Specifies whether the use of extensions must be disabled.

Possible values:

true. Enables the use of extensions. This is the default value.

false. Disables the use of extensions.

pg.3pSnmpSender.sendDelay

This is an internal parameter. Do not modify.

pg.cs.snmpTarget.base64Encoded

This is an internal parameter. Do not modify.

pg.cs.snmpTarget.connTimeout

Specifies the number of milliseconds before an inactive connection to the SNMP target server
is closed. If set to 0, the socket remains open indefinitely.

238 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

pg.cs.snmpTarget.maxRequestSize

Specifies the maximum size (in bytes) for SNMP traps.

The default value is 10485760.

pg.cs.snmpTarget.retries

Specifies the number of times to resend SNMP traps upon failure.

Default value is 1.

This parameter works with pg.cs.snmpTarget.sendTimeOut to determine the delay in
re-sending SNMP traps to malfunctioning SNMP servers (that is, it retries*sendTimeOut).

This means that if the retries parameter is set to 3, and the sendTimeOut parameter is set to
500 milliseconds, there is a 1.5 second delay before the thread sending the alert is available
to send another event. Malfunctioning event destinations could delay the amount of time it
takesAPIGateway to report events, or it could cause discarded eventswhen the queue reaches
its maximum level.

pg.cs.snmpTarget.sendTimeOut

Specifies the time (inmilliseconds) to wait before the SNMP trap times out because the server
destination is not responding.

This value schedules a timer that resends an SNMP event that has not yet completed when
it expires. You must set a timeout value that ensures that the trap is sent to the SNMP server
within the time frame. This parameter does not abort an event that is in progress. Set this
parameter higher than the default when sending trapswith large payloads. The default value
is 500.

This parameter works with pg.cs.snmpTarget.retries to determine the delay in resending
SNMP traps to malfunctioning SNMP servers (that is, it retries *sendTimeOut).

This means that if the retries parameter is set to 3, and the sendTimeOut parameter is set to
500 milliseconds, there is a 1.5 second delay before the thread sending the alert is available
to send another event. Malfunctioning event destinations could delay the amount of time it
takesAPIGateway to report events, or it could cause discarded eventswhen the queue reaches
its maximum level.

pg.default.enable.oldVersion

Specifies whether the oldest version of an API has to be enabled when the version of an API
is not specified.

For example, when you have an API that is versioned, the client can specify the version
number in the URL to invoke that specific version of the API, that is,
API-NAME/Version-number. When the client does not specify the version number, API
Gateway defaults to the latest version of the API and invokes it. You can use this parameter

webMethods API Gateway Administration 10.11 239

2 Operating API Gateway

Parameter and Description

to change this behavior such that API Gateway defaults to the oldest version of API and
invokes it.

Available values are:

true. When you set this parameter as true and invoke an API without specifying the
version number, then API Gateway defaults to the oldest version of the specified API and
invokes it.

false. This is the default value. When you set this parameter as false and invoke an API
without specifying the version number, then API Gateway defaults to the latest version
of the specified API and invokes it.

pg.endpoint.connectionTimeout

Specifies the time interval (in seconds) after which an HTTP connection attempt times out.

The default value is 30 seconds.

This is a global property that applies to the endpoints of all APIs. If you prefer to specify a
connection timeout for the endpoints of anAPI individually, set the HTTP Connection Timeout
parameter in the API's Routing Protocols processing step, whichwould then take precedence
over pg.endpoint.connectionTimeout.

The precedence of the Connection Timeout configuration is as follows:

a. If you specify a value for the Connection timeout field in routing endpoint alias, then
the Connection timeout value specified in the Endpoint alias section takes precedence
over the timeout values defined at the API level and the global level.

b. If you specify a value 0 for the Connection timeout field in routing endpoint alias, then
API Gateway uses the value specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

c. If you specify a value 0 or do not specify a value for the Connection timeout field in the
routing protocol processing step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this pg.endpoint.connectionTimeout property.

d. If you do not specify any value for pg.endpoint.connectionTimeout, then API Gateway
uses the default value of 30 seconds.

pg.endpoint.readTimeout

Specifies the time interval (in seconds) after which a socket read attempt times out. Default
value: 30 seconds.

This is a global property that applies to all APIs. If you prefer to specify a read timeout for
APIs individually, set the Read Timeout field in theAPI's's Routing Protocols processing step,
which would then take precedence over pg.endpoint.readTimeout.

240 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

The precedence of the Read Timeout configuration is as follows:

a. If you specify a value for the Read timeout field in routing endpoint alias, then the Read
timeout value specified in the Endpoint alias section takes precedence over the timeout
values defined at the API level and the global level.

b. If you specify a value 0 for the Read timeout field in routing endpoint alias, then API
Gateway uses the value specified in the Read Timeout field in the routing protocol
processing step of an API. The Read Timeout value specified at an API level takes
precedence over the global configuration.

c. If you specify a value 0 or do not specify a value for the Read timeout field in the routing
protocol processing step at the API level or specify a value 0 at an alias level, then API
Gateway uses the value specified in this pg.endpoint.readTimeout property.

d. If you do not specify any value for pg.endpoint.readTimeout, then API Gateway uses the
default value of 30 seconds.

pg.lb.failoverOnDowntimeErrorOnly

Specifies API Gateway's behavior of endpoints in a load-balanced routing scenario.

Possible values:

true. Load balancing does not happenwhen the service fault encountered in the response
is a downtime error. This is the default value.

For example, the following are someDowntime exceptions and forwhich fail overs happen:
ConnectException, MalformedURLException, NoRouteToHostException,
ProtocolException, SocketTimeoutException, UnknownHostException,
UnknownServiceException, Web Service not available, The service cannot be found.

false. Load balancing happens whenever a service fault is encountered in the response
coming fromendpoint 1 andAPIGateway immediately tries the next configured endpoint.
There is no distinction on the type of fault present in the response from endpoint.

pg.MTOMStreaming.cachedFiles.delete.interval

Specifies the interval (in seconds) to delete the cached MTOM files.

Default value is 3600 seconds. This property takes effect only when the pg.suppress.IS.lcm
setting is set to true.

pg.nativeServer.validatePrivateIPs

Specifies whether to validate the native server endpoint against the private IP configuration
during invocation of an API.

Possible values:

webMethods API Gateway Administration 10.11 241

2 Operating API Gateway

Parameter and Description

true. If this is set to true, then the API invocation is not allowed if the native endpoint
uses any private IPs other than the ones configured in
/rest/apigateway/configurations/whiteListingIPs

false. If this is set to false, no private IP validation is done for the native endpoint.

Default value is false for on-prem and true for cloud installations.

pg.overwrite.users.withsameloginid

Specifies whether API Gateway must validate and overwrite a user based on their login ID
or UUIDwhen importing or promoting the user or team from one stage to another, provided
the logged-in credentials (login ID) of both instances are the same.

Possible values:

true. API Gateway validates and overwrites the user with the user's login ID, if the user
is notmatchedwith the UUID during import or promotion of a user or teams. The default
value is true.

false. API Gateway validates and overwrites the user with the UUID.

pg.removeSSNID

Specifies whether to include the set-cookie header in the response header. The set-cookie
header contains ssnid value sent from the native service.

Possible values:

true. The client that invokes API Gateway API, does not receive the set-cookie header
that contains ssnid value.

false. The client that invokes API Gateway API, receives the set-cookie header that
contains ssnid value if the native service sends this in the response.

pg.runtime.extended.stackSize

Specifies the thread space size allocated for critical functions to run. You can configure the
thread space size as required by setting a value for this setting. The size is specified in MB.

Default value: 20

If you provide an invalid value, API Gateway considers the default value.

pg.security.allowedhostnames

Validates the host header in an incoming request against the host names configured in this
setting. Provide a comma-separated list of host names that you want the host header in the
incoming request to be validated against.

242 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

This setting is required especially in scenarios where, when an API is invoked by adding a
dummyhost in theHost header. The invocation gets through the proxyAPI andAPIGateway
returns success response, which can pose as a vulnerability.

If the host in the request header is not in the list of host names configured in this setting, API
Gateway returns a 400 Bad Request with an error response Invalid Host header.

If you do not include any host names and leave the setting blank, the host header in the
incoming request is not validated.

pg.security.honourPortAccessModeSettings

Specifies whether the access mode settings configured in the Administration > Security >
Ports section must be enforced on the HTTP and HTTPS ports.

In addition to the default port, you can add ports in API Gateway using which you can
consume APIs. You can configure the access mode of the ports to determine whether a port
can be used to access anAPI or not. You can either allow or deny the access of all APIs through
a port. When you allow access of APIs using a port by default, you can specify a list of APIs
that must be denied access over the port. Also, if you deny the access of APIs using a port,
you can specify a list of APIs that can be allowed to access using the port. For details on
creating ports and allowing or denying access to a port, see “Ports” on page 405.

Possible values:

true. Access of REST and OData APIs through the HTTP and HTTPS ports is allowed or
denied based on the accessmode settings configured from theAdministration >Security
> Ports section.

false. The access mode setting specified for the ports are not applied. This is the default
value.

Prior 10.7, the access mode setting of ports was applicable only for the SOAP APIs. Starting
10.7, the access mode is applicable for REST and OData APIs as well. The default value of the
pg.security.honourPortAccessModeSettings setting is false. That is, the access mode
configuration is imposed only on SOAP APIs. So, the existing users need not modify their
settings if theywant the accessmode setting to be enforced only on the SOAPAPIs. However,
if you want to enforce the access mode setting on REST and OData APIs, you can change the
value of this setting to true.

pg.snmp.communityTarget.base64Encoded

Specifies whether to use a third-party SNMPv1 community-based connection.

The default value is false.

When this property is set to true, the Community name of 3rd Party SNMP destination
configuration is expected as base64 encoded.

pg.snmp.communityTarget.maxRequestSize

webMethods API Gateway Administration 10.11 243

2 Operating API Gateway

Parameter and Description

Specifies the maximum size (in bytes) for SNMP traps.

The default value is 65535.

pg.snmp.communityTarget.retries

Specifies the number of times to resend SNMP traps upon failure.

Default value is 1.

This parameter works with pg.snmp.communityTarget.sendTimeOut to determine the
delay in re-sending SNMP traps to malfunctioning SNMP servers (that is, it retries
*sendTimeOut).

This means that if the retries parameter is set to 3, and the sendTimeOut parameter is set to
500 milliseconds, there is a 1.5 second delay before the thread sending the alert is available
to send another event. Malfunctioning event destinations could delay the amount of time it
takesAPIGateway to report events, or it could cause discarded eventswhen the queue reaches
its maximum level.

pg.snmp.communityTarget.sendTimeOut

Specifies the time (inmilliseconds) to wait before the SNMP trap times out because the server
destination is not responding. This value schedules a timer that resends an SNMP event that
has not yet completed when it expires. You must set a timeout value that ensures that the
trap is sent to the SNMP server within the time frame. This parameter does not abort an event
that is in progress. Set this parameter higher than the default when sending traps with large
payloads.

The default value is 500.

This parameter works with pg.snmp.communityTarget.retries to determine the delay in
re-sending SNMP traps to non-responsive SNMP servers (that is, it retries *sendTimeOut).

This means that if the retries parameter is set to 3, and the sendTimeOut parameter is set to
500 milliseconds, there is a 1.5 second delay before the thread sending the alert is available
to send another event. Malfunctioning event destinations could delay the amount of time it
takesAPIGateway to report events, or it could cause discarded eventswhen the queue reaches
its maximum level.

pg.snmp.customTarget.connTimeout

Specifies the number of milliseconds before an inactive connection to the third-party SNMP
server is closed. If set to 0, the socket remains open indefinitely.

pg.snmp.userTarget.maxRequestSize

Specifies the maximum size (in bytes) for SNMP traps.

The default value is 65535.

244 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

pg.snmp.userTarget.retries

Specifies the number of times to resend SNMP traps upon failure.

The default value is 1.

This parameter works with pg.snmp.userTarget.sendTimeOut to determine the delay in
re-sending SNMP traps to malfunctioning SNMP servers (that is, it retries *sendTimeOut).

This means that if the retries parameter is set to 3, and the sendTimeOut parameter is set to
500 milliseconds, there is a 1.5 second delay before the thread sending the alert is available
to send another event. Malfunctioning event destinations could delay the amount of time it
takesAPIGateway to report events, or it could cause discarded eventswhen the queue reaches
its maximum level.

pg.snmp.userTarget.sendTimeOut

Specifies the time (inmilliseconds) to wait before the SNMP trap times out because the server
destination is not responding. This value schedules a timer that resends an SNMP event that
has not yet completed when it expires. You must set a timeout value that ensures that the
trap is sent to the SNMP server within the time frame. This parameter does not abort an event
that is in progress. Set this parameter higher than the default when sending traps with large
payloads.

The default value is 500.

This parameterworkswith pg.snmp.userTarget.retries to determine the delay in resending
SNMP traps to malfunctioning SNMP servers (that is, it retries *sendTimeOut).

This means that if the retries parameter is set to 3, and the sendTimeOut parameter is set to
500 milliseconds, there is a 1.5 second delay before the thread sending the alert is available
to send another event. Malfunctioning event destinations could delay the amount of time it
takesAPIGateway to report events, or it could cause discarded eventswhen the queue reaches
its maximum level.

pg.soapToRest.typeConvertorEnabled

Specifies whether the key values in a SOAP request must be converted to their primitive type
when a SOAP API is transformed to REST API. For example, if the XML is
<number>10</number>, it is converted as "number" : 10.

Possible values:

true. Values are converted to their primitive type. This is the default value.

false. Values are not converted to their primitive type.

pg.suppress.IS.lcm

Specifies whether to override IS lifecycle manager with API Gateway lifecycle manager.

webMethods API Gateway Administration 10.11 245

2 Operating API Gateway

Parameter and Description

Possible values:

true. Set this to true to use the API Gateway lifecycle manager.

false. Set this to false to use the IS lifecycle manager. By default, the value is false.

API Gateway lifecyclemanager provides options to specify the interval for deleting of cached
MTOM files using the pg.MTOMStreaming.cachedFiles.delete.interval setting.

pg.uddiClient.publish.maxThreads

Specifies the maximum allowed number of threads to publish the performance metrics data
to CentraSite.

The default value is 2.

pg.uddiClient.uddiClientTimeout

Specifies the connection and read timeout, inmilliseconds, for publishing performancemetrics
to CentraSite.

The default value is 5000.

pgmen.quotaSurvival.addLostIntervals

Specifies whether API Gateway must restore the time duration between the shutdown and
restart when the Subscription counters are restored back into restarted instance.

Possible values are true or false.

pgmen.quotaSurvival.interval

Specifies the periodical time interval, inminutes, in whichAPI Gateway should run to persist
the Subscription counters into the database.

To keep the Subscription counters active during the server restart, API Gateway would
periodically store the counters to the database.

Default value is 1.

portClusteringEnabled

Specifies whether the port configuration synchronization across API Gateway cluster nodes
is enabled or disabled.

When as an API Gateway Administrator you create, update or delete a port definition, you
might prefer to do it in one of the nodes in the cluster and have it instantly reflected on the
other nodes without having to restart them. This setting controls whether you want to
synchronize these port configuration changes across the API Gateway cluster nodes.

In this context clustered environment refers to clustering being enabled underAdministration
> General > Clustering section.

246 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

In a clustered environment, the possible values are:

true. This enables port configuration synchronization across API Gateway cluster nodes.
This is the default value

The ports that are not configured through the API Gateway UI (that is ports configured
through Integration Server) are ignored byAPI GatewayUI and are removed on a restart.

false. This disables port configuration synchronization acrossAPIGateway cluster nodes.
The ports that are not configured through the API Gateway UI (that is ports configured
through Integration Server) are displayed in theAPIGatewayUI and they are not removed
on a restart.

In a non-clustered environment, the possible values are:

true. The ports that are not configured through the API Gateway UI (that is ports
configured through Integration Server) are ignored by API Gateway UI and are removed
on a restart.

false. The ports that are not configured through the API Gateway UI (that is ports
configured through Integration Server) are displayed in the API Gateway UI and they
are not removed on a restart.

Note:
Restart all the cluster nodes, when you change this parameter, for the changes to take effect.

promotionListSortByTime

Specifieswhether the list of promotions in thePromotions tab of thePromotionmanagement
page are sorted by the promotion time.

Possible values:

true. Promotion list is sorted by promotion time with the latest on top.

false. Promotion list is sorted by promotion name. This is the default value.

retainSOAPResponseStatus

Specifies whether the native SOAP API status has to be sent to the client.

Possible values:

true. The native API responses retain the SOAP response status in the response sent to
the API clients upon a failure. The default value is true.

false. All response codes from the native SOAPAPI are converted to HTTP 500 (Internal
Server Error) before sending the response to the API clients.

retainResponseStatus

Specifies whether the native service status has to be sent to the client.

webMethods API Gateway Administration 10.11 247

2 Operating API Gateway

Parameter and Description

Possible values:

true. A 401 HTTP response received from the native API with outbound authentication
is passed on to API clients.

false. A 401 HTTP response received from the native API with outbound authentication
is not exposed to the API clients. A HTTP response 500 is sent instead. This is the default
value.

return408ForConnectionTimeout

Specifies the status code to be included in the response when a request to the native service
times out.

Possible values:

true. The response contains 408 error code uniformlywhen a request to the native service
is timed out. This is the default value.

false. The response does not contain 408 error code.

saveAuditlogsWithPayload

Specifies whether the audit logs have to be saved along with payload.

Possible values:

true. The audit logs have to be saved along with payload. This is the default value.

false. The audit logs are not saved along with payload.

sendClientRequestURI

Specifies whether the URI that is present in a request must be decoded before sending it to
the native service.

Possible values:

true. The URI is not decoded. The unicode characters in a request are encoded.

false. The URI is decoded without change in the path of the URL. This is the default
value.

setDefaultContentType

Specifies that default content type to be included in the GET and DELETE methods, if the
content type is missing in request.

Possible values:

true. The default content type application/x-www-form-urlencoded is added, if content
type is missing in request. This is the default value.

248 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

false -The default content type is not added. The content-type is sent as is.

startDayOfTheWeek

Specifies the start day of a week for the unit of measurement of theAlert Interval configured,
to monitor performance, before sending an alert.

By default, the start day of the week is set to Monday.

strictResourceMatching

Specifies whether API Gateway must perform a strict matching of the resource path from
runtime invocation with the API definition of resource paths.

Possible values:

true. API Gateway uses the strict resource matching criteria and the matching fails if it
encounters any other characters than that are specified. This is the default value.

false. APIGatewaymatches the best resource instead of using the strict resourcematching
criteria.

The extended setting functions as follows:

For example, consider a REST API with resource path /mypath

The request http://host:port/servicename/mypath/anytextwith strictResouceMatching=true
returns an HTTP response 404 immediately.

The request http://host:port/servicename/mypath/anytextwith strictResouceMatching=false
executes the request in an ordinary way.

tagsTypeAheadSearchResultSize

Specifies the number of existing tags to display during the type ahead search.

This is available while adding a tag to an API, where you can type a search term. A list of
existing API tags appears depending on the search term. The number of API tags displayed
in this list is restricted as per the value provided in the tagsTypeAheadSearchResultSize
property.

The default value is 10.

The minimum value you can provide is 1. If you provide zero or an invalid value, the value
of this property is set to the default value 10.

transferEncodingChunked_handleAsStream

Specifies whether the request and response payloads should be handled as stream.

Possible values:

webMethods API Gateway Administration 10.11 249

2 Operating API Gateway

Parameter and Description

true. API Gateway checks for the following conditions to handle the request and response
payloads as stream:

Request payload is handled as stream, if the Transfer-encoding: chunked header is
sent in the request.

Response payload is handled as stream, if the application/octet-stream accept header
is sent in the request.

false. The payloads are not handled as streams (even though the conditions specified
above are met). This is the default value.

Note:
The response from the native endpoint need not contain the Transfer-encoding: chunked
header for the response payload to be handled as stream.

transformerPoolSize

Specifies the maximum size for transform pool that consists XSLT transformers. To reduce
performance impacts, you can reuse the transformers from the pool instead of creating them
for every request.

useTypeInIndexNameForESDestination

Specifies the index format used when sending data from API Gateway to a configured
Elasticsearch destination.

The default value is true.

Elasticsearch verison 7.2 supports data with dedicated index for each of the event types. So,
API Gateway sends data in different indexes for different event types if the value of this
property is set to true. The event type is concatenatedwith the Elasticsearch destination index
name. That is, the index name will be in the following format: {IndexName}_{EventType}.
For example, database_transactionalevents; where default is the index name and transactional
events in the event type.

If the value is set to false, the type name is not concatenated with the index name. In this
case, the index created for each event is sub-indexed under a main index when data is sent
to configured Elasticsearch destination. The value of this setting must be set to false, if the
version of the destination Elasticsearch is 5.x or earlier.

validateTransportProtocolAgainstEGPort

Specifies whether the EG protocol in the transport protocol policy of APIs must be validated
during the reverse invoke of APIs.

Possible values:

true. Validation is performed to ensure an EG protocol is specified in transport protocol
policy of APIs that are invoked using the reverse invoke method.

250 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Parameter and Description

false. No validation is performed. The default value is false.

wsdlPortLayout

Specifies which ports entries are exposed in a WSDL.

Possible values:

service-port. All the port entries are exposed. This is the default value.

service-only. Only one port (with servicename or version) is exposed. When this value
is set, only the simple endpoint with the service name is generated.

mediator-comp. When this value is set, the entries generated are inmediator compatibility
mode. Note that custom endpoints do not appear in this case.

xmlToJSONConversion_keepString

Specifieswhether the data type of fields in a response payload, after XML to JSON conversion,
must be string or a corresponding data type.

The default value is true.

Possible values:

true. The data type of the fields are retained as string.

false. The data type of the fields is changed to a corresponding data type.

For example:

Sample XML payload:
<?xml version="1.0" encoding="UTF-8"?>
<EmployeeDetail>

<ID>12345</ID>
<Name>John</Name>
<Address>999 ABC Street</Address>

</EmployeeDetail>

Sample response, if you set the extended setting to true:
{

"EmployeeDetail": {
"ID": "12345",
"Name": "John",
"Address": "999 ABC Street"

}
}

All fields in the response payload are retained as string.

Sample response, if you set the extended setting to false:
{

webMethods API Gateway Administration 10.11 251

2 Operating API Gateway

Parameter and Description
"EmployeeDetail": {

"ID": 12345,
"Name": "John",
"Address": "999 ABC Street"

}
}

The data type of the field ID is integer.

5. You can configure the watt parameters in the Watt keys section by providing the required
values.

The configured watt keys are listed under Watt settings below the Extended keys at the top
of the page.

Only the following watt parameters get synchronized across nodes in a cluster setup:

watt.security.ssl.client.ignoreEmptyAuthoritiesList

watt.security.ssl.ignoreExpiredChains

watt.server.url.alias.partialMatching

watt.server.oauth.authServer.alias

watt.server.oauth.requireHTTPS

watt.net.http401.throwException

watt.net.http501-599.throwException

watt.server.SOAP.MTOMStreaming.enable

watt.server.http.Strict-Transport-Security

watt.server.rest.removeInputVariablesFromResponse

watt.server.coder.responseAsXML

watt.security.ssl.cacheClientSessions

watt.server.enterprisegateway.ignoreXForwardedForHeader

If you modify the other watt parameters in one API Gateway instance they do not get
synchronized across other nodes in a cluster setup. You have to manually modify them in the
other instances.

6. Click Save.

252 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Configuring API Fault Settings
You must have the API Gateway's manage user administration functional privilege assigned to
configure the API fault settings.

You can configure global error responses for all APIs to display the default error message.

To configure the service fault settings

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > API fault.

3. Select Send native provider fault to send the native API provider's fault content, if available.
API Gateway ignores the default error message and sends whatever content it receives from
the native API provider.

If you do not select this option then API Gateway sends the default error message.

4. Specify the error message text in the Default error message text box that is sent out when
the Send native provider fault is not selected.

5. Click Save.

Approval Configuration
API Gateway allows you to configure an approval process to ensure that the requests are valid.
If the requests are invalid, API Gateway enables approvers to reject the requests. API Gateway
allows you to configure approvals for:

Create application: To enforce approvals for creating an application in API Gateway.

Register application: To enforce approvals for associating an application with APIs.

Update application: To enforce approvals for modifying an application.

Subscribe package: To enforce approvals in API Gateway to enable API Portal consumers for
subscribing a package to a plan in API Portal.

In API Gateway, you can create an application and associate (register) the application createdwith
APIs. If you have the API Gateway's manage general administration configurations functional
privilege assigned, you can configure approvals for creating or registering an application. If you
have configured approvers, and if a userwants to create and register an application inAPIGateway,
then the application is created and registered with an API only if any one approver from the
approvers group approves the create application and the register application requests. Similarly,
you can configure approvals for updating an application or subscribing a package.

webMethods API Gateway Administration 10.11 253

2 Operating API Gateway

You can configure a set of different approvers for creating or registering applications. For example,
if you have configured an approvers group, group1 to approve or reject a create application request
and an approvers group, group2 to approve or reject a register application request, then when a
user creates and registers an application in API Gateway, then the create application request must
be approved by any one approver in group1.When the application is created, the register application
request is sent to the approvers in group2 and this register application request must be approved
by any one approver in group2. When the request is approved, the application created is registered
to an API. However, if any one user from group2 rejects the request, then the application gets
created but is not registered to an API.

API Gateway approvals can also be used when API Gateway is integrated with API Portal and
an API Portal API consumer uses the API get access token to register an application to an API in
API Gateway. In this scenario, API Portal implicitly sends a request to API Gateway to create an
application. When the approvers approve the create application request, an application is created
in API Gateway and then API Gateway initiates a register application request and the approvers
approve the register application request. The application is registered to anAPIwhich is published
to API Portal. The consumer is now able to view and manage the API in API Portal.

Note:
You can customize theApproval page view bymodifying the fileOAuth_Approval.html located
atSAG_Root\IntegrationServer\instances\instance_name\packages\WmAPIGateway\templates.

Similarly, you can configure approvals for subscribing a package in API Gateway, when an API
consumer subscribes to a package in API Portal. API Gateway receives the package subscription
request and the approvers in the approvers group approve or reject the request for subscribing a
package.When the request is approved, the acknowledgement is sent toAPI Portal and the package
is subscribed.

Configuring Approvals for Creating an Application

You have to configure the approval settings, to enforce approval for creating an application in
API Gateway.

To configure approvals for creating an application

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Approval configuration > Create application.

3. Set the Enable toggle button to the on position to enable approval configuration to take effect.

4. Select the team of approvers from the Approvers drop-down list.

5. Select Anyone from the Approved by drop-down list.

This implies that, any one user of the selected team can approve or reject the requests. The
requester need not wait for the approval of each approver in the approvers group.

254 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Note:
If a user is associated with the selected team, then the user can approve or reject a pending
request even if the user is not associated with the Approvers group.

6. Select Configure approval initiate request mail template to be sent to approver.

This is to configure the email template to be sent to the approver, for approving the request
of creating an application.

7. Provide the following information in the Configure approval initiate request mail template
to be sent to approver section:

DescriptionField

To send an email notification to the approver to approve the request
for creating an application.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Hello
@approver.name appears as Hello Joe in the email sent, where Joe
is the approvers login ID. For more infomration on supported
variables see, “Email templates variable ” on page 268

Note:
The email notifications are sent only to the local API Gateway users.

8. Select Configure request approved mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
creating an application is approved.

9. Provide the following information in the Configure request approved mail template to be
sent to requester section:

DescriptionField

To send an email notification to the requester that the request for
creating an application is approved by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:

webMethods API Gateway Administration 10.11 255

2 Operating API Gateway

DescriptionField

The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears asApproval of CreateApplication in the email
sent, where Create Application is the event.type. For more
infomration on supported variables see, “Email templates variable
” on page 268

10. Select Configure rejection mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
creating an application is rejected.

11. Provide the following information in the Configure rejection mail template to be sent to
requester section:

DescriptionField

To send an email notification to the requester that the request for
creating an application is rejected by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears asApproval of CreateApplication in the email
sent, where Create Application is the event.type. For more
infomration on supported variables see, “Email templates variable
” on page 268

12. Click Cancel to revert to the last saved changes or to abandon all the changes if the values are
not saved.

13. Click Save.

Configuring Approvals for Registering Application

You have to configure the approval settings, to enforce approval for associating an application
with APIs in API Gateway. The API Portal API get access token request is considered as a create
and registering application event in API Gateway.

To configure approvals for registering an application

256 webMethods API Gateway Administration 10.11

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Approval configuration > Register application.

3. Set the Enable toggle button to the on position to enable approval configuration to take effect.

4. Select the team of approvers from the Approvers drop-down list.

5. Select the Anyone from the Approved by drop-down list.

This implies that, any user of the selected team can approve or reject the requests. The requester
need not wait for the approval of each approver in the approvers group.

Note:
If a user is associated with the selected team, then the user can approve or reject a pending
request even if the user is not associated with the Approvers group.

6. Select Configure approval initiate request mail template to be sent to approver.

This is to configure the email template to be sent to the approver for associating an application
with APIs.

7. Provide the following information in the Configure approval initiate request mail template
to be sent to approver section:

DescriptionField

To send an email notification to the approver to approve the request
for associating an application with APIs.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Hello
@approver.name appears as Hello Joe in the email sent, where Joe
is the approvers login ID.

Note:
The email notifications are sent only to the local API Gateway users.

8. Select Configure request approved mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
associating an application with APIs is approved.

webMethods API Gateway Administration 10.11 257

2 Operating API Gateway

9. Provide the following information in the Configure request approved mail template to be
sent to requester section:

DescriptionField

To send an email notification to the requester that the request for
associating an application with APIs is approved by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Register Application in the
email sent, where Register Application is the event.type.

10. Select Configure rejection mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
registering an application is rejected.

11. Provide the following information in the Configure rejection mail template to be sent to
requester section:

DescriptionField

To send an email notification to the requester that the request for
associating an application with APIs is rejected by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Register Application in the
email sent, where Register Application is the event.type.

12. Click Cancel to revert to the last saved changes or to abandon all the changes if the values are
not saved.

13. Click Save.

Configuring Approvals for Updating Application

258 webMethods API Gateway Administration 10.11

2 Operating API Gateway

You have to configure the approval settings, to enforce approval for modifying an existing
application in API Gateway. The subscription usage is counted against the existing plan and
package combination until an approver approves the change of plan or package request. Once an
approver approves the change request, quota is reset.

To configure approvals for updating an application

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Approval configuration > Update application.

3. Set the Enable toggle button to the on position to enable approval configuration to take effect.

4. Select the team of approvers from the Approvers drop-down list.

5. Select Anyone from the Approved by drop-down list.

This implies that, any one user associated with the selected team can approve or reject the
requests. The requester need not wait for the approval of each approver in the approvers
group.

Note:
If a user is associated with the team, then the user can approve or reject a pending request.

6. Select Configure approval initiate request mail template to be sent to approver.

This is to configure the email template to be sent to the approver for approving the request of
modifying an existing application.

7. Provide the following information in the Configure approval initiate request mail template
to be sent to approver section:

DescriptionField

To send an email notification to the approver to approve the request
for modifying an existing application.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Hello
@approver.name appears as Hello Joe in the email sent, where Joe
is the approvers login ID.

webMethods API Gateway Administration 10.11 259

2 Operating API Gateway

Note:
The email notifications are sent only to the local API Gateway users.

8. Select Configure request approved mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
modifying an existing application is approved.

9. Provide the following information in the Configure request approved mail template to be
sent to requester section:

DescriptionField

To send an email notification to the requester that the request for
modifying an existing application is approved by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Update Application in the
email sent, where Update Application is the event.type.

10. Select Configure rejection mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
modifying an existing application is rejected.

11. Provide the following information in the Configure rejection mail template to be sent to
requester section:

DescriptionField

To send an email notification to the requester that the request for
modifying an existing application is rejected by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Update Application in the
email sent, where Update Application is the event.type.

260 webMethods API Gateway Administration 10.11

2 Operating API Gateway

12. Click Cancel to revert to the last saved changes or to abandon all the changes if the values are
not saved.

13. Click Save.

Configuring Approvals for Subscribing Package

You have to configure the approval settings in API Gateway, to enforce approval for subscribing
a package to a plan in API Portal.

To configure approvals for subscribing a package

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Approval configuration > Subscribe package.

3. Set the Enable toggle button to the on position to enable approval configuration to take effect.

4. Select the team of approvers from the Approvers drop-down list.

5. Select Anyone from the Approved by drop-down list.

This implies that, any one user associated with the team can approve or reject the requests.
The requester need not wait for the approval of each approver in the approvers group.

Note:
If a user is associated with the selected team, then the user can approve or reject a pending
request even if the user is not associated with the Approvers group.

6. Select Configure approval initiate request mail template to be sent to approver.

This is to configure the email template to be sent to the approver for subscribing a package.

7. Provide the following information in the Configure approval initiate request mail template
to be sent to approver section:

DescriptionField

To send an email notification to the approver to approve the request
for subscribing a package.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:

webMethods API Gateway Administration 10.11 261

2 Operating API Gateway

DescriptionField

The @ character acts as a place holder and the values are
automatically generated by the system. For example, Hello
@approver.name appears as Hello Joe in the email sent, where Joe
is the approvers login ID.

Note:
The email notifications are sent only to the local API Gateway users.

8. Select Configure request approved mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
subscribing a package is approved.

9. Provide the following information in the Configure request approved mail template to be
sent to requester section:

DescriptionField

To send an email notification to the requester that the request for
subscribing a package is approved by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears asApproval of Subscribe Package in the email
sent, where Subscribe Package is the event.type.

10. Select Configure rejection mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
subscribing a package is rejected.

11. Provide the following information in the Configure rejection mail template to be sent to
requester section:

DescriptionField

To send an email notification to the requester that the request for
registering an application is rejected by the approver.

Send notification

The subject line of the email to be sent.Subject

262 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears asApproval of Subscribe Package in the email
sent, where Subscribe Package is the event.type.

12. Click Cancel to revert to the last saved changes or to abandon all the changes if the values are
not saved.

13. Click Save.

Configuring Approvals for Updating Subscription

You have to configure the approval settings, to enforce approval tomodify an existing subscription
in API Gateway.When you request an approval for subscription update, the existing package and
plan are in use, until an approver approves your request. Once the approver approves the change
of subscription request, the quota is reset.

To configure approvals for updating a subscription

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Approval configuration > Update subscription.

3. Set the Enable toggle button to the on position to enable approval configuration to take effect.

4. Select the team of approvers from the Approvers drop-down list.

webMethods API Gateway Administration 10.11 263

2 Operating API Gateway

5. Select Anyone from the Approved by drop-down list.

This implies that, any user associatedwith the selected team can approve or reject the requests.
The requester need not wait for the approval of each approver in the approver's group.

Note:
If a user is associated with the team, then the user can approve or reject a pending request.

6. Select Configure approval initiate request mail template to be sent to approver.

This is to configure the email template to be sent to the approver for approving the request of
modifying an existing subscription.

7. Provide the following information in the Configure approval initiate request mail template
to be sent to approver section:

DescriptionField

To send an email notification to the approver to approve the request
for modifying an existing subscription.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Hello
@approver.name appears as Hello Joe in the email sent, where Joe
is the approver's login ID.

Note:
The email notifications are sent only to the local API Gateway users.

8. Select Configure request approved mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
modifying an existing subscription is approved.

9. Provide the following information in the Configure request approved mail template to be
sent to requester section:

DescriptionField

To send an email notification to the requester that the request for
modifying an existing subscription is approved by the approver.

Send notification

The subject line of the email to be sent.Subject

264 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Update subscription in the
email sent, where Update subscription is the event.type.

10. Select Configure rejection mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
modifying an existing subscription is rejected.

11. Provide the following information in the Configure rejection mail template to be sent to
requester section:

DescriptionField

To send an email notification to the requester that the request for
modifying an existing subscription is rejected by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Update subscription in the
email sent, where Update subscription is the event.type.

12. Click Save.

Configuring Approvals for Deleting Subscription

You have to configure the approval settings, to enforce approval to delete an existing subscription
in API Gateway. When you raise a deletion request, the application is suspended automatically.
If an approver approves the deletion request, the subscription is deleted. However, if the approver
rejects the request, subscription is enabled. When the application is suspended, if a user invokes
the application, the quota usage for that application is continued to be calculated. This is a known
issue and would be resolved in subsequent releases.

To configure approvals for updating a subscription

webMethods API Gateway Administration 10.11 265

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Approval configuration > Delete subscription.

3. Set the Enable toggle button to the on position to enable approval configuration to take effect.

4. Select the team of approvers from the Approvers drop-down list.

5. Select Anyone from the Approved by drop-down list.

This implies that, any user associatedwith the selected team can approve or reject the requests.
The requester need not wait for the approval of each approver in the approver's group.

Note:
If a user is associated with the team, then the user can approve or reject a pending request.

6. Select Configure approval initiate request mail template to be sent to approver.

This is to configure the email template to be sent to the approver for approving the request of
deleting an existing subscription.

7. Provide the following information in the Configure approval initiate request mail template
to be sent to approver section:

DescriptionField

To send an email notification to the approver to approve the request
for deleting an existing subscription.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

266 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Hello
@approver.name appears as Hello Joe in the email sent, where Joe
is the approver's login ID.

Note:
The email notifications are sent only to the local API Gateway users.

8. Select Configure request approved mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
deleting an existing subscription is approved.

9. Provide the following information in the Configure request approved mail template to be
sent to requester section:

DescriptionField

To send an email notification to the requester that the request for
deleting an existing subscription is approved by the approver.

Send notification

The subject line of the email to be sent.Subject

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Delete subscription in the
email sent, where Delete subscription is the event.type.

10. Select Configure rejection mail template to be sent to requester.

This is to configure the email template to be sent to the requester to notify that the request for
deleting an existing subscription is rejected.

11. Provide the following information in the Configure rejection mail template to be sent to
requester section:

DescriptionField

To send an email notification to the requester that the request for
deleting an existing subscription is rejected by the approver.

Send notification

The subject line of the email to be sent.Subject

webMethods API Gateway Administration 10.11 267

2 Operating API Gateway

DescriptionField

Bydefault, the template appears. You can customize the email content.Content

Note:
The @ character acts as a place holder and the values are
automatically generated by the system. For example, Approval of
@event.type appears as Approval of Delete subscription in the
email sent, where Delete subscription is the event.type.

12. Click Save.

Email templates variable

Approval Email Variables

@approver.name@application.name

@application.name@event.type

@event.type@requestor.name

@requestor.name@requestor.email

@requestor.email@requestor.firstName

@requestor.firstName@requestor.lastName

@requestor.lastName

Rejection Email Variables

@rejectionReason@application.name

@application.name@event.type

@event.type@requestor.name

@requestor.name@requestor.email

@requestor.email@requestor.firstName

@requestor.firstName@requestor.lastName

@requestor.lastName

Managing Pending Requests

268 webMethods API Gateway Administration 10.11

2 Operating API Gateway

You canmanage your pending requests in the Pending Requests section. You can approve or reject
a pending request or delete the requests approved by you.

To approve or reject a pending request

1. Expand the menu options icon , in the title bar, and select Pending Requests.

The Pending requests page appears.

2. Select Pending Requests.

A list of pending requests appears with the following information:

DescriptionField

The name of the requestor.Requested by

The additional information or comments added by the requestor.Requestor comments

The type of event for which the request is pending.Event

The options are:

Create application

Register application

Update application

Subscribe package

The details of the type of event requested.Request details

The details available for the following event types are:

Create application

Application name. The name of the application.

Owner. The owner of the application.

Identifiers. Identifiers by which messages from a particular
consumer application is recognized at run time.

Contact emails. The email address of the owner of the
application.

Version: The version of the application.

Register application

Application name. The name of the application.

webMethods API Gateway Administration 10.11 269

2 Operating API Gateway

DescriptionField

API. The API to which the application is associated.

Update application

Application name. The name of the application.

Owner. The owner of the application.

Identifiers. Identifiers by which messages from a particular
consumer application is recognized at run time.

Contact emails. The email address of the owner of the
application.

Version: The version of the application.

Subscribe package:

Application name. The name of the subscription.

Owner. The owner of the subscription.

Identifiers. Identifiers by which messages from a particular
consumer subscription is recognized at run time.

Contact emails. The email address of the owner of the
subscription.

Version. The version of the subscription.

Plan name. The name of the plan.

Package name. The name of the API package.

3. Click the Approve or Reject icon to approve or reject requests.

Alternatively, you can select multiple pending requests to be approved or rejected
simultaneously by selecting the check boxes adjacent to the names of the requests.

The request gets removed from the Pending requests page.

Deleting Requests

When you perform a task, for example, you create an application inAPIGateway, then an approval
request is generated if an approval is configured in API Gateway and this request that is waiting
for approvers approval is listed in the Pending Request section. If you want to delete this request,
you can delete it from the Pending Request section.

To delete a request

270 webMethods API Gateway Administration 10.11

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Pending Requests.

2. Select My requests.

A list of requests appears with the detailed information of the request.

3. Click the Delete icon for the request that has to be deleted.

4. Click Yes in the confirmation dialog.

Outbound Proxy
WhenAPIGateway executes a request against a remote server, it issues anHTTP orHTTPS request
to the specified target server. If your API Gateway instance is behind a firewall, and must route
theseHTTP orHTTPS requests through a third party proxy server, you can configure proxy servers
to which API Gateway routes these requests.

For API Gateway to use a proxy server, you must define a proxy server alias. The proxy server
alias identifies a proxy server and a port on the server through which you want to route requests.
You can configure API Gateway to route requests to one or more proxy server aliases for each
type of outbound requests (HTTP, HTTPS).

All the configured and available proxy server aliases are listed in a table with the corresponding
details of the port being used, the host on which it is, the protocol used, and so on. To use a proxy
server you have to enable it.

Note:
Anymodifications to the outbound proxy in Integration Server may not reflect in API Gateway
UI. Hence, Software AG recommends that you do not configure or modify outbound proxy
through Integration Server Administrator UI.

Configuring Proxy Server Alias

For API Gatewayto use a proxy server, you must define a proxy server alias. Proxy server alias
names must be unique across protocols, that is, you cannot have proxy server aliases of the same
name but of different protocols.

To configure proxy server alias

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Outbound proxies.

This displays a list of available proxy server aliases and the corresponding details.

3. Click Add proxy and provide the following information:

webMethods API Gateway Administration 10.11 271

2 Operating API Gateway

DescriptionField

The alias name of the proxy server.Alias

Optional. The username API must use when accessing this proxy
server.

Username

Optional. A valid password associated with the username.Password

The host name or IP address of the proxy server.Hostname or IP
address

The port on which this proxy server listens for requests.Port number

The type of protocol (HTTP, HTTPS) to use for the host/port
combination.

Protocol

Indicates whether this proxy server alias should be the default proxy
server alias for its protocol type or not. Click Yes or No. Only one
default proxy server alias can be set for each protocol type.

Set as default

4. Click Add.

Modifying a Proxy Server Alias

To modify a proxy server alias

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Outbound proxies.

3. In the Outbound proxy list, select the proxy server alias that you want to edit.

4. Incorporate the required changes.

5. Click Update.

Deleting a Proxy Server Alias

To delete a proxy server alias

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Outbound proxies.

272 webMethods API Gateway Administration 10.11

2 Operating API Gateway

3. In theOutboundproxy list, click in the action column of the proxy server alias to be deleted.

4. Click Yes in the confirmation dialog box.

The proxy server alias is deleted from the list.

Proxy Bypass
If you are using proxy servers for outbound HTTP or HTTPS requests, you can optionally route
selected requests directly to their target servers, bypassing the proxy servers listed in the outbound
proxies list. For information on outbound proxies, see “Outbound Proxy” on page 271.

To allow the outbound HTTP and HTTPS requests sent by API Gateway to bypass a particular
proxy, you must add the proxy to the Proxy Bypass list.

Adding a Proxy Bypass

TheHTTP andHTTPS requests sent fromAPIGateway to remote servers are not directed through
the proxies added in the Proxy Bypass screen.

To add a proxy bypass

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Proxy Bypass.

3. In the Addresses field, provide the host name or IP of the proxy server that the HTTP and
HTTPS requests must bypass.

You can type the fully qualified host and domain name of each server to which you want the
API Gateway to issue requests directly. Type the host name or the domain name exactly as
they appear in the URLs that the server uses. To enter multiple names, separate each with
commas. You can use the asterisk (*) to identify several serverswith similar names. The asterisk
matches any number of characters. For example, if you want to bypass requests made to
localhost, www.yahoo.com, home.microsoft.com, and all hosts whose names beginwithNYC,
you would type:
localhost,www.yahoo.com,home.microsoft.com, NYC*.*

4. Click Add.

The specified proxy server is displayed in the Addresses list.

5. Click Save.

The list is saved.

webMethods API Gateway Administration 10.11 273

2 Operating API Gateway

Modifying a Proxy Bypass

To modify a proxy bypass

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Proxy Bypass.

3. In the Addresses list, click in the action column of the proxy server to be edited.

4. Incorporate the required changes.

5. Click .

6. Click Save.

The changes are saved.

Deleting a Proxy Bypass

To delete a proxy bypass

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Proxy Bypass.

3. In the Addresses list, click in the action column of the proxy server to be deleted.

4. Click Save.

The selected proxy server is deleted.

URL Aliases
A URL alias is an alias that you create to replace a portion of the URL to an API on API Gateway.
The URL alias typically replaces the path portion of the URL which identifies the name and
invocation endpoint of the API. For example, if the URL is
http://test:2225/gateway/RESTCalcService/1.0, you can create aURL alias, calc for anAPI, then
the name and invocation endpoint of the API on API Gateway is replaced with calc, for example,
http://test:2225/calc. If the client sends a request that contains the matching alias, then the
corresponding URL path is invoked.

274 webMethods API Gateway Administration 10.11

2 Operating API Gateway

In addition to associating a URL alias with a single resource, you can also map different resources
for each port, therefore, based on the incoming port, the corresponding resource path is invoked.
This makes it possible to define a single URL alias that resolves to different destinations based on
the incoming port of the HTTP request.

URL aliases have several benefits:

A URL alias may be easier to type than full URL path names.

A URL alias is more secure than URL path names.

The URL aliases page displays a list of available URL aliases with the corresponding details
including the default URL path, port it is mapped to, and so on. Youmust have theManage aliases
functional privilege assigned to manage the alias information.

In the URL aliases page, with the Global gateway endpoint section, you can also define global
gateway endpoint. For more information about global gateway endpoint, see webMethods API
Gateway User's Guide.

Note:
Anymodifications to theURL aliases in Integration Server do not reflect in APIGateway. Hence,
Software AG recommends that you do not modify the aliases through Integration Server
Administrator. On migration from 10.0 to 10.1, the existing configuration in 10.0 is migrated to
the API Gateway UI.

API Gateway only supports modification of URL aliases for the WmAPIGateway package. To
modify URL aliases for any other packages, you must use Integration Server Administrator.

Creating URL Alias

When you create a URL alias, you create an association between an alias and an API on API
Gateway.

Keep the following information in mind when creating a URL alias:

An alias name must be unique across API Gateway.

You can associate a single URL alias with multiple resources by specifying port mappings. A
port mapping correlates the alias with a different URL alias based on the port on which the
request was received.

If you want to use URL alias with a REST resource you must enable partial matching of URL
aliases.

If you enabled or intend to enable partial matching of URL aliases, do not define an alias that
begins with another alias.

To create a URL alias

1. Expand the menu options icon , in the title bar, and select Administration.

webMethods API Gateway Administration 10.11 275

2 Operating API Gateway

2. Select General > URL aliases.

This displays a list of available URL aliases and the corresponding details.

3. Click Add URL alias and provide the following information:

DescriptionField

The alias name of the proxy server.Alias

An alias name must be unique across API Gateway.

The alias name cannot include a space, nor can it include the following
characters: # % ? ' " < \

The alias name cannot begin with the string http:// or https://

The port number to use when accessing the API.Port number

When API Gateway receives a request that contains a URL alias, API
Gateway resolves the request destination by first determining if there is
a URL path associated with the incoming port. If there is no URL path
mapped to the port number, thenAPIGateway uses the default URLpath
for the alias as the request destination. The port mappings are always
evaluated first.

Because theURLpath can be different for each port, using portmappings
allows the use of a single URL alias with multiple destinations. Each port
can have only one URL path mapping. You can add port mappings to
multiple destinations by clicking the +Add button.

TheURLpath for theURL alias and for port numbermapped for theURL
alias.

URL path

The URL path cannot include a space or the following characters: # % ? ’
“ < \

The URL path to the API on API Gateway.Default URL path

You must specify the default URL path if you do not define any port
mappings for the URL alias. If the URL alias includes port mappings, the
Default URL Path field is optional.

The URL path cannot include a space or the following characters: # % ? ’
“ < \

4. Click Save.

276 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Using Port Mappings with URL Alias

For aURL alias, you can create one ormore portmappingswhich associates a portwith a resource.
Port mappings allow the use of a single URL alias withmultiple resource paths, because each port
can be mapped to a different URL path.

WhenAPIGateway receives a request that contains a URL alias, API Gateway resolves the request
destination by first determining if there is a URL path associated with the incoming port. If there
is no URL path mapped to the port number, then API Gateway uses the default URL path for the
alias as the request destination. The port mappings are always evaluated first.

Adding Port Mapping to URL Alias

You can create multiple port mappings for a URL alias. Incoming requests with the URL alias
received on a port that has no URL path mapping, resolves to the path specified in the Default
URL Path field. If the alias does not specify a Default URL Path value, API Gateway uses the
alias as the URL path.

To add a port mapping to a URL alias

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the URL alias list, select the URL alias for which you want to define port mappings.

4. In the Port number list, select the port for which you want to specify an alternate path.

5. In the URL path field, specify the path to API. The URL path cannot include a space or the
following characters: # % ? ’ “ < \

6. Click +Add to add the port mapping to the alias.

7. Click Save.

Deleting Port Mapping for URL Alias

You can delete any of the port mappings added to a URL alias.

Note:
If you intend to delete all of the portmappings for aURL alias,make sure theURL alias specifies
a Default URL Path value.

To delete a port mapping for a URL alias

webMethods API Gateway Administration 10.11 277

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the URL alias list, select the URL alias for which you want to delete a port mapping.

4. In the Port number list, click in the action column of the port mapping that you want to
delete.

5. Repeat the preceding step for each port mapping that you want to delete for an alias.

6. Click Save.

Enabling Partial Matching of URL Aliases

In some cases, URL requests include identifiers for a particular API. Because these identifiers vary
for each instance of an API, URL requests might not exactly match any of the defined URL aliases
for a particular API. To enable you to define URL aliases for such APIs, API Gateway can use
partial matching to process URL requests. A partial match occurs when a request URLmatches or
begins with only part of a URL alias.

When partial matching is enabled andAPI Gateway receives a request URL, an alias is considered
a match if the entire alias matches all or the beginning of the request URL, starting with the first
character of the request URL's path.

For example, if URL alias calc has a URL path of gateway/RESTCalcService/1.0 and API Gateway
receives the following request URL:

https://MyHost:9072/calc/deleteCalc

The request URL matches the calc alias and resolves to the path:
https://MyHost:9072/gateway/RESTCalcService/1.0/deleteCalc.

API Gateway retains the trailing characters of the request URL. In this case, API Gateway retains
the /deleteCalc.

To enable API Gateway to use partial matching of URL requests, you must set the value of the
parameter watt.server.url.alias.partialMatching to true in Integration Server (in the Integration
Server Administrator, go toSettings >Extended link). The default is false. Formore information
on configuring partial matching of URL aliases using Integration Server, seewebMethods Integration
Server Administrator’s Guide.

Important:
If you change the setting of this parameter, you must restart Integration Server for the changes
to take effect.

Modifying a URL Alias

278 webMethods API Gateway Administration 10.11

2 Operating API Gateway

To modify a URL alias

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the URL Alias list, select the URL alias that you want to edit.

Alternatively, in the URL Alias list, locate the row that contains the alias you want to modify,
and click the Edit icon.

4. Incorporate the required changes.

5. Click Save.

Deleting a URL Alias

To delete a URL alias

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the URL Alias list, locate the row that contains the alias you want to delete, and click .

4. Click Yes in the confirmation dialog box.

Example: Usage Scenarios of URL Aliases

This section explains how an API consumer can invoke an API for which a URL alias is created.
This example uses the RESTCalcService API. Suppose, the RESTCalcService API is activated in
API Gateway and following are the gateway endpoints for this API:

http://test:2225/gateway/RESTCalcService/1.0

http://test:4000/gateway/RESTCalcService/1.0

http://test:4010/gateway/RESTCalcService/1.0

http://test:5555/gateway/RESTCalcService/1.0

Also, the RESTCalcService consists of the postCalc resource path that adds two numbers.

If this API is published to the API consumer then the invocation endpoint for the consumer may
appear as:

webMethods API Gateway Administration 10.11 279

2 Operating API Gateway

https://test:5555/gateway/RESTCalcService/1.0/postCalc

If you do not want to expose the API name and path information or if you want to shorten the
invocation endpoint as it is complex, then you can create a custom URL alias. To create a URL
alias:

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. Click Add URL alias and provide the following values:

ValueField

calcAlias

gateway/RESTCalcService/1.0/postCalcDefault URL path

4. Click Save.

Suppose, the URL alias name provided while creating a URL alias is calc. You can now expose
the https://test:5555/calc invocation endpoint to the API consumer instead of
https://test:5555/gateway/RESTCalcService/1.0/postCalc.

With the default URL path specified in alias configuration, the API consumer can use this URL
alias for any ports of gateway endpoint shown in the API details page, for example,

http://test:2225/calc

http://test:4000/calc

http://test:4010/calc

http://test:5555/calc

Additionally, you can use port mapping, if you want to use the same alias for a different resource
path. This can be done by providing a different resource path for each port, instead of the default
URL path in alias configuration. To use the same alias for a different resource path:

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. Click Add URL alias and provide the following values:

ValueField

calcAlias

5555Port number

gateway/RESTCalcService/1.0/postCalcURL path

280 webMethods API Gateway Administration 10.11

2 Operating API Gateway

4. Click +Add to add port mappings to multiple destinations and provide the following values:

ValueField

4000Port number

gateway/RESTCalcService/1.0/deleteCalcURL path

5. Click Save.

Note:
As the Default URL path is not provided, the incoming call for ports other than 4000 and
5555 fails. If the Default URL path is provided then the port mapping takes the first
precedence. If the value of the port does not match, then the Default URL path is used.

For the alias calc, each port is mapped to a different resource, for the invocation endpoint:

https://test03:4000/calc: RESTCalcService/1.0/deleteCalc resource is invoked.

https://test03:4010/calc: error appears as the default URL is not provided and a path is not
configured for the 4010 port.

https://test03:5555/calc: RESTCalcService/1.0/postCalc resource is invoked.

Custom Content-types
An API Provider can configure custom content-types based on how the payloads in the incoming
or outgoing requests have to be processed. If the native API consumes some custom content-type,
theAPI Provider can configure amapping between this customcontent-type and a base content-type
so that the schema validation, and identification in the policies are performed based on the base
type.

For example, a native API consumes application/xyz content-type. The API provider creates an
API for this native API and enforces the Validate API Specification policy and the API definition
has schema mapping for application/json. When the request reaches API Gateway and as there is
no content-type schema mapping for application/xyz, the schema validation is skipped. In such
scenarios, if the API provider creates a custom content-type mapping in the API Gateway UI with
the content type as application/xyz and base type as JSON, then the payload in the incoming
request is validated against the JSON schema.

The following table explains the different identifiers and payload validation criteria that can be
used for various content types that you can use to configure your custom content-types.

Payload validationIdentifierContent-type

XML schemaXPathapplication/xml

text/xml

text/html

webMethods API Gateway Administration 10.11 281

2 Operating API Gateway

Payload validationIdentifierContent-type

multipart/form-data

multipart/mixed

JSON schemaJSONPathapplication/json

application/json/badgerfish

RegexRegextext/plain

Note:
The custom content-type feature is not supported for the SOAP to REST transformed APIs.

Configure Custom Content-types

When you configure a custom content-type, you specify what base-type the content type while
processing the content.

You must have the API Gateway's manage general administration configurations functional
privilege assigned to configure custom content-type.

To configure custom content-type

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Custom Content-types.

3. Provide the Content-type that has to be configured.

4. Select the Base type as one of the following:

JSON: Specifies that the base-type for the provided Content-type is set to JSON.

XML: Specifies that the base-type for the provided Content-type is set to XML.

Text: Specifies that the base-type for the provided Content-type is set to plain text.

5. Click .

You can configure multiple custom content-types by clicking Add.

Cache Configuration
In API Gateway version 10.1 or earlier, all assets are stored in memory and reside in memory
indefinitely. Since the cache is loaded fully during startup, it takes a while to load all the elements,
such as applications, APIs, policies, and so on in the cache. The Cache configuration functionality

282 webMethods API Gateway Administration 10.11

2 Operating API Gateway

in API Gateway enables lazy loading of the assets and ensures that API Gateway startup is quick
and is independent of the data size. If the memory size is not enough to contain all the entities
API Gateway caches can be configured to load a certain percentage of the entities in memory.

API Gateway internally classifies cache based on the usage and size as follows:

size bounded: In-memory cache that forgets the least recently used (LRU) entry when the
maximum number of entries is reached. This can be configured as percentage of the total
number of entries in the data store.

size unbounded: When the cache configuration percentage is set to 100% manually or as
computed by auto scale option, the cache is set as unbounded.

You can configure individual cache types in this section. You can set additional parameters that
control the cache configuration in the Administration > General > Extended Settings section.
For details see, “Configuring Extended Settings” on page 224

Note:
The cache configuration is synchronized across different nodes in a cluster.

Autoscaling mode

Depending on the load on the system the autoscaler thread computes the percentage of entities
to be kept in memory. If the number of entities is less all the entities are stored in memory. If the
number of entities does not fit into thememory then it computes thememory for each of the caches
that are set to run in autoscale mode. The caches are reconfigured automatically based on the
computed value. This can be controlled by setting the parameters pg_Cache_autoScalerRunInterval
and pg_Cache_minCachePercent.

Percentage mode

Depending on the growth or the current size of the number of entities the cache size is computed
and resized periodically. This is controlled by the setting the parameters
pg_Cache_boundedCacheResizeRunInterval and pg_Cache_minCacheSize.

You can also collect the required statistics for the selected cache, which is displayed in the Global
dashboard underAnalytics > Cache Statistics. This statistics collection interval can be configured
by setting the parameter pg_Cache_statisticsProcessorRunInterval.

Configuring Cache to Improve Performance

You must have the API Gateway's manage general administration configurations functional
privilege assigned to configure cache.

To configure cache to improve performance

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Cache configuration.

webMethods API Gateway Administration 10.11 283

2 Operating API Gateway

3. Select the Cache name, from the drop-down list of available cache to be configured.

4. Select a value for the Percentage of cache in memory.

For example, you can set the value as 10%, 20%, and so on. If you do not select any value, the
value is set to Auto scale by default.

5. Select Collect statistics to collect the required statistics for the selected cache.

6. Click .

The configured cache is listed in a table in the cache configuration section. If the configuration
is set to Auto scale and Collect statistics is not selected then, by default, the cache is not listed.

You can edit or delete the cache configuration entries by clicking the icons in the action column.

7. Click Update.

This saves the cache configuration.

Note:
To enhance the performance of basic authentication scenarios at runtime,ACCESS_PROFILES
cache type is always configured to 100% during restart of API Gateway. You cannot
reconfigure theACCESS_PROFILES cache fromAPIGatewayuser interface and SoftwareAG
recommends users not to modify the value of ACCESS_PROFILES cache type using REST
APIs.

Application Log Configurations
API Gateway consists of different components such as API Gateway Server, API Data Store,
Dashboard, and Platform (WSStack, OSGI etc). Each of these components generate separate logs
and store them in different locations. This feature provides a central placewhere you can configure
the logs across different components.

The Administration > General > Application logs tab provides a simplified solution where you
can perform the following tasks:

Set the log levels for different components

Download logs

Aggregate the logs from different components

Note:
The log aggregation is done across all the configured cluster nodes. The log level
configuration is propagated across all the nodes in a cluster.

View the logs from different components in a single place and perform data mining

284 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Configuring Log Levels

You can configure the log level settings to specify the level of detail that you want to capture in
the logs.

The log level settings that you can specify are described below. Each logging level includes the
indicated type of message and all messages from the levels above it (for example, the Warn level
includes Fatal, Error, and Warn messages).

ExamplesAPI Gateway Server records these entriesLog Level

Product cannot read its configuration
file and has no default settings.

Failures that end operations in such a way that
the operations cannot successfully continue
without user intervention. Failure is very likely
to affect other operations or products.

Fatal

Business process step failed due to a
service error caused by bad input
data.

Same as Fatal, except that existing error handling
renders the failure unlikely to affect other
operations or products.

Error

Multiple registered JMX serverswere
discoveredwhere only one is needed.

Problems that do not end operations, or
unexpected or unusual conditions that might
signal impending failure.

Warn

Package was loaded, or connection
was pool initialized.

Success of an event that you need to knowabout.Info

Expects an object to be initialized but
it is not, or hash table is empty.

Code-level statements recording unusual
conditions or decisions thatmight lead to errors.

Debug

Entry or exit method, or local and
global object state.

Code-level statements recording the state and
flow of the program during normal execution.

Trace

No information for the product or facility is written to the server log.Off

Prerequisite:You must have the Manage general administration configurations functional
privilege to configure log levels.

To configure log levels

1. Expand the menu options icon in the title bar, and select Administration.

2. Select General > Application logs.

webMethods API Gateway Administration 10.11 285

2 Operating API Gateway

3. In the Log level configuration section, configure the following parameters:

Log file sourceDescriptionLog file type

Install_Dir/
IntegrationServer/instances/
default/logs/server.log

This setting sets the API Gateway server log
level. API Gateway server logs contain
information on the API Gateway UI related
activities. API Gateway server logs also

API Gateway

contain information on the start-up activity
of API Gateway server and its functioning, its
state and activities related to connections to
various components.

Select a log level that you want to configure
to collect required logs.

The available log levels are: off, trace, debug,
info, warn, error, fatal.

By default, the log level for API Gateway
server logs are set as info.

Note:
Changing the log level of API Gateway
server logs sets that value of log level for
all the log components of API Gateway. If
you want to set a different log level for a
particular log components, then log into
Integration Server user interface, clickLogs
> Logging Configuration > Sever Logger

286 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Log file sourceDescriptionLog file type

> API Gateway, then select the log level
that you want to set for the corresponding
log component.

Install_Dir/
InternalDataStore/logs/SAG_
EventDataStore.log

This setting sets the API Data Store log level.
This contains log files of API Data Store. All
API Gateway assets such as API, application,
alias, and so on that are stored in API Data
Store are logged based on this setting.

API Gateway
Data Store
logs

Select a log level that you want to configure
to collect required logs.

The available log levels are: off, debug, info,
warn, error, fatal.

By default, the log level for API Data Store
logs are set as info.

Install_Dir/profiles/
IS_instance_name/apigateway/
dashboard/startup.log

This setting sets the log level for dashboard
logs. These logs contain information regarding
dashboard-related activities and the Kibana
log files that are included in API Gateway.

Dashboard

Select a log level that you want to configure
to collect required logs.

The available log levels are: silent, quiet,
verbose.

Select silent to suppress all logging
output.

Selectquite to suppress all logging output
except for error messages.

Select verbose to log all events, including
systemusage information and all requests.

By default, the log level for dashboard logs
are set as quiet.

Install_Dir/
IntegrationServer/instances/
default/logs/WMSECURITY*.log

API Gateway generates security logs when
you enable this. These logs contain
information on security-related administrative
and operational events. For example, changes

Security

to authorization, authentication, port settings,
password restrictions, attempts to log on to

webMethods API Gateway Administration 10.11 287

2 Operating API Gateway

Log file sourceDescriptionLog file type

API Gateway and to access API Gateway
services, and so on.

Select the checkbox to enable the collection of
security logs.

Install_Dir/
IntegrationServer/instances/
default/logs/WMSESSION*.log

APIGateway generates session logswhen you
enable this. These logs contain information on
sessions activated on API Gateway and
provide data on when sessions start, their
current status, their duration, and so on.

Session

Select the checkbox to enable the collection of
session logs.

Install_Dir/ profiles/
IS_instance_name/logs/sag-
osgi.log

This setting sets the log level forAPIGateway
platform logs.

Select a log level that you want to configure
to collect required logs.

Platform

The available log levels are: off, trace, debug,
info, warn, error, fatal.

By default, the log level for platform logs are
set as info.

Note:
Whenever you change the log level settings
for the API Gateway platform logs, make
sure you restart API Gateway for the
changes to take effect.

4. Click Save.

This configures the log levels for the various log file types that can be downloaded as an
archive.

Downloading the Log Files

You can download the logs as archived file. This contains all the logs collected from various API
Gateway components, the thread dumps of all the currently active threads, and the server
configurations, the details ofwhich correspond to the log level configured. You can browse through
the downloaded data to troubleshoot any issues, such as error or performance problems.

Prerequisite:You must have the Manage general administration configurations functional
privilege to download log files.

288 webMethods API Gateway Administration 10.11

2 Operating API Gateway

To download the log files

1. Expand the menu options icon in the title bar, and select Administration.

2. Select General > Application logs.

3. In the Download diagnostics section, click Download diagnostics.

The file is downloaded to your local machine at the predefined location in the zip format.

Configuring Log Aggregation

You can configure log aggregation such that the logs from different components can be stored at
a single location in a common format. You can select any of the following destinations to store the
aggregated data:

API Data Store

Elasticsearch, in case you have an external Elasticsearch configured with API Gateway

Log aggregation collects log from the different components and stores them either in API Data
Store or external Elasticsearch based on the log aggregation configuration settings. If the API Data
Store is configured as the destination the aggregated logs are displayed in the API Gateway
dashboard under the Analytics > Application logs tab. You can filter the logs as required and
search for a particular log in the dashboard.

Note:
If you configure to send the logs to the same API data store, which stores the API Gateway's
core data (APIs & configurations), then it is very important to setup the data housekeeping in
place since the log data grows over time in volume and will start to impact API Gateway's
performance. Formore information on log housekeeping practices, see “LogsHousekeeping” on
page 294. Alternatively (also a better approach for production environments), logs can be sent
to an External Elasticsearch.

Prerequisite:You must have the Manage general administration configurations functional
privilege to:

Enable the log aggregation and

Configure the destination for log aggregation

To configure log aggregation

1. Expand the menu options icon in the title bar, and select Administration.

2. Select General > Application logs.

webMethods API Gateway Administration 10.11 289

2 Operating API Gateway

3. In theLog aggregation section, click the toggle button to change the status to and enable
the log aggregation.

4. Select one of the following destination:

API Gateway Data Store: Select this to set API Data Store as destination to store the
aggregated logs and you can view them in the API Gateway

dashboard

External Elasticsearch. Select this to set the external Elasticsearch as destination to store
the aggregated log. This approach helps to separate the Elasticsearch that stores the API
Gateway core data from the aggregated log . But, if you use the external Elasticsearch, you
must create your own dashboard to view the logs.

Note:
Make sure you have configured an external Elasticsearch with API Gateway.

Provide the following information:

DescriptionField Name

The type of protocol (HTTP, HTTPS) to use for the host and port
combination.

Protocol

Specifies the host name or IP address of the machine on which
Elasticsearch resides.

Hostname

290 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField Name

Specifies the port where Elasticsearch server runs.Port

Specifies the index of the collected logs.Indexname

Specifies the Elasticsearch user ID for authenticating Elasticsearch
when API Gateway communicates with it.

Username

Specifies the password of the Elasticsearch instance to be used
for establishing communication between API Gateway and
Elasticsearch.

Password

5. Click Save.

The selected destination is now configured for log aggregation.

Filebeat

API Gateway uses Filebeat to monitor the log files and forwards them to either API Data Store or
external ElasticSearch. Filebeat is shipped along with API Gateway and its configuration can be
found in the following location:

SAG_Install_Dir/profiles/IS_Instance_Name/apigateway/filebeat/filebeat_apigateway.yml

When log aggregation is enabled, API Gateway initiates the Filebeat process in the background
tomonitor the log files and forwards the log files to either API Data Store or external Elasticsearch.

API Gateway + API Data Store + Terracotta Server

In case, if you also want to aggregate Terracotta server logs that are stored in different location,
perform the following steps:

If Terracotta Server and API Gateway is installed in the same machine, perform the following
steps:

1. In the Administration > General > Application logs > Log aggregation section, disable the
log aggregation.

Note:
By default, the Terracotta logs are available in the (user.home)/terracotta/server-logs
location. You can change this folder by specifying the custom log data location in the
tc-config.xml.

2. Update the filebeat_template.yml file in the SAG_Install_Dir\profiles\IS_Instance_Name\
apigateway\filebeat location with the following content. Make sure you place the following
content below the DashboardLogs configuration:
- type: log
Change to true to enable this prospector configuration.
enabled: true

webMethods API Gateway Administration 10.11 291

2 Operating API Gateway

Paths that should be crawled and fetched. Glob based paths.
paths:
- C:/Users/alice/terracotta/server-logs/terracotta-server.log
fields:

node: ${NODE}
fileType: TerracottaServerLogs
timezone: ${TIMEZONE}

fields_under_root: true
multiline.pattern: (([\s]+)20[0-9]{2}-)|20[0-9]{2}-
multiline.negate: true
multiline.match: after

3. In the Administration > General > Application logs > Log aggregation section, enable log
aggregation.

4. In the Analytics > Application Logs section, check whether the Terracotta Server logs are
aggregated.

If Terracotta Server andAPIGateway are installed in differentmachine, perform the following
steps:

1. Edit the tc-config.xml in Terracotta Server with the following content to store the logs in a
network location and start the Terracotta Server:
<?xml version="1.0" encoding="UTF-8"?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config">

<servers>
<server host="localhost" name="%h">

<data>C:/install/TerraCottaServer/Terracotta/server/bin/data</data>
<logs>//worstation01/share/tcserverlog</logs>
<offheap>
<enabled>true</enabled>
<maxDataSize>512m</maxDataSize>

</offheap>
</server>
<restartable enabled="true"/>

</servers>
</tc:tc-config>

2. In the Administration > General > Application logs > Log aggregation section, disable log
aggregation.

3. Update the filebeat_template.yml file in the SAG_Install_Dir\profiles\IS_Instance_Name\
apigateway\filebeat location with the following content. Make sure you place the following
content below the DashboardLogs configuration:
- type: log
Change to true to enable this prospector configuration.
enabled: true
Paths that should be crawled and fetched. Glob based paths.
paths:
- //mckmut02/share/tc-server-logs/terracotta-server.log
fields:

node: ${NODE}
fileType: TerracottaServerLogs
timezone: ${TIMEZONE}

fields_under_root: true

292 webMethods API Gateway Administration 10.11

2 Operating API Gateway

multiline.pattern: (([\s]+)20[0-9]{2}-)|20[0-9]{2}-
multiline.negate: true
multiline.match: after

4. In the Administration > General > Application logs > Log aggregation section, enable the
log aggregation.

5. In the Analytics > Application Logs section, check whether the Terracotta Server logs are
aggregated.

Configuring Log for Elasticsearch Client in API Gateway

APIGateway uses Elasticsearch REST client to connect to APIData Store or External Elasticsearch.
By Default, the logs that are created by these REST clients are ignored to avoid over logging. To
troubleshoot or diagnose elasticsearch calls from API Gateway, you can manually configure the
log configuration for Elasticsearch REST client using the following steps:

1. Open the log4j2.properties located at SAG_Install_Dir\profiles\IS_Instance_Name\
configuration\logging.

2. Add the following configuration at the end of the file:
logger.10.name=org.elasticsearch.client
logger.10.additivity=false
logger.10.level=info
logger.10.appenderRef.lar.ref=ESRestClient

logger.11.name=org.apache.http
logger.11.additivity=false
logger.11.level=info
logger.11.appenderRef.lar.ref=ESRestClient

logger.12.name=org.apache.http.wire
logger.12.additivity=false
logger.12.level=info
logger.12.appenderRef.lar.ref=ESRestClient

logger.13.name=org.apache.http.impl.conn
logger.13.additivity=false
logger.13.level=info
logger.13.appenderRef.lar.ref=ESRestClient

appender.esrestclient.name=ESRestClient
appender.esrestclient.type=RollingFile
appender.esrestclient.fileName=<INSTALL_LOCATION>/IntegrationServer/instances/default/logs/ESRestClient.log
appender.esrestclient.filePattern=<INSTALL_LOCATION>/IntegrationServer/instances/default/logsESRestClient.log.%i
appender.esrestclient.layout.type=PatternLayout
appender.esrestclient.layout.pattern=%d [%t] %-5p %c %x - %m%n
appender.esrestclient.policies.type=Policies
appender.esrestclient.policies.size.type=SizeBasedTriggeringPolicy
appender.esrestclient.policies.size.size=10MB
appender.esrestclient.strategy.type=DefaultRolloverStrategy
appender.esrestclient.strategy.max=10
#This is a custom Platform provided filter which matches all log messages that
contain OSGi data in MDC (bundle.id, component.name, etc.)
appender.esrestclient.filter.osgi.type=LogServiceFilter
appender.esrestclient.filter.osgi.onMatch=DENY

webMethods API Gateway Administration 10.11 293

2 Operating API Gateway

appender.esrestclient.filter.osgi.onMismatch=NEUTRAL

3. Restart API Gateway.

You can see the ESRestClient.log at the SAG_Install_Dir\IntegrationServer\
instances\instance_name\logs location. You can see the request sent to particular elasticsearch
node and what is the response status code in the ESRestClient.log

Logs Housekeeping

The Log housekeeping is essential to free the space of old and unused log files. This can be achieved
in the following ways:

Log rotation settings. Setting log rotation for the individual log files that are collected from
different components of API Gateway. For more information about log file rotation setting for
each of the log files, see webMethods API Gateway Administration.

Archive and Purge. You can archive and purge the aggregated logs that are stored in API Data
Store.

For more information about how to archive and purge the application logs, see webMethods
API Gateway Administration.

License Configuration
When you purchase webMethods API Gateway, your organization is granted a license to use it
with certain features and functionality. The license expires after a time period specified by your
purchase agreement.

Before you install API Gateway, you are provided with a license key file that you place in the file
system of the machine on which API Gateway will run. This file contains the license key, which
is a special code associated with your license. When you install API Gateway, the setup program
asks you to provide the name and location of this file. The setup program then copies this file to
the SAGInstalldirectory\instances\instance_name\config directorywith the name licenseKey.xml.
If this file is inadvertently deleted, API Gateway login fails.

Viewing Licensing Information

You must have the API Gateway's manage general administration configurations functional
privilege assigned to configure licenses and view license information.

To view license information

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > License > Details.

This displays the current license information and an option to configure license

294 webMethods API Gateway Administration 10.11

2 Operating API Gateway

3. In the License information section you can view a list of features, with a check mark next to
each feature you are licensed to use.

4. To view details of the licensing information, click Details.

API Gateway displays the following licensing information:

Sales information. Displays the license details related to Sales such as Serial number of
the license, the License key, the customer name and ID, number of contracts and details
and so on.

Product information. Displays the product details that comes with the current license
such as license expiration date, operating systemonwhich the product runs, product details
such as code, name, version, and ID, the renewal date, and so on.

Integration Server. Displays the Integration server details such as product code, version,
concurrent sessions that can run, clustering and publishing capability, and so on.

License information. Displays the license details such as Price unit, and quantity,
installation type, license type, license version, and so on.

API Gateway. Displays the features of API Gateway that are licensed.

Terracotta. Displays the details of the License file, and expiration date of the license.

Configuring Licenses

You must have the API Gateway's manage general administration configurations functional
privilege assigned to configure licenses and view license information.

To configure the license

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > License > Configuration.

This displays the current license information and an option to configure license

3. In the Configure license section, provide the following information:

API Gateway license file. Provide the pathname for the API Gateway license file.

For example:
C:\Installations\IntegrationServer\instances\default\config\licenseKey.xml

Terracotta license file. Provide the pathname for the Terracotta license key file if you
have a Terracotta installed for clustering. AnAPIGateway requires Terracotta to be installed
for a clustered API Gateway environment. The Terracotta license file contains the license
information for all of your Terracotta components. You add this file to API Gateway by
placing it into the SAGInstalldirectory\common\conf directory of the machine on which

webMethods API Gateway Administration 10.11 295

2 Operating API Gateway

API Gateway runs. If the license file is located in a different directory than the specified
directory for licenses you have to specify the pathname where the Terracotta license key
file is located.

4. Click Save.

The license key file is saved in the location specified.

Configuring API Callback Processor Settings

You can configure the API callback processor setting All API callback requests so that API
Gateway accepts all the requests from the client that contain the callback request URL and wrap
the requests with its own URL before routing them to the native API. This lets API Gateway track
the requests that the client sends to the native API and the callback messages that are sent by the
native API to the client. In addition, you can use the settings Allow HTTPS access only and
Process only allowed IPs requests to avoid any external threats in case an unauthorized user
tries to access the protected resource.

You must have manage general administration configurations functional privileges to configure
callback processor settings.

To configure API callback processor settings

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Callback processor.

3. Select Process all API callback requests.

This enables API Gateway to accept all the API callback requests coming from the client and
wraps these requests with its own URL before it routes these requests to the native API. This
option is selected by default.

When this setting is disabled, the request from the client reaches the native API, as is, without
theAPIGatewaywrapping itwith its ownURL. So,when the nativeAPI sends out the callback
request to the client it directly reaches the client and API Gateway is unable to track such
events.

4. Select Allow HTTPS access only.

This allows API Gateway to receive only HTTPS callback requests from the native API and
processes the requests before routing them to the client. If a HTTP callback request comes in,
API Gateway sends out an Access denied message to the client. This option is selected by
default.

If this option is not selected thenAPIGateway accepts theHTTP callback requests and processes
the requests before routing them to the client.

296 webMethods API Gateway Administration 10.11

2 Operating API Gateway

5. Select Process only allowed IPs requests. This allows API Gateway to receive the callback
requests only from the IP addresses specified in the Trusted IP addresses list.

API Gateway allows callback requests only from the allowed IPs configured in Trusted IP
address list. You can configure your nativeAPIsmachine IPs or the nativeAPI outbound proxy
server IPs here, so API Gateway allows a request coming from the native API and would then
be routed to the client.

If there are no trusted IPs configured and this option is selected, then API Gateway does not
allow any requests.

6. Type the IP address in the Trusted IP address and Add.You can add multiple IP addresses.

API Gateway allows only requests coming from these IP addresses when the option Process
only allowed IPs requests is selected.

7. Click Save.

Messaging
APIGatewayMessaging is an umbrella term that encompasses the exchanging ofmessages across
multiple platforms in asynchronous style.

To configure API Gateway for JMS messaging, you need to:

Create one or more JNDI provider aliases to specify where API Gateway can look up
administered objects when it needs to create a connection to JMS provider or specify a
destination for sending or receiving messages.

Create one ormore connection aliases that encapsulate the properties that API Gateway needs
to create a connection with the JMS provider.

Creating a JNDI Provider Alias

Each JMS provider can store JMS administered objects in a standardized namespace called the
JavaNaming andDirectory Interface (JNDI). JNDI is a JavaAPI that provides naming anddirectory
functionality to Java applications.

As the JMS client, API Gateway uses a JNDI provider alias to encapsulate the information needed
to look up an administered object. When you create a JMS connection alias, you can specify the
JNDI provider alias that API Gateway should use to look up administered objects (that is,
Connection Factories and Destinations).

To create a JNDI provider alias

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Messaging.

webMethods API Gateway Administration 10.11 297

2 Operating API Gateway

API Gateway displays a list of all the currently defined JNDI provider alias definitions.

3. Click Add JNDI provider alias.

4. Provide the following information for the JNDI provider alias

DescriptionField

The alias name that you want to assign to the JNDI
provider.

JNDI alias name

A description for the JNDI alias.Description

Select the JNDI template that you want to use.Predefined JNDI Templates

The JNDI templates provide information that you can
use to complete alias configuration for a specific
provider. The available templates are: Broker, UM,
filesystem, LDAP, JBoss, WebLogic, Qpid-AMQP (0-x)

The class name of the JNDI provider.Initial context factory

The JNDI provider uses the initial context as the starting
point for resolving names for naming and directory
operations. API Gateway displays the initial context
factory for the provider depending on the predefined
JNDI template selected.

The primaryURL of the initial context for sessionswith
the JNDI provider.

Provider URL

TheURL specifies the JNDI directory inwhich the JNDI
provider stores JMS administered objects.

If you are using SoftwareAGUniversalMessaging, this
is the Universal Messaging realm server in the format
nsp:// UM_host : UM_port (for example,
nsp://127.0.0.1:9000).

If you are using a cluster of Universal Messaging realm
servers, supply a list of the URLs to each realm server
in the cluster. Use a colon or semi-colon to separate each
URL:

Separate the URLs using a comma if API Gateway
always attempts to connect to the first Universal
Messaging server in the list, only trying the second
Universal Messaging server in the list if the first
server becomes unavailable.

Separate theURLsusing a semicolon ifAPIGateway
connects to a randomly chosen URL from the list.

298 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

This may result in better distribution of clients
across the servers in the cluster.

If you are using the filesystem you have to provide the
filepath of the location of the file to be used.

If you are using Qpid-AMQP option you have to
provide the file path locationwhere the amqp.properties
file is saved.

A list of the failover URLs of the initial context for
sessions with the JNDI provider. If the connection to

Provider URL failover list

the primary JNDI provider becomes unavailable, API
Gateway automatically attempts a connection to a JNDI
provider specified in this list.

Specify one URL per line.

Keep the following points in mind when adding JNDI
provider URLs to the failover list:

The JNDI providers must be the same type as the
primary provider. For example, if the primary
provider is a webMethods Broker, then the JNDI
providers in the failover list must also be
webMethods Brokers.

The administered objects on the providers must be
identical to the each other.

Once Integration Server connects to a JNDI provider,
it continues to use that JNDI provider until the
connection is lost or interrupted.

When you start or restart a connection alias,
Integration Server attempts to connect to the
primary JNDI provider. If the connection fails,
Integration Server immediately attempts to connect
to the first JNDI provider in the failover list. If the
connection fails, Integration Server attempts to
connect to the next JNDI provider in the list.

WhenusingwebMethodsBroker as a JNDIprovider,
you can keep objects in sync between webMethods
Brokers using a webMethods Broker territory. That
way objects can automatically forward from on
webMethods Broker to another within the territory.

When using a cluster of UniversalMessaging realm
servers as the JNDI provider, Software AG

webMethods API Gateway Administration 10.11 299

2 Operating API Gateway

DescriptionField

recommends that youdonot specify a ProviderURL
Failover List value. The realm URLS specified in
Provider URL function as the failover list.

The principal name, or user name supplied by API
Gateway to the JNDI provider, if the provider requires
one for accessing the JNDI directory.

Security principal

For information aboutwhether or not the JNDI provider
requires security principal information, consult the
product documentation for the JNDI provider.

The credentials, or password, that API Gateway
provides to the JNDI provider, if the provider requires
security credentials to access the JNDI directory.

Security credentials

For information aboutwhether or not the JNDI provider
requires security credentials, consult the product
documentation for the JNDI provider.

Any additional properties the JNDI provider requires
for configuration. For example, you might need to

Other properties

specify the classpath for any additional .jar or class files
that the JNDI provider needs to connect to the JNDI.

When you select a predefined JNDI template, API
Gateway populates this field with any additional
properties and placeholder information required by the
JNDI provider.

For more information about additional properties or
classes required by a JNDI provider and the location of
those files, see the product documentation for the JNDI
provider.

5. Click Add.

The JNDI provider alias created is listed in a table under JNDI provider alias definitions in the
Messaging page.

You can edit, export the alias definition or delete the JNDI provider alias as required. You can also
perform a test lookup for a JNDI provider to ascertain it is working as expected.

Considerations while using Software AG Universal Messaging as a JMS provider

Keep the following points in mind when using Universal Messaging as the JMS provider:

When using Universal Messaging, if the version of Universal Messaging is equivalent to or
higher than the version of API Gateway, you do not need to add any client libraries to the
Integration Server classpath.

300 webMethods API Gateway Administration 10.11

2 Operating API Gateway

When using Universal Messaging, if the version of Universal Messaging is lower than the
version of API Gateway, you have to add the JMS provider's client libraries to the Integration
Server classpath. You can do it in one of the following ways:

Place the libraries in the server's classpath by placing them in the Install directory\instances\
instance_name\lib\jars\custom directory. For details on the procedure, see webMethods
Integration Server Administrator’s Guide.

Make the libraries available to all server instances by placing them in the Install
directory\IntegrationServer\instances\lib\jars directory.

Isolate the jars within a package classloader by placing them in the following directory:
packageName\code\jars. If you place the files in the package classloader, make sure to
set the Class Loader propertywhen configuring a JMS connection alias to this JMS provider.

Note:
If you have configured and are using Software AGUniversal Messaging, onmigration from
an earlier version of API Gateway to API Gateway 10.5, for example, if you are migrating
from API Gateway 10.3 to 10.5, then the JNDI provider alias created in the 10.3 version is
found to point to the 10.3 Universal Messaging endpoint. You can resolve this by either
copying the 10.3 Universal Messaging client jars to 10.5 Integration Server's classpath or by
manually changing the Provider URL of the JNDI Provider Alias in 10.5 Integration Server
to point to the 10.5 Universal Messaging endpoint.

Keep the Universal Messaging client libraries up to date. If you install a Universal Messaging
fix that updates the client libraries, make sure to copy the updated Universal Messaging client
library files to the Software AG_directory /common/lib directory used by API Gateway.

For details on other supported JMS providers, see webMethods Integration Server Administrator’s
Guide.

Creating a JMS Connection Alias

A JMS connection alias specifies the information that API Gateway needs to establish an active
connection betweenAPIGateway and the JMS/AMQPprovider.APIGatewayuses a JMS connection
alias to send messages to and receive messages from the JMS/AMQP provider. When you create
a JMS connection alias, keep the following points in mind:

You can use JNDI to retrieve administered objects (Connection Factories and Destinations)
and then use theConnection Factory to create a connection. If you intend to use a JNDI provider,
you need to configure one or more JNDI provider aliases before creating a JMS connection
alias

Each JMS connection alias has an associated transaction type. Within API Gateway, certain
functionality must be completed within a non-transacted session. For example, to use API
Gateway to send or receive large message streams, you must specify a JMS connection alias
whose transaction type is set to NO_TRANSACTION.

To create a JMS connection alias

webMethods API Gateway Administration 10.11 301

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Messaging.

API Gateway displays a list of all the currently defined JNDI provider alias definitions, JMS
connection alias definitions, and individual SOAP JMS trigger controls.

3. Click Add JMS connection alias under JMS connection alias definitions section.

4. In the General Settings section, provide the following information:

DescriptionField

Name of the connection alias.Connection alias name

This name should be unique as each connection alias
represents a connection factory to a specific JMSprovider.

A description of the JMS connection alias.Description

Specifies whether the sessions that use this JMS
connection alias are transacted.

Transaction type

Available values are:

NO_TRANSACTION. Indicates that sessions that use
this JMS connection alias are not transacted.

LOCAL_TRANSACTION. Indicates that sessions that
use this JMS connection alias are part of a local
transaction.

XA_TRANSACTION. Indicates that sessions that use
this JMS connection alias are part of an XA
transaction.

The JMS client identifier associated with the connections
established by this JMS connection alias.

Connection client ID

Optional. User name needed to acquire a connection from
the connection factory.

Username

For more information about whether or not the JMS
provider requires a user name and password to obtain a
connection, refer to the product documentation for the
JMS provider.

Optional. Password needed to acquire a connection from
the connection factory.

Password

302 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

For more information about whether or not the JMS
provider requires a user name and password to obtain a
connection, refer to the product documentation for the
JMS provider.

5. In the Connection protocol settings section, provide the following information:

DescriptionField

The alias to the JNDI provider that you want this JMS
connection alias to use to look up administered objects.

JNDI provider alias name

The lookup name for the connection factory that you
want to use to create a connection to the JMS provider
specified in this JMS connection alias.

Connection factory lookup name

If the JMS connection alias connects to Universal
Messaging, specify the Universal Messaging connection
factory that you created when you set up your
environment.

If you are using SonicMQ as the JMS provider, specify
the lookup name that refers to the serializable Java object
file containing the SonicMQ object definitions. Include
the .sjo extension as part of the lookup name.

Specifies whether API Gateway creates administered
objects on the JNDI provider if the object is not found
when API Gateway looks up the object.

Create administered objects on
demand (Universal Messaging)

Select the check box if you want API Gateway to create
a destination or connection factorywhen an JNDI lookup
for the object fails.

Specifies whether connections created from this JMS
connection alias always connect to the master realm

Enable follow the master
(Universal Messaging)

server in the Universal Messaging cluster. This setting
affects producer and consumer connections created using
this JMS connection alias.

You can do one of the following:

Select the Enable follow the master check box to
indicate that API Gateway connects to the master
realm server in theUniversalMessaging clusterwhen
API Gateway uses this JMS connection alias to send
or receive messages.

webMethods API Gateway Administration 10.11 303

2 Operating API Gateway

DescriptionField

Clear the Enable follow the master check box to
disable the follow the master behaviour for this JMS
connection alias when API Gateway uses this JMS
connection alias to send or receive messages.

Note:
Enable follow the master option is available to JMS
connection aliases that use UniversalMessaging as the
JMS provider.

Specifies how API Gateway monitors the connection
factory object for changes, if at all. This only applies if a

Monitor webMethods connection
factory

JMS connection alias connects to thewebMethods Broker
using awebMethodsConnection Factory object in a JNDI
server.

Select one of the following available options:

No. Indicates that API Gateway does notmonitor the
connection factory. This is the default option.

Poll for changes (specify interval). Monitors the
connection factory by polling the changes at an
interval that you specify.

Poll for changes (interval defined by webMethods
Connection Factory). Monitors the connection
factory at an interval determined by the refresh
interval specified for the webMethods Connection
Factory object.

Register change listener. Monitors the connection
factory by registering an event listener.

6. In the Advanced settings section, provide the following information:

DescriptionField

The name of the class loader that you want to use with
this JMS connection alias. APIGateway uses the specified

Class loader

class loader when performing certain activities with the
JMS connection alias (send amessage, receive amessage,
create a connection, create a destination, and so on.)

By default, API Gateway uses the server class loader.
However, you can specify the class loader for a package
instead. This can help prevent conflicts between the jars
required for different JMS providers.

304 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

The maximum number of messages that can exist in the
client side queue for this JMS connection alias. API

Maximum CSQ size (messages)

Gateway writes messages to the client side queue if the
JMS provider is not available when messages are sent.
Each JMS connection alias has its own client side queue.

Specify -1 if you want the client side queue to be able to
contain an unlimited number ofmessages. That is, specify
-1 if you do not want to set a maximum limit.

If you specify 0, API Gateway does not write messages
to the client side queue for this JMS connection alias.

Specifies whether API Gateway drains the client side
queue by sending the messages to the JMS provider in

Drain CSQ in order

the same order in which API Gateway placed the
messages in the client side queue.

Select the check box if you want API Gateway to send
messages from the client side queue in the same order in
which API Gateway originally placed the messages in
the client side queue.

When theDrain CSQ in order check box is selected, after
the connection to the JMS provider is re-established, API
Gateway continues to write new messages to the client
side queue until the client side queue is completely
drained. If the Drain CSQ in order check box is not
selected, after the connection to the JMS provider is
re-established,APIGateway sends newmessages directly
to the JMS provider while it drains the client side queue.

Note:
You can also specify the number of messages API
Gateway retrieves from the client side queue for
delivery to the JMS provider at one time. By default,
API Gateway sends 25 messages at a time.

Specifies whether API Gateway creates a temporary
queue on the JMS provider to handle request-reply
operations that do not specify a replyTo destination.

Create temporary queue

Select the check box if you want API Gateway to create
a temporary queue. Clear the check box if you do not
want API Gateway to create a temporary queue.

Youmust select the Create temporary queue check box
if you want to select the Enable request-reply listener
for temporary queue check box.

webMethods API Gateway Administration 10.11 305

2 Operating API Gateway

DescriptionField

SpecifieswhetherAPIGateway creates a single dedicated
MessageConsumer for receiving synchronous replies

Enable request-reply listener for
temporary queue

delivered to the temporary queue for this JMS connection
alias.

When this check box is selected, API Gateway creates a
dedicated consumer for receiving replies to requests
published using this JMS connection alias.

When this check box is cleared, API Gateway creates a
new JMS MessageConsumer for each reply message.

Specifies whether users can use Designer to create, list,
and modify destinations on the webMethods Broker or
when working with JMS triggers.

Enable destination management
with designer (Broker and
Universal Messaging)

Select the check box if youwant Designer users to be able
to create, list, andmodify destinations using a JMS trigger
that uses this JMS connection alias.

Note:
Software AG recommends that you prevent Designer
users from managing destinations in a production
environment.

Specifies whether API Gateway creates a separate
connection to the JMS provider for each JMS trigger.

Create new connection per
trigger

Select the check box if you want API Gateway to create
a separate connection for each JMS trigger that uses this
JMS connection alias.

If you want a concurrent JMS trigger that uses this JMS
connection alias to use multiple connections to the JMS
provider, youmust configure the alias to create a separate
connection per trigger.

7. In the Producer caching section, provide the following information to configure pools for
caching of JMS Session and MessageProducer objects:

DescriptionField

Specifies whether to enable caching of JMS Session and
MessageProducer objects for this connection alias.

Caching Mode

Select one of the following:

306 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

DISABLED. Indicates that API Gateway does not
cache JMS Session or MessageProducer objects.

ENABLED PER DESTINATION. Enable caching of
JMS Session and MessageProducer objects.

For a non-transacted JMS connection alias, API
Gateway caches a Session object and a
MessageProducer object. For a transacted JMS
connection alias, APIGateway caches a Session object.

The minimum number of entries in the default session
pool.

Minimum pool size (unspecified
destinations)

The default is 1.

The maximum number of entries in the default session
pool.

Maximum pool size (unspecified
destinations)

The default is 30.

The minimum number of entries in each
destination-specific pool.

Minimum poolsize per destination

The maximum number of entries in each
destination-specific pool.

Maximum poolsize per
destination

A value of 0 (or blank) indicates that API Gateway does
not create separate pools for any of the destinations
associated with the JMS connection alias.

A semicolon delimited list of the lookup names for the
destinations for which you want API Gateway to create
separate pools.

Destination lookup names
(semicolon delimited)

Note:
This field appears only when the JMS connection alias
specifies JNDI Lookup for creating the connection to
the JMS provider.

The number ofmilliseconds beforeAPIGateway removes
an inactive pool entry. The timeout value applies to the
default session pool and the destination-specific pools.

Idle timeout (ms)

A value of 0 indicates that pool entries never expire. A
value of -1 indicates that API Gateway uses the system
default as defined by the
watt.server.jms.producer.pooledSession.timeout
parameter.

webMethods API Gateway Administration 10.11 307

2 Operating API Gateway

DescriptionField

The default value is 60000 milliseconds.

8. In the Producer retry section, provide the following information to configure automatic retry
of pub.jms:send services that use this JMS connection alias to send a message to the JMS
provider:

DescriptionField

The maximum number of times that API Gateway
automatically retries a pub.jms:send service that fails
because of a transient error.

Maximum Retry attempts

The default value is 0. A value of 0 indicates that
automatic retry is disabled for this JMS connection alias.

The number of milliseconds that API Gateway waits
between retry attempts.

Retry interval (ms)

The default is 1000 milliseconds (1 second).

Note:
If the JMS connection alias is transacted or uses a connection factory towhich themulti-send
guaranteed policy is applied, API Gateway ignores the producer retry values.

9. In the Enhanced logging section, provide the following information to configure additional
logging for the sending or receiving of JMSmessages that use this messaging connection alias:

DescriptionField

Specifies where API Gateway writes log messages when
enhanced logging is enabled for the message producers

Logging type

or consumers that use this JMS connection alias to send
or receive messages.

You can select one of the following:

SERVER LOG. Write enhanced logging messages to
the server log. If you specify the server log as the
destination, make sure to increase the logging level
for the 0168 Messaging (Enhanced Logging) server
log facility to at least Info.

MESSAGING AUDIT LOG. Write enhanced logging
messages to the messaging audit log.

Select to indicate that API Gatewaywrites additional log
messages when a message producer uses this JMS

Enable producer message ID
tracking

308 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

connection alias to send messages to a destination in
Producer Message ID Tracking: Include Destinations.

Select to indicate that API Gatewaywrites additional log
messages for messaging consumers (triggers) that use

Enable consumer message ID
tracking

this JMS connection alias to receive messages. API
Gateway writes additional log message for the JMS
triggers listed inConsumerMessage IDTracking: Include
Triggers

The destination names for which API Gateway performs
additional logging when sending messages to the
destination.

Producer message ID tracking:
include destinations (semicolon
delimited)

Use a semicolon (;) to separate each destination name.
Leave this field blank if you want API Gateway to
perform enhanced logging for every destination towhich
this JMS connection alias sends messages.

The fully qualified name of the JMS triggers for which
APIGateway performs additional logging during trigger
processing.

Consumer message ID tracking:
include triggers (semicolon
delimited)

Use a semicolon (;) to separate each trigger name. Leave
this field blank if you want API Gateway to perform
enhanced logging for every JMS trigger that uses this JMS
connection alias to receive messages.

10. Click Add.

The JMS connection alias created is listed in a table under JMS connection alias definitions in
the Messaging page.

Web Services Endpoint Alias
A web service endpoint alias represents the network address and, optionally, any security
credentials to be used with web services. You can use the network address properties to enable
dynamic addressing for web services. The security credentials can be used to control both
transport-level and message-level security for web services.

In web service descriptors, an endpoint alias is associated with a binder. API Gateway uses a
binder to collect the definitions for addresses, communication protocols, and data formats for a
particular port type in one container to collect the definitions for addresses, communication
protocols, and data formats for a particular port type in one container.

For a provider web service descriptors, the endpoint alias is used to construct the location=
attribute of the address element (which is contained within the port element) when WSDL is
requested for theweb service. The security credentialsmight be usedwhen constructing a response

webMethods API Gateway Administration 10.11 309

2 Operating API Gateway

to a web service request. When you create a provider web service descriptor, you can specify an
existing endpoint alias, which is displayed (and can be changed) from the default binder of the
web service descriptors.

For a consumer web service descriptor and its associated web service connectors (WSC), the alias
information (including the addressing information and any security credentials), is used at run
time to generate a request and invoke an operation of the web service.

API Gateway usesmessage addressing endpoint aliases to send responses to endpoints other than
the one that initiated or sent the request. That is, when WSAddressing is enabled and the request
SOAP message contains a non-anonymous ReplyTo or FaultTo endpoint, API Gateway uses the
message addressing endpoint alias to determine the authentication details to be used to send a
response to the ReplyTo and FaultTo endpoints.

An endpoint alias is usually created for one or more of the following reasons:

Dynamic endpoint addressing. As the actual value of the endpoint is looked up at run time, using
an endpoint alias saves you from having to specify or change the server information each time
you use the web service.

Security. An endpoint alias is required in order to configureWS-Security forweb service providers
and consumers.

When you create web service endpoint aliases, keep the following points in mind:

Alias names must be unique within the specified usage (provider or consumer) and protocol.
This can result in multiple endpoint aliases with the same name. For example, you can have
a provider alias named aliasOne for the HTTP protocol. You could also have a consumer alias
named aliasOne for the HTTP protocol and a provider alias named aliasOne for the HTTPS
protocol.

API Gateway saves web service endpoint aliases at the location, Integration
Server_directory\instances\ instance_name\config\endpoints. The host name and port are required
for a provider HTTP or HTTPS web service endpoint alias, but are optional for a consumer HTTP
or HTTPS web service endpoint alias.

If API Gateway on which a consumer web service descriptors reside, is located behind a firewall
and the web service request needs to be routed through a proxy server, you can assign a proxy
alias to the consumer web service endpoint alias. You can identify default provider web service
endpoint aliases for HTTP and HTTPS. If a provider web service descriptor contains a binder set
to the default alias, API Gateway uses the information in the default alias when constructing the
WSDL for the descriptor.

Creating an Endpoint Alias for a Provider Web Service Descriptor

If a provider web service descriptor binder specifies the JMS transport, you must assign a web
service endpoint alias to the binder. For a web service descriptor that uses SOAP over JMS, the
provider web service endpoint alias provides the following information: JMS message header
information for the request message, such as delivery mode, time to live, and the destination for
replies. Integration Server uses this information to populate the binding elements in the WSDL
generated for the web service descriptor.

310 webMethods API Gateway Administration 10.11

2 Operating API Gateway

The SOAP-JMS trigger that listens for SOAP over JMS messages for the web service descriptor.
The SOAP-JMS trigger also provides the JMS connection information needed to create a connection
on the JMS provider. Integration Server uses the information provided by the SOAP-JMS trigger
to construct most of the JMS URI (the web service descriptor determines the targetService). The
JMS URI appears in the WSDL document as the value of the "location=" attribute for the address
element within the port element. WS Security Properties that specify the information needed by
the SOAP processor to decrypt and verify the inbound SOAP request and/or encrypt and sign the
outbound SOAP response and the details for adding the timestamp information.

Keep the following information in mind when creating a web service endpoint alias for a JMS
binder in a provider web service descriptor:

You can associate the web service endpoint alias with

A SOAP-JMS trigger that already exists.

A WS endpoint trigger that you create at the same time you create the endpoint alias.

If you use a SOAP-JMS trigger in the web service endpoint alias and subsequently assign the
alias to a JMS binder in a provider web service descriptor, the web service descriptor has a
dependency on the SOAP-JMS trigger. Consequently, at start up orwhen reloading the package
containing the web service descriptor, API Gateway must load the SOAP-JMS trigger before
loading the web service descriptor. If the SOAP-JMS trigger and web service descriptor are
not in the same package, you need to create a package dependency for the package that contains
the web service descriptor on the package that contains the SOAP-JMS trigger.

If you rename the SOAP-JMS trigger assigned to an alias, you need to update the alias to use
the renamed trigger.

To create a provider web service endpoint alias for use with JMS

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Web services.

API Gateway displays a list of all the currently defined endpoint aliases.

3. Click Add web service endpoint alias.

4. In the Webservice endpoint alias properties section, provide the following information:

DescriptionField

Name of the JMS provider web service endpoint alias.Alias

The alias name cannot include the following special
characters: # ©\ & @ ^ ! % * : $. / \ \ ` ; , ~ + =) (| } {] [>
< "

webMethods API Gateway Administration 10.11 311

2 Operating API Gateway

DescriptionField

A description for the endpoint alias.Description

Specifies the type - ProviderType

5. In the JMS transport properties section, provide the following information:

DescriptionField

The message delivery mode for the request message.Delivery mode

This is the delivery mode that web service clients must
specify in the JMS message that serves as the request
message for the web service.

You can select one of the following modes:

PERSISTENT. Specifies that the request message
should be persistent. The message is not lost if the
JMS provider fails.

NON_PERSISTENT. Specifies that the request
message is not persistent. The message might be lost
if JMS provider fails.

The number of milliseconds that can elapse before the
request message expires on the JMS provider.

Time to live

If you specify a value 0, it indicates that themessage does
not expire.

Specifies the message priority.Priority

The JMS standard defines priority levels from 0 to 9, with
0 as the lowest priority and 9 as the highest.

Name or lookup name of the destination to which the
web service sends a response (reply) message.

Reply to name

Specify a name if the JMS connection alias used by the
SOAP-JMS trigger connects to the webMethods Broker
natively. Specify a lookup name if the JMS connection
alias uses JNDI to retrieve a connection factory that is
then used to connect to the JMS provider.

Type of destination to which the web service sends the
response (reply) message.

Reply to type

Specify the destination type if the following are true:

312 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

The web service descriptor to which the endpoint
alias is assigned use the In-Out message exchange
pattern.

The JMS connection alias specified by the SOAP-JMS
trigger connects to the webMethods Broker natively.
On the webMethods Broker, a queue and topic can
have the same name. Youmust specify Reply To Type
to indicate towhich destination the replywill be sent.

Select one of the following destination types:

Queue. Specifies that the web service sends the
response message to a particular queue.

Topic. Specifies that the web service sends the
response message to a particular topic.

6. In the JMS WSDL options section, provide the following information:

DescriptionField

When selected, includes the connection factory name in
the JMS URI.

Include connection factory name

When selected, includes the JNDI parameters in the JMS
URI.

Include JNDI parameters

Note:
The JMS URI appears in theWSDL document as the location attribute value for the address
element contained within the port element.

7. In the WS security properties section, provide the following information:

DescriptionField

Alias of the keystore containing the private key used to
decrypt the inbound SOAP request or sign the outbound
SOAP response.

Keystore alias

Note:
The provider must have already given the consumer
the corresponding public key.

Alias of the private key used to decrypt the request or
sign the response.

Key alias

webMethods API Gateway Administration 10.11 313

2 Operating API Gateway

DescriptionField

The key must be in the keystore specified in Keystore
alias.

The alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust
relationship.

Truststore alias

Specifies whether the timestamp is precise to the second
or millisecond.

Timestamp precision

If you set the precision tomilliseconds, APIGateway uses
the timestamp format yyyy-MM-dd'T'HH:mm:ss:SSS'Z'.
If you set the precision to seconds, API Gateway uses the
timestamp format yyyy-MM-dd'T'HH:mm:ss'Z'.

If you do not select a precision value, API Gateway uses
the value specified for the
watt.server.ws.security.timestampPrecisionInMilliseconds
parameter.

Specifies the time-to-live value for the outboundmessage
in seconds.

Timestamp time to live (seconds)

API Gateway uses the time-to-live value to set the expiry
time in the Timestamp element of outbound messages.
The Timestamp Time to Live value must be an integer
greater than 0.

If you do not specify a Timestamp time to live value, API
Gateway uses the value specified for the
watt.server.ws.security.timestampTimeToLive parameter.

Note:
The Timestamp time to live value should be greater
than the Time to live value specified under JMS
transport properties.

Specifies the maximum number of seconds that the web
services client and host clocks can differ and still allow
timestamp expiry validation to succeed.

Timestamp maximum skew
(seconds)

Specify a positive integer or zero.

API Gateway uses the timestamp maximum skew value
only when you implement WS-Security via a WS-Policy.
API Gateway validates the inbound SOAPmessage only
when the creation timestamp of the message is less than
the sum of the timestampmaximum skew value and the
current system clock time.

314 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

If you do not specify a timestampmaximum skew value,
API Gateway uses the value specified for the
watt.server.ws.security.timestampMaximumSkew
parameter.

8. Click Add.

The web service endpoint alias created is listed in a table under Web service endpoints list.

Creating an Endpoint Alias for a Consumer Web Service Descriptor

Aweb service endpoint alias for usewith a consumerweb service descriptor that has a JMS binder
specifies how and where API Gateway sends a request message when executing a web service
descriptor.

When creating a consumer web service descriptor, API Gateway extracts the JMS information
from the WSDL document and saves it with the binder information in the web service descriptor.
However, as indicated in the SOAP over JavaMessage Service standard, the only JMS information
required in theWSDL is the lookup variant and the destination name. Consequently, it is possible
that some information necessary to connect to the JMS provider is absent from the WSDL. API
Gateway uses the information in a JMS consumer web service endpoint alias to replace or
supplement the JMS information specified in the WSDL document.

When creating a consumer web service descriptor, the message addressing properties define the
WS-addressing headers information that can be attached to the SOAP message.

Keep the following points in mind when creating a web service endpoint alias for use with a
consumer web service descriptor with a SOAP over JMS binding:

A JMS consumerweb service endpoint alias can specify one of the following options to connect
to a JMS provider:

JNDI provider alias and a connection factory

JMS connection alias

Only specify a JNDI provider alias and connection factory, or JMS connection alias, if
information for connecting to the JMS provider was not included in theWSDL document used
to create the consumer web service descriptor or if you want to overwrite the connection
information included in the WSDL document.

If you want to use the client side queue with the web service descriptor to which the alias is
assigned, you must specify a JMS connection alias as the way to connect to the JMS provider.

Information in the JMS consumer web service endpoint alias can supplement or replace the
JMS URI information obtained from a WSDL.

To create a consumer web service endpoint alias for use with JMS

webMethods API Gateway Administration 10.11 315

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Web services.

API Gateway displays a list of all the currently defined endpoint aliases.

3. Click Add web service endpoint alias.

4. In the Webservice endpoint alias properties section, provide the following information:

DescriptionField

Name of the JMS provider web service endpoint alias.Alias

The alias name cannot include the following special
characters: # ©\ & @ ^ ! % * : $. / \ \ ` ; , ~ + =) (| } {] [>
< "

A description for the endpoint alias.Description

Specifies the type - ConsumerType

Specifies the ACL that governs which user groups on
your server can use this web service endpoint alias.

Execute ACL

Select an ACL from the drop-down list. By default, only
members of groups governed by the Internal ACL can
use this alias.

5. In the JMS transport properties section, provide the following information depending upon
whether youwant to connect to the JMSprovider using a connection factory or a JMS connection
alias:

DescriptionField

Select this option if you want to connect to the JMS
provider using a connection factory.

JNDI properties

Provide the following information:

JNDI provider alias. The alias for the JNDI provider
that API Gateway uses to look up administered
objects.

Connection factory name. The lookup name for the
connection factory to use to create a connection to the
JMS provider.

Note:

316 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

You have to specify a connection factory only if the
WSDL document used to create the consumerweb
service descriptor does not specify a connection
factory or you want to overwrite the connection
factory.

Select this option if you want to connect to the JMS
provider using a JMS connection alias.

JMC connection alias

Provide the following information:

JMS connection alias. The name of the JMS
connection alias that you want API Gateway to use
to connect to the JMS provider.

6. In the WS security properties section, provide the following information:

DescriptionField

The user name to include with the UsernameToken.Username

The password to includewith theUsernameToken (must
be plain text).

Password

Re-type the above password.Retype password

Alias to the keystore that contains the private key used
to:

Keystore alias

Sign outbound SOAP requests

Include an X.509 authentication token for outbound
SOAP requests

Decrypt inbound SOAP responses

Note:
To verify messages from this consumer, the web
services provider must have a copy of the
corresponding public key.

Alias to the private key used to sign or include X.509
authentication token for outbound SOAP messages or
decrypt inbound SOAP responses.

Key alias

The key must be in the keystore specified in Keystore
alias.

webMethods API Gateway Administration 10.11 317

2 Operating API Gateway

DescriptionField

The alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust
relationship.

Truststore alias

Specifies whether the timestamp is precise to the second
or millisecond.

Timestamp precision

If you set the precision tomilliseconds, APIGateway uses
the timestamp format yyyy-MM-dd'T'HH:mm:ss:SSS'Z'.
If you set the precision to seconds, API Gateway uses the
timestamp format yyyy-MM-dd'T'HH:mm:ss'Z'.

If you do not select a precision value, API Gateway uses
the value specified for the
watt.server.ws.security.timestampPrecisionInMilliseconds
parameter.

Specifies the time-to-live value for the outboundmessage
in seconds.

Timestamp time to live (seconds)

API Gateway uses the time-to-live value to set the expiry
time in the Timestamp element of outbound messages.
The Timestamp Time to Live value must be an integer
greater than 0.

If you do not specify a Timestamp time to live value, API
Gateway uses the value specified for the
watt.server.ws.security.timestampTimeToLive parameter.

Note:
The Timestamp time to live value should be greater
than the Time to live value specified under JMS
transport properties.

Specifies the maximum number of seconds that the web
services client and host clocks can differ and still allow
timestamp expiry validation to succeed.

Timestamp maximum skew
(seconds)

Specify a positive integer or zero.

API Gateway uses the timestamp maximum skew value
only when you implement WS-Security via a WS-Policy.
API Gateway validates the inbound SOAPmessage only
when the creation timestamp of the message is less than
the sum of the timestampmaximum skew value and the
current system clock time.

If you do not specify a timestampmaximum skew value,
API Gateway uses the value specified for the

318 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

watt.server.ws.security.timestampMaximumSkew
parameter.

7. Click Add.

The web service endpoint alias created is listed in a table under Web service endpoints list.

JMS Triggers
JMS Triggers are meant only for SOAP APIS. These triggers are created automatically when you
create aWeb Service Provider endpoint and act as Listener for thatWeb Service Provider endpoint.

API Gateway provides ways for managing JMS triggers and the resources used by JMS triggers.
You can only update a trigger and cannot create a trigger. Specifically, you can use the controls
provided by API Gateway to:

Increase or decrease the maximum number of server threads used for JMS triggers

Change the maximum execution threads for concurrent JMS triggers

Change the destinations to which the trigger subscribes

Change the JMS connection alias used by the trigger

Delay the frequency with which a JMS trigger polls for more messages

The Individual SOAP JMS trigger controls section displays all the JMS triggers that exist on the
API Gateway along with a summary of each trigger. The summary includes the current status,
state, and thread usage of the trigger as well as configuration information such as the JMS
connection alias used by the trigger, the destination to which the trigger subscribes, and the
processing mode of the trigger.

JMS trigger status and state

The state of a JMS trigger indicates whether the trigger is enabled, disabled, or suspended. The
status indicates whether trigger is running.

A JMS trigger can have one of the following states:

Enabled. The JMS trigger is available. A JMS trigger must be enabled for it to receive and
process messages. An enabled trigger can have a status of “Not Running” which means that
it would not receive and processmessages. Reasons that an enabled JMS trigger can be disabled
include: a disabled JMS connection alias, an exception thrown by the trigger, and trigger failure
at startup.

Disabled. The JMS trigger is not available. Integration Server neither retrieves nor processes
messages for the JMS trigger. The JMS trigger remains in this state until you enable the trigger.

A JMS trigger can have a status of “Running” or “Not Running (reason)” where reason identifies
why the rigger is not running, such as “Not Running (trigger disabled)”.

webMethods API Gateway Administration 10.11 319

2 Operating API Gateway

You can enable a trigger by clicking the toggle button . The toggle button changes to
to depict that the trigger is enabled.

You can disable the trigger by clicking the toggle button . The toggle button changes to
to depict that the trigger is disabled.

Updating JMS triggers

WhenAPI Gateway creates a JMS trigger as part of creating a provider web service endpoint alias,
API Gateway uses default values for some of the trigger properties and placeholders for other
properties. You can modify the default and placeholder values in the SOAP JMS trigger controls.

To update a JMS trigger

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Messaging.

The SOAP JMS trigger controls section displays a list of all the currently defined JMS triggers
and the corresponding details.

3. Click a JMS trigger.

The Update JMS trigger screen appears.

4. In the JMSdestinations andmessage selectors section you canmodify the following information
as required:

a. Destination name. Type the name of the queue from which the JMS trigger receives
messages.

5. In the Settings section you can modify the following information as required:

a. JMS connection alias. Specify the JMS connection alias used by the trigger.

6. In the Properties section you can select one of the following Processing modes:

Concurrent. Specifies that API Gateway processes multiple messages for this trigger at
one time. You can modify the following information for this processing mode:

Max execution threads. Specify themaximumnumber ofmessages that APIGateway
can process concurrently.

Connection count. Specify the number of connections you want the JMS trigger to
make to the webMethods Broker.

Note:

320 webMethods API Gateway Administration 10.11

2 Operating API Gateway

TheConnection count valuemust be less than or equal to theMax Execution Threads
value.

Serial. Specifies that API Gateway processes messages received by the trigger one after
the other.

7. Click Update.

The trigger is saved with the modified values.

Transaction Alerts
APIGateway supports core aswell as transaction-based licensingmodel.WhenAPIGateway uses
a transaction-based licensing model, then each service invocation is considered as a transaction
and API Gateway keeps a track of these transactions. API Gateway transactions for the current
month is comparedwith themaximumnumber of transactions allowed in amonth. Themaximum
number of transactions that are allowed in a month is specified by the license agreement as
represented in the licenseKey.xml file available in the InstallDir\IntegrationServer\
instances\instance_name\config directory.

When the calculated transaction count is higher than the maximum transactions allowed per
month, users are notified through an email or through a notification that appears in the API
GatewayUI. Youmust have themanage user administration functional privilege assigned to view
the usage details in the Analytics > API usage details page.

Note:
API Gateway also uses core-based license model. However, only when API Gateway uses a
transaction-based licensing model, the General > Transaction alerts and the Analytics > API
usage details pages appear in API Gateway.

Configuring Criteria for Transaction Alert Notification

To configure transaction alert criteria

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Transaction alerts > Current stage.

This displays a list of available alert criteria and the corresponding details.

3. Click Add Criteria and provide the following information:

DescriptionField

Select the usage percentage at which the notification is to be
sent.

Notify at

webMethods API Gateway Administration 10.11 321

2 Operating API Gateway

DescriptionField

Note:
If API Gateway is enabled with transaction based license,
then by default, two API Gateway UI notifications appear
at 90% and at 100%marks. You cannot delete these default
notifications, however, you can modify these default
notifications.

Specifies the way in which a user is notified about the
transaction alert.

Notify through

Select one of the following options:

Email. The transaction alert information is sent through
an email.

API Gateway UI. The transaction alert information is
shared through API Gateway user interface.

Both. The transaction alert information is shared both
through email as well as API Gateway user interface.

A valid email address to which the transaction alerts are sent.Email

You can addmultiple email addresses by clicking .
Additionally, you can edit (by clicking the edit icon) or delete
(by clicking the delete icon) the email address.

4. Click OK.

The criteria is saved and listed in the table of available alert criteria.

Modifying License Alert Configurations

To modify a transaction alert criteria

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Transaction alerts > Current stage.

3. In the Transaction alert configurations list, locate the alert that you want to modify and click
in the Action column.

4. Incorporate the required changes.

322 webMethods API Gateway Administration 10.11

2 Operating API Gateway

5. Click OK.

Deleting a Transaction Alert Configuration

To delete a transaction alert criteria

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Transaction alerts > Current stage.

3. In the Transaction alert configurations list, locate the row that contains the alert criteria you

want to delete, and click .

The alert criteria is deleted from the Transaction alert configurations list.

Destination Configuration

API Gateway can publish events and performance metrics data to the configured destinations.
Event type data provides information about activities or conditions that occur on API Gateway.
The performance data provides information on average response time, total request count, fault
count, and so on, for the APIs that it hosts.

Youmust have theAPIGateway'smanage destination configurations functional privilege assigned
to configure the following destinations to which the event types and performance metrics data is
published:

API Gateway

API Portal

Transaction logger

CentraSite

Database

Digital Events

Elasticsearch

Email

SNMP

Custom destinations

Note:
In addition to this list of destinations, you can configure custom destination to publish data to
different components. For details on customdestinations, see “CustomDestination” on page 346.

webMethods API Gateway Administration 10.11 323

2 Operating API Gateway

Configuring Events for API Gateway Destination
You have to configure the API Gateway destination so that the events and performance metrics
data can be published to API Gateway. By default, error events, lifecycle events, policy violation
event, and performance data are published to API Gateway.

To configure events for API Gateway destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select API Gateway to configure the event types for this destination.

4. In Event types, select the type of events to publish to API Gateway.

The available event types are:

Error. Occurs each time an API invocation results in an error.

Lifecycle. Occurs each time API Gateway is started or shut down.

Policy violation. Occurs each time an API invocation violates the policy enforcement that
was set for the API.

5. Select Report performance data to publish performance metrics data.

6. In the Publish interval box, enter a time interval (in minutes) how often API Gateway must
publish performance metrics. Enter a value from 1 through 60. The default is 60 minutes.

7. In the Audit log data section, select the required management areas for which the audit logs
should be recorded in the API Gateway destination.

Audit logs provide a record of system transactions, events, and occurrences in API Gateway.
You can configure audit logging to show the following events:

API management

Application management

Team management

Group management

Package management

Promotion management

Approval management

324 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Alias management

Analytics management

Policy management

Plan management

User management

Note:
By default, audit logging is enabled for all of the above-listed management areas in the API
Gateway destination.

8. Click Save.

Troubleshooting Tips: API Gateway Destination

I see that the API Gateway transactions are not logged in API Data Store when there
is a medium to high load that is 70 to 400 Transactions per second (TPS)

If you have configured an external API Date Store destination, ensure that the configuration is
right. This problem might occur when the API Data Store configurations are not set properly to
handle the load.

Resolution:

Set the following configurations to the properties in config.properties file located at
SAG_Install_Directory\IntegrationServer\instances\IS_Instance_Name\packages\WmAPIGateway\
config\resources\elasticsearch\config.properties to meet the following throughput values:
Up to 2000 TPS, Up to 500 GB storage utilization, and less than <500 ms native service latency:
pg.gateway.elasticsearch.hosts = Elasticsearch Service endpoint, that is localhost:9240
pg.gateway.elasticsearch.http.connectionTimeout = 10000
pg.gateway.elasticsearch.http.socketTimeout = 30000
pg.gateway.elasticsearch.sniff.enable = false
pg.gateway.elasticsearch.http.maxRetryTimeout = 100000

You can verify the transactional events count using
http://<hostname>:<es_port>/testindex/transactionalEvents/count

Note:
You can modify the configurations according to your business requirements.

For more information, see Hardware and Product Configurations in webMethods API Gateway
Administration.

webMethods API Gateway Administration 10.11 325

2 Operating API Gateway

I see that I am not able to parameterize custom indices for transaction events in API
Gateway

Custom indices can be configured for transaction events in API Gateway under Destinations >
Elasticsearch > Configuration page. But parameterizing custom indices is not supported in API
Gateway. For example, appending the current date to the index name. Consider an index name
txnData and it must be appended with the current date, that is txnData_12_08_2020 and rolled up
daily.

Resolution:

You can achieve this use case using the Elasticsearch aliases and rollover APIs of Elasticsearch.

A sample use case is as follows:

Create an alias in the Elasticsearch server, for example txnData and an index rollover like
txnData_12_08_2020, txnData_12_08_2020. The alias txnData should point to all the indices
txnData_12_08_2020, txnData_12_08_2020. One of the indices in the list is write-enabled and that
are the latest and rest of the indices is read-only.

API Gateway sends the events to txnData alias and that alias defines the index that it should write
the data to, based on the date.

Configuring Developer Portal Destination
You have to configure Developer Portal as a destination to establish communication channel
between API Gateway and Developer Portal to exchange data.

To configure Developer Portal destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select API Portal > Configuration to configure Developer Portal as the destination.

4. Provide the following information in the Basic information section:

DescriptionField

Name of the portal being configured. This name will be referenced in
Developer Portal under the list of providers and hence this name should

Name

be unique across your API Gateway instances in case multiple API
Gateways are publishing APIs to the same Developer Portal.

Version of the portal being configured.Version

326 webMethods API Gateway Administration 10.11

2 Operating API Gateway

5. Provide the following information in the Portal configuration section for API Gateway to send
data to Developer Portal:

DescriptionField

URL of the Developer Portal instance in the format http://host:portBase URL

The tenant details of Developer Portal.Tenant

By default, default tenant is considered if the tenant information is not
provided.

Username credential to access Developer Portal instance.Username

Password credential to access Developer Portal instance.Password

6. Provide the following information in theGateway configuration section for API Portal to create
applications, request or revoke access tokens, subscriptions, and so on:

DescriptionField

URL of the API Gateway instance. This is pre-populated.Base URL

Note:
When a load balancer URL is updated in API Gateway, the API
Gateway base URL is be updated to same in this field.

Username credential of the API Gateway Administrator to access API
Gateway instance.

Username

Password credential to access API Gateway instance.Password

Optional. The stage name of one of the stages in an API Gateway
instance.

Stage name

The stage name included here is displayed in theAPI details, API tryout,
Manage APIs, and Application details pages in the Developer Portal
instance.

7. Click Test to ensure the connection with the given Developer Portal details is established.

The connection with the given server is tested and a success message appears.

8. Click Publish.

This establishes a communication channel between API Gateway and Developer Portal.

Troubleshooting Tips: Developer Portal Destination

webMethods API Gateway Administration 10.11 327

2 Operating API Gateway

I see that when API Gateway and Developer Portal are deployed on different
machines, configuring Developer Portal as the destination fails.

When API Gateway and Developer Portal are deployed on different machines, configuring
Developer Portal as the destination fails with the following error message when I click the Test
button, "The input url https://sawld01.cmcdev.be:18102/portal/rest/v1/providers?tenantId=default is not
allowed as the host is in denied list. Contact administrator".

Resolution:

Using the RESTAPI, update the Developer Portal's IP address in the API Gateway'swhiteListedIPs
/rest/apigateway/configurations/whiteListingIPs

Configuring Events for API Portal Destination
Pre-requisites:

You have to configure API Portal to communicate with API Gateway before you select the events
and metrics for publishing to API Portal.

You have to configure the API Portal destination so that the events and performance metrics data
can be published to API Portal.

To configure events for API Portal destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select API Portal > Events to configure the event types for this destination.

4. In Event types, select the type of events that you want API Gateway to publish to API Portal.

The available event types are:

Error: Occurs each time an API invocation results in an error.

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement that
was set for the API.

5. Select Report performance data to publish performance metrics data.

6. In the Publish interval box, enter a time interval (in minutes) how often API Gateway must
publish performance metrics. Enter a value from 1 through 60. The default is 60 minutes.

7. Click Save.

328 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Post-requisites:

After performing the event configurations, select API Portal as a Destination in the Policy
Properties page for each policy, to receive the transaction event logs for the assigned policies.

Configuring Transaction Logger Destination
You have to configure transaction logger as a destination to receive the API Gateway transaction
event logs. The transaction log data is written to a file or a database based on the configurations.
The events are sent to the log file for the Log Invocation policy.

Note:
Any modifications to the API Gateway transaction logger destination in Integration Server do
not reflect in API Gateway UI. Hence, Software AG recommends that you do not configure or
modifyAPIGateway transaction logger destination through the Integration ServerAdministrator
UI.

To configure transaction logger destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select Transaction logger.

The default name of the transaction log, API Gateway Transaction Logger appears in the
Name field.

4. Click the Enable activation toggle button to enable the logger to start writing the log entries
to the database or the file.

5. Provide the following information:

DescriptionField

Specifies whether the logger is to write entries to the destination
synchronously or asynchronously.

Mode

Synchronous: In this mode, the logger writes entries directly to
the destination.

Asynchronous: In this mode, the logger writes entries to a queue,
then later writes the entries from the queue to the destination. Each
logger has its own queue.

Provides data about guaranteed delivery transactions. You can use
guaranteed delivery log entries to do the following:

Guaranteed

webMethods API Gateway Administration 10.11 329

2 Operating API Gateway

DescriptionField

Track when transactions start and their current status.

See the names of guaranteed delivery processes that are running.

Track whether the processes completed successfully or failed.

The default value is No.

Specifies whether the logger is to write entries to a file or database.Destination

Database: If this option is selected, the logger writes entries to the
database.

Note:
You must ensure that in webMethods Integration Server, a pool
alias is associated to the ISCoreAudit functional alias. For more
information on pool alias, see webMethods Integration Server
Administrator’s Guide.

File: If this option is selected, the logger writes entries to the file in
Integration Server_directory\instances\instance_name\logs\
APIGateway directory. The default value is file.

Specifies the maximum number of entries the queue can hold. Specify
numerals only (for example, do not include commas or periods).

Maximum queue
size

The default value is 100000 records.

Choose a value that accommodates your system’s average volume for
log entries. If your logging volume has sudden spikes, the queue can
usually catch up by writing the pending entries during lulls. If the
queue size is reached, then any additional log entries would be lost.
Ensure to check the availability of disk space or memory of API
Gateway server before you change the default value.

Specifies the maximum times the logger must retry writing the entry
to the destination if the first attempt fails because of a transient error.

Maximum retries

A transient error is an error that arises from a temporary condition that
might be resolved or corrected quickly, such as the unavailability of a
resource due to network issues or failure to connect to a database. The
default value is 3.

Specifies the waiting time before the logger can reconnect and rewrite
the eateries to the destination in case of failure. The default value is 5
seconds.

Wait between retries

6. Click Save to save the specified transaction log configuration value.

Note:

330 webMethods API Gateway Administration 10.11

2 Operating API Gateway

For these modifications to take effect, you must restart the API Gateway server.

You can click Cancel to revert to the last saved changes or to abandon all the changes if the
values are not saved.

Post-requisites:

After performing the events configurations, you must select Audit Log as a Destination in the
Policies properties page for each policy, to receive the transaction event logs for the assigned
policies.

Configuring CentraSite Destination
You have to configure CentraSite as a destination to establish a communication channel between
API Gateway and CentraSite to exchange data.

Once an API Gateway asset is published from CentraSite to API Gateway, the CentraSite
communication and SNMPconfigurationdetails automatically appear in theCentraSitedestination
of API Gateway. If the same API Gateway asset is unpublished from the API Gateway instance
at a later time, the CentraSite communication and SNMP configuration details are automatically
removed from the CentraSite destination.

Note:
If you have already configured CentraSite as a destination in API Gateway, then publishing
another API Gateway asset from any CentraSite instance to API Gateway fails and displays an
error. In API Gateway, only one CentraSite instance can be configured as a destination at a time.
To reconfigure another CentraSite instance, you need to use the Force reset CentraSite
communication and SNMP details option.

To configure CentraSite destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select CentraSite > Configuration to configure the CentraSite communication and SNMP
details.

The Communication section displays the following information:

DescriptionField

Specifies the communication protocol used to establish communication
between API Gateway and CentraSite.

Protocol

Specifies the host name or IP address of the machine on which
CentraSite Application Server Tier (CAST) is running.

Hostname

webMethods API Gateway Administration 10.11 331

2 Operating API Gateway

DescriptionField

Specifies the port onwhich CAST is listening. The default port number
for CAST is 53307.

UDDI port

Specifies the CentraSite user ID for authenticating CentraSite when
API Gateway communicates with CentraSite. This implies the user ID

Username

of a userwho has the CentraSite Administrator role or theAPIGateway
Administrator role in CentraSite.

Specifies the name of the API Gateway asset as defined in CentraSite.Target name

The SNMP section displays the following information:

DescriptionField

Specifies thewire transport protocol that is used by the SNMPListener.Transport

Supported values are: TCP and UDP.

Specifies the CentraSite host name or IP address to which the SNMP
listener binds.

Hostname

Specifies the port to which the SNMP listener binds. The default port
number for CentraSite's SNMP server is 8181.

Port

Specifies the SecurityName that is used by the SNMP Listener.Username

Specifies the authorization protocol that is used by the SNMP Listener
for decoding the incoming trap.

Authorization
protocol

Supported values are: MD5 and SHA.

Specifies the privacy protocol that is used by the SNMP Listener for
decoding the incoming trap.

Privacy protocol

Supported values are: AES128, AES, AES192, AES256, 3DES, and
DESEDE.

4. Select Send SNMP traps to CentraSite to publish data about the runtime events and metrics
to the CentraSite SNMP server.

5. Select Force reset CentraSite communication and SNMP details, and click Reset to delete
the current configuration and restore the system configuration.

6. Click Save.

This establishes a communication channel between API Gateway and CentraSite.

Note:

332 webMethods API Gateway Administration 10.11

2 Operating API Gateway

The transaction events are published from API Gateway to CentraSite using SNMP. The
runtime metrics are published from API Gateway to CentraSite using a UDDI client.

Configuring Events for CentraSite Destination
Pre-requisites:

You have to configure CentraSite to communicate with API Gateway before you select the events
for publishing to CentraSite.

You have to configure the CentraSite destination so that events and performance metrics data of
APIs in API Gateway can be published to CentraSite. However, you will be able to publish the
data to CentraSite destination only for APIs published from CentraSite to API Gateway.

To configure events for API Gateway destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select CentraSite > Events to configure the event types for this destination.

4. In Event types, select the type of events that you want API Gateway to publish to CentraSite.

The available event types are:

Error: Occurs each time an API invocation results in an error.

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement that
was set for the API.

5. Select Report performance data to publish performance metrics data.

6. In thePublish interval box, enter a time interval (inminutes) to specify howoftenAPIGateway
must publish performancemetrics. Enter a value from 1 through 60. The default is 60 minutes.

7. Click Save.

Post-requisites:

After performing the event configurations, select CentraSite as a Destination in the Policy
Properties page for each policy, to publish the transaction and monitoring event logs for the
assigned policies. API Gateway sends these events to CentraSite through SNMP.

Important:

webMethods API Gateway Administration 10.11 333

2 Operating API Gateway

As a best practice, Software AG recommends you not to use the CentraSite destination for
transaction events with large data payloads. This is because, the SNMP server using which the
events are published from API Gateway to CentraSite does not handle transaction events with
large data payloads.

Configuring Events for Database Destination
Before you begin

For preparing the database connection, ensure that you have:

Installed Database Components Configurator with API Gateway database scripts. For details,
see Create Database Components Using Database Component Configurator section in Installing
Software AG Products Guide.

Started Database Components Configurator and created tables for the component,
APIGatewayEvents. For details, seeCreate Database Components, Database User, and Storage section
in Installing Software AG Products Guide.

Created database connection pools in the Integration Server UI. For details, see Creating a
connection pool section in webMethods Integration Server Administrator’s Guide.

Configured API Gateway functional alias to the database connection pool in the Integration
Server UI. For details, see Pointing functions at Connection pools section inwebMethods Integration
Server Administrator’s Guide.

You have to configure the database destination so that the events, performance metrics, and audit
log data can be published to the configured database.

API Gateway supports the following databases:

DB2

Oracle

SQL Server

To configure events for Database destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select Database to configure the event types for this destination.

4. InEvent types, select the type of events that youwant API Gateway to publish to the database.

The available event types are:

Error: Occurs each time an API invocation results in an error.

334 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement that
was set for the API.

5. Select Report performance data to publish performance metrics data.

6. In the Publish interval box, provide a time interval (in minutes) to specify how often API
Gateway must publish performance metrics. Provide a value from 1 through 60. The default
value is 60 minutes.

7. In the Audit log data section, select the required management area for which the audit logs
should be recorded in the Database destination.

Audit logs provide a record of system transactions, events, and occurrences in API Gateway.
You can configure audit logging to show the following events:

API management

Approval management

Application management

Alias management

Team management

Analytics management

Group management

Policy management

Package management

Plan management

Promotion management

User management

Note:
By default, audit logging is disabled for all thementionedmanagement areas in theDatabase
destination.

8. Click Save.

Post-requisites:

After performing the database configurations, select Database as a Destination in the Policy
Properties page for each policy, to receive the transaction event logs for the assigned policies.

webMethods API Gateway Administration 10.11 335

2 Operating API Gateway

Configuring Events for Digital Events Destination
Pre-requisites:

API Gateway communicates with the Digital Event Services (DES) component which runs within
the API Gateway server. For more information on configuring DES using Command Central, see
Using Digital Event Services to Communicate between Software AG Products.

Digital Event Services (DES) enables API Gateway to communicate through digital events. Digital
events are typed and serialized data structures used to communicate application or system runtime
information. The application information could be state of a business process step or any associated
business data. The system information could be the amount of memory used by an application.

You have to configure theDigital Event Services destination so that the event types andperformance
metrics data can be published to Digital Event Services.

To configure events for Digital Event Services destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select Digital Event Services > Events to configure the event types for this destination.

4. In Event types, select the type of events that you want API Gateway to publish to Digital
Event Services.

The available event types are:

Error: Occurs each time an API invocation results in an error.

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement that
was set for the API.

5. Select Report performance data to publish performance metrics data.

6. In the Publish interval box, enter a time interval (in minutes) how often API Gateway must
publish performance metrics. Enter a value from 1 through 60. The default is 60 minutes.

7. In the Audit log data section, select the required management area for which the audit logs
should be recorded in the Digital Event Services destination.

Audit logs provide a record of system transactions, events, and occurrences in API Gateway.
You can configure audit logging to show the following events:

API management

336 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Approval management

Application management

Alias management

Team management

Analytics management

Group management

Policy management

Package management

Plan management

Promotion management

User management

Note:
By default, audit logging is disabled for all of the above-listed management areas in the
Digital Event Services destination.

8. Click Save.

Post-requisites:

After performing the server configurations, select Digital Events as a Destination in the Policy
Properties page for each policy, to receive the transaction events logs for the assigned policies.

Configuring Elasticsearch Destination
You have to configure Elasticsearch as a destination to establish a communication channel between
API Gateway and Elasticsearch to exchange data.

To configure Elasticsearch destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select Elasticsearch > Configuration to configure Elasticsearch as the destination.

4. Provide the following information in the Basic information section:

webMethods API Gateway Administration 10.11 337

2 Operating API Gateway

DescriptionField

Specifies the communication protocol used to establish communication
between API Gateway and Elasticsearch.

Protocol

Specifies the host name or IP address of the machine on which
Elasticsearch is running.

Hostname

Specifies the port where Elasticsearch server runs. The default port
number is 9240.

Port

Specifies the index name for Elasticsearch, where the data is stored.Index name

Specifies the Elasticsearch user ID for authenticating Elasticsearchwhen
API Gateway communicates with it.

Username

Specifies the password of the Elasticsearch instance to be used for
establishing communication between API Gateway and Elasticsearch.

Password

Note:
You can provide the username and password for the Elasticsearch instances having
configured with Basic authentication. You can also provide HTTPS enabled Elasticsearch
instance.

5. Click Test.

This tests the communication channel betweenAPIGateway and the configured Elasticsearch.

6. Click Save to save the specified email configuration value.

You can click Cancel to revert to the last saved changes or to abandon all the changes if the
values are not saved.

Troubleshooting Tips: Elasticsearch Destination

The transaction logs are not stored in the external Elasticsearch

When I view the Analytics tab of an API, some of the transaction events are not displayed. For
example, when the default limit of the total fields of that index exceeds 50000, I see the following
error message in the Server Log:

type":"illegal_argument_exception","reason":"Limit of total fields [50000] in index
[gateway_default_analytics] has been exceeded .

Resolution:

Increase the limit of total fields for that index using the following PUT REST calls, depending on
the version of the API Gateway:

For 10.3 and lower versions, increase the limit using the following PUT REST call and sample
payload:

338 webMethods API Gateway Administration 10.11

2 Operating API Gateway

http://<Elasticsearch host:port>/gateway_default_analytics/<TYPE>/_settings

Sample Payload:
{
"index.mapping.total_fields.limit": 70000
}

For 10.5 and higher versions, increase the limit using the following PUT REST call and sample
payload:

http://<Elasticsearch host:port>/gateway_default_analytics_<TYPE>/_settings

Sample Payload:
{
"index.mapping.total_fields.limit": 70000
}

Configuring Events for Elasticsearch Destination
Pre-requisites:

You have to configure Elasticsearch to communicate with API Gateway before you select
Elasticsearch as a destination.

You have to configure Elasticsearch as a destination so that the event types and performance
metrics data can be published to Elasticsearch.

To configure Elasticsearch destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select Elasticsearch > Events to configure the event types for this destination.

4. InEvent types, select the type of events that youwantAPIGateway to publish to Elasticsearch.

The available event types are:

Error: Occurs each time an API invocation results in an error.

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement that
was set for the API.

5. Select Report performance data to publish performance metrics data.

webMethods API Gateway Administration 10.11 339

2 Operating API Gateway

6. In thePublish interval box, enter a time interval (inminutes) to specify howoftenAPIGateway
must publish performancemetrics. Enter a value from 1 through 60. The default is 60 minutes.

7. In the Audit log data section, select the required management area for which the audit logs
should be recorded in the Elasticsearch destination.

Audit logs provide a record of system transactions, events, and occurrences in API Gateway.
You can configure audit logging to show the following events:

API management

Application management

Team management

Group management

Package management

Promotion management

Approval management

Alias management

Analytics management

Policy management

Plan management

User management

Note:
By default, audit logging is disabled for all of the above-listed management areas in the
Elasticsearch destination.

8. Click Save.

Post-requisites:

After performing the event configurations, select Elasticsearch as a Destination in the Policy
Properties page for each policy, to publish the transaction and monitoring event logs for the
assigned policies.

Configuring Email Destination
You have to configure email as a destination to receive alert notifications. The alerts are sent to
the email ID specified in the Log Invocation, Monitor Performance, Monitor SLA, and Traffic
Optimization policies. Before configuring email as a destination, you must perform the following
email server configurations to establish a connection between API Gateway and the email server.

340 webMethods API Gateway Administration 10.11

2 Operating API Gateway

To configure Email destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select Email > Configuration.

4. Provide the following information:

DescriptionField

The server name or the IP address of the SMTP server that APIGateway
uses to send the messages.

SMTP server

The port that APIGateway uses to connect to the specified SMTP server.Port

The SSL encryption type that API Gateway uses when communicating
with an email server. Use one of the following transport layer security
options:

Transport layer
security

None. Default. Use an unsecure mode when API Gateway is
communicating with an email server. When you specify None, the
email server authenticates the email client using only the username
and password.

Explicit. Use explicit securitywhenAPIGateway is communicating
with an email server. With this type of security, API Gateway
initially establishes an unsecure connection with the email server
and then upgrades to the secure mode.

With explicit transport layer security, API Gateway communicates
with the email servers that support SSL encryption and also with
those that do not support SSL encryption. If the email server does
not support transport layer security, API Gateway disconnects the
connection which was established earlier with the email server.
You can then establish an unsecure connection by selecting None in
the Transport layer security field and enable the port.

Implicit. Use implicit security when API Gateway communicates
with an email server.With this type of security, APIGateway always
establishes an encrypted connection with the email server. Only
clients that support SSL are allowed to access API Gateway.

The truststore that API Gateway uses while sending the request to a
native API. Truststore is a repository that stores all the trusted public
certificates.

Truststore alias

webMethods API Gateway Administration 10.11 341

2 Operating API Gateway

DescriptionField

The character set that APIGateway uses to be recognized by the system.
Type the character set in the Default email charset field. By default,
API Gateway uses UTF-8 character set for the messages.

Default email
charset

The email address from which you want to send the alerts.From email

The email address to which youwant to send the test email. This email
address can be the same as the From email address.

Test email

The email address towhich youwant to send critical log entrymessages.
Typically, you would specify the e-mail address for the API Gateway
Administrator.

Internal email

The email address to which you want to send service failure message.
In a development environment, youmight direct thesemessages to the

Service email

developer. In a production environment, you might direct these
messages to the API Gateway Administrator.

5. Click Test.

This tests the communication channel between API Gateway and the configured email server.

6. Click Save to save the specified email configuration value.

You can click Cancel to revert to the last saved changes or to abandon all the changes if the
values are not saved.

Post-requisites:

After performing the server configurations, selectEmail as aDestination in the Policies properties
page for each policy, to receive the email alerts for the assigned policies.

Configuring Email Templates

API Gateway provides a default email template to send email alerts. You can compose and save
the subject line as well as the email content for reuse. You can also customize the template to suit
your needs.

To configure Email Templates

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select Email > Templates to configure the event templates.

342 webMethods API Gateway Administration 10.11

2 Operating API Gateway

4. Specify the following for the Log Invocation, Monitor Service Level Agreement, Monitor
Performance, and Traffic Optimization events:

Subject: The subject line of the email to be sent.

Content: By default, the template appears. You can customize the email content.

The template consists of the following default information for the Log Invocation event:

Note:
The @ character is a place holder and the values are automatically generated by the system.
For example, Status: @status appears as Status: SUCCESS in the email. You can use the
existing parameters multiple times, delete the parameter if the parameter is not required
from the available parameters, or use the corresponding optionalparameters in the template.
However, you cannot add new parameters.

The transaction event parameters from the API Gateway Metrics and
Event Notification engine are:
Runtime_Policy: @policy_action_name
API: @api_name
Version : @version
Operation or Resource_Name: @operation_resource_name
Native endpoint: @native_endpoint
Event generation time: @description
Consumer_Name: @consumer_name
Consumer_ID: @consumer_ID
Status: @status
Coorelation_ID:@correlationID
Error origin: @errorOrigin

The optional parameters that you can include in the template for the Log Invocation event are:
Native payload : @nativeResponsePayload
nativeRequestHeaders:@nativeRequestHeaders
nativeRequestPayload:@nativeRequestPayload
nativeResponseHeaders:@nativeResponseHeaders
nativeResponsePayload:@nativeResponsePayload
nativeHttpMethod:@nativeHttpMethod
nativeURL:@nativeURL
externalCalls:@externalCalls
sourceGatewayNode:@sourceGatewayNode

The template consists of the following default information for theMonitor Service Level
Agreement,Monitor Performance, and Traffic Optimization events:

Note:
You can use the existing parameters multiple times or delete the parameter if the parameter
is not required from the available parameters in the template. However, you cannot add
new parameters.

The monitor event parameters from the API Gateway Metrics and
Event Notification engine are:
Runtime_Policy: @policy_action_name
API: @api_name
Version : @version
Operation or Resource_Name: @operation_resource_name

webMethods API Gateway Administration 10.11 343

2 Operating API Gateway

Native endpoint: @native_endpoint
Action type: @actionType
Attribute: @attribute
Consumer_Name: @consumer_name
Consumer_ID: @consumer_ID
Alert Message: @alertMessage

Additionally, you can click to abandon the changes and revert to the default template.

You can click to review the changes before adding the changes to the email content.

5. Click Save.

Configuring SNMP Destination
You have to configure SNMP as a destination to send the events to a third-party SNMP server.

To configure SNMP destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select SNMP > Configuration.

4. Provide the following information:

DescriptionField

Specifies API Gateway to use the SNMP traps to capture events that
you can send to a third-party SNMP server.

Send TRAPs to 3rd
party SNMP server

Specifies target type of the SNMP server. The available options are:SNMP target type

User: To send the events information to a SNMP user.

Community: To send the events information to a group of SNMP
users that form a community.

By default, User is selected.

The host name or IP address of themachinewhere theCentraSite SNMP
or the third-party SNMP server is installed and running.

Hostname

Note:
The host name cannot be localhost.

The SNMP trap receiver port that is listening for SNMP requests and
packets.

Port

344 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

The protocol used by SNMP to send traps. The available options are:
TCP and UDP. By default, TCP is selected.

Transport

If you select UDP, ensure that the SNMP server is in the same subnet,
or configure the routers to get packets across subnet boundaries. The
maximumPDU sizewhen running in UDPmode is 64 Kbwhichmight
be restrictive when sending large request and response payloads for
Transaction Events.

If User is selected as the SNMP target type, then the Username field
specifies the SNMPv3user name to usewhen connecting to the receiver.

Username

If Community is selected as theSNMP target type, then theCommunity
name field specifies the name to be used to interact with the SNMP
receiver. This value must match the value that you set in the SNMP
receiver.

Specifieswhether an authorization key is required. You cannot edit the
authorization fields unless Use authorization option is selected. The
authorization fields are:

Use authorization

Password: The key to be used for authorization.

Protocol: The authorization protocol is MD5

Specifies whether a privacy (encryption) key is required. You cannot
edit the privacy fields unlessUse privacy option is selected. The privacy
fields are:

Use privacy

Password: The key to be used for privacy.

Protocol: The privacy protocol is DES.

5. Click Save to save the specified SNMP configuration value.

You can click Cancel to revert to the last saved changes or to abandon all the changes if the
values are not saved.

Post-requisites:

After performing the server configurations, selectSNMP as aDestination in the Policies properties
page for each policy, to receive the transaction events logs for the assigned policies.

Note:
Metrics is not supported for third-party SNMP server.

Configuring Events for SNMP Destination
Pre-requisites:

webMethods API Gateway Administration 10.11 345

2 Operating API Gateway

You have to configure a SNMP server to communicate with API Gateway before you select SNMP
as a destination for the events and metrics for publishing to a third-party SNMP server.

You have to configure SNMP as a destination so that the event types data can be published to a
third-party SNMP server.

To configure events for SNMP destination

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select SNMP > Events to configure the event types for this destination.

4. In Event types, select the type of events that you want API Gateway to publish to SNMP.

The available event types are:

Error: Occurs each time an API invocation results in an error.

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement that
was set for the API.

5. Click Save.

Post-requisites:

After configuring the events for SNMP destination, you need to select SNMP as a Destination in
the Policy Properties page of the API to publish the transaction andmonitoring events for the API.

Custom Destination
You can configure custom destinations to publish events, performance metrics, and audit logs to
a required destination.

You can configure the following four types of destinations using the custom destinations feature:

External endpoint

Use this type to configure an external REST endpoint URL as a destination.

webMethods IS service

Use this type to configure a webMethods IS service as a destination.

AWS Lambda

Use this type to configure an AmazonWeb Services (AWS) Lambda function as a destination.

346 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Messaging

Use this type to configure a message queue as a destination. Messaging systems can read the
message from the queue or topic and process it asynchronously.

Why Custom Destination?

API Gateway provides options to publish events and logs to preset destinations. But sometimes
customermight require the data to be published to a customdestination for further data processing
and for generating various reports as per their business requirements. The custom destination
feature offers solution to this requirement.

You can configure custom destinations to publish either or all of the following:

Design time events such as audit logs of API Gateway modules.

Error events and policy violation events of assets, and Performance metrics data.

Traffic monitoring payloads and alerts of an API

You can use custom destination feature to perform:

Condition based publishing

You can configure conditions based onwhichAPIGateway filters events to publish to a configured
destination. That is, only the events that satisfy your conditions are published to the given
destination. For example, you can configure a condition to publish the error events of an application,
say app1, to a destination; and another condition to publish the error events of another application,
app2, to a second destination and so on.

webMethods API Gateway Administration 10.11 347

2 Operating API Gateway

To configure a condition, you can use variables available in the variable framework, and specify
a matching value based on which the condition must be validated. You can specify multiple
conditions and configure whether the data to be published must satisfy all or any of the given
conditions. The use cases in this section explain the process of configuring conditions.

Steps to configure a custom destination

The following diagram outlines the steps involved in configuring a custom destination:

You can configure any number of custom destinations.

How Do I Publish Data to an External Endpoint using Custom Destination?

This use case explains how to publish data to a REST endpoint using custom destination.

The use case starts when you have data to be published and ends when you have successfully
configured a REST endpoint URL as a destination to publish the data.

Ensure you have the external endpoint URL to which you want to publish the data.

To publish data to an external endpoint

1. Expand the menu options icon , in the title bar, and select Administration.

348 webMethods API Gateway Administration 10.11

2 Operating API Gateway

2. Click Destinations.

3. Select Custom destinations from the left navigation pane.

4. Click + Add custom destination.

5. Provide the name of the custom destination in the Name field.

The name must be unique and must not be the name of any pre-defined API Gateway
destinations such as Elasticsearch.

6. To configure conditions that determine the data to be published in the specified destination,
perform the following steps in the Conditions section:

Select one of the following options in the Condition type field:

AND. To publish data that satisfies all your conditions.

OR. To publish data that satisfies one of your conditions.

Click + Add condition.

Provide the following details for your condition:

Variable. Name of the variable based on which you want to validate your condition.
This field supports the variables that are available in the Variable framework. For
details on the list of variables, see webMethods API Gateway User's Guide.

Operator. The operator to use to relate variable and the value.

Value. The value of the variable that must be matched to satisfy the condition.

Click Add.

The condition appears in the grid.

webMethods API Gateway Administration 10.11 349

2 Operating API Gateway

Repeat this process to add the required number of conditions. Click on a condition to edit it

and click next to a condition to delete it.

7. Select External endpoint in the Type field.

8. Provide the following information in the External Endpoint section, as required:

DescriptionProperty

Provide the REST endpoint of the destination to publish the
specified events. For example, http://localhost:9292/rest_endpoint/.

Endpoint URI

Specify the method exposed by the API.Method

Available values are: GET, POST, PUT, and DELETE.

Specifies the required SSL configuration details of the external
endpoint.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias. For details on
Keystore configuration, see “Keystore and Truststore” on
page 398.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore. For details
on Truststore configuration, see “Keystore and Truststore” on
page 398.

350 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionProperty

HTTP Connection Timeout (seconds). Specifies the time
interval (in seconds) after which a connection attempt to the
external endpoint URL times out.

Read Timeout (seconds). Specifies the time interval (in
seconds) after which a socket read attempt times out.

Specifies the path parameter you want to configure to your custom
extension.

Path Parameters

Provide the following information:

Path Parameter Name. Specifies the name of the path
parameter you want to configure in your custom extension.
This path parameter name should be present in the endpoint
URL enclosed with {} to be replaced at runtime. For example,
define external URL as http://host/authors/{id}/books and
provide id as path parameter name with the value you need to
populate at runtime.

Path Parameter Value. Specifies the value for the path
parameter specified.

9. Configure the custom properties of the custom extension as required.

For details about the custom extension properties and their descriptions, see webMethods API
Gateway User's Guide.

10. From theEvents section, select the data that youwant to publish to the configured destination.
The options available are:

Event types. Type of events to publish to the specified destination. The available event
types are:

webMethods API Gateway Administration 10.11 351

2 Operating API Gateway

Error: Occurs each time an API invocation results in an error.

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement
that was set for the API.

Performance metrics data. To publish to the specified destination.

In thePublish interval of performance metrics datafield, type a time interval (inminutes)
to specify how often API Gateway must publish performance metrics. Provide a value
from 1 through 60. The default is 60 minutes.

Events. API Gateway modules for which the audit logs to publish to the specified
destination.

11. Click Add.

The customdestination is created successfully and appears in theCustom destinations page.
The configured events are published in the specified destination.

Note:
To edit a custom destination, you can click the required custom destination, make changes

and click Update. To delete a custom destination, click next to required custom
destination. You cannot delete a custom destination that is associated with an API.

How Do I Publish API-specific Traffic Monitoring Data to a Custom Destination?

This use case explains how to publish traffic monitoring policy alerts to a custom destination of
the external endpoint type.

The use case starts when you have data to be an API for which you configure traffic monitoring
policy and ends when you have successfully selected a custom destination to publish the logs.

Ensure you have an API and a custom destination of the type external endpoint (with required
REST Endpoint URL configured).

To publish traffic monitoring logs to a custom destination

1. Click APIs on the title navigation bar.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Select Policies.

5. Click Traffic Monitoring and select a required policy.

6. Select the custom destination from the Destination section in the Policy properties pane.

352 webMethods API Gateway Administration 10.11

2 Operating API Gateway

7. Select any other required details such as Alert interval, Unit, Alert frequency, Alert message,
and so on.

8. Click Save.

The policy logs are published to the REST endpoint specified in the selected customdestination.

How Do I Publish Data to an Integration Server Service using Custom Destination?

This use case explains how to publish data to an IS service.

The use case starts when you have data to be published and ends when you have successfully
configured an IS service as a destination to publish the data.

Ensure you have the IS service details to which the data has to be published.

To publish data to a IS service

1. Expand the menu options icon , in the title bar, and select Administration.

2. Click Destinations.

3. Select Custom destinations from the left navigation pane.

The Custom destination page appears.

4. Provide the name of the custom destination in the Name field.

The name must be unique and must not be the name of any pre-defined API Gateway
destinations such as Elasticsearch.

5. To configure conditions that determine the data to be published in the specified destination,
perform the following steps in the Conditions section:

Select one of the following options in the Condition type field:

webMethods API Gateway Administration 10.11 353

2 Operating API Gateway

AND. To publish data that satisfies all your conditions.

OR. To publish data that satisfies one of your conditions.

Click + Add condition.

Provide the following details for your condition:

Variable. Name of the variable based on which you want to validate your condition.
This field supports the variables that are available in the Variable framework. For
details on the list of variables, see webMethods API Gateway User's Guide.

Operator. The operator to use to relate variable and the value.

Value. The value of the variable that must be matched to satisfy the condition.

Click Add.

The condition appears in the grid.

Repeat this process to add the required number of conditions. Click on a condition to edit it

and click next to a condition to delete it.

6. Select webMethods IS service in the Type field.

7. Provide the following information in the Invoke webMethods IS section, as required:

DescriptionProperty

Name of the webMethods IS service or IS server alias to which the
data has to be published.

webMethods IS Service

Note:
Only the local IS service is supported. You cannot specify a
remote IS service.

354 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionProperty

Authentication mode to invoke the IS service.Run As User

If this field is left blank the incoming credentials of the user,
identified by API Gateway, are used to authenticate and invoke the
IS service. You can also specify a particular user, you want API
Gateway to invoke the IS service.

Select this property to mark it true, if you want the input and the
output parameters to comply to the IS Spec present in

Comply to IS Spec

pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Click Add webMethods IS Service to add another IS service. Repeat this step to add the
required number of services.

8. From theEvents section, select the data that youwant to publish to the configured destination.
The options available are:

Event types. Type of events to publish to the specified destination. The available event
types are:

Error. Occurs each time an API invocation results in an error.

Lifecycle. Occurs each time API Gateway is started or shut down.

Policy violation. Occurs each time an API invocation violates the policy enforcement
that was set for the API.

Performance metrics data. To publish to the specified destination.

In the Publish interval of performance metrics data field, enter a time interval (in
minutes) to specify how often API Gateway must publish performance metrics. Provide a
value from 1 through 60. The default is 60 minutes.

webMethods API Gateway Administration 10.11 355

2 Operating API Gateway

Events. API Gateway modules for which the audit logs to publish to the specified
destination.

9. Click Add.

The customdestination is created successfully and appears in theCustom destinations page.
The configured events are published to the specified destination.

Note:
To edit a custom destination, you can click the required custom destination, make changes

and click Update. To delete a custom destination, click next to required custom
destination. You cannot delete a custom destination that is associated with an API.

How Do I Publish Data to an AWS Lambda Function using Custom Destination?

This use case explains how to publish data to an AWS Lambda function.

The use case starts when you have data to be published and ends when you have successfully
configured an AWS Lambda service as a destination to publish the data.

Ensure you have an active Lambda function. For details on how to create an AWS Lambda
function, see https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

Ensure you have configured AWS alias. For details on how to configure an AWS alias, see
“Configuring an AWS Alias” on page 389.

To publish data to an AWS Lambda function

1. Click APIs on the title navigation bar.

2. Expand the menu options icon , in the title bar, and select Administration.

3. Click Destinations.

4. Select Custom destinations from the left navigation pane.

The Custom destination page appears.

5. Provide the name of the custom destination in the Name field.

The name must be unique and must not be the name of any pre-defined API Gateway
destinations such as Elasticsearch.

6. To configure conditions that determine the data to be published in the specified destination,
perform the following steps in the Conditions section:

Select one of the following options in the Condition type field:

AND. To publish data that satisfies all your conditions.

OR. To publish data that satisfies one of your conditions.

356 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Click + Add condition.

Provide the following details for your condition:

Variable. Name of the variable based on which you want to validate your condition.
This field supports the variables that are available in the Variable framework. For
details on the list of variables, see webMethods API Gateway User's Guide.

Operator. The operator to use to relate variable and the value.

Value. The value of the variable that must be matched to satisfy the condition.

Click Add.

The condition appears in the grid.

Repeat this process to add the required number of conditions. Click on a condition to edit it

and click next to a condition to delete it.

7. Select AWS Lambda in the Type field.

8. Provide the following information in the AWS Lambda section, as required:

DescriptionProperty

Provide the AWS Lambda function name to which you want to
publish the configured data.

Function Name

Specify the AWS invocation type, asynchronous or synchronous.Invocation Type

Available options are:

RequestResponse (synchronous type)

Event (asynchronous type)

webMethods API Gateway Administration 10.11 357

2 Operating API Gateway

DescriptionProperty

Provide the AWS alias configured for the AWS account.AWS Alias

9. Configure the custom properties of the custom extension as required.

For details about the custom extension properties and their descriptions, see webMethods API
Gateway User's Guide.

10. From theEvents section, select the data that youwant to publish to the configured destination.
The options available are:

Event types. Type of events to publish to the specified destination. The available event
types are:

Error. Occurs each time an API invocation results in an error.

Lifecycle. Occurs each time API Gateway is started or shut down.

Policy violation. Occurs each time an API invocation violates the policy enforcement
that was set for the API.

Performance metrics data. To publish to the specified destination.

In thePublish interval of performance metrics datafield, type a time interval (inminutes)
to specify how often API Gateway must publish performance metrics. Provide a value
from 1 through 60. The default is 60 minutes.

Events. API Gateway modules for which the audit logs to publish to the specified
destination.

11. Click Add.

The customdestination is created successfully and appears in theCustom destinations page.
The configured events are published to the specified destination.

358 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Note:
To edit a custom destination, you can click the required custom destination, make changes

and click Update. To delete a custom destination, click next to required custom
destination. You cannot delete a custom destination that is associated with an API.

How Do I Publish Data to a Message Queue using Custom Destination?

This use case explains how to publish data to a message queue.

The use case starts when you have data to be published and ends when you have successfully
configured a message queue as a destination to publish the data.

Ensure you have a JMS/AMQP environment set upwith the required connection alias configured.
For details on setting up the JMS/AMQP setup, see “Messaging” on page 297.

To publish data to a message queue

1. Expand the menu options icon , in the title bar, and select Administration.

2. Click Destinations.

3. Select Custom destinations from the left navigation pane.

The Custom destination page appears.

4. Provide the name of the custom destination in the Name field.

The name must be unique and must not be the name of any pre-defined API Gateway
destinations such as Elasticsearch.

5. To configure conditions that determine the data to be published in the specified destination,
perform the following steps in the Conditions section:

Select one of the following options in the Condition type field:

AND. To publish data that satisfies all your conditions.

OR. To publish data that satisfies one of your conditions.

Click + Add condition.

Provide the following details for your condition:

Variable. Name of the variable based on which you want to validate your condition.
This field supports the variables that are available in the Variable framework. For
details on the list of variables, see webMethods API Gateway User's Guide.

Operator. The operator to use to relate variable and the value.

Value. The value of the variable that must be matched to satisfy the condition.

Click Add.

webMethods API Gateway Administration 10.11 359

2 Operating API Gateway

The condition appears in the grid.

Repeat this process to add the required number of conditions. Click on a condition to edit it

and click next to a condition to delete it.

6. Select Mesaging in the Type field.

7. Provide the following information in the Messaging section, as required:

DescriptionProperty

Name of the connection alias you have configured.Connection Alias Name

You can configure the connection alias under Administration >
Messaging section. For details on how to configure the connection
alias, see “Messaging” on page 297.

Specify the destination towhich the requestmessage is sent. A new
destination is created with this name to publish events.

Destination Name

Specify the destination type to which the request message is sent.Destination Type

Specify the destination to which the response message is sent.Reply To Name

Specify the destination type to which the response message is sent.Reply To Type

Select one of the following types:

QUEUE. Indicates that the response message is sent to a
particular queue.

TOPIC. Indicates that the responsemessage is sent to a particular
topic.

360 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionProperty

Provide a numeric value that specifies the expiration time (in
milliseconds) of the JMS or AMQP message.

Time to Live (ms)

If the time-to-live is specified as zero, expiration is set to zero, which
indicates that the message does not expire.

Defines the time in milliseconds for which API Gateway listens to
the Reply To Queue or Topic for the response message.

Time to Wait (ms)

The message delivery mode for the request message. This is the
delivery mode that web service clients must specify in the JMS or

Delivery Mode

AMQP message that serves as the request message for the web
service.

Select one of the following modes:

Non-Persistent. Indicates that the request message is not
persistent. The message might be lost if the JMS provider fails.

Persistent. Indicates that the request message should be
persistent. The message is not lost if the JMS provider fails.

8. Configure the custom properties of the custom extension as required.

For details on the custom extension properties and their description, see webMethods API
Gateway User's Guide.

9. From theEvents section, select the data that youwant to publish to the configured destination.
The options available are:

Event types. Type of events to publish to the specified destination. The available event
types are:

webMethods API Gateway Administration 10.11 361

2 Operating API Gateway

Error: Occurs each time an API invocation results in an error.

Lifecycle: Occurs each time API Gateway is started or shut down.

Policy violation: Occurs each time an API invocation violates the policy enforcement
that was set for the API.

Performance metrics data. To publish to the specified destination.

In thePublish interval of performance metrics datafield, type a time interval (inminutes)
to specify how often API Gateway must publish performance metrics. Provide a value
from 1 through 60. The default is 60 minutes.

Events. API Gateway modules for which the audit logs to publish to the specified
destination.

10. Click Add.

The customdestination is created successfully and appears in theCustom destinations page.
The configured events are published to the specified destination.

Note:
To edit a custom destination, you can click the required custom destination, make changes

and click Update. To delete a custom destination, click next to required custom
destination. You cannot delete a custom destination that is associated with an API.

Troubleshooting Tips: API Gateway - API Portal Integration

I see an obsolete API Portal destination reference in a published API

An old API Portal destination reference is associated to all APIs. This old reference is not available
anymore, however, it is still associated to all APIs. Hence, all APIs have two associated API Portal
destinations, one correct and the other obsolete.

Remove the obsolete reference as follows:

1. Retrieve API details using the following GET REST call:
http://localhost:5555/rest/apigateway/apis/apiId

2. Retrieve associated portal information using the following GET REST call:
http://localhost:5555/rest/apigateway/portalGateways

3. Retrieve the API Gateway to API Portal association using the following GET REST call:
http://localhost:9240/gateway_default/deploymentmap/_search

For every API, this displays two entries; one for the actual portal reference and another for the
stale reference. You can delete the stale reference documents from the datastore.

You can delete the stale reference by using the REST request as follows:

362 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DELETE http://localhost:9240/gateway_default/deploymentmap/<id>

The id you provide here is the id corresponding to the stale reference details you see in the response
for Step 3.

I do not see a subscription object in API Portal as well as API Gateway when I
subscribe for a plan in API Portal

If you do not see a subscription object in API Portal or API Gateway when you subscribe for a
plan in API Portal, it might be due to one of the following reasons:

Pending approval for the approval flow process.

Resolution: Go to User menu > Pending Requests. Accept any requests that are pending for
approval.

API Gateway not reachable from API Portal through the value configured in the destination.

Resolution: Go toUser menu >Administration >Destinations >API Portal >Configuration.
Verify the endpoint configurations. Provide correct credentials and ensure that the hosts are
reachable using the Test option.

General connection issues between API Gateway and API Portal.

Resolution: Perform the following general connection validation checks:

Ensure that the API Gateway host is reachable fromAPI Portal and API Portal is reachable
from API Gateway host.

Ensure that the ports are open and accessible.

Ensure that in case of a Docker setup, the Gateway endpoint is configured with the port
exposed from the host and not the actual Docker port.

I cannot publish an API to API Portal

If publishing APIs to API Portal fails, it might due to incorrect destination configuration for API
Portal.

Resolution: Go to User menu > Administration > Destinations > API Portal. Ensure that all the
required destination configuration details are provided correctly.

If you make any changes you must republish the configuration for the changes to take effect.

I see stale applications in API Portal

When a consumer subscribes to a plan or a package, an application is created both in API Gateway
and API Portal. By mistake, when you delete an application from Gateway, the application in API
Portal becomes stale.

To remove the stale applications from API Portal, unpublish the package associated with the
application and republish it. This triggers the cleanup of the stale application in API Portal.

webMethods API Gateway Administration 10.11 363

2 Operating API Gateway

Audit Logging

The audit logging feature of API Gateway provides audit information for different categories of
system transactions, events, and occurrences of specific events (for example, login attempts) over
a period of time. You can use audit logs to view a detailed record of various auditable events that
occurred on the API Gateway objects, user login and logout operations, and identify the users
who are responsible for the changes. You can configure which audit events to log for a specific
destination based on your auditing requirements.

You can configure API Gateway to log the auditable events for following destinations:

API Gateway

Database

Digital Event Services (DES)

Elasticsearch

The following auditable events can be configured to write to the API Gateway audit logs:

API management events

API management consists of the following events:

Creation, modification, and deletion of an API object.

Activation and deactivation of an API.

Approval management events

Approval management consists of the following events:

Approval and rejection of a request to create, register, and modify an application.

Approval and rejection of a request to subscribe a package in API Portal.

Application management events

Application management consists of the following events:

Creation, modification, and deletion of an Application object.

Alias management events

Alias management consists of the following events:

Creation, modification, and deletion of an Alias object.

Team management events

Team management consists of the following events:

Creation, modification, and deletion of teams.

Analytics management events

364 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Analytics management consists of the following events:

Archiving, purging, and restoring of analytics data in the database.

Group management events

Group management consists of the following events:

Creation, modification, and deletion of a Group object.

Policy management

Policy management consists of the following events:

Creation, modification, and deletion of a global Policy object.

Creation, modification, and deletion of an API level Policy object.

Activation and deactivation of a global policy.

Activation and deactivation of an API level policy.

Package management events

Package management consists of the following events:

Creation, modification, and deletion of a Package object.

Plan management events

Plan management consists of the following events:

Creation, modification, and deletion of a Plan object.

Promotion management events

Promotion management consists of the following events:

Creation, modification, and deletion of a Stage object.

Promotion of an API stage.

Rollback operation of an API stage.

User management events

User management consists of the following events:

A user logs in or fails to log in to API Gateway.

A user logs out of API Gateway.

Creation, modification, and deletion of a User object.

API Gateway writes the audit logging data to the Audit logs dashboard (in the API Gateway user
interface, go to Analytics > Audit logs). You can view and download audit logs.

webMethods API Gateway Administration 10.11 365

2 Operating API Gateway

Best Practices for API Gateway Audit Logging

API Gateway's audit logging feature has been implemented on an event-driven approach. By
default, the API Gateway destination is enabled to log the auditable events for all areas of
management, such asAPIs, policies, users, and so on. As a best practice, SoftwareAG recommends
you to enable audit logging for the required management areas in other supported destinations:
Database, Digital Events, and Elasticsearch. This practice is especially important when you want
to provide the audit log data to external sources for analytics and anomaly detections.

Configuring Audit Logs
You have to configure which events you need to audit for a destination so that API Gateway logs
the auditable events data to the specific destination. You can configure API Gateway to log the
auditable events data to the following destinations:

API Gateway

Database

Digital Event Services (DES)

Elasticsearch

Custom Destination

Note:
You can configure custom destination to publish data to different components. For details
on custom destinations, see “Custom Destination” on page 346.

The following events are available for audit log reports:

API management

Approval management

Application management

Alias management

Team management

Analytics management

Group management

Policy management

Package management

Plan management

Promotion management

User management

366 webMethods API Gateway Administration 10.11

2 Operating API Gateway

By default, all of the auditable events are logged into the API Gateway destination.

To configure audit logs

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Destinations.

3. Select the required destination to log the auditable events.

4. In the Audit log data section, select the required management areas to monitor, audit, and
report the data.

5. Click Save.

Viewing Audit Logs
You can use the audit log reports to view the data of auditable events.

To view audit logs

1. Expand the menu options icon , in the title bar, and select Analytics.

The dashboard displays the API Gateway-wide analytics based on the metrics monitored.

2. Select Audit logs.

3. In the drop-down list, choose the time interval inwhich youwant to view the data of auditable
events.

The available options are:

Last 2 days

Last 7 days

Last 30 days

Last 60 days

Last 90 days

Custom

4. If you select Custom, type the From Date and To Date to specify the time interval that best
suits your needs.

webMethods API Gateway Administration 10.11 367

2 Operating API Gateway

5. Click Apply filter to filter the analytics based on the time interval chosen.

You can view logs for API Gateway auditable events in the Audit logs dashboard.

You can also download the API Gateway audit log in a text file and view the auditable events
data.

Filtering Audit Log Results

In general, the number of audit logs displayed as a result of Audit log filter is large. Hence, you
can refine the results using the following steps to view the required records.

You can filter the audit log results based on filters such creation date, event type, payload, and so on.
For example, you filter audit logs for the last 90 days, and the number of audit logs for the filter
is large, you can filter the log records for a given creation date, event type, or payload.

To filter audit logs

1. Click + Add filter above the audit logs grid.

Logs that are filtered based on the given criteria appears.

2. Provide the following:

Field - Field based on which the records must be filtered.

Operator - Conditional operator applied for the filters.

Value - Search keywords for the given filters.

3. Click Save.

Audit logs that match your filter criteria appear.

Downloading Audit Logs
You can download the audit log reports to examine the data of auditable events.

To download audit logs

1. Expand the menu options icon , in the title bar, and select Analytics.

The dashboard displays the API Gateway-wide analytics based on the metrics monitored.

2. Select Audit logs.

3. In the drop-down list, choose the time interval inwhich youwant to view the data of auditable
events.

368 webMethods API Gateway Administration 10.11

2 Operating API Gateway

4. If you select Custom, type the From Date and To Date to specify the time interval that best
suits your needs.

5. Click Download to download and view the detailed report.

API Gateway generates a compressed file of the audit logs and downloads it to the default
download folder configured in your browser..

The compressed file is named auditlogs_N.zip. The compressed file contains one or more
simple text files, where each text file contains 10,000 audit log records.

API Gateway audit log are listed below.

DetailColumn

Unique identifier of the event that produced the audit record.id

Type of event (audit log) that produced the record.eventType

Date and time the event entry was written to the log.creationDate

Time in milliseconds when the event was generated in API
Gateway.

event_create_ts

Type of object (for example, User, API, Application, and so on)
on which the event occurred.

objectType

Type of action (for example, Create, Update, Delete, and so on)
that was performed on the object.

action

Unique identifier of the API Gateway object on which the action
was performed.

object

Message that describes the event that occurred.message

Name of a user on the API Gateway instance that triggered the
event.

user

The host name of themachine onwhich theAPIGateway instance
is running.

sourceMachine

IP address of the machine on which the API Gateway instance
is running.

clientIPAddress

The request payload defined for the event.payload

Current status of the event (Success or Failure).status

webMethods API Gateway Administration 10.11 369

2 Operating API Gateway

System Settings

APIGateway user interface provides capability to configure system-level configuration parameters
and communicate these changes across nodes in the cluster. You must have the API Gateway's
manage system settings functional privilege assigned to configure the following settings:

Dashboard setting: configure a port on which the dashboard runs.

System setting: configure the API Gateway time out interval.

Logging setting: modify the logging configuration.

SAML SSO: configure the SAML settings for single sign-on.

Note:
For these configuration to take effect you have to restart API Gateway instance on every node
after modifying any of these settings.

Modifying API Gateway Configuration Parameters
You can modify the port on which the dashboard runs, the API Gateway timeout interval, and
the logging setting for API Gateway in this section.

Note:
For these modifications to take effect you must restart the API Gateway instance on each node.

To modify API Gateway configuration parameters

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select System Settings > Configuration.

3. To modify the dashboard details, provide the Kibana hostname and port number in the Host
and Port fields in the Dashboard setting section.

You have to provide a port that is not in use in the system. If the provided port is already used
by other system then the dashboard does not start.

4. To change the API Gateway timeout interval, type the required value in the API Gateway
timeout (minutes) field in the System setting section.

5. To change the logging configuration, you can enable the logs based on theLog level by selecting
the required log level.

The available log levels are ERROR, WARN, INFO, DEBUG, TRACE.

This changes the logging configuration for the UI logs.

370 webMethods API Gateway Administration 10.11

2 Operating API Gateway

6. Select Store log in server to save the logs in the server. Select one of the following modes:

Store at interval: Provide the log storage interval. Stores the logs in the server at the
specified time interval.

Burst mode: Store the logs for every event.

7. Click Save.

SAML SSO
Single sign-on (SSO) is a user authentication service that permits a user to use one set of login
credentials to access multiple applications and service providers. In addition to the convenient
factor, implementing SSO makes user logins more secure as it uses SAML protocol for
communication.

Security Assertion Markup Language (SAML) is an open standard that allows identity providers
to pass authorization credentials to service providers. SAML uses Extensible Markup Language
(XML) for standardized communication between the identity providers and service providers.
SAMLprovides a solution to allow your identity provider and service providers to exist separately
from each other, which centralizes user management and provides access to services. In this
case,API Gateway is the service provider.

Identity Provider (IdP) - Performs authentication and passes the users's identity to the service
provider for authorization.

Service Provider - Trusts the identity provider and authorizes the given user to access the
requested resource.

SAML Assertion

A SAML assertion is the XML document that the IdP sends to the service provider (that is API
Gateway). It informs the API Gateway that a user has logged in. It also provides the necessary

webMethods API Gateway Administration 10.11 371

2 Operating API Gateway

information for the API Gateway to confirm the user's identity and lists the groups to which the
logged user belongs to.

In API Gateway, a user is created and a group gets associated to the created user based on the
SAML assertion.

User Creation

In order to create a user you have to map the following attributes from the SAML assertion:

Login ID

First name

Last name

Email address

The attributes to be considered in the SAML assertion for the First Name, Last Name and Email
address can be configured and value for the corresponding attributes are used in the creation of
the user.

In the SAML assertion, theNameID element displays login ID of the user.

For example, as shown in the following sample, alice is the login ID.
<Subject>

<NameID>alice</NameID>
<SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
<SubjectConfirmationData InResponseTo="a57d9j2i936ae5de2icdedg73jce390"

NotOnOrAfter="2021-02-19T12:51:28.106Z"

Recipient="https://localhost:9073/apigatewayui/saml/SSO"
/>

</SubjectConfirmation>
</Subject>

The first name, last name, and email address attributes in the SAML assertion can be configured
and their corresponding values are used in user creation.

Group Association

Once the user is created, the user needs to be assigned to a group in API Gateway.

In the SAML assertions, under the AttributeStatement element, if the AttributeName has any of
the following values, then theAttributeValue element displays the group name towhich the login

ID is associated in the IdP. This attribute value is used by API Gateway to map the user to the
corresponding groups.

http://schemas.microsoft.com/ws/2008/06/identity/claims/role

http://schemas.xmlsoap.org/claims/Group

Example 1:
<AttributeStatement>

372 webMethods API Gateway Administration 10.11

2 Operating API Gateway

<Attribute
Name="http://schemas.microsoft.com/ws/2008/06/identity/claims/role">

<AttributeValue>group1</AttributeValue>
</Attribute>

</AttributeStatement>

In the example 1, based on the SAML assertion, the user is associated to the group called group1
in the IdP. Later, API Gateway uses this value group1 to map the user to the corresponding group.

Example 2 :
<AttributeStatement>

<Attribute
Name="http://schemas.microsoft.com/ws/2008/06/identity/claims/role">

<AttributeValue>group2</AttributeValue>
</Attribute>

</AttributeStatement>

In the example 2, based on the SAML assertion, the user is associated to the group called group2
in the IdP. Later, API Gateway uses this value group2 to map the user to the corresponding group.

Example 3:
<saml2:AttributeStatement xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">
<saml2:Attribute Name="http://schemas.xmlsoap.org/claims/Group"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified">
<saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">Everyone</saml2:AttributeValue>
<saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">group1</saml2:AttributeValue>
<saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="xs:string">group2</saml2:AttributeValue>
</saml2:Attribute>

</saml2:AttributeStatement>

In the example 3, based on the SAML assertion, the user is associated to the groups called
Everyone,group1, and group2 in the IdP. Later, API Gateway uses these values Everyone,group1, and
group2 to map the user to the corresponding groups.

The SAML assertion is populated dynamically for each timewhen the user logs into API Gateway
using SSO. If the user is mapped to a different group in the IdP or if the user is removed from the
IdP during the subsequent login, then API Gateway maps the user to a group based on the SAML
assertion of that subsequent session. This is to ensure that themapping is always in synchronization
between IdP and API Gateway.

How to enable SAML SSO in API Gateway?

This use case explains the steps involved in enabling SSO for API Gateway using the SAML
protocol.

The use case starts when you configure the SAML settings for SSO inAPIGateway and endswhen
you log into API Gateway using SSO.

webMethods API Gateway Administration 10.11 373

2 Operating API Gateway

Prerequisite

Ensure that you have:

Manage user administration privilege.

Provided the service provider SSOURL to the IdP administrator. Based on the service provider
SSO URL, the IdP administrator generates the metadata.

Ensure the service provider SSO URL is in the given http(s)://hostname:portnumber/
apigatewayui/saml/SSO format.

Note:

For a standalone environment, replace the hostname and portnumberwith the hostname
and port number that is used to access the API Gateway.
For a cluster environment, replace the hostname and portnumberwith the hostname and
port number of the load balancer.

The metadata URL or file handy that was shared to you by the IdP administrator.

Configured the keystore through which SSO communication is established between API
Gateway and IdP.

To configure SAML settings for single sign-on

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select System Settings > SAML SSO.

The Prerequisite page appears.

3. Ensure that you have performed all the pre-requisite steps.

4. Click Next.

374 webMethods API Gateway Administration 10.11

2 Operating API Gateway

The Connect page appears.

5. Provide the SSOURL to which youwant to redirect the browser in the Service provider SSO
URL field.

Note:
By default, the Service provider SSO URL field is populated with the load balancer's web
application URL that you have specified in the Administration > General > Loadbalancer
> Web application URLs section. If you have not specified the load balancer's web
application URL, then the Service provider SSO URL field is populated with
http(s)://hostname : portnumber through which you access the API Gateway instance.

6. Provide the API Gateway's entity ID in the Service provider entity ID (URI) field.

7. Provide the following information in the Identity provider configuration URL section:

Click Import configuration from URL to import themetadata file that the IdP administrator
shared with you using the URL.

Provide the metadata file's URL in the URL field.

Click Import configuration from file to import themetadata file that the IdP administrator
shared with you.

Provide the location where you have saved the metadata file in the File field.

8. Provide the following information in the Keystore configuration section:

DescriptionField

Select a keystore through which you can establish SSO communication
between the IdP and API Gateway.

Select a
Keystore alias

webMethods API Gateway Administration 10.11 375

2 Operating API Gateway

DescriptionField

for
signing/encryption

Note:
You can create the keystore from Administration > Security >
Keystore/Truststore section. For details on how to configure keystore,
see “Configuring Keystore Information” on page 399.

Click this if you use the same keystore alias for signing and encryption.Use same key for
signing and
encryption Select the keystore that is used for both signing and encryption from the

Key alias drop-down menu.

Click this if you use two different key alias for signing and encryption.Use different
keys for signing
and encryption Select the keystore that is used for signing from the Sign key alias

drop-down menu.

Select the keystore that is used for encryption from the Encrypt key alias
drop-down menu.

9. Provide the following information in the Keystore configuration section:

a. Select Send signed SAML auth request, if you want to send out the signed SAML
authorization request to the Identity Provider (IdP).

b. Select Require signed assertion from IDP to receive a signed assertion from IdP.

10. Click Save and try.

The API Gateway Login page appears with Log in with SSO link.

376 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Click the Log in with SSO link to validate the SSO configuration. In this use case, as you have
configured the OKTA as IdP, OKTA login page appears.

Note:
You can also skip this validation part and proceed with Group mapping page.

webMethods API Gateway Administration 10.11 377

2 Operating API Gateway

11. Once you successfully log into API Gateway using SSO, expand the menu options icon ,
in the title bar, and select Administration > System Settings > SAML SSO .

12. Click Edit to update the SAML SSO configuration with group mapping and user mapping
details.

The Connect page appears with the existing configuration.

13. Click Next.

The Group mapping page appears.

14. Provide the attribute name in the SAML assertion that you want to map to the API Gateway
group in the SAML attribute used in mapping API Gateway group field.

By default, API Gateway supports the following two attribute names in the SAML assertion:

378 webMethods API Gateway Administration 10.11

2 Operating API Gateway

http://schemas.microsoft.com/ws/2008/06/identity/claims/role

http://schemas.xmlsoap.org/claims/Group

In addition, to the above two attribute names, if the SAML assertion hasmore attribute names,
you can provide their attribute names in the SAML attribute used in mapping API Gateway
group field and click + Add.

For example: http://customgroup .

Sample SAML assertion for group mapping
<AttributeStatement>

<saml2:Attribute Name="http://customgroup"

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified"
>

<saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xs:string"
>ManageApplicationsGroup</saml2:AttributeValue>

</saml2:Attribute>
</AttributeStatement>

In the sample SAML assertion, the user is associated to a new attribute name called http://
customgroup and group calledManageApplicationsGroup in the IdP.

As shown in the image, the new attribute name http://customgroup specified in the SAML
assertion is added to the API Gateway so that its corresponding attribute value
ManageApplicationsGroup specified in the SAML assertion can be mapped to an API Gateway
group.

webMethods API Gateway Administration 10.11 379

2 Operating API Gateway

You can edit or delete the attribute name by clicking the or icons respectively. For details
about what is SAML assertion, see “SAML Assertion” on page 371.

15. Select the API Gateway group to which you want to map the logged in user from the API
Gateway group drop-down menu.

For example select API-Gateway-Providers.

16. Provide the attribute value from the SAML assertion to which group the logged in user was
mapped at the IdP in the SAML attribute value from the assertion field.

For example based on the sample SAML assertion, provide the user group as
ManageApplicationsGroup

17. Click + Add to map the IdP group of the logged in user specified in SAML assertion to the
selected API Gateway group.

380 webMethods API Gateway Administration 10.11

2 Operating API Gateway

As shown in the image, the logged in user associated with the ManageApplicationsGroup in
IdP is mapped to the API-Gateway-Providers group in API Gateway.

You can add multiple group mapping. You can edit or delete the group mapping by clicking

the or icons respectively. For details on how to map the SAML assertion group to the
API Gateway group, see “Precedence in Group Mapping” on page 383

18. Click Next.

The User mapping page appears.

19. Select the user profile attribute name in API Gateway from the API Gateway user profile
attributes drop-down menu.

For example: Select the user profile attribute name as First name.

Sample SAML assertion for user mapping
<AttributeStatement>

<saml2:Attribute Name=fname

NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified"
>

webMethods API Gateway Administration 10.11 381

2 Operating API Gateway

<saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="xs:string"
>Joe</saml2:AttributeValue>

</saml2:Attribute>
</AttributeStatement>

In the sample SAML assertion, the user is associated to an attribute name called fname and
attribute value as Joe in the IdP.

As shown in the image, the attribute name fname specified in the SAML assertion is mapped
to user profile attribute called First name in API Gateway.

20. Provide the user attribute name from the SAML assertion of the logged in user in the SAML
attribute value from the assertion field.

For example: Provide the user profile attribute name as fname.

21. Click + Add tomap the IdP user profile attribute value of the logged in user specified in SAML
assertion to the selected API Gateway 's user profile attribute.

As shown in the image, the attribute name fname specified in the SAML assertion is mapped
to user profile attribute called First name in API Gateway.

You can add multiple user profile attribute mapping. You can edit or delete the user mapping

by clicking the or icons respectively.

22. Click Next.

The Summary page appears.

382 webMethods API Gateway Administration 10.11

2 Operating API Gateway

23. Review the SSO configuration, groupmapping, andusermapping information in theSummary
page.

By default, the Enable SAML authentication toggle button is set on. If you want to disable
the SAML authentication, set the toggle button off.

24. If you want to enable SSO login by default, select the Enforce SSO login by default check
box.

If you have enabled SSO login by default, you will be directed to the SSO login page directly.

25. Click Save to save the group and user mapping details.

Precedence in Group Mapping

This use case explains the precedence involved inmapping the logged in SSOusers toAPIGateway
groups based on the SAML assertion.

Precedence order in mapping the IdP group in the SAML assertion to API Gateway group

1. APIGateway checkswhether a groupmapping exists in the SSO -GroupMapping configuration
for the group in the SAML assertion. If the groupmapping exists, then the user is automatically
mapped to target group specified in the SSO.

2. If the group mapping does not exist in the SSO - Group Mapping configuration, then API
Gateway checks whether the group exists in the API Gateway. If the group exists in the API
Gateway, then the user is mapped to that group.

3. If there is no group specified in the SSO - GroupMapping configuration, and if the group does
not exist in API Gateway, then the user is mapped to the default, Everybody group.

webMethods API Gateway Administration 10.11 383

2 Operating API Gateway

Troubleshoot tips for SSO configuration

SolutionSymptomIssue

Make sure the Service
provider identity in API

The audience URL in the
SAML assertion does not
match with the Service

org.opensaml.common.SAMLException:
Local entity is not the intended
audience of the assertion in at least
one AudienceRestriction.

Gateway matches with the
audience URL.provider identity in API

Gateway.

In such case, you can login into
API Gateway using the

If you have enabled Enforce SSO
login by default, and if you have

http(s)://hostname:provided incorrect information
portnumber/apigatewayui/while configuring SAML SSO, you
login?usesso=false URL andcannot update the SAML SSO
update the SSO configuration
with correct details.

configuration in API Gateway as
you are redirected to the SSOLogin
page directly.

Note:
If there is any other exception, check the sag_osgi.log at <SAGInstallDir>\profiles\IS_default\
logs directory to trouble shoot.

Limitation

When you log into API Gateway using SSO, both the IdP and API Gateway sessions are created.
But when you log out from API Gateway, only the API Gateway session gets terminated, the IdP
session gets terminated based on its session timeout configuration. API Gateway does not support
Single Logout (SLO).

Configuring External Accounts

APIGateway provides capability to add and configure external accounts such as service registries,
AWS accounts, Integration Server, and service mesh instances and communicate these changes
across nodes in the cluster. An API Gateway administrator can add and remove the configured
external accounts.

Service registry

The Service registry section allows you to configure service registries that API Gateway could use.

A service registry is essentially a catalog of services. Applications that expose services can register
their serviceswith one ormore service registries. Applications that need to consume a service look
up a service registry and obtain the address of an application server that provides the service.
Using service registrieswithAPIGateway adds resilience, scalability, and security to the application
stack.

API Gateway uses service registries in the following ways:

384 webMethods API Gateway Administration 10.11

2 Operating API Gateway

You can publish APIs defined in API Gateway to service registries. This enables other
applications to use the service registry to dynamically locate an API Gateway instance that
provides that API.

You can set an API Gateway route to a service registry endpoint. This enables API Gateway
to use the service registry to dynamically locate an application instance and route the request
to it.

Service Registries supported by API Gateway

API Gateway currently supports the following service registries.

Eureka

Eureka is a REST-based service for locating services for the purpose of load balancing and
failover of middle-tier servers. It has been primarily designed for applications in the AWS
cloud.

Service Consul

Service Consul is a tool for discovering and configuring services in IT infrastructure.

AWS configuration

TheAWS configuration section allows you to configureAWS aliases that are used in custompolicy
extension and custom destination sections.

Integration Server

The Integration server section allows you to configure the details of Integration Server instances
required for API first implementation.

Service mesh

The Service mesh section allows you to configure the details of service mesh environment. To
discover the services and deploy AppMesh, you must configure API Gateway to connect to the
servicemesh environmentwhere the services reside. For information on configuring servicemesh,
see the sectionConfigureAPIGateway toConnect to a ServiceMeshEnvironment in thewebMethods
API Gateway User's Guide.

Adding a Service Registry

Youmust have the Manage service registries functional privilege assigned to perform this task.

You have to add and configure a service registry in API Gateway before you reference it in an
API. In cluster deployments of API Gateway, you can add a service registry on any API Gateway
instance—other API Gateway instances are synced automatically.

To add and configure a service registry

webMethods API Gateway Administration 10.11 385

2 Operating API Gateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select External accounts > Service Registry.

3. Click Add service registry.

DescriptionField

Name used by API Gateway for the instance of service registry that
you are adding.

Name

Description of the instance of service registry.Description

Type of service registry. Available values are: SERVICE_CONSUL
and EUREKA.

Type

Endpoint configuration

The base URI for the service registry. This should include the IP
address or the FQDN and the port on which the service registry
accepts requests.

Endpoint URI

The relative path of the service registry discovery service. API
Gateway appends this path (and the service ID) to the Endpoint
URI to generate a service discovery request for the service registry.

Service discovery path

Note:
Aservice registry discovery service returns the address (IP address
or FQDN) of an application instance for the requested service ID.

The relative path of the service registry registration service. API
Gateway appends this path (and the service ID) to the Endpoint
URI to generate a service registration request for the service registry.

Service registration
path

Note:
API Gateway uses this service to register (publish) a service with
the service registry.

The relative path of the service registry de-registration service. API
Gateway appends this path (and the service ID) to the Endpoint

Service de-registration
path

URI to generate a service de-registration request for the service
registry.

Note:
APIGateway uses this service to de-register (unpublish) a service
with the service registry.

Specifies the time (in seconds) after which a connection attempt
times out while communicating with the service registry.

Connection timeout
(seconds)

386 webMethods API Gateway Administration 10.11

2 Operating API Gateway

DescriptionField

The precedence of the Connection Timeout configuration is as
follows:

a. If you specify a value for theConnection timeoutfield in routing
endpoint alias, then the Connection timeout value specified in
the Endpoint alias section takes precedence over the timeout
values defined at the API level and the global level.

b. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, thenAPIGatewayuses the value specified
in the Connection timeout field in the routing protocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

c. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

d. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time (in seconds) after which a socket read attempt
times out while communicating with the service registry.

Read timeout
(seconds)

The precedence of the Read Timeout configuration is as follows:

a. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

b. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in the
Read Timeout field in the routing protocol processing step of
an API. The Read Timeout value specified at an API level takes
precedence over the global configuration.

c. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, thenAPI Gateway uses
the value specified in this pg.endpoint.readTimeout property.

d. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

SSL configuration

webMethods API Gateway Administration 10.11 387

2 Operating API Gateway

DescriptionField

List of keystores that are configured in API Gateway. This is used
when the service registry is SSL enabled.

Keystore alias

Lists all available keystores. If you have not configured an Integration
Server keystore the list is empty.

Lists all the private keys that are present in the selected keystore
alias. This is used when the service registry is SSL enabled.

Key alias

A truststore contains the certificates that are trusted byAPIGateway.
If the service registry is SSL enabled its certificate should be added
to the selected truststore.

Truststore alias

Basic authentication details

The basic authentication username.Username

The basic authentication password.Password

Other configuration

(This setting is applicable only to Eureka service registries.) The interval
at which the API Gateway sends a heartbeat message to the Eureka

Heartbeat interval

server to renew its leases. Eureka expects clients, such as API
Gateway, to renew the lease by sending heartbeats as per the
heartbeat interval configured in the Eureka server.

Headers

An HTTP header key that is included in all the HTTP requests sent
to the service registry.

Key

A value for the given HTTP header key.Value

4. Click Add.

The service registry is added to API Gateway.

Removing a Service Registry
You cannot remove a service registry if any API has been published to it.

You can remove only the non-default service registries that are not used by any API.

You must have the Manage service registries functional privilege assigned to perform this
task.

In cluster deployments of API Gateway, you can remove the service registry on any API Gateway
instance—other API Gateway instances are synced automatically.

388 webMethods API Gateway Administration 10.11

2 Operating API Gateway

To remove a service registry

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select External accounts > Service Registry.

3. Click in the row that has the service registry that you want to remove.

4. Click Yes to confirm.

The service registry is removed from API Gateway.

Configuring an AWS Alias
You need to configure an AWS alias when you:

Use a custom extension that calls an AWS Lamdba function from within a runtime policy
enforcement flow of API Gateway API.

Publish data to an AWS Lambda function using custom destination.

To configure an AWS alias

1. On the title bar, expand the menu options icon and select Administration.

2. Click External accounts > AWS configuration.

3. Click Add new AWS account.

4. In the Add AWS configuration section, provide the following information

a. Name. Provide the AWS alias name.

b. Description. Optional. Provide a description for the alias.

c. Region. Provide the AWS account region where the Lambda function is running or
deployed.

For details on how to create an AWS Lambda function, see https://docs.aws.amazon.com/
lambda/latest/dg/getting-started.html

d. Access key ID. Provide the access key ID of the AWS account where the Lambda function
is running.

webMethods API Gateway Administration 10.11 389

2 Operating API Gateway

https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

e. Secret access key. Provide the secret access key of the AWS account where the Lambda
function is running.

5. Click Add.

This creates the AWS alias and lists in the AWS configuration page.

Configuring Integration Server Instance for API Implementation
To implement an API to Integration Server, you must provide the details of the Integration Server
instances in API Gateway.

To configure an Integration Server instance

1. Expand the menu options icon , in the title bar, and select Administration.

2. Click External accounts.

3. Click Integration Servers.

The list of configured Integration server instances appears.

4. Click Add new Integration Server.

The options to add new Integration Server details appear.

5. Provide the following details:

DescriptionField

Name for the Integration Server instance being added.Name

Description for the configuration.Description

URL of the Integration Server.Integration Server URL

User credentials required to access the Integration Server
instance.

User name

Password required to access the Integration Server instance.Password

The text identifier for the Integration Server keystore file. The
keystore contains the private keys and certificates (including
the associated public keys) of Integration Server.

Keystore alias

The alias for a specific key in the specified keystore.Key alias

390 webMethods API Gateway Administration 10.11

2 Operating API Gateway

6. To validate the connectivity of the specified Integration Server instance, click Test.

The connection with the given server is tested and a success message appears.

7. Click Add.

The server details are saved.

Configuration Types and Properties

This section describes the configuration types and parameters that you must configure for API
Gateway.

The configuration types are broadly classified asweb-app, API Gateway package-level, and Elastic
search configurations.

webApp Configuration Properties
These properties are not cluster-aware and, hence, youmust manually copy them to all the nodes.

General properties

Location: SAG_root/profiles/IS_instance_name/apigateway/config/uiconfiguration.properties

apigw.auth.priority

API Gateway supports both Form-based and SAML-based authentication. If both are enabled,
this property decides the login page to be displayed, by default, when a user visits the login page
http://host:port/apigatewayui. A user can go to a specific login page using:

Form: http://host:port/apigatewayui/login

SAML: http://host:port/apigatewayui/saml/sso/login

Possible values: Form, SAML.

webMethods API Gateway Administration 10.11 391

2 Operating API Gateway

Default value is Form.

apigw.auth.form.enabled

This property enables or disables Form-based authentication. If both SAML and Form are disabled,
the value Form is retained by default.

Possible values: true, false.

Default value is true.

apigw.auth.form.redirect

If a protected resource is accessed and the Form-based authentication is enabled, user is redirected
to this page.

Default value is /login.

apigw.is.base.url

Host where the IS package is hosted. localhost is replaced by the hostname that is resolved through
localhost.

Note:
The port changes to the default port of the Integration Server instance irrespective of HTTP or
HTTPS.

Default value is http://localhost:port. Here, port denotes the port that is configured at the time
of installation.

apigw.user.lang.default

This property denotes the language to be used in the API Gateway UI.

Default value is en (English).

apigw.is.timeout

This property denotes the user session timeout value in minutes.

Default value is 90.

Kibana

Location : SAG_root/profiles/IS_instance_name/apigateway/config/uiconfiguration.properties

apigw.kibana.autostart

Specifies whether Kibana should be started as part of web-app.

Possible values: true, false.

Default value is true.

apigw.kibana.url

392 webMethods API Gateway Administration 10.11

2 Operating API Gateway

Denotes the URL where Kibana is running. localhost is replaced by the hostname that is resolved
through localhost. The port and other configurations of the Kibana can be changed from
SAG_root/profiles/IS_instance_name/apigateway/kibana-4.5.1/config/kibana.yml

Default value is http://localhost:9405

apigw.es.url

Denotes the URL where API Data Store (HTTP) is running. localhost is replaced by the hostname
that is resolved through localhost.

Default value is http://localhost:port

port denotes the API Data Store HTTP port configured during installation.

Note:
If the configured host resolves to the host name of the localhost, the port changes to the HTTP
port configured in the SAG_root/InternalDataStore/config/elasticsearch.yml file.

kibana.process.stop.signal.number

Specifies the signal number to be used when stopping the Kibana process.

The default signal number is SIGINT(2).

SIGINT(2) stops the Kibana process without producing a core dump. This property is applicable
only for Linux Operating System. For information about the signals, see https://www.linux.org/
threads/kill-commands-and-signals.8881/.

API Gateway Package Configuration Properties
API Gateway uses API Data Store (Elasticsearch) as its data repository. API Gateway starts the
API Data Store instance, if configured, using the default configuration shipped and located at
SAG_root/InternalDataStore/config/elasticsearch.yml

Note:
To run API Data Store instances in a cluster, the elasticsearch.yml file must be updated on
each instance. For additional details, see https://www.elastic.co/guide/
en/elasticsearch/guide/current/important-configuration-changes.html#important-configuration-changes.

Location : SAG_root/IntegrationServer/instances/IS_Instance_Name
/packages/WmAPIGateway/config/resources/elasticsearch/config.properties

pg.gateway.elasticsearch.autostart

Denotes the flag to manage (start or stop) API Data Store as part of API Gateway. Set it to false if
the start or stop of API Data Store is managed from outside the API Gateway.

Possible values: true, false.

Default value is true.

pg.gateway.elasticsearch.http.connectionTimeout

webMethods API Gateway Administration 10.11 393

2 Operating API Gateway

https://www.linux.org/threads/kill-commands-and-signals.8881/
https://www.linux.org/threads/kill-commands-and-signals.8881/

Denotes maximum time in milliseconds API Gateway waits for API Data Store to start and stop
if autostart is set to true.

Default value is 10000.

pg.gateway.elasticsearch.config.location

Denotes the location of the config file. If you have to use a different config file, mention the location
of the config file here.

Default value is SAG_root/InternalDataStore/config/elasticsearch.yml

Note:

If the API Data Store hostname is same as localhost, then the system automaticallymodifies
the value of <prop key=cluster.name> in
SAG_root/IntegrationServer/instances/IS_Instance_Name/packages/WmAPIGateway/
config/resources/beans/gateway-datastore.xml to cluster.name property in the
elasticsearch.yml file.
If the API Data Store hostname is same as localhost, then the system automaticallymodifies
the port value of localhost:9340 in SAG_root/IntegrationServer/instances/IS_Instance_Name/
packages/WmAPIGateway/config/resources/beans/gateway-datastore.xml to
transport.tcp.port property in the elasticsearch.yml file.
Ensure that the cluster.name and transport.tcp.port properties are in synchronization if
you encounter any errors.

Troubleshooting Tips: wmAPIGateway Package

Error appears when WmAPIGateway is added as Integration Server package
dependency

The following error message appears when you add wmAPIGateway as a package dependency
for an Integration Server package using Designer, and compile the package.

error: Bad service configuration file, or exception thrown while constructing Processor object:
io/sundr/codegen/processor/JavaGeneratingProcessor

Resolution:

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Extended settings.

3. Click Show and hide keys. This displays all the configurable parameters.

4. Search and enable the watt.server.compile parameter checkbox.

5. Add -proc:none to the watt.server.compile parameter.

For example,
watt.server.compile=/opt/SwAG/API/jvm/jvm/bin/javac -proc:none

394 webMethods API Gateway Administration 10.11

2 Operating API Gateway

-classpath {0} -d {1} {2}

6. Click Save.

webMethods API Gateway Administration 10.11 395

2 Operating API Gateway

396 webMethods API Gateway Administration 10.11

2 Operating API Gateway

3 Security Configuration

■ Overview of Keystore and Truststore .. 398

■ Keystore and Truststore .. 398

■ Ports ... 405

■ Global IP Access Settings For Ports .. 427

■ SAML Issuer ... 433

■ Custom Assertions ... 437

■ Kerberos Settings ... 446

■ Master Password Management .. 448

■ OAuth, JWT, and OpenID Configuration ... 454

■ Securing API Gateway Communication using TLS .. 489

■ Troubleshooting Tips: Securing API Data Store (Elasticsearch) 528

webMethods API Gateway Administration 10.11 397

Overview of Keystore and Truststore

You must have the API Gateway's manage security configurations functional privilege assigned
to perform the following tasks in the security configuration section of API Gateway:

Configure the keystores and truststores required for incoming and outgoing message-level
and transport-level security.

Configure ports of API Gateway.

Configure the SAML issuer to use inAPI Gateway outbound authentication to fetch the SAML
token from the STS (Security Token Service).

Configure the custom assertions to use in inbound authentication of API Gateway.

Configure Kerberos settings.

Manage master password.

Configure JSON web token(JWT), OAuth, and OpenID authorization servers and third-party
providers.

Keystore and Truststore

Keystores and truststores are secure files with industry-standard file formats. The keystore file
stores the private keys and SSL certificates and the truststore file stores the trusted roots for the
certificates.

A keystore file contains one or more pairs of a private key and signed certificate for its
corresponding public key. The keystore should be strongly protectedwith a password, and stored
(either on the file system or elsewhere) so that it is accessible only to administrators.

The truststore file functions as a database containing all the public keys for CAswithin a specified
trusted directory.

To enable the two-way SSL for inbound connections, you must add a valid, authorized X.509
certificate along with the private key in a keystore file and the certificate of the client or partner
in the API Gateway truststore file. To enable two-way SSL for outbound connections you have to
add the certificate of the nativeAPI to theAPIGateway truststore file. These keystore and truststore
files have to be referred to in the HTTPs port that is used to access the API Gateway service.

API Gateway has a sample keystore that contains self-signed certificates, which are located in
InstallDir\IntegrationServer\instances\default\packages\WmAPIGateway\config\resources\
security. The sample self-signed certificates are specific to localhost and hence Software AG
recommends not to use them for configuring SSL communicationwithAPIGateway in a production
environment.

Note:
Any modifications to the keystore and truststore aliases in Integration Server do not reflect in
API Gateway. Hence, Software AG recommends that you do not modify the aliases through

398 webMethods API Gateway Administration 10.11

3 Security Configuration

the Integration Server Administrator. Onmigration from 10.0 to 10.1, the existing configuration
in 10.0 is migrated to the API Gateway UI.

Configuring Keystore Information

To configure Keystore information

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of existing keystores and truststores and corresponding details are displayed.

3. In the Keystores section, click Add keystore.

4. In the Create keystore section, provide the following information:

DescriptionField

A text identifier for the keystore file.Alias

The alias name can contain only letters, numbers, and
underscores. It can not include a space, hyphen, and special
characters.

The keystore contains the private keys and certificates (including
the associated public keys) for an Integration Server, partner
application, or Integration Server component.

Select a keystore file of the specified type using Browse. Select
the required file and upload it.

Select file

Password for the saved keystore file associated with this alias.Password

The certificate file format of the keystore file, which by default
is JKS for keystores. You can also use PKCS12 format for a
keystore.

Type

Optional. A text description for the keystore alias.Description

5. Click OK.

All the key aliases in the uploaded file are listed.

6. Type a password for the required key alias.

7. Click Save.

webMethods API Gateway Administration 10.11 399

3 Security Configuration

The keystore is configured and the alias listed in the keystore alias table.

Note:
If a wrong password has been provided for the keystore or one of its aliases, API Gateway
saves the keystore but it is not loaded. The keystore alias is displayed as the loaded icon
with an X mark in the keystore listing.

Modifying Keystore Information

To modify keystore information

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of keystores and truststores and corresponding details are displayed.

3. Click the keystore alias to be updated.

The update keystore section is displayed.

4. Modify the fields as required.

5. Click Save.

The set of available aliases is displayed.

Note:
If the keystore file is not updated during the edit, then clicking Save closes the form. If a
different keystore file is uploaded, then the list of aliases in the file is loaded and you are
prompted to configure the passwords for the aliases.

6. Type a password for the alias to be configured.

7. Click Save.

The keystore is updated.

Deleting Keystore Information
Be careful while deleting the keystore information. If the keystore and one of its key aliases is
configured in the keystore settings and the keystore gets deleted, then the configuration would
have issues.

To delete keystore information

400 webMethods API Gateway Administration 10.11

3 Security Configuration

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of keystores and truststores and corresponding details are displayed.

3. Click in the action column of the keystore to be deleted.

4. Click Yes in the confirmation dialog.

The keystore is deleted from the list.

Configuring Truststore Information

To configure truststore information

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of existing keystores and truststores and corresponding details are displayed.

3. In the Truststores section, click Add truststore.

4. In the Create truststore section, provide the following information:

DescriptionField

A name for the truststore file.Name

The alias name can contain only letters, numbers, and
underscores. It can not include a space, hyphen, and special
characters.

The truststore contains the trusted CA certificates for an
Integration Server, partner application, or Integration Server
component.

Select a truststore file of the specified type using Browse. Select
the required file and upload it.

Upload truststore file

Note:
Supports only JKS file format.

Password that is used to protect the contents of the truststore.Password

webMethods API Gateway Administration 10.11 401

3 Security Configuration

DescriptionField

This password must have been defined at truststore creation
time using a keystore utility.

Make sure you have the truststore password available when
managing its corresponding truststore alias.

Optional. A text description for the truststore alias.Description

5. Click Save.

The truststore is configured and the alias listed in the truststore alias table.

Note:
If a wrong password has been entered for the truststore, API Gateway saves the truststore
but it is not loaded. The truststore alias is displayed as the loaded icon with an X mark in
the truststore listing.

Modifying Truststore Information

To modify truststore information

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of keystores and truststores and corresponding details are displayed.

3. Click the truststore alias to be updated.

The update truststore section is displayed.

4. Modify the fields as required.

5. Click Save.

The truststore is updated.

Deleting Truststore Information
Be careful while deleting the truststore information. If the truststore settings and the truststore
gets deleted, then the configuration would have issues.

To delete keystore information

402 webMethods API Gateway Administration 10.11

3 Security Configuration

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of keystores and truststores and corresponding details are displayed.

3. Click in the action column of the truststore to be deleted.

4. Click Yes in the confirmation dialog.

The truststore is deleted from the list.

Configuring Keystore and Truststore Information for Inbound
Messages
Youmight want to configure API Gateway to refer to a default keystore, truststore, or both, before
deploying any SOAPmessage flows that require signature, encryption, X.509 authentication, and
so on, as configured in the Inbound Auth - Message policy. The default keystore and truststore
are that you want API Gateway to use for the incoming secured messages.

To configure keystore and truststore settings for inbound messages

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of existing keystores and truststores loaded during startup, and those created in API
Gateway and the corresponding details appears.

3. To configureAPIGateway's default keystore and truststore alias for incoming securedmessages,
provide the following information in theConfigure keystore and truststore settings for inbound
messages section:

DescriptionField

Select a keystore that API Gateway uses for incoming
message-level security.

Keystore alias

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Select the alias for the private key to sign the outgoing response
from API Gateway to the original client.

Key alias (signing)

webMethods API Gateway Administration 10.11 403

3 Security Configuration

DescriptionField

This alias value validates the inbound requests to API Gateway
and signs the outgoing response from API Gateway to the
original client. This field is auto-populated based on the selected
keystore alias. It lists all the aliases available in the chosen
keystore. If there are no configured keystores, this field is empty.

The alias for the truststore that contains the list of CA certificates
that API Gateway uses to validate the trust relationship with
the client.

Truststore alias

4. Click Save.

Post-requisites

While securing the SOAP APIs using WS-Security policies, perform the following:

1. Restart the server after configuring keystore and truststore information for the configuration
to take effect.

2. Deactivate the APIs that have Inbound Auth - Message policy enforced.

3. Update the keystore and truststore configuration.

4. Activate the APIs that were deactivated.

Configuring Keystore and Truststore Information for Outbound
Connections
You might want to configure API Gateway to refer to a default truststore that you want API
Gateway to use for securing outgoing SSL connections. The keystore and key alias can be configured
for outgoing two-way SSL connections. During the SSL handshake between API Gateway and the
native API, the server certificate, which is sent by the native API, has to be validated against a
truststore in API Gateway.

To configure keystore and truststore settings for outbound secured connections

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Keystore/Truststore.

A list of existing keystores and truststores loaded during startup, and those created in API
Gateway and the corresponding details appears.

3. To configure API Gateway's default keystore and truststore alias for outgoing secured
connections, provide the following information in theConfigure keystore and truststore settings
for outbound connections section:

404 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Select a keystore that API Gateway uses for outgoing secured
connections.

Keystore alias

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Select the alias for the private key for an outbound connection
from API Gateway to the native API.

Key alias

This field is auto-populated based on the selected keystore alias.
It lists all the aliases available in the chosen keystore. If there
are no configured keystores, this field is empty.

The alias for the truststore that contains the list of CA certificates
that API Gateway uses to validate the trust relationship with
the native API.

Truststore alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native
APIs.

4. Click Save.

Ports

API Gateway listens for requests on ports that you specify. Each port is associated with a specific
type of protocol, HTTP or HTTPS. In addition to these port types, API Gateway also provides
three ports; API Gateway external port, API Gateway internal listener port, and the WebSocket
listener port.

You can specify one ormoreHTTP orHTTPS ports onwhich API Gateway and the deployedAPIs
are available for consumption. API Gateway, by default, is available on the primary HTTP port.
The primary HTTP port is the port specified on the Integration Server's Security > Ports page.

If your API Gateway is behind an internal firewall and is not allowed to accept communications
from external clients through the DMZ, then you can configure the API Gateway instance in DMZ
with an external port to listen to requests from external clients and using reverse invoke route
them to the internal servers. The API Gateway internal listener port or theWebSocket listener port
pulls the requests from the registration port of API Gateway in DMZ thus safeguarding from any
malicious attacks.

External clients send requests to API Gateway. API Gateway external port listens to this client
information from each request and evaluates the request against any API Gateway rules that have
been defined. It then passes requests that have not violated a rule to the API Gateway internal
port or theWebSocket listener port . These listener ports process the requests and send the responses
to API Gateway, which then passes the responses back to the client.

The page displays the following information about the configured ports:

webMethods API Gateway Administration 10.11 405

3 Security Configuration

DescriptionField

Specifies the port number.Ports

Click on the port number to edit the port configuration.

API Gateway does not allows you to update an active port as long as the port
is enabled. If you want to update an active port, API Gateway first
automatically disables the port, then updates the configured details. On
successful updation, API Gateway enables the port back. In case, when
updating the port, if an error occurs, APIGateway displays the errormessage
that stops from updating the active port.

Specifies the port alias that can be used across to refer to the corresponding
port.

Alias

Specifies the protocol used by the port to communicate.Protocol

Specifies the type of port.Type

Specifies the status of the port; whether it is enabled or disabled.Enabled

Allows to configurewhether the portmust allowor deny access to ESB services
and folders, by default. For information on how to configure the accessmode
for a port, see “Configuring Access Mode for a Port” on page 425.

Accessmode

Allows to configurewhether the portmust allowor deny access to the external
hosts, or must follow global configuration for allowing or denying external

IP Accessmode

hosts. For information on how to configure the IP access mode of a port, see
“Configuring IP Access Mode for a Port” on page 422.

Specifies whether the port is used as a primary port.Primary port

specifies that it is set as a primary port and depicts it is not set as a
primary port. Only the HTTP and HTTPS ports can be set as primary ports
once they are enabled.

You can click for a port to set it as a primary port.

Note:
You can not disable or delete the primary port. Also, you can not modify
the primary port details as long as the port is set as primary port.

Provides a short description of the port.Description

Specifies the actions that can be performed on the port.Action

Note:
Anymodifications to the ports in Integration Server may not reflect in API Gateway UI. Hence,
Software AG recommends that you do not configure or modify the ports through Integration
Server Administrator UI.

406 webMethods API Gateway Administration 10.11

3 Security Configuration

Adding an HTTP Port
The HTTP port enables API Gateway to authenticate the client and server securely and exchange
the data. In addition, you can configure the type of client authentication that you want the server
to perform. Client authentication allows you to verify the identity of the client.

To add an HTTP port

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all the ports configured with API Gateway, if any.

3. Click Add ports.

4. Select the type of port as HTTP and click Add.

5. Provide the following information:

DescriptionField

HTTP listener configuration. Provide the following details to configure the HTTP listener
set up.

Specify the number you want to use for the port.Port

Select a number that is not already in use on this host machine.

Specifies an alias for the port that is unique for this API Gateway.Alias

An alias must be between 1 and 255 characters in length and include
one or more of the following: letters (a -z, A-Z), numbers (0-9),
underscore (_), period (.), and hyphen (-).

Provide a description of the port.Description (optional)

Specifies the IP address to which to bind this port.Bind address
(optional)

Specify a bind address if your machine has multiple IP addresses
and you want the port to use this specific address. If you do not
specify a bind address, API Gateway picks one for you.

Specifies the number of requests that can remain in the queue for an
enabled port before API Gateway begins rejecting requests.

Backlog

The default is 200. The maximum value is 65535.

webMethods API Gateway Administration 10.11 407

3 Security Configuration

DescriptionField

Specifies when to close the connection if the server has not received
a request from the client within this timeout value (in milliseconds)

Keep alive timeout

or when to close the connection if the client has explicitly placed a
close request with the server.

Private threadpool configuration. Specifies whether to create a private thread pool for this
port or use the common thread pool.

Select to enable the private threadpool configuration for this port.Enable

Specifies theminimumnumber of threads for this private threadpool.
The default value is 1.

Threadpool min

Specifies the maximum number of threads for this private thread
pool. The default value is 5.

Threadpool max

Specifies the Java thread priority. The default value is 5.Thread priority

Security configuration . Provide the following details to configure security parameters.

Specifies the type of client authentication you want API Gateway to
perform for requests that arrive on this HTTPS port.

Client authentication

Select one of the following:

Username/Password. API Gateway does not request client
certificates. The server looks for user and password information
in the header of requests coming from an external client.

Digest. API Gateway uses password digest to authenticate all
requests. If the client does not provide the authentication
information,APIGateway returns anHTTPWWW-Authenticate
header with digest scheme to the client requesting for
authentication information. If the client provides the required
authentication information, API Gateway verifies and validates
the request.

Request Kerberos Ticket. API Gateway looks for a Kerberos
ticket in the HTTP Authorization header using the Negotiate
authentication scheme. If it does not find the ticket, API Gateway
uses username andpassword for basic authentication. If the client
does not provide any authentication information, API Gateway
returns an HTTP WWW-Authenticate header with negotiate
scheme to the client requesting for authentication information.
If the client provides the required authentication information,
API Gateway verifies and validates the request.

Require Kerberos Ticket. API Gateway looks for a Kerberos
ticket in the HTTP Authorization header using the Negotiate
authentication scheme. If it does not find the ticket, API Gateway

408 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

fails the authentication. If the client does not provide any
authentication information, API Gateway returns an HTTP
WWW-Authenticate header with negotiate scheme to the client
requesting for authentication information. If the client provides
the required authentication information, API Gateway verifies
and validates the request.

You have to enable Kerberos by providing the following Kerberos
properties with details that are used for handling service requests
that come with a Kerberos ticket:

JAAS context. Specify the custom JAAS context used for
Kerberos authentication.

Principal. Specify the name of the principal to use for Kerberos
authentication.

Principal password. Specify the password for the principal to
use to authenticate the principal to the KDC.

Retype principal password. Retype the principal password.

Service principal name. Specify the name of the principal used
with the service that the Kerberos client wants to access.

Note:
API Gateway supports the username format for Service
Principal Names (SPNs). This format represents the principal
name as a nameduser defined in LDAPused for authentication
to the KDC.

6. Click Add.

The port is created and is listed in the ports table.

Important:
The default accessmode of the port is set toAllow by default. This implies that the port allows
connections to all ESB services and folders, which in turn, increases the risk of exposing all
enterprise assets hosted in internal Integration Server. Also, the risk is higher when the IS
assets are secured byAnonymousAccess Control Lists (ACL) or if the installation is exposed
to the public internet. Hence, to avoid any potential security risk, you can set the access
mode of the port to Deny by default before enabling it. When you change the access mode,
you add the required services and folders to the Allow list. For more information, see
“Configuring Access Mode for a Port” on page 425.

Also, the global IP access mode will be applied to the newly created HTTP ports. You can
modify the IP accessmode as per your requirement. For information onmodifying IP access
mode of ports, see “Configuring IP Access Mode for a Port” on page 422.

webMethods API Gateway Administration 10.11 409

3 Security Configuration

7. Click the icon in the Enabled column next to the port to enable the port.

The port is enabled and a success message appears.

Adding an HTTPS Port
The HTTPS port enables API Gateway to authenticate the client and server securely and encrypt
the data exchanged. By default, the HTTPS listener uses the certificates for the default SSL key. In
addition, you can configure the type of client authentication that you want the server to perform.
Client authentication allows you to verify the identity of the client.

To add an HTTPS port

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all the ports configured with API Gateway, if any.

3. Click Add Ports.

4. Select the type of port as HTTPS and click Add.

5. Provide the following information:

DescriptionField

HTTP listener configuration. Provide the following details to configure the HTTP listener
set up.

Specify the number you want to use for the port.Port

Select a number that is not already in use on this host machine.

Specifies an alias for the port that is unique for this API Gateway.Alias

An alias must be between 1 and 255 characters in length and include
one or more of the following: letters (a -z, A-Z), numbers (0-9),
underscore (_), period (.), and hyphen (-).

Provide a description of the port.Description (optional)

Specifies the IP address to which to bind this port.Bind address
(optional)

Specify a bind address if your machine has multiple IP addresses
and you want the port to use this specific address. If you do not
specify a bind address, API Gateway picks one for you.

410 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Specifies the number of requests that can remain in the queue for an
enabled port before API Gateway begins rejecting requests.

Backlog

The default is 200. The maximum value is 65535.

Specifies when to close the connection if the server has not received
a request from the client within this timeout value (in milliseconds)

Keep alive timeout

or when to close the connection if the client has explicitly placed a
close request with the server.

Private threadpool configuration. Specifies whether to create a private thread pool for this
port or use the common thread pool.

Select to enable the private threadpool configuration for this port.Enable

Specifies theminimumnumber of threads for this private threadpool.
The default is 1.

Threadpool min

Specifies the maximum number of threads for this private thread
pool. The default is 5.

Threadpool max

Specifies the Java thread priority. The default is 5.Thread priority

Security configuration . Provide the following details to configure security parameters.

Specifies the type of client authentication you want API Gateway to
perform for requests that arrive on this HTTPS port.

Client authentication

Select one of the following:

Username/Password. API Gateway does not request client
certificates. The server looks for user and password information
in the header of requests coming from an external client.

Digest. API Gateway uses password digest to authenticate all
requests. If the client does not provide the authentication
information,APIGateway returns anHTTPWWW-Authenticate
header with digest scheme to the client requesting for
authentication information. If the client provides the required
authentication information, API Gateway verifies and validates
the request.

Request Kerberos Ticket. API Gateway looks for a Kerberos
ticket in the HTTPS Authorization header using the Negotiate
authentication scheme. If it does not find the ticket, API Gateway
uses username andpassword for basic authentication. If the client
does not provide any authentication information, API Gateway
returns an HTTP WWW-Authenticate header with negotiate
scheme to the client requesting for authentication information.

webMethods API Gateway Administration 10.11 411

3 Security Configuration

DescriptionField

If the client provides the required authentication information,
API Gateway verifies and validates the request.

Require Kerberos Ticket. API Gateway looks for a Kerberos
ticket in the HTTPS Authorization header using the Negotiate
authentication scheme. If it does not find the ticket, API Gateway
fails the authentication. If the client does not provide any
authentication information, API Gateway returns an HTTP
WWW-Authenticate header with negotiate scheme to the client
requesting for authentication information. If the client provides
the required authentication information, API Gateway verifies
and validates the request.

You have to enableKerberos by providing the followingKerberos
propertieswith details that are used for handling service requests
that come with a Kerberos ticket:

JAAS context. Specify the custom JAAS context used for
Kerberos authentication.

Principal. Specify the name of the principal to use for
Kerberos authentication.

Principal password. Specify the password for the principal
to use to authenticate the principal to the KDC.

Retype principal password. Retype the principal password.

Service principal name. Specify the name of the principal
usedwith the service that the Kerberos client wants to access.
API Gateway supports the username format for Service
PrincipalNames (SPNs). This format represents the principal
name as a named user defined in LDAP used for
authentication to the KDC.

Request Client Certificate. API Gateway requests client
certificates for all requests. If the client does not provide a
certificate, the server prompts the client for a userid and
password. The server checks whether the certificate exactly
matches a client certificate on file and is signed by a trusted
authority. If so, the client is logged in as the user to which the
certificate is mapped in API Gateway. If not, the client request
fails, unless central user management is configured.

Require Client Certificate. API Gateway requires client
certificates for all requests. The server behaves as described for
Request Client Certificates, except that the client must always
provide a certificate.

412 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Use Identity Provider. API Gateway uses an OpenID Provider
to authenticate requests. API Gateway redirects all requests sent
to this port to theOpenIDProvider specified in Identity Provider.

Listener specific credentials. Provide the following details to configure listener specific
credentials.

Specifies a user-specified, text identifier for anAPIGateway keystore.Keystore alias

The alias points to a repository of private keys and their associated
certificates. Although each listener points to one keystore, there can
bemultiple keys and their certificates in the same keystore, andmore
than one listener can use the same keystore alias.

Specifies the private key of keystore.Key alias (signing)

Specifies the public certificates of truststore.Truststore alias

The alias points to a repository of public certificates.

6. Click Add.

The port is created and is listed in the ports table.

Important:
The default accessmode of the port is set toAllow by default. This implies that the port allows
connections to all ESB services and folders. Users must note that this setting allows access
to all enterprise assets hosted in internal Integration Server. There is a potential security risk
for the IS assets that are secured by Anonymous Access Control Lists (ACL) or if the
installation is exposed to the public internet. Hence, you can set the access mode of the port
toDeny by default before enabling it.When you change the accessmode, you add the required
services and folders to the Allow list. For more information, see “Configuring Access Mode
for a Port” on page 425.

Also, the global IP access mode will be applied to the newly created HTTPS ports. You can
modify the IP accessmode as per your requirement. For information onmodifying IP access
mode of ports, see “Configuring IP Access Mode for a Port” on page 422.

7. Click the icon in the Enabled column next to the port to enable the port.

The port is enabled and a success message appears.

Adding an API Gateway External Port
TheAPIGateway external and registration portswork as a pair. One port is not functionalwithout
the other.

webMethods API Gateway Administration 10.11 413

3 Security Configuration

To add an API Gateway external port

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all the ports configured with API Gateway, if any.

3. Click Add Ports.

4. Select the type of port as API Gateway external and click Add.

5. Provide the following information:

DescriptionField

API Gateway external listener configuration. Provide the following details to configure
the HTTP listener set up.

Specifies the port number you want to use for the external port.External port

Use a number that is not already in use. This is the port that clients
connect to through your outer firewall.

Specifies an alias for the port.Alias

An alias must be between 1 and 255 characters in length and include
one or more of the following: letters (a -z, A-Z), numbers (0-9),
underscore (_), period (.), and hyphen (-).

A description of the port.Description (optional)

Specifies the protocol to use for this port (HTTP or HTTPS).Protocol

If you select HTTPS, additional security and credential boxes appear
for which you have to provide the required values.

Specifies the IP address to which to bind this port.Bind address
(optional)

Specify a bind address if yourmachine hasmultiple IP addresses and
you want the port to use this specific address. If you do not specify
a bind address, API Gateway picks one for you.

Specifies the number of requests that can remain in the queue for an
enabled port before API Gateway begins rejecting requests.

Backlog

The default is 200. The maximum value is 65535.

Specifies when to close the connection if the server has not received
a request from the client within this timeout value (in milliseconds)

Keep alive timeout

414 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

or when to close the connection if the client has explicitly placed a
close request with the server.

The default value is 20000ms.

Private threadpool configuration. Specifies whether to create a private thread pool for this
port or use the common thread pool.

Select to enable the private threadpool configuration for this port.Enable

Specifies theminimumnumber of threads for this private threadpool.
The default value is 1.

Threadpool min

Specifies the maximum number of threads for this private thread
pool. The default value is 5.

Threadpool max

Specifies the Java thread priority. The default value is 5.Thread priority

Security configuration. Provide the following details to configure security parameters.

For the external port, specify the type of client authentication required.Client authentication

Select one of the following:

Username/Password . API Gateway does not request client
certificates. The server looks for user and password information
in the header of requests coming from an external client.

Digest. API Gateway uses password digest authentication. API
Gateway looks for password digest information in the header of
requests coming from an external client.

Request kerberos ticket. APIGateway looks for aKerberos ticket
in the HTTP Authorization header using the Negotiate
authentication scheme. If it does not find the ticket, API Gateway
uses username and password for basic authentication. If the client
does not provide any authentication information, API Gateway
returns an HTTP WWW-Authenticate header with negotiate
scheme to the client requesting for authentication information. If
the client provides the required authentication information, API
Gateway verifies and validates the request.

Require kerberos ticket. APIGateway looks for a Kerberos ticket
in the HTTP Authorization header using the Negotiate
authentication scheme. If it does not find the ticket, API Gateway
fails the authentication. If the client does not provide any
authentication information, API Gateway returns an HTTP
WWW-Authenticate header with negotiate scheme to the client
requesting for authentication information. If the client provides

webMethods API Gateway Administration 10.11 415

3 Security Configuration

DescriptionField

the required authentication information, API Gateway verifies
and validates the request.

You have to enable Kerberos by providing the followingKerberos
propertieswith details that are used for handling service requests
that come with a Kerberos ticket:

JAAS context. Specify the custom JAAS context used for
Kerberos authentication.

Principal. Specify the name of the principal to use for Kerberos
authentication.

Principal password. Specify the password for the principal
that is used to authenticate the principal to the KDC.

Retype principal password. Retype the principal password.

Service principal name. Specify the name of the principal
used with the service that the Kerberos client wants to access.
API Gateway supports the username format for Service
Principal Names (SPNs). This format represents the principal
name as a named user defined in the LDAP or central user
directory used for authentication to the KDC.

Request client certificate. This option appears only if you select the
HTTPS option in the Protocol field of the API Gateway external
listener configuration section. API Gateway requests client
certificates for all requests. If the client does not provide a
certificate, the server prompts the client for a userid and password.
The server checks whether the certificate exactly matches a client
certificate on file and is signed by a trusted authority. If so, the
client is logged in as the user to which the certificate is mapped
in API Gateway. If not, the client request fails, unless central user
management is configured.

Require client certificate. This option appears only if you select the
HTTPS option in the Protocol field of the API Gateway external
listener configuration section. API Gateway requires client
certificates for all requests. The server behaves as described for
Request Client Certificates, except that the client must always
provide a certificate.

Listener specific credentials (optional). This section appears only if you select theHTTPS option
in the Protocol field of the API Gateway external listener configuration section. Provide the
following details to configure listener specific credentials.

Specifies a user-specified, text identifier for anAPIGateway keystore.Keystore alias

416 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

The alias points to a repository of private keys and their associated
certificates. Although each listener points to one keystore, there can
bemultiple keys and their certificates in the same keystore, andmore
than one listener can use the same keystore alias.

Specifies the private key of keystore.Key alias (signing)

Specifies the public certificates of truststore.Truststore alias

The alias points to a repository of public certificates.

API Gateway registration listener configuration . Provide the following details to configure
listener specific credentials.

Specifies the number you want to use for the registration port.Registration port

Use a number that is not already in use. It is best not to use a standard
port such as 80 (the standard port forHTTP) or 443 (the standard port
for HTTPS) because the external firewall allows access to those ports
from the outside world.

You can add multiple registration ports by clicking +Add.

Specifies an alias for the port.Alias

An alias must be between 1 and 255 characters in length and include
one or more of the following: le ers (a -z, A-Z), numbers (0-9),
underscore (_), period (.), and hyphen (-).

A description of the port.Description (optional)

Specifies the protocol to use for this port (HTTP or HTTPS).Protocol

If you select HTTPS, additional security and credential boxes appear
for which you have to provide the required values.

Specifies the IP address to which to bind this port.Bind address
(optional)

Specify a bind address if yourmachine hasmultiple IP addresses and
you want the port to use this specific address. If you do not specify
a bind address, API Gateway picks one for you.

Security configuration. Provide the following details to configure security parameters.

For the external port, specify the type of client authentication required.Client authentication

Select one of the following:

Username/Password . API Gateway does not request client
certificates. The server looks for user and password information
in the header of requests coming from an external client.

webMethods API Gateway Administration 10.11 417

3 Security Configuration

DescriptionField

Request client certificate. This option appears only if you select the
HTTPS option in the Protocol field of the API Gateway registration
listener configuration section. API Gateway requests client
certificates for all requests. If the client does not provide a
certificate, the server prompts the client for a userid and password.
The server checks whether the certificate exactly matches a client
certificate on file and is signed by a trusted authority. If so, the
client is logged in as the user to which the certificate is mapped
in API Gateway. If not, the client request fails, unless central user
management is configured.

Require client certificate. This option appears only if you select the
HTTPS option in the Protocol field of the API Gateway registration
listener configuration section.API Gateway requires client
certificates for all requests. The server behaves as described for
Request Client Certificates, except that the client must always
provide a certificate.

Listener specific credentials (optional). This section appears only if you select HTTPS in the
Protocol field of the API Gateway registration listener configuration section.. Provide the
following details to configure listener specific credentials.

Specifies a user-specified, text identifier for anAPIGateway keystore.Keystore alias

The alias points to a repository of private keys and their associated
certificates. Although each listener points to one keystore, there can
bemultiple keys and their certificates in the same keystore, andmore
than one listener can use the same keystore alias.

Specifies the private key of keystore.Key alias (signing)

Specifies the public certificates of truststore.Truststore alias

The alias points to a repository of public certificates.

6. Click Add.

The port is created and is listed in the ports table.

Important:
The global IP access mode will be applied to the newly created external and registration
listener ports. You can modify the IP access mode as per your requirement. For information
on modifying IP access mode of ports, see “Configuring IP Access Mode for a Port” on
page 422.

7. Click the icon in the Enabled column next to the external and registration ports to enable
them.

418 webMethods API Gateway Administration 10.11

3 Security Configuration

The port is enabled and a success message appears.

Configuring the API Gateway Internal listener
TheAPI Gateway Internal listener processes the requests received from the API Gateway External
port and sends responses to API Gateway. This procedure describes how to connect the Internal
listener to API Gateway.

To configure the API Gateway Internal listener

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all the ports configured with API Gateway, if any.

3. Click Add Ports.

4. Select the type of port as API Gateway internal and click Add.

5. Provide the following information:

DescriptionField

Specifies the protocol to use for this port (HTTP or HTTPS).Protocol

If you select HTTPS, additional security and credential boxes appear for
which you have to provide the required values.

A description of the port.Description
(optional)

Specifies an alias for the port.Alias

An alias must be between 1 and 255 characters in length and include one
or more of the following: letters (a -z, A-Z), numbers (0-9), underscore
(_), period (.), and hyphen (-).

Specifies the number of connections maintained between API Gateway
Internal port and API Gateway.

Max connections

The default value is 5.

Private threadpool configuration. Specifies whether to create a private thread pool for this
port or use the common thread pool.

Select to enable the private threadpool configuration for this port.Enable

webMethods API Gateway Administration 10.11 419

3 Security Configuration

DescriptionField

Specifies the minimum number of threads for this private threadpool.
The default value is 1.

Threadpool min

Specifies the maximum number of threads for this private thread pool.
The default value is 5.

Threadpool max

Specifies the Java thread priority. The default value is 5.Thread priority

API Gateway external server. Provide the following details to configure API Gateway
external server.

Specifies the host name or IP address of the machine on which the server
is running.

Host

Specifies the port number of the registration port on the Server.Port

Registration credentials (optional)

Specifies the name of the user on API Gateway that the internal server
should connect as.

User name

Specifies the password of the user onAPIGateway that the internal server
should connect as.

Password

External client security.

Specifies the type of client authentication the internal server performs
against external clients. External clients pass their authentication
information toAPIGateway, which in turn passes it to the internal server.

Client
authentication

Select one of the following:

Username/Password. API Gateway does not request client
certificates. Instead it looks for user and password information in the
request header.

Digest. The Internal Server looks for password digest information in
the request header.

Request Client Certificate. API Gateway requests client certificates
for requests from external clients. If the client does not provide a
certificate, the server prompts the client for a userid and password.
The server checks whether the certificate exactly matches a client
certificate on file and is signed by a trusted authority. If so, the client
is logged in as the user to which the certificate is mapped in API
Gateway. If not, the client request fails, unless central user
management is configured.

Require Client Certificate. API Gateway requires client certificates
for requests from external clients. If the external client does not supply
a certificate, the request fails.

420 webMethods API Gateway Administration 10.11

3 Security Configuration

6. Click Add.

The port is created and is listed in the ports table.

Important:
The default accessmode of the port is set toAllow by default. This implies that the port allows
connections to all ESB services and folders, which in turn, increases the risk of exposing all
enterprise assets hosted in internal Integration Server. Also, the risk is higher when the IS
assets are secured byAnonymousAccess Control Lists (ACL) or if the installation is exposed
to the public internet. Hence, to avoid any potential security risk, you can set the access
mode of the port to Deny by default before enabling it. When you change the access mode,
you add the required services and folders to the Allow list. For more information, see
“Configuring Access Mode for a Port” on page 425.

7. Click the icon in the Enabled column next to the port to enable the port.

The port is enabled and a success message appears.

Configuring the WebSocket Listener
The API Gateway WebSocket listener processes the requests from the clients. This procedure
describes how to create the WebSocket listener to API Gateway.

Note:
WebSocket Secure port is not supported.

To configure the WebSocket listener

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all the ports configured with API Gateway, if any.

3. Click Add Ports.

4. Select the type of port as WS and click Add.

5. Provide the following information:

DescriptionField

Specify the number you want to use for the port.Port

Select a number that is not already in use on this host machine.

webMethods API Gateway Administration 10.11 421

3 Security Configuration

DescriptionField

Specifies an alias for the port.Alias

An alias must be between 1 and 255 characters in length and
include one ormore of the following: letters (a -z, A-Z), numbers
(0-9), underscore (_), period (.), and hyphen (-).

A description of the port.Description (optional)

Specifies the IP address to which to bind this port.Bind address (optional)

Specify a bind address if yourmachine hasmultiple IP addresses
and you want the port to use this specific address. If you do not
specify a bind address, API Gateway selects one for you.

Specifies the number of requests that can remain in the queue
for an enabled port before API Gateway begins rejecting
requests.

Backlog

The default is 200. The maximum value is 65535.

Specifies when to close the connection if the server has not
received a request from the client within this timeout value (in

Keep alive timeout

milliseconds) or when to close the connection if the client has
explicitly placed a close request with the server.

6. Click Add.

The port is created and is listed in the ports table.

Important:
The default accessmode of the port is set toAllow by default. This implies that the port allows
connection to all ESB services and folders. To avoid any potential security risk, you can set
the accessmode of the port toDeny by default before enabling it. For information on changing
the access mode, see “Configuring Access Mode for a Port” on page 425.

Also, the global IP access mode will be applied to the newly created WebSocket listener
ports. You can modify the IP access mode as per your requirement. For information on
modifying IP accessmode of ports, see “Configuring IPAccessMode for a Port” on page 422.

7. Click the icon in the Enabled column next to the port to enable the port.

The port is enabled and a success message appears.

Configuring IP Access Mode for a Port
You can configure the access of a port by internal and external IP hosts or apply the global IP
access settings.

422 webMethods API Gateway Administration 10.11

3 Security Configuration

This section explains how to apply global IP setting for a port.

To apply global IP settings for a port

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all ports configured with API Gateway, if any.

3. Click the IP Accessmode button for the port that you want to configure the IP access mode.

The options to configure the port access mode are displayed.

4. Select Global. The global IP settings are applied to the selected port.

5. Click Save.

The changes are saved.

Allowing Access to All IP Hosts

The following procedure describes how to change the IP access settings for an individual port to
Allow by Default and deny some hosts.

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all ports configured with API Gateway, if any.

3. Click the IP Accessmode button for the port that you want to configure the IP access mode.

The options to configure the port access mode are displayed.

4. Select Allow by default.

5. In the Deny List field, provide the names of hosts for which you want to deny access to the
port and click + Add.

You can specify the host names (for example, workstation5.webmethods.com) or IP addresses
(for example, 132.906.19.22 or 2001:db8:85a3:8d3:1319:8a2e:370:7348) in the above field.
Repeat this step to add the required host names and IP addresses to the list. Also, you can also
edit or delete the entered values by clicking the respective action next to the required value.

webMethods API Gateway Administration 10.11 423

3 Security Configuration

The host names or IP addresses can include upper and lower case alphabetic characters, digits
(0-9), hyphens (-), and periods (.) but cannot include spaces. For IPv6, IP addresses can also
include colons (:) and brackets ([]).

You can use the following pattern-matching characters to identify several clients with similar
host names or IP addresses.

ExampleDescriptionChar

r*.webmethods.comMatches any number of characters*

workstation?.webmethods.comMatches any single character?

6. Click Save.

The changes are saved.

Denying Access to All IP Hosts

The following procedure describes how to change the IP access settings for an individual port to
Deny by Default and allow some hosts.

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all ports configured with API Gateway, if any.

3. Click the IP Accessmode button for the port that you want to configure the IP access mode.

The options to configure the port access mode are displayed.

4. Select Deny by default.

5. In the Allow List field, provide the names of hosts for which you want to allow access to the
port and click + Add.

You can specify the host names (for example, workstation5.webmethods.com) or IP addresses
(for example, 132.906.19.22 or 2001:db8:85a3:8d3:1319:8a2e:370:7348) in the above field.
Repeat this step to add the required host names and IP addresses to the list. Also, you can also
edit or delete the entered values by clicking the respective action next to the required value.

The host names or IP addresses can include upper and lower case alphabetic characters, digits
(0-9), hyphens (-), and periods (.) but cannot include spaces. For IPv6, IP addresses can also
include colons (:) and brackets ([]).

You can use the following pattern-matching characters to identify several clients with similar
host names or IP addresses.

424 webMethods API Gateway Administration 10.11

3 Security Configuration

ExampleDescriptionChar

r*.webmethods.comMatches any number of characters*

workstation?.webmethods.comMatches any single character?

6. Click Save.

The changes are saved.

Configuring Access Mode for a Port
The access mode of a port determines whether APIs can be invoked through the port or not. This
section explains the steps required to configure the access mode of ports.

You can either allow or deny the access of all APIs through a port. When you allow access of APIs
using a port by default, you can specify a list of APIs that must be denied access over the port.
Also, if you deny the access of APIs using a port, you can specify a list of APIs that can be allowed
to access using the port. This configuration is applicable for REST, SOAP, and OData APIs.

To enable the individual access modes ensure that you have set the following parameters
accordingly:

watt.server.portAccess.axis2 = true for SOAP APIs

pg.security.honourPortAccessModeSettings = true for REST and OData APIs

Important:
Whenperforming the following procedure, do not log into the server through the port youwant
to change, if you are selecting Deny by default. The procedure involves temporarily denying
access to all APIs through the port. If you log on through the port you want to change and then
deny access to all APIs through it, you will be locked out of the server. Instead, log on through
a different existing port or create a new port to log on through.

To configure access mode for a port

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Ports.

The ports page lists all the ports configured with API Gateway.

3. Click the Accessmode button for the port that you want to configure the access mode.

The options to configure the port access mode are displayed.

4. Select one of the following options:

webMethods API Gateway Administration 10.11 425

3 Security Configuration

Allow by default. To allow access of the port, by default.

Deny by default. To deny access of the port, by default.

The port is enabled or denied for access by all APIs.

5. Optional. Perform one of the following:

If you have selectedAllow by default, provide the APIs for which youwant to deny access
through the port in the Add APIs to Deny List field and click + Add. Repeat this step to
add the required APIs to the list. You can also edit or delete the entered values by clicking
the respective action next to the required value.

If you have selectedDeny by default, provide the APIs for which youwant to allow access
through the port in the Add APIs to Allow List field and click + Add. Repeat this step to
add the required APIs to the list. You can also edit or delete the entered values by clicking
the respective action next to the required value.

To allow or deny access of all versions of anAPI through a port, specify theAPI in the following
format:

apiName or apiName/ - For REST and OData APIs

Not possible - For SOAP APIs

To allow or deny access of a particular version of an API through a port, specify the API in
the following format:

apiName/version or apiName/version/ - For REST and OData APIs

/ws/apiName/version - For SOAP APIs

For example, if you select Allow by default and provide calc/1.0/ in Add APIs and services
to Deny List, then the 1.0 version of the API Calc is denied to access through the port.

If you specify an API in the apiName/version/ or /ws/apiname/version/ format, then youmust
invoke the API using the protocol://host:port/ws/apiname/version/ format.

The API names along with their version numbers specified in the Allow and Deny lists must
exactly match the required API names.

Note:
Even if an API has custom endpoints, you must provide the apiName and not the custom
endpoint paths in the Allow and Deny lists.

6. Click Save.

The changes are saved.

Note:
To enforce this configuration on REST and OData APIs, when accessed through the HTTP
and HTTPS ports, set the value of the pg.security.honourPortAccessModeSettings
extended setting as true. To enforce this configuration on SOAP APIs, set the

426 webMethods API Gateway Administration 10.11

3 Security Configuration

watt.server.portAccess.axis2 setting as true. For information on configuring an extended
setting, see “Configuring Extended Settings” on page 224.

API Gateway services to be exposed for API Portal and client communication

If you have configured port access restrictions to allow access only to the APIs hosted on the API
Gateway (say with /gateway/, /ws/ , and so on), then ensure that you also provide access to the
following APIs in case the APIs are protected by security policies such as OAuth, OpenId or JWT.
Allowing access to these endpoints is important for API Portal and API consumers to access API
Gateway to retrieve the tokens.

pub.apigateway.oauth2:getAccessToken

secure.apigateway.oauth2:approve

pub.apigateway.oauth2:authorize

pub.apigateway.oauth2:authorize

pub.apigateway.openid:getOpenIDToken

pub.apigateway.openid:openIDCallback

pub.apigateway.jwt:getJsonWebToken

pub.apigateway.jwt:certs

pub.apigateway.jwt:configuration

pub.apigateway.jwt:thirdPartyConfiguration

Additionally, the following RESTAPI endpoints are exposed by API Gateway, which are required
from the API Portal to access API Gateway. This is to ensure that while you only allow required
REST API endpoints, API Portal functionalities continue to work without any impact.

API Portal invokes the following two internal APIs of API Gateway:

Token request endpoint (apigateway.accesstokens)

JWT request endpoint (apigateway.jwt:getJsonWebToken)

Global IP Access Settings For Ports

This section describes how to specify the global IP access setting for ports. The server uses this
setting to determine IP access for ports that do not have a custom IP access setting. The default
global setting is Allow by Default.

When you create a port, you can customize IP access for it, or you can specify that it use the global
IP access setting for the server. If you use the global IP access setting and later change it, the server
will use the new global setting for the port. For example, as shipped, the server uses Allow by
Default as the global IP access setting (with no hosts explicitly denied). If you create a new port
6666 and do not customize IP access for it, the server uses Allow by Default for port 6666. If you
later change the global IP access to Deny by Default, the server will then use Deny by Default for

webMethods API Gateway Administration 10.11 427

3 Security Configuration

port 6666. If you later customize IP access to port 6666, subsequent changes to the global setting
will have no effect on port 6666.

For any given port, you can specify IP access one of two ways:

Deny byDefault. Set up the port to deny requests from all hosts except for ones you explicitly
allow. Use this approach if you want to deny most hosts and allow a few.

AllowbyDefault. Set up the port to allow requests from all hosts except for ones you explicitly
deny. Use this approach if you want to allow most hosts and deny a few.

You can specify access settings globally (for all ports) or individually (for one port). For more
information, refer to respective sections listed in the following table:

Section to referType of access

Configuring Global IP Access

“Allowing Connections from Specified Hosts” on
page 428

Deny by Default

“Denying Connections from Specified Hosts” on
page 429

Allow by Default

Configuring IP Access for Individual Ports

“Allowing Access to All IP Hosts” on page 423Allow by Default

“Denying Access to All IP Hosts” on page 424Deny by Default

To customize IP access for individual ports, see “Allowing Access to All IP Hosts” on page 423
and “Denying Access to All IP Hosts” on page 424.

Allowing Connections from Specified Hosts
The following procedure describes how to change the global IP access setting to Deny by Default
and specify some hosts to allow.

Important:
If you inadvertently lock all hosts out of the server, you can correct the problem by following
the steps given in the “If You Inadvertently Deny IP Access to All Hosts” on page 430 section.

To allow connection from specified IP hosts

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Global IP Access Settings.

3. Click Port restrictions - Allow/Deny by IP address.

428 webMethods API Gateway Administration 10.11

3 Security Configuration

The Global IP Access Settings section appears.

4. Select Deny by default.

Note:
If you selectDeny by default, ensure that you configure the IP that must be allowed to access
ports. Otherwise, ports cannot be accessed by external hosts.

5. In the Allow List field, provide the names of hosts for which you want to allow access to the
port and click + Add.

You can specify the host names (for example, workstation5.webmethods.com) or IP addresses
(for example, 132.906.19.22 or 2001:db8:85a3:8d3:1319:8a2e:370:7348) in the above fields.
Repeat this step to add the required host names and IP addresses to the list.

The host names or IP addresses can include upper and lower case alphabetic characters, digits
(0-9), hyphens (-), and periods (.) but cannot include spaces. For IPv6, IP addresses can also
include colons (:) and brackets ([]).

Note:
IP addresses are harder to spoof, and therefore more secure.

You can use the following pattern-matching characters to identify several clients with similar
host names or IP addresses.

ExampleDescriptionChar

r*.webmethods.comMatches any number of characters*

workstation?.webmethods.comMatches any single character?

6. Click Save.

The changes are saved.

Denying Connections from Specified Hosts
The following procedure describes how to change the global IP access setting to Allow by Default
and specify some hosts to deny.

To deny connection from specified IP hosts

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Global IP Access Settings.

3. Click Port restrictions - Allow/Deny by IP address section.

webMethods API Gateway Administration 10.11 429

3 Security Configuration

The Global IP Access Settings section appears.

4. Select Allow by default.

5. In the Deny List field, provide the names of hosts for which you want to allow access to the
port and click + Add.

You can specify the host names (for example, workstation5.webmethods.com) or IP addresses
(for example, 132.906.19.22 or 2001:db8:85a3:8d3:1319:8a2e:370:7348) in the above fields.
Repeat this step to add the required host names and IP addresses to the list.

The host names or IP addresses can include upper and lower case alphabetic characters, digits
(0-9), hyphens (-), and periods (.) but cannot include spaces. For IPv6, IP addresses can also
include colons (:) and brackets ([]).

You can use the following pattern-matching characters to identify several clients with similar
host names or IP addresses.

ExampleDescriptionChar

r*.webmethods.comMatches any number of characters*

workstation?.webmethods.comMatches any single character?

6. Click Save.

The changes are saved.

If You Inadvertently Deny IP Access to All Hosts

If you select Deny by Default in Port restrictions - Allow/Deny by IP address section from Port
Configure Global IP Access Settings tab, all hosts are restricted from accessing the server ports.
Hence, API Gateway cannot communicate with Integration Server.

For example, if you have defined five ports and those ports are configured to use the global IP
access settings. In such case, if you change the global IP access setting to Deny By Default, API
Gateway cannot communicate with hosts through any ports.

This section explains the steps to reset your setting and allow API Gateway to communicate with
Integration Server.

To modify the global IP access settings

1. Log off from API Gateway.

2. Open the diagnostic port of the Integration Server by entering http://hostname:diagnostic port
in your browser's address bar.

For example, 10.2.100.112:9999. By default, the diagnostic port is 9999.

430 webMethods API Gateway Administration 10.11

3 Security Configuration

3. Navigate to the Security > Ports.

The Port List appears.

4. Perform any of the following:

Click Change Global IP Access Restrictions and make required changes. For more
information, see “Allowing Connections from Specified Hosts” on page 428.

Click Allow in the IP Access column of the required port.

5. Restart Integration Server.

6. Refresh your browser and log on to API Gateway and modify global IP access settings.

Configuring Restriction to IP Address based on Authentication
You must have theManage Security Configuration functional privilege to configure this restriction.

You can configure the restriction to client IP address based on authentication failure inAPIGateway
to prevent malicious attack that occurs when a client floods a server with many requests in an
attempt to interfere with server processing. This restriction prevents the malicious attack by
blocking or denying the unauthenticated client from accessing the APIs, when API Gateway fails
to authenticate the client. Using API Gateway, you can limit the number of times a client fails to
authenticate theAPI in a specified time interval. The reason for authentication failure can be either
of the following:

when API Gateway fails to authenticate the client (or)

when API Gateway fails to identify the client and its respective application.

When the above mentioned authentication failure occurs, API Gateway sends the 401 or 403 error
message to the client.

When API Gateway detects that the failed authentication limit has been exceeded, it blocks or
denies that particular client IP address from accessing any of the APIs and sends the 403 Forbidden
error to the client.

Note:

If an API is enforcedwith Identify andAccess Application policy, and if the invocation fails
due to non-preemptive authentication failure. API Gateway does not take such
non-preemptive authentication failure into count and increase the failed authentication
count.
When you use Load Balancer for configuring high availability between the API Gateway
instances, API Gateway honours the X-Forwarded-For (XFF) header from the client. As the
XFF header has the actual client IP address, APIGateway can block or deny the problematic
client from accessing the protected API based on your configuration.

webMethods API Gateway Administration 10.11 431

3 Security Configuration

To configure restriction to IP address based on authentication

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Global IP Access Settings.

3. Click Authentication based restrictions - Block/Deny by IP address section and provide
the following information.

DescriptionField

Specifies whether restriction to IP address based on authentication is
enabled.

Enable

Click the toggle button to change the state to to enable IP address
restriction.

By default this option is disabled.

Specifies themaximumnumber of failed authentication that API Gateway
can accept from a specific IP address in a given time interval.

Maximum failed
authentication

Specifies the time interval, in seconds, in which maximum authentication
failure can be permitted.

In (seconds)

Specifies the action to be performed when the number of failed
authentication from an IP address exceeds the specified limits.

Action when limit
exceeds

432 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Select one of the following:

Add IP address to deny list. Permanently denies the IP address from
accessing any APIs.

Block the IP address. Temporarily blocks the IP address from
accessing any APIs for specified time interval.

In (seconds). Specify the time interval forwhich youwant to block
the IP address.

Specifies the list of IP addresses that are denied from access.Denied IP list

Click in the Action column to remove an IP address from the denied
list.

4. Click Save.

The configuration is saved.

SAML Issuer

If a native API is enforced with the SAML policy, API Gateway uses this configuration to
communicate to STS (Security Token Service) to retrieve the SAML token.

To add a SAML issuer

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > SAML issuer.

The SAML issuer page lists all the issuers configured along with the Endpoint URI
corresponding to each SAML issuer, if any.

3. Click Add SAML issuer.

4. In the Add SAML issuer section, provide the following information:

DescriptionField

Name of a SAML token issuer used by API Gateway.Name

This value must match the value of the Issuer field in the SAML
assertion.

webMethods API Gateway Administration 10.11 433

3 Security Configuration

DescriptionField

Selecting this sets the client that requests the SAML token.Normal client

Selecting this delegates the SAML request to another user (delegator).Act as delegation

The delegator uses a signature element to authenticate the SAML
request.

Specifies the name of an issuer policy to be used to communicate
with SAML issuer.

Issuer policy

If a value is specified for the Issuer policy field, then the selected
issuer policy is applied to all APIs that are using the SAML
authentication.

If a value is NOT specified for this field, then a default issuer
policy based on the WSS Username or Kerberos
communication mode is applied to all APIs.

Communicate using. Specifies the mode of communication.

Specifies that WSS Username mode is used to obtain the SAML
assertion to access the API.

WSS Username

TheWSSusername token supplied in the header of the SOAP request
that the consumer application submits to the API.

Specifies that Kerberos mode is used to obtain the SAML token and
assertion to access the API.

Kerberos

Transports the Kerberos token over the Transport Layer Security
(TLS) protocol to provide additional security features.

Authenticate using. Specify the type of authentication youwant to usewhile communicating
with the SAML issuer.

For the Authentication type WSS Username, authenticate using the following:

Specifies the values provided in the policy required to communicate
the SAML issuer.

Custom credentials

Provide the following information:

Username. Specify a username.

Password. Specify a password.

For the Authentication type Kerberos, authenticate using any of the following:

Specifies the values provided in the policy required to communicate
the SAML issuer.

Custom credentials

Provide the following information:

434 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAP user.

Service principal. A valid Service Principal Name (SPN). The
specified value is used by the client to obtain a service ticket
from the KDC server.

Service principal nameform. Specifies the format inwhich you
want to specify the principal name of the service that is registered
with the principal database. Select one of the following:

Username. Represents the principal name as a named user
defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the service
name and the host name, where host name is the host
computer.

Specifies the values provided in the policy required by the API
providers to select whether to delegate the incomingKerberos token
or act as a normal client.

Delegate incoming
credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAP user.

Service principal. A valid Service Principal Name (SPN). The
specified value is used by the client to obtain a service ticket
from the KDC server.

Service principal nameform. Specifies the format inwhich you
want to specify the principal name of the service that is registered
with the principal database. Select one of the following:

Username. Represents the principal name as a named user
defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the service
name and the host name, where host name is the host
computer.

Specifies the incomingHTTP basic authentication credentials in the
transport header of the incoming request for client principal and
client password.

Incoming HTTP basic
auth credentials

Provide the following information:

webMethods API Gateway Administration 10.11 435

3 Security Configuration

DescriptionField

Service principal. A valid Service Principal Name (SPN). The
specified value is used by the client to obtain a service ticket
from the KDC server.

Service principal nameform. Specifies the format inwhich you
want to specify the principal name of the service that is registered
with the principal database. Available values are:

Username. Represents the principal name as a named user
defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the service
name and the host name, where host name is the host
computer.

Provide the endpoint URI of the STS.Endpoint URI

Specify the SAML version to be used for authentication.SAML version

Available values are: SAML 1.1, SAML 2.0

Specify the WS-Trust version that API Gateway must use to send
the RST to the SAML issuer.

WS-Trust version

Available values are: WS-Trust 1.0, WS-Trust 1.3

Specify the scope for which this security token is required.Applies to

For example, the APIs to which this token is applied.

Signing configurations

Specify the keystore to be used by API Gateway while sending the
request to the STS.

Keystore alias

A keystore is a repository of private keys and corresponding public
certificates.

Specify the key alias, a private key used to sign the request sent to
STS.

Key alias (signing)

Encryption configurations

Select the truststore that should be used by API Gateway while
sending the STS request.

Truststore alias

Truststore is a repository that holds all the trusted public certificates.

Select the certificate from the truststore used to encrypt the request
that is sent to the STS.

Certificate alias
(Encryption)

436 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Request security token template parameters. Defines extensions to the
<wst:RequestSecurityToken> element for requesting specific types of keys, algorithms, or key
and algorithms, as specified by a given policy in the return token(s).

Specifies the key type of the security token template.Key

Specifies a value for the request token.Value

You can add multiple key and values by clicking .

5. Click Add.

This adds the SAML issuer and it is listed in the SAML issuers list.

Custom Assertions

API Gateway usesWS-Security (WSS) to provide message-level security and protection for SOAP
message requests from a client to an API, and SOAP message responses from an API to a client.
By default, API Gateway supports the WSS policies like Username, X.509 certificate, Security
AssertionMarkupLanguage (SAML), Kerberos, Encryption, and so on, for the request or response
SOAP messages, or both.

API Gateway also provides an extension to define and use custom policy assertions. Custom
assertions allow the API providers to extend and provide additional security policies that are not
available by default in API Gateway.

In WS-Security, custom assertions are used for expressing individual security requirements,
constraints, or both. The individual policy assertions can be combined to create security policies
that ensure secure and reliable exchanges of SOAP messages between a client and a SOAP API.

API Gateway supports the following assertion types for enforcing a custom security policy:

Binding Assertions

These assertions specify the security mechanism that is to be used by the client or API such as the
keys being used, algorithms, and so on. Common properties used by other assertions are also
defined in the security binding assertion.

API Gateway supports the following WS-SecurityPolicy binding assertions:

DescriptionBinding Assertion

This assertion is used when the message is protected at the transport
level. In this binding, messages are exchanged only through a defined
medium, for example, HTTPS.

Transport Binding

Note:

webMethods API Gateway Administration 10.11 437

3 Security Configuration

DescriptionBinding Assertion

By default, API Gateway uses the transport binding for Kerberos
authentication.

This assertion is used when both the initiator and the recipient possess
security tokens. In this binding, initiator uses it's private key to sign and

Asymmetric Binding

the recipient's public key to encrypt. Recipient uses it's private key to
decrypt and initiator's public key to verify the signature.

Note:
Bydefault, APIGateway uses the asymmetric binding for the security
policies.

This assertion is used when only the initiator or recipient has a security
token. In this binding, both the signing and encrypting of messages is
done using a single security token.

Symmetric Binding

Token Assertions

These assertions specify the types of tokens to be used to authenticate and secure SOAPmessages.

API Gateway supports the following WS-SecurityPolicy token assertions:

DescriptionToken Assertion

When using this assertion, the message-level security is implemented
using aWSS username token. The assertion authenticates a client using

Username Token

the username and password in the SOAP request. If validation of the
username token succeeds, then API Gateway passes the message to the
API. If validation fails, then API Gateway returns a SOAP fault.

When using this assertion, the message-level security is implemented
using an X.509v3 certificate. The assertion authenticates a client using

X509 Token

the X.509v3 certificate in the SOAP request. If validation of the X.509v3
certificate succeeds, then API Gateway passes the message to the API.
If validation fails, then API Gateway returns a SOAP fault.

When using this assertion, the message-level security is implemented
using a Kerberos token. The assertion authenticates a client using the

Kerberos Token

Kerberos token in the SOAP request. If validation of the Kerberos token
succeeds, thenAPI Gateway passes themessage to the API. If validation
fails, then API Gateway returns a SOAP fault.

When using this assertion, the message-level security is implemented
using a SAML (Security Assertions Markup Language) token. SAML is

SAML Token

a standard data format for exchanging authentication and authorization
data between the client and the SOAP API. If validation of the SAML

438 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionToken Assertion

token succeeds, then API Gateway passes the message to the API. If
validation fails, then API Gateway returns a SOAP fault.

Note:
API Gateway supports both the SAML 1.1 and 2.0 standards.

Policy Assertions

API Gateway allows you to even define a complete custom policy assertion. For example, a policy
assertionmight specify a symmetric binding and the security token types that are used to digitally
sign or encrypt SOAP messages between the client and API.

Creating a Custom Assertion
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to add a custom assertion.

You might want to create a custom assertion when you want to:

Enforce symmetric binding with an authentication mechanism that is not available by default
in API Gateway.

Support signing and encryption at the desired level.

Modify the predefined encryption algorithm and security layout properties.

Enforce custom authentication tokens that are not available by default in API Gateway.

Important:
When creating a custom assertion, make sure that both the syntax and the semantics of the
assertion element are valid and in compliancewith theWeb Services Security Policy specification.

To create a custom assertion

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Custom assertions.

API Gateway displays a list of all the currently defined policy assertions.

3. Click Add assertion.

4. Select the assertion type. The available options are:

webMethods API Gateway Administration 10.11 439

3 Security Configuration

Binding

Token

Policy

5. Provide the following information:

DescriptionField

Name of the custom assertion.Name

For a binding or token assertion type, this is the display name of the
assertion in the Binding Assertion field or Custom Token
Assertion of the Inbound Auth - Message policy.

For a policy assertion type, this is the display name of the assertion
in the Issuer Policy field of the Add SAML Issuer configuration
page.

Click Browse and select the policy assertion file to be uploaded.Select file

TheAssertion element text box displays the data from the assertion
file.

If you have uploaded the policy assertion file and want to replace
it, click the Delete icon.

If you have not uploaded the policy assertion file, provide the XML
representation of assertion.

Assertion element

6. Click Add.

The custom assertion is added. You can create as many custom assertions you require.

Post-requisites:

To enforce the custom binding or token assertion in an API, select the assertion in the appropriate
fields of the Inbound Auth - Message policy:

Binding Assertion

Custom Token Assertion

To enforce the custompolicy assertion in anAPI, select the assertion and the corresponding SAML
issuer in the appropriate fields:

Issuer Policy field of the Add SAML Issuer configuration page.

Authentication scheme field of the Outbound Auth - Message policy.

440 webMethods API Gateway Administration 10.11

3 Security Configuration

Viewing Custom Assertion List and Assertion Configuration
You can view the list of configured custom assertions in API Gateway. In addition, you can view
and modify the configuration in the individual custom assertion details page.

To view a list of custom assertions and assertion configuration

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Custom assertions.

A list of all available custom assertions appears.

You can delete a custom assertion by clicking its Delete icon.

3. Click any custom assertion to view the configuration details.

The custom assertion details page displays the XML element.

Modifying Custom Assertion
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to modify a policy assertion.

You might want to modify a custom assertion to change the currently defined security settings,
such as, authentication scheme, signing and encryption, algorithms and supporting tokens, of
SOAP messages.

To modify a custom assertion

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Custom assertions.

A list of all available custom assertions appears.

3. Select the required custom assertion that you want to modify.

4. Modify the fields as required.

5. Click Save.

The custom assertion is updated.

webMethods API Gateway Administration 10.11 441

3 Security Configuration

Post-requisites:

When you are ready to put the policy assertion into effect in an API, select it in the appropriate
field of Inbound Auth - Message policy.

Deleting Custom Assertion
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to delete a policy assertion.

You delete a policy assertion to remove it from API Gateway permanently.

To delete a policy assertion

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Custom assertions.

A list of all available custom assertions appears.

3. Click in the action column of the custom assertion to be deleted.

4. Click Yes in the confirmation dialog.

The custom assertion is deleted from API Gateway.

Example: Custom Assertions
API Gateway, by default, uses the asymmetric binding assertion with X.509v3 token for
implementing SOAP message protection. If you would like to enforce any authentication (other
than the predefined authentications shipped with API Gateway), include additional WSS custom
assertions, sign and encrypt SOAPmessages, and define customproperties, such as the algorithms
and layout of security header, you can create custom assertions that would construct the custom
policy file to suit your specific security requirements.

Following is a policy file that API Gateway generates when aWSS username token is enforced by
the Inbound Authentication Message policy for an API.
<wsp:Policy wsu:Id="9dbda2fb-9cef-4ff9-bc70-115c942a3b76"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsp:ExactlyOne>
<wsp:All>

(L01) <sp:AsymmetricBinding xmlns:sp=
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

442 webMethods API Gateway Administration 10.11

3 Security Configuration

<wsp:Policy>
<sp:InitiatorToken>
<wsp:Policy>

<sp:X509Token sp:IncludeToken
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

/IncludeToken/Never">
<wsp:Policy>

<sp:WssX509V3Token10 />
</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientToken>
<wsp:Policy>

<sp:X509Token sp:IncludeToken=
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy

/200702/IncludeToken/Never">
<wsp:Policy>

<sp:WssX509V3Token10 />
</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:RecipientToken>
<sp:AlgorithmSuite>
<wsp:Policy>

<sp:TripleDesRsa15 />
</wsp:Policy>

</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>

<sp:Strict />
</wsp:Policy>

</sp:Layout>
<sp:ProtectTokens/>

</wsp:Policy>
</sp:AsymmetricBinding>
<sp:SupportingTokens xmlns:sp=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<wsp:Policy>

<sp:UsernameToken sp:IncludeToken=
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/

IncludeToken/AlwaysToRecipient"/>
</wsp:Policy>

</sp:SupportingTokens>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

You might have a requirement to change the policy assertion that is available by default in API
Gateway. For example, you might want to generate the above security policy using a symmetric
binding instead of the default asymmetric binding, andmodify the username token that is defined
by default as a supporting token to a signed supporting token. You could then create custompolicy
assertions to achieve these specific requirements.

Important:
When adding a custom policy assertion, make sure that both the syntax and the semantics of
the assertion are valid and in compliance with the Web Services Security Policy specification.

webMethods API Gateway Administration 10.11 443

3 Security Configuration

Symmetric Binding Assertion

You might want to use a symmetric binding (instead of the default asymmetric binding) when
only API Gateway possess the X.509v3 token for authentication. You might also want to sign and
encrypt the SOAP messages, modify the encryption algorithm, and include timestamp on the
SOAP messages. You would then create a custom binding assertion with the specific property
lines:
<sp:SymmetricBinding

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsp:Policy>
<sp:ProtectionToken>
<wsp:Policy>
<sp:X509Token sp:IncludeToken=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">

<wsp:Policy>
<sp:WssX509V3Token10/>
<sp:WssX509PkiPathV1Token10/>

</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:ProtectionToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:TripleDesRsa15/>

</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
<wsp:Policy>
<sp:Strict/>

</wsp:Policy>
</sp:Layout>
<sp:IncludeTimestamp/>
<sp:ProtectTokens/>
<sp:OnlySignEntireHeadersAndBody/>
<sp:SignBeforeEncrypting/>
</wsp:Policy>
</sp:SymmetricBinding>

You could create custom assertions to include one or more of the following security requirements:

Supporting Token Assertions

You might want to sign the supporting token for example, WSS username token, and use
SignedSupportingTokens assertion. You might also want to specify that the signed username
token must always be included in the messages sent to the recipient. You would then create a
custom token assertion with the specific property lines:
<sp:SignedSupportingTokens xmlns:sp=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<wsp:Policy>

<sp:UsernameToken sp:IncludeToken=
"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/

IncludeToken/AlwaysToRecipient"/>
</wsp:Policy>

</sp:SignedSupportingTokens>

444 webMethods API Gateway Administration 10.11

3 Security Configuration

WSS Token Assertions

You might want to include WSS10 and WSS11 assertions to provide additional SOAP message
security. You would then create two separate custom token assertions with the specific property
lines:

Wss10 assertion:
<sp:Wss10

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsp:Policy>
<sp:MustSupportRefIssuerSerial/>
</wsp:Policy>

</sp:Wss10>

Wss11 assertion:
<sp:Wss11

xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsp:Policy>
<sp:MustSupportRefIssuerSerial/>
<sp:MustSupportRefThumbprint/>
<sp:RequireSignatureConfirmation/>
</wsp:Policy>

</sp:Wss11>

After you have defined these custom assertions in API Gateway, execution of a policy that is
configured with all of these custom assertions in the Inbound Auth - Message policy, would
construct the custom security policy file as follows:
<wsp:Policy wsu:Id="1e747a18-b55d-4e99-ac67-80a8eafd76b3"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsp:ExactlyOne>
<wsp:All>
<sp:SymmetricBinding xmlns:sp=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<wsp:Policy>
<sp:ProtectionToken>
<wsp:Policy>
<sp:X509Token sp:IncludeToken=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">

<wsp:Policy>
<sp:WssX509PkiPathV1Token10/>
</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:ProtectionToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:TripleDesRsa15/>

</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>

webMethods API Gateway Administration 10.11 445

3 Security Configuration

<wsp:Policy>
<sp:Strict/>

</wsp:Policy>
</sp:Layout>
<sp:OnlySignEntireHeadersAndBody/>

</wsp:Policy>
</sp:SymmetricBinding>
<sp:SignedSupportingTokens xmlns:sp=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<wsp:Policy>
<sp:UsernameToken sp:IncludeToken=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient"/>

</wsp:Policy>
</sp:SignedSupportingTokens>
<sp:Wss11 xmlns:sp=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<wsp:Policy>
<sp:MustSupportRefIssuerSerial/>
<sp:MustSupportRefThumbprint/>
<sp:RequireSignatureConfirmation/>

</wsp:Policy>
</sp:Wss11>
<sp:Wss10 xmlns:sp=

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<wsp:Policy>
<sp:MustSupportRefIssuerSerial/>

</wsp:Policy>
</sp:Wss10>
<sp:EncryptedParts xmlns:sp

"http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<sp:Body/>

</sp:EncryptedParts>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

Kerberos Settings

Kerberos is an authentication protocol that uses symmetric encryption and a trusted third party
system to validate the identity of clients. The Kerberos protocol provides authentication over open
and insecure networks in which communication between the hosts can be intercepted.

You can use API Gateway to configure Kerberos authentication for API requests. API Gateway
provides support for using Kerberos authentication for inbound and outboundHTTP andHTTPs
requests at the transport and the message level.

Kerberos authentication system consists of a Kerberos client that needs to access and use Kerberos
services, a trusted third-party system, specifically a Key Distribution Center (KDC), and a server
that hosts APIs that are accessible using Kerberos authentication.

Note:
You can configure the kerberos settings through API Gateway and Integration Server UI. But,
SoftwareAG recommends to useAPIGatewayUI to configure ormodify instrospection endpoint.

446 webMethods API Gateway Administration 10.11

3 Security Configuration

Configuring API Gateway to Use Kerberos
Before you configure API Gateway to use Kerberos authentication, ensure that:

A working Key Distribution Center (KDC) is set up.

The KDC is configured as an LDAP directory, for authenticating incoming requests with
Kerberos tickets.

The Kerberos client is registered with the principal database of the KDC.

The API that you want to access is registered with the KDC.

A valid Kerberos configuration file is available.

To configure API Gateway to use Kerberos

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Kerberos.

3. Provide or modify the following information as required:

DescriptionField

Optional. The domain name of the Kerberos server, in uppercase letters.Realm

Note:
A value specified for Realm overwrites the realm set in the KDC
configuration file specified in Kerberos configuration file.

Optional. The host name of the machine on which the KDC resides.Key distribution
center

A value specified forKey distribution center overwrites the default key
distribution center set in the KDC configuration file specified in
Configuration file.

The location of the Kerberos configuration file that contains the Kerberos
configuration information, including the locations of KDCs, defaults for

Configuration file

the realm and for Kerberos applications, and the host names andKerberos
realms mappings.

Specifies whether API Gateway requires a Kerberos V5 Generic Security
Services (GSS) mechanism to obtain the necessary credentials from an

Use subject
credentials

existing subject set up by the JAAS authenticationmodule.Here, subject
represents the user or service being authenticated in the JAAS login
context.

webMethods API Gateway Administration 10.11 447

3 Security Configuration

4. Click Save.

Master Password Management

In the normal course of its operations API Gateway may connect to native APIs, applications,
databases, and other systems such as, API Portal, CentraSite, or external entities such as Email
servers and databases. API Gateway is required to provide a password to each of these systems
before connecting to them. API Gateway uses this password to identify itself or authenticate to
the other systems.

When you configure API Gateway to connect to an application or subsystem, for example a
database, you specify the password that API Gateway must send to the database server in order
to connect to it. Later, when an API Gateway user makes a request that requires the database, API
Gateway sends the configured password to the database server and connects to it. InAPIGateway,
you would be using passwords while enforcing security related policies, while connecting to
various destinations such as, API Portal, CentraSite, Email, and SNMP, while configuring the
security-related aliases, configuring outbound proxy servers, and so on.

To protect these passwords API Gateway encrypts them. By default, it encrypts them using
Password-Based Encryption (PBE) standard, also known as PKCS5. This encryption method
requires the use of an encryption key ormaster password that you specify. The encrypted passwords
are stored in a file. The master password is also encrypted, and by default, is stored in a file. For
greater security, you can change the master password in API Gateway at regular intervals or you
can configure API Gateway to prompt for the master password at server startup instead.

Points to remember regarding master password:

When the master password is updated in one node, it is not synchronized across other nodes
in the cluster. The master password has to be updated manually in all the nodes.

During export or import of assets, ensure that the master password is identical across stages
and on different instances of API Gateway.

Backing up the Password and Master Password Files
You should regularly back up the files APIGateway uses tomaintain the passwords and themaster
password. In API Gateway instance’s home directory
(APIGateway_directory\instances\instance_name), these files are:

config/txnPassStore.dat: Stores encrypted passwords.

config/empw.dat: Stores encrypted master password.

config/configPassman.cnf: Specifies password configuration settings.

config/passman.cnf: Non-editable version of configPassman.cnf.

Always back up and restore these files together. If you change the name or location of the password
store or the master password store, make sure your backup procedure backs up the correct files.

448 webMethods API Gateway Administration 10.11

3 Security Configuration

Updating the Master Password
When you first install API Gateway, the master password is manage. For security purposes, you
should change the master password immediately after installation and again on a regular basis.
You should also change it when there are personnel changes.

The default expiry interval for a master password is 90 days. Once the master password expires,
the status of the password changes to Inactive. As the expiration date nears, API Gateway displays
the password expiration status on the API Gateway user interface and sends warning messages
to the console stating that it is time to change the master password. If API Gateway is configured
for e-mail notification, API Gateway also sends e-mail messages with this information to the
configured addresses.

You must have the Manage security configurations functional privilege assigned to update the
master password.

To update the master password

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Master password.

3. Click Update master password.

4. Type the current password in the Current password field.

5. Type the new password in the New password field.

6. Re-type the new password to confirm the new password in the Confirm new password field.

7. Click Update.

This updates the master password.

Managing Master Password Expiry Interval
When you first install API Gateway, it is configured to use PBE to encrypt passwords, and has a
master password ofmanagewith an expiry interval of 90 days. You can see the current expiry date
by looking at the Administration > Security > Master password screen.

The expiry interval is the time between password changes. If you do not change the master
password by the expiry date, API Gateway continues to operate using the existing password
indefinitely. If you specify an interval value 0, the password does not expire and no warnings are
sent to API Gateway or the server log.

You must have the Manage security configurations functional privilege assigned to update the
master password expiry interval.

webMethods API Gateway Administration 10.11 449

3 Security Configuration

To update the master password expiry interval

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Master password.

3. Provide a value for the expiry interval.

4. Click Update.

This updates the expiry interval.

Advanced Configuration to Manage Master Password
The configPassman.cnf file contains additional configuration settings for password encryption.
The file consists of a number of properties, some of which are commented out in the default
configuration.

Note:
The configPassman.cnf file has a companion file, passman.cnf. If you make changes to
configPassman.cnf file, APIGateway automatically updates passman.cnf to reflect these changes
when you initialize API Gateway. Never update passman.cnf directly.

As shipped, the configPassman.cnf file specifies that passwords are stored in the
config/txnPassStore.dat file and encrypted using Password-Based Encryption (PBE). In addition,
it specifies that the master password is stored in the config/empw.dat file. Properties that can be
used to specify other settings are commented out.

If you want to change these optional settings, you must edit the configPassman.cnf file. The file
must always specify the following:

Encryption method for passwords.

Location of the file that contains the passwords.

Method API Gateway uses to obtain the master password.

The following sections describe the configPassman.cnf file in detail and how to change password
and master password settings.

Working with Password Settings

This section describes how to use the configPassman.cnf file to change settings for passwords.

Controlling Name and Location of Password File

The default file name and location for the password file is in the server instance’s home directory
under config/txnPassStore.dat. To change it, locate and modify the following property:

450 webMethods API Gateway Administration 10.11

3 Security Configuration

outbound.password.field.fileName=config/txnPassStore.dat

This property must always be present and uncommented. If you want to change the file name or
location, change the right hand side only. You can specify an absolute or relative path. In the path
name, use the forward slash (/) only; the backward slash (\) is not supported.

Controlling Encryption of Outbound Password File

The default encryption method for the password file is Password-Based Encryption (PBE). To
change it, locate the following properties and uncomment a different method. One and only one
of these properties must always be uncommented.

SecurityDescriptionProperty

Most secureThis denotes PBE encryption.default.encryptor=EntrustPbePlus

Not secureThis denotes Base64 encoding.#default.encryptor=Base64

Not secureThis denotes Clear text.#default.encryptor=None

Working with Master Password Settings

By default, the master password is stored in the file config/empw.dat under the server instance’s
home directory, but if you prefer, you can configure API Gateway to prompt for the master
password at server initialization. The following sections describe how to tell API Gateway which
method to use.

Storing the Master Password in a File

To store the master password in a file, use the following properties:

DescriptionProperty

This controls whether API Gateway stores
the masterpassword in a file (true) or

master.password.storeInFile=true

prompts for it at server initialization (false).
If this value is set to true, make sure the
master.password.field.attemptsLimit
properties are commented out.

This indicates the location of the master
password store. Use the forward slash (/)

master.password.field.fileName=config/empw.dat

only; the backward slash (\) is not
supported.

This indicates the number of password
changes required before you can reuse a
password.

master.password.field.repeatLimit=3

webMethods API Gateway Administration 10.11 451

3 Security Configuration

Prompting for the Master Password at Server Initialization

To prompt for themaster password at server initialization, use the following properties. Use these
properties only if you want API Gateway to prompt for the password at server initialization (that
is, you specify false for master.password.storeInFile). If you do not want API Gateway to prompt
for the password at server initialization, make sure these two properties are commented out.

DescriptionProperty

Specify true to prompt for the password in a pop-up
window. If you select this method, you can start the

#master.password.field.useGUI=true

server from the Windows start menu. This is default
if master.password,storeInFile is set to false.

This indicates the number of unsuccessful login
attempts permitted before API Gateway rejects the
request.

#master.password.field.attemptsLimit=3

You cannot configure API Gateway to prompt for the master password at server initialization if:

API Gateway runs as a Windows service.

API Gateway runs as a background application on UNIX.

Restoring the Password and Master Password Files
If yourAPIGateway is configured to encrypt passwords using Password- Based Encryption (PBE),
your API Gateway will have a master password, which is the key used to encrypt the other
passwords. You have to provide the master password whenever you want to change to a new
encryption key. In addition, some installations are configured so that API Gateway prompts for
the master password when API Gateway initializes; without the password, API Gateway starts
up in safe mode. Therefore, if you lose or forget your master password, you have to restore it or
reset it, depending on the circumstances.

You can restore passwords if either of the following is true:

Your master password and other passwords are stored in files and you have recent backups
of both and the passman.cnf file.

API Gateway is configured to prompt for the master password, you have a recent backup of
the password file and the passman.cnf file, and you know themaster password for that backup.

To restore the master password and other password files

1. Determine which files you need to restore.

If your master password is not stored in a file, that is, your API Gateway prompts you for a
master password at server startup, then you can restore just the password file and the

452 webMethods API Gateway Administration 10.11

3 Security Configuration

passman.cnf file. Otherwise, youmust restore themaster password file, the password file, and
the passman.cnf file from backups.

2. Determine the name and location of the files.

The passman.cnf file is always config/passman.cnf located under the server instance’s home
directory (APIGateway_directory\instances\instance_name). By default, themaster password
file is config/empw.dat and the password file is in config/txnPassStore.dat. If you are not sure
of the location of these files on your system, look at the file config/configPassman.cnf.

3. Shut down API Gateway.

4. Copy the replacement files to appropriate directory.

5. Restart API Gateway.

Note:
Always back up and restore the master password file (if you use one), the password file,
and the passman.cnf file together.

Resetting the Master Password
You can use the API Gateway Administration > Security > Master password section to reset the
master password and all the stored passwords in the unlikely event the master password or the
other passwords are lost or corrupted.

The reset procedure clears the stored passwords and resets the master password to manage.

Youmust have theManage security configurations functional privilege assigned to reset themaster
password.

You must reset the passwords if any of the following is true:

Your master password and passwords are stored in files and you do not have recent backups
of the master password file, the password file, and the passman.cnf file.

API Gateway is configured to prompt for the master password and you do not have recent
backups of the password file and the passman.cnf file.

API Gateway is configured to prompt for the master password and you have lost or forgotten
the master password.

To reset the master password

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Master password.

webMethods API Gateway Administration 10.11 453

3 Security Configuration

3. Click Reset.

4. Click Yes in the confirmation dialog.

This clears the stored passwords and resets the master password to manage.

OAuth, JWT, and OpenID Configuration

This section describes the Open Authorization (OAuth), JSONWeb Token (JWT), and OpenID
Connect (OpenID) authentication protocols that you can use to identify and authorize a client
application. The application is first identified based on the criteria provided in the strategy
configured. A strategy is a way to authenticate the incoming request and provides multiple
authentication mechanisms or multiple authorization servers for a single authentication scheme.
API Gateway identifies the application and validates the token submitted through the strategy
configured in the application.

OAuth Authentication Use case and Workflow
The Open Authorization is a flexible authorization framework for securing application access to
protected resources of APIs. OAuth 2.0 uses access tokens that are presented by client applications
(on behalf of the end users) to access the protected resources.

The OAuth authorization framework includes the following terms:

Roles

Resource Owner (or the End User). This is the holder of the protected resources that the client
application accesses. The resource owner is typically a person (usually the end user), but could
also be an application.

Client Application (or the Client). This is the application that is requesting access to protected
resources on behalf of the end user.

Resource Server (or API Gateway). This is the server that stores the protected resources the
application is trying to access. API Gateway acts as a resource server.

Authorization Server. This is the server that acts as an interface between the client application
and end user, authenticates the end user, and issues access tokens after proper authorization.
API Gateway can be configured to act as an OAuth 2.0 authorization server. You can configure
API Gateway for use with a third-party OAuth 2.0 authorization server, such as PingFederate.

Authorization Grant Types

Authorization Code. This is the grant type used to obtain access tokens (and optionally refresh
tokens) and is optimized for confidential clients.

For public clients, theAuthorization Code grant type can be further secured by PKCEmechanism.
For details, see Securing Access Token Calls with PKCE in the webMethods API Gateway User's
Guide.

Note:

454 webMethods API Gateway Administration 10.11

3 Security Configuration

API Gateway supports the confidential client authentication using Authorization headers.
The confidential clients have to authenticate using their credentials, the client id and client
secret combination. Few points to consider using the Authorization Code grant type:

If the property watt.server.oauth.token.endpoint.auth=session (the default value)
and the confidential client already has a session when it comes to the token endpoint,
the access to the endpoint is granted even if there are no credentials in the header.
If the property watt.server.oauth.token.endpoint.auth=credentials or if the client
does not already have a session, the confidential client must provide the client_secret
in the Authorization header.
API Gateway does not support the client secret in the body of the request for the
Authorization code grant.

For details about the propertiesmentioned, seewebMethods Integration Server Administrator’s
Guide

Implicit. This is the grant type used to obtain access tokens and is optimized for public clients.
It does not support the issuance of refresh tokens.

Client Credentials. This is the grant type used to obtain access tokens for client-only
authentication.

Resource Owner Password Credentials. This is the grant type used to obtain access tokens
when the resource owner has a trust relationship with the client, and clients are capable of
obtaining the resource owner's credentials.

Clients

Confidential. A confidential client is an application that is capable of keeping a client password
confidential to theworld. This client password is assigned to the client app by the authorization
server. This password is used to identify the client to the authorization server, to avoid fraud.
An example of a confidential client is a web app, where no one but the administrator can get
access to the server, and see the client password.

Public. A public client is an application that is not capable of keeping a client password
confidential. For instance, a mobile phone application or a desktop application that has the
client password embedded inside it. Such an application could get cracked, and this could
reveal the password. The same is true for a JavaScript application running in the users browser.
The user could use a JavaScript debugger to look into the application, and see the client
password.

API Gateway can be used as an authorization server and as a resource server.

API Gateway as a Resource Server

WhenAPIGateway acts as a resource server, it hosts the protected resources, accepts, and responds
to the client applications' requests that include an access token. The client application sends the
access token in the Authorization request header field using the Bearer authentication scheme.
The resource server validates the access token locally or remotely if it cannot validate locally.

If the token is valid and the client application has privileges to access the protected resources, the
resource server executes the request. If the access token is invalid, it rejects the request.

webMethods API Gateway Administration 10.11 455

3 Security Configuration

API Gateway as an Authorization Server

When API Gateway acts as an authorization server, it receives authorization requests from client
applications. The authorization server handles the interactions between the client application,
resource server, and resource owner for approval of the request.

As an authorization serverAPIGateway issues tokens to client applications on behalf of a resource
owner for use in authenticating subsequent API calls to the resource server. The resource server
hosts the protected resources, and can accept or respond to the protected resource requests using
access tokens. If the client application is authorized to access the protected resources, the resource
server executes the request. The authorization server retains the information about the access
tokens it issues, including the user information. When a client presents an access token to the
resource server, the resource server sends the token to the authorization server to ensure that the
token is valid and that the requested service is within the scope for which the access token was
issued. A scope is the definition of the resources that the client application can access on behalf
of a resource owner. If the client application does not have privileges to access the resources, the
resource server rejects the request.

Using API Gateway with an External Authorization Server

When API Gateway is the resource server, you must specify an authorization server. As an
alternative to using API Gateway as the authorization server, you can use a third-party server as
the authorization server. This allows API Gateway to validate access tokens issued by third-party
servers and also allow to dynamically create clients in the third-party server.

Note:

Before you configure API Gateway to use a third-party authorization server, make sure
that the authorization server is compliantwith the RFC 7662, OAuth 2.0 token introspection.
From API Gateway release 10.3 onwards API Gateway supports multiple authorization
servers.

To use an external authorization server, youmust configure your third-party authorization server.
This includes, but is not limited to, the following:

To introspect the token, you should have a JWKS URI or you should create a client account
that API Gateway uses to call the authorization server's introspection endpoint.

Make a note of the client_id and client_secret values. You provide this information as part of
defining the external authorization server alias for the API Gateway resource server.

Make a note of the URL for the introspection endpoint. You provide this information as part
of defining the external authorization server alias in the API Gateway resource server.

Validation of JWT token of the external authorization server happens in the following ways:

Remote IntrospectionLocal Introspection

Validation of the JWT token happens with the
authorization server. Therefore, token caching
is not possible in remote introspection.

Validation of the JWT token happens within the
gateway in the following methods:

456 webMethods API Gateway Administration 10.11

3 Security Configuration

Remote IntrospectionLocal Introspection

It has an introspection endpoint, which is used
to validate the token. In addition, the client id

Using JWKS URI.

The external authorization server's signature
is verified by using the public certificate in
the JWKS URI.

and client secret are used to protect the endpoint,
so that anonymous users cannot access the
resource. To invoke an endpoint, you require a

API Gateway's cache has a key as kid claim
and its value is the certificate corresponding

user; Gateway user is the one you can use to
invoke the endpoint.

to the kid claim. The cache is populated on
every restart of API Gateway by invoking
the JWKS URI.

In the runtime, while validating the token
using the local introspection, the kid value
from the incoming JWT is fetched and the
corresponding certificate is retrieved from
the cache and the signature validation
happens.

Using RSA.

The external authorization server's signature
in the JWT is verified by the truststore
defined in the local introspection
configuration.

Using HMAC.

If the authorization server uses HMAC
algorithm, that means the signature
validation of the JWT is performed using a
shared key between the authorization server
and API Gateway. You must specify the
HMAC shared secret when creating the
strategy of the application. The HMAC
shared secret in the application is used to
validate the authorization server's signature
present in JWT.

Create the required scopes.

Configure an alias to the authorization server.

Currently, API Gateway, by default, can be used with the following third-party authorization
servers, but are not limited to, that are RFC 7662, OAuth 2.0 token introspection compliant:

Okta

PingFederate

webMethods API Gateway Administration 10.11 457

3 Security Configuration

You can also use other third-party authorization servers like Google, keycloak, and so on.

Authorizations for applications created from API Portal

When you create applications through API Portal, you must specify the required authorization
server using the watt.server.oauth.authServer.alias settings in the Administration section of
API Gateway.

If API Gateway is the authorization server, then provide local as the value of the
watt.server.oauth.authServer.alias setting. Else, provide the name of the corresponding
authorization server. For information on extended settings, see “Configuring Extended Settings” on
page 224.

Use case 1: OAuth Authentication with API Gateway as a Resource server as well
as an Authorization server

This describes the high level workflow for the scenario where API Gateway is a resource server
as well as an Authorization server.

1. Configure API Gateway as an internal authorization server.

Ensure you configureOAuth scopeswhile configuring the authorization server. For a complete
procedure on configuring API Gateway as an internal authorization server, see “Configuring
the Internal Authorization Server” on page 471.

2. Map the scopes.

For a complete procedure on mapping scopes, see “Mapping OAuth or OpenID Scopes” on
page 482.

3. Enforce the Identify & Authorize policy on the API.

Ensure to select OAuth2 token. For details of the Identify & Authorize policy see, Identify &
Authorize in the webMethods API Gateway User's Guide.

4. Associate an application with the API.

You can create a new application or use an existing one. Ensure that the application associated
contains the strategy for OAuth authentication. While creating a strategy you can associate it
with the scopes that are available to be used while using dynamic client registration. For a
complete procedure on creating an application with a strategy, see Creating an Application
in thewebMethods API GatewayUser's Guide. Refer the “Authorizations for applications created
from API Portal” on page 458 section for information on configuring authorization server for
the applications created from API Portal.

5. Activate the API.

User on invoking theAPI uses theOAuth identificationmethod to access the protected resource.

6. Get OAuth token required to access the application. For the procedure on retrieving anOAuth
token, see “Retrieving OAuth Token” on page 461.

7. Use the access token to invoke the API.

458 webMethods API Gateway Administration 10.11

3 Security Configuration

Use case 2: OAuth Authentication with API Gateway as a Resource server and an
external Authorization server

This describes the high level workflow for the scenario where API Gateway is the resource server
with a third-party authorization server. This is generally used in an environment where there is
an existing authorization server, which is used with API Gateway as a resource server.

1. Configure a Provider if you are using the Dynamic client registration. Else you can proceed
to step 2.

For a complete procedure on configuring a provider, see “Adding a Provider” on page 474.

2. Configure an external authorization server.

Ensure you configureOAuth scopeswhile configuring the authorization server. For a complete
procedure on configuring an external authorization server, see “Adding an External
Authorization Server” on page 477.

3. Map the scopes.

For a complete procedure on mapping scopes, see “Mapping OAuth or OpenID Scopes” on
page 482.

4. Enforce the Identify & Authorize policy on the API.

Ensure to select OAuth2 token. For details of the Identify & Authorize policy see, Identify &
Authorize in the webMethods API Gateway User's Guide.

5. Associate an application with the API.

You can create a new application or use an existing one. Ensure that the associated application
contains the strategy for OAuth authentication and contains the client ID. While creating a
strategy you can associate it with the scopes that are available to be used while using dynamic
client registration. If the authorization server supports dynamic client registration, then you
can select the optionGenerate credentials. If the application is already created in authorization
server, then provide the respective client ID. For a complete procedure on creating an application
with a strategy, see Creating an Application in thewebMethods API Gateway User's Guide. Refer
the “Authorizations for applications created fromAPI Portal” onpage 458 section for information
on configuring authorization server for the applications created from API Portal.

6. Activate API.

User on invoking theAPI uses theOAuth identificationmethod to access the protected resource.

7. Get the access token from the authorization server. For the procedure on retrieving an OAuth
token, see “Retrieving OAuth Token” on page 461.

8. Use the access token to invoke the API.

For a detailed procedure on using OAuth Authentication with API Gateway as a Resource server
andOKTAas an external Authorization server, see SecuringAPIs using 3rd partyOAuth 2 provider
in API Gateway.

webMethods API Gateway Administration 10.11 459

3 Security Configuration

http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Securing%20APIs%20using%203rd%20party%20OAuth%202%20provider%20in%20API%20Gateway
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Securing%20APIs%20using%203rd%20party%20OAuth%202%20provider%20in%20API%20Gateway

OAuth Authorization Workflow

The flow of authorization requests and responses between the end user, client application,
authorization server, and resource server is as depicted in the following figure.

The OAuth authorization workflow is as follows:

1. The end user logs in, the client application sends the authentication request to the authorization
server to obtain an access token.

2. Authorization server validates the request and generates an access token for the client.

3. Client uses this access token to send HTTP requests to API Gateway.

4. API Gateway then performs the following:

a. Identifies the application using the clientId.

b. Validates the token locally or remotely if it is not possible locally.

c. Checks if the requested resource is part of the scopes in the token.

d. Checks the audience.

460 webMethods API Gateway Administration 10.11

3 Security Configuration

If all the above are validated, API Gateway provides access to the protected resource. If the
access token is expired, authorization server returns a specific error response. The client
application can then use Refresh Token to request a new access token. The Authorization
Server returns a new access token that can be used to access the protected resource.

Retrieving OAuth Token

You must retrieve an OAuth token to access an API that is OAuth protected.

To retrieve an OAuth token

1. Open your REST client.

2. Make a POST call to the following URL, with the hostname of the systemwhere API Gateway
is installed in place of localhost:

http://localhost:5555/invoke/pub.apigateway.oauth2/getAccessToken

For example
http://10.2.120.14:5555/invoke/pub.apigateway.oauth2/getAccessToken

3. Provide the following payload, with the required client id and client secret, in the Request
section:

{
"grant_type":"client_credentials",
"client_id":"client id",
"client_secret":"client secret"

}

You can find Client id and Client secret in the Authentication section of the Application
details page.

For example
{

"grant_type":"client_credentials",
"client_id":"0abcd80e-f009-4a38-b52e-e663b2e18e5b",
"client_secret":"3bd9c383-813e-40d4-b876-67c4da7c71cc"

}

The access token that can be used to access the required application is displayed in the
Response section.

Sample response
{

"access_token": "c9a39e14e6a84be0b228bc9bcb76ad99",
"token_type": "Bearer",
"expires_in": 3600

}

webMethods API Gateway Administration 10.11 461

3 Security Configuration

JWT Authentication Use case and Workflow
JSONWeb Token is a JSON-based open standard (RFC 7519) means of representing a set of
information to be securely transmitted between two parties. A set of information is the set of claims
(claim set) represented by the JWT. A claim set consists of zero or more claims represented by the
name-value pairs, where the names are strings and the values are arbitrary JSON values. The
claims in a JWT are encoded as a JSON object that is used as the payload of a JSONWeb Signature
(JWS) structure, enabling the claims to be digitally signed. JWTs can be signed using a shared
secret (with HMAC algorithm), or a public or private key pair using RSA.

API Gateway can generate a JWT token itself or validate the JWT token generated by a trusted
third-party server. API Gateway uses the RSA-based JWT to provide stronger integrity protection
to JWTs when API Gateway is the issuer of the token. The JSON-based access tokens contain one
or more claims. A claim is any piece of information that serves as an unique identifier, and that
the token issuer who generated the token has verified. API Gateway extracts the claims from the
JWT, identifies the application and then authorizes access to the protected resource.

Note:
JWT authentication is supported for both REST and SOAPAPIs. API Gateway does not support
Base 64 encoded JWT tokens.

Use case 1: JWT authentication with API Gateway as a JWT issuer

This describes the high level workflow for the scenariowhereAPI Gateway can generate the JSON
Web Token itself.

1. Configure API Gateway as an internal authorization server.

For a complete procedure on configuring API Gateway as an internal authorization server,
see “Configuring the Internal Authorization Server” on page 471.

2. Enforce the Identify & Authorize policy on the API.

Ensure to select JWT. Formore details, see Identify&Authorize in thewebMethods API Gateway
User's Guide.

3. Associate an application with the API.

You can create a new application or use an existing one. Ensure that you add the required
claims while creating the application, which you would use to validate the access token. For
a complete procedure on creating an application with a strategy, see Creating an Application
in the webMethods API Gateway User's Guide.

4. Activate the API.

User on invoking the API uses the JWT identificationmethod to access the protected resource.

5. You get the JWT in one of the following ways (with or without claims), which you can pass
as a bearer token to invoke the API.

462 webMethods API Gateway Administration 10.11

3 Security Configuration

https://tools.ietf.org/html/rfc7519

Retrieve JWTToken - For a complete procedure on retrieving a JWT token, see “Retrieving
JWT Token” on page 466.

Retrieve JWT Token with Claims - For a complete procedure on retrieving a JWT token
with claims, see “Retrieving JWT Token with Claim” on page 467.

Use case 2: API Gateway with an external JWT issuer

This describes the high level workflow for the scenario where API Gateway accepts JSONWeb
Token generated by a trusted third-party server.

1. Configure an external authorization server.

For a complete procedure on configuring an external authorization server, see “Adding an
External Authorization Server” on page 477.

2. Enforce the Identify & Authorize policy on the API.

Ensure to select JWT. Formore details, see Identify&Authorize in thewebMethods API Gateway
User's Guide.

3. Associate an application with the API.

You can create a new application or use an existing one. Ensure that you add the required
claims while creating the application, which you would use to validate the access token and
the external authorization server that would be the JWT issuer. For a complete procedure on
creating an application with a strategy, see Creating an Application in the webMethods API
Gateway User's Guide. Refer the “Authorizations for applications created from API Portal” on
page 458 section for information on configuring authorization server for the applications created
from API Portal.

4. Activate the API.

User on invoking the API uses the JWT identificationmethod to access the protected resource.

5. Pass the JWT as a bearer token to invoke the API.

Use case 3: JWT authentication with API Gateway for applications registered from
API Portal

This use case describes the high-level workflow for the scenario where API Gateway generates
the JSONWeb Tokens for the applications registered from API Portal. From API Portal, you can
create applications for APIs that require JWT access tokens to access them and test APIs fromAPI
Portal.

1. Configure an internal or external authorization server in API Gateway.

For a complete procedure on configuring API Gateway as an internal authorization server,
see “Configuring the Internal Authorization Server” on page 471.

For a complete procedure on configuring an external authorization server, see “Adding an
External Authorization Server” on page 477.

webMethods API Gateway Administration 10.11 463

3 Security Configuration

2. Create an API.

For a complete procedure on creating APIs, see Creating APIs in the webMethods API Gateway
User's Guide.

3. Enforce the Identify & Authorize policy on the API.

Ensure to select JWT. Formore details, see Identify&Authorize in thewebMethods API Gateway
User's Guide.

4. Provide the name of the authorization server in the watt.server.oauth.authServer.alias
settings in the Administration section of API Gateway.

5. Publish the API to API Portal.

6. Log in to API Portal.

7. Open the API that you published from the API gallery page.

8. Click Get access token from the right pane of the API details page request an access token
to access and use the API.

9. In theRequest API access token dialog box, provide theApplication name andApplication
description. The application is created and listed in the Applications page.

10. Click Try API.

11. Select the required application from the Application drop-down list in the left pane.

12. Select the resource, that you want to try, from the left pane.

13. In the Authorization tab, select JWT from the Authorization type drop-down list.

14. Do one of the following:

Provide your Integration Sever credentials in the User name, Password field, and click
Get token. Select a token from the available list of tokens, and click Update.

Provide the JWT token or select one from the available list of tokens, and click Update.

The bearer token value appears in the Value field of the Header tab.

Note:
If you are using a REST client like Postman or SoapUI to create an consumer application
and invoke a REST API, then you must generate the application authentication using static
or dynamic payload, and provide the bearer token value to invoke the API. But, if you are
using API Portal to register a consumer application, this process is made simple using the
Get token feature in the Try API section of API Portal.

15. Click Send. The response for the selected method appears.

464 webMethods API Gateway Administration 10.11

3 Security Configuration

JWT Authorization Workflow

The flow of authorization requests and responses between the end user, client application, JWT
issuer, and resource server is as depicted in the following figure.

The JWT authorization workflow is as follows:

1. The end user logs in, the client application sends an authentication request to API Gateway
or to any third-party JWT issuer, to obtain a JWT token.

2. If API Gateway is the JWT issuer, then it validates the user or the application. If the user or
application credentials are valid, API Gateway generates the JSON token using a private key
that was specified in the JWT configuration, and sends the generated token to the client.

If the user credentials are invalid, API Gateway returns a specific error response.

3. Client sends the generated JSON token in the HTTP Authorization request header as a Bearer
token to access the protected API in API Gateway.

4. API Gateway first identifies the application based on claims from the JWT, then validates the
JWT using the public certificate of the issuer (the issuer can be API Gateway or a third-party
issuer) and provides access to the protected resources.

If the validation fails, API Gateway returns a specific error response.

Note:
If API Gateway has generated the JSON token, it validates the signature using a public
certificate that was specified in the JWT configuration. Else, if the HTTP request is sent from
a third-party JWT issuer, API Gateway validates the token using a public certificate or the
JWKS URI of the issuer.

webMethods API Gateway Administration 10.11 465

3 Security Configuration

Retrieving JWT Token

You can retrieve JWT using one of the following ways:

Retrieve with static payload: This method is used to retrieve an access token for a general
access.

Retrieve using an Application Id: This method is used to retrieve an access token to be used
for a particular application.

To retrieve a JWT token

1. Open your internet browser.

2. Perform one of the following steps to retrieve access token:

To retrieve the access tokenwith static payload, provide the followingURL in the browser,
with the IP of API Gateway in place of local host:
http://localhost:5555/rest/pub/apigateway/jwt/getJsonWebToken

To retrieve the access token for a particular application, provide the following URL, with
the IP of API Gateway and required application Id:
http://localhost:5555/rest/pub/apigateway/jwt/getJsonWebToken?
app_id=applicationId

For example,
https://localhost:5556/rest/pub/apigateway/jwt/getJsonWebToken?
app_id=9502c862-9e67-4726-bc13-598df42c7fb6

The JWT token is displayed:

The subject claim of the token generated by making a GET call will be the username of user
who calls the JWT endpoint.

Note:
You must use HTTPS protocol when retrieving JWT token. If you want to use the HTTP
protocol, you must set the pg_JWT_isHTTPS setting in the Administration > Extended
Settings to false.

466 webMethods API Gateway Administration 10.11

3 Security Configuration

Retrieving JWT Token with Claim

When you retrieve a JWT token for a particular application, the application is authenticated using
the application identifiers provided in the request, such as, APIKey, Username, or Host name,
and then a token is generated with application id as a subject.

For example, consider multiple developers using an application to retrieve an access token. In
such a scenario, each user can have a claim that can be used to identify the user who made a
particular transaction.

To retrieve a JWT token with claim

1. Open your REST client.

2. Make a POST call to the following URL, with the IP address of the systemwhere API Gateway
is installed in place of localhost:

http://localhost:5555/gateway/security/getJsonWebToken

For example,
http://localhost:5555/rest/pub/apigateway/jwt/getJsonWebToken

3. Provide your claim identifiers in the Request section:

{ "claimsSet": { "identifier": "value"} }

For example,
{ "claimsSet": { "name": "username", "company": "organization" } }

Note:
Before invoking this service, ensure that the authorization server is configured and the scope
mapping is done.

The access token is displayed in theResponse section. The subject claim of the token generated
by making a POST call will be the ID of the identified application.

OpenID Authentication Use case and Workflow
OpenID Connect is an open standard and decentralized authentication protocol that extends on
the OAuth 2.0 authorization framework. It combines the capability of Open ID in verifying the
client's identity and OAuth's capability of accessing the client's resources.

In case of OpenID support in API Gateway, you can use the OpenID authentication protocol to
identify and authorize a client application to access the protected resources in one of the following
ways (these are explained in detail in the Usecase section.):

Use just the access tokens (that is OAuth token) to invoke the protected resources.

webMethods API Gateway Administration 10.11 467

3 Security Configuration

Use the ID token (that gives information about the user) to invoke the protected resources in
one of the following ways:

Present the ID token to exchange it for an access token and use the access token to access
the protected resources.

Use the ID token directly to access the protected resources.

API Gateway does not act as a OpenID Connect server but can validate the tokens issued by other
OpenID Connect servers.

The following internal API is used for getting an access token for an ID token.

exchangeIDToken

Method: POST

URL: http://host:port/gateway/security/exchangeIDToken

Payload
{
"gatewayScopes": ["OktaTenant1:inventory"],
"idToken": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjQwYzZiMDliNDQ5NjczNDUzYzNkYTY"
"expiry": 3000

}

For details on scopes, see “Mapping OAuth or OpenID Scopes” on page 482.

Note:
The getOpenIDtoken call is deprecated and is no more available from the API Gateway release
10.3 onwards.

Use case 1: OpenID authentication using OpenID Connect Provider

This describes the high level workflow for using the OpenID authentication protocol to identify
and authorize a client application to access the protected resources.

1. Configure a Provider if you are using the Dynamic client registration. Else you can proceed
to step 2.

For a complete procedure on configuring a provider, see “Adding a Provider” on page 474 .

2. Configure an external authorization server.

Ensure you configure the external authorization serverwith the introspectionURL andOAuth
scopes. For a complete procedure on configuring an external authorization server, see “Adding
an External Authorization Server” on page 477.

3. Map the scopes.

For a complete procedure on mapping scopes, see “Mapping OAuth or OpenID Scopes” on
page 482.

4. Enforce the Identify & Authorize policy on the API.

468 webMethods API Gateway Administration 10.11

3 Security Configuration

Ensure to select OpenID Connect or JWT as options. For details of the Identify & Authorize
policy see, Identify & Authorize in the webMethods API Gateway User's Guide.

5. Associate an application with the API.

You can create a new application or use an existing one. Ensure that the application associated
contains the strategy for OpenID authentication. While creating a strategy you can associate
it with the scopes that are available to be used while using dynamic client registration. For a
complete procedure on creating an application with a strategy, see Creating an Application
in the webMethods API Gateway User's Guide.

6. Activate the API.

User on invoking the API uses the access token or the ID token provided by the provider to
access the protected resource.

7. User can access the protected resources in one of the following ways:

The user presents the access token toAPIGateway and on validation accesses the protected
resource.

The user presents the ID token to API Gateway to exchange it for an access token (if the
user has configured the OpenID Connect option in step 4). The client then presents the
access token to API Gateway and on validation accesses the protected resource.

The following internal API is used for getting an access token for an ID token.

exchangeIDToken

Method: POST

URL: http://host:port/gateway/security/exchangeIDToken

Payload
{

"gatewayScopes": ["OktaTenant1:inventory"],
"idToken": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjQwYzZiMDliNDQ5NjczNDUzYzNkYTY"
"expiry": 3000

}

The user presents the ID token as a JWTdirectly toAPIGateway (if the user has configured
the JWT option in step 4), and on validation accesses the protected resource.

OpenID Authorization Worklow

The OpenID Connect support in API Gateway provides two different ways for a client to access
a protected resource depending on whether the provider has provided an access token or an ID
token. The workflow diagram depicts both these cases. The first 2 steps are same in both the cases,
the arrows in blue depict the flow where an access token is used to access the protected resource,
and the arrows in orange depict the flowwhere an ID token is used to access the protected resource.

OpenID authorization workflow using the OpenID Connect Provider

webMethods API Gateway Administration 10.11 469

3 Security Configuration

The flowof authorization requests and responses between the end user, client application, OpenID
Connect provider, and resource server is as depicted in the following figure. The client application
makes anOpenID call to theOpenIDConnect provider and receives an access token or an ID token
in the response. It uses these tokens to access the protected resources.

OpenID authorization workflow using the access token provided by the Open ID Connect
Provider

1. The client makes an OpenID call to the OpenID connect Provider.

2. The OpenID Connect Provider provides an access token to the client.

3. The client application presents the access token received from the OpenID Connect Provider
to send HTTP requests to API Gateway.

4. API Gateway then performs the following:

a. Identifies the application using the clientId.

b. Validates the token locally or remotely if it is not possible locally.

c. Checks if the requested resource is part of the scopes in the token.

d. Checks the audience.

API Gateway provides access to the protected resource if all the validations are done. If the
access token is valid, API Gateway provides access to the protected resource. If the access
token is expired, authorization server returns a specific error response. The client application
can then use Refresh Token to request a new access token. The Authorization Server returns
a new access token that can be used to access the protected resource.

OpenID authorizationworkflowusing the ID token provided by theOpen IDConnect Provider

470 webMethods API Gateway Administration 10.11

3 Security Configuration

1. The client makes an OpenID call to the OpenID Connect Provider.

2. The OpenID Connect Provider provides an ID token to the client.

3. The client application presents the ID token received from the OpenID Connect Provider to
API Gateway.

4. API Gateway validates the ID token and returns an access token to the client application.

The following internal API is used for getting an access token for an ID token.

exchangeIDToken

Method: POST

URL: http://host:port/gateway/security/exchangeIDToken

Payload
{
"gatewayScopes": ["OktaTenant1:inventory"],
"idToken": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjQwYzZiMDliNDQ5NjczNDUzYzNkYTY"
"expiry": 3000

}

For details on mapping scopes, see “Mapping OAuth or OpenID Scopes” on page 482

5. The client then uses this access token to send HTTP requests to API Gateway.

6. API Gateway then performs the following:

a. Identifies the application using the clientId.

b. Validates the token locally or remotely if it is not possible locally.

c. Checks if the requested resource is part of the scopes in the token.

d. Checks the audience.

API Gateway provides access to the protected resource if all the validations are done. If the
access token is valid, API Gateway provides access to the protected resource. If the access
token is expired, authorization server returns a specific error response. The client application
can then use Refresh Token to request a new access token. The Authorization Server returns
a new access token that can be used to access the protected resource.

Note:
The user can present the ID token directly as a JWT to access the protected resources in case the
ID token is provided on configuring the JWTproperty in the Identify&Authorize policy enforced
on the API.

Configuring the Internal Authorization Server
Pre-requisites:

webMethods API Gateway Administration 10.11 471

3 Security Configuration

You must have the API Gateway's manage security configurations functional privilege assigned
to add an authorization server.

You have to configureAPIGatewaywith the required information to act as an internal authorization
server for OAuth or JWT depending on what authentication protocol you want to use to identify
and authorize a client application. You can also define the required scopes that provide a way to
limit the amount of access that is granted to an access token.

To configure an internal authorization server

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > OAuth/JWT/OpenID.

3. In the Internal Authorization servers section, click local.

This is the internal authorization server available that you can configure with required
information to act as an internal authorization server forOAuth, JWT orOpenID authentication
protocols.

4. The name field is pre-populated with the name of the internal authorization server, local,
which is non-editable.

5. The description for the internal authorization server is pre-populated with the description
available. You can modify the description as required.

6. Click JWT configuration to configure API Gateway as a JWT issuer.

Alternatively you can expand or collapse a section, using the down arrow () and the up

arrow () and that appear next to the section name.

7. Provide the following information as required:

DescriptionField

Name of the JWT token issuer used by API Gateway.Token issuer

Note:
The Token issuer value is case-sensitive.

The cryptographic algorithm to sign JSONWeb Tokens (JWTs).Algorithm

Supported values are: RS256, RS384, and RS512.

The duration (in minutes) for which the token is valid.Expiry duration

472 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

For example, the value 60 denotes that the access tokenwill expire in one
hour from the time the token was generated.

Optional.The intended recipient of the token. The application that receives
the token must verify that the audience value is correct and reject any
tokens intended for a different audience.

Audience

Alias of the keystore containing the private key that is used to sign JWTs.Keystore alias

The Keystore alias field contains a list of the available keystore aliases
in API Gateway. If there are no configured keystore aliases, this field
displays the DEFAULT_IS_KEYSTORE.

Alias of the private key used to sign JWTs.Key alias

The Key alias field contains a list of the available aliases in the selected
keystore. If there are no configured keystores, this field is empty.

8. Click OAuth configuration to configure API Gateway as an OAuth authorization server.

Alternatively you can expand or collapse a section, using the down arrow () and the up

arrow () and that appear next to the section name.

9. Provide the following information as required:

Authorization code expiration interval. Specifies the time (in seconds) during which the
authorization code issued by the authorization server is valid. Valid values are between 1
and 2147483647. The default value is 600.

Access token expiration interval. Specifies the time (in seconds) for which the access
tokens issued by the authorization server are valid. The default value is 3600. Value of -1
specifies that the access token does not expire.

PKCE configuration. Select Enforce PKCE check box to secure the get access token calls
with PKCE mechanism.

10. Click OAuth tokens.

This lists the available OAuth tokens with the following details:

Client ID. Specifies the ID of the client application that requested the access token.

Owner ID. Specifies the ID of the owner who issues the access token.

Access token. Specifies the access token

Refresh token. You can use to generate a new access token if the existing access token is
expired.

webMethods API Gateway Administration 10.11 473

3 Security Configuration

Remaining refresh limit. Displays the remaining attempts for refreshing the access token.

Action. Revokes the access tokens, which means those tokens cannot be used to invoke
the protected resource. For information about revoking access token using REST API, see
“Revoking OAuth Tokens” on page 489.

Note:
By default, APIGateway lists only 5 records and provides pagination to exploremore tokens.
You can also use the search and filter options to find the OAuth tokens.

11. Click OAuth scopes.

OAuth 2.0 scopes provide away to limit the amount of access that is granted to an access token.
For example, an access token issued to a client application may be granted READ andWRITE
access to the protected resources, or just the READ access. You can implement your APIs to
enforce any scope or a combination of scopes as required. So, if a client receives a token that
has READ scope, and it tries to invoke an API endpoint that requires WRITE access, the
invocation fails.

You can provide the meaning to the scope in OAuth/OpenID scopes management section.

12. Type the scope that is registered in the authorization server and click +Add.

You can include multiple scopes.

13. Click Update.

This updates the internal authorization server details with the required information and is
listed in the table of Internal authorization server.

Adding a Provider
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to add a provider.

TheOAuth 2.0 configuration inAPIGateway is split into two sections - Providers andAuthorization
servers.

You have to add a provider and configure the authorization provider metadata information in
this section for APIGateway to communicatewith this provider during dynamic client registration
only. If there is any deviation from the actual OAuth specification then the provider has to be
configured for these deviations.

To add a provider

1. Expand the menu options icon , in the title bar, and select Administration.

474 webMethods API Gateway Administration 10.11

3 Security Configuration

2. Select Security > Providers.

3. Click Add provider and provide the following information:

DescriptionField

Name of a third-party provider. For example, Amazon.Name

You can also use one of the following pre-configured third-party
providers that is shipped with the API Gateway installation:

OKTA

PingFederate

Note:
Considerations while using the PingFederate providers:

If you want to use the pre-configured PingFederate
provider, you have to use the Admin APIs for dynamic
client registration for registering clients.
If youwant to use the DCRAPI, you can create a provider
to use DCR API. But, you cannot update or delete the
clients created using the DCR API.

Client metadata field mapping. Specifies the mapping of dynamic client registration
specification to that of the client implementation of the provider.

The Client metadata field mapping fields are required when you are adding a third-party
provider that is not shipped with API Gateway.

The clientmetadata attributes in accordancewith the dynamic client
registration specification as defined in RFC 7591.

Specification name

The available values are:

redirect_uris. Redirection URL that the authorization server
uses to redirect the authorization code once the authorization
request is approved by end user.

Note:
If you do not specify this attribute, APIGateway automatically
generates the URL.

token_endpoint_auth_method. The client authentication
method at the token endpoint.

grant_types. The grant type of authorization flow to obtain
authorization codes, ID tokens, and refresh tokens.

application_type

webMethods API Gateway Administration 10.11 475

3 Security Configuration

DescriptionField

response_types. The type of response that the client application
uses at the authorization endpoint.

client_name. Name of the client to use to represent the client
application to the end user during authorization.

client_uri. URL of the client application.

logo_uri. URL of an image to use to represent the client
application to the end user during authorization.

Note:
The logo_uri is currently not supported in API Gateway.

scope. List of user-authorized scopes that the client uses for
requesting access tokens.

Note:
If you do not specify this attribute, the authorization server
registers the client with a default set of scopes.

contacts. Themeans (for example, Email address) bywhich end
users can contact the client for support requests.

tos_uri. URL of the service document for the client that describes
a contractual relationship between the end-user and the client
that the end-user accepts when authorizing the client.

Note:
The tos_uri is currently not supported in API Gateway.

jwks_uri. URL of the JSONWeb Key (JWK) Set document
containing the client's public keys.

Note:
The jwks_uri is currently not supported in API Gateway.

client_id. Identifier that is unique to the client application.

client_secret. The password or phrase for the client application
to use to authorize communication with the end user.

The client metadata attributes that are used by the authorization
server, but are not in accordancewith the dynamic client registration
specification.

Implementation name

Example:

For the redirect_uris field, provide the value redirectUris.

476 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

For the grant_types field, provide the value grantTypes.

For the client_name field, provide the value name.

For the logo_uri field, provide the value logoUrl.

For the client_id field, provide the value clientId.

For the client_secret field, provide the value secret.

Extended request parameters. Specifies the additional client metadata attributes that are
specific to the authorization server, and are not specified in the dynamic client registration
specification.

In PingFederate (For example):
forceSecretChange = true

Specifies the client metadata attribute type.Type

The available values are: Client read, Client registration, Client
update, Client delete.

The client metadata attribute key that is specific to the authorization
server.

Key

Avalue for the clientmetadata attribute key.When sending requests
to the authorization server, this value is appended to all requests.

Value

You can add multiple request parameters by clicking + Add.

Application profile. Specifies the application profile that is specific to the authorization
server.

Specifies custom application type other than web and native.Type

By default, the web and native application is added.

You can add multiple application type by clicking + Add. You can
also modify and delete the added application type by clicking the
respective Edit or Delete icon.

4. Click Save.

The provider is added and displayed in the list of providers.

Adding an External Authorization Server
Pre-requisites:

webMethods API Gateway Administration 10.11 477

3 Security Configuration

You must have the API Gateway's manage security configurations functional privilege assigned
to add an authorization server.

As an alternative to using API Gateway as the authorization server, you can use a third-party
server as the authorization server. To use an external authorization server, you must configure
your third-party authorization server.

To add an external authorization server

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > OAuth/JWT/OpenID.

The available and configured internal authorization servers and external authorization servers
are listed in the respective sections.

3. Click Add authorization server in the External authorization servers section.

4. Type a name for the external authorization server.

5. Type a description for the external authorization server that is being configured.

6. Provide the discovery endpoint in the Discovery URL field and click Discover.

When you specify the discovery URL, API Gateway fetches data from the URL response and
auto-populates the fields with the fetched data.

7. Click Introspection and provide the local or remote introspection details to validate the
incoming tokens.

DescriptionField

Local introspection. Provide the following information to validate the tokens locally by API
Gateway.

Name of the token issuer.Issuer

Specifies JSONWeb Key Signature endpoint to retrieve the
corresponding public certificates for performing local introspection.

JWKS URI

API Gateway's cache has a key as kid claim and its value is the
certificate corresponding to the kid claim. The cache is populated on
every restart of API Gateway by invoking the JWKS URI. In the
runtime, while validating the token using the local introspection, the
kid value from the incoming JWT is fetched and the corresponding
certificate is retrieved from the cache and the signature validation
happens.

478 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Specify the alias of the truststore on API Gateway that holds the
Certificate Authority (CA) certificate of third-party authorization
server.

Truststore alias

This is required if the JWKS URI is not available for the authorization
server and you want to configure this certificate directly.

Alias of the certificate used to validate the token.Certificate alias

TheCertificate alias field contains a list of the available aliases in the
selected truststore. If there are no configured truststores, this field is
empty.

Remote introspection. Provide the following information to validate the tokens remotely if
local introspection cannot be done.

URL of the token introspection endpoint of a third-party OAuth 2.0
authorization server. API Gateway uses the introspection endpoint

Introspection
endpoint

to check that access tokens used in client requests are currently active
and are valid to invoke the protected resources.

The name of the Gateway user that API Gateway uses to invoke the
token introspection endpoint.

Gateway user

ID of the introspection client on the authorization server that API
Gateway uses to introspect the access tokens.

Client ID

Note:
Introspection client is any OAuth2 confidential client in API
Gateway.

Password of the introspection client that API Gateway uses to
introspect the access tokens.

Client secret

8. In the Dynamic client registration section, provide the following information if you want to
dynamically create a client from API Gateway when required.

Note:
The dynamic client registration is not supported for external authorization servers when
you publish an application from CentraSite to API Gateway.

You would use this configuration only if you do not intend to use any of the existing clients.

DescriptionField

Specifies whether dynamic client registration is enabled.Enabled

webMethods API Gateway Administration 10.11 479

3 Security Configuration

DescriptionField

Click the toggle button to change the state to to enable dynamic client
registration.

By default this option is disabled.

Select the name of the third-party provider.Provider name

Specifies the corresponding REST endpoint URLs for the client
configuration of REST APIs.

Client
registration URL

Specifies the type of authentication scheme that API Gateway would use
to communicate with the external authorization server for client
management.

Authentication
type

Select one of the following authentication type:

Basic. Specifies the username and password information that would
be passed in the authorization header of HTTP request for client
authentication.

Username. The username to access the protected resources of REST
APIs.

Password. A valid password associated with the username.

Token. Specifies the token information thatwould be added as a bearer
token in the HTTP request for client authentication.

Token type. The type of token thatwould be contained in theHTTP
request.

Token. The token that would be contained in the HTTP requests.

Refresh token. Specifies the refresh token information that would be
added as a bearer token in the HTTP request for client authentication.

Refresh token. The refresh token that you would get from the
external authorization server for the registered client ID and client
secret.

Client ID. The client ID that you want to specify from the external
authorization server.

Client secret. A valid client secret associated with the client ID.

Client credentials. Specifies the client information for which the
application is created in the external authorization server.

Scope. The scope of the client application that youwant to specify
from the external authorization server.

480 webMethods API Gateway Administration 10.11

3 Security Configuration

DescriptionField

Client ID. The client ID that you want to specify from the external
authorization server.

Client secret. A valid client secret associated with the client ID.

None . Specifies that you could create the client dynamically in the
external authorization server without using any type of authorization.

Specifies the list of grant types that are supported by API Gateway.
Basically, grant types are the ways to get an access token from the external
authorization server.

Supported grant
types

Provide the grant type, in the Supported grant types field and click +Add.

You can add more than one grant by clicking +Add.

9. In the SSL Configuration section, provide the following information for SSL configuration, if
the authorization server wants the 2-way SSL for the requests.

DescriptionField

Alias of the keystore containing the private key that is used for a secured
communication between API Gateway and the authorization server.

Keystore alias

You can view all the keystore aliases available in API Gateway. If there are
no configured keystore aliases, the list box contains only the default
keystore, DEFAULT_IS_KEYSTORE.

Alias for the private key to use to validate the HTTP requests from the
client.

Key alias

You can view all the aliases available in the selected keystore. If there are
no configured keystores, this list box is empty.

Alias of the truststore on API Gateway that holds the Certificate Authority
(CA) certificate of third-party authorization server.

Truststore alias

Note:
You need to select a truststore alias only when all of the following are
true:

The client account on the third-party authorization server is
configured to use mutual (two-way) SSL, and
The authorization server’s Certificate Authority certificate is not in
the set of well-known authorities trusted by the JVM in which API
Gateway runs.

10. In the Metadata section, provide the following information for the authorization server
metadata, which is used for the communication to portal.

webMethods API Gateway Administration 10.11 481

3 Security Configuration

DescriptionField

The endpoint URL on the authorization server through which the client
application exchanges the authorization code, client ID, and client secret,
for an access token.

Access token
URL

The endpointURL on the authorization server throughwhich the end user
authenticates and grants authorization to the client application.

Authorize URL

The endpoint URL on the authorization server through which the client
application refreshes an expired access token.

Refresh token
URL

11. Click Scopes.

OAuth 2.0 scopes provide away to limit the amount of access that is granted to an access token.
For example, an access token issued to a client application may be granted READ andWRITE
access to the protected resources, or just the READ access. You can implement your APIs to
enforce any scope or a combination of scopes as required. So, if a client receives a token that
has READ scope, and it tries to invoke an API endpoint that requires WRITE access, the
invocation fails.

You can provide the meaning to the scope in OAuth/OpenID scopes management section.

12. Provide the scope, in the Scope field that is registered in the authorization server and click
+Add.

You can add more than one scope by clicking +Add.

13. Click Add.

The external authorization server is added. You can add as many authorization servers as
required, but only one is the default at any given time.

Mapping OAuth or OpenID Scopes
You must have the API Gateway's manage security configurations functional privilege assigned
to manage scopes.

You have to map the scope that you have defined in the authorization server with the APIs in API
Gateway to authorize the access tokens to be used to access the protected resources. You can map
either a complete API or parts (resources or methods) of an API to the scope.

For example, if there is a scope you have defined for an external authorization server, such as
readonly, then the access tokens which contain readonly as their scope, should access only the
GET resources. So, you can create an API Scope for the GET resources in an API or for multiple
APIs and then map this readonly scope to all those API Scopes. Now this access token can invoke
only the GET resources. If it tries to invoke any POST or PUT resource it fails. As another example
you can consider mapping a business scope such as, inventory, that you have defined in the
authorization server; you can map all the resources required for the inventory business to this
scope.

482 webMethods API Gateway Administration 10.11

3 Security Configuration

To map a scope

1. Expand the menu options icon , in the title bar, and select OAuth/OpenID scopes.

2. Click Map scope.

3. Provide the following information in the Authorization server scope section:

DescriptionField

Specifies the scope linked to the authorization server.Select authorization server
scope

Type a search word and select the required scope from the
search list populated.

Displays the name of the authorization server scope selected.
This is populated by default and is non-editable.

Name

A brief description for the scope being mapped.Description

Provide a value or URI, the intended recipient of the
authorization server scope.

Audience

The application that receives the token verifies that the
audience value is correct and rejects any tokens intended
for a different audience.

4. Click API scopes.

5. Specify an API scope that is to be linked to the authorization server.

Alternatively, you can type a search word and select the required API scope from the search
list populated.

The API scopes added are listed in the Selected API scopes table. You can click the delete icon

, in the corresponding column, to delete an API scope from the list.

6. Click Save.

This maps the authorization server scope to the selected API scopes and lists the authorization
scope in the scopes list.

Viewing Scope Mapping Details
You must have the API Gateway's manage security configurations functional privilege assigned
to manage scopes.

webMethods API Gateway Administration 10.11 483

3 Security Configuration

You can view the scope details and modify the scope details as required from the OAuth/OpenID
scopes page.

To view scope mapping details

1. Expand the menu options icon , in the title bar, and select OAuth/OpenID scopes.

A list of available scopes appears. Use the Show drop-down list at the bottom of the page to
set the maximum number of scopes you want to display in a page. The details, such as, name
and description of the scope is displayed in the form of a table. You can delete a scope by

clicking the delete icon .

2. Click a scope.

The scope details page appears. This page displays the details such as the authorization server
name, the server scope, the API scopes that are linked to the server scope and the API scope
details such as the API to which the scope is associated, the description of the API and API
version number.

You can modify the scope by clicking the Edit button and modifying the required values.

Note:
You can edit or delete the APIs from the scope mapping, only if the APIs are assigned to
your team(s).

Viewing Provider List and Provider Configuration
You can view the list of integrated third-party providers and their configuration details, modify
the provider configuration, and delete a provider in the Providers section.

To view a list of providers and provider configuration

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Providers.

The Providers section displays a list of all the defined third-party providers in API Gateway.

You can also perform the following operations in the Authorization servers section..

You can view the configuration details of the provider by clicking the required provider.
The provider details page displays the clientmetadata fieldmapping and extended request
parameter configuration information of the selected provider.

You can edit the provider configuration by clicking the required authorization server and
modifying the details as required.

484 webMethods API Gateway Administration 10.11

3 Security Configuration

You can reset the configuration to systemdefault value by clicking in theAction column
for the respective provider.

You can delete the required authorization server by clicking in the Action column for
the respective provider.

Modifying the Provider Configuration
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to modify a provider.

You might want to modify a provider to change the currently defined configuration settings.

To modify a provider configuration

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Providers.

The Providers section displays a list of all the available providers in API Gateway.

3. Click the name of the partner provider you want to modify.

4. Modify the fields as required.

5. Click Save.

The provider is updated.

Viewing Authorization Server List and Server Configuration
You can view the list of authorization servers and their configurations details, modify the server
configuration, and delete an authorization server in the Authorization servers section.

To view a list of authorization servers and server configuration

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > JWT/OAuth/OpenID.

The Authorization servers section displays a list of all the internal and external authorization
servers in API Gateway under respective sections.

webMethods API Gateway Administration 10.11 485

3 Security Configuration

You can also perform the following operations in the Authorization servers section..

You can view the configuration details of the authorization server by clicking the required
authorization server. The authorization server details page displays the client information,
scope information, and token information of the selected authorization server.

You can edit the server configuration by clicking the required authorization server and
modifying the details as required.

You can delete the required authorization server by clicking in the Action column for
the respective authorization server.

Modifying Authorization Server Configuration
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to modify an authorization server.

You might want to modify an OAuth 2.0 authorization server to change the currently defined
configuration settings.

To modify the authorization server configuration

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > JWT/OAuth/OpenID.

The Authorization servers section displays a list of all the internal and external authorization
servers in API Gateway.

3. Click the name of the authorization server you want to modify.

4. Modify the fields as required.

5. Click Save.

The authorization server is updated.

Deleting an Authorization Server
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to delete an authorization server.

You delete an authorization server to remove it from API Gateway permanently.

486 webMethods API Gateway Administration 10.11

3 Security Configuration

To delete an authorization server

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > JWT/OAuth/OpenID.

TheAuthorization servers section displays a list of available internal and external authorization
servers in API Gateway.

3. Click in the action column of the authorization server to be deleted.

4. Click Yes in the confirmation dialog.

The authorization server is deleted from API Gateway.

Deleting a Provider
Pre-requisites:

You must have the API Gateway's manage security configurations functional privilege assigned
to delete a provider.

You delete a provider to remove it from API Gateway permanently.

Important:
You must not delete a provider if it is being used by an authorization server.

To delete a provider

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Providers.

The Providers section displays a list of available providers in API Gateway.

3. Click in the Action column of the provider to be deleted.

4. Click Yes in the confirmation dialog.

The provider is deleted from API Gateway.

webMethods API Gateway Administration 10.11 487

3 Security Configuration

Configuring Communication Details for Microgateway
When you want Microgateway to use API Gateway as an OAuth2 authorization server, the
communication channel between Microgateway and API Gateway has to be set up. The access
token is then introspected in the Microgateway using remote introspection. To enable this you
have to configure communication details, such as the introspection endpoint, client ID and client
secret, in API Gateway, which are then used by Microgateway to introspect the tokens in API
Gateway.

To configure the communication details for Microgateway

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select Security > Microgateway.

3. In the Introspection endpoint field, provide the URL of the introspection endpoint.

For example: http://localhost:5555/invoke/pub.oauth/introspectToken. The endpoint can have
http or https depending on the protocol used and the hostname and port are the details of the
host used.

Microgateway uses the introspection endpoint to check that access tokens used in client requests
are currently active and are valid to invoke the protected resources.

4. In the Client ID field, provide an ID, which specifies the ID of the introspection client on the
authorization server that Microgateway uses to introspect the access tokens.

Note:
Introspection client is any OAuth2 confidential client in API Gateway.

5. In the Client secret field, provide the Client secret, which specifies the password of the
introspection client that Microgateway uses to introspect the access tokens.

6. In the JWKS URI field, provide the JSONWeb Key Signature endpoint to retrieve the
corresponding public certificates for performing local introspection.

Microgateway's cache has a key as kid claim and its value is the certificate corresponding to
thekid claim. The cache is populated on every restart of Microgateway by invoking the JWKS
URI. In the runtime, while validating the token using the local introspection, the kid value
from the incoming JWT is fetched and the corresponding certificate is retrieved from the cache
and the signature validation happens.

7. Click Save.

The information provided here is stored in the configuration properties file and provisioned as
part of the asset provisioning during Microgateway startup.

488 webMethods API Gateway Administration 10.11

3 Security Configuration

Removing Expired OAuth Tokens
You can remove all the expired OAuth access tokens using the given API.

You can also schedule the cleanup of the expired OAuth access tokens as required.

To remove expired OAuth tokens

1. Make a REST call to the following endpoint:

GET hostname:port/invoke/pub.oauth/removeExpiredAccessTokens

Revoking OAuth Tokens
You can revoke the OAuth access token from an application using the given API.

To revoke OAuth token from an application

1. Make a REST call to the following endpoint with the corresponding client Id and secret of the
application in Basic authentication header:

POST hostname:port/invoke/pub.oauth/revokeToken

Sample request
POST http(s)://hostname:port/invoke/pub.oauth/revokeToken
{ "token":"3d77988d5020493c8edde78b12c347e2046ac8438a91405597e669ed714ba96a",
"token_type_hint":"accessToken"}

Securing API Gateway Communication using TLS

This section describes how to secure communication, by leveraging SSL/TLS, betweenAPIGateway
and the API Clients, Users, Backend services, and API Portal.

The following figure illustrates how API Gateway communicates securely using HTTPS in the
basic API Management setup.

webMethods API Gateway Administration 10.11 489

3 Security Configuration

For ensuring the security of the data being transferred between two components, you can implement
one-way or two-way SSL/TLS. In an API Management setup you can configure a secure
communication between the following:

API Gateway and API clients. For details, see “ How Do I Secure API Gateway Server
Communication with API Clients?” on page 490

API Gateway UI and Users. For details, see “ How do I Secure API Gateway User Interface
Communication? ” on page 501

API Gateway and API Portal. For details, see “ How do I Configure a Secure Communication
Channel between API Gateway and API Portal?” on page 503

API Gateway and API Data Store. For details, see “How do I Secure API Data Store
Communication using HTTPS?” on page 505

How Do I Secure API Gateway Server Communication with API
Clients?
Secure API Gateway server to enable API clients to communicate with the API Gateway server
overHTTPS. This section explains how to secureAPIGateway server communication usingHTTPS
protocol by using the existing server and client certificates.

Youmust have API Gateway administrator privileges to perform this operation. Also, ensure that
the required client and server certificates are available.

To configure API Gateway server for secure communication with API Clients

1. Locate the keystore and truststore files in the file system.

490 webMethods API Gateway Administration 10.11

3 Security Configuration

The default keystore and truststore files are available in the Installation_Dir\common\conf
folder.

Note:
If you want to use a custom keystore with self-signed certificates, see “Creating a Custom
Keystore with Self-Signed Certificates” on page 526 for details on how to create a keystore
and generate the required self-signed certificate.

2. Configure keystore and truststore in the API Gateway UI.

You require a keystore alias for configuring an HTTPS port in API Gateway. You require the
truststore alias for validating client certificates.

a. Log on to API Gateway.

b. Navigate to Administration > Security > Keystore/Truststore.

c. Click Add keystore.

d. Provide the following details:

Alias. A text identifier for the keystore file. The alias name can contain only alphabets,
numbers and underscores. It cannot include a space, hyphen, and special characters.

Select file. Browse and select the file https_keystore.jks file located at Installation_Dir\
common\conf.

Password. Specify the password for the saved keystore file associated with this alias.

Type. Specify the certificate file format of the keystore file, which, by default, is JKS
for keystores.

webMethods API Gateway Administration 10.11 491

3 Security Configuration

e. Click OK.

A warning appears, prompting you to create a password for the key alias.

f. Close the warning dialog box.

The Update keystore dialog box appears.

g. Provide the password for the https_keystore file, for example, manage.

492 webMethods API Gateway Administration 10.11

3 Security Configuration

h. Click Save.

i. Click Add truststore.

j. Provide the following details.

Name. A name for the truststore file.

Upload truststore file. Browse and select the https_truststore.jks file located at
Installation_Dir\common\conf.

Password. Specify the password that is used to protect the contents of the truststore,
for example, manage.

webMethods API Gateway Administration 10.11 493

3 Security Configuration

k. Click Save.

l. In the Configure keystore and truststore settings for inbound messages section, provide
the keystore and truststore aliases for deploying any SOAP message flows that require
signature, encryption, X.509 authentication, and so on, as configured in the Inbound
Authentication - Message policy.

m. Click Save.

3. Create an HTTPS port in API Gateway and associate the keystore and truststore aliases.

a. Navigate to Administration > Security > Ports.

b. Click Add ports, and select HTTPS as the port type.

c. Click Add.

d. Provide the following details

Port. Specify the port number you want to use for the HTTPS communication.

494 webMethods API Gateway Administration 10.11

3 Security Configuration

Alias. Specify an alias for the port that is unique for this API Gateway instance. The
alias must be between 1 and 255 characters in length and include one or more of the
following: alphabets (a -z, A-Z), numbers (0-9), underscore (_), period (.), and hyphen
(-).

Backlog. Specify the number of requests that can remain in the queue for an enabled
port before API Gateway begins rejecting requests. The default is 200. The maximum
value is 65535.

Keep alive timeout. Specifywhen to close the connection if the server has not received
a request from the client within this timeout value (in milliseconds) or when to close
the connection if the client has explicitly placed a close request with the server.

e. In the Listener-specific credentials section provide the following information:

Keystore alias. Select HTTPS_KEYSTORE.

Key alias(signing). Select https_keystore.

Truststore alias. Select Truststore.

f. Click Add.

The HTTPS port 8886 is added and displayed in the list of ports.

webMethods API Gateway Administration 10.11 495

3 Security Configuration

g. Enable the new port 8886 by clicking the X mark in the port's Enabled column.

The port 8886 is now enabled and API Gateway server is now ready to accept requests
over HTTPS port 8886.

4. Setup security configuration parameters for the HTTPS port, which is enabled for
communication with API Clients, to determine how API Gateway server interacts with the
clients and defines whether the connection is one-way or two-way SSL.

a. Navigate to Administration > Security > Ports. This displays the list of ports.

b. Click the port 8886.

c. In the Security configuration > Client authentication section, select one of the following
values:

Request client certificate. API Gateway requests client certificates for all requests. If
the client does not provide a certificate, the server prompts the client for a userid and
password. The server checks whether the certificate exactly matches a client certificate
on file and is signed by a trusted authority. If so, the client is logged in as the user to
which the certificate is mapped in API Gateway. If not, the client request fails, unless
central user management is configured.

Require client certificate. API Gateway requires client certificates for all requests.
The server checks whether the certificate exactly matches a client certificate on file and
is signed by a trusted authority.

d. Click Update. The security configuration updates are saved.

5. Set port 8886 as primary port. This is an optional step only if you want to change the primary port.

a. Set the port 8886 as primary port by clicking in the port's Primary port column. The port
8886 is now enabled and API Gateway server is now ready to accept requests over HTTPS
port 8886.

b. Disable the port 5555 by clicking the tick mark in the port's Enabled column.

The default primary port 5555 that accepts requests on HTTP is now disabled.

496 webMethods API Gateway Administration 10.11

3 Security Configuration

6. Configure the API Gateway UI to access the API Gateway server securely.

This step is required only when the primary port is set to HTTPS.

a. Open the file uiconfiguration.properties located in the folder Installation_Dir\profiles\
IS_default\apigateway\config\.

b. Modify the following properties:
#IS properties
apigw.is.base.url = https://localhost:8886
apigw.is.rest.directive = /rest
apigw.user.lang.default = en

Herewe configure theHTTPS port 8886 in the baseURLproperty to point theAPIGateway
to communicate to the server URL.

Restart API Gateway server for the changes to take effect. You now have a secure communication
channel established between the API Gateway server and the client.

Harden TLS configuration of the API Gateway server ports

To harden the TLS configuration of the API Gateway server ports, perform the following:

1. Restrict the TLS version by adding the following setting:
watt.net.jsse.server.enabledProtocols=TLSv1.2

2. Reject the client initiated renegotiation by adding the following line to the custom_wrapper.conf
file located in the directory SAG_root /profiles/IS_default/configuration.
wrapper.java.additional.402=-Djdk.tls.rejectClientInitiatedRenegotiation=TRUE

3. Specify a list of secure cipher suites.

For details about the recommended cipher suites, see the cipher suite recommendation by
IANA organization (https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml)
or the https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_
Integration_Server_Administrators_Guide.pdf

4. Set the size of Ephemeral Diffie-Hellman Keys to 2048 depending on the configured cipher
suites. You can do this by adding the following line to the custom_wrapper.conf file located
in the directory SAG_root /profiles/IS_default/configuration:
wrapper.java.additional.401=-Djdk.tls.ephemeralDHKeySize=2048

You can verify the resulting TLS configuration using tools such as testTLS.sh that checks for
vulnerable TLS configurations.

How Do I Secure API Gateway Server Communication with
Backend Services?
SecureAPIGateway server to enable secure communicationwith the backend services overHTTPS.

webMethods API Gateway Administration 10.11 497

3 Security Configuration

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf

You must have API Gateway administrator privileges to perform this operation.

To configure API Gateway server for secure communication with Backend Services

1. Locate the keystore and truststore files in the file system.

The default keystore and truststore files are available in the Installation_Dir\common\conf
folder.

Note:
If you want to use a custom keystore with self-signed certificates, see “Creating a Custom
Keystore with Self-Signed Certificates” on page 526 for details on how to create a keystore
and generate the required self-signed certificate.

2. Configure keystore and truststore in the API Gateway UI.

You require a keystore alias for configuring an HTTPS port in API Gateway. You require the
truststore alias for validating backend service certificates.

a. Log on to API Gateway.

b. Navigate to Administration > Security > Keystore/Truststore.

c. Click Add keystore.

d. Provide the following details:

Alias. A text identifier for the keystore file. The alias name can contain only alphabets,
numbers and underscores. It cannot include a space, hyphen, and special characters.

Select file. Browse and select the file https_keystore.jks file located at Installation_Dir\
common\conf.

Password. Specify the password for the saved keystore file associated with this alias.

Type. Specify the certificate file format of the keystore file, which, by default, is JKS
for keystores.

498 webMethods API Gateway Administration 10.11

3 Security Configuration

e. Click OK.

A warning appears, prompting you to create a password for the key alias.

f. Close the warning dialog box.

The Update keystore dialog box appears.

g. Provide the password for the https_keystore file, for example, manage.

webMethods API Gateway Administration 10.11 499

3 Security Configuration

h. Click Save.

i. Click Add truststore.

j. Provide the following details.

Name. A name for the truststore file.

Upload truststore file. Browse and select the https_truststore.jks file located at
Installation_Dir\common\conf.

Password. Specify the password that is used to protect the contents of the truststore,
for example, manage.

k. Click Save.

500 webMethods API Gateway Administration 10.11

3 Security Configuration

3. To communicate securely with the backend services you have to configure the keystore and
truststore settings for outbound connections. This can be configured in one of the following
ways:

Globally, you can configure the keystore and truststore settings for outbound connections
in Administration > Security configuration section as follows:

1. Navigate to Administration > Security > Keystore/Truststore.

2. In the Configure keystore and truststore settings for outbound connections section,
provide the keystore and truststore aliases for securing outgoing SSL connections. The
keystore and key alias are required for outgoing two-way SSL connections.

At an API-level, you can configure the keystore and truststore in the following ways:

Through an endpoint alias configured in the routing policy:

1. Create an endpoint alias where you specify the default URI, and the keystore and
truststore for the backend service. For details about creating an endpoint alias, see
Aliases section in the webMethods API Gateway User's Guide.

2. Specify the endpoint alias in theEndpoint URI field in the routing policy properties
section when you configure the policy. For details, see Routing Policies section in
the webMethods API Gateway User's Guide.

Through a routing policy by specifying the URI of the backend service endpoint, and
the keystore and truststore. For details, see Routing Policies section in the webMethods
API Gateway User's Guide.

Note:
The global keystore and truststore configuration is the default configuration that applies
for all APIs if there is no keystore or truststore configured through an endpoint alias or a
routing policy at an API-level.

You now have a secure communication channel established between the API Gateway server and
the backend services.

How do I Secure API Gateway User Interface Communication?
Secure API Gateway UI (web application), one of the API Gateway components in an API
Management setup, to enable users to access the API Gateway UI securely over HTTPS. This
section explains how to secure API Gateway communication using HTTPS protocol.

webMethods API Gateway Administration 10.11 501

3 Security Configuration

Youmust have API Gateway administrator privileges to perform this operation. Also, ensure that
the required client and server certificates are available.

To configure API Gateway user interface for secure communication

1. Locate the keystore and truststore files in the file system.

The default keystore and truststore files are available in the Installation_Dir\common\conf
folder.

Note:
If you want to use a custom keystore with self-signed certificates, see “Creating a Custom
Keystore with Self-Signed Certificates” on page 526 for details on how to create a keystore
and generate the required self-signed certificate.

2. Configure the keystore and the HTTPS port on which you want to expose API Gateway UI.

a. Navigate to Installation_Dir\profiles\IS_default\configuration\
com.softwareag.platform.config.propsloader and search for files that begin with the
following file namepattern com.softwareag.catalina.connector.https.pid-*.properties.
If there are more than one file in the selected folder that match this pattern, then the first
file that matches thepattern is selected.

Note:
The file name by default is com.softwareag.catalina.connector.https.pid-
apigateway.properties

b. Open the file and modify the following properties by providing the keystore, passsword,
and port details.
keystoreFile=generated_keystore_file_path/https_keystore.jks
port=9073 (https port in which you want to expose webApp)
@secure.keystorePass=password (password used while creating the keystore file)

For details about the configurations, see https://documentation.softwareag.com/webmethods/
wmsuites/wmsuite10-5/Cross_Product/10-5_Software_AG_Infrastructure_Administrators_Guide.pdf
and https://tomcat.apache.org/tomcat-7.0-doc/config/http.html.

Harden TLS configuration of the API Gateway UI port

To harden the TLS configuration of the API Gateway UI port, perform the following:

1. Enable TLSv1.2 or TLSv1.3 protocol as follows:

a. Navigate to Installation_Dir\profiles\IS_default\configuration\
com.softwareag.platform.config.propsloader and search for files that begin with the
following file namepattern com.softwareag.catalina.connector.https.pid-*.properties.
If there are more than one file in the selected folder that match this pattern, then the first
file that matches thepattern is selected.

Note:

502 webMethods API Gateway Administration 10.11

3 Security Configuration

https://documentation.softwareag.com/webmethods/wmsuites/wmsuite10-5/Cross_Product/10-5_Software_AG_Infrastructure_Administrators_Guide.pdf
https://documentation.softwareag.com/webmethods/wmsuites/wmsuite10-5/Cross_Product/10-5_Software_AG_Infrastructure_Administrators_Guide.pdf
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html

The file name, by default, is com.softwareag.catalina.connector.https.pid-
apigateway.properties

b. Open the file and add the following line in the properties file.
sslEnabledProtocols=TLSversion number

For example, if you want to enable TLSv1.3 protocol, the sample code is a s follows:
sslEnabledProtocols=TLSv1.3

2. Specify a list of secure cipher suites by adding the following line to the above properties file.
ciphers="List of Secure Cipher_Suites"

For details about the recommended cipher suites, see the cipher suite recommendation by
IANA organization (https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml)
or the https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_
Integration_Server_Administrators_Guide.pdf

3. Set the size of Ephemeral Diffie-Hellman Keys to 2048 depending on the configured cipher
suites. You can do this by adding the following line to the custom_wrapper.conf file located
in the directory SAG_root /profiles/IS_default/configuration:
wrapper.java.additional.401=-Djdk.tls.ephemeralDHKeySize=2048

You can verify the resulting TLS configuration using tools such as testTLS.sh that checks for
vulnerable TLS configurations.

How do I Configure a Secure Communication Channel between
API Gateway and API Portal?
This section explains the steps required for APIGateway to securely communicatewithAPI Portal
for sending the runtime events and metrics and API Portal to communicate with API Gateway
securely for key requests.

The described SSL configuration procedure applies only to API Portal version10.2 or later. Also
ensure that the required certificates for API Gateway and API Portal are available.

To configure a secure communication channel between API Gateway and API Portal

1. Configure API Portal HTTPS port.

a. Navigate to Administration > Destinations in the API Gateway user interface.

b. Click API Portal > Configuration.

c. Provide the following information:

webMethods API Gateway Administration 10.11 503

3 Security Configuration

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf

In the Portal configuration section, provide the following details:

Base URL. The API Portal base URL which API Gateway uses to communicate to
API Portal using the HTTPS port. By default, API Portal uses port 18102 for HTTPS
communication.

Username and Password credentials to access API Portal.

In the Gateway configuration section, provide the following details:

Base URL. The API Gateway server URL, which API Portal uses to communicate
to API Gateway using the HTTPS port. Specify the port 8886 that is configured for
HTTPS communication.

Username and Password credentials to access API Gateway.

d. Click Publish.

This configures API Portal as a destination and creates a communication channel between
API Gateway and API Portal over the HTTPS port.

2. Ensure that outbound truststore is configured correctly to trust the certificate exposed by API
Portal.

You can achieve this by configuring keystore and truststore settings for outbound connections
in API Gateway. In the Configure keystore and truststore settings for outbound connections
section, provide the keystore and truststore aliases for securing outgoing SSL connections. The
keystore and key alias is required for outgoing two-way SSL connections.

504 webMethods API Gateway Administration 10.11

3 Security Configuration

3. You have to configure the API Portal truststore to trust the API Gateway outbound certificate.
For details about how to configure API Portal truststore, see API Portal documentation.

You now have a secure communication channel between API Gateway and API Portal. You can
now publish an API, which is enforced with Enable HTTPS/HTTPS policy with the HTTPS option
configured, fromAPI Gateway to API Portal and invoke the API fromAPI Portal using theHTTPS
endpoint that has been used to publish it to API Portal.

How do I Secure API Data Store Communication using HTTPS?
You can secure API Data Store (a simple Elasticsearch instance), one of the components in an API
Management setup, to communicate securely over HTTPS. To secure API Data Store, you can use
the following security plugins:

ReadonlyREST. For details, see “Howdo I SecureAPIData Store Communication usingHTTPS
with ReadonlyREST Plugin?” on page 505.

SearchGuard. For details, see “Howdo I SecureAPIData Store Communication usingHTTPS
with Search Guard Plugin ?” on page 513.

Both the plugins offer encryption, authentication, and authorization to protect data from attackers
and other misuses. The plugins secure API Data Store by exposing it over HTTPS, and enables
basic authentication by configuring users.

Note:
Starting version 10.7, the Search Guard security plugin is not shipped with API Gateway.
Customers can download a security plugin and configure as per their requirement.

How do I Secure API Data Store Communication using HTTPS with ReadonlyREST
Plugin?

You can use the ReadonlyREST plugin to secure API Data Store (a simple Elasticsearch instance),
one of the components in an API Management setup, to communicate securely over HTTPS.

Before you begin

Ensure that you have:

Downloaded the ReadonlyREST plugin. You can download the ReadonlyREST plugin
compatible with Elasticsearch 7.7.1 from https://readonlyrest.com/download and store it in
your file system.

webMethods API Gateway Administration 10.11 505

3 Security Configuration

https://readonlyrest.com/download

Installed the API Gateway advanced edition of version 10.7

Installed an updated version of Java in your system and the path of the environment variable
is set.

To secure API Data Store communication using HTTPS

1. Install and initialize the ReadonlyREST plugin.

a. Shutdown API Gateway.

b. Open the command prompt to the location Installation_Dir/InternalDataStore/bin

c. Run the following command:
elasticsearch-plugin.bat install
ReadonlyREST_plugin_zip_file_location_in_the_file_system

d. Type ywhen the installation procedure prompts for additional required permissions.

Installed readonlyrestmessage appears on successful installation.

e. Navigate to the Installation_Dir\InternalDataStore\config folder and create an empty
file with the name, readonlyrest.yml (in the same folder where elasticsearch.yml is
available).

f. Copy the folder sagconfig from Installation_Dir\IntegrationServer\
instances\Instance_name\packages\WmAPIGateway\config\resources\elasticsearch to
Installation_Dir\InternalDataStore.

506 webMethods API Gateway Administration 10.11

3 Security Configuration

g. Copy the certificates node-0-keystore.jks and truststore.jks from Installation_Dir\
InternalDataStore\sagconfig folder to Installation_Dir\InternalDataStore\config
folder.

2. Protect API DataStore with two-way SSL and basic authorization.

The ReadonlyREST plugin supports plain-text credentials and hashed credentials for basic
authorization. You can choose to add plain-text credentials or hashed credentials in the
readonlyrest.yml file.

Plain-text credentials

Perform the following steps to include plain-text credentials for basic authorization in the
readonlyrest.yml file.

a. Open the readonlyrest.yml file from the Installation_Dir\InternalDataStore\config
folder and add the following text:
readonlyrest:

access_control_rules:

- name: "Require HTTP Basic Auth"
type: allow
auth_key: <plain_text_credentials> For example:

auth_key:Administrator:manage

ssl:
enable: true
keystore_file: "node-0-keystore.jks"
keystore_pass: a362fbcce236eb098973
key_pass: a362fbcce236eb098973
client_authentication: true

where access control rule name: Require HTTP Basic Auth is basic auth authentication,
auth_key is the credentials (username and password) in the plain text.

Note:
Ensure that the content is indented properly as shown above, so that the YAML parser
can parse them correctly.

Hashed credentials

The ReadonlyREST plugin supports obfuscating the credentials by hashing the credentials
using SHA256 algorithm. Use hashed credentials to keep the application secure.

Perform the following steps to include hashed credentials for basic authorization in the
readonlyrest.yml file.

To generate the hash code for your password:

a. Use the tool https://xorbin.com/tools/sha256-hash-calculator to hash your credentials.
This generates the hash code.

b. Replace the auth_key property in the readonlyrest.yml file with auth_key_sha256
property.

webMethods API Gateway Administration 10.11 507

3 Security Configuration

https://xorbin.com/tools/sha256-hash-calculator

c. Add the hashed credentials to the property auth_key_sha256 in readonlyrest.yml file
located at Installation_Dir\InternalDataStore\config.
readonlyrest:

access_control_rules:

- name: "Require HTTP Basic Auth"
type: allow
auth_key_sha256:

927d5619ff87227be6ca8a2cc9ee68c11dd7a08d64d1e20bdc8d86254850b418

ssl:
enable: true
keystore_file: "node-0-keystore.jks"
keystore_pass: a362fbcce236eb098973
key_pass: a362fbcce236eb098973
client_authentication: true

where access control rule name: Require HTTP Basic Auth is basic auth authentication,
auth_key_sha256 is the credentials (username and password) in the hashed format and
client_authentication is the two way SSL authentication. By default, this property is
disabled. You can remove this property or set the value to false if you don't want the
server or API Gateway Data Store to validate the client authentication.

d. Save the configuration file readonlyrest.yml.

Note:
The keystore file and its passwords keystore_pass & key_pass are shipped out with API
Gateway product by default. This may not be safe for production environment. For
production setup, you can generate your own certificates (keystore and trustore) and
configure in the readonlyrest.yml file. To generate your own certificates, see
“ReadonlyREST” on page 511.

b. After adding plain-text credentials or hashed credentials in readonlyrest.yml file, open the
elasticsearch.yml file from the Installation_Dir\InternalDataStore\config folder and
add the following text to the existing content and save the file.
http.type: ssl_netty4

This enables HTTPS connection for API Data Store.

3. Secure the inter-node communication.

In a clustered setup, to establish a secure communication between theAPI GatewayData Store
instances, perform the following steps:

a. Open the readonlyrest.yml file from the Installation_Dir\InternalDataStore\config
folder and add the following text towards the end of the existing content and save the file.

ssl_internode:
keystore_file: "node-0-keystore.jks"
keystore_pass: a362fbcce236eb098973
key_pass: a362fbcce236eb098973

The consolidated content of the readonlyrest.yml is as follows:

508 webMethods API Gateway Administration 10.11

3 Security Configuration

readonlyrest:
access_control_rules:

- name: "Require HTTP Basic Auth"
type: allow
auth_key_sha256:

927d5619ff87227be6ca8a2cc9ee68c11dd7a08d64d1e20bdc8d86254850b418

ssl:
enable: true
keystore_file: "node-0-keystore.jks"
keystore_pass: a362fbcce236eb098973
key_pass: a362fbcce236eb098973

ssl_internode:
keystore_file: "node-0-keystore.jks"
keystore_pass: a362fbcce236eb098973
key_pass: a362fbcce236eb098973
client_authentication: true

b. Open the elasticsearch.yml file from the Installation_Dir\InternalDataStore\config
folder and add text as follows to the existing content and save the file.
transport.type: ror_ssl_internode

c. Shutdown and restart the API Data Store node to verify if it is protected by accessing the
node in HTTPS URL with the given username and password.
https://<host>:9240

API Data Store now runs on a secure channel on the HTTPS port and requests the basic
authentication details.

4. Change the Kibana configuration to connect to API Data Store.

a. Open the kibana.yml file from the Installation_Dir\profiles\IS_instance_name\
apigateway\dashboard\config folder.

webMethods API Gateway Administration 10.11 509

3 Security Configuration

b. Remove the # symbol from the following properties and provide the corresponding values
for the properties and save the file.

elasticsearch.username: Administrator

elasticsearch.password: manage

elasticsearch.ssl.verificationMode: certificate

elasticsearch.ssl.certificateAuthorities: <file path of your root-ca.pem certificate>

elasticsearch.hosts: https://hostname:9240 elasticsearch.hosts:

Note:

The port in elasticsearch.hosts is protocol-dependent. If you are using versions
of Kibana prior to 7.13.0, and the elasticsearch.url setting in the configuration file
depended on an unspecified port, append :9200 to the URL in the
elasticsearch.hosts setting.

Sample kibana.yml file is as follows:

c. Open the uiconfiguration.properties file from the Installation_Dir\profiles\
IS_instance_name\apigateway\config folder and set the property apigw.kibana.autostart
to false.

5. Change the API Gateway configurations to connect to API Data Store.

a. Open the config.properties file from the Installation_Dir\IntegrationServer\
instances\instance_name\packages\WmAPIGateway\config\resources\elasticsearch folder.

b. Remove the # symbol from the following properties and provide the corresponding values
for the properties and save the file.

pg.gateway.elasticsearch.http.username=Administrator

pg.gateway.elasticsearch.http.password=manage

pg.gateway.elasticsearch.https.truststore.filepath=Installation_Dir
/InternalDataStore/sagconfig/truststore.jks

pg.gateway.elasticsearch.https.truststore.password=2c0820e69e7dd5356576

510 webMethods API Gateway Administration 10.11

3 Security Configuration

pg.gateway.elasticsearch.https.enabled=true

c. Start API Gateway Data Store.

d. When API Gateway Data Store is up and running, start the Kibana server by running the
kibana.bat file located at Installation_Dir\profiles\IS_default\apigateway\dashboard\
bin.

e. Start API Gateway.

You can now log on, create APIs, and access the Analytics page with the user credentials.

Configuring ReadonlyREST plugin with Self-generated certificates

As an API Provider, if you want to generate your own certificates to use with the ReadonlyREST
plugin instead of the default certificates that are shipped with API Gateway, you can configure
ReadonlyREST with user generated certificates. You have to perform this procedure if your
organization does not have policies and procedures in place regarding the generation and use of
digital certificates and certificate chains, including the use of certificates signed by a CA and you
want to generate a self-signed certificate and import them into the keystore and truststore. Use
Java Keytool to generate the required certificates for running ReadonlyREST in a production
environment.

1. Shut down API Gateway, API Gateway DataStore, and Kibana.

2. Generate keystore.jks file.

a. Run the following command from<Java_Install_Directory>/bin to generate keystore certificate
in the corresponding file location using Java Keytool:
keytool -genkey -alias alias_name -keyalg RSA -keystore
file_location\keystore.jks -storetype JKS

The keystore certificate is generated in the file location that you specify.

Example:

b. Replace the generated keystore.jks file in the Installation_Dir\InternalDataStore\config
folder.

webMethods API Gateway Administration 10.11 511

3 Security Configuration

c. Update the propertieskeystore_file,keystore_pass andkey_pass in the readonlyrest.yml
file located at Installation_Dir\InternalDataStore\config.

3. Export the generated certificate from the keystore to configure in Kibana.yml file:

a. Run the following command to export the certificate from the keystore and place it in the
required location. :
keytool -export -alias alias_name -keystore keystore_file_location -rfc -file
<filename>.cert

The exported certificate is saved in the specified location.

b. After exporting, update the exported certificate name and the file location of the exported
certificate in elasticsearch.ssl.certificateAuthorities property in kibana.yml file located
at Installation_Dir\profiles\IS_default\apigateway\dashboard\config.

Example:
elasticsearch.ssl.certificateAuthorities: C:\work\apigateway\test.cert

4. Generate truststore and import the generated certificate.

a. Run the following command to generate the truststore file and import the generated
certificate into the truststore file.
keytool -import -alias alias_name -file Certificate_file_location
-storetype JKS -keystore file_location_and_file name_for_trustore.jks

The trust store certificate is stored in the specified location. For example:
C:\work\apigateway\trustore.jks.

b. Update the details of the generated trustore file in the following properties

pg.gateway.elasticsearch.https.truststore.filepath

512 webMethods API Gateway Administration 10.11

3 Security Configuration

pg.gateway.elasticsearch.https.truststore.password in the config.properties file
located at Installation_Dir\IntegrationServer\instances\default\packages\
WmAPIGateway\config\resources\elasticsearch.

Example:
pg.gateway.elasticsearch.https.truststore.filepath=C:/work/apigateway/trustore.jks
pg.gateway.elasticsearch.https.truststore.password=your_trustore_password

c. Start API Data Store.

d. WhenAPI Data Store is up and running, start the Kibana server by running the kibana.bat
file located at Installation_Dir\profiles\IS_default\apigateway\dashboard\bin.

e. Start API Gateway.

You can now log on, create APIs, and access the analytics page with the user credentials.

How do I Secure API Data Store Communication using HTTPS with Search Guard
Plugin ?

You can secure API Data Store (a simple Elasticsearch instance), one of the components in an API
Management setup, to communicate securely over HTTPS. This section explains how to secure
Elasticsearch using Search Guard, an Elasticsearch plugin, that offers encryption, authentication,
and authorization to protect data from attackers and other misuses. Search Guard secures
Elasticsearch by exposing it over HTTPS, and enables basic authentication by configuring users.

Before you begin

Ensure that you have:

A basic understanding of API Gateway and its communicationwith API Data Store for storing
data.

A basic understanding of Kibana and its communication with API Data Store for rendering
the dashboards in API Gateway.

You have downloaded the Search Guard plug in. You can download the Search Guard plugin
version 51.0.0 compatible for Elasticsearch 7.13.0 from https://maven.search-guard.com/
artifactory/webapp/#/home and store it in your file system.

To secure API Data Store communication using HTTPS

1. Install and initialize Search Guard plugin.

a. Shutdown API Gateway.

b. Open the command prompt to the location Installation_Dir/InternalDataStore/bin

c. Run the following command:
elasticsearch-plugin.bat install Search_Guard_plugin
file_location_in_the_file_system

webMethods API Gateway Administration 10.11 513

3 Security Configuration

https://maven.search-guard.com/artifactory/webapp/#/home
https://maven.search-guard.com/artifactory/webapp/#/home

d. Type ywhen the installation procedure prompts for additional required permissions it
requires.

You should see a procedure completion message Installed search-guard-7 on successful
installation.

e. Copy the folder sagconfig from Installation_Dir\IntegrationServer/
instances\Instance_name\packages\WmAPIGateway\config\resources\elasticsearch to
Installation_Dir\InternalDataStore.

f. Copy the certificates node-0-keystore.jks and truststore.jks from Installation_Dir\
InternalDataStore\sagconfig to Installation_Dir\InternalDataStore\config.

g. Navigate to Installation_Dir\InternalDataStore\config\ and open the file
elasticsearch.yml.

h. Delete all the properties that start with searchguard, if present, and add the Search Guard
properties as follows:
searchguard.ssl.transport.keystore_type: JKS
searchguard.ssl.transport.keystore_filepath: node-0-keystore.jks
searchguard.ssl.transport.keystore_alias: cn=node-0
searchguard.ssl.transport.keystore_password: a362fbcce236eb098973
searchguard.ssl.transport.truststore_type: JKS
searchguard.ssl.transport.truststore_filepath: truststore.jks
searchguard.ssl.transport.truststore_alias: root-ca-chain
searchguard.ssl.transport.truststore_password: 2c0820e69e7dd5356576
searchguard.ssl.transport.enforce_hostname_verification: false
searchguard.ssl.transport.resolve_hostname: false
searchguard.ssl.transport.enable_openssl_if_available: true

searchguard.ssl.http.enabled: true
searchguard.ssl.http.keystore_type: JKS
searchguard.ssl.http.keystore_filepath: node-0-keystore.jks
searchguard.ssl.http.keystore_alias: cn=node-0
searchguard.ssl.http.keystore_password: a362fbcce236eb098973
searchguard.ssl.http.truststore_type: JKS
searchguard.ssl.http.truststore_filepath: truststore.jks
searchguard.ssl.http.truststore_alias: root-ca-chain
searchguard.ssl.http.truststore_password: 2c0820e69e7dd5356576
searchguard.ssl.http.clientauth_mode: OPTIONAL
searchguard.enable_snapshot_restore_privilege: true
searchguard.check_snapshot_restore_write_privileges: true
searchguard.restapi.roles_enabled: ["SGS_ALL_ACCESS"]
searchguard.authcz.admin_dn:
- "CN=sgadmin"

For details about all the SearchGuardproperties, see “SearchGuardProperties” onpage 523.

i. Optional. If you are using trial version of Search Guard, add the following entry.
searchguard.enterprise_modules_enabled: false

j. Save and close the file.

k. Run Installation_Dir\InternalInternalDataStore\bin\enable_ssl.bat,

This installs the Search Guard plugin and starts the API Data Store.

514 webMethods API Gateway Administration 10.11

3 Security Configuration

l. Shutdown and restart the API Data Store.

m. Navigate to Installation_Dir\InternalDataStore\plugins\search-guard-7\tools and
run the following command to initialize the API Data Store.
sgadmin.bat -cd ..\..\..\sagconfig\
-ks ..\..\..\sagconfig\sgadmin-keystore.jks
-kspass 49fc2492ebbcfa7cfc5e -ts ..\..\..\sagconfig\truststore.jks
-tspass 2c0820e69e7dd5356576 -nhnv -p 9340 -cn SAG_EventDataStore

If you are using the Linux command it would be as follows:
sgadmin.sh -cd ../../../sagconfig\
-ks ../../../sagconfig/sgadmin-keystore.jks
-kspass 49fc2492ebbcfa7cfc5e -ts ../../../sagconfig\truststore.jks
-tspass 2c0820e69e7dd5356576 -nhnv -p 9340 -cn SAG_EventDataStore

2. Add users for basic authentication.

a. Navigate to Installation_Dir\InternalDataStore\sagconfig and open the
sg_roles_mapping.yml file.

b. Add the username (for example, TestUser) in the users list as follows:
sg_all_access:
reserved: true
users:

"TestUser"
backend_roles:

"admin"

webMethods API Gateway Administration 10.11 515

3 Security Configuration

c. Generate the hash code for your password.

a. Run the command as follows:
Installation_Dir\InternalDataStore\
plugins\search-guard-7\tools>hash.bat.

b. Type the password.

c. Press Enter.

This generates the hash code.

d. Navigate to Installation_Dir \InternalDataStore\sagconfig and open the file
sg_internal_users.yml.

e. Add the username and password as follows:
#keys cannot contain dots
#if you have a username with dots then specify it with username: xxx
Administrator:
hash: "$2a$12$sm2AEpQx6QNq6YRSYHGCnetiRWKMWrQY/udSSI0dDFZ1r3qo51bzK"

TestUser:
hash: "$2a$12$Ua1gUiWaW5/b8ohgDqTfg.ruEDNOCsuV9RexlTigNf65TvSn6/Loy"

f. Shutdown and restart the API Data Store.

API Data Store now runs on a secure channel on the HTTPS port and requests the basic
authentication details.

3. Change the Kibana configuration to connect to Elasticsearch.

a. Navigate to Installation_Dir\profiles\IS_default\apigateway\dashboard\config\ and
open the file, kibana.yml.

b. Uncomment the following properties and update them as follows:

516 webMethods API Gateway Administration 10.11

3 Security Configuration

elasticsearch.username: TestUser

elasticsearch.password: TestUser@123

elasticsearch.ssl.verificationMode: certificate

elasticsearch.ssl.certificateAuthorities: file path of your root-ca.pem certificate

elasticsearch.hosts:
https://hostname: 9240

Note:

The port in elasticsearch.hosts is protocol-dependent. If you are using versions
of Kibana prior to 7.13.0, and the elasticsearch.url setting in the configuration file
depended on an unspecified port, append :9200 to the URL in the
elasticsearch.hosts setting.

Sample kibana.yml file

webMethods API Gateway Administration 10.11 517

3 Security Configuration

c. Open the uiconfiguration.properties file located at Installation_Dir\profiles\IS_default\
apigateway\config and set apigw.kibana.autostart to false.

4. Change the API Gateway configuration to connect to Elasticsearch.

a. Navigate to Installation_Dir\IntegrationServer\instances\default\packages\
WmAPIGateway\config\resources\elasticsearch and open config.properties file.

b. Uncomment the following properties and update them as follows:
pg.gateway.elasticsearch.http.username=TestUser
pg.gateway.elasticsearch.http.password=TestUser@123
pg.gateway.elasticsearch.https.truststore.filepath=Installation_Dir/InternalDataStore
/sagconfig/truststore.jks
pg.gateway.elasticsearch.https.truststore.password=2c0820e69e7dd5356576
pg.gateway.elasticsearch.https.enabled=true

c. Start the API Data Store manually.

518 webMethods API Gateway Administration 10.11

3 Security Configuration

d. When API Data Store is up and running, start the Kibana server manually by running the
kibana.bat file located at Installation_Dir\profiles\IS_default\apigateway\dashboard\
bin.

e. Start API Gateway.

You can now log on, create APIs, and access the Analytics page with the user credentials.

Configuring Search Guard with self-generated certificates

As anAPI Provider, if youwant to generate your own certificates to usewith SearchGuard instead
of the default certificates that are shipped with API Gateway, you can configure Search Guard
with user generated certificates as Step 5. Search Guard provides an offline TLS tool. Use the tool
to generate the required certificates for running Search Guard in a production environment.

1. Configure Search Guard with user generated certificates.

a. Download the tool zip file from https://search.maven.org/search?q=a:search-guard-tlstool

b. Create a YAML file at Tool Installation Directory\config

When you run the TLS tool command, it reads the node and certificate configuration
settings from this YAML file, and places the generated files in a configured directory.

Sample YAML file

webMethods API Gateway Administration 10.11 519

3 Security Configuration

https://search.maven.org/search?q=a:search-guard-tlstool

c. Run the following command to generate the required certificates.
Tool Installation Directory/tools/sgtlstool.bat
-c ../config/Demo.yml -ca -crt

The generated certificates are placed in the Tool Installation Directory/tools/out folder.

520 webMethods API Gateway Administration 10.11

3 Security Configuration

d. Copy the certificates listed below from the folder Tool Installation Directory/tools/out
to the Installation_Dir/EventDataStore/config folder.

test-node-1.key

test-node-1.pem

test-node-1_http.pem

test-node-1_http.key

test-client.pem

test-client.key

root-ca.pem

root-ca.key

e. Configure the generated certificates in the API Data Store elasticsearch.yml file.

webMethods API Gateway Administration 10.11 521

3 Security Configuration

f. Start API Data Store manually.

A log message warns that the Search Guard is not initialized after API Data Store is up
because the Search Guard is not initialized with the latest certificates.

g. Open a command prompt and change the directory to Installation_Dir\EventDataStore
\plugins\search-guard-7\tools

h. Run the command
sgadmin.bat -cd ..\sagconfig -nhnv -icl -cacert
..\..\..\config\root-ca.pem -cert ..\..\..\config\test-client.pem
-key ..\..\..\config\test-client.key
-keypass your certificate password -p 9340

Done with success log message appears.

i. Shut down and restart API Data Store.

API Data Store now uses the generated certificates for SSL communication.

522 webMethods API Gateway Administration 10.11

3 Security Configuration

Search Guard Properties

Property and description

TRANSPORT (2-way authentication is enabled by default)

searchguard.ssl.transport.keystore_type

Type of keystore.

Possible values: JKS, PKCS12

Default value: JKS

searchguard.ssl.transport.keystore_filepath

Location of the keystore.

searchguard.ssl.transport.keystore_alias

Keystore entry name if there are more than one entries.

searchguard.ssl.transport.keystore_password

Password to access keystore.

searchguard.ssl.transport.truststore_type

Type of truststore.

Possible values: JKS, PKCS12

Default value: JKS

searchguard.ssl.transport.truststore_filepath

Location of the truststore.

searchguard.ssl.transport.truststore_alias

Truststore entry name if there are more than one entries.

searchguard.ssl.transport.truststore_password

Password to access truststore.

searchguard.ssl.transport.enforce_hostname_verification

If true, the hostname mentioned in certificate is validated. Set this as false if you are using the
general purpose self signed certificates.

Possible values: true, false

Default value: true

searchguard.ssl.transport.resolve_hostname

webMethods API Gateway Administration 10.11 523

3 Security Configuration

Property and description

If true, the hostname is resolved against the DNS server. Set this as false if you are using general
purpose self signed certificates.

Note:
This is applicable only if the property searchguard.ssl.transport.enforce_hostname_verification
is true.

Possible values: true, false

Default value: true

searchguard.ssl.transport.enable_openssl_if_available

Use if OpenSSL is available instead of JDK SSL.

Possible values: true, false

Default value: true

HTTP

searchguard.ssl.http.enabled

Set this to true to enable SSL for a REST interface (HTTP).

Possible values: true, false

Default value: true

searchguard.ssl.http.keystore_type

Type of keystore.

Possible values: JKS, PKCS12

Default value: JKS

searchguard.ssl.http.keystore_filepath

Location of the keystore.

searchguard.ssl.http.keystore_alias

Keystore entry name if there are more than one entries.

searchguard.ssl.http.keystore_password

Password to access keystore.

searchguard.ssl.http.truststore_type

Type of truststore.

Possible values: JKS, PKCS12

524 webMethods API Gateway Administration 10.11

3 Security Configuration

Property and description

Default value: JKS

searchguard.ssl.http.truststore_filepath

Location of the truststore.

searchguard.ssl.http.truststore_alias

Truststore entry name if there are more than one entries.

searchguard.ssl.http.truststore_password

Password to access truststore.

searchguard.ssl.http.clientauth_mode

Option to enable two-way authentication.

Possible values:

REQUIRE : Requests for the client certificate.

OPTIONAL : Used if client certificate is available.

NONE : Ignores client certificate even if it is available.

Default value: OPTIONAL

Search Guard Admin

searchguard.authcz.admin_dn

Search Guard maintains all the data in the index searchguard. This is accessible to only users (
client certificate passed in sdadmin command) configured here.

Miscellaneous

searchguard.cert.oid

All certificates used by the nodes at the transport level need to have the oid field set to a specific
value. Search Guard checks this oid value to identify if an incoming request comes from a trusted
node in the cluster or not. In the former case, all actions are allowed. In the latter case, privilege
checks apply. Additionally, the oid is also checked whenever a node wants to join the cluster.

Default value: '1.2.3.4.5.5'

searchguard.config_index_name

Index where all the security configuration is stored. Currently, non-configurable.

Default value: searchguard

searchguard.enable_snapshot_restore_privilege,
searchguard.check_snapshot_restore_write_privileges

webMethods API Gateway Administration 10.11 525

3 Security Configuration

Property and description

Enables user privileges, which a user requires to perform snapshot and restore operations.

searchguard.enterprise_modules_enabled

Specifies the license type. If you are using a trail version, set the property to false.

searchguard.restapi.roles_enabled

Specifies which Search Guard roles can access the RESTManagement API to perform changes to
the configuration.

Creating a Custom Keystore with Self-Signed Certificates

You have to perform this procedure if your organization does not have policies and procedures
in place regarding the generation and use of digital certificates and certificate chains, including
the use of certificates signed by a CA but want to generate a self-signed certificate and import
them into the keystore and truststore.

1. Create a new keystore with a self-signed certificate.

a. Run the following command, and provide the keystore password (for example, manage)
and the other required details to generate a new key and store it in the specified keystore
https_keystore.jks.

keytool -genkey -v -keystore https_keystore.jks
-alias HTTPS_KEYSTORE -keyalg RSA -keysize 2048 -validity 10000

Example:

526 webMethods API Gateway Administration 10.11

3 Security Configuration

b. Run the following command and provide the keystore password (for example, manage) to
export the certificate from the keystore https_keystore, and place it in a specified location.

keytool -exportcert -v -alias HTTPS_KEYSTORE -file
Installation_Dir\common\conf\https_gateway.cer -keystore
Installation_Dir\common\conf\https_keystore.jks

Example:

The certificate https_gateway.cer is exported from the keystore https_keystore and placed
in the location Installation_Dir\common\conf\.

2. Create a truststore and import the generated certificate.

a. Run the following command to create a truststore file and import the generated certificate
into the truststore file.

keytool -importcert -alias HTTPS_TRUSTSTORE -file
Installation_Dir\common\conf\https_gateway.cer -keystore

webMethods API Gateway Administration 10.11 527

3 Security Configuration

Installation_Dir\common\conf\https_truststore.jks

Example:

A truststore file https_truststore.jks is created with the imported certificate.

You can nowview the keystore and truststore files created and located at Installation_Dir\
common\conf\.

Troubleshooting Tips: Securing API Data Store (Elasticsearch)

I see an error with API Data Store internal communication after configuring SSL
with Search Guard plugin in a cluster setup

The following error message appears when there is a problem with the node certificate:

Caused by: org.elasticsearch.ElasticsearchException: bad header found. This means typically that
one node try to connect to another with a non-node certificate (no OID or searchguard.nodes_dn
incorrect configured) or that someone is spoofing requests. See
https://github.com/floragunncom/search-guard-docs/blob/master/tls_node_certificates.md

Resolution:

For communication with API Data Store:

Generate a node certificate and ensure that you provide a proper subject name in the certificate.

Add the same subject name from the node certificate that you have generated to the following
field in elasticsearch.yml file located at SAGInstallDir\InternalDataStore\config folder for
all the nodes.
transport.host: <hostname mentioned in the certificate>

528 webMethods API Gateway Administration 10.11

3 Security Configuration

Note:
Client certificate cannot be used for node-based authentication.

See “ How do I Secure API Data Store Communication using HTTPS with Search Guard Plugin
?” on page 513 to configure Search Guard plugin.

I see that API Data Store fails to start after securing with Search Guard plugin

The following error message appears when searchguard.nodes_dn property is configured with a
value other than the Common Name (CN) values in elasticsearch.yml file located at
SAG_Install_Directory\InternalDataStore\config folder:

Root cause: MasterNotDiscoveredException[null]

(org.elasticsearch.discovery.MasterNotDiscoveredException/org.elasticsearch.discovery.MasterNotDiscoveredException)

Resolution:

Modify the value of searchguard.nodes_dn with the actual CN values in elasticsearch.yml file
located at SAGInstallDirectory\InternalDataStore\config folder and save the file.

Restart API Data Store to take effect.

I see that API Gateway fails to connect to API Data Store after it is secured with SSL
using Search Guard plugin

The following error message appears when API Gateway fails to connect to API Data Store after
securing with Search Guard plugin:

[ERROR][c.f.s.h.SearchGuardHttpServerTransport]
[nlxdsmcv84.srvfarm4-eur.dsm-group.com1560510563040] SSL Problem Received fatal alert:
certificate_unknown javax.net.ssl.SSLException: Received fatal alert: certificate_unknown.

Resolution:

1. Stop API Gateway.

2. Rename the folder search-guard-5 with search-guard-ssl located at
SAGInstallDirectory\InternalDataStore\plugins.

3. Check if API Data Store HTTPS connectivity is properly configured in the following location:
SAGInstallDirectory\IntegrationServer\instances\instance_name\packages\WmAPIGateway\
config\resources\elasticsearch\config.properties.

4. Restart API Gateway.

I see an error while securing API Data Store using Search Guard plugin

The following error message appears while securing API Data Store using Search Guard plugin:

Caused by: java.security.cert.CertificateExpiredException: NotAfter:

This problem might occur when your certificate is expired.

webMethods API Gateway Administration 10.11 529

3 Security Configuration

Resolution:

Provide a valid node-0-keystore.jks and truststore.jks certificate while securing API Data Store
with Search Guard plugin.

I see an error while accessing API Data Store when it is secured using Search Guard
plugin

A sample error message is as follows:
{ "error":{
"root_cause":[
{ "type":"security_exception",
"reason":"no permissions for [] and User [name=Administrator, roles=[admin],
requestedTenant=null]"
}
],
"type":"security_exception",
"reason":"no permissions for [] and User [name=Administrator, roles=[admin],
requestedTenant=null]"
},
"status":403
}

Resolution:

Run the following script with the client certificate with Common Name (CN) value configured in
searchguard.authcz.admin_dn parameter in elasticsearch.yml located at SAG_Install_Directory\
InternalDataStore\config.
curl -L -X PUT 'https://xxxx:9240/_all/_settings' \
-H 'Authorization: Basic QWRtaW5pc3RyYXRvcjpCIXJ1cEUkQGRtaJu7' \
-H 'Content-Type: application/json' \
--cert <public key file>

Note:
If you use jks stores for the SearchGuard configuration, extract the private and public key using
the following keytool https://security.stackexchange.com/questions/3779/how-can-i-export-my-
private-key-from-a-java-keytool-keystore.

During authentication a pop-up window appears when I try to view any dashboards
in the Analytics tab

At times, when I view the Analytics tab, the Authentication pop-up window appears. This might
be because Kibana is secured with SSL and API Gateway is unable to connect to Kibana. As of
now, API Gateway does not support enabling SSL for Kibana. Kibana ports can be blocked from
external access through firewall configuration.

Resolution:

Remove the following properties from kibana.yml file located at SAGInstallDir\profiles\IS_
default\apigateway\dashboard\config:

server.ssl.enabled: true

530 webMethods API Gateway Administration 10.11

3 Security Configuration

https://security.stackexchange.com/questions/3779/how-can-i-export-my-private-key-from-a-java-keytool-keystore
https://security.stackexchange.com/questions/3779/how-can-i-export-my-private-key-from-a-java-keytool-keystore

server.ssl.cert: "/eip/apps/sag/InternalDataStore/config/PVWSLDWM001_pem.cer"

server.ssl.key: "/eip/apps/sag/InternalDataStore/config/PVWSLDWM001_pem.key"

I get an error message while securing API Data Store communication using HTTPS

If the UI takes sometime a longer duration to load, navigate to the following location and set the
value of the property xpack.fleet.enabled to false.SAG_Install_Dir/wm10.11/profiles/IS_
apigateway/apigateway/dashboard/config/kibana.yml

Note:
Ignore the following error message - Failed to gather field mappings for index
[metrics-endpoint.metadata_current_default]
org.elasticsearch.action.NoShardAvailableActionException: No shard available for
[org.elasticsearch.action.fieldcaps.FieldCapabilitiesIndexRequest/unset].

webMethods API Gateway Administration 10.11 531

3 Security Configuration

532 webMethods API Gateway Administration 10.11

3 Security Configuration

4 Container-based Provisioning

■ Docker Configuration .. 534

■ Kubernetes Support ... 554

webMethods API Gateway Administration 10.11 533

Docker Configuration

Docker is an open-source technology that allows users to deploy applications to software containers.
A Docker container is an instance of a Docker image, where the Docker image is the application,
including the file system and runtime parameters.

You can create a Docker image from an installed and configured API Gateway instance and then
run the Docker image as a Docker container. To facilitate running API Gateway in a Docker
container, API Gateway provides a script to build a Docker image and then load or push the
resulting Docker image to a Docker registry.

Support for API Gateway with Docker 18 and later is available on Linux and UNIX systems for
which Docker provides native support.

For details on Docker and container technology, see Docker documentation.

Docker security

Docker, by default, has introduced a number of security updates and features, which have made
Docker easier to use in an enterprise. There are certain guidelines or best practices that apply to
the following layers of the Docker technology stack, that an organization can look at:

Docker image and registry configuration

Docker container runtime configuration

Host configuration

For detailed guidelines on security best practices, see the official Docker Security documentation
at https://docs.docker.com/engine/security/security/.

Docker has also developed Docker Bench, a script that can test containers and their hosts' security
configurations against a set of best practices provided by the Center for Internet Security. For
details, see https://github.com/docker/docker-bench-security.

For details on how to establish a secure configuration baseline for the Docker Engine, see Center
for Information Security (CIS) Docker Benchmark (Docker CE 17.06).

For information on the potential security concerns associated with the use of containers and
recommendations for addressing these concerns, seeNISTSP 800publication (ApplicationContainer
Security Guide)

Prerequisites for Building a Docker Image

Prior to building a Docker image for API Gateway, you must complete the following:

Install Docker client on the machine on which you are going to install API Gateway and start
Docker as a daemon. The Docker client should have connectivity to Docker server to create
images.

Install API Gateway, packages, and fixes on a Linux or UNIX system using the instructions in
Installing Software AG Products, and then configure API Gateway and the hosted products.

534 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

https://docs.docker.com/
https://docs.docker.com/engine/security/security/
https://github.com/docker/docker-bench-security
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://csrc.nist.gov/publications/sp800

Building the Docker Image for an API Gateway Instance
TheAPI GatewayDocker image provides an API Gateway installation. Depending on the existing
installation, the API Gateway Docker image provides a standard API Gateway or an advanced
API Gateway instance. When running the image, the API Gateway is started. The API Gateway
image is created on top of an Integration Server image.

To build a Docker image for an API Gateway instance

1. Create a docker file for the Integration Server (IS) instance by running the following command:

./is_container.sh createDockerfile [optional arguments]

DescriptionArgument

Optional. Name of base image upon which the new image is
built.

-Dimage.name

Default: centos:7

Optional. IS instance name to include in the image.-Dinstance.name

Default: default

Optional. Comma-separated list of the ports on the instance to
expose in the image.

-Dport.list

Default: 5555,9999

Optional. Comma-separated list ofWmpackages on the instance
to include in the image.

-Dpackage.list

Default: all (this includes all the Wm packages and the Default
package)

Optional. Whether to include the Integration Server JDK (true)
or JRE (false) in the image.

-Dinclude.jdk

Default: true

Optional. File name for the generated docker file.-Dfile.name

Default: Dockerfile_IS

2. Build the IS Docker image using the Docker file Dockerfile_IS by running the following
command:

./is_container.sh build [optional arguments]

webMethods API Gateway Administration 10.11 535

4 Container-based Provisioning

DescriptionArgument

Optional. File name of the Docker file to use to build the
Docker image.

-Dfile.name

Default: Dockerfile_IS

Optional. Name of the generated Docker image.-Dimage.name

Default: is:micro

3. Create a Docker file for the API Gateway instance from the IS image is:micro by running the
following command:

./apigw_container.sh createDockerfile [optional arguments]

DescriptionArgument

Optional. API Gateway instance to include in the image.--instance.name

Default: default

Comma-separated list of the ports on the instance to expose
in the image.

--port.list

Default: 9072

Name of the base Integration Server image upon which this
image should be built.

--base.image

Default: is:micro

Optional. File name for the generated Docker file.--file.name

Default: Dockerfile_IS_APIGW

Optional. Target configuration forwhichDockerfile is created.--target.configuration

Not specifying any value builds a Dockerfile for the Docker
and Kubernetes environments.

Specifying the value OpenShift builds a Dockerfile for an
OpenShift environment.

Note:
If you specify the --target.configuration option, the
Integration Server image specified by the --base.image
option should be available before you create the API
GatewayDockerfile. The Integration ServerDocker image
is analyzed with docker inspect in order to extract some
information necessary for the API Gateway Dockerfile.

536 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

DescriptionArgument

Optional. Name of the base operating system image upon
which this image is built if the --target.configuration is
set to OpenShift.

--os.image

Default: centos:7

Note:
The value of this parameter has to be alignedwith the one
specified for -Dimage.name in Step 1.

The Docker file is created under the packages directory of the specified Integration Server
instance. In a default installation, the Docker file is created in the folder SAG_Root/
IntegrationServer/instances/default/packages/Dockerfile_IS_APIGW.

4. Build the API Gateway Docker image using the core Docker file Dockerfile_IS_APIGW by
running the following command:

./apigw_container.sh build [optional arguments]

DescriptionArgument

Optional. API Gateway instance to include in the image.instance.name

Default: default

File name of theDocker file to use to build theDocker image.file.name

Default: Dockerfile_IS_APIGW

Optional.Name for the generatedDocker image that contains
the custom packages.

image.name

Default: is:apigw

The image is stored in the local registry of theDocker host. To check the image, run the following
command:
$ docker images

Example

A sample shell script for creating an API Gateway Docker image looks as follows:
echo "is createDockerfile ==="
./is_container.sh createDockerfile
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"

webMethods API Gateway Administration 10.11 537

4 Container-based Provisioning

exit $status
fi

echo "is build =="
./is_container.sh build
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

echo "apigw createDockerfile =="
./apigw_container.sh createDockerfile
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

echo "apigw build ==="
./apigw_container.sh build
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

After running the steps, the created images can be listed using the command docker images. The
following sample result shows the base image centos:7, the Integration Server image is:micro,
and the API Gateway image is:apigw.
REPOSITORY TAG IMAGEID CREATED SIZE
is apigw af29373fc98a 15 hours ago 1.3GB
is micro 06e7c0de4807 15 hours ago 1.1GB
centos 7 36540f359ca3 12 days ago 193MB

Note:
The is:micro and therefore, the is:apigw images are based on the centos:7 image, which is
available from the official CentOS repository

The Docker images resulting from Docker files created using the createDockerFile command
feature the following:

Docker logging.

API GatewayDocker containers log to stdout and stderr. The API Gateway logs can be fetched
with Docker logs.

Docker health check.

API Gateway Docker containers perform health checks. You can use wget request against the
API Gateway REST API to check the health status of API Gateway.

538 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

The following wget request shows a curl invocation sending a request against the HTTP port.
If API Gateway exposes an HTTPS port, only the wget is created accordingly. The option
--no-check-certificate is used to avoid any failure due to certificate problems.
HEALTHCHECK CMD curl --no-check-certificate
http://localhost:5555/rest/apigateway/health

The wget checks the API Gateway availability by sending requests to the API Gateway REST
health resource. If the wget is successful, API Gateway is considered healthy.

Graceful shutdown.

Docker stop issues a SIGTERM to the running API Gateway.

Retrieving Port Information of the API Gateway Image
To retrieve the port information of the API Gateway image (is:apigw), run the following
command :
docker inspect --format='{{range $p,
$conf := .Config.ExposedPorts}}
{{$p}} {{end}}' is:apigw

A sample output looks as follows:
5555/tcp 9072/tcp 9999/tcp

Running the API Gateway Container
Before starting API Gateway, ensure that the main memory and the kernel settings of your docker
host are correctly configured. The docker host should provide at least 4 GB ofmainmemory. Since
API Gateway comes with an Elasticsearch, the vm.max_map_count kernel setting needs to be set to
at least 262144. You can change the setting on your docker host by running the following command:
sysctl -w vm.max_map_count=262144

For further details about the important system settings to be considered, see the Elasticsearch
documentation.

Start the API Gateway image using the docker run command:
docker run -d -p 5555:5555 -p 9072:9072 -name apigw is:apigw

The docker run is parameterized with the IS and the webApp port exposed by the Docker
container. If you have configured different ports for IS and UI, the call has to be adapted
accordingly. The name of the container is set to apigw.

The status of the Docker container can be determined by running the docker ps command:
docker ps

A sample output looks as follows:
CONTAINER ID IMAGE COMMAND CREATED STATUS ->

webMethods API Gateway Administration 10.11 539

4 Container-based Provisioning

5b95c9badd59 is:apigw "/bin/sh -c 'cd /s..." 15 hours ago Up 15 hours

->
PORTS NAMES
0.0.0.0:5555->5555/tcp, 0.0.0.0:9072->9072/tcp, 9999/tcp apigw

Load Balancer Configuration with the Docker Host
A port mapping is specified when you run the Docker container. For example, to map the IS port
to the port 5858 on the Docker host, run the Docker image with the following command:
docker run -d -p 5858:5555 -p 9073:9072 --name apigw is:apigw

The host and the port within the Docker container are different from the host running the Docker
container and the port exposed on the host. As a result, the gateway endpoints exposed by API
Gateway are set incorrectly. To set this right you have to set up a load balancer configuration with
the Docker host and the mapped ports.

For the above example, the following load balancer URLs are required:

Load balancer URL (HTTP): http://dockerhost:5858

Load balancer URL (WS): ws://dockerhost:5858

Web application load balancer URL: http://dockerhost:9073

Note:
If the API Gateway UI port is mapped to a different port on the Docker host, the API Gateway
solution link in the IS Administration UI does not work.

Stopping the API Gateway Container
Stop the API Gateway container using the docker stop command:
docker stop -t90 apigw

The docker stop is parameterizedwith the number of seconds required for a graceful shutdown
of the API Gateway and the API Gateway Docker container name.

Note:
The docker stop does not destroy the state of the API Gateway. On restarting the Docker
container all assets that have been created or configured are available again.

Managing API Gateway Images
You can manage the API Gateway images using the is_container.sh script

saveImage: To save an API Gateway image to a file (creating a tar ball from an image)

loadImage: To load an image to a Docker registry (loading an image into a Docker registry
from tar ball)

540 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

API Gateway Docker Container with Externalized Elasticsearch
and Kibana
The best practices for Docker container specify having a single process per container. This allows
to control the components of anAPI Gateway container and enables horizontal scaling. A full split
results into three separate containers, one each for API Gateway, Elasticsearch and Kibana. Since
Kibana is not scaled independently it can be included into the API Gateway container.

API Gateway Container with an Externalized Elasticsearch

The following figure depicts an API Gateway container with an externalized Elasticsearch where
Kibana is included in the API Gateway container.

Do the following to set up API Gateway container with an external Elasticsearch:

1. Run the external Elasticsearch.

You can start Elasticsearch container by using the Elasticsearch Docker image available on
docker hub. The Elasticsearch version should be the same as used in API Gateway.
docker run -p 9200:9240 -p 9300:9340 -e "xpack.security.enabled=false"
-v es-data:/usr/share/elasticsearch/data
docker.elastic.co/elasticsearch/elasticsearch:7.13.0

Use the option -e xpack.security.enabled=false to disable basic authentication for
Elasticsearch. This is the default option available in API Gateway.

webMethods API Gateway Administration 10.11 541

4 Container-based Provisioning

Use the volume mapping -v es-data:/usr/share/elasticsearch/data to persist the
Elasticsearch data outside the Docker container.

2. Run API Gateway Docker container.

To create a Docker file or image for an API Gateway that does not contain Elasticsearch the
./apigw_container.sh createDockerFile and build command offer the following option:
--extern.ES

Setting the flag ensures that the InternalDataStore is not added to the Docker image created
by the generated Docker file.

Elasticsearch configuration can be injected into an existing API Gateway image. Assuming an
existing API Gateway image sag:apigw:
docker run -d -p 5555:5555 -p 9072:9072 --env-file apigw-env.list
--hostname apigw --name apigw sag:apigw

The apigw-env.list contains the environment variables required for configuring an external
Elasticsearch and External Kibana:
apigw_elasticsearch_hosts=host:port
apigw_elasticsearch_https_enabled=("true" or "false")
apigw_elasticsearch_http_username=user
apigw_elasticsearch_http_password=password

An example looks as follows:
apigw_elasticsearch_hosts=testhost1:9200
apigw_elasticsearch_https_enabled=false
apigw_elasticsearch_http_username=
apigw_elasticsearch_http_password=

You can specify the Elasticsearch properties to modify the property files on the container
startup.

Instead of using the env file to change the environment variables, you can set them using -e
options in the Docker run. For setting the Elasticsearch host the Docker run command looks
as follows:
docker run -d -p 5555:5555 -p 9072:9072 \
-e apigw_elasticsearch_hosts=testhost1:9200 \
--hostname apigw \
--name apigw sag:apigw

API Gateway Container with an External Elasticsearch and External Kibana

The following figure depicts an API Gateway container with external Elasticsearch and external
Kibana containers.

542 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

Do the following to set up API Gateway container with an external Elasticsearch and external
Kibana:

1. Run the external Elasticsearch.

You can start Elasticsearch by using the default ElasticsearchDocker image available on docker
hub. The Elasticsearch version should be the same as used in API Gateway.
docker run -p 9200:9240 -p 9300:9340 -e "xpack.security.enabled=false"
-v es-data:/usr/share/elasticsearch/data
docker.elastic.co/elasticsearch/elasticsearch:7.13.0

Use the option -e xpack.security.enabled=false to disable basic authentication for
Elasticsearch. This is the default option available in API Gateway.

Use the volume mapping -v es-data:/usr/share/elasticsearch/data to persist the
Elasticsearch data outside the Docker container.

2. Run the external Kibana

If you have modified the original Kibana, for example by adding a style sheet file, or modified
the kibana.yml file, as per your requirements, then this customization of Kibana is bundled
with API Gateway. This customized Kibana is provided under the directory: profiles/IS_
default/apigateway/dashboard. To achieve this, create and run a Docker image based on the
customization. This can be achieved by a Docker file as follows:
FROM centos:7
COPY /opt/softwareag/profiles/IS_default/apigateway/dashboard /opt/softwareag/kibana
EXPOSE 9405
RUN chmod 777 /opt/softwareag/kibana/bin/kibana
CMD /opt/softwareag/kibana/bin/kibana

webMethods API Gateway Administration 10.11 543

4 Container-based Provisioning

Build and run the Docker file as follows:
docker build -t sagkibana .
docker run -p 9405:9405 sagkibana

3. Run API Gateway Docker container

To run a Docker image for an API Gateway running against an external Kibana the Docker
run can be called with the following environment variable:
apigw_kibana_dashboardInstance=instance

The environment variable can be added to an env file. The env file for running a Docker
container with external Elasticsearch and external Kibana looks as follows:
apigw_elasticsearch_hosts=testhost1:9200
apigw_elasticsearch_http_username=
apigw_elasticsearch_http_password=
apigw_kibana_dashboardInstance=http://testhost1:9405

Note:
All the configurations supported through externalized API Gateway configuration can be
configured through environment variables.

API Gateway Container Cluster Configuration
You can combine API Gateway Docker containers to form a cluster.

To configure an API Gateway Docker container cluster:

1. Configure loadbalancer on the Docker host.

The custom loadbalancer is installed on the Docker host. For more details on setting up the
load balancer, see “API Gateway Cluster Configuration” on page 25.

2. Configure Terracotta Server Array.

Note:
This configuration step is required only if your API Gateway cluster uses TSA.

API Gateway requires a Terracotta Server Array installation. For details, see webMethods
Integration Server Clustering Guide and Terracotta documentation (https://www.terracotta.org/).
The Terracotta Server Array on its own can be deployed as a Docker container.

3. Create the basic API Gateway Docker image.

For details on creating the API Gateway Docker image, see “Building the Docker Image for
an API Gateway Instance ” on page 535.

4. Create cluster API Gateway Docker image and enhance it with the cluster configuration in
one of the following ways:

Clustered all-in-one containers that consist of APIGateway, APIData Store (Elasticsearch),
and Kibana.

544 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

https://www.terracotta.org/

Clustered API Gateway containers with externalized Elasticsearch and Kibana containers.

Clustered all-in-one containers that consist of API Gateway, Kibana and API Data
Store

Although API Gateway clusters with externalized Elasticsearch is the preferred approach, you
can also clusterAPIGateway all-in-one containers. The clustering can be configured usingApache
Ignite or Terracotta Server Array.

Note:
Having external Kibana is an optional variation.

Peer-to-peer clustering using Apache Ignite

The following diagram depicts peer-to-peer clustering using Apache Ignite.

The all-in-one containers hold API Gateway, Kibana, and Elasticsearch. The clustering is done
using Apache Ignite and the cluster capabilities of the embedded Elasticsearch instances.

Inject the required settings for the cluster configuration duringDocker run through an environment
file.

A sample environment file when clustering is done through Apache Ignite looks as follows.
apigw_cluster_aware=true
apigw_cluster_name=APIGatewayCluster
apigw_cluster_ignite_hostnames=apigw1,apigw2,apigw3
apigw_cluster_ignite_discoveryPort=10100

webMethods API Gateway Administration 10.11 545

4 Container-based Provisioning

apigw_cluster_ignite_communicationPort=10400

Clustering using Terracotta Server Array

The following diagram depicts clustering using TSA.

The all-in-one containers hold API Gateway, Kibana, and Elasticsearch. The clustering is done
using a TSA and the cluster capabilities of the embedded Elasticsearch instances.

Inject the required settings for the cluster configuration duringDocker run through an environment
file.

A sample environment file when clustering is done through Terracotta server array looks as
follows.
apigw_cluster_tsaUrls=tc:9510
apigw_terracotta_license_filename=terracotta-license.key
apigw_cluster_discoverySeedHosts=apigw1:9340,apigw2:9340,apigw3:9340
apigw_cluster_initialMasterNodes=apigw1_master

546 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

Clustered API Gateway containers with externalized Elasticsearch and Kibana
containers

The API Gateway cluster can be peer-to-peer, or based on TSA, and it communicates to a cluster
of Elasticsearch containers through a load balancer. The Elasticsearch load balancer also provides
the Elasticsearch endpoint for the Kibana containers.

Note:
The externalizedKibana is optional. You can still run Kibanawithin theAPI Gateway container.

Peer-to-peer clustering using Apache Ignite

To cluster API Gateway with external containers for Elasticsearch, Kibana, and Apache Ignite,
you can inject the settings into an API Gateway Docker image when starting, by providing an
environment file. The environment file has to define the following environment variables.
apigw_cluster_aware=true
apigw_cluster_name=name
apigw_cluster_ignite_hostnames=comma-separated list of host names
apigw_cluster_ignite_discoveryPort=port
apigw_cluster_ignite_communicationPort=port
apigw_elasticsearch_hosts=host:port

webMethods API Gateway Administration 10.11 547

4 Container-based Provisioning

apigw_elasticsearch_http_username=user
apigw_elasticsearch_http_password=password
apigw_kibana_dashboardInstance=instance

A sample assignment of environment variables looks as follows:
apigw_cluster_aware=true
apigw_cluster_name=APIGatewayCluster
apigw_cluster_ignite_hostnames=apigw1,apigw2,apigw3
apigw_cluster_ignite_discoveryPort=10100
apigw_cluster_ignite_communicationPort=10400
apigw_elasticsearch_hosts=testhost1:9200
apigw_elasticsearch_http_username=
apigw_elasticsearch_http_password=
apigw_kibana_dashboardInstance=http://testhost1:9405

Clustering using Terracotta Server Array

To cluster the API Gateway with external containers for Elasticsearch, Kibana, and TSA, you can
inject the settings into an API Gateway Docker imagewhen starting by providing an environment
file. The environment file has to define the following environment variables.
apigw_cluster_tsaUrls=host:port

548 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

apigw_terracotta_license_filename=license-key-filename

apigw_elasticsearch_hosts=host:port
apigw_elasticsearch_http_username=user
apigw_elasticsearch_http_password=password

apigw_kibana_dashboardInstance=instance

A sample assignment of the environment variables looks as follows.
apigw_cluster_tsaUrls=tc:9510
apigw_terracotta_license_filename=terracotta-license.key

apigw_elasticsearch_hosts=testhost1:9200
apigw_elasticsearch_http_username=
apigw_elasticsearch_http_password=

apigw_kibana_dashboardInstance=http://testhost1:9405

Running API Gateway Docker Containers with Docker Compose
You can run API Gateway Docker containers and use Docker Compose's ability to allow you to
define and run multi-container Docker applications in your deployment environment.

The API Gateway installation provides sample Docker Compose files in the folder located at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/docker-compose.
The API Gateway installation provides the following three sample Docker Compose files:

apigw-elasticsearch-no-cluster.yml : AnAPIGateway instancewith an Elasticsearch container.

apigw-elasticsearch-cluster.yml : AnAPIGateway clusterwith threeAPIGateway containers,
three clustered Elasticsearch containers and a Terracotta container.

apigw-elasticsearch-cluster-kibana.yml : Containers of an API Gateway cluster and a Kibana
container.

The Docker Compose files can be parameterized through environment variables.

For more Docker configuration samples, see https://github.com/SoftwareAG/webmethods-api-
gateway/tree/master/samples/docker.

Running a Single API Gateway and an Elasticsearch Container

You can run a single API Gateway and an Elasticsearch container using Docker Compose. In this
deployment scenario you can use the sample Docker Compose file
apigw-elasticsearch-no-cluster.yml.

The following figure depicts an API Gateway container with an externalized Elasticsearch where
Kibana is included in the API Gateway container.

webMethods API Gateway Administration 10.11 549

4 Container-based Provisioning

https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/docker
https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/docker

To deploy a single API Gateway and an Elasticsearch container

1. Set the environment variables to define the image for the API Gateway container as follows:

export APIGW_DOCKER_IMAGE_NAME=image name or filepath location of an existing image

The composite file requires an API Gateway Docker image. You can create the referenced
image through API Gateway scripting. For details on creating a Docker image, see “Building
the Docker Image for an API Gateway Instance ” on page 535. The Docker Compose file
references the standard Elasticsearch 7.13.0 image: docker.elastic.co/elasticsearch/elasticsearch:
7.13.0.

Specify the API Gateway image by changing the .env file. API Gateway uses the .env file when
the working directory is .../samples/docker-compose, else you must specify the environment
variables.

2. Run the following command to start the API Gateway Docker container and the Elasticsearch
container using the Docker Compose sample file:

cd SAG-Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/
samples/docker-compose
docker-compose -f apigw-elasticsearch-no-cluster.yml up

In the Docker Compose sample file apigw-elasticsearch-no-cluster.yml ensure that you have
specified the required information such as image name, name and port of the Elasticsearch
host, server port, and UI port. This creates and starts the containers. Run the docker ps
command to view the details of the containers created.

To run it in the detached mode, append -d in the docker-compose command.

Note:

550 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

You can stop the API Gateway Docker container and the Elasticsearch container using the
Docker Compose sample file with the following command:

docker-compose -f apigw-elasticsearch-no-cluster.yml down

Running Clustered API Gateway Containers and Elasticsearch Containers

In this deployment scenario you can use the sample Docker Compose file
apigw-elasticsearch-cluster.yml.

The followingdiagramdepicts a set-up that has clusteredAPIGateway containers andElasticsearch
containers.

To run clustered API Gateway containers and Elasticsearch containers

1. Set the environment variables to define image for the API Gateway Docker container and
Terracotta as follows:

export APIGW_DOCKER_IMAGE_NAME=image name or filepath location of an existing image
export TERRACOTTA_DOCKER_IMAGE_NAME=terracotta image name

The composite file requires Terracotta and the API Gateway Docker image. You can create the
API Gateway image through API Gateway scripting. For details on creating a Docker image,
see “Building the Docker Image for an API Gateway Instance ” on page 535.

You can create the Terracotta image as follows:

webMethods API Gateway Administration 10.11 551

4 Container-based Provisioning

cd /opt/softwareag
docker build --file Terracotta/docker/images/server/Dockerfile –tag is:tc

Specify the API Gateway image by changing the .env file. API Gateway uses the .env file when
the working directory is .../samples/docker-compose, else you must specify the environment
variables.

2. Run the following command to start Terracotta, clustered API Gateway, and Elasticsearch
containers using the Docker Compose sample file:

cd SAG-Root/IntegrationServer/instances/default/packages/WmAPIGateway
/resources/samples/docker-compose
docker-compose -f apigw-elasticsearch-cluster.yml up

In the Docker Compose sample file apigw-elasticsearch-cluster.yml ensure that you have
specified the required information such as image name, name and port of the Elasticsearch
host, server port, and UI port. This creates and starts the containers. Run the docker ps
command to view the details of the containers created.

To run it in the detached mode, append -d in the docker-compose command.

Note:
You can stop the API Gateway Docker container and the Elasticsearch container using the
Docker Compose sample file with the following command:

docker-compose -f apigw-elasticsearch-cluster.yml down

Running Clustered API Gateway and Elasticsearch Containers and a Kibana
Container

In this deployment scenario you can use the sample Docker Compose file
apigw-elasticsearch-cluster-kibana.yml.

The figure depicts clustered API Gateway containers. They are talking to a clustered Terracotta
Server Array container, a cluster of Elasticsearch container and an external Kibana.

552 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

To run clustered API Gateway and Elasticsearch containers, and a Kibana container

1. Set the environment variables to define the API Gateway, Terracotta, and the Kibana image
as follows:

export APIGW_DOCKER_IMAGE_NAME=image name or filepath location of an existing image
export TERRACOTTA_DOCKER_IMAGE_NAME=terracotta image name
export KIBANA_DOCKER_IMAGE_NAME=kibana image name

You can create the required API Gateway Docker image through API Gateway scripting. For
details on creating a Docker image, see “Building the Docker Image for an API Gateway
Instance ” on page 535.

Create the Terracotta image as follows:
cd /opt/softwareag
docker build --file Terracotta/docker/images/server/Dockerfile –tag is:tc

Specify the API Gateway image by changing the .env file. API Gateway uses the .env file when
the working directory is .../samples/docker-compose, else you must specify the environment
variables. .

API Gateway requires a customized Kibana image. The Docker file for creating the Kibana
image is as follows:
FROM centos:7
COPY /opt/softwareag/profiles/IS_default/apigateway/dashboard /opt/softwareag/kibana

webMethods API Gateway Administration 10.11 553

4 Container-based Provisioning

EXPOSE 9405
RUN chmod 777 /opt/softwareag/kibana/bin/kibana
CMD /opt/softwareag/kibana/bin/kibana

2. Run the following command to start the API Gateway Docker container and the Elasticsearch
container using the Docker Compose sample file:

cd SAG-Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/
samples/docker-compose
docker-compose -f apigw-elasticsearch-cluster-kibana.yml up

In the Docker Compose sample file apigw-elasticsearch-cluster-kibana.yml ensure that you
have specified the required information such as image name, name and port of the Elasticsearch
host, server port, UI port, and Kibana dashboard instance details. This creates and starts the
containers. Run the docker ps command to view the details of the containers created.

To run it in the detached mode, append -d in the docker-compose command.

Note:
You can stop the API Gateway Docker container and the Elasticsearch container using the
docker-compose sample file with the following command:

docker-compose -f apigw-elasticsearch-cluster-kibana.yml down

Troubleshooting Tips: Docker Configuration

Docker run with environment variables is not able to replace UI properties

When I use docker run with environment variables as shown below, the Elasticsearch values in
uiconfiguration.properties are not replaced. Hence the analytics is broken.

docker run -d --name gateway_externales --hostname gateway_externales -p 7072:9072 -p
3555:5555 -e apigw_elasticsearch_hosts=elastic:9200

However, the values in WmAPIGateway/config/resources/elasticsearch/config.properties are
correctly replaced.

Resolution:

Set the kibana autostart to false and try.

Kubernetes Support

API Gateway can be run within a Kubernetes (k8s) environment. Kubernetes provides a platform
for automating deployment, scaling and operations of services. The basic scheduling unit in
Kubernetes is a pod. It adds a higher level of abstraction by grouping containerized components.
A pod consists of one or more containers that are co-located on the host machine and can share
resources. A Kubernetes service is a set of pods that work together, such as one tier of a multi-tier
application.

The API Gateway Kubernetes support provides the following:

554 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

Liveliness check to support Kubernetes pod lifecycle.

This helps in verifying that the API Gateway container is up and responding.

Readiness check to support Kubernetes pod lifecycle.

This helps in verifying that the API Gateway container is ready to serve requests. For details
on pod lifecycle, see Kubernetes documentation.

Prometheus metrics to support the monitoring of API Gateway pods.

API Gateway support is based on the Microservices Runtime Prometheus support. You use
the IS metrics endpoint /metrics to gather the required metrics. When the metrics endpoint is
called, Microservices Runtime gathers metrics and returns the data in a Prometheus format.
Prometheus is an open source monitoring and alerting toolkit, which is frequently used for
monitoring containers. For details on the prometheus metrics, see Developing Microservices
with webMethods Microservices Runtime.

The following sections describe in detail different deployment models for API Gateway as a
Kubernetes service. Each of the deployment models described require an existing Kubernetes
environment. For details on setting up of aKubernetes environment, seeKubernetes documentation.

With the API Gateway Kubernetes support, you can deploy API Gateway in one of the following
ways:

A pod with API Gateway container and an Elasticsearch container

A pod with API Gateway container connected to an Elasticsearch Kubernetes service

APIGateway also supports RedHatOpenShift containerized platform that you can use for building
and scaling containerized applications. For details and special considerations, see the following
sections:

“Building the Docker Image for an API Gateway Instance ” on page 535, in particular the
--target.configuration and --os.image parameters

“OpenShift Support” on page 562

For details about OpenShift in general, see OpenShift documentation.

Deploying API Gateway Pod with API Gateway and
Elasticsearch Containers
Select this deployment model if you want API Gateway as a Kubernetes service protecting the
native services deployed to Kubernetes. Here, API Gateway runs in dedicated pods, and each pod
has Elasticsearch and Kibana containers. API Gateway routes the incoming API requests to the
native services. The invocation of the native services by the consumers happens through APIs
provisioned by API Gateway.

The figure depicts the API Gateway Kubernetes service deployment model where you have a
single API Gateway pod that contains API Gateway and Elasticsearch containers. The Kibana can

webMethods API Gateway Administration 10.11 555

4 Container-based Provisioning

either be embedded in the API Gateway container or can reside as a separate container within the
pod.

To deploy API Gateway Kubernetes pod that contains an Elasticsearch container

1. Ensure that vm.max_map_count is set to a value of at least 262144 to run an Elasticsearch
container within a pod. This is done in an init container as follows:

initContainers:
- command:
- sysctl
- -w
- vm.max_map_count=262144

image: busybox
imagePullPolicy: IfNotPresent
name: init-sysctl
resources: {}
securityContext:
privileged: true

2. Ensure that you have an API Gateway Docker image and an Elasticsearch image for this
deployment. For the API Gateway container, you have to set the following environment:

apigw_elasticsearch_hosts=localhost:9200

556 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

This assumes that Elasticsearch runs on the standard port 9200 and the xpack.security is
disabled. You can disable the xpack.security by setting the environment variable
xpack.security.enabled to false.

The followingYAMLsnippet displays how the environment variable apigw_elasticsearch_hosts
is set.
spec:
containers:
- env:

- name: apigw_elasticsearch_hosts
value: localhost:9200

You can disable the xpack.security by setting the environment variable xpack.security.enabled
to false for the Elasticsearch container.

3. Run the following command to deploy API Gateway in the Kubernetes setup:

kubectl create -f api-gateway-deployment-embedded-elasticsearch.yaml

Ensure that you have specified the required information such as image name, default ports in
the Kubernetes sample file api-gateway-deployment-embedded-elasticsearch.yaml located at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/K8s.
For details on Kubernetes YAML files, see Kubernetes documentation.

This now pulls the image specified and creates the API Gateway pod with API Gateway and
Elasticsearch containers.

Run the command kubectl get pods to view the pods created.

Deploying API Gateway Pod with API Gateway Container
connected to an Elasticsearch Kubernetes Service
Select this deploymentmodel if youwant to have a separate Elasticsearch service. This deployment
allows you to scale Elasticsearch independently or to use an already existing Elasticsearch service.
Ensure that you have an Elasticsearch Kubernetes service for Elasticsearch 7.13.0.

The diagram depicts the API Gateway Kubernetes service deployment model where you have a
separateAPIGateway pod that constitutes anAPIGateway container connected to an Elasticsearch
service. Kibana can run as a separate container within the API Gateway pod or can be embedded
in the API Gateway container.

webMethods API Gateway Administration 10.11 557

4 Container-based Provisioning

To deploy an API Gateway Kubernetes pod that communicates with an Elasticsearch
Kubernetes service

1. Ensure that you have an Elasticsearch Kubernetes service for Elasticsearch 7.13.0.

For more details on deploying Elasticsearch on Kubernetes, see Elasticsearch and Kubernetes
documentation.

2. Ensure that you have anAPIGatewayDocker image for this deployment. For theAPIGateway
container, you have to set the following environment variable:

apigw_elasticsearch_hosts=elasticsearch-host:elasticsearch-port

3. Run the following command to deploy API Gateway in the Kubernetes setup:

kubectl create -f api-gateway-deployment-external-elasticsearch.yaml

Ensure that you have specified the required information such as image name, default ports,
details of the external elastic search and how to access it in the Kubernetes sample file
api-gateway-deployment-external-elasticsearch.yaml located at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/K8s.
For details on Kubernetes YAML files, see Kubernetes documentation.

This now pulls the image specified and creates the API Gateway pod with API Gateway
container connected to an Elasticsearch Kubernetes service.

Run the command kubectl get pods to view the pods created.

558 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

API Gateway Clustering on Kubernetes
When deploying API Gateway on Kubernetes, the intention is to create a highly available and
scalable setup that can dynamically scale up and down according to the current load. Hence,
always configure API Gateway as a cluster. You can provide the cluster configurations as
environment variables in theKubernetes deployment YAMLfile forAPIGateway. The environment
variables are the same as described in the Docker configuration section. For details about Docker
configuration, see “API Gateway Container Cluster Configuration” on page 544.

Alternatively, you can also provide the cluster configurations in the externalized configuration
files as described in the “ Using the Externalized Configuration Files” on page 65 section. For
Kubernetes, the configuration files are implemented as ConfigMaps, which are then injected into
the pods through volume mapping.

Peer-to-peer clustering on Kubernetes

If you have configured API Gateway with peer-to-peer clustering you must consider that in a
Kubernetes deployment the clustering is not configured with a list of host names. Instead, the
namespace and service name of the API Gateway deployment are used. To detect other cluster
members, each API Gateway server talks to the Kubernetes API server in order to analyze the
endpoints attached to the service. This lookup operation requires specific Kubernetes permissions,
which are not available out of the box. It is necessary to create a role with the appropriate
permissions, create a role binding that assigns the role to a service account, and finally start the
API Gateway deployment with the service account, instead of the default one.

The Kubernetes YAML file to create a service account
apiVersion: v1

kind: ServiceAccount
metadata:

name: cluster-discovery-sa

The Kubernetes YAML file to create a role

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

name: cluster-discovery-role
rules:
- apiGroups:

- ""
resources:
- pods
- endpoints
verbs:
- get
- list
- watch

The Kubernetes YAML file to assign the role
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1

webMethods API Gateway Administration 10.11 559

4 Container-based Provisioning

metadata:
name: cluster-discovery-rolebinding

roleRef:
kind: Role
name: cluster-discovery-role
apiGroup: rbac.authorization.k8s.io

subjects:
- kind: ServiceAccount

name: cluster-discovery-sa

The Kubernetes YAML file to use the service account in the API Gateway deployment YAML
file
apiVersion: apps/v1
kind: Deployment
spec:

template:
spec:
serviceAccountName: cluster-discovery-sa

Kubernetes Sample Files
The API Gateway installation provides Kubernetes deployment samples. For details about these
sample files, see https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/
kubernetes.

To use the samples to deploy API Gateway in the Kubernetes setup, you must adapt the samples
to configure the required specifications. Depending upon the Kubernetes deployment model, use
the respective Kubernetes sample deployment files. API Gateway provides the following three
sample deployment files:

api-gateway-deployment-embedded-elasticsearch.yaml

This file shows how to deploy anAPIGatewaywith an embeddedElasticsearch to aKubernetes
cluster. Required information you have to specify before you use this file are: container name,
the path to your API Gateway image stored in a docker registry and container port.

api-gateway-deployment-external-elasticsearch.yaml

This file shows how to deploy an API Gateway without elasticsearch to a kubernetes cluster.
Youmust have an external Elasticsearch to be up and running. Required information you have
to specify before you use this file are: container name, the path to your API Gateway image
stored in a docker registry, container port, and information to access your external Elasticsearch.

api-gateway-deployment-sidecar-elasticsearch.yaml

This file shows how to deploy an API Gateway with an Elasticsearch as a sidecar container
(side car means the Elasticsearch container is deployed within the pod of the API Gateway)
to a Kubernetes cluster. Required information you have to specify before you use this file are:
API Gateway container name, the path to your API Gateway image stored in a docker registry,
Elasticsearch container name, and the path to the Elasticsearch image.

560 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/kubernetes
https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/kubernetes

The sample file also deploys an application service for the selected deployment. You can specify
the configuration details for the service to be deployed. You can create and start all the services
from your configuration with a single command.

Helm Chart
TheAPIGateway installation provides a sample helm chart. API Gateway usesHelm to streamline
the Kubernetes installation andmanagement. Helm allows you to easily templatize the Kubernetes
deployments and provides a set of configuration parameters that you can use to customize the
deployment. Helm chart combines the Kubernetes deployments and provides a service tomanage
them.

The Helm chart covers the following Kubernetes deployments:

A pod with containers for API Gateway, Elasticsearch, and Kibana

A pod with containers for API Gateway and Kibana

A pod with containers for API Gateway and Kibana that supports clustering

The Helm chart supports a values.yaml file for the following Elasticsearch configurations:

Embedded Elasticsearch

External Elasticsearch

Elasticsearch in a sidecar deployment

The values.yml file passes the configuration parameters into theHelm chart. A sample values.yaml
file is available at SAG_Install_Directory/IntegrationServer/instances
/default/packages/WmAPIGateway/resources/samples/helm/sag-apigateway. Provide the required
parameters in this file to customize the deployment.

Using Helm to Start the API Gateway Service
To use Helm chart to start the API Gateway service

1. Install and initialize Helm and then create a Helm chart.

For details, see https://github.com/helm/helm/blob/master/docs/quickstart.md#install-helm?.

This creates a standard layout with some basic templates and examples. Use the templates to
easily templatize your Kubernetes manifests. Use the set of configuration parameters that the
templates provide to customize your deployment.

2. Update the values.yaml file with the required information, such as the URL pointing to your
repository, the port and service details, and the deployment type for which you want to create
a service. The values.yml file passes the configuration parameters into the helm chart.

3. Navigate to the working folder where the charts are stored, and run the following command.

webMethods API Gateway Administration 10.11 561

4 Container-based Provisioning

https://github.com/helm/helm/blob/master/docs/quickstart.md#install-helm?

helm install sag-api-gateway-10.5

Where, sag-api-gateway-10.5 is the Helm chart name.

The Kubernetes cluster starts API Gateway and the service.

OpenShift Support
RedHat OpenShift is a container platform built upon and extends the Kubernetes functionality.
In addition to Kubenetes' ability of orchestrating containerized applications, OpenShift provides
support for the complete CI/CD life cycle of applications, called Source-To-Image.

The API Gateway OpenShift support provides the following, in the same way as the Kubernetes
support does:

Liveliness check. This helps in verifying that the API Gateway container is up and running.

Readiness check. This helps in verifying that the API Gateway container is ready to server
requests.

Prometheus metrics to support the monitoring of API Gateway pods.

Kubernetes-specific logging.

Architectural patterns for running Elasticsearch as embedded, sidecar, or external.

Auto scaling.

OpenShift extends Kubernetes and introduces new objects. For example, Kubernetes deployment
is called DeploymentConfig and has the version id apps.openshift.io/v1 . In order tomake services
accessible from outside the cluster, OpenShift provides Route objects. The images required to start
containers are not necessarily referenced directly inside the container specification, rather they
can be managed by ImageStream objects.

OpenShift has a specificway for running ElasticSearch containers. ElasticSearch needs an increased
virtual memory mmap count: vm.max_map_count >= 262144. In a plain Kubernetes environment
you can solve this by adding an initContainer that has to run in the privileged mode. OpenShift
offers amuch simpler solution. If a pod carries a specific label thenOpenShift applies the necessary
system changes behind the scenes when starting the pod's containers.

For details on how these OpenShift specific topics are reflected in YAML configuration files for
API Gateway, see “OpenShift Sample Files” on page 565.

When starting a new container, by default, OpenShift ignores the built-in user of theDocker image
and injects a new user. This user is a member of the root group, and hence the files, scripts, and
programs inside the container have to be readable, writable, and executable by the root group. To
understand how to work with this OpenShift behavior, see the following sections:

“Building aDocker Image for anAPIGateway Instance inOpenShift Environment ” on page 562

“Running the Docker Image With the sagadmin user ” on page 564

Building a Docker Image for an API Gateway Instance in OpenShift Environment

562 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

When starting theAPIGateway container, OpenShift ignores the built-in user of theDocker image
and injects a new user. This user is a member of the root group, and hence the files, scripts, and
programs inside the API Gateway container have to be readable, writable, and executable by the
root group. To build a Docker image that fulfills these requirements, perform the procedure
outlined.

To build a docker image for an API Gateway instance in an OpenShift environment

1. Follow the steps outlined in “Building the Docker Image for an API Gateway Instance ” on
page 535.

Ensure that you have set the parameters --target.configuration and --os.image specific to
the OpenShift environment.

A sample shell script for creating anAPIGatewayDocker image for anOpenshift environment
looks as follows:
echo "is createDockerfile ==="
./is_container.sh createDockerfile
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

echo "is build =="
./is_container.sh build
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

echo "apigw createDockerfile =="
./apigw_container.sh createDockerfile --target.configuration openshift
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

echo "apigw build ==="
./apigw_container.sh build
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

webMethods API Gateway Administration 10.11 563

4 Container-based Provisioning

The resultingDocker file uses chgrp and chmod commands to assign proper permissions to the root
group. Running these commands almost doubles the Docker image size, hence the Docker file is
organized as a multi-stage build where the first stage prepares the file system with root group
permissions, and the second stage copies this into the final image. For the second stage, it is
necessary to specify the base operating system image using the --os.image parameter, unless the
default value, centos:7, is sufficient. As the API Gateway Docker image builds upon a previously
created Integration Server Docker image, the value of the --os.image parameter is same as the
value of the -Dimage.name parameter that is used in the creation of the Integration Server image.

The resulting API Gateway image has the built-in sagadmin user, but due to the adapted root
group permissions, the image can be deployed to an OpenShift cluster.

Note:
The resultingAPI Gateway image can also be deployed to Docker or Kubernetes systemswhere
it is deployed under the control of the sagadmin user.

Running the API Gateway Docker Image with the sagadmin User

If you do not want to use the default OpenShift behavior of starting the API Gateway container
with an arbitrary root group user, you have to create a special service account with corresponding
permissions using the oc command line tool of OpenShift.

To run the API Gateway Docker image with the built-in sagadmin user

1. Switch to the API Gateway project where you intend to deploy API Gateway.

oc project API Gateway project name

2. Create a service account runassagadmin.

oc create serviceaccount runassagadmin

3. Assign the permission to the service account runassagadmin to use the built-in user of the
Docker image.

oc adm policy add-scc-to-user anyuid -z runassagadmin

Note:
You must have OpenShift administrator privileges to perform this step.

4. In the DeploymentConfig.yaml file for API Gateway, set the field
spec.template.spec.serviceAccountName to the name of the newly created service account.

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
name: api-gateway-deployment

spec:
template:

564 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

spec:
serviceAccountName: runassagadmin

In the API Gateway sample YAML file, described in “OpenShift Sample Files” on page 565
section, the serviceAccountName field is pre-populatedwith the default service account default
for OpenShift.

5. Apply the modified DeploymentConfig YAML file.

oc apply -f modified deploymentconfig for API Gateway

Note:
The API Gateway Docker image referenced in the DeploymentConfig YAML file can be any
APIGatewayDocker image. It is not necessary to build it using the --target.configuration
parameter as described in “Building a Docker Image for an API Gateway Instance in
OpenShift Environment” on page 562.

OpenShift Sample Files

APIGateway installation providesOpenShift deployment samples. For details about these sample
files, see https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/openshift.
To use the samples to deploy API Gateway to an OpenShift cluster, you must adapt the samples
to configure the required specifications.

TheOpenShift samples are conceptually identical to the ones described in the “Kubernetes Sample
Files” on page 560 section and support the same architectural patterns for ElasticSearch. This section
highlights the parts that are specific to OpenShift environment.

OpenShift uses a DeploymentConfig object with API version apps.openshift.io/v1 to describe a
deployment. The section in the sample file is as follows:
apiVersion: apps.openshift.io/v1
kind: DeploymentConfig

If you have a pod labeled as tuned.openshift.io/elasticsearch, then OpenShift automatically
changes the required system settings on themachinewhere the podwith the ElasticSearch container
is started. The section in the sample file is as follows:
template:
metadata:

labels:
deploymentconfig: api-gateway-deployment
tuned.openshift.io/elasticsearch: ""

In OpenShift, use the ImageStream and ImageStreamTag objects to reference the image to be used
for a container instead of specifying the image namedirectly in the spec.template.spec.containers
section. The section in the sample file is as follows:
triggers:
- type: ConfigChange
- type: ImageChange

imageChangeParams:
automatic: true
containerNames:

webMethods API Gateway Administration 10.11 565

4 Container-based Provisioning

https://github.com/SoftwareAG/webmethods-api-gateway/tree/master/samples/openshift

- api-gateway-deployment
from:
kind: ImageStreamTag
name: api-gateway-deployment:10.11

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
name: api-gateway-deployment

spec:
lookupPolicy:

local: false
tags:
- from:

kind: DockerImage
Please fill in the path to your api gateway image stored in a docker registry.
name: <yourDockerRegistry>:<RegistryPort>/<PathToApiGateway>:10.11

importPolicy: {}
name: "10.11"
referencePolicy:

type: Source

Use the Route objects that OpenShift provides to make a service visible outside the cluster. Note
that the URL specified in the spec.host parameter is unique across the whole OpenShift cluster.
The section in the sample file is as follows:
apiVersion: route.openshift.io/v1
kind: Route
metadata:
name: api-gateway-ui

spec:
Provide a URL that will be visible outside of the OpenShift cluster
host: api-gateway-ui.apps.<yourClusterBaseUrl>
port:

targetPort: 9072-tcp
subdomain: ""
to:

kind: Service
name: api-gateway-service
weight: 100

wildcardPolicy: None

566 webMethods API Gateway Administration 10.11

4 Container-based Provisioning

5 High Availability, Disaster Recovery, and Fault

Tolerance

■ High Availability .. 568

■ High Availability and Disaster Recovery ... 572

■ High Availability and Fault Tolerance .. 580

webMethods API Gateway Administration 10.11 567

High Availability

To achieve high availability, you can cluster your API Gateway, API Data Store and Apache Ignite
instanceswithin a data center or a region. Clustering ensures that there is no single point of failure
in the system in that data center. As an alternative for Apache Ignite, Terracotta Server Array can
be used to set up a cluster. For more information about the cluster deployment, see “Cluster
Deployment” on page 24. The typical HA architecture is as follows.

There is another variant to the HA architecture. You can store the Trasactional Events (TE) and
logs in an External API Data Store too. For information about the external API Data Store, see “
Connecting to an External Elasticsearch” on page 55. The HA architecture with the External API
Data Store is as follows.

568 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

While HA architecture offers protection against single point of failure within a single data center,
it does not protect you from the failure of an entire data center due to events like a natural disaster,
cyber attack and so on. For protection against data center failures and to ensure business continuity,
you must choose one business continuity solution from the following:

High Availability and Disaster Recovery (HADR) solution.

High Availability and Fault Tolerance (HAFT) solution.

Disaster Recovery vs Fault Tolerance
BothHighAvailability andDisasterRecovery (HADR) andHighAvailability andFault Tolerance
(HAFT) architectures ensure that the application runswithout any systemdegradation. However,
the unique attributes that differentiate them are cost, design, redundancy level, and behavior on
component faults or failures.

Keypoints about High Availability and Disaster Recovery
(HADR) solution
The architecture of HADR is as follows:

webMethods API Gateway Administration 10.11 569

5 High Availability, Disaster Recovery, and Fault Tolerance

The keypoints about HADR solution is as follows:

Each data center or the cloud region hosts an independent cluster of its own.

Primary data center serves the traffic and is exposed to the client and you must turn on the
secondary data center only when the primary data center goes down due to a disaster.

The recovery process during disaster recovery is categorized into two stages:

Failover. The failover operation is the process of switching data from a primary data center
to a secondary data center.

Failback. The failback operation is the process of returning data from a secondary data
center to a primary data center.

HADR solution can be set up usingCold standbymode orWarm standbymode. The following
table explains the difference between both the modes.

DescriptionRPO

(customizable)

RTO

(approximately)

Failover
Mode

>=15 minutes30 minutes to
1 hour

Cold standby
mode

Secondary data center remains switched off
until failover operation.Hence, this approach
saves cost.

Backup scheduler is set to meet the RPO
definition.

>=15 minutes15 minutesWarm
standbymode

API Data Store is operational in the
secondary data center.

Backup scheduler is set to meet the RPO
definition.

As API Data Store is operational and data is
restored from the latest backup snapshots in
secondary data center, this approach reduces

570 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

DescriptionRPO

(customizable)

RTO

(approximately)

Failover
Mode

RTO, but the cost is higher compared to Cold
standby mode.

Before performing the failover process:

In cold standby mode:

Install API Gateway in the secondary data center and ensure that the fix upgrades of
the primary data center is applied to the secondary data center too.

Run the backup scripts periodically to take a snapshot of data from the primary data
store and store the snapshots in a suitable externalized storage like AWS S3, Azure
Blobs.

In warm standby mode:

Install API Gateway in the secondary data center and ensure that the fix upgrades of
the primary data center is applied to the secondary data center too.

Run the backup scripts periodically to take a snapshot of data from the primary data
store and store the snapshots in a suitable externalized storage system.

Ensure that API Data Store is turned on and running.

Run the restore scripts periodically to restore the backedup snapshots from the
externalized storage in the secondary data center.

During the failover process:

In cold standby mode, start API Data Store, restore the data from the snapshots in API
Data Store, and then start API Gateway in the secondary data center.

In warm standby mode, as API Data Store is up and running, and the data is already
restored from the snapshots in API Data Store, you must just restart API Gateway alone.

After completing the disaster recovery process, when you want to switch back the traffic from
the secondary data center to primary data center, follow the failback process.

For more details, see “High Availability and Disaster Recovery ” on page 572.

Keypoints about High Availability and Fault Tolerance (HAFT)
solution
The architecture of HAFT is as follows:

webMethods API Gateway Administration 10.11 571

5 High Availability, Disaster Recovery, and Fault Tolerance

The keypoints about HAFT solution is as follows:

Use this set up, if the RTO is highly demanding, which ranges from few seconds or minutes.

Each data center or the cloud region hosts an independent or isolated cluster of its own.

HAFT solution can be set up usingHot standby mode orActive-Active mode. The following
table explains the difference between both the modes.

DescriptionRPORTOFailover
Mode

less than 5
seconds.

few
seconds or
minutes

Hot
standby
mode

You can have only two data centers. Out ofwhich,
only the primary data center serves the client
request.

(time taken
to switch
the load
balancer).

less than 5
seconds.

no down
time.

Active-Active
mode

You can have N (Minimum 2) number of data
centers and all the data centers serve the client
request.

API assets should be synchronized across the data center through CI-CD deployments.

Cross-DC federation support offered by API Gateway is limited to API consumers and auth
tokens.

API transactions are local to the cluster where the traffic is served and not aggregated. For
aggregated transactions, use a centralized API Data Store.

For more details, see “High Availability and Fault Tolerance” on page 580.

High Availability and Disaster Recovery

The architecture of high availability and disaster recovery (HADR) is as follows:

572 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

When an entire data center goes down due to natural disaster, equipment failure, or cyber attack,
a business has to recover lost data from where the data is backed up. The disaster recovery relies
upon the replication of the backed up data in a safe network or a cloud location that is not affected
by the disaster.

Disaster recovery architecture can be setup using Cold standby mode or Warm standby mode.

The two most important parameters for a disaster recovery plan are:

Recovery PointObjective (RPO). Describes the age of files thatmust be recovered frombackup
for a business operation to resume after a disaster. It also specifies how often you should back
up data. For example, if your RPO value is 15 minutes, then the data before 15 minutes of a
disaster must be restored for operations to resume.

Recovery Time Objective (RTO). Describes the duration and service level within which you
must restore the most critical IT services after a disaster. For example, if your RTO value is 60
minutes, the data in the required systems must be restored within 60 minutes of a disaster
event.

You can have an effective disaster recoverymanagement in place by configuring a reliable repository
and by taking data backup at regular intervals.

webMethods API Gateway Administration 10.11 573

5 High Availability, Disaster Recovery, and Fault Tolerance

The recovery process during disaster recovery is categorized into two stages:

Failover. The failover operation is the process of switching data from a primary data center
to a backup facility.

Failback. The failback operation is the process of returning data from the backup facility to
the primary data center.

Data recovery between nodes
You can store the backup of an API Gateway instance in a repository and if there is a disaster, you
can restore the backed up data in another node during disaster recovery.

<<image to explain the process in simpler terms>>

How do I restore backed-up data during disaster recovery?

Pre-requisites

Ensure you create separate repository for each node. For information about creating repository,
see “Configuring a Backup Repository” on page 120.

To restore the backed-up data

1. Stop the API Data Store of the instance in which you want to restore the backed-up data.

2. Copy the repository with the backup file you want to recover to the repository of the instance
in which you want to restore.

3. Start the API Data Store of the instance to which you want to perform the restore.

4. Restore the backed-up data. For information on restoring data, see “Restoring Data Store
Backup” on page 159.

What is Cold Standby Mode?
In the Cold Standbymode, there are only two data centers. The primary data center is up and
running, whereas the secondary data center is turned on only when the primary data center goes
down. On failure of the primary data center, the secondary data center replaces the primary data
center. As part of disaster recovery procedure, perform the following steps in the secondary data
center:

Bring up API Data Store.

Run the scripts for restore.

Bring up API Gateway post restore of data.

Reconfigure the load balancer to redirect the traffic to the secondary data center.

574 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

Cold standby mode is cost-effective in terms of data center operations. However, there is a
downtime if the primary data center goes down. The RPO and RTO for cold standbymode is high
as compared to rest of modes.

How Do I Set Up Data Center in Cold Standby Mode?

This use case explains how to set up data centers in cold standby mode for achieving disaster
recovery.

For example, assume that you have two data centers DC 1 and DC 2 in the following landscape:

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

Here, the DC 1 is in active mode and DC 2 is passive. You want to bring up DC 2, when DC 1 goes
down. Assume that DC 2 is in cold standby mode, then there would be no data in DC 2.

Pre-requisites

Install API Gateway in DC2 and ensure that the fix upgrades of DC1 is applied to DC2 too.

webMethods API Gateway Administration 10.11 575

5 High Availability, Disaster Recovery, and Fault Tolerance

Run the following backup script periodically to take a snapshot of data from DC1 and store
the snapshots in a suitable externalized storage system based on the RPO.
apigatewayUtil.sh create backup -name backup_file_name

For more information about back up and restore, see “ Data Backup” on page 117.

Note:
This command takes a complete backup. This impacts your RTO. To take a backup of the
assets data alone, see “How Do I Set Up Data Center in Cold Stand By Mode With Backup
of Assets Data Only?” on page 577.

Failover and Failback process

1. During the failover process:

Start API Data Store in DC2.

Run the following command in DC 2 to restore the backed up data in API Data Store:
apigatewayUtil.sh restore backup -name backup_file_name

Start API Gateway in DC 2.

Reconfigure the load balancer by exposing DC 2 to the client.

2. During the failback process:

Run the following command in DC 2 to back up the data:
apigatewayUtil.sh create backup -name backup_file_name

Run the following command in DC 1 to restore the backed up data:
apigatewayUtil.sh restore backup -name backup_file_name

Start API Gateway in DC 1.

Reconfigure the load balancer by exposing DC 1 to the client.

To optimize your RTO, perform the following:

Configure an external API Data Store to store the Trasactional Events (TE) and logs. For
more information, see “ Connecting to an External Elasticsearch” on page 55.

Instead of taking a complete backup, take a backup of the assets data alone from the primary
data center (DC1) and restore it in the secondary data center (DC2), which will in turn
reduce your RTO. To take a backup of assets data, see “How Do I Set Up Data Center in
Cold Stand By Mode With Backup of Assets Data Only?” on page 577.

576 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

How Do I Set Up Data Center in Cold Stand By Mode With Backup of Assets Data Only?

This use case explains how to backup, restore assets data during failover, failback operations, and
how to subsequently merge analytics data in both the data centers during failback operation.

For example, assume that you have two data centers DC 1 and DC 2 in the following landscape:

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

Here, the DC 1 is in active mode and DC 2 is passive. You want to bring up DC 2, when DC 1 goes
down. Assume that DC 2 is in cold standby mode, then there would be no data in DC 2.

Pre-requisites

Install API Gateway in DC2 and ensure that the fix upgrades of DC1 is applied to DC2 too.

Run the following backup script periodically to take a snapshot of assets data from DC1 and
store the snapshots in a suitable externalized storage system based on the RPO.
apigatewayUtil.sh create backup -name backup_file_name -include assets

This command takes a backup of asset data only. For more information about back up and
restore, see “ Data Backup” on page 117.

Failover and Failback process

1. During the failover process:

Start API Data Store in DC2.

Run the following command in DC 2 to restore the backed up data in API Data Store:
apigatewayUtil.sh restore -name backup_file_name -include assets

Start API Gateway in DC 2.

Reconfigure the load balancer by exposing DC 2 to the client.

2. During the failback process, perform the restore (overwrite) operation in two parts. Firstly,
restore the assets data, and dashboard data from DC2 to DC1. Secondly, merge the analytics
data, and logging data from DC2 to DC1.

Run the following command to restore the assets data, and dashboard data from DC2 to
DC1:
apigatewayUtil.sh restore backup -name backup_file_name -include assets,dashboard

webMethods API Gateway Administration 10.11 577

5 High Availability, Disaster Recovery, and Fault Tolerance

Run the following command to restore other indices such as analytics data, logging data
from DC2 to DC1 to ensure that the data is merged between both the data centers:
apigatewayUtil.sh restore backup -name backup_file_name -include
analytics,license,audit,cache,log -aggregate true

Start API Gateway in DC 1.

Reconfigure the load balancer by exposing DC 1 to the client.

What is Warm Standby Mode?
In theWarm Standbymode, there are only two data centers. The primary data center is up and
running, and in the secondary data center, only API Data Store is up and running, whereas API
Gateway is in a shutdown state and is turned on only during disaster recovery. The secondary
data center is regularly backed up with primary data center's data. On failure of the primary data
center, the secondary data center replaces the primary data center. As part of disaster recovery
procedure, perform the following steps in the secondary data center:

Bring up API Gateway.

Reconfigure the load balancer to redirect the traffic to the standby data center.

The RPO and RTO for warm standby mode is less when compared to cold standby mode.

578 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

How Do I Set Up Data Center in Warm Standby Mode?

This use case explains how to set up the data centers in warm standby mode to achieve disaster
recovery.

For example, assume that you have two data centers DC 1 and DC 2 in the following landscape:

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

Here, DC 1 serves the traffic, and in DC2, only API Data Store is up and running, whereas API
Gateway is in a shutdown state.

Pre-requisites

Install API Gateway in DC2 and ensure that the fix upgrades of DC1 is applied to DC2 too.

webMethods API Gateway Administration 10.11 579

5 High Availability, Disaster Recovery, and Fault Tolerance

Run the following backup script periodically to take a snapshot of data from DC1 and store
the snapshots in a suitable externalized storage system based on the RPO:
apigatewayUtil.sh create backup -name backup_file_name

Run the following restore script periodically to restore the backup snapshots from the
externalized storage in DC2.
apigatewayUtil.sh restore backup -name backup_file_name

For more information about backup and restore, see “ Data Backup” on page 117.

Failover and Failback process

1. During the failover process:

Restart API Gateway in DC2.

As API Data Store is up and running and the data is already restored from the snapshots
in API Data Store, you just have to restart API Gateway in DC 2. The downtime for this
mode would be only the time until API Gateway is up.

Reconfigure the load balancer by exposing DC 2 to the client.

2. During the failback process:

Run the following command in DC 2 to back up the data:
apigatewayUtil.sh create backup -name backup_file_name

Run the following command in DC 1 to restore the backed up data:
apigatewayUtil.sh restore backup -name backup_file_name

Restart API Gateway in DC 1.

Reconfigure the load balancer by exposing DC 1 to the client.

High Availability and Fault Tolerance

The architecture of high availability through fault tolerance is as follows:

580 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

High availability and fault tolerance solution ensures availability of services with very minimal
downtime in case of a failure. Data centers are set up in different geographical regions to ensure
business continuity and operational flexibility. This architecture provides greater resiliency
compared to the HADR solution. However, the cost of this solution is high due to the availability
of services in different data centers. For achieving high availability through fault tolerance, API
Gateway provides Cross DC support through which volatile data like API consumers, OAuth
tokens, and so on are federated across the data centers.

The Cross-Data Center (DC) support provides protection against data center failures by setting
up API Gateway across different data centers using:Hot standby mode or Active-Active mode.

What is Hot Standby Mode?
In the Hot Standbymode, there are only two data centers. Both the data centers are up, running,
and symmetric. But only one of the data center is exposed to the clients to handle and process
their requests. In other words, the load balancer directs traffic only to the primary data center.
The secondary data center shadow-writes all the client requests, hence the data is mirrored in real
time and both the data centers have identical data. When the primary data center goes down, you
can expose the secondary data center to the clients in no time with minimal intervention. This is
done by reconfiguring the load balancer to redirect the traffic to the secondary data center. The
RPO and RTO for hot standby mode is less compared to warm and cold standby modes.

Note:
API Gateway automatically federates the following volatile data only:

1. Applications (API consumers)
2. Oauth tokens and Auth code
3. Oauth or OpenID scopes (scope mapping)
4. Application registration to the API

Other data such as APIs, and so on should be promoted to the secondary data center using
CI/CD pipelines.

webMethods API Gateway Administration 10.11 581

5 High Availability, Disaster Recovery, and Fault Tolerance

Set up the Cross-DC support in API Gateway in the hot standby mode using one of the following
methods:

Method 1:“Setting Up the Data Centers in Hot Standby Using Basic Operation” on page 586.

You can configure the data centers individually using a basic operation, where each data center
is considered as a unit. This set up requires finer details like node name to configure the data
centers at unit level. In case the configuration procedure encounters an error, it is easier to
troubleshoot, because the configuration is done at unit level. You can reconfigure that data
center, which causes the problem, in no time. Choose this method, if you want to configure
both the data centers in your environment at a unit level.

Method 2:“Setting Up the Data Centers in Hot Standby Using Composite Operation” on
page 591.

You can configure the data centers simultaneously using a composite operation. This composite
operation includes setting up the data center and establishing connection between data centers.
Both the data centers are configured simultaneously, and configuring the data centers takes
less time. This method requires basic details such as host name, port, and so on to configure
the data center. In case the configuration procedure encounters an error, youmust reconfigure

582 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

both the data centers. Choose this method, if you want to configure both the data centers in
your environment simultaneously.

What is Active-Active Mode?
In theActive - Activemode, you can accommodate as many data centers as youwant. In this mode,
all data centers are up and running. Each data center can handle and process the requests from
the client. Here the data centers are located in ring topology andwith consistent hashing technique,
the load gets balanced with average 1/N uniform load across the data centers. With consistent
hashing technique and replication factor 2, each data center maintains up-to-date copies of data
of the immediate data center in clockwise direction. In the event of a catastrophe, if any one of the
data centers goes down then all the requests handled by that data center are handled by the next
near-by data center in clockwise direction.

For example, if DC 1 in the above depicted figure goes down, then the two requests that were
handled by DC 1 are handled by DC 2.

Note:
API Gateway automatically federates the following volatile data only:

1. Applications (API consumers)
2. Oauth tokens and Auth code
3. Oauth or OpenID scopes (scope mapping)
4. Application registration to the API

Other data such as APIs, and so on should be promoted to the secondary data center using
CI/CD pipelines.

webMethods API Gateway Administration 10.11 583

5 High Availability, Disaster Recovery, and Fault Tolerance

Set up the Cross-DC support in API Gateway in the active-active mode using one of the following
methods:

Note:
You can setup active-active mode with only two data centers but this setup internally behaves
as Hot standby mode.

Method 1: “Setting Up the Data Centers in Active-Active Using Basic Operation” on page 598.

You can configure the data centers individually using a basic operation, where each data center
is considered as a unit. This set up requires finer details like node name to configure the data
centers at unit level. In case the configuration procedure encounters an error, it is easier to
troubleshoot, because the configuration is done at unit level. You can reconfigure that data
center, which causes the problem, in no time. Choose this method, if you want to configure
less number of data centers in your environment at a unit level.

Method 2: “Setting Up the Data Centers in Active-Active Using Composite Operation” on
page 603.

You can configure the data centers simultaneously using a composite operation. This composite
operation includes setting up the data center and establishing connection between data centers.
All the data centers are configured simultaneously, and configuring the data centers takes less
time. This method requires basic details such as host name, port, and so on to configure the
data center. In case the configuration procedure encounters an error, you must reconfigure all
the data centers. Choose this method, if you want to configure more number of data centers
in your environment simultaneously.

Data Synchronization in Hot Standby and Active-Active Modes
In both hot standby and active-active modes, the data centers are inter-connected with fully
connected mesh topology in a ring configuration. The data synchronization happens at the
application level and not through API Data Store. Hence, the data is symmetrical at any point of
time.

As part of listener configuration you set up the port for gRPC channel through which each data
center sends and receives the gossip. Later, with the ring configuration you establish connection
with the associated data centers.

The underlying technology is same for both hot standby and active-active modes. The only
difference is that, in the active-active mode you can have multiple data centers in a ring
configuration and each data center can handle the client request. On the other hand, the hot standby
data center can have only two data centers in a ring configuration and only one data center handles
the client request.

Currently, the Cross-DC support in API Gateway synchronizes the following data across the data
centers:

Application assets such as API key, identifiers, strategy, and client registrations that are
associated with the strategy

OAuth tokens, auth code, refresh tokens, and so on

584 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

OAuth and OpenID scope mapping

Application that are registered to API

The below table suggests the possibleworkaround that could be employed for the different classes
of data:

Possible WorkaroundData Type

Handle using Promotion Management.APIs

Handle using Promotion Management.Policies

Handle using Promotion Management.Aliases

Handle using Promotion Management.Packages

Handle using Promotion Management.Plans

Handle using Promotion Management.Subscriptions

Handle using Promotion Management.Teams

Handle using Promotion Management.Approval configurations

Handle using Promotion Management.Keystore and Truststore
configurations

Handle using Promotion Management.Group

Handle using Promotion Management.Email destination

Handle using Promotion Management.JMS connection alias

Handle using Promotion Management.Web service endpoint alias

Handle using Promotion Management.Custom destination

Handle using Promotion Management.Port

Handle using Promotion Management.Service Registry

Handle using Promotion Management.LDAP configuration

Handle using Promotion Management.Password expiry settings

Handle using external destinations.Analytics and Transaction
Logs

Handle by pushing the logs to a centralized server.Server Logs

Promotion Management in Cross-DC Support

Promotion refers tomovingAPIGateway assets from the source stage to one ormore target stages.
For example, youmight want to promote assets you have developed on servers in a QA stage (the
source API Gateway instance) to data centers in a Production stage (the target API Gateway

webMethods API Gateway Administration 10.11 585

5 High Availability, Disaster Recovery, and Fault Tolerance

instance). If you have three data centers in a Production stage, you have to explicitly promote the
API Gateway assets to each data center.

When you promote an asset from one stage to another, the asset's metadata is copied from the
source instance to the target instance.

How Do I Set Up the Data Centers in Hot Standby Mode Using
Basic Operation?
Before you start setting up the data centers for Cross-DC support, ensure that you have:

Manage general administration configurations functional privilege.

API Gateway installed in all the data centers.

This use case explains how to set up data centers in hot standby mode. When you want to set up
the data centers at a unit level, you can use this method.

The data centers are set up in hot standby mode using the REST APIs. You can find the REST API
in the swagger file APIGatewayDataManagement.json located at SAG_Root/IntegrationServer/
instances/default/packages/WmAPIGateway/resources/apigatewayservices.

For example, assume that you have two data centers DC 1 and DC 2 in the following landscape:

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

To set up the data centers in hot standby mode

1. Configuring listener.

586 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

Configure the listener in both the data centers DC 1 and DC 2 using the
PUT/rest/apigateway/dataspace/listener REST API.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/listener.

Sample payload for the DC 1 is as follows:
{

"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
}

The system assigns unique node name for each data center. You must know the node name
to configure the data centers as listener and to establish a ring. If you are unaware of the node
names, invoke the GET/rest/apigateway/dataspace REST API on that data center whose
node name you want to know. If you have multiple API Gateway instances clustered in a data
center andwhen youuse load balancer for high availability between theAPIGateway instances,
you have to provide the load balancer URL as host in the payload.

HTTP response appears as follows:
{

"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
}

Note:
Similarly, you can configure the listener on DC 2 by invoking the
PUT/rest/apigateway/dataspace/listener REST API with the respective payload.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

2. Establishing ring.

Establish a fully connected network, where both the data centers are inter-connected and forms
a ring using the PUT/rest/apigateway/dataspace/ringRESTAPI. Youmust invoke this REST
API on both the data centers DC 1 and DC 2.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/ring.

Sample payload for DC 1 is as follows:
{

"ring": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

webMethods API Gateway Administration 10.11 587

5 High Availability, Disaster Recovery, and Fault Tolerance

}
]

}

Note:
When you establish the ring configuration on DC 1, you have to specify the DC 2 details in
the payload. Similarly, when you establish the ring configuration on DC 2, you have to
specify the DC 1 details in the payload.

HTTP response appears as follows:
{

"ring": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

}
]

}

Note:
Similarly, you can establish the ring on DC 2 by invoking the
PUT/rest/apigateway/dataspace/ring REST API with the respective payload.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

3. Securing the Remote Procedure Call (gRPC) channel.

This is optional. You update the configuration only when you want to secure the gRPC channel . In
Cross-DC support, the communication between data centers happens through gRPC channel.
Securing the gRPC channel prevents data leaks and cyber attacks. You can secure the gRPC
channel of all data centers by updating the configuration with keystore and truststore
information. The gRPC channel is secured by configuring keystore and truststore with
self-signed orCA signed certificates.Make sure that youhave configured keystore and truststore
in theAPIGateway instance running on the data center forwhich youwant to secure the gRPC
channel. For information about configuring keystore and truststore, see “Keystore and
Truststore” on page 398. You have to update the listener configuration using the
PUT/rest/apigateway/dataspace/listener REST API with keystore and truststore details on
both the data centers DC 1 and DC 2 to secure the gRPC channel.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/listener

Sample payload for DC 1 that uses SSL certificate is as follows:
{
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage"
"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

588 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

},
"insecureTrustManager": false

}

HTTP response appears as follows:
{
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage"
"listener":{
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
"insecureTrustManager": false,
"$resourceID": "listener"

}

Note:

If you have configured the truststore using CA signed certificate, then in the payload,
set "insecureTrustManager": false.
Invoke the PUT/rest/apigateway/dataspace/listener REST API on DC 2 and provide
a similar payload for DC 2.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

Important:
Whenever youupdate the listener configuration,make sure youupdate the ring configuration
in all the associated data centers using the PUT/rest/apigateway/dataspace/ringRESTAPI.
For example, if you update the listener configuration on DC 1, you have to update the ring
configuration on DC 2.

4. Activating data centers in hot standby mode.

Data centers can be activated in two differentways. You can activate each data center separately
by invoking the PUT/rest/apigateway/dataspace/activate REST API from each data center
or activate all the data centers in this mode at a time by invoking the
PUT/rest/apigateway/dataspace/activateAll?mode= STANDBY REST API once from any
one of the data centers.

Activating individual data centers.

Activate DC 1 and DC 2 separately using the PUT/rest/apigateway/dataspace/activate
REST API.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/activate.

Sample payload for DC 1 is as follows:
{
"mode": "STANDBY"

}

webMethods API Gateway Administration 10.11 589

5 High Availability, Disaster Recovery, and Fault Tolerance

HTTP response appears as follows:
{
"mode": "STANDBY"

}

Note:
Similarly, you can activate DC 2 by invoking the
PUT/rest/apigateway/dataspace/activate REST API with the respective payloads.

On successful activation, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

Activating multiple data centers.

Activate both DC 1 and DC 2 data centers in a single step using the
PUT/rest/apigateway/dataspace/activateAll?mode= STANDBYRESTAPI from any one
of the data centers.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/activateAll?mode=
STANDBY.

Sample payload for DC 1 is as follows:
{
"local": {
"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[
{
"host": "us.myhost.com",
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

HTTP response appears as follows:
{

"mode": "STANDBY",
"local": {

"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias": "UK_Key",
"keyAlias": "Key_Alias_UK",

590 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
"remotes": [

{
"host": "us.myhost.com",
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias": "US_Key",
"keyAlias": "Key_Alias_US",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

}
],
"acknowledged": true

}

On successful activation, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

You can validate whether the data center is activated in the respective mode by reading
the current configuration of the data center using the GET/rest/apigateway/dataspace
REST API. For more information, see “How Do I Read the Current Configuration of the
Data Center?” on page 620.

Note:

When DC 1 fails, you have to reconfigure the load balancer with DC 2 details, so that
DC 2 handles the client request. When DC 1 is restored back, it gets added to the ring
automatically as a standby data center. DC 2 continues to handle the client requests.

If you want to replace any one of the data centers (DC 1 or DC 2) with a new data center
(for example, DC 3) in hot standby mode, you have to bring down either DC 1 or DC 2
to standalone mode. For example, if you bring down DC 2 to standalone mode, then
you can reconfigure the setup with DC 1 and DC 3 in hot standby mode.

How Do I Set Up the Data Centers in Hot Standby Mode Using
Composite Operation?
This use case explains how to set up data centers in hot standby mode. When you want to set up
the data centers simultaneously, you can use this method.

The data centers are set up in hot standby mode using the REST APIs. You can find the REST API
in the swagger file APIGatewayDataManagement.json located at SAG_Root/IntegrationServer/
instances/default/packages/WmAPIGateway/resources/apigatewayservices.

For example, assume that you have two data centers DC 1 and DC 2 in the following landscape:

webMethods API Gateway Administration 10.11 591

5 High Availability, Disaster Recovery, and Fault Tolerance

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

To set up the data centers in hot standby mode

1. Configuring data centers.

Configure and establish connection betweenDC 1 andDC 2 data centers in a single step rather
than configuring the listener and ring separately using the
PUT/rest/apigateway/dataspace/configure RESTAPI. You can invoke this RESTAPI on any
one of the data centers (DC 1 or DC 2).

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/configure.

Sample payload for DC 1 is as follows:
{
"local":
{
"host": "uk.myhost.com",
"syncPort": 4440
},
"remotes":
[
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage"
}
]

}

Ensure that the local section in the payload contains the details of the data center on which
you invoke the REST API. You must have theManage general administration configurations
functional privilege for the API Gateway instance running on the data center to authenticate
the unit level operations that are performed simultaneously. If you havemultipleAPIGateway
instances clustered in a data center and when you use load balancer for high availability
between the API Gateway instances, then you have to provide the load balancer URL as host
in the payload.

HTTP response appears as follows:
{
"local":
{
"host": "uk.myhost.com",
"syncPort": 4440
},

592 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

"remotes":
[
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage"
}
]

}

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

2. Securing the Remote Procedure Call (gRPC) channel.

This is optional. You update the configuration only when you want to secure the gRPC channel. In
Cross-DC support, the communication between data centers happens through gRPC channel.
Securing the gRPC channel prevents data leaks and cyber attacks. You can secure the gRPC
channel of all the data centers by updating the configuration with keystore and truststore
information. The gRPC channel is secured by configuring keystore and truststore with
self-signed orCA signed certificates.Make sure that youhave configured keystore and truststore
in theAPIGateway instance running on the data center forwhich youwant to secure the gRPC
channel. For information about configuring keystore and truststore, see “Keystore and
Truststore” on page 398. This configuration can be updated on any one of the data centers (DC
1 or DC 2) by invoking the PUT/rest/apigateway/dataspace/configure REST API with
keystore and truststore details to secure the gRPC channel.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/configure.

Sample payload for DC 1 that uses SSL certificate is as follows:
{
"local": {
"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes": [
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

webMethods API Gateway Administration 10.11 593

5 High Availability, Disaster Recovery, and Fault Tolerance

HTTP response appears as follows:
{
"local": {
"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes": [
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

Note:
If you have configured the truststore using CA signed certificate, then in the payload, set
"insecureTrustManager": false.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

3. Configuring data centers to use HTTPS port.

This is optional. You update the configuration, if the API Gateway instances running on the data center
use HTTPS port. By default, API Gateway is available on a HTTP port. You can also make API
Gateway available on an external HTTPS port to establish a secure connection. If you make
API Gateway available on a HTTPS port, then you must update the configuration with the
HTTPSport details.Make sure youhave added and enabled theHTTPSport in theAPIGateway
instance running on the data center. You must also make sure that you have configured the
listener specific credentials to the added port. For information about adding HTTPS port, see
“Adding an HTTPS Port” on page 410. This configuration can be updated on any one of the
data centers (DC 1 or DC 2) by invoking the PUT/rest/apigateway/dataspace/configure
REST API with HTTPS port details to secure the ports.

Request: PUT https://uk.myhost.com:2503/rest/apigateway/dataspace/configure.

Sample payload for DC 1 is as follows:

{
"local": {
"host": "uk.myhost.com",
"port":2503,

594 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

"isHttps": true,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[
{
"host": "us.myhost.com",
"port": 2505,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

HTTP response appears as follows:
{

"local": {
"host": "uk.myhost.com",
"port": 2503,
"isHttps": true,
"syncPort": 4440,
"keyStoreAlias": "UK_Key",
"keyAlias": "Key_Alias_UK",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
"remotes": [

{
"host": "us.myhost.com",
"port": 2505,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias": "US_Key",
"keyAlias": "Key_Alias_US",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

}
]

}

On successful configuration, the response status code appears as 200 and you can see the
corresponding log entry in the Server Logs.

4. Activating data centers in hot standby mode.

webMethods API Gateway Administration 10.11 595

5 High Availability, Disaster Recovery, and Fault Tolerance

Data centers can be activated in two differentways. You can activate each data center separately
by invoking the PUT/rest/apigateway/dataspace/activate REST API from each data center
or activate all the data centers in this mode at a time by invoking the
PUT/rest/apigateway/dataspace/activateAll?mode= STANDBY REST API once on any one
of the data centers.

Activating individual data centers.

Activate DC 1 and DC 2 separately using the PUT/rest/apigateway/dataspace/activate
REST API.

Request: PUT https://uk.myhost.com:2503/rest/apigateway/dataspace/activate.

Sample payload for DC1 is as follows:
{
"mode": "STANDBY"

}

HTTP response appears as follows:
{
"mode": "STANDBY"

}

Note:
Similarly, you can activate DC 2 data center by invoking the
PUT/rest/apigateway/dataspace/activate REST API with the respective payloads.

On successful activation, the response status code appears as 200 and you can see the
corresponding log entry in the Server Logs.

Activating multiple data centers.

Activate DC 1 and DC 2 data centers in a single step using the
PUT/rest/apigateway/dataspace/activateAll?mode= STANDBY REST API on any one
of the data centers (DC 1 or DC 2)

Request: PUT https://uk.myhost.com:2503/rest/apigateway/dataspace/activateAll?mode=
STANDBY.

Sample payload is as follows:
{
"local": {
"host": "uk.myhost.com",
"port":2503,
"isHttps": true,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[

596 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

{
"host": "us.myhost.com",
"port": 2505,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

HTTP response appears as follows:
{
"local": {
"host": "uk.myhost.com",
"port":2503,
"isHttps": true,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[
{
"host": "us.myhost.com",
"port": 2505,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

On successful activation, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

You can validate whether the data center is activated in the respective mode by reading
the current configuration of the data center using the GET/rest/apigateway/dataspace
REST API. For more information, see “How Do I Read the Current Configuration of the
Data Center?” on page 620.

Note:

When DC 1 fails, you have to reconfigure the load balancer with DC 2 details, so that
DC 2 handles the client request. When DC 1 is restored back, it gets added to the ring
automatically as a standby data center. DC 2 continues to handle the client requests.

webMethods API Gateway Administration 10.11 597

5 High Availability, Disaster Recovery, and Fault Tolerance

If you want to replace any one of the data centers (DC 1 or DC 2) with a new data center
(for example, DC 3) in hot standby mode, you have to bring down either DC 1 or DC 2
to standalone mode. For example, if you bring down DC 2 to standalone mode, then
you can reconfigure the setup with DC 1 and DC 3 in hot standby mode.

How Do I Set Up the Data Centers in Active-Active Mode Using
Basic Operation?
This use case explains how to set up the data centers in the active-active mode. When you want
to set up the data centers at a unit level, you can use this method.

The data centers are set up in active-active mode using the REST APIs. You can find the REST API
in the swagger file APIGatewayDataManagement.json located at SAG_Root/IntegrationServer/
instances/default/packages/WmAPIGateway/resources/apigatewayservices.

For example, assume that you have three data centers DC 1, DC 2, and DC 3 in the following
landscape:

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

Indiain.myhost.comDC 3

In general, the active-active mode can accommodate any number of data centers.

To set up the data centers in active-active mode

1. Configuring listener.

Configure the listener on all the data centers (DC 1, DC 2, and DC 3) using the
PUT/rest/apigateway/dataspace/listener REST API.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/listener.

Sample payload for the DC 1 is as follows:
{

"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
}

The system assigns unique node name for each data center. You must know the node name
to configure the data centers as listener and to establish a ring. If you are unaware of the node
names, invoke the GET/rest/apigateway/dataspace REST API on that data center whose

598 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

node name you want to know. If you have multiple API Gateway instances clustered in a data
center andwhen youuse load balancer for high availability between theAPIGateway instances,
you have to provide the load balancer URL as host in the payload.

HTTP response appears as follows:
{

"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
}

}

Note:
Similarly, you can configure the listener on DC 2 and DC 3 by invoking the
PUT/rest/apigateway/dataspace/listener REST API with the respective payload.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

2. Establishing ring.

Establish a fully connected network, where all the data centers are inter-connected and forms
a ring using the PUT/rest/apigateway/dataspace/ringRESTAPI. Youmust invoke this REST
API on all the data centers (DC 1, DC 2, and DC 3).

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/ring.

Sample payload for DC 1 is as follows:
{

"ring": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c",
"host": "in.myhost.com",
"port": 4440

}
]

}

Note:
When you configure the ring from one data center, you have to provide the details of other
associated data centers with which you want to establish the ring configuration in the
payload. For example, when you establish the ring configuration from DC 1, you have to
specify the DC 2 and DC 3 details in the payload. Similarly, when you establish the ring
configuration from DC 2, you have to specify the DC 3 and DC 1 details in the payload.

webMethods API Gateway Administration 10.11 599

5 High Availability, Disaster Recovery, and Fault Tolerance

Likewise, when you establish the ring configuration from DC 3, you have to specify the DC
2 and DC 1 details in the payload.

HTTP response appears as follows:
{

"ring": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c",
"host": "in.myhost.com",
"port": 4440

}
]

}

Note:
Similarly, you can configure the ring on DC 2 and DC 3 by invoking the
PUT/rest/apigateway/dataspace/ring REST API with the respective payload.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

3. Securing the Remote Procedure Call (gRPC) channel.

This is optional. You update the configuration only when you want to secure the gRPC channel. In
Cross-DC support, the communication between data centers happens through gRPC channel.
Securing the gRPC channel prevents data leaks and cyber attacks. You can secure the gRPC
channel of all the data centers by updating the configuration with keystore and truststore
information. The gRPC channel is secured by configuring keystore and truststore with
self-signed orCA signed certificates.Make sure that youhave configured keystore and truststore
in theAPIGateway instance running on the data center forwhich youwant to secure the gRPC
channel. For information about configuring keystore and truststore, see “Keystore and
Truststore” on page 398. You have to update the listener configuration with keystore and
truststore details using this PUT/rest/apigateway/dataspace/listenerRESTAPIwith keystore
and truststore details on all the data centers DC 1, DC 2, and DC 3 to secure the gRPC channel.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/listener.

Sample payload for DC 1 that uses SSL certificate is as follows:
{
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage"
"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
"insecureTrustManager": false

600 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

}

HTTP response appears as follows:
{
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage"
"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
"insecureTrustManager": false,
"$resourceID": "listener"
}

Note:

If you have configured the truststore using CA signed certificate, then in the payload,
set "insecureTrustManager": false.
Invoke the PUT/rest/apigateway/dataspace/listener REST API on DC 2 and DC 3.
Provide a similar payload for DC 2 and DC 3.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

Important:
Whenever youupdate the listener configuration,make sure youupdate the ring configuration
in all the associated data centers using the PUT/rest/apigateway/dataspace/ringRESTAPI.
For example, if you update the listener configuration on DC 1, you have to update the ring
configuration on DC 2 and DC 3.

4. Activating data centers in active-active mode.

Data centers can be activated in two differentways. You can activate each data center separately
by invoking the PUT/rest/apigateway/dataspace/activate REST API from each data center
or activate all the data centers in this mode at a time by invoking the
PUT/rest/apigateway/dataspace/activateAll?mode= ACTIVE_RING RESTAPI once on any
one of the data centers.

Activating individual data centers.

Activate DC 1, DC 2, and DC 3 separately using the
PUT/rest/apigateway/dataspace/activate REST API.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/activate.

Sample payload for DC 1 is as follows:
{
"mode": "ACTIVE_RING"

}

HTTP response appears as follows:

webMethods API Gateway Administration 10.11 601

5 High Availability, Disaster Recovery, and Fault Tolerance

{
"mode": "ACTIVE_RING"

}

Note:
Similarly, you can activate DC 2 and DC 3 data centers by invoking the
PUT/rest/apigateway/dataspace/activate REST API with the respective payloads.

On successful activation, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

Activating multiple data centers.

Activate DC 1, DC 2, and DC 3 data centers in a single step using the
PUT/rest/apigateway/dataspace/activateAll?mode= ACTIVE_RING REST API in any
one of the data centers.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/activateAll?mode=
ACTIVE_RING.

Sample payload for DC 1 is as follows:
{
"local": {
"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[
{
"host": "us.myhost.com",
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
{
"host": "in.myhost.com",
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",
"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

HTTP response appears as follows:

602 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

{
"mode": "ACTIVE_RING",
"local": {

"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias": "UK_Key",
"keyAlias": "Key_Alias_inchn",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
"remotes": [

{
"host": "us.myhost.com",
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias": "US_Key",
"keyAlias": "Key_Alias_US",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
{

"host": "in.myhost.com",
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",
"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true

}
],
"acknowledged": true

}

On successful activation, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

You can validate whether the data center is activated in the respective mode by reading the
current configuration of the data center using the GET/rest/apigateway/dataspace REST
API. For more information, see “How Do I Read the Current Configuration of the Data
Center?” on page 620

Note:
In active-active, if any one of the data center (DC 1 or DC 2 or DC 3) goes down, then that
data center is removed from the ring. When the same data center is restored back, then that
data center gets added to the ring automatically. If you want to add one more new data
center (DC 4) to the ring, then you have to update the configuration with DC 4.

How Do I Set Up the Data Centers in Active-Active Mode Using
Composite Operation?
This use case explains how to set up the data centers in the active-active mode. When you want
to set up the data centers simultaneously, you can use this method.

webMethods API Gateway Administration 10.11 603

5 High Availability, Disaster Recovery, and Fault Tolerance

The data centers are set up in active-active mode using the REST APIs. You can find the REST API
in the swagger file APIGatewayDataManagement.json located at SAG_Root/IntegrationServer/
instances/default/packages/WmAPIGateway/resources/apigatewayservices.

For example, assume that you have three data centers DC 1, DC 2, and DC 3 in the following
landscape:

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

Indiain.myhost.comDC 3

In general, the active-active mode can accommodate any number of data centers.

To set up the data centers in active-active mode

1. Configuring multiple data centers.

Configure and establish connection between multiple data centers in a single step rather than
configuring the listener and ring separately using the
PUT/rest/apigateway/dataspace/configure RESTAPI. You can invoke this RESTAPI on any
one of the data centers (DC 1 or DC 2 or DC 3).

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/configure.

Sample payload for DC 1 is as follows:
{
"local":
{
"host": "uk.myhost.com",
"syncPort": 4440
},
"remotes":
[
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage"
},
{
"host": "in.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage"
}
]

604 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

}

Ensure that the local section in the payload contains the details of the data center on which
you invoke the REST API. You must have theManage general administration configurations
functional privilege for the API Gateway instance running on the data center to authenticate
the unit level operations that are performed simultaneously. If you havemultipleAPIGateway
instances clustered in a data center and when you use load balancer for high availability
between the API Gateway instances, then you have to provide the load balancer URL as host
in the payload.

HTTP response appears as follows:
{
"local":
{
"host": "uk.myhost.com",
"syncPort": 4440
},
"remotes":
[
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage"
},
{
"host": "in.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage"
}
]

}

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

2. Securing the Remote Procedure Call (gRPC) channel.

This is optional. You update the configuration only when you want to secure the gRPC channel. In
Cross-DC support, the communication between data centers happens through gRPC channel.
Securing the gRPC channel prevents data leaks and cyber attacks. You can secure the gRPC
channel of all the data centers by updating the configuration with keystore and truststore
information. The gRPC channel is secured by configuring keystore and truststore with
self-signed orCA signed certificates.Make sure that youhave configured keystore and truststore
in theAPIGateway instance running on the data center forwhich youwant to secure the gRPC
channel. For information about configuring keystore and truststore, see “Keystore and
Truststore” on page 398. This configuration can be updated on anyone of the data centers (DC
1 or DC 2 or DC 3) by invoking the PUT/rest/apigateway/dataspace/configure REST API
with keystore and truststore details to secure the gRPC channel.

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/configure.

webMethods API Gateway Administration 10.11 605

5 High Availability, Disaster Recovery, and Fault Tolerance

Sample payload for DC 1 that uses SSL certificate is as follows:
{
"local": {
"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes": [
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},

{
"host": "in.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",
"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

HTTP response appears as follows:
{
"local": {
"host": "uk.myhost.com",
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes": [
{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},

606 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

{
"host": "in.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",
"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

Note:
If you have configured the truststore using CA signed certificate, then in the payload, set
"insecureTrustManager": false.

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

3. Configuring data centers to use HTTPS port.

This is optional. You update the configuration, if the API Gateway instances running on the data center
use HTTPS port. By default, API Gateway is available on a HTTP port. You can also make API
Gateway available on an external HTTPS port to establish a secure connection. If you make
API Gateway available on a HTTPS port, then you must update the configuration with the
HTTPSport details.Make sure youhave added and enabled theHTTPSport in theAPIGateway
instance running on the data center. You must also make sure that you have configured the
listener specific credentials to the added port. For information about adding HTTPS port, see
“Adding an HTTPS Port” on page 410. This configuration can be updated on any one of the
data centers (DC 1 or DC 2 or DC 3) by invoking the
PUT/rest/apigateway/dataspace/configure REST API with HTTPS port details to secure the
ports.

Request: PUT https://uk.myhost.com:2503/rest/apigateway/dataspace/configure.

Sample payload for using secure port is as follows:

{
"local": {
"host": "uk.myhost.com",
"port":2503,
"isHttps": true,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[
{
"host": "us.myhost.com",
"port": 2505,

webMethods API Gateway Administration 10.11 607

5 High Availability, Disaster Recovery, and Fault Tolerance

"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",

"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true

},
{
"host": "in.myhost.com",
"port": 2504,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",

"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true

}
]
}

HTTP response appears as follows:
{

"local": {
"host": "uk.myhost.com",
"port": 2503,
"isHttps": true,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
"remotes": [

{
"host": "us.myhost.com",
"port": 2505,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias": "US_Key",
"keyAlias": "Key_Alias_US",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
{

"host": "in.myhost.com",
"port": 2504,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",
"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",

608 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

"insecureTrustManager": true
}

]
}

On successful configuration, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

4. Activating data centers.

Data centers can be activated in two differentways. You can activate each data center separately
by invoking the PUT/rest/apigateway/dataspace/activate REST API from each data center
or activate all the data centers in this mode at a time by invoking the
PUT/rest/apigateway/dataspace/activateAll?mode= ACTIVE_RING RESTAPI once on any
one of the data centers.

Activating individual data centers.

You can activate DC 1, DC 2, and DC 3 separately using the
PUT/rest/apigateway/dataspace/activate REST API.

Request: PUT https://uk.myhost.com:2503/rest/apigateway/dataspace/activate.

Sample payload for DC 1 is as follows:
{
"mode": "ACTIVE_RING"

}

HTTP response appears as follows:
{
"mode": "ACTIVE_RING"

}

Note:
Similarly, you can activate DC 2 and DC 3 data centers by invoking the
PUT/rest/apigateway/dataspace/activate REST API with the respective payloads.

On successful activation, the response status code displays as 200 and you can see the
corresponding log entry in the Server Logs.

Activating multiple data centers.

You can activate DC 1, DC 2, and DC 3 data centers in a single step using the
PUT/rest/apigateway/dataspace/activateAll?mode= ACTIVE_RING REST API on any
one of the data centers (DC 1 or DC 2 or DC 3).

Request: PUT https://uk.myhost.com:2503/rest/apigateway/dataspace/activateAll?mode=
ACTIVE_RING.

Sample payload for DC 1 is as follows:
{
"local": {

webMethods API Gateway Administration 10.11 609

5 High Availability, Disaster Recovery, and Fault Tolerance

"host": "uk.myhost.com",
"port":2503,
"isHttps": true,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[
{
"host": "us.myhost.com",
"port": 2505,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",

"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true

},
{
"host": "in.myhost.com",
"port": 2504,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",

"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true

}
]
}

HTTP response appears as follows:
{

"mode": "ACTIVE_RING",
"local": {

"host": "uk.myhost.com",
"port": 2503,
"isHttps": true,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
"remotes": [

{
"host": "us.myhost.com",
"port": 2505,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",

610 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

"keyStoreAlias": "US_Key",
"keyAlias": "Key_Alias_US",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
{

"host": "in.myhost.com",
"port": 2504,
"isHttps": true,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"IN_Key",
"keyAlias":"Key_Alias_IN",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true

}
],
"acknowledged": true

}

On successful activation, the response status code displays as 200and you can see the
corresponding log entry in the Server Logs.

You can validate whether the data center is activated in the respective mode by reading the
current configuration of the data center using the GET/rest/apigateway/dataspace REST
API. For more information, see “How Do I Read the Current Configuration of the Data
Center?” on page 620

Note:
In active-active, if any one of the data center (DC 1 or DC 2 or DC 3) goes down, then that
data center is removed from the ring. When the same data center is restored back, then that
data center gets added to the ring automatically. If you want to add one more new data
center (DC 4) to the ring, then you have to update the configuration with DC 4.

How does Cross-DC Support Detect Data Center Failures?
All the data centers are connected together to form a consistent hash ring using gRPC channel.
The consistent hash ring ismaintained properlywith the help ofGossiping protocol. UsingGossiping
protocol, API Gateway detects the failure of nodes. Here nodes represent the data centers.

This is how the Gossiping protocolworks in Cross-DC support in active-active mode. Each node
sends and receives gossip between one another to ensure that they are up and running. Each node
has a vector of elements. For example, if there are n nodes in a ring then each node has a vector
with n elements.

webMethods API Gateway Administration 10.11 611

5 High Availability, Disaster Recovery, and Fault Tolerance

Each node sends and receives gossipswith one another.When a node receives a gossip, it compares
the received vector element value with the existing vector element value and replaces the vector
element of the received nodewith themaximumvalue.When the vector element value is replaced,
then that particular time frame gets captured. If the last updated time interval happens to be
greater than permissible time interval between two consecutive gossips (that you define in the
pg_Dataspace_TimeToFail extended settings), then that particular node is marked as dead. If
the last updated time interval is twice as that of permissible time interval, then that particular
node is removed from the ring. When the dead nodes are up, the Gossiping protocol detects them
and rehashes the nodes.

As in active-activemode, the hot standbymode also uses consistent hash ring andGossiping protocol
to detect the failure of nodes. But in the hot standby mode there are only two nodes in the ring.

612 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

In hot standby mode, if the primary node goes down, the API Gateway administrator receives a
notification and reconfigures the load balancer with the secondary node details. Hence, the
secondary node handles the client request. When the primary node is restored back, the node gets
added to the ring automatically. If the secondary node goes down, when the primary is active,
then the secondary node is removed from the ring. When the secondary is restored it gets added
to ring automatically.

How Do I Monitor the Health Status of the Data Center?

This use case explains how to track andmonitor the health status of the data centers in the consistent
hash ring using the REST API GET /rest/apigateway/dataspace/status. The status can be GREEN,
YELLOW, or RED.

If the health status is GREEN, then all the data centers are able to communicate with one another
without any problem.

If the health status is YELLOW, then it indicates that this data center is unable to communicate with
one or more of the data centers in the ring. This might be because one or more data centers in the
ring is down temporarily as it is getting restarted. It could also be permanently down because of
connection issue or theAPIGateway instance is down. TheAPIGatewaywaits for a certain period
of time (as configured in the pg_Dataspace_TimeToFail) before marking the data center as down.
Once the data center is marked as down, it will be marked as failed data center and health status
will be marked as YELLOW. The node gets marked as YELLOW until the time configured in the
pg_Dataspace_WarmupTime property gets elapsed. If the data center is not up even after the time
specified in the pg_Dataspace_WarmupTime property, then the health status is marked as RED.

The following flow chart explains how the health of the data center is monitored using the GET
/rest/apigateway/dataspace/status REST API:

webMethods API Gateway Administration 10.11 613

5 High Availability, Disaster Recovery, and Fault Tolerance

For example, assume that you have three data centers DC 1, DC 2, and DC 3 in the following
landscape:

RegionHost NameData Center
Name

United Kingdomuk.myhost.comDC 1

United Statesus.myhost.comDC 2

Indiain.myhost.comDC 3

In general, the active-active mode can accommodate any number of data centers in the consistent
hash ring. But in the hot standby mode there are only two nodes in the ring.

To track the health status of the data centers

1. Invoke the REST API to track the health status.

Track the health status of the data center in the consistent hash ring using the REST API GET
/rest/apigateway/dataspace/status

Note:

614 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

To invoke the REST API, you must provide the basic authentication.

For example:

Request: GET http://uk.myhost.com:5555/rest/apigateway/dataspace/status.

HTTP response appears as follows:
{

"detectedNodes": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c"
"host": "in.myhost.com",
"port": 4440

}
],
"liveNodes":

"[a04609a0-ca13-44db-98e1-f988ba18fbb4],[4820681b-f2fd-42d7-bccd-cf580ea8bf1c]"
"health": "GREEN"

}

When all the data center is able to communicate, the response status code displays as 200 and
health status displays as GREEN.

2. Invoke the REST API to detect the failing nodes .

Detect the failing nodes in the consistent hash ring when the health status is in YELLOW using
the REST API GET /rest/apigateway/dataspace/status?watchFailingNodes=true. For
example:

Request: GET
http://uk.myhost.com:5555/rest/apigateway/dataspace/status?watchFailingNodes=true.

HTTP response appears as follows:
{

"detectedNodes": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c"
"host": "in.myhost.com",
"port": 4440

}
],
"liveNodes":

"[a04609a0-ca13-44db-98e1-f988ba18fbb4],[4820681b-f2fd-42d7-bccd-cf580ea8bf1c]"
"failingNodes":"[4820681b-f2fd-42d7-bccd-cf580ea8bf1c]"
"health": "YELLOW"

webMethods API Gateway Administration 10.11 615

5 High Availability, Disaster Recovery, and Fault Tolerance

}

Though the DC 3 is detected as failing node, the response status code displays as 200 and
health status displays as YELLOW.

Note:
If theDC 3 does not come back even after the time specified in the pg_Dataspace_TimeToFail
and pg_Dataspace_WarmupTime properties, then the health status ismarked as RED. In that
case, the number of detected nodes and lives nodes differs in the response payload.

HTTP response appears as follows:
{

"detectedNodes": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c"
"host": "in.myhost.com",
"port": 4440

}
],
"liveNodes": "[a04609a0-ca13-44db-98e1-f988ba18fbb4]"
"failingNodes":"[4820681b-f2fd-42d7-bccd-cf580ea8bf1c]"
"health": "RED"

}

The response status code displays as 500 and health status displays as RED.

3. Invoke the REST API to monitor the gossip data.

Monitor the gossip vector element value in the nodes, when the health status is in YELLOW using
the REST API GET /rest/apigateway/dataspace/status?watchFailingNodes=true
&fetchGossipData=true to ensure if the Gossiping protocolworks well. For example:

Request: GET
http://uk.myhost.com:5555/rest/apigateway/dataspace/status?watchFailingNodes=true
&fetchGossipData=true.

HTTP response appears as follows:
{

"detectedNodes": [
{

"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c"
"host": "in.myhost.com",
"port": 4440

}
],

616 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

"liveNodes":
"[a04609a0-ca13-44db-98e1-f988ba18fbb4],[4820681b-f2fd-42d7-bccd-cf580ea8bf1c]"

"failingNodes":"[4820681b-f2fd-42d7-bccd-cf580ea8bf1c]"
"gossipData": "[a04609a0-ca13-44db-98e1-f988ba18fbb4,

121],[4820681b-f2fd-42d7-bccd-cf580ea8bf1c, 78]"
"health": "YELLOW"

}

The DC 3 is detected as failing node and the gossip vector element in the DC 3 does not get
incremented, the response status code displays as 200 and health status displays as YELLOW.
API Gateway waits until the time specified in the pg_Dataspace_TimeToFail property, once
the time elapses, then DC 3 is removed from the ring and marked as down.

How Do I Bring Down a Single Data Center from Active-Active
or Hot Standby Mode to Standalone Mode?
This use case explains how to bring down a single data center from active-active or hot standby
mode to standalonemode. Youmust bring down a data center to standalonemode in the following
scenarios:

When a data center is scheduled for maintenance.

When you want to shut down a data center to relocate it permanently from one location to
another.

By default, all the data centers are in standalone mode until you activate any other modes.

To bring down a data center to standalone mode

1. Invoke the REST API.

You can bring down a single data center using the REST API
PUT/rest/apigateway/dataspace/activate on the data center that you want to bring down to
standalone mode. For example:

Request: PUT http://uk.myhost.com:5555/rest/apigateway/dataspace/activate.

Sample payload:
{
"mode": "STANDALONE"

}

HTTP response appears as follows:
{

"mode": "STANDALONE",
}

When the data center is activated to standalone mode, the response status code displays as
200 and you can see the corresponding log entry in the Server Logs.

Note:

webMethods API Gateway Administration 10.11 617

5 High Availability, Disaster Recovery, and Fault Tolerance

If you want to revert a data center that you have brought down, you have to update the
configuration accordingly. For example, if you have brought downDC 1 (from active-active
or hot standby to standalone mode) for maintenance activity, you can revert DC 1 to
active-active or hot standby mode by updating the configuration with the details of DC 1.

You can validate whether the data center is brought down to standalone mode by reading the
current configuration of the data center using theGET/rest/apigateway/dataspaceRESTAPI.
For more information, see “HowDo I Read the Current Configuration of the Data Center?” on
page 620

How Do I Bring Down Multiple Data Centers from Active-Active
or Hot Standby Mode to Standalone Mode?
This use case explains how to bring downmultiple data centers from active-active or hot standby
mode to standalone mode. You must bring downmultiple data centers to standalone mode in the
following scenarios:

When multiple data centers are scheduled for maintenance.

When you want to shut down multiple data centers to relocate them permanently from one
location to another.

By default, all the data centers are in standalone mode until you activate any other modes.

To bring down multiple data centers to standalone mode

1. Invoke the REST API.

You can bring down multiple data centers using the REST API
PUT/rest/apigateway/dataspace/activateAll?mode=STANDALONE on any one of the data
centers that you want to bring down. For example:

Request: PUT
http://uk.myhost.com:5555/rest/apigateway/dataspace/activateAll?mode=STANDALONE.

Consider DC 1 (uk.myhost.com), DC 2 (us.myhost.com), and DC 3 (in.myhost.com) are in
active-activemode, and if youwant to bring downDC 1 andDC 2, here is the sample payload:
{
"local": {
"host": "uk.myhost.com",
"port":5555,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
},
"remotes":

[
{
"host": "us.myhost.com",

618 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias":"US_Key",
"keyAlias":"Key_Alias_US",
"trustStoreAlias":"Trustpackage",
"insecureTrustManager": true
}

]
}

HTTP response appears as follows:
{

"mode": "STANDALONE",
"local": {

"host": "uk.myhost.com",
"port": 5555,
"syncPort": 4440,
"keyStoreAlias":"UK_Key",
"keyAlias":"Key_Alias_UK",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

},
"remotes": [

{
"host": "us.myhost.com",
"port": 5555,
"syncPort": 4440,
"userName": "Administrator",
"password": "manage",
"keyStoreAlias": "US_Key",
"keyAlias": "Key_Alias_US",
"trustStoreAlias": "Trustpackage",
"insecureTrustManager": true

}
],
"acknowledged": true

}

When the data centers are activated to standalone mode, the response status code displays as
200 and you can see the corresponding log entry in the Server Logs.

Note:
If you want to revert the data centers that you have brought down, you have to update the
configuration accordingly. For example, if you have brought down the data centers (DC 1
and DC 2) from active-active mode, you can revert the data centers to active-active mode
by updating the configuration with the details of DC 1 and DC 2.

You can validate whether the data center is brought down to standalone mode by reading the
current configuration of the data center using theGET/rest/apigateway/dataspaceRESTAPI.
For more information, see “HowDo I Read the Current Configuration of the Data Center?” on
page 620

webMethods API Gateway Administration 10.11 619

5 High Availability, Disaster Recovery, and Fault Tolerance

How Do I Read the Current Configuration of the Data Center?
This use case explains how to read the current configuration of the data center using a REST API.
You can validate your configuration by reading the current configuration of the data center.

To read the current configuration of the data center

1. Read the current configuration of the data center using the GET/rest/apigateway/dataspace
REST API.

Request: GET http://uk.myhost.com:5555/rest/apigateway/dataspace.

HTTP response appears as follows:
{

"listener": {
"listener": {

"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
"insecureTrustManager": false

},
"listener.active": {

"listener": {
"nodeName": "ecb1308f-22ac-4877-aba9-471a31a834e6",
"host": "uk.myhost.com",
"port": 4440

},
"insecureTrustManager": false

},
"ring": [

{
"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c",
"host": "in.myhost.com",
"port": 4440

}
],
"ring.active": [

{
"nodeName": "a04609a0-ca13-44db-98e1-f988ba18fbb4",
"host": "us.myhost.com",
"port": 4440

},
{

"nodeName": "4820681b-f2fd-42d7-bccd-cf580ea8bf1c",
"host": "in.myhost.com",
"port": 4440

}
],
"mode": "ACTIVE_RING"

620 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

}

On successful configuration, the response status code displays as 200 and the first entry in the
response displays mode field with the current configuration mode of the data center.

Cross-DC Extended Settings
The following table lists the extended settings that help you to specify the Cross-DC support:

DescriptionExtended Setting

Specifies how frequently each node should gossip with one
another.

pg_Dataspace_GossipInterval

By default, the value is set to 3 seconds.

Specifies the maximum permissible interval between two
consecutive gossips.

pg_Dataspace_TimeToFail

By default, the value is set to 30 seconds.

Specifies the maximum permissible rehashing interval from
start-up or shut down of the server.

pg_Dataspace_WarmupTime

By default, the value is set to 300 seconds.

Make sure you configure the extended settings in each of the API Gateway instances that are
installed across the data centers. For information about configuring extended settings, see
“Configuring Extended Settings” on page 224.

webMethods API Gateway Administration 10.11 621

5 High Availability, Disaster Recovery, and Fault Tolerance

622 webMethods API Gateway Administration 10.11

5 High Availability, Disaster Recovery, and Fault Tolerance

6 Performance Tuning and Scaling

■ Hardware and Product Configurations ... 624

■ Changing the JVM Heap Size to Tune API Gateway Performance 638

■ Data Separation ... 639

■ Scaling .. 640

webMethods API Gateway Administration 10.11 623

Hardware and Product Configurations

Installing Software AGProductsOnPremisesdocument provides theminimumsystem requirements
to run API Gateway. These configurations change based on the production needs.

This section provides the hardware and product configuration guidelines that are required to
setupAPIGateway to run at an optimal scale. The hardware and product configuration guidelines
are proposed for the following deployment architecture.

As an alternative for Apache Ignite, Terracotta Server Array can be used to set up a cluster. For
more information about the cluster deployment, see “Cluster Deployment” on page 24. This is
one of the architectures that is driven by availability and throughput factors. For information
about the other variants of deployment architectures that is influenced by security, see “Paired
Deployment” on page 36.

Typically, the parameters that influence the deployment architecture and the configurations are
high availability, transactions per second (TPS), data volume, security requirements and so on.
The hardware and product configurations that are recommended in this chapter are tested for the
following throughput values. Consider the recommended hardware and product configurations
as an outcome of a case study and not an official bench marking guide.

ValueParameters

Up to 2000 Transactions Per Second.Transactions Per Second (TPS)

Up to 500 GB Storage utilization.Data volume

Purge the data if the storage utilization is above 500 GB

< 500msNative service Latency

It is important to have the right sizing for the following components of API Gateway to meet the
desired throughput requirements.

API Gateway server

624 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

API Data Store (Elasticsearch)

Kibana

Terracotta

As Apache Ignite component is embedded into API Gateway, it does not require any dedicated
sizing or configuration.

Apart from the sizing and configurations, to ensure high availability and optimal performance of
API Gateway, it is also important to employ good data housekeeping, monitoring and other
operational best practices. For details about Data housekeeping and Monitoring, see “Data
Management” on page 98,“Monitoring API Gateway” on page 172. Additionally, it is important
to consider the scaling optionswhen there is an additional load on the system. Scaling is primarily
influenced by two factors, load or TPS, anddata volume.Hence, the components that are impacted
for scaling are API Gateway and API Data Store respectively. For details about scaling, see
“Scaling” on page 640.

Note:
These recommendations should be considered as a guideline for the specified architecture to
meet the specified throughput values. You can modify the configurations according to your
business requirements. These recommendations apply to both Ignite basedAPIGateway cluster
and Terracotta Server Array based API Gateway cluster. The sizing guidelines are specific to
the components of API Gateway and does not include the resource allocations for the operating
system and the other tools that you require to co-host while running API Gateway.

Resource Sizing Guidelines
This section provides recommendations on sizing of different components of API Gateway tomeet
the desired throughput requirements mentioned in the table for a cluster and standalone setup.

System Resource Allocation

Cluster setup

HeapHDDCPURAMComponent

Minimum Heap size: 2048MB30 GB2 coresMaximum: 6 GBAPI Gateway

Maximum Heap size: 3584MBMinimum: 4 GB

Parameters to define the Heap size:

Minimum – Xms

Maximum - Xmx

Heap usage: 2 GB30 GB2 coresMaximum: 8 GBTerracotta

Off Heap usage: 2 GBMinimum: 8 GB

webMethods API Gateway Administration 10.11 625

6 Performance Tuning and Scaling

HeapHDDCPURAMComponent

Minimum Heap size: 3584MB300 GB2 coresMaximum: 6 GBElasticsearch

Maximum Heap size: 3584MBMinimum: 4 GB

Parameters to define the Heap size:

Minimum - Xms

Maximum - Xmx

Maximum Heap size: 4096MB30 GB2 coresMaximum: 6 GBKibana

Parameter to define the Maximum
Heap size:

Minimum: 4 GB

--max-old-space-size=4096 MB

Standalone setup

HeapHDDCPURAMComponent

Minimum Heap size: 2048MB30 GB2 coresMaximum: 6 GBAPI Gateway

Maximum Heap size: 3584MBMinimum: 4 GB

Parameters to define the Heap size:

Minimum – Xms

Maximum - Xmx

Minimum Heap size: 3584MB300 GB2 coresMaximum: 6 GBElasticsearch

Maximum Heap size: 3584MBMinimum: 4 GB

Parameters to define the Heap size:

Minimum – Xms

Maximum - Xmx

Maximum Heap size: 4096MB30 GB2 coresMaximum: 6 GBKibana

Parameter to define the Maximum
Heap size:

Minimum: 4 GB

--max-old-space-size=4096 MB

626 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

Logging Configurations
To troubleshoot any operational issues efficiently, it is crucial to manage the log files. It enables
you to track and analyze the activity, usage, problems, and security like, user access and critical
configuration changes. It helps you to identify unexpected anomalies in logs. Additionally, it is
also important to add the configurations related to log rotation and retention settings.

This section provides recommendations on configuring the log levels of every component of API
Gateway to enable automatic log rotation. By default, the log files are stored in the following
locations:

API Gateway logs:

SAG_Install_Directory\IntegrationServer\instances\instance_name\logs.

SAG_Install_Directory\profiles\IS_instance_name\logs.

API Data Store logs:

SAG_Install_Directory\InternalDataStore\logs.

Terracotta logs:

Client log: SAG_Install_Directory\IntegrationServer\instances\instance_name\logs.

Server log: SAG_Install_Directory\tsa.

Kibana logs:

SAG_Install_Directory\profiles\IS_instance_name\apigateway\dashboard\config or
Kibana_Install_Directory\config.

Note:
By default, the log files are in INFOmode.

Log File Rotation Settings

API Gateway

Software AG recommends the following logging guidelines for API Gateway server to enable
automatic log rotation. You must have the API Gateway's manage user administration functional
privilege assigned to configure the watt parameters in API Gateway UI for server log and audit
log. You can configure the watt parameters in the Watt keys section under API Gateway UI ->
Administration -> General -> Extended settings -> Show and hide keys by providing the
recommended values.

Server.log
Log level of the API Gateway server.
Server log file server.cnf is located at SAGInstallDirectory\IntegrationServer\
instances\instance_name\config.

webMethods API Gateway Administration 10.11 627

6 Performance Tuning and Scaling

To configure the total size of the logs as 1 GB, set the following values to the corresponding
properties in the Watt keys section under API Gateway UI -> Administration -> General ->
Extended settings -> Show and hide keys.
watt.server.serverlogFilesToKeep=100
watt.server.serverlogRotateSize=10MB

Audit.log
Software AG logs the audit information for different categories of system transactions and
events.
Audit log file server.cnf is located at SAGInstallDirectory\IntegrationServer\
instances\instance_name\config.
To configure the total size of the logs as 1 GB, set the following values to the corresponding
properties in the Watt keys section under API Gateway UI -> Administration -> General ->
Extended settings -> Show and hide keys.
watt.server.audit.logFilesToKeep=100
watt.server.audit.logRotateSize=10MB

Osgi.log
Log level of the Osgi file type.
Osgi log file log4j2.properties is located at SAGInstallDirectory\profiles\IS_instance_name\
configuration\logging.
To configure the total size of the logs as 300MB, set the following values in log4j2.properties
log file and save the file.
appender.rolling.policies.size=10MB
appender.rolling.strategy.max=30

Wrapper.log
Log level of the Wrapper file type.
Wrapper log file custom_wrapper.conf is located at SAGInstallDirectory\profiles\
IS_instance_name\configuration.
To configure the total size of the logs as 300MB, add the following properties and its values as
suggested in custom_wrapper.conf log file and save it.
wrapper.logfile.maxfiles=30
wrapper.logfile.maxsize=10MB

Terracotta

Software AG recommends the following logging guidelines for Terracotta server and client to
enable automatic log rotation.

Server log
Log level of the Terracotta server.
Logs at the server side server-logs are located at SAGInstallDirectory\tsa.
To configure the total size of the logs as 10 GB, set the following value in server-logs file and
save the file.
<property name="reconnect.maxLogFileSize" value="512"/>

628 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

Client log
Log level information at client side about the client and server interaction.
Logs at the client side are located at SAGInstallDirectory\IntegrationServer\
instances\instance_name\logs.
To configure the total size of the logs as 10 GB, set the following value in the client log file:
<property name="logging.maxBackups" value="20"/>

API Data Store (Elasticsearch)

Software AG recommends the following logging guidelines for Elasticsearch to enable automatic
log rotation. For more information about Elasticsearch, see Elasticsearch documentation.

elasticsearch.log
Log level of Elasticsearch.
Elasticsearch log file log4j2.properties is located at SAGInstallDirectory\InternalDataStore\
config.
Software AG recommends you to set the following properties for the rolling file on
log4j2.properties.
#Condition and Action to apply when handling roll overs
appender.rolling.strategy.action.condition.nested_condition.type = IfAny
#Perform the actions only if you have accumulated too many logs
appender.rolling.strategy.action.condition.nested_condition.type =
IfAccumulatedFileSize
The size condition on the compressed logs is 512 MB
appender.rolling.strategy.action.condition.nested_condition.exceeds = 512MB
A nested condition to apply to files matching the glob
appender.rolling.strategy.action.condition.nested_condition.lastMod.type =
IfLastModified
Retains logs for seven days
appender.rolling.strategy.action.condition.nested_condition.lastMod.age = 7D

The properties for the old style pattern appenders is as follows. If the log4j2.properties in your
systemuses the old style layout of appenders, set the configurations for the following properties.
Note that these should be considered as deprecated and can be removed in the future.
appender.rolling_old.strategy.action.condition.nested_condition.type = IfAny
appender.rolling_old.strategy.action.condition.nested_condition.type =
IfAccumulatedFileSize
appender.rolling_old.strategy.action.condition.nested_condition.exceeds = 512MB
appender.rolling_old.strategy.action.condition.nested_condition.lastMod.type =
IfLastModified
appender.rolling_old.strategy.action.condition.nested_condition.lastMod.age = 7D

If the file size is 512MB or last modified date is 7D, log rotation is enabled.
A sample configuration is as follows:
status = error
log action execution errors for easier debugging
logger.action.name = org.elasticsearch.action
logger.action.level = debug
appender.rolling.type = Console
appender.rolling.name = rolling
appender.rolling.layout.type = ESJsonLayout

webMethods API Gateway Administration 10.11 629

6 Performance Tuning and Scaling

https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

appender.rolling.layout.type_name = server
appender.rolling.strategy.action.condition.nested_condition.type = IfAny
appender.rolling.strategy.action.condition.nested_condition.type =
IfAccumulatedFileSize
appender.rolling.strategy.action.condition.nested_condition.exceeds = 512MB
appender.rolling.strategy.action.condition.nested_condition.lastMod.type =
IfLastModified
appender.rolling.strategy.action.condition.nested_condition.lastMod.age = 7D
appender.rolling_old.strategy.action.condition.nested_condition.type = IfAny
appender.rolling_old.strategy.action.condition.nested_condition.type =
IfAccumulatedFileSize
appender.rolling_old.strategy.action.condition.nested_condition.exceeds = 512MB
appender.rolling_old.strategy.action.condition.nested_condition.lastMod.type =
IfLastModified
appender.rolling_old.strategy.action.condition.nested_condition.lastMod.age = 7D
rootLogger.level = info
rootLogger.appenderRef.rolling.ref = rolling
appender.deprecation_rolling.type = Console
appender.deprecation_rolling.name = deprecation_rolling
appender.deprecation_rolling.layout.type = ESJsonLayout
appender.deprecation_rolling.layout.type_name = deprecation
logger.deprecation.name = org.elasticsearch.deprecation
logger.deprecation.level = warn
logger.deprecation.appenderRef.deprecation_rolling.ref = deprecation_rolling
logger.deprecation.additivity = false
appender.index_search_slowlog_rolling.type = Console
appender.index_search_slowlog_rolling.name = index_search_slowlog_rolling
appender.index_search_slowlog_rolling.layout.type = ESJsonLayout
appender.index_search_slowlog_rolling.layout.type_name = index_search_slowlog
logger.index_search_slowlog_rolling.name = index.search.slowlog
logger.index_search_slowlog_rolling.level = trace
logger.index_search_slowlog_rolling.appenderRef.index_search_slowlog_rolling.ref
= index_search_slowlog_rolling
logger.index_search_slowlog_rolling.additivity = false
appender.index_indexing_slowlog_rolling.type = Console
appender.index_indexing_slowlog_rolling.name = index_indexing_slowlog_rolling
appender.index_indexing_slowlog_rolling.layout.type = ESJsonLayout
appender.index_indexing_slowlog_rolling.layout.type_name = index_indexing_slowlog
logger.index_indexing_slowlog.name = index.indexing.slowlog.index
logger.index_indexing_slowlog.level = trace
logger.index_indexing_slowlog.appenderRef.index_indexing_slowlog_rolling.ref =
index_indexing_slowlog_rolling
logger.index_indexing_slowlog.additivity = false

Note:
Log4j’s configuration parsing does not recognize extraneous whitespaces. Ensure to trim
any leading and trailing whitespace when you copy the configurations.

Kibana

Software AG recommends the following logging guidelines for Kibana to enable automatic log
rotation. Formore information about Kibana, see https://www.elastic.co/guide/en/kibana/current/
introduction.html.

kibana.log
Log level of Kibana.

630 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

https://www.elastic.co/guide/en/kibana/current/introduction.html
https://www.elastic.co/guide/en/kibana/current/introduction.html

Kibana log file kibana.yml is located at SAGInstallDirectory\profiles\IS_instance_name\
apigateway\dashboard\config or Kibana_InstallDirectory\config.
To configure the total size of the logs as 300MB, add the following properties and its values in
kibana.yml log file and save it.
#Enables you to specify a file location where Kibana should store the log output.
logging.dest = <kibana_logfile_location>/kibana.log
#Enables the rotation of the logs
logging.rotate.enabled = true
logging.rotate.everyBytes = 10485760
logging.rotate.keepFiles = 30
logging.rotate.usePolling = true

A sample configuration is as follows:
server.name: apigw-kibana-{{ .Values.tenantName }}-107-0
server.host: "0.0.0.0"
server.port: 9405
elasticsearch.hosts: ["http://apigw-{{ .Values.tenantName }}-es-107-svc:80"]
console.enabled: false
server.basePath: "/apigatewayui/dashboardproxy"
kibana.index: "gateway_{{ .Values.tenantName }}_dashboard"
logging.dest: "kibana.log"
logging.rotate.enabled: true
logging.rotate.everyBytes: 10485760
logging.rotate.keepFiles: 30
logging.rotate.usePolling: true
elasticsearch.requestTimeout: 90
telemetry.enabled: false

Product Configurations Guidelines
This section provides Software AG guidelines for configuring the following components of API
Gateway: API Gateway server, API Data Store (Elasticsearch), Kibana, and Terracotta. These
recommendations should be considered as a guideline for setting the configurations to meet the
throughput values specified in the table. You can modify the configurations according to your
business requirements.

API Gateway Configurations

You must have the API Gateway's manage user administration functional privilege assigned to
configure the watt parameters in API Gateway UI. You can configure the watt parameters in the
Watt keys section under API Gateway UI -> Administration -> General -> Extended settings ->
Show and hide keys by providing the recommended values. For more information about the
extended settings, see “Configuring Extended Settings” on page 224.

Following is the list of WATT properties that you can alter by changing the default value with the
recommended value that Software AG suggests for an optimal performance of API Gateway:

watt.server.threadPool
Specifies the maximum number of threads that the server maintains in the thread pool that it
uses to run services. If thismaximumnumber is reached, the serverwaits until services complete
and return threads to the pool before running more services.
Recommended value: 600

webMethods API Gateway Administration 10.11 631

6 Performance Tuning and Scaling

watt.server.threadPoolMin
Specifies the minimum number of threads that the server maintains in the thread pool that it
uses to run services. When the server starts, the thread pool initially contains this minimum
number of threads. The server adds threads to the pool as needed until it reaches themaximum
allowed, which is specified by the watt.server.threadPool setting.
Recommended value: 200

watt.server.control.serverThreadThreshold
Specifies the threshold at which API Gateway starts to warn of insufficient available threads.
When the percentage of available server threads goes below the value of this property, API
Gateway generates a journal log message indicating the current available thread percentage
stating "Available Thread Warning Threshold Exceeded." When you receive this message in
the journal log, you can adjust the thread usage to make server threads available.
Recommended value: 20%

watt.server.clientTimeout
Specifies the amount of time in minutes after which an idle user session times out.
Recommended value: 75

watt.server.serverlogFilesToKeep
Specifies the number of server log files that API Gateway keeps on the file system, including
the current server log file. When API Gateway reaches the limit for the number of server log
files, API Gateway deletes the oldest archived server log file each time API Gateway rotates
the server log. If you set watt.server.log.filesToKeep to 1, API Gateway keeps the current
server.log file and no previous server.log files. When API Gateway rotates the server.log, API
Gateway does not create an archive file for the previous server log. If you set
watt.server.log.filesToKeep to 0, or any value less than 1, API Gateway keeps an unlimited
number of server log files.
Recommended value: 100

Important:
If you change the setting of this parameter, you must restart API Gateway for the changes
to take effect.

watt.server.serverlogRotateSize
Specifies the file size at which API Gateway rolls over the server.log file. Set this property to
N[KB|MB|GB], where N is any valid integer. Theminimum size at which API Gateway rotates
the server.log file is 33KB. If you use KB as the unit ofmeasure, youmust set N to a value greater
than or equal to 33. If you do not specify a unit of measure, API Gateway treats the supplied
N value as bytes. In this case, N must be greater than or equal to 32768 to take effect. Do not
include any spaces between the integer and the unit of measure.
Recommended value: 10 MB

watt.server.audit.logFilesToKeep
Specifies the number of audit log files, including the current log file for the audit logger, that
APIGateway keeps on the file system for an audit logger thatwrites to a file.WhenAPIGateway
reaches the limit for the number of log files for the audit logger, each time API Gateway rotates
the audit log, API Gateway deletes the oldest archived audit log file. If you set
watt.server.audit.log.filesToKeep to 1, API Gateway keeps the current audit log file and no

632 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

previous audit log files for each file-system based audit logger. That is, when API Gateway
rotates the audit log for a logger, API Gateway does not create an archive file for the previous
audit log. If you set watt.server.audit.logFilesToKeep to 0, or any value less than 1, API Gateway
keeps an unlimited number of audit log files.
Recommended value: 100
The watt.server.audit.logFilesToKeep parameter affects only the audit loggers configured to
write to a file. The parameter does not affect audit loggers configured to write to a database
nor does it affect the FailedAuditLog.
If you reduce the number of logs that API Gateway keeps for file-based audit logs and then
restart API Gateway, the existing audit logs will not be pruned until API Gateway writes to the
audit log. For example, if the error logger writes to a file and you reduce the number of log files
to keep from 10 to 6, API Gateway does not delete the 4 oldest error audit log files immediately
after start up. API Gateway deletes the 4 oldest error audit logs after the error logger writes to
the error audit log.

Important:
If you change the setting of this parameter, you must restart API Gateway for the changes
to take effect.

watt.server.audit.logRotateSize
Specifies the file size at which API Gateway rolls over the audit log for a logger that writes to
a file. Set this property to N[KB|MB|GB], where N is any valid integer. The minimum size at
which API Gateway rotates an audit log is 33KB. If you use KB as the unit of measure, youmust
set N to a value greater than or equal to 33. If you do not specify a unit ofmeasure, API Gateway
treats the supplied N value as bytes. In this case, N must be greater than or equal to 32768 to
take effect. Do not include any spaces between the integer and the unit of measure.
Recommended value: 10MB
Thewatt.server.audit.logRotateSize parameter affects only the audit loggers configured towrite
to a file. The parameter does not affect audit loggers configured to write to a database.

Important:
If you change the setting of this parameter, you must restart API Gateway for the changes
to take effect.

watt.net.maxClientKeepaliveConns
Sets the default number of client keep alive connections to retain for a given target endpoint.
The default is 0, which indicates that API Gateway does not retain client keep aliveconnections
for a target endpoint. API Gateway creates a new socket for each request.
Recommended value: 500
This benefits in situations where the frequency and number of concurrent requests to a given
target endpoint are high. In situations where this is not the case, idle sockets will become stale
and inoperable, resulting in unexpected exceptions such as the following:
[ISC.0077.9998E] Exception --> org.apache.axis2.AxisFault: Broken pipe

watt.server.revInvoke.proxyMapUserCerts
Specifies whether an API Gateway server is to perform client authentication itself in addition
to passing authentication information to the Internal Server for processing.
Recommended value: true

webMethods API Gateway Administration 10.11 633

6 Performance Tuning and Scaling

If it is set to true, API Gateway rejects all anonymous requests (no certificate and no username
or password supplied), even if the request is for an unprotected service on the Internal Server.

watt.security.ssl.cacheClientSessions
Controls whether API Gateway reuses previous SSL session information (for example, client
certificates) for connections to the same client.
Recommended value: true
When this property is set to true, API Gateway caches and reuses SSL session information. For
example, set this property to truewhen there are repeatedHTTPS requests from the same client.

watt.security.ssl.client.ignoreEmptyAuthoritiesList
Specifies whether an API Gateway acting as a client sends its certificate chain after a remote
SSL server returns an empty list of trusted authorities.When set to true, APIGateway disregards
the empty trusted authorities list and sends its chain anyway. When set to false, before sending
out its certificate chain, API Gateway requires the presentation of trusted authorities list that
proves itself trusted.
Recommended value: true

watt.server.url.alias.partialMatching
Specifies whether API Gateway enables partial matching on URL aliases. If you set this server
configuration parameter to true and define a URL alias in API Gateway Administrator, API
Gateway enables partial matching on URL aliases.
Recommended value: true
When partial matching is enabled, API Gateway considers an alias a match if the entire alias
matches all or part of the request URL, starting with the first character of the request URL path.

Important:
If you change the setting of this parameter, you must restart API Gateway for the changes
to take effect.

watt.net.clientKeepaliveUsageLimit
Specifies themaximumnumber of usages for a socket in a client connectionpool. Before returning
a socket to the pool, API Gateway compares the number of times the socket has been used to
send a request to the watt.net.clientKeepaliveUsageLimit value. If the socket usage count is
greater than the watt.net.clientKeepaliveUsageLimit value, then Integration Server does not
return the socket to the pool. Instead, API Gateway closes the socket. If a new socket is needed
in the pool, API Gateway creates one.
Recommended value: 10000000 uses

Note:
Even if the number of connection usages is less than thewatt.net.clientKeepaliveUsageLimit
parameter, API Gateway closes the connection if the connection has exceeded the age limit
set by the watt.net.clientKeepaliveAgingLimit server configuration parameter.

The watt.net.clientKeepaliveUsageLimit parameter applies only if
watt.net.maxClientKeepaliveConns is set to a value greater than 0.

Important:

634 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

If you change the setting of this parameter, you must restart API Gateway for the changes
to take effect.

watt.server.rg.internalsocket.timeout
Specifies the length of time, in milliseconds, that API Gateway server allows a client request to
wait for a connection to the Internal Server before terminating the request with an HTTP 500
Internal Server Error. If a connection to the Internal Server becomes availablewithin the specified
timeout period, Enterprise Gateway Server forwards the request to the Internal Server. If a
connection does not become available before the timeout elapses, API Gateway returns a HTTP
500-Internal Server Error to the requesting client and writes the following message to the error
log: Enterprise Gateway port {port_number} is unable to forward the request to Internal Server because
there are no Internal Server connections available. This is applicable for paired deployment with
reverse invoke setup.
Recommended value: 300 ms

watt.server.enterprisegateway.ignoreXForwardedForHeader
Specifies whether API Gateway must ignore the X-Forwarded-For request header while
processing the rules in API Gateway server. If this property is set to true, then API Gateway
ignores the X-Forwarded-For request header and considers the proxy server's IP address as the
host IP address. If the property is set to false, then API Gateway obtains the actual host IP
address from the X-Forwarded-For request header. This is applicable for paired deployment
with reverse invoke setup.
Recommended value: false

API Gateway Extended Settings

Software AG recommends the following configurations for the Extended settings.

portClusteringEnabled
Bydefault, APIGateway provides synchronization of the port configuration acrossAPIGateway
cluster nodes. If you do not want the ports to be synchronized across API Gateway cluster
nodes, set the portClusteringEnabled parameter available under Username > Administration
>General > Extended settings in API Gateway to false.
Recommended value: false
For more details about Ports Configuration, see “Ports Configuration” on page 35.

eventsRefreshInterval
Specifies the frequency at which Elasticsearch should refresh its own indices. In Elasticsearch,
an operation that updates the data, which is visible in search is called a refresh. Any document
that is modified or inserted appears in search operations only after the index is refreshed.
Specifying a lesser value to this parameter overloads Elasticsearchwith frequent indexingwhen
there is a large volume of data. Henceforth, it is recommended to specify a higher value to this
parameter.

Note:
In API Gateway, this property is only for the analytics indices and core data changes are
refreshed every 1 second by default.

webMethods API Gateway Administration 10.11 635

6 Performance Tuning and Scaling

For changing the refresh interval, go toAPIGatewayUI ->Administration -> Extended settings
-> eventRefreshInterval and change it.
Recommended value: 10s

events.collectionPool.maxThreads
Specifies the maximum number of threads to be used for the event data collection pool.
Recommended value: 40

events.collectionPool.minThreads
Specifies the minimum number of threads to be used for the event data collection pool.
Recommended value: 2

events.collectionQueue.size
Specifies the size of the collection queue to be used during event data collection. When events
like transaction, error events, and performance metrics are generated during API invocations,
they are put in the collection queue for further processing. Each thread in the collection pool is
assigned a task of collecting these events and processing them for sending to the desired
destinations such as API Gateway, Elasticsearch, API Portal, and so on.
If the queue capacity is reached, then any additional event data would be lost. To avoid the loss
of data, it is recommended to increase this size when there is an increase in incoming traffic.
You should choose the value based on the payload size of the transactions as queue size and
payload size determine the memory occupied by the queue.

events.reportingPool.maxThreads
Specifies the maximum number of threads to be used for the event data reporting pool.
Recommended value: 24

events.reportingPool.minThreads
Specifies the minimum number of threads to be used for the event data reporting pool.
Recommended value: 4

events.reportingQueue.size
Specifies the size of the reporting queue to be used during event data reporting. When events
like transaction, error events, and performance metrics are generated during API invocations,
they are put in the collection queue for further processing. Each thread in the collection pool is
assigned a task of collecting these events, processing them and put in the reporting queue for
sending to the desired destinations such as API Gateway, Elasticsearch, API Portal, and so on.
If the reporting queue capacity is reached, then any additional event data would be lost. To
avoid the loss of data, it is recommended to increase this size when there is an increase in
incoming traffic. You should choose the value based on the payload size of the transactions as
queue size and payload size determine the memory occupied by the queue.

Terracotta Configurations

See “Terracotta Server Array Configuration” on page 30 and set the configurations accordingly.

636 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

API Data Store (Elasticsearch) Configurations

This section explains the API Data Store configurations. As part of API Data Store configurations,
this section covers the connection properties:

Connection properties

This section explains the configurations that are required tomakeAPI Gateway connect to desired
Elasticsearch cluster located at SAGInstallDirectory\IntegrationServer\instances\instance_name\
Packages\WmAPIGateway\config\resources\elasticsearch\config.properties. You must change
the configurations of the following properties and tune it as per the following guidelines. You can
modify the configurations according to your business requirements.
pg.gateway.elasticsearch.hosts = Elasticsearch Service endpoint, that is localhost:9240
pg.gateway.elasticsearch.http.connectionTimeout = 10000
pg.gateway.elasticsearch.http.socketTimeout = 30000
pg.gateway.elasticsearch.sniff.enable = false
pg.gateway.elasticsearch.http.maxRetryTimeout = 100000

Note:
This can be done through externalized configurations also. A default template is located in
SAGInstallDirectory\IntegrationServer\instances\packages\WmAPIGateway\resources\
configuration folder. Ensure to add the desired settings in system-settings.yml file. After
adding the desired settings, you have to enable the file config-sources.yml by uncommenting
the appropriate lines in the file for API Gateway to know that this is the configuration file. For
more information about externalized configurations, see “Externalizing Configurations ” on
page 65.

Kibana Configurations

This section explains the configuration changes for Kibana in kibana.yml file located at
SAGInstallDirectory\profiles\IS_instance_name\apigateway\dashboard\configor
Kibana_InstallDirectory\config. Youmust change the configurations of the following properties
and tune it as per the following guidelines. You can modify the configurations according to your
business requirements.

elasticsearch.requestTimeout property
This property specifies Kibana’s wait time to receive a response from Elastic Search, in seconds,
for retries after which it times out.
Recommended value: 90 seconds

elasticsearch.hosts
Specifies the URLs of the Elasticsearch instance to use for all your queries.
http://hostname:port

telemetry.enabled
Disables the telemetry data being sent to elastic server.
Recommended value: false
For more details about Kibana configurations, see “ Connecting to an External Kibana” on
page 63.

webMethods API Gateway Administration 10.11 637

6 Performance Tuning and Scaling

Changing the JVM Heap Size to Tune API Gateway Performance

The JVM heap or on-heap size indicates how much memory is allotted for server processes. At
some point, you might want to increase the minimum and maximum heap size to ensure that the
JVM that API Gateway uses does not run out ofmemory. In otherwords, for example, if you notice
OutOfMemoryError: Java heap space for Integration Server process, then you have to increase the
minimum and maximum heap size to overcome the out of memory error.

The heap size is controlled by the following Java properties specified in the custom_wrapper.conf
file.

DescriptionProperty

The minimum heap size.wrapper.java.initmemory

The default value is 256 MB.

The maximum heap size.wrapper.java.maxmemory

The default value is 3584 MB.

Your capacity planning and performance analysis should indicate whether you need to set higher
maximum and minimum heap size values.

To change the heap size

1. Open the custom_wrapper.conf file in a text editor.

You can find the custom_wrapper.conf file in the following location: Software AG_directory
\profiles\IS_instance_name\configuration\.

2. Set the wrapper.java.initmemory and wrapper.java.maxmemory parameters so that they
specify the minimum and maximum heap size required by API Gateway.

For example:
wrapper.java.initmemory=256
wrapper.java.maxmemory=3584

3. Save and close the file.

4. Restart API Gateway.

If you notice an out of memory issue for Elasticsearch, then you have to tune the Elasticsearch
performance. For example, if you notice OutOfMemoryError: Java heap space for API Data Store
process (that is,Elasticsearch), then you have to increase the following minimum and maximum
heap size to overcome the out of memory error. Open the jvm.options file located at Software
AG_directory\InternalDataStore\config and set the following parameters to configure the heap
size as 4GB:

638 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

-Xms4g
-Xmx4g

where, Xms represents the initial size of total heap and Xmx represents the maximum size of total
heap space. You have to restart the API Data Store for the changes to take effect.

Data Separation

API Gateway stores the data in API Data Store by default. It includes the core data and analytics
data. These two data types are different in the following ways:

Analytics dataCore data

Includes the API analytics dataIncludes APIs and assets that are critical to keep
business running.

Can be backed up in lesser frequent intervals.
For example, 24 hours.

Requires frequent backup. For example, 15minutes.

Requires huge storage space.Requires lesser storage space than the analytics
data.

Hence, if you are managing large transactions volume, Software AG recommends that you save
the core data and analytics data separately.

To separate the core data from analytics data, you can configure an external Elasticsearch and save
the analytics data as illustrated in fig below.

When you save the analytics data in an external Elasticsearch instance, the data is not reflected in
the API Gateway Dashboard. You can configure a separate Kibana dashboard for your external
Elasticsearch destination.

webMethods API Gateway Administration 10.11 639

6 Performance Tuning and Scaling

Storing Analytics Data in external Elasticsearch

To store analytics data in external Elasticsearch

1. Configure an external Elasticsearch. For information on configuring and connecting to an
external Elasticsearch, see “ Connecting to an External Elasticsearch” on page 55.

2. Apply the Log Invocation policy globally with Elasticsearch as destination.

For information on the Log Invocation policy, see the section Log Invocation in thewebMethods
API Gateway User's Guide.

The analytics data is saved to the configured external Elasticsearch destination.

Scaling

As a critical step in your API Gateway deployment, you perform the capacity planning for API
Gateway and its components that can live up to the estimated transactions (TPS) demands and
data volume storage needs in compliance with your data and analytics retention SLAs. Though
it is recommended to have the right sizing in place, it is important to consider scaling up or scaling
down API Gateway to address the spikes that are not factored in the initial capacity planning.

You can do horizontal scale up or scale down ofAPIGateway tomeet the spikes in the transactions
or data.

You can scale up:

API Gateway. When the number of transactions exceeds the estimated capacity. For example,
if the existing deployment handles 200 transactions per second, you have to scale up API
Gateway if the number exceeds this limit.

API Data Store (Elasticsearch). When the volume of data to be stored exceeds the estimated
size. For example, if the API Data Store capacity is 500 GB, and if the data to be stored exceeds
the estimated size, you have to scale up the API Data Store.

640 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

Note:
You can minimize the need for the scaling of API Data Store with the right sizing (capacity
planning), monitoring, and Data housekeeping procedures that are in compliance with your
data and analytics retention SLAs.

Scaling requirements analysis

You can monitor the key metrics of system and application to decide whether they must be scaled
up or not.

For information on monitoring API Gateway, see “Monitoring API Gateway ” on page 185.

For information on monitoring API Data Store, see “Monitoring API Data Store” on page 204
or “Infrastructure Metrics” on page 195.

Software AG recommends that you

Set up Data housekeeping procedures.

Separate the lifecyle of API Gateway and Data store in a clustered environment.

webMethods API Gateway Administration 10.11 641

6 Performance Tuning and Scaling

Scale up only the required component based on the need (API Gateway for transactions and
Elasticsearch for Data volume).

Scaling up API Gateway
You must add a new API Gateway node to scale up API Gateway and handle the spike.

To scale up API Gateway,

1. You can scale up API Gateway by simply adding a new API Gateway node to the existing
cluster.

For information on adding nodes to a cluster, see “API Gateway Cluster Configuration” on
page 25.

2. Add the node to Load balancer for the traffic to be distributed across the nodes.

Note:
Ensure that the newAPIGateway node has same configurations as other nodes in the cluster.

API Gateway is scaled up, and the transactions are now distributed among the nodes.

Scaling up API Gateway in a Reverse Invoke setup

The procedure is same as the one described above.

To scale up API Gateway in a Reverse Invoke setup, you can perform any of the following:

Add a new node in the Green zone.

Note:
If the portClusteringEnabled setting is disabled, then you need to create internal ports in
the new node to connect to the registration ports of all the API Gateway nodes in the DMZ.

642 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

Add a new node in the DMZ zone. After bringing up the new node to the DMZ, ensure that
you

Explicitly establish connections from all nodes in the green zone to the new node that you
added to the DMZ zone. This can be done by adding Internal port in the servers in the
green zone to connect to the newly created API Gateway in the DMZ zone.

Specify same configurations in the new node as other nodes in the DMZ zone.

You can use the Port Configuration REST API to automate the port settings and allow the
Load balancer to add the new node.

Note:
API Gateway instances running in the DMZ do not need to be clustered.

Scaling up API Data Store

To scale up API Data Store

1. Install API Data Store or Elasticsearch in a new node.

2. Configure the required heap size. For information on increasing heap size, see “Changing the
JVM Heap Size to Tune API Gateway Performance” on page 638.

3. In the Elasticsearch.yml file of the new node, modify the following:

Set the value of the node.master to false if the node is not a master node; and set it to true, if
the node is a master node.

Set the value of the node.data to true

Specify the value of the path.repo variable same as the value in other nodes.

Specify the names of the nodes in the discovery.seed.hosts variable, in the following format:
host_name:port

For example,
discovery.seed_hosts: ["node1:9340","node2:9340","noden":"9340"]

The node namesmust be same as the list of nodes provided in the cluster.initial_master_nodes
variable.

Save the configurations.

Start the API Data Store or Elasticsearch.

webMethods API Gateway Administration 10.11 643

6 Performance Tuning and Scaling

The API Data Store node is added and scaled up.

Scaling down API Gateway

To scale down API Gateway

1. Remove a node from the cluster by performing the following steps:

a. Enable theQuiescemode in the node that youwant to remove. The nodewill stop accepting
transactions requests, and the Load balancer routes the requests to other nodes.

b. Shutdown the node after a grace period to allow ongoing requests to complete. The period
depends on the responsiveness of the native services and the timeout setting for outbound
requests. The timeout for outbound requests is defined viawatt.net.timeout configuration
parameter

c. Remove the node from the Load balancer.

The node is removed.

Scaling down API Gateway in a Reverse Invoke setup - DMZ Zone

1. Remove a node from the DMZ zone by removing the node from the Load balancer.

The node is removed.

2. Shut down the node.

3. After the grace period for the inflight transactions to complete, remove the internal port from
the nodes in green zone, that is configured to connect to the removed API Gateway node from
the DMZ zone.

644 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

Scaling down API Gateway in a Reverse Invoke setup - Green Zone

1. Remove a node from the Green zone by performing the following steps:

a. Disable the internal ports of the node.

b. Shut down the instance in the node.

In-flight transactions would fail as the communication channel is closed.

The node is removed.

Scaling down API Data Store

To scale down API Data Store

1. Remove a API Data Store node from the cluster by stopping the API Data Store.

If you are removing master node, ensure that the node is not specified in the
cluster.initial.master.nodes property. Else, the cluster formation becomes impossible.

The API Data Store is scaled down.

webMethods API Gateway Administration 10.11 645

6 Performance Tuning and Scaling

646 webMethods API Gateway Administration 10.11

6 Performance Tuning and Scaling

7 API Gateway Configuration with Command Central

■ Overview .. 648

■ Install API Gateway using Command Central .. 648

■ Manage API Data Store Configurations in Command Central 651

■ Manage API Gateway Product Configurations in Command Central 661

■ Manage Inter-component and Cluster configurations .. 670

■ Command Line to Manage API Data Store .. 677

■ Troubleshooting Tips: API Gateway Configuration with Command Central 679

webMethods API Gateway Administration 10.11 647

Overview

Command Central allows users who have administration privileges to administer API Gateway
and API Data Store.

Command Central is a centralized application using which administrators can configure multiple
Software AG products at a time. When you install API Gateway using Command Central, API
Gateway and API Data Store are installed. API Gateway communicates with this API Data store
by default. This feature helps administrators to make API Gateway to use an external data store
(Elasticsearch) to store its core data and analytics, configure external Kibana, in addition to
managing the product configurations such as Ports, Keystores, Truststores, Loggers, LicenseKeys,
General Properties, and Clustering.

You can perform the following common functions available in CommandCentral for APIGateway:

Install API Gateway using Command Central

Update fixes using Command Central

Manage configurations and life cycle of API Data Store

Product configurations of API Gateway

General Properties

License Keys

Loggers

Ports

Keystores

Truststores

Inter-component and Cluster configurations

Elasticsearch Connection Settings

Kibana Connection Settings

API Gateway Clustering

Since Command Central supports configuring through its UI and using templates, users can pick
their choice for configuring the above seen components. In a typical scenario, administrators prefer
configuring through the UI when it is a first time setup and for subsequent configurations, they
use templates.

This section describes the operations that are specific to API Gateway. For all common operations,
see the Software AG Command Central Help.

Install API Gateway using Command Central

You can install API Gateway in either of the following ways:

648 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

Using Command Central UI. See the Software AG Command Central Help.

Using Command Central templates.

Before you begin, ensure that:

You are familiar with Command Central as a product.

You are familiar with Command Central templates.

You have a basic understanding of API Gateway as a product.

You have a basic understanding of API Gateway administrator configurations.

Installing API Gateway using Command Central Commands
This section lists the steps that you need to run in the Command Central command-line interface
for installing API Gateway. For more details on how to use templates and the command-line
interface in Command Central, see the Software AG Command Central Help.

When you install API Gateway using Command Central, API Gateway, and API Data Store are
installed. API Gateway communicates with this API Data Store by default.

1. Run the following command to add the credentials for connecting to the Software AG server.
The credentials are maintained in an XML file, credentials_installer.xml.

sagcc create configuration data local OSGI-CCE-ENGINE COMMON-CREDENTIALS -i
credentials_installer.xml

2. Run the following command to add the repository where the products are available.

sagcc add repository products master name=webMethods-10.5 location=<repository url>
credentials=SAGCONNECT

description="10.5 repository"

credentials=SAGCONNECT. This is the alias for the credentials created in Step 1. The alias is saved
in the credentials_installer.xml file.

3. Run the following command to add the required license key to install API Gateway.

sagcc add license-tools keys apigateway_license -i license_apigateway.xml

apigateway_license is the license name that CommandCentral refers to license_apigateway.xml
file.

4. Run the following command to add the API Gateway installation template. The sample
installation template, template.yaml is used in the following command.

sagcc exec templates composite import -i sag-apigateway-server-trunk/template.yaml

This imports the template required for installing API Gateway.

5. Run the following template to apply the template.

webMethods API Gateway Administration 10.11 649

7 API Gateway Configuration with Command Central

sagcc exec templates composite apply sag-apigateway-server
nodes=local is.instance.type=integrationServer agw.memory.max=512
repo.product=webMethods-10.5 os.platform=W64
agw.key.license=apigateway_license

This installs API Gateway on the specified node. In this case, it's the local machine. You can
specify the required node name in the above command to install in the corresponding node.

6. Run the commands in the given order for applying the fixes:

a. Add SUM related credentials.

sagcc create configuration data local OSGI-CCE-ENGINE COMMON-CREDENTIALS -i
credentials_fixes.xml.

b. Add the fix repository.

sagcc add repository fixes master name=GA_Fix_Repo location=<Fix repo location>
credentials=EMPOWER

description="105 GA fix repo"

c. Add the fix template similar to installation template.

sagcc exec templates composite import -i
sag-apigateway-server-qa-fix/template.yaml.

d. Apply the template.

sagcc exec templates composite apply sag-apigateway-server-fix nodes=local
is.instance.type=integrationServer agw.memory.max=512
repo.product=webMethods-10.5 os.platform=W64
agw.key.license=apigateway_license
is.instance.type=integrationServer repo.fix=GA_Fix_Repo

This procedure completes API Gateway installation and you can see API Gateway and API Data
Store in Command Central UI.

In Command Central,

API Gateway > API Data Store contains details about default Elasticsearch shipped with API
Gateway.

650 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

IS_<profile> contains details about API Gateway, Digital Event Services, Event Routing, and
Integration Server.

Manage API Data Store Configurations in Command Central

CommandCentral lists APIGateway andAPIData Store shippedwithAPIGateway. APIGateway
stores all its core and analytics data in this Data Store by default. You can start, stop, and restart
API Data Store fromCommandCentral. You can alsomanage Clustering details, Keystores, Ports,
Properties, and Truststores.

This section describes the following administering tasks for API Data Store:

“Starting and Stopping API Data Store in Command Central” on page 652

“Changing the API Data Store HTTP Port” on page 654

“Changing the API Data Store TCP Port” on page 655

“Configuring an API Data Store Cluster” on page 656

“Configuring Elasticsearch Properties” on page 659

Administering API Data Store
This section describes the following administering tasks for API Data Store:

“Starting, Stopping, and Restarting API Data Store” on page 651

“Changing the API Data Store HTTP Port” on page 654

“Changing the API Data Store TCP Port” on page 655

“Configuring Custom API Data Store Properties” on page 658

“Configuring Elasticsearch Properties” on page 659

“Monitoring API Data Store” on page 660

Starting, Stopping, and Restarting API Data Store

webMethods API Gateway Administration 10.11 651

7 API Gateway Configuration with Command Central

APIData store uses Elasticsearch 7.13.0. For details on the Elasticsearch versions that are compatible
with different API Gateway versions, see “API Gateway, Elasticsearch, Kibana, and TSA
Compatibility Matrix” on page 93.

You can start, stop, and restart your API Data Store instance using the Command Central web
user interface and command line interface. Additionally, you can use scripts onUnix andWindows,
and the Windows Start menu on Windows to manage the runtime status of your API Data Store
instance.

Note:
Youmust create a temporary directory temp in the Installation Location/InternalDataStore
and set the "-Djava.io.tmpdir=temp" in the Installation Location/InternalDataStore/config/
jvm.options.

Starting and Stopping API Data Store in Command Central

Starting API Data Store in Command Central

Use the following procedure to start API Data Store in the Command Central web user interface.

To start API Data Store

1. In Command Central, navigate to Environments > Instances > All > API Data Store.

2. Click the status icon for API Data Store .

3. From the Lifecycle Actions drop-down menu, select Start.

Stopping API Data Store in Command Central

Use the following procedure to stop API Data Store in the Command Central web user interface.

To stop API Data Store

1. In Command Central, navigate to Environments > Instances > All > API Data Store.

2. Click the status icon for API Data Store .

3. From the Lifecycle Actions drop-down menu, select Stop.

Starting, Stopping, and Restarting API Data Store on Windows

When you install API Data Store on a Windows operating system, you can start and stop your
API Data Store instance using the Windows Start menu or using scripts.

To start or stopAPIData Store using theWindows Startmenu, go toStart > product install folder,
select Start API Data Store 10.11 or Stop API Data Store 10.11 respectively.

To start, stop, or restart API Data Store using scripts, run:

652 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

Start API Data Store -

Software AG_directory \InternalDataStore\bin\config\startup.bat

Stop API Data Store -

Software AG_directory \InternalDataStore\config\bin\shutdown.bat

Restart API Data Store -

Software AG_directory \InternalDataStore\config\bin\restart.bat

Starting, Stopping, and Restarting API Data Store on LINUX

Elasticsearch cannot be run as the root user on a Linux system, so you must create a data store
user and install and run the data store as that user.

Elasticsearch does several checks before starting up. Software AG recommends that you review
the bootstrap checks and important system configuration settings before starting the data store.
In particular, you may need to adjust these settings:

Check the settings for the system-widemaximumnumber of file descriptors (kernel parameter
fs.file-max) by running the command sysctl -a | fgrep fs.file-max . If the value is less than
65536, log on as the root user and increase the value by running sysctl -w fs.file-max=200000
or echo "fs.file-max=65536" >> /etc/sysctl.conf, then activate the new value by running
sysctl -p .

Check the data store user settings for themaximumnumber of open file descriptors by running
the commands ulimit -Hn and ulimit -Sn, where -Hn is the hard limit and -Sn is the soft limit.
If the value is less than 65536, log on as the data store user and increase the value to at least
65536 by running ulimit -n 65536. To permanently save this setting for the user, run the
following:
echo "user_name soft nofile 65536" >> /etc/security/limits.conf
echo "user_name hard nofile 65536" >> /etc/security/limits.conf

Check the setting for the system-wide maximum map count (kernel
parametervm.max_map_count) by running the command sysctl -a | fgrepvm.max_map_count.
If the value is less than 262144, log on as the rootuser and increase the value to at least 262144
by running sysctl -wvm.max_map_count=262144 or echo " vm.max_map_count=262144" >>
/etc/sysctl.conf, then activate the new value by running sysctl -p.

Check the data store user settings for the maximum number of processes by running the
command ulimit -u. If the value is less than 4096, log on as the data store user and increase
the value to at least 4096 by running ulimit -n 4096. To permanently save this setting for the
user, run the following:
echo "user_name soft nproc 4096" >> /etc/security/limits.conf
echo "user_name hard nproc 4096" >> /etc/security/limits.conf

You can start, stop, and restart API Data Store by running the following commands on LINUX:

Start API Data Store.

webMethods API Gateway Administration 10.11 653

7 API Gateway Configuration with Command Central

./startup.sh

Stop API Data Store.
./shutdown.sh

Restart API Data Store.
./restart.sh

Changing the API Data Store HTTP Port

The default HTTP port that clients use to make calls to API Gateway Data Store is 9240. Use the
following procedure to change the HTTP port number.

Note:
You cannot add a new port from this section. You can only edit existing port details.

To change the API Data Store HTTP port

1. In Command Central, navigate to Environments > Instances > All > API Data Store >
Configuration.

2. Select Ports from the drop-down menu.

3. Click http port and specify the HTTP port number in the Port Number field.

4. Optionally, click Test to verify your configuration.

5. Save your changes.

6. Stop API Gateway instance, if it is running.

7. Update the Elasticsearch entry in the config.properties file located at
SAG_Installdir/IntegrationServer/instances/tenant_name/
packages/WmAPIGateway/config/resources/elasticsearch/.

Instead of changing the entriesmanually you can include these changes in one of the following
ways:

Through the externalization of configurations feature. For details, see “Externalizing
Configurations ” on page 65

Through Command Central. For details, see “Configuring Elasticsearch Connection
Settings” on page 671.

8. Restart the API Gateway instance.

Changing the API Data Store HTTP Port using Template

654 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

You can change the HTTP Port details using the following Command Central template:
sagcc exec templates composite import -i ports.yaml
sagcc exec templates composite apply sag-apigw-datastore-port nodes=local
port.alias=port_alias port.number=port_number

Sample ports configuration file:
alias: sag-apigw-datastore-port
description: API Gateway Data Store Port configuration
layers:
runtime:

templates:
- apigw-datastore-port

templates:
apigw-datastore-port:

products:
CEL:

default:
configuration:

CEL:
COMMON-PORTS:

COMMON-PORTS-defaultHttp:
Port:
'@alias': ${port.alias}
Number: ${port.number}
Protocol: HTTP

provision:
default:

runtime: ${nodes}

Changing the API Data Store TCP Port

Java clients use the TCP port tomake calls to API Data Store. In addition, the nodes in an API Data
Store cluster use the TCP port to communicate with one another. The default TCP port is 9340.

Important:
If you change the default TCP port, you must change the respective TCP port value in the
Clustering configuration.

To change the API Data Store TCP port

1. In Command Central, navigate to Environments > Instances > All > API Data Store >
Configuration.

2. Select Ports from the drop-down menu.

3. Click tcp port and specify the TCP port number in the Port Number field.

4. Optionally, click Test to verify your configuration.

webMethods API Gateway Administration 10.11 655

7 API Gateway Configuration with Command Central

5. Save your changes.

6. Restart the API Data Store instance.

In a cluster setup, if you change the TCP port in one node, then you have to change the respective
cluster configuration in other nodes. You can change the cluster configuration through Command
Central. For details, see “Configuring an API Data Store Cluster” on page 656.

Configuring an API Data Store Cluster

You can run an API Data Store instance as a single node, or you can configure multiple API Data
Store instances to run as a cluster to provide high availability and redundancy.

You can configure API Data Store Cluster in one of the following ways:

Through Command Central

Through elasticsearch.yml file

This section describes configuring anAPIData Store cluster throughCommandCentral. For details
on configuring a cluster using the elasticsearch.yml file, see “API Data Store Cluster
Configuration” on page 31.

You must specify at least one host and port pair for your configuration in Command Central. API
Data Store comes with a default host and port pair.

To configure an API Data Store cluster

1. In Command Central, for each API Data Store instance that is part of the cluster, navigate to
Environments > Instances > All > API Data Store > Configuration.

2. Select Clustering from the drop-down menu, and then click Edit.

3. Specify values for each field in the table as outlined in the description column:

DescriptionField

Required. The name of the cluster. All instances must have the same
cluster name.

Cluster Name

Required. Click , and then do the following to add host and port
information for eachAPIData Store instance that is part of the cluster:

Cluster Discovery
Nodes

a. In the Host column, specify the host information for an API Data
Store instance. The default host is localhost.

b. In thePort column, specify the port for anAPIData Store instance.
The default port is 9340.

656 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

DescriptionField

c. In the Node name column, specify the provide the node name
details of the API Data Store instance. Ensure that this name
matches with node.name property of the Elasticsearch instance.

4. Optionally, click Test to verify that your configuration is valid.

5. Save your changes.

6. Select Properties from the drop-down menu, and then click Edit.

7. Specify the Elasticsearch configuration property details.When youwant to form a cluster with
nodes on other hosts, you must use the discovery.seed_hosts setting to provide a list of other
nodes in the cluster that are master-eligible and likely to be live and can be contacted in order
to seed the discovery process. This setting should normally contain the addresses of all the
master-eligible nodes in the cluster as follows:

discovery.seed_hosts:
- "<HostName>:<TCPPort>"
- "<HostName>:<TCPPort>"

Example:
discovery.seed_hosts:
- "Host1:9340"
- "Host2:9340"

8. Click Apply to save your changes.

9. Restart the API Data Store instance.

webMethods API Gateway Administration 10.11 657

7 API Gateway Configuration with Command Central

Configuring Data Store Cluster using Template

You can configure the Data Store cluster using the following Command Central template:
sagcc exec templates composite import -i clustering.yaml
sagcc exec templates composite apply sag-apigw-datastore-clustering nodes=local
node.name=node_name node.host=node_host node.port=node_port

Sample clustering configuration template:
alias: sag-apigw-datastore-clustering
description: API Gateway Data Store Clustering Configuration
layers:
runtime:

templates:
- apigw-datastore-clustering

templates:
apigw-datastore-clustering:

products:
CEL:
default:

configuration:
CEL:

COMMON-CLUSTER:
COMMON-CLUSTER-default:

Enabled: 'true'
Name: SAG_EventDataStore
Servers:
Server:

ExtendedProperties:
Property:
- '@name': node

$: ${node.name}
- '@name': host

$: ${node.host}
- '@name': port

$: ${node.port}

provision:
default:

runtime: ${nodes}

Configuring Custom API Data Store Properties

You can specify custom properties for your Data Store configuration.

To specify custom properties for API Data Store

1. In Command Central, navigate to Environments > Instances > All > API Data Store >
Configuration.

2. Select Properties from the drop-down menu and click Edit.

658 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

3. In the Content field, specify custom parameters. Use YAML syntax and the property_name :
value format.

4. Restart the API Data Store instance.

Configuring Elasticsearch Properties

From Command Central, you can edit the properties of Elasticsearch that are used by API Data
Store. The changes made to the properties are saved in the elasticsearch.yml file.

To configure Elasticsearch properties

1. In Command Central, for each API Data Store instance that is part of the cluster, navigate to
Environments > Instances > All > API Data Store > Configuration.

2. Select Properties from the drop-down menu, and then click Edit.

This section lists properties maintained in elasticsearch.yml file.

3. Make the required your changes.

4. Restart the API Data Store instance.

Configuring Elasticsearch Properties using Template

You can configure the Elasticsearch properties using the following Command Central template:
sagcc exec templates composite import -i properties.yaml (properties.yaml)
sagcc exec templates composite apply sag-apigw-datastore-properties nodes=local

Sample template:
alias: sag-apigw-datastore-properties
description: API Gateway Data Store Properties
layers:
runtime:

templates:
- apigw-datastore-properties

templates:
apigw-datastore-properties:

products:
CEL:

default:
configuration:

CEL:
CUSTOM-PROPERTIES:

CUSTOM-PROPERTIES-default:
path.logs: "C:\\sag\\cc\\InternalDataStore/newlogs"
path.repo:
- "C:\\sag\\cc\\InternalDataStore/archives"
cluster.initial_master_nodes:

webMethods API Gateway Administration 10.11 659

7 API Gateway Configuration with Command Central

- "nodename"
provision:
default:

runtime: ${nodes}

Monitoring API Data Store

As part of application monitoring, you can monitor the state, that is the cluster status of API Data
Store along with the resources.

How do I monitor the health of API Data Store?

Prerequisites:

Youmust have a validAPIGateway user credential for using the Readiness Probe and Liveness
Probe.

All the node level probes must be setup to target the local instance, typically, localhost.

SoftwareAG recommends to set up a dedicated port formonitoringwith an appropriate private
thread pool.

Readiness Probe at Node-Level

Tomonitor the readiness ofAPIData Store, that is to check if APIData Store has started successfully,
use the following REST endpoint:

GET HTTP://host:port/_cluster/health

The following table shows the response code and the description.

660 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

DescriptionResponse

Readiness check is successful.200 OK

Readiness check failed and denotes a problem. The response JSON indicates
the problem.

500 Internal server
error

If readiness probe fails, you can perform one of the following actions:

If you have installed API Gateway directly, check the API Data Store
logs to find the status or exception.

If you have installedAPIGateway through docker image or Kubernetes,
ensure that the existing pod is resolved or a new pod is created
(automatically) and ready for serving the requests.

Several factors can contribute to the delay when the Readiness Probe
initiates, which may result in the timeout errors. To know the reasons for

timeout or no
response as the

timeout errors, see “Causes for timeout errors” on page 203 for more
information.

request did not
reach the probe

Liveness Probe at Node-Level

As API Data Store works in a cluster-based environment, the result of the Liveness Probe is
determined by the cluster health. You can check the cluster status using the same endpoint
mentioned for the Readiness Probe.

How do I collect metrics?

Metrics collection is reported in the Prometheus data format. Prometheus is a non- Software AG
dashboarding tool that helps in trend analysis. For more information, see https://prometheus.io/.
The Prometheus metrics names can differ in your environment if you are using a different
Prometheus exporter like ES exporter.

Manage API Gateway Product Configurations in Command
Central

Starting API Gateway 10.5, you can use external Elasticsearch and configure API Gateway to
communicate with that Elasticsearch. Once API Gateway is installed using Command Central, it
lists installed Integration Server instances as shown in the image below.

webMethods API Gateway Administration 10.11 661

7 API Gateway Configuration with Command Central

https://prometheus.io/

The image shows the IS instance apigatewaywith the name IS_apigateway. Under IS_apigateway,
users can configure the following assets and components of API Gateway instances:

Clusters

Elasticsearch instances

General and extended properties

Keystores

Kibana instances

License keys

Loggers

Ports

Truststores

Configuring Properties
This section provides information about configuring Extended andWatt settings of API Gateway.

To configure the Properties

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Click General Properties. The General Properties page appears.

3. Click Extended Settings. The properties are listed as key value pairs.

4. Make the required changes.

5. Click Save.

662 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

6. Click Watt Settings. The properties are listed as key value pairs.

7. Make the required changes.

8. Save your changes.

Configuring Keystores
This section provides information about adding keystores for API Gateway from Command
Central.

To configure the Keystores

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Keystores from the drop-down menu.

The Keystores list appears.

3. Click to add a new keystore.

4. Provide an Alias for the keystore.

5. Provide Type,Provider, and Location of the keystore in theKeystore Configuration section.

6. Click Save .

The keystore is added to the list.

webMethods API Gateway Administration 10.11 663

7 API Gateway Configuration with Command Central

Configuring Keystores using Template
You can configure Keystores using the following Command Central template:
sagcc exec templates composite import -i keystore.yaml
sagcc exec templates composite apply keyStoreAlias nodes=local
keystore.path=youekeystorepath
keystore.password=keystorepassword key.alias=keyAlias
key.password=keyPassword

Sample keystore configuration template
alias: keyStoreAlias
description: API Gateway keystore creation
layers:
runtime:

templates: keyStore-Template
templates:
keyStore-Template:

products:
integrationServer:
apigateway:

configuration:
OSGI-IS_apigateway-WmAPIGateway:

COMMON-KEYSTORES:
COMMON-KEYSTORES_pgkey:

Keystore:
'@alias': pgkey
Description: pgkey
Type: JKS
Provider: SUN
Location: ${keystore.path}
Password: '{AES/CBC/PKCS5Padding}
{7BhetRrOVU+AVsox8WKkwQwMVemomS3dpCgNJj5ByYA=}
{JSQ88/tEzqkDGq8D+GWlrw==}uSFvFjWALKWdMOAjuwGpVA=='
Key:
- '@alias': partner1

Password: '{AES/CBC/PKCS5Padding}
{VPQ5ojZEZgzUR7x0WfO317ROK+bxvMyjSCSigoBiAEo=}
{+96qyCFXAiXg2gX3CzdIWA==}7kAeXaZcieuJuRefScC0Ig=='

- '@alias': partner2
Password: '{AES/CBC/PKCS5Padding}
{4cu7D8zZ+Bng2CvoeX71tlb1TSv5yKwqNAXjDN1yLKI=}
{wOE8hwyO2s5BlSZV1tKtNA==}mIVtB9dVL8TCVb35zQGJaA=='

- '@alias': policygateway
Password: '{AES/CBC/PKCS5Padding}
{PWBrBO5D5w6KSdloz8q8yTcrVThiZEbyPhre1u7gXb4=}
{FuESDHiSW1rXqmBIfL7P7g==}/hMP4Bzp0hmCF2Jlrsy00w=='

ExtendedProperties:
Property:
- '@name': fileContent

$:

Configuring Licenses
This section provides information about adding API Gateway licenses using Command Central.

664 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

To configure Licenses

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select License Keys from the drop-down menu.

The License Keys list appears.

3. Click to add a new license and provide the required license.

Configuring Loggers

To configure Loggers

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Loggers from the drop-down menu.

This section displays components and their corresponding log levels.

3. Follow these steps to change the log level of a component:

a. Click the required log file type from the list.

b. Select the required Log Level from the drop-down list.

webMethods API Gateway Administration 10.11 665

7 API Gateway Configuration with Command Central

c. Click Save.

Configuring HTTP Port
This section provides information about configuring HTTP ports available in API Gateway.

To configure the HTTP port

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Ports from the drop-down menu.

3. Click HTTP Port Configuration.

4. Select Yes in the Enable field in the Basic configuration section.

5. Provide valid port numbers in the Port and Alias field of the HTTP listener configuration
section.

6. Optionally, click Test to verify your configuration.

7. Save your changes.

8. Restart the API Gateway instance.

The port is created and enabled.

666 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

Configuring HTTPS Port
This section provides information about configuring HTTPS ports available in API Gateway.

To configure the HTTPS port

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Ports from the drop-down menu.

3. Click HTTPS Port Configuration.

4. Select Yes in the Enable field in the Basic configuration section.

5. Provide valid port numbers in the Port and Alias field of the HTTPS listener configuration
section.

6. Select the required Keystore and Truststore from the available list of options.

7. Optionally, click Test to verify your configuration.

8. Save your changes.

9. Restart the API Gateway instance.

The port is created and enabled.

webMethods API Gateway Administration 10.11 667

7 API Gateway Configuration with Command Central

Configuring HTTPS Port using Template
You can configure port by using the following Command Central template:
sagcc exec templates composite import -i httpPort.yaml
sagcc exec templates composite apply httpPortAlias

Sample ports configuration template
alias: httpsPortAlias
description: API Gateway https port creation
layers:
runtime:

templates: httpsPort-Template
templates:
httpsPort-Template:

products:
integrationServer:
apigateway:

configuration:
OSGI-IS_apigateway-WmAPIGateway:

COMMON-PORTS:
COMMON_PORTS_HTTPS:

Port:
'@primary': 'false'
'@alias': HTTPS
Enabled: 'true'
CustomType: HTTPSListener@5558
Number: '5558'
Protocol: HTTPS
Backlog: '200'
KeepAliveTimeout: '20000'
ThreadPool:
SSL:

KeystoreAlias: pgkey
KeyAlias: partner2
TruststoreAlias: trust

ExtendedProperties:
Property:
- '@name': DIS_PORT

$: '5558'
- '@name': DIS_PORT_ALIAS

$: HTTPS
- '@name': DIS_PROTOCOL

$: HTTPS
- '@name': DIS_ENABLE

$: 'true'
- '@name': DIS_PRIMARY

$: 'false'
- '@name': listenerType

$: Regular
- '@name': Type

$: Regular
- '@name': DIS_TYPE

$: Regular
- '@name': PortType

$: HTTPS
- '@name': PortDescription

668 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

$: https ports
- '@name': ClientAuth

$: require
- '@name': IdleTimeout
- '@name': MaxConnections
- '@name': ProxyHost
- '@name': Username
- '@name': Password

provision:
default:

runtime: ${nodes}

Configuring Truststores
This section provides information about adding Truststores for API Gateway from Command
Central.

To configure the Truststores

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Truststores from the drop-down menu.

The Truststores list appears.

3. Click to add a new Truststore.

4. Provide an Alias for the Truststore.

5. Provide Type, Provider, and Location of the Truststore in the Truststore Configuration
section.

6. Click Save .

The Truststore is added to list.

Configuring Truststores using Template
You can configure Truststores using the following Command Central template:
sagcc exec templates composite import -i truststore.yaml
sagcc exec templates composite apply trustStoreAlias nodes=local
truststore.location=trustStoreLocation
truststore.password=trustStorePassword

Sample Truststores configuration template
alias: trustStoreAlias
description: API Gateway trust store creation

webMethods API Gateway Administration 10.11 669

7 API Gateway Configuration with Command Central

layers:
runtime:

templates: trustStore-Template
templates:
trustStore-Template:

products:
integrationServer:
default:

configuration:
OSGI-IS_apigateway-WmAPIGateway:

COMMON-TRUSTSTORES:
COMMON-TRUSTSTORES_testTrustStore:

Truststore:
'@alias': testTrustStore
Description: Test truststore for command central
Type: JKS
Provider: SUN
Location: ${truststore.location}
Password: ${truststore.password}

ExtendedProperties:
Property:

- '@name': certficateAliases
$:

addtrustclass1ca,addtrustexternalca,addtrustqualifiedca,baltimorecodesigningca,baltimorecybertrustca,
comodoaaaca,entrust2048ca,entrustclientca,entrustglobalclientca,entrustgsslca,entrustsslca,equifaxsecureca,equifaxsecureebusinessca1,
equifaxsecureebusinessca2,equifaxsecureglobalebusinessca1,geotrustglobalca,godaddyclass2ca,gtecybertrust5ca,gtecybertrustca,
gtecybertrustglobalca,lhca,partner1,partner2,policygateway,soneraclass1ca,soneraclass2ca,starfieldclass2ca,synapse,
thawtepersonalbasicca,thawtepersonalfreemailca,thawtepersonalpremiumca,thawtepremiumserverca,thawteserverca,
utndatacorpsgcca,utnuserfirstclientauthemailca,utnuserfirsthardwareca,utnuserfirstobjectca,valicertclass2ca,
verisignclass1ca,verisignclass1g2ca,verisignclass1g3ca,verisignclass2ca,verisignclass2g2ca,verisignclass2g3ca,
verisignclass3ca,verisignclass3g2ca,verisignclass3g3ca,verisignserverca,webm test ca

- '@name': isLoaded
$: 'true'

- '@name': fileContent
$:

/u3+7QAAAAIAAAAxAAAAAgAMd2VibSB0ZXN0IGNhAAABSLIi/poABVguNTA5AAADazCCA2cwggJPo
AMCAQICBFQih6gwDQYJKoZIhvcNAQELBQAwazELMAkGA1UEBhM

JoAMCAQICBDdwz7UwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCVVMxFzAVBgNVBAoTDkVxdWlmYXggU2VjdXJlMSYwJAYD
- '@name': fileName

$: cacerts
provision:
default:

runtime: ${nodes}

Manage Inter-component and Cluster configurations

This section describes the administering tasks for the following API Gateway components:

Elasticsearch Connection Settings

Kibana Connection Settings

API Gateway Clustering

670 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

Configuring Elasticsearch Connection Settings
This section provides information about configuring internal or external Elasticsearch for API
Gateway.

To configure Elasticsearch

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Click Elasticsearch from the drop-down menu. The Elasticsearch section appears.

3. Provide Tenant name.

4. Select one of the following values in the Auto start field:

Yes - if you are using internal Elasticsearch.

No - if you are using external Elasticsearch.

5. Provide theHost andPort of the serverwhere the Elasticsearch (external or internal) is running,
in the Transport section.

6. If the Elasticsearch is protectedwith basic authorization, provide the user name and password
in the Authentication section.

7. If the Elasticsearch is protected with HTTPS, perform the following in the SSL section:

a. Select the Enable check box.

b. Provide valid Keystore and Truststore details.

8. Provide additional configurations that defines theAPIGateway's connectivity to Elasticsearch
in the Additional Information section.

webMethods API Gateway Administration 10.11 671

7 API Gateway Configuration with Command Central

9. Save your changes.

The Pending restart value is changed to true and Status is Enabled.

10. Restart the API Gateway instance.

The Elasticsearch details are updated in API Gateway.

Configuring External Elasticsearch using Template

You can configure external Elasticsearch using the following Command Central template:
sagcc exec templates composite import -i cc-minimal-es.yaml
sagcc exec templates composite apply cc-minimal-es nodes=local ssl_username=username
ssl_password=password
eshost=eshost esport=esport keystore_location=your_keystore_location
keystore_alias=alias_of_keystore
truststore_location=your_truststore_location truststorealias=your_truststore_alias
truststore_password=truststorepassword

Sample external Elasticsearch configuration template
alias: elasticsearch-alias
description: Elastic search configuration
layers:
runtime:

templates:
- cc-minimal-es

templates:
cc-minimal-es:

products:
integrationServer:
default:

672 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

configuration:
OSGI-IS_apigateway-WmAPIGateway:

APIGATEWAY-ELASTICSEARCH:
APIGATEWAY-ELASTICSEARCH:

'@alias': Elasticsearch
autostart: 'false'
tenantId: apigateway
Auth:
'@type': SSL
User: ${ssl_username}
Password: ${ssl_password}

Transport:
Host: ${eshost}
Port: ${esport}

SSL:
Enable: 'true'
HostnameVerification: 'false'
KeystoreLocation: ${keystore_location}
KeystoreAlias: ${keystore_alias}
TruststoreLocation: ${truststore_location}
TruststoreAlias: ${truststore_alias}
TruststorePassword: ${truststore_password}

ExtendedProperties:
Property:

- '@name': clientHttpResponseSize
$: '1024'

- '@name': connectionTimeout
$: '10000'

- '@name': keepalive
$: '10'

- '@name': keepAliveConnectionsPerRoute
$: '1000'

- '@name': maxRetry
$: '10000'

- '@name': socketTimeout
$: '10000'

- '@name': sniffEnabled
$: 'true'

- '@name': sniffTimeInterval
$: '5000'

provision:
default:

runtime: ${nodes}

Configuring Kibana Connection Settings
This section provides information about configuring internal or external Kibana for API Gateway
from Command Central.

To configure Kibana

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Kibana from the drop-down menu.

webMethods API Gateway Administration 10.11 673

7 API Gateway Configuration with Command Central

The Kibana instances list appears.

3. Click the instance that you want to configure.

4. Select one of the following values in the Auto start field:

Yes - if you are using internal Kibana.

No - if you are using external Kibana.

5. If you are using external Kibana, provide the Host and Port of the server where the Kibana is
running in the Transport section. Else, do not enter any values in those fields.

6. Save your changes.

The Pending restart value is changed to true and Status is Enabled.

7. Restart the API Gateway instance.

The Kibana details are updated in API Gateway.

Configuring Kibana using Template

You can configure Kibana using the following Command Central template:
sagcc exec templates composite import -i cc-kibana.yaml
sagcc exec templates composite apply cc-kibana nodes=local host=hostname port=portnumber

Sample Kibana configuration template
alias: cc-kibana-alias
description: HTTPS elastic search template
layers:
runtime:

templates:
- cc-kibana

templates:
cc-kibana:

products:
integrationServer:
default:

configuration:
OSGI-IS_apigateway-WmAPIGateway:

674 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

APIGATEWAY-KIBANA:
APIGATEWAY-KIBANA:

'@alias': Kibana
autostart: 'false'
Transport:
Host: ${host}
Port: ${port}

provision:
default:

runtime: ${nodes}

Configuring API Gateway Cluster
This section provides information about configuring cluster details for API Gateway in the API
Gateway section.

Note:
Ensure that the Terracotta server is running when configuring cluster.

To configure API Gateway Clustering

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Clustering from the drop-down menu.

The initial clustering status appears as Disabled.

3. Click Disabled. The General Information section appears.

4. Click Edit to provide the cluster details.

5. Select Yes in the Enable field.

6. Provide Cluster name.

webMethods API Gateway Administration 10.11 675

7 API Gateway Configuration with Command Central

7. Provide the host name and port of the server where Terracotta is running, in the Terracotta
server array URLs field.

8. Optionally, click Test to verify your configuration.

9. Save your changes.

The Pending restart value is changed to true and Status is Enabled.

10. Restart the API Gateway instance.

The clustering details are updated in API Gateway.

Configuring Cluster using Template

You can configure Cluster using the following Command Central template:
sagcc exec templates composite import -i cc-clustering.yaml
sagcc exec templates composite apply commandcentral-clustering-alias nodes=local
tchost=terracotta_host tcport=terracotta_port

Sample clustering configuration template
alias: cc-clustering-alias
description: cluster config
layers:
runtime:

templates:
- cc-clustering

templates:
cc-clustering:

products:
integrationServer:
default:

configuration:
OSGI-IS_apigateway-WmAPIGateway:

COMMON-CLUSTER:
COMMON-CLUSTER:

Enabled: 'true'
Name: APIGatewayTSAcluster
Servers:
Server:

URL: daeirnd33974:9510
ExtendedProperties:
Property:
- '@name': SessionTimeout

$: '60'
- '@name': ActionOnStartupError

$: standalone
provision:
default:

runtime: ${nodes}

676 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

Command Line to Manage API Data Store

You can manage Data Store using command line. This section provides details about the various
commands and configuration types that theData Store supports, the run-timemonitoring statuses
and the lifecycle actions for the Data Store.

Commands that API Data Store Supports
API Data Store supports the PlatformManager commands listed in the following table. The table
also lists where you can find information about each command.

Additional InformationCommands

For general information about the command, see
Software AG Command Central Help.

sagcc get configuration data

For general information about the command, see
Software AG Command Central Help.

sagcc update configuration data

For general information about the command, see
Software AG Command Central Help.

sagcc get configuration instances

For general information about the command, see
Software AG Command Central Help.

sagcc list configuration instances

For general information about the command, see
Software AG Command Central Help.

sagcc get configuration types

For general information about the command, see
Software AG Command Central Help.

sagcc list configuration types

For general information about the command, see
Software AG Command Central Help.

sagcc exec configuration validation
update

For general information about the command, see
Software AG Command Central Help.

sagcc exec lifecycle

For general information about the command, see
Software AG Command Central Help.

sagcc get monitoring

Configuration Types that API Data Store Supports
The following table lists the configuration types that the API Data Store run-time component
supports, along with the description of each configuration type:

webMethods API Gateway Administration 10.11 677

7 API Gateway Configuration with Command Central

DescriptionConfiguration Type

Settings for an API Data Store cluster. You can configure
the name of the cluster and the host and port pairs of the
server endpoints of the cluster.

COMMON-CLUSTER

Note:
The changes that you make to a cluster configuration
take effect after you restart API Data Store.

Configuration instances for HTTP and TCP ports.COMMON-PORTS

Additional properties for the configuration of anAPIData
Store server.

CUSTOM-PROPERTIES

Run-Time Monitoring Statuses for API Data Store
The following table lists the run-time statuses that the API Data Store run-time component can
return in response to the sagcc get monitoring state command, along with the meaning of each
run-time status.

MeaningRun-time Status

The API Data Store instance is running.ONLINE

The API Data Store instance is stopped.STOPPED

Lifecycle Actions for API Data Store
The following table lists the actions that API Data Store supports with the sagcc exec lifecycle
command, along with the description of each action:

DescriptionAction

Starts the API Data Store instance.start

Stops the API Data Store instance.stop

Restarts the API Data Store instance.restart

You can also perform these actions in the Command Central web user interface.

678 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

Troubleshooting Tips: API Gateway Configuration with
Command Central

I see that the HTTPS port for API Gateway UI is not working

When API Gateway is installed using Command Central, API Gateway Administration page is
not accessible with default ports.

Resolution:

Check if com.softwareag.catalina.connector.https.pid-apigateway.properties file is available at
SAGInstallDirectory\profiles\IS_instance_name\configuration\
com.softwareag.platform.config.propsloader.

If the file is missing in the specified location, contact SoftwareAG Support to fix the problem.

Note:
Do not copy the file from a different location. If the file is copied from a different location, the
HTTPS port might not work.

webMethods API Gateway Administration 10.11 679

7 API Gateway Configuration with Command Central

680 webMethods API Gateway Administration 10.11

7 API Gateway Configuration with Command Central

	Table of Contents
	About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	1 Deployment
	Concepts
	Deployment Configurations

	2 Operating API Gateway
	Administering API Gateway through API Gateway User Interface
	Starting and Stopping API Gateway
	Data Management
	Monitoring API Gateway
	General Administration Configuration
	Destination Configuration
	Audit Logging
	System Settings
	Configuring External Accounts
	Configuration Types and Properties

	3 Security Configuration
	Overview of Keystore and Truststore
	Keystore and Truststore
	Ports
	Global IP Access Settings For Ports
	SAML Issuer
	Custom Assertions
	Kerberos Settings
	Master Password Management
	OAuth, JWT, and OpenID Configuration
	Securing API Gateway Communication using TLS
	Troubleshooting Tips: Securing API Data Store (Elasticsearch)

	4 Container-based Provisioning
	Docker Configuration
	Kubernetes Support

	5 High Availability, Disaster Recovery, and Fault Tolerance
	High Availability
	High Availability and Disaster Recovery
	High Availability and Fault Tolerance

	6 Performance Tuning and Scaling
	Hardware and Product Configurations
	Changing the JVM Heap Size to Tune API Gateway Performance
	Data Separation
	Scaling

	7 API Gateway Configuration with Command Central
	Overview
	Install API Gateway using Command Central
	Manage API Data Store Configurations in Command Central
	Manage API Gateway Product Configurations in Command Central
	Manage Inter-component and Cluster configurations
	Command Line to Manage API Data Store
	Troubleshooting Tips: API Gateway Configuration with Command Central

