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PROGRAM ORGANIZATION

1.1 OVERVIEW OF THE PROGRAM

NASTRAN is a finite element computer program for structural analysis that is intended for

general use. As such it must answer to a wide spectrum of requirements. The program must be

efficient, versatile and convenient to use. It must be standardized to permit interchange of

input and output between different users. It must be structured to permit future modification and

extension to new problem areas and to new computer configurations without major redevelopment.

T~e intended range of applications of the program extends to almost every kind of structure

and to almost every type of construction. Structural elements are provided for the specific

representation of the more common types of construction including rods, beams, shear panels,

plates, and shells of revolution. More gene~al types of construction are treated by combinations

of these elements and by the use of "genera l" elements. Control sys terns, aerodynami c transfer

functions, and other nonstructural features can be incorporated into the structural problem.

The range of analysis types in the program includes: static response to concentrated and

distributed loads, to thermal expansion and to enforced deformation; dynamic response to transient

loads, to steady-state sinusoidal loads and to random excitation; determination of real and com

plex eigenvalues for use in vibration analysis, dynamic stability analysis, and elastic stability

analysis. The progl'am includes a limited capability for the solution of nonlinear problems',

inclUding piecewise linear analysis of nonlinear static response and transient analysis of non

linear dynamic response.

NASTRAN has been specifically designed to treat large problems with many degrees of freedom.

The only limitations on problem size are those imposed by practical considerations of running

time and by the ultimate capacity of auxiliary storage devices. The program is decidedly not a

core program. Computational procedures have been selected to provide the maximum obtainable

efficiency for large problems.

Research was conducted during the design of the program in order to ensure that the best

available methods were used. The areas of computer program design that are most sensitive to

state-of-the-art considerations are program organization and numerical analysis. The organiza

tional demands on the program design are severe in view of the multiplicity of problem types and

user conveniences, the multiplicity of operating computer configurations, the requirement for

large problem capability, the requirement for future modification, and the requirement for
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PROGRAM ORGANIZATION

responsiveness to improvements in programming systems and computer hardware. The organizational

problems have been solved by applying techniques that are standard in the design of computer

operating systems but have not, as yet, been extensively used in the design of scientific applica

tions programs. The main instrument of program organization in the program is an executive system

that schedules the operating sequence of functional modules and that plans and allocates the

storage of files. An important aspect of the executive routine concept used in NA£TRAN is that

it greatly reduces the cost of program coding and checkout by eliminating most module interface

problems and by reducing the remainder to a form that permits systematic treatment.

Most difficulties in numerical analysis arise in connection with three basic implicit opera

tions: matrix decomposition (or inversion), eigenvalue extraction, a~dintegration of differential

equations. The major difficulties that occur in the application of these operations to large

problems are excessive computing time, error accumulation and instability. Many methods that work

well with small or moderate sized problems are not acceptable for large problems.

The method employed for matrix decomposition is especially important due to its extensive

use as a base for the other two implicit operations. The method that is employed in the program

takes maximum advantage of matrix sparsity and bandedness. The latter aspect is particularly

important due to the enormous gain in efficiency that accrues when banding techniques are properly

employed by the user in setting up problems for the displacement method.

In general the solution time for a large structural analysis of any type can be greatly

reduced by taking full advantage of the sparsity and bandwidth of the matrices that describe the

structural problem. Other means, in addition to the matrix decomposition routine mentioned

above, have been used to improve efficiency for large problems. These include storing sparse

matrices in packed form, the avoidance of operations that reduce sparsity or destroy bandwidth,

well designed Input/Output strategies; the use of advanced techniques for eigenvalue extraction,

and specially tailored numerical integration algorithms.

The needs of the structural analyst have been considered in all aspects of the design of the

program. The first thing to be remembered is that, in view of the wide range of possible appli

cations of the program, we do not know exactly what these needs may be. For this reason a high

degree of flexibility and generality has been incorporated into certain areas of the progr~m.

For example, in addition to the usual list of structural elements that refer to specific types

of construction, the user is provided with more general elements that may be used to construct
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any type of special element, to represent part of a structure by deflection influence coefficients,

or to represent part of a structure by its vibration modes. For the more conventional types of

structural analysis, the user is presented with a large number of convenience features, including

plotting routines, which are definite necessities for large problems.

A major difficulty that the user faces in the solution of large problems is the avoidance of

errors in the preparation of input data. Card formats and card ordering are made as simple and

flexible as possible in NASTRAN in order to avoid errors caused by trivial violations of format

rules. A ~umber of aids for the detection of legal but incorrect data are also provided.

The problems that can be solved by NASTRAN include the following general classes:

1
I.

2.

3.

Static St~uctural Problems

Elastic Stability Problems

Dynamic Structural Problems

4. - General Matrix Problems

Each genera] problem class is further subdivided into case types which differ with regard to

the type of information desired, the environmental factors considered, or the method of analysis.

The mathematical computations required to solve problems are performed by subprogram units called

functional modules. Each case type requires a distinct sequence of functional module calls that

are scheduled by the Executive System.

For structural problem types the sequence of module calls and hence the general method of

solution is established internally for each case type according to a rigid format stored in the

Executive System. Execution of a structural problem proceeds in one run to final solution, or,

at the opticn of the user, to a desired intermediate point.

A more flexible procedure is provided for the solution of general matrix problems. All of

the matrix operations (such as addition, multiplication, triangular decomposition, and eigenvalue

extraction) used in the program can be directly addressed by the user according to a system of

macro instructions called DMAP(for Direct Matrix Abstraction Program). The user constructs a

chain of DMAP ins~ructions in order to effect the solution of general matrix problems.
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1.2 THE NASTRAN EXECUTIVE SYSTEM

1.2.1 Introduction

The overall effectiveness of a general purpose program depends in large measure on how well

the available programming techniques have been employed in the design of its organizational and

control features. It may, therefore, be useful to precede the usual treatment of the engineering

and mathematical aspects of the program with a discussion of a relatively unfamiliar feature of

general purpose programs, namely the Executive System.

NASTRAN has been designed accord~ng to two classes of criteria. The first class relates to

functional requirements for the solution of an extremely wide range of large and complex problems

i~ structural analysis with high accuracy and computational efficiency, which are met by develop

ing advanced mathematical models of the physical phenomena and incorporating their computation

algorithms into the program. The second class of criteria relates to the operational and organiza

tional aspects of the program. These aspects are some\~hat divorced from structural analysis itself;

yet they are of equal importance in determining the usefulness and quality of the program. Chief

among these criteria are:

1. Simplicity of problem input deck preparation.

2. Minimization of chances for human error in problem preparation.

3. Minimization of need for manual intervention during program execution.

4. Capability for step by step problem solution. without penalty of repeated problem set up.

5. Capability for problem restart following unplanned interruptions or problem preparation

error.

6. Minimization of system overhead, in the three vital areas:

a. Diversion of core storage from functional use in problem solution.

b. Diversion of auxiliary storage units from functional to system usage.

c. System housekeeping time for performing executive functions that do not directly

further problem solution.

7. Ease of program modification and extension to new functional capability.
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8. Ease of program extension to new computer configurations and operating systems, and

generality in ability to operate efficiently under a wide set of configuration

capabilities.

The second class of eight objectives is achieved in NASTRAN through modular separation of

functional capabilities, organized under an efficient, problem-independent executive system. This

approach is absolutely essential for any complex multioperation, multifile application program

such as NASTRAN. To see this, one must examine the implications of modularity in program

organi za tion.

Any application computer program provides a selection of computational sequences that are

controlled by the user through externally provided options and parameter values. Since no user

will wish to observe the result of each calculation, these options also provide for the selection

of the data to be output. In addition to externally set options, internal decision switches whose

settings depend upon tests performed during the calculations will control the computation

sequences .. There is, therefore, a natural separation of computations into functional blocks.

The principal blocks are called functional modules; modules themselves, of course, may and usually

must be further organized on a submodular basis.

Despite this separation, however, it is clear that modules cannot be completely independent,

since they are all directed toward solution of the same general problem. In particular, they must

intercommunicate data between themselves. The principal problem in organizing any application

program, large or small, is designing the data interfaces between modules.

For small programs, the standard techniques are to communicate data via subroutine calling

sequences and common data regions in core storage. For programs that handle larger amounts of

data, auxiliary ~torage is used; however, strict specifications of the devices used and of the

data record formats are usually imposed. The penal ty paid is that of "side effects". A change

in a minor subroutine initiates a modification of the data interfaces that propagates through the

entire program. When the program is small. these effects may not be serious. For a complex pro

gram like NASTRAN, however, they may be disastrous.

This problem has been solved in NASTRAN by a separation of system functions, performed by an

executive routine, from problem solution functions, accomplished by modules separated strictly

along functional lines. Each module is independent from all other modules in the sense that

modification of a module, or addition of a new module. will not, in general, require modification
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of other modules. Even so, programming constraints on module development are minor. The essential

restrictions are:

1. Modules may interface with other modules only through auxiliary storage files that con

tain data blocks.

2. Since the availability of the auxiliary files required for the execution of a module

depends on the execution of other modules, no module can specify or allocate files for

its input or output data. All auxiliary storage allocation is -reserved as an executive

function.

3. Modules operate as independent subprograms, and may not call, or be called by, other

modules. They may be entered only from the executive routine.

4. Modules may interface with the executive routine through a parameter table that is main

tained by the executive routine. User specified options and parameters are communicated

to modules in this way. The major line of communication is one-way, from user to execu

tive routine to module. However, in addition, an appreciable two-way communication from

module back to executive routine (and, therefore, to other modules) is permitted via the

parameter table.

No other constraints, except those imposed by the resident compilers and operating systems,

are required for functional modules.

The essential functions of the executive system are:

1. To establish and control the sequence of module executions "according to options specified

by the user.

2. To establish and communicate values of parameters for each module.

3. To allocate files for all data blocks generated during program execution and perform

input/output to auxiliary files for each module.

4. To maintain a full restart capability for restoring a program execution after either a

scheduled or unscheduled interruption.

Each of these functions is essentially independent of any particular feature of structural

analysis and applies to the operational control of any complex multimodule, multifile application

program. The executive system is open-ended in the s~nse that it can accommodate an essentially
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unlimited number of functional modules, files, and parameters. Modification of the executive

system necessary for modification or extension of functional modules is restricted to changes in

entries in control tables stored within the executive routine.

A description of the way in which these objectives and functional capabilities are accom

plished by the NASTRAN Executive System is included in the following sections.

1.2.2 Executive Ooerations Durinq the Preface

Program execution is divided into a preface and the program body proper. During the preface

the NASTRAN Executive System analyzes and processes the data wnich define user options regarding

the structural problem to be solved and organizes the overall problem solution sequence. The

sequence of ooerations duri~g the preface is presented in Figure 1 and is described in detail in

succeeding subsections. During the program body proper, the NASTRAN Executive System controls the

step-by-step problem solution sequence.

1.2.2.1 Generation of the Initial File Allocation Tables

Two file allocation tables are maintained by the NASTRAN Executive System. One table defines

the files to Nhich data blocks generated during solution of the problem will be allocated. The

second table includes files to which permanent executive data blocks, such as the New Problem

Tape, the Old PrOblem Tape, the Plot Tape, and the User's Master File are assigned.

The New Problem Tape will contain those data blocks generated during the solution that are

necessary for restarting the problem at any point. The Old Problem Tape contains the data blocks

saved from some previous execution that may serve to bypass steps in the solution of the new

problem. The Plot Tape includes output data and plotting instructions in a form that will be

acceptec by an automatic plotter selected by the user. The User's Master File is a permanent

collection of usefui information, such as material properties, that may be used to generate input

data.

The generation of the file ~110cation tables is an operation that depends on the particular

computer model being used since direct interface with the operating system of the co~puter must be

made. The routine which accomplishes this function interrogates file tables that are located in

the nucleus of the computer's own resident operating system. Files which are avai,a~le for use

by the NASTRAN program are reserved and the unit numbers are stored i r; the NASTRAN fi 1e all ocati on
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tables. An indication of which units are physical tapes is noted. If the number of files avail

able is insufficient, an error message is generated and the run is aborted.

1.2.2.2 Analysis of the Executive Control Deck

The first purpose of executive control is to provide a level of regulation for the many

options within NASTRAN. At this level the executive distinguishes between the broad approaches to

problem solution, e.g., between a matrix abstraction approach by the analyst or a rigid format

approach accol'ding to problem class. Also at this level, the executive distinguishes between

several operational modes, e.g., a first attempt, a continuation, or a modification. Certain

other functions of a general nature are convenient to include with the executive control such as

problem identification, selection of a level of diagnostics, and the estimation of solution time.

The executive control deck includes cards which describe the nature and type of the solution

to be performed. These include an identification of the problem, an estimated time for solution

of the problem, a selection of an approach to the solution of the problem, a restart deck from a

previous run if the solution is to be restarted, an indication of any special diagnostic printout

to be made, and a specification of whether execution of the problem is to be completed in a single

run, or Whether execution will be stopped (check-pointed) at some intermediate step.

Each of the cards comprising the executive control deck is read and analyzed. Depending on

the card, information is either stored in various executive tables maintained in core storage or

written in a Control Table on the New Problem Tape for further processing during a later phase of

the preface.

1.2.2.3 Processing of the Case Control Deck

When the rigid format solution route is selected, further details of control are provided by

the 'Case Control' portion of the executive. In effect, the analyst can manipulate his problem

by means of entries he inserts in the Case Control. He can make choices amongst the sets of data

representing different physical situations which are allowed to be assembled in the Bulk Data

portion of the problem input. Here also the analyst can regulate his output. Fundamental to the

method of control in this section is the notion of sets. Boundary conditions, loading cases, and

output selections are controlled by set selection.

The case control deck includes cards that indicate the following options: selection of
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specific sets of data from the b~lk data deck (i.e., from the data deck that describes the details

of a problem), selection of printed or punched output, definition of subcases, and the definition

of plots to be made.

The case control deck is read and processed. Information defining data set selection, output

format selection and subcase definition is written jn the Case Control data block. Information

defining plot requests is written in the Plot Control data block.

If the problem is a restart, a comparison with the Case Control data block from the previous

run (stored on the Old Problem Tape) is made. Differences are noted in an executive restart

table.

1.2.2.4 Sorting of the Bulk Data

In NASTRAN the input to the mathematical operations performed in functional modules is pro

vided in the form of previously organized data blocks. The data blocks derive from two sources:

those that derive from the bulk input data and those that are generated as output from previous

functional modules. Those that derive from the bulk data are organized into data blocks by the.

IFP routine, but prior to the execution of iFP, XS0RT sorts the bulk data. Operation of the XS0RT

routine is influenced by the type of run. If the run is a cold start (that is. an initial sub·

mittal for a given job) the bulk data is read from the system input unit or the User's Master File.

is sorted, and is written on magnetic files in preparation for problem execution. If the analyst

wants to provide for a future restart, the SORT routine prepares a file on the New Problem Tape

which contains the sorted bulk data. If the run is a restart. the bulk ~ata is copied from the

Old Problem Tape with the addition of any changes from the system input unit.

An echo of the unsorted bulk data is given if requested. Similarly, the sorted bulk data is

echoed on request.

Since the collating sequence of alphanumeric characters varies from computer to computer, the

sort routine converts all characters to an internal code prior to sorting. Following the sort.

the characters are reconverted. In this way, the collating sequence is made computer independent.

The algorithm used by the sort ro~tine is biased toward the case where the data is in sort or

nearly in sort. Consequently, bulk data decks which are nearly in sort will be processed effi

ciently by the routine.
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The sorted bulk data is read from the New Problem Tape by the Input File Processor. Each of

the cards is checked for correctness of format. If any data errors are detected, a message is

written and a switch is set to terminate the run at the conclusion of the preface.

Processing of the bulk data cards depends on the type of information on the card. Each set

of data cards of the same type is written as one logical record in the data block to which the

card has been assigned.

1.2.2.5 General Problem Initialization

The general problem initialization is the heart of the preface. Its principal function is to

generate the Operation Sequence Control Array (0SCAR) which defines the sequence of operations for

an entire problem solution. The 0SCAR consists of a sequence of entries, with each entry contain

ing all of the information required to execute one step of the problem solution. The 0SCAR is

generated from information supplied by the user in the executive control deck.

It the problem is a restart, the restart dictionary (contained in the Control Table) and the

executive restart table are analyzed to determine which data blocks are needed to restart the

solution and which operations need to be executed to complete the solution.

To aid in efficient assignment of data blocks to files, two ordinals are computed and includ

ed with each data block in each entry of the 0SCAR. These ordinals are the 0SCAR sequence number

indicating when the data block is next used and the 0SCAR sequence number indicating when the data

block will be used for the last time.

When generation of the 0SCAR is complete, it is written on the P00L (an executive data

block). If the problem is a restart, data blocks needed for the current solution are copied from

the Old Problem Tape to the P00L, augmented by entries to provide for new current ~equirements.

1.2.3 Executive Operations During Problem Solution

1.2.3.1 Sequence Monitor

When the preface has been completed, solution of the problem is initiated. The solution is

controlled by the sequence monitor.

The sequence monitor reads an entry from the 0SCAR which defines one step in the problem

solution in terms of the operation to be performed, data blocks required for input, data blocks to
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be output, scratch (i.e., temporary) files required, and parameters. A status table is generated

which relates the names of data blocks required for operation to the position in the file alloca

tion table where information about the data block is contained. When the status table is complete

and the parameters required for the operation have been retrieved from the parameter storage

table, the appropriate functional module is called to execute the operation.

1.2.3.2 Segment File Allocation

The segment file allocator is the administrative manager of data blocks for NASTRAN. All

large modern computers have sufficient auxiliary storage to accommodate the needs of NASTRAN. The

number of separate files into which the storage can be divided is, however, severely limited on

most computers. In general, the number of data blocks required for solution of a problem far ex

ceeds the number of files available, so that the assignment of data blocks to files is a critical

operation for efficient execution of NASTRAN.

The segment file allocator is called whenever a data block is required for execution of an

operation but is not currently assigned to a file. When the segment file allocator is called, it

attempts to allocate files for as much of the problem solution as possible. This depends on the

type of problem, the number of files available, and the range of use of the data blocks.

The segment file allocator reads entries from the ~SCAR from the point of current operation

to the end of the problem solution. A table is assembled in which information about data blocks.

including their next use and their last use. is stored. Data blocks which are currently assigned

to files but are no longer required for problem solution are deleted. In certain cases. when the

range of use of a data block is large. it may not be possible to allocate a file to the data block

throughout its entire range of use. In this case, pooling of the data block into a single file

with other data blocks is required so that the file to which the data block was assigned may be

freed for another allocation. In general, those data blocks whose next use is furthest from the

current point are pooled.

When the segment file allocator has completed its task, a new file allocation table has been

generated. This table is used until the solution again reaches a point where a data block is

required to execute an operation but is not assigned to a file.
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1.2.3.3 Input/Output Operations

All input/output operations in NASTRAN (except reading data from the system input file or

writing data on the system output file) are controlled by a collection of executive routines

called GIN0 (General Input Output) which act as a buffer between the NASTRAN functional modules

and the operating system of the computer. This design feature eliminates computer dependent code

from the functional module programs which are, consequently, written exclusively in FORTRAN. The

use of computer dependent code for the selection of the operating system routines to accomplish

the actual input/output functions is isolated to a single routine within GIN0.

1.2.3.4 Other Executive Operations

Additional operations in support of a problem solution which are performed by the NASTRAN

Executive System include checkpoint, purge, equivalence and save.

The checkpoint routine copies data blocks required for problem restart onto the New Problem

Tape and makes appropriate entries in the restart dictionary.

The purge and equivalence routines change the status of data block entries in the file allo

cation table. They are called whenever the nature of a given problem requires less than the full

generality provided within NASTRAN. thereby permitting some computational steps to be bypassed.

The save routine stores the values of parameters in the parameter storage table where they

are retrieved for subsequent use by the sequence monitor.
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Generate Initial File Tables

Read and Analyze
Executive Control Deck

Process Case Control Deck

Sort Bulk Data I

Process Bulk Data

Perform General Problem
Initialization

Figure 1. Flow of operations during the preface.
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1.3 USER CONTROL OF PROBLEM EXECUTION 

All general purpose programs have formal procedures by which the user controls 

the calculations that are performed. In NASTRAN several modes of operation and a large 

number of options within each mode are provided to the user. A short discussion of these 

matters is presented here for completeness.  

During the solution of a problem, the NASTRAN executive system calls a sequence 

of functional modules that perform the actual calculations, as explained in the 

preceding section. Two general types of solution are provided: solution by Rigid Format 

according to a sequence of module calls built into the program; and solution according 

to a sequence of module calls generated by the user. The latter capability is provided 

in order to make the program's matrix routines available for general use and also to 

provide the sophisticated user with the means for solving structural problems with 

features not accounted for in any of the built-in module sequences. It is intended, 

however, that the great majority of structural problems will be solved via the rigid 

formats. 

There are, at present, a total of twelve rigid formats in NASTRAN with provision 

for adding an unlimited number in the future. Each corresponds to a particular type 

of solution or to a particular method of analysis, such as: Static Analysis, Buckling 

Analysis, Direct Transient Response, Modal Transient Response, etc. The five Rigid 

Formats associated with static analysis are described in Section 3.2. The seven Rigid 

Formats associated with dynamic analysis are described in Section 9.1. 

Each rigid format consists of two parts. The first is a sequence of instructions 

(including instructions for Executive operations as well as for Functional Module 

operations) that is stored in tables maintained by the Executive System. The second 

part is a set of restart tables that automatically modify the sequence of instructions 

to account for any changes in the input data when a restart is made after partial or 

complete execution of a problem. The restart tables can accommodate a change of rigid 

format such as occurs, for example, when vibration modes are re-quested for a structure 

that was previously analyzed statically. The restart tables are, as can be imagined, 

quite extensive and their generation constitutes a significant part of the effort 

expended in developing a rigid format. They are, however, one of the more important 

cost-saving features of NASTRAN. 
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Many options are available with each rigid format. One such option removes the 

possibility of branching back to previously executed functional modules, and it should, 

of course, be exercised only when it is known in advance that looping will not occur. 

This option permits the Executive System to discard files that would otherwise be 

saved. Other options define the sub-cases to be executed and the desired output formats, 

see Section 1.2.2.3. 

It is also possible for the user to modify a rigid format via the ALTER feature. 

Typical uses of the ALTER feature are to schedule an exit at an intermediate point in 

a solution for the purpose of checking intermediate output, to schedule the printing 

of a table or a matrix for diagnostic purposes, and to add or delete a functional module 

from the sequence of operating instructions. 

For more extensive modifications the user can write his/her own sequence of 

executive instructions. The system by which this is done is called DMAP (for Direct 

Matrix Abstraction Program). DMAP is a user-oriented programming language of macro 

instructions which, like FORTRAN, has many rules which must be followed to be 

interpretable by NASTRAN. DMAP is also used in the construction of rigid formats, which 

differ from user-generated sequences mainly in that restart tables are provided. 

The DMAP sequence itself consists of a series of statements consisting of 

Executive Operation instructions and Functional Module calls. Each statement contains 

the name of the instruction (or Functional Module), the names of the input data blocks, 

the names of the output data blocks, and the names and values of parameters. Typical 

examples of parameter usage are to indicate whether an operation is to be performed 

with single or double precision arithmetic, which mathematical method will be used (when 

there are options), or the desired format of the output. 

The names of some of the executive operations are BEGIN; CHKPNT (used when i t  

is desired to copy data blocks onto the Problem Tape in case an unscheduled restart 

is necessary); FILE (used to save an intermediate data block); REPT (used to provide 

looping capability); PURGE (used to prevent storage of data blocks); and END. 

The functional modules belong to one of the following categories: structural 

modules; matrix operations; utility modules; and user modules. The Structural Modules 

are the main subprograms of NASTRAN. Some examples of structural modules, taken from 

dynamic analysis, are: READ (Real 
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eigenvalue analysis); GKAM (Modal dynamic matrix assembler); TDR (Transient Dynamic 

Response); and DDR (Dynamic Data Recovery). The Matrix Operations (add, multiply, 

transpose, etc.) that are available to the user of NASTRAN are described in Section 

2. The Utility Modules are mainly concerned with the formats of output data. The 

User Modules are dummy modules that provide the user with the ability to write new 

functional capability that will automatically be recognized by the executive system. 

The usual methods of output for NASTRAN are the operating system print or punch 

files and the NASTRAN plot tapes. The printing of tables or matrices generated by 

NASTRAN is controlled by a group of Utility Modules. In many cases, it is desirable 

to save matrices and tables for use in restart operations. When using rigid formats, 

it is possible to save preselected tables and matrices by using the Checkpoint option. 

Checkpointed files are written on the New Problem Tape. It is also possible for the 

user to save selected matrices on tape by inserting one of the User Modules into the 

DMAP sequence by means of the ALTER option. 

The usual method of input for NASTRAN is the operating system card reader. When 

performing restarts, the New Problem Tape from a previous run is redesignated as 

the Old Problem Tape and used as an additional source of input. Tapes that have 

been prepared with User Modules on previous runs can also be used as additional 

input sources by inserting one of the input User Modules into the OMAP sequence 

by means of the ALTER option. 
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2.1 ELEMENTARY OPERATIONS

2.1.1 Introduction

The operations to be considered (matrix add, multiply, transpose, partition and merge) are

sufficiently elementary that the formal mathematical procedures which accomplish them may safely

be assumed to be well-known to all readers of the Theoretical Manual. What is not likely to be

known is the corresponding sequence of physical data manipulations that are performed by the com

puter. Such matters are not usually considered to be required reading for users or for others

with dn interest in "the theory"; they are, accordingly, buried in the programmers' manual as ref

erence material for maintenance and modification of the program. This practice is not followed

here because the success or failure of NASTRAN depends, to a far greater extent than for smaller

programs, on the efficiency of the subroutines that perform the basic matrix operations. All

matrix operations in NASTRAN are performed by specially designed subrou~ines.

Questions regarding accuracy, which is an equally important aspect of numerical calculation,

fall into two categories: those that relate to analytical approximations, such as occur in

iterative solutions, and those that relate to simple round-off error accumulation. Elementary

matrix operations do not involve analytical approximations. Nor do the triangular decomposition

of matrices and the solution of simultaneous linear equations, described in Sections 2.2 and 2.3.

The errors that occur in eigenvalue extraction and in numerical integration due to analytical

approximation are discussed in the sections dealing with those topics.

Trigonometric and other elementary irrational functions are'evaluated by library subroutines

provided by the manufacturer of the computer, who guarantees them to be accurate.

The effects of round-off error accumulation in structural analysis are treated in Section

15.1, where reasons are presented for adopting double precision arithmetic (54 or more bits) in

critical calculations. No other measures are employed in NASTRAN for combating round-off error

accumulation. The usual measures of this sort (e.g., rounding rather than truncating arithmetic

results, or accumulating sums by starting with the smallest numbers) are only mildly effective and

have the disadvantages that they require machine language coding, or that they substantially

increase running time, or both.

From the viewpoint of data processing, the computer has two main parts: a central processor

that contains an arithmetic unit and a randomly accessible memory device (core storage) with very
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short access time; and a collection of peripheral storage devices (tapes, disks and/or drums) with

high capacity but relatively long access times. In general the data contained on the peripheral

storage devices can be accessed effectively by the central processor only in relatively large

blocks, due to the time required to locate the first word in any record. Thus, from the viewpoint

of matrix algebra, data should be sequentially read from and written on peripheral storage devices

as one or two-dimensional arrays. An important convention employed in NASTRAN is that all matrices

are stored on peripheral devices by columns. This fact is important to the discussion of the mat

rix multiply and transposition subroutines described below.

It is assumed, in the design of NASTRAN, tnat a typical matrix is so large that it cannot all

be held in (~igh-speed) core storage at anyone time, even if it is a sparse matrix that is ex

pressed in packed form (i .e., by means of its nonzero elements and their row-column indices). In

such situations, the computing time tends to be dominated by the relatively slow rate of data

transfer from peripheral storage to core storage, and optimum computing strategies are designed to

minimize the number of data transfers.

The time to transfer a sparse matrix from peripheral storage to the central processor will be

decreased if only the nonzero terms are stored. The matrix packing routine employed in NASTRAN

works in the following manner. The record for each column begins with a three-word header. This

1S followed by an integer (fixed-point number) describing the position (row index) of the first

nonzero term and by a floating point number describing the value of the first nonzero term. If

the following term is also nonzero, only its value is stored. If, on the other hand, the value of

the following term is zero, the next entry will be an integer describing the position of the next

nonzero term, followed by its value, etc. A data record describing a typical column will appe,ar

as follows:

I, I, I. 2, X, X, 8, X, X, X, 17, X, 27, X, E.

The three T's are the header for the column. The XiS are the numerical values of terms, and E in

dicates the end of the record. The nonzero terms in the column are the 2nd, 3rd. 8th. 9th, 10th.

17th, and 27th. Once the record is transferred to core storage. it may, if required, be fully ex

panded by addition of the zero terms. Note that the packed record contains no redundant informa

tion.
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2.1.2 Matrix Multiplication

The multiplication of large matrices can be a time consuming operation. If the matrices are

full, then the time to multiply two matrices of order nxm and mxr is proportional to nmr. If the

matrices are sparse, but no attempt is made to take advantage of the sparsity, the running time

will be the same as if the matrices were full.

Most of the matrices used in structural analysis are initially ve~y soarse. They may, how

ever, become relatively dense as the result of transformations. Consequently, the NASTRAN pro

gram requires a matrix multiplication routine that works well for sparse matrices as well as for

full matrices.

The matrix multiplication routine in NASTRAN provides two alternative methods of matrix mul

tiplication. Both of the methods take advantage of sparsity in different ways. The second method

might be described as a truly sparse matrix method in that only the nonzero terms in either the

left-hand or the right-hand matrices are processed. The method which results in the minimum exe-

cution time is automatically selected by the routine.

For the discussion which follows, the general multiply-add form, [0] = [A][B]+[C], is assumed.

In Method One. core stcrage is allocated to hold as many columns of [8] and [0] in unpacked

form as possible (columns of [C] being read initially into the storage space for [0]). The [A]

matrix is read interpretively one nonzero element at a time. For each nonzero elemen~ in [A]. all

combinatorial terms for columns of [8] currently in core ~re c~puted an4 accumulated in the stor

age for [0]. Let ail be a nonzero element of [A] and bij be an element of [8]. The formula for

an element of [D] is

where j runs across the columns of Is] and [~currently in core.

(1)

At the completion of one complete

pass of the IAI matrix through the central processor. the product is completed to the extent of the

columns ofl~ currently in core. The process is repeated until the ~Imatrix is exhausted. It may

be seen that the number of passes of thelAlmatrix equals the total number of columns of ~I divided

by the number of columns oflBI that can be held in core at one time. Method One is effective if

the number of columns of [8] is not large. e.g., when [B] is a small number of load vectors.

Method One is also more effective than Method Two when [B] is a dense matrix.
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In Method Two, only a single term of the [8] matrix is require.j in main memory at anyone time

One full column in unpacked form of the partially formed [D] matrix is also stored in core at the

same time. The remaining storage is allocated to as many columns of [A] in packed form as can be

stored, i.e., only nonzero terms and corresponding row positions are stored. For the columns of

[A] in storage at one time, the [B] matrix is passed through the central processor, column by

column, forming partial answers on each pass.

Each column of [B] forms partial answers which are added to the corresponding column of [0].

As may be seen from Equation 1. only the elements in the rows of b£j corresponding to the columns

of ai £ currently held in core are used. After all columns of [B] have been processed once, new

columns of [A] are placed in core and the [8] matrix is passed through again. The process is

repeated until all the columns of [A] have been used.

In Method Two the [A] matrix is passed through core once and the number of passes of the [B]

matrix equals the total number of columns of [A] divided by the number of columns of [A] that can

be held in core in packed form at one time. The number of passes of the [8] matrix is the con

trolling factor in determining computing time. If the [A] matrix is large and sparse, the numb~r of

passes of the [8] matrix in Method Two will typically be less than five. In Method One, on the

other hand, the number of passes of the [A] matrix wi;l be much larger if the number of columns

of [8] is large. The reason is that, in Method One, the columns of the [B] matrix are not stored

in packed form, whereas, in Method Two, the columns of the [AJ matrix are stored in packed form.

Both methods include variations for premultiplication of a matrix by the transpose of another

matrix, [D] ,. [A]T[B]+[C], where [AJ is stored by columns. This is done in order to avoid trans

posing the [AJ matrix, which is by no means trivial (see Section 2.1.4). In fact, the secund

matrix multiply method provides an efficient means for matrix transposition of sparse matrices.

by setting [B] ,. [I] and [C] ,. O.

2.1.3 Matrix Addition

The addition routine computes the general matrix sum,

[C] ,. a[A] + b[B] (2)

where a and b are scalars and [A] and [8] matrices. Special provision is made for the case b =-0,

to allow scalar multiplication. No compatibility of types {such as single or double precision,
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real or complex numbers) between a, b, [A], and [B] is required. The nonzero terms of [A] and [B]

are read interpretively one nonzero element at a time. The appropriate sum is formed into [C] and

immediately transferred to peripheral storage. The required amount of core storage is very small.

2.1.4 Matrix Transposition

The transposition of large matrices is a distressingly awkward operation. The optimum strat

egy depends on the location of the nonzero terms, the density of the matrix, and its size. The

NASTRAN algorithm which is used in the transposition of dense matrices is described below. Sparse

matrices are transposed by the matrix multiply subroutine (see above).

If the matrix order is i x j and if only a fraction of the matrix may be held in core at one

time, the usual technique is to read the whole matrix from a peripheral storage device, saving, in

core, the elements from the first R rows of the matrix; these elements are then written row by row

on a peripheral storage device. The operation is then repeated until all i rows have been rewrit

ten. The matri x may then be 5a id to be "transposed" because the segments of a sequenti ally stored

two-dimensional array are treated by NASTRAN as the columns of a matrix. The number of times that

the matrix must be transferred from peripheral storage to high-speed core is T = i/R. The time

for data transfer (1/0 time) will be equivalent to that taken to input the full matrix T times and

to output it once.

If the matrices are very large, matrix partitioning may be used effectively to reduce the

computer time. The matrix is first partitioned by rows and the partitions are then transposed as

shown below.

[A] = - A T A T A T
1 2 3 = ( 3)

The technique is as follows. The matrix ~J is read into core one column at a time, and the ele

ments in the first P rows of each column are extracted and placed in a peripheral storage file.

The operation is repeated, reading the elements in the next P rows by columns into a second peri

pheral storage file, etc. Thus, since the {A] matrix has i rows, the I/~ time for partitioning is

equivalent to that for i/P reads and one write of the complete matrix. Next the~~ matrix is
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transposed by the first-described method which, since[AUhas P rows, requires P/R reads and one

write. Because the columns of [At are also columns of [Ar, the transposition is complete when all

of the partitions have been transposed. The Ii~ time for transposing the partitions is equival

ent to P/R reads and one write of the complete [AJ matrix. Assuming that reads and writes take

the same time, the total time is proportional to the parameter

r = (4)

The number of rows in each partition, P, may be freely selected. The minimum value of the time

oarameter obtained when ~T/ap = 0, is

'min 2(1 + f~)

and occurs when P - R IT"

The time for the second method is less than that for the first when

2( 1 + IT') < T + 1

(5)

(6)

(7)

whi ch 1s sa ti sfj ed when T > 6. The second method is autowati ca 11y selected by the program when

this condition is satisfied.

2.1.5 Matrix Partitioning and Merging

In.structural analysis, vectors describing the system variables are frequently separated into

subsets which are then treated differently. For example, in the displacement method matrix parti

tioning may be applied to the displacement vector {Uf }, resulting in two subsets: {uo}' degrees ot

of freedom removed by partitioning, and {Uaf, degrees of freedom not removed (see Section 3.5.3),

All of the arrays associated with {uf }, such as the load vector, {P
f
}, and the. stiffness matrix,

[KffJ, mils t also be partiti oned. The parti ti oni ng operati ons are forma 11y i odi cated as fo 11 OWS:

(B)

(9)
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Later in the analysis it will be necessary to recombine the elements of {uo} and {ua}. This

operation, called the "merge" operation, is formally indicated by

( 10)

The essential feature of the operation is that the original order of the members of {uf} must be

restored. Order must also be maintained during the partition operation.

The partition and merge operations are accomplished in the program with the aid of USET, an

array that describes the membership of each degree of freedorl in each of the defined vector sets.

There are approximately fifteen such sets (see Section 3.3). One word of USET is assigned to each

degree of freedom. One binary bit in each word of USET corresponds to a different vector set. A

bit is set equal to unity if the degree of freedom is a member of the corresponding vector set.

USET may, consequently, be regarded as a table with marks in appropriate row-column intersections

as shown below.

ug -- uf u u --0 a

,I / /

/ / /

vf / "
f

/ / /

/ / /

/ •/ /

/
/ / /v

/

/ / /

/

/ / /

In partitioning [Kff ] (Equation 9) for example, USET is called into core storage along with

the first column of [Kff]. USET is scanned and the ordinals of the nonzero bits in the positions

corresponding to uf ' uo' and ua are noted and copied onto separate lists. The lists are then used

to separate the elements in the first (and succeeding) column(s) of [Kff ] into [K
aa

] and [Kao]T,
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which are then read out of core onto separate files. In the merge operation (Equation 101, the

lists are scanned to determine whether a number from {ua} or a number from {uoJ will be the next

number to be copied into {ufi.
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2.2 TRIANGULAR DECOMPOSITION

The factoring of a matrix into upper and lower triangular forms is a central feature of

structural analysis as performed with the NASTRAN program. For large problems a substantial

fraction of the total computing time is associated with triangular decompositions. The NAST~AN

program requires a decomposition routine that works well for both full and sparse matrices.

Matrices encountered in structural analysis, including structural dynamics, may be either real or

complex.

Most of the matrices used in structural analysis are initially very sparse; however, they

tend to fill in various degrees as the problem solution proceeds. Under some conditions, matrix

multiplications will fill a matrix prior to the beginning of the triangular decomposition. Under

other conditions an initially sparse matrix may completely fill during the triangular decomposi-

tion. However, for many matrices used in structural analysis, the creation of nonzero terms

during the decomposition is restricted to a relatively narrow band along the principal diagonal

that completely fills and to isolated rows or columns that begin to fill at some point in the

decompositon. In order to handle all of these situations effectively, the decomposition routines

treat all matrices as partially banded, that is, terms clustered near the diagonal are treated

inside a band of constant width, and scattered terms outside this band are treated separately.

This procedure efficiently treats the general partially banded case as well as the limiting case

of a full matrix or of a simple band matrix.

2.2.1 Triangular Decomposition of Symmetrical Matrices

It is well known(l) that any square matrix [AJ, having nonzero leading minors. can be ex

pressed in the form [AJ = [LJ[O][U], where [L] and [UJ are unit-lower and unit-upper triangular

matrices respectively, and [0] is a diagonal matrix. The matrix [0] can be incorporated entirely

within either [L] or [UJ or part with each. The different ways of incorporating [OJ. combined

with different orders of operations in determining the terms of [L] and [U]. has given use to many

named procedures for performing triangular decompositions.

(l) George Forsythe and Cleve B. Moler "Computer Solution of Linear Algebraic Systems",
Prentice-Hall, Englewood Cliffs N. J .• p 27.
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The following discussion will be based on the equation

[A] = [L][UJ

whereO-J is a unit lower triangle. Equation 1 may be expanded as fol1ows:

(1)

all a12 a13l

r:21

0 ol un u12 u13

a21 a22 a23 I 0 0 U22 u23 (2)

a31 a32 a33 I L231 232 0 0 u33
~ ---J

For symmetric, positive definite matrices, all leading minors are nonsingular, and hence no

pivoting is necessary to complete the triangular decompositon. For these conditions, the upper

and lower triangular elements are related as follows:

(3)

The elements of the upper triangle may be computed by the following recursion formula

i - 1
I" ,

a'"J" - L ',ok ukik=l J
(4)

Now k < i ~ j so that only previously computed results occur on the right hand side of Equation

4 if the elements uij are computed in order starting with the first row. If a matrix is not pos

itive definite, pivoting will be necessary to complete the decomposition, and hence an unsymme

tric routine must be used.

Examination of the inner products of Equation 4 reveals tnat if [A] is a symmetrical band

matrix so that

o for li-jl <: B (5 )

then = 0 for j-i <:. B , (6)

where B is the semiband of the matrix [A]. Thus the band structure of the original matrix is

preserved in the triangular factors.
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With regard to scattered tenns outside the band, if for any particular column c

where r is the row number, then

a. = 0
1 C

o

for i < r

for < r

(7)

(8)

Thus, no nonzero tenns will appear in any column of ~j until a nonzero tenn appears in ~l. The

appearat1ce of the first nonzero tenn in [AJ outside the band defines an "active column". All

succeeding elements 1n the active column of [uj will be nonzero. Finally as the decomposltion pro

ceeds the active column intersects the extremity of the band and merges with the band.

The general procedure for a symmetrical triangular decompositon will be discussed with

reference to Figure 1, which shows a symmetrical partially banded matrix of order Nand semi band

S, with several nonzero tenns outside the band. Initial nonzero terms are indicated by XiS, with

0'5 incicating nonzero tenns created outside the band as the decomposition proceeds. The exist-

ence of initial zero terms inside the band is ignored, as in general, these terms will become

nonzero as the decomposition proceeds.

If there is sufficient core storage to hold 8 rows of terms as indicated inside the solid

triangle in the upper part of Figure 1, along with the associated active coiumn terms, the tri

angular decomposition can be completed with a single pass through the matrix. When there is

ins uffi ci ent core to hold Brows, provi s i on is made to hold all of the terms associ ated with the

active columns and R rows of the band terms in core.

The decomposition proceeds by reading R rows of band terms and 8 rows of active column tenTIS

into core. The inner products associated with the pivotal row (first row in the solid triangle)

are determined for R rows in the band and B rows of active column terms. The results for the

band tenns are stored in the same block of core originally occupied by the given terms inside the

band, and the results for the active column terms are stored in a special block of core reserved

for this purpose. This is followed by reading B-R rows inside the solid triangle, one at a time,

and detenn1ning the inner products associated with the pivotal row. These intermediate results

are stored on an external storage device. When all B rows have been completed, the computed terms

in the pivotal row (which is the first row of [UD are no longer needed, and can be stored on an

external storage device.
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A preliminary pass is made over the original matrix in order to create a table of bandwidths

and the associated number of active columns. If the bandwidth is made larger, some of the shorter

active columns will disappear inside the band. The combination of bandwidth and active columns

that results in minimum computing time is selected for use in the performance of the triangular

decomposition. Since the program selects the minimum computing time based on the ordering of the

matrix presented, the user can shorten the computing time by ordering the matrix in the most

favorable manner. The general rule, of course, is to minimize both the bandwidth and the maximum

number of active columns. 
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. h . b F act,'ve columns Th,'s means that there must be atwhere B ~ R ~ 2, and C 1S t e max' mum num er o. .

least sufficient storage for 2 rows of terms inside the band and B rows of active column terms.

The computing time to perform any calculation may be estimated by counting the number of

elementary operations that it involves and assigning experimentally determined values of time to

the various types of elementary operations. In the case of triangular decomposition by the method

described above, the estimated time is

(10)

where T1 is the time required to process N-B rO~/s in thE band, T2 is the time required to process

I~-B rows of active columns, and T3 is the time required to process B rows in the final triangle.

+ ~(B - R)2 + PBJ (11 )

1

J
PB2

+ WS + -2-

(N - B) ["1C(BC + ~2) + PC J '

~ _ (T _ M) [(2w)f
6 ., B 6

(12 )

(13 )

where MB is the aritr.metic time required to process one term inside the band, Me is the arith

metic time required to process one active column term, I is the time required to store and

retrieve one term of intenYoediate results on a secondary storage device, P is the time required

to store one term of the final results on a secondary storage device, and S is the number of rows

in the final triangle that must be completed before the remaining portion of the triangle will

B2

fjt in core. S = B - ~ , unless R = B, then S = 0 and Wis set equal to ~ in Equation 13.

The sequence of events in selecting the bandwidth and number of active columns can be

summarized as follows:

1. Make a preliminary pass over the matrix to prepare a table of bandwidths and associated
acti ve co1umns .

2. For the working storage available, compute R using Equation 9.

3. Use Equation 10 to compute the decompositon time for each unique pai r of bandwidths and
acti ve co1umns .

4. Select the minimum decompositon time along with the associated values of B, C and R.
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2.2.2 Triangular Decomposition of Unsymmetrical Matrices

The procedures for the triangular decomposition of unsymmetrical partially banded matrices

are similar to those used for symmetrical matrices. The lack of symmetry means that the upper

and lower triangular factors are not related, and that the widths of the upper and lower bands

(which replace the symmetrical semi-bands of the symmetrical matrix) may be different. However,

the band structure of the original matrix will be maintained in the triangular factors.

Althcugn the lack of symmetry means that the pattern of scattered terms outside the upper

band may be different than the pattern outside the lower band, it still remains true that no non

zero terms will appear in any column of the upper triangular factor until a nonzero term appear~

in the same column of the original matrix. Likewise, no nonzero terms will appear in any row

of the lower triangular factor until a nonzero term appears in the same row of the original

matrix. Hence the partially banded nature of the matrix is maintained after the completion of

the triangular decompositon.

The lack of any assurance that all leading minors are nonsingular requires that pivoting

(i.e., interchange of rows) be used to maintain the numerical stability of the triangular decompo

sition. Pivoting is restricted to take place within the lower band. This will increase the band

width of the upper triangular factor by the width of the lower band, but will not otherwise affect

the partially banded character of the triangular factors.

The general procedure for an unsymmetrical decomposition will be discussed with reference to

Figure 2, which shows an unsymmetrical partially banded matrix of order"N. upper bandwidth B,

and lower bandwidth B, with several nonzero terms outside the bands. Initial nonzero terms

are indicated by x's, with 0'5 indicating nonzero terms created outside the original bands_as

the decomposition proceeds. The 0'5 within the expanded upper band Bindicate the maximum number

of nonzero terms that can be created by the pivoting. The existence of initial zero terms inside

the lower band Band the expanded upper band B + Bis ignored as, in general, these terms will

become nonzero as the decomposition proceeds.

If there is sufficient core storage to hold B + B columns of the lower triangular factor, as

indicated inside the solid parallelogram of Figure 2, along with the associated active column

and active row terms, the triangular decomposition can be completed with a single pass through

the matrix. Otherwise secondary storage must be used for intermediate results and provision is
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made in main storage to hold R columns of the lower triangular factor, a single column of the

upper triangular factor, and the current active columns and active rows.

The decomposition begins by reading the original matrix one column at a time, pivoting the

largest term in absolute value within the lower band to the diagonal position, and determining

tne inner products for the current column. including the active row terms. The portion of the

column in the lower triangular factor. including active row terms. is retained in working storage.

The portion of the column in the upper triangular factor within the expanded upper band is com

plete and no longer needed; hence it can be written on a secondary storage device. This contin

ues until R columns have been processed. At this point the procedure is changed only to the

extent that the portion of the current column within the lower band is temporarily stored on a

secondary device.

The decomposition continues until B + Bcolumns have been processed. At this point. the

first colurnn of the lower triangular factor, including the active row terms, is no longer needed

and can be written on a secondary storage device. This releases B spaces in working storage.

This procedure continues until the decomposition is completed.

The active column terms are transposed prior to beginning the decomposition, so they are

available by rows and can be read into main storage as needed. If an active column term exists in

the i th row, it is stored along with the i + B column of the upper triangular factor.

A preliminary pass is made over the original matrix in order to locate the extreme non-

zero terms for each row in the lower triangle and each column in the ~pper triangle. The maximum

number of active columns is determined by counting the maximum number of intersections for any

row with columns defined by drawing lines from the most extreme nonzero term in the upper tri

angle to the outside edge of the upper band. The maximum number of active rows is determined by

counting the maximum number of. intersections for any column with rows defined by drawing lines

from the most extreme nonzero term in the lower triangle to the outside edge of the upper band.

An examination of the matrix shown in Figure 2 reveals that the maximum number of active columns

is 2 even though the total number of nonzero columns outside the upper band is 3. The lower

triangle contains 3 active rows and 4 nonzero rows outside the lower band.

As with the symmetrical decomposition. the routine selects the bandwidths that give the

minimum computing time based on the ordering of the matrix presented. Proper sequencing is

similar to that used for symmetrical matrices.
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ihe computing time will again be a function of the working storage available for the

execution of the routine. Working storage consists of space for R columns of terms inside the

band for the lower triangular factor, B + B spaces for the current column of the upper triangular

factor, BC spaces for active column terms, (8 + B)C spaces for active row terms, CC spaces for

interaction of active row and active column terms, and B + B spaces for the permutation matrix.

This results in werking storage as follows:

W = 8R + 28 + 2B + CB + C(B+B) + cE , (14 )

where R ~ " R $ B + 8, R $ N, C is the maximum number of active columns, and Cis the maximum

number of active rows.

The computing time to perform an unsymmetrical triangular decomposition is:

(15 )

where T, is the time required to process the first N - B - 28 columns of terms inside the upper

and lower bands, T3 is the time required to process the last a columns of terms inside the bands.

and T2 is the time required to process the remaining intermediate B + Bcolumns of terms inside

the bands. T4 is the time required to process the active row and active column terms.

(16 )

where MB is the arithmetic time required to process one term inside the bands, I is the time

required to store and retrieve one term inside the lower band, and P is the time required to

store one term of the final result on a secondary storage device. If N > B + 2B, then

K, = N - B - 2B. If N~ B + 2B, then K, = O.

(17)

If N ~ B + 2S, then K2 = K3 = B + B
unless N < B + a, then K3 = N.

If N < B + 28, then Kz = N - 8 and K3 = B + B,

(18)
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If N~ B + 2B, then K4
N < B + 2B, then K4 = N

B + B

TRIANGULAR DECOMPOSITION

3 -Rand K5 = B + 2 B, unless B > R, then K4
N, unless N - R > B, then K4 = B.

If

T4 = {N - B)[MC(BC + Be + BC +.CC} + PIC + cTI, (19)

where MC is the arithmetic time required to process one active row or active column term.

If N is assumed large compared to both Band Band the final storage terms are neglected,

Equation 15 can be simplified as follows:

(20)

This simplified equation is used for making timing calculations in selecting the optimum band

widths and active elements.

The sequence of events in selecting the bandwidths and active elements outside the bands

may be summarized as follows:

1. Locate extreme nonzero terms in each column for the upper triangle and in each row of
the lower triangle.

2. Prepare a table of unique pairs of upper bands and active columns.

3. For the working storage available, compute R using Equation 14.

4. Assuming B =Band C =C. and using Equation 20 determine the upper bandwidth and the
associated number of active columns that result in minimum computer time to perform the
triangular decomposition.

5. Using the previously determined upper band and active columns, determine the lower
bandwidth and the associated number of active rows that re~ult in minimum computer time
to perform the triangular decomposition according to Equations 14 and 20.

6. Select the values of the bandwidths and active elements that result in minimum time to
perform the trangular decomposition and recalculate the time using Equation 15. This
more accurate time estimate is needed because decisions are made by modules using the
decomposition routines that are based on the estimated running time.

The complex decomposition routine is the same as the real unsymmetric routine, except that

twice as much storage is needed for complex numbers and the real arithmetic is replaced with

complex arithmetic.
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x X X X X
R

X X X X I X 0 X
I

B 0 X X X I X 0 0 0
---- --;

B-R Q)x X I X X 0 X

Q) X I X X X a N-BI
Q) I X x X X 0

.... I
'--J 0 X X X X 0 X

l

(8) X X X X 0 0 I
,

N
Sym.

CD -1
X X X X 0

X X X X

S x X x
Is., x"

X'lJB-S CD .

Figure 1. Symmetrical partially banded matrix.
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-
B B-, 1- 91

CD x x x 0 0 0 x

i[ x CD x x x 0 0 0 0 x

CD x x x 0 0 0 0 0

x @ x x x 0 0 0 x

x x x x x 0 0 0 0

x x 0 0 0

x x x 0 0 0

I- 0 x x x 0 0 0 X N

X 0 0 x x x 0 0 0 0

x x 0 x x x 0 0 0

x 0 0 x 0 0 0 x x x CD x x x 0 0

x x x CD x x x 0

x x x CD x x x
x 0 x x x 00 x x

x x x CD x
x x x ®

Figure 2. Unsyrrunetr;cal partially banded matrix.
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2.3 SOLUTION OF [A]{x} = {b}

The solution of the equation

[A]{x} = {b} (1)

is accomplished using the results of the decomposition procedure described in Section 2.2.

Replacing [A] by its triangular factors, Equation 1 becomes

[L][U]{x} = {b}

where [L] is a lower unit triangle and [U] is an upper triangle.

Defi ne

{y} = [U]{x}

Then, substituting ,into Equation 2,

[L]{y} = {b}

(2)

(3)

(4)

The solution of Equation 4 for {y} is called the forward pass, and the subsequent solution of

Equation 3 for {x} is called the backward pass.

In the solution algorithm, Yl is evaluated from the leading element of [L], and the first

column of [L] is multiplied by Yl and transferred to the right hand side of Equation 4. The pro

cedure is repeated for the second and succeeding columns of [L] until all elements of {y} have

been evaluated. The algorithm for obtaining {x} is similar except that the columns of [U] are

required in reverse order. Multiple {b} vectors can be handled simultaneously up to the limit of

the working space available in main memory. The same general procedures are used for both sym

metric and unsymmetric matrices.

The forward pass requires the reading of both the right-hand vectors and the lower triangular

factor from secondary storage devices. Each term of the lower triangular factor is used only once;

thus if there are a small number of right-hand vectors, the computing time for the forward pass is

dominated by the time required to read th~ lower triangular factor from secondary storage.

The backward pass is accomplished in two steps. First, the upper triangular factor is read

backward and written fO~Nard on a separate file so that the last column of [U] appears first. In
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the case of symmetric matrices, the actual file read backward is the lower triangular factor, and

the file written forward is renamed as the upper triangular factor. This is part of the triangular

decomposition routine and takes place immediately after the completion of the decomposition. The

reason for this preliminary operation is that all NASTRAN files are sequential, and since it takes

several times as long to read a sequential file backward as forward, it is desirable to execute

the backwa rd read on ly once, even though the tri angul ar factors may be used severa1 till]es. Thi s

allows substantial time savings when making restarts and When multiple right-hand vectors cannot

be held in main memory. The second step of the backward pass consists of solving Equation 3 for

x. It is made a part of the equation solution routine and, as in the case of the forward pass,

the computer time often is dominated by the time required to read the upper triangular factor

from secondary storage.

Following the determination of the solution vectors, a residual vector is determined for each

solution vector as follows:

{ob} = {b} - [A]{x} (4)

The residual vector is used to calculate the following error ratio which ;s printed with the out-

put.

e: = (5)

The magnitude of this error ratio gives an indication of the numerical accuracy of the solution

vectors. The computer time required to calculate this error ratio is on)y a small fraction of

the time required to determine the solution vector.
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3. 1 I NTRODUCTI ON

From a theoretical viewpoint, the formulation of a static structural problem for solution by

the displacement method is completely described by the matrix equation

[K]{u} = {P}. (1)

As a matte~ of practical calculatlcn, there is rather more to the problem than this simple

formula would imply, since it is necessary to generate the stiffness matrix [K] and the load vec

tor {P} from the available information about the structure, and to calculate stresses and other

quantities of interest from the independent displacement v~ctor, {u}. In the early days of com

puter-aided analysis these tasks were left to the analyst and the computer busied ~tself with

ootaini~g the solution to Equation 1. It was soon discovered that, for most practical problems,

the computer had only partly unburdened the user and that larger savings·of time and cost could

be achieved if the computer teak over the major share of input data preparation and output data

processing. Automatic performance of these additional tasks rgquires that a particular approach

to structural analysis be selected and incorporated into the program..

NASTRAN emboaies a lumped element approacn, i.e., the distributed physical properties of a

structure are represented by a model consisting of a finite number of idealized substructures or

elements that are interconnected at a finite number of points. Ali input and output data per

tain to the idealized structural model.

The idealized structural model in NASTRAN consists of "grid points" (G) to which "loads"

(P) 'are appl ied, and at which degrees of freedom are defined, and "e-lements" (E) that are connec

ted between the points, as shown in Figure 1. Two general types of grid points are employed in

static analysis. They are:

1. Geometric grid point .- a point in three-dimensional space at which three components of

displacement and three components of rotation are defined. The coordinates of each grid

point are specified by the user. Components of displacement and rotation can be elim~

nated as degrees of freedom by means of "single-point constraints".

2. Scalar point - a point in vector space at which one degree of freedom is defined. A

geometric grid point contains from one to six scalar points. Scalar points may exist

that are not associated with grid points. Such points can be coupled to geometric grid

points by means of scalar structural elements and by constraint relationships.
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The structural element is a convenient localizing concept for specifying many of the proper-

ties of the structure, including material properties, mass distribution and some types of applied

loads. In static analysis by the displacement method, stiffness properties are lnput exclusively

by means of structural elements. Mass properties (used in the generation of gravity and inertia

loads) are input either as properties of structural elements or as properties of grid points, In

dynamic analysis mass, damping, and stiffness properties may be input either as the ~roperties of

structural elements or as the properties of grid points,

The structural elements are described in detail in Section 5 of the Theoretical Manual,

There are four general classes of structural elements as fo1101'!5:

1. Hetric elements which are connected between geometric grid points. Examoles include rod,

plate and shell elements.

2. Scalar (or zero-dimensional) elements which are connected between pairs of scalar points,

or bet\1een one scalar point and "ground". Note tha~, since each geometric grid point

contains a number of scalar points corresponding to specific components of motion, sca-

lar elements can be connected between selected components of motion at geometric grid

points.

3. General elements, whose properties are defined in terms of deflection influence coeffi-

cients (i.e., compliance matrices), and which may be interconnected between any number of

geometric and scalar grid points. An important application of general elements is the

representation of large pieces of structure by means of test data.

4. Constraint Elements (or Constraints). The existence of a constr~int element implies a

linear relationship among the degrees of freedom to which it is attached of the form

(2)

where Ug are degrees of freedom and Yc is an enforced displacement. A linear relation

ship among the forces of constraint is also imolied, s'nce it is required that the forces

of constraint do no work.

Constraint elements are employed for the following purposes:

a. To introduce enforced displacements.

b. To enforce zero motion in specified directions at points of reaction.
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c. To simulate very stiff (rigid) structural members.

d. To describe part of a structure by experimentally determined vibration mcdes. (The

matrix of eigenvectors expresses a relationship of constraint betxeen physical and

modal coordinates.)

e. To generate nonstandard structural elements by combining scalar structural elements

and constraints.

The constraint concept is important for the displacement method in order to eliminate

ill-conditioning generated oy very stiff members. Two types of constraint elements are

provided: single-point constraints. wherein Equation 2 includes only a single term on

the ~eft hand side; and multi-point constraints wherein Equation 2 includes more than

one term. The main reason for th~ distinction is that due to the simplicity of single

point constraints. they are processed separately in the program.

Solution of a linear static structural problem by the displacement method requires a set of

preliminary operations which reduce the input data to the matrix form given in Equation 1. Among

these operations are the elimination of displacement components that are declared to be dependent

oy virtue of constraints and the transfer of all applied loads to the .indecendent displacement

c~mponents.

As input data in static analysis, the loads are specified in a variety of ways including:

1. Concentrated loads at geometric and scalar grid points.

2. Pressure loads on two-dimensional structural elements.

3. Indirectly, by means of the mass and thermal expan~ion properties of structural elements.

Enforced deformations are also reduced to a set of equivalent loads on the independent dis-

placement components. See Section 3.6.1.

Once Equation 1 has been formed it is solved for each specific loading condition. Stresses

in the structura: elements and other desired results are then obtained from {u} by a sat of data

recovery operations.
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Figure 1. Topology of the idealized structural model.

3.1-4



STATIC ANALYSIS BY THE DISPLACE}1ENT METHOD

3.2 GENERAL PROBLEM FLOW

As has been explained in Section 1 (Program Organization), NASTRAN consists of a number of

subprograms, or modules, that are executed according to a sequence of macro-instructions that is

controlled oy the Executive System. A ~umber of such sequences, called Rigid Formats, are per

manently stored in. the program and can be selected by means of control cards. Each rigid format

corresponds to a particular type of s~ructural analysis. The user may, in addition, devise his

own sequence of module calls (referred to as a DMAP sequence) for problems that do not conform to

one of the available rigid formats.

The following rigid formats are currently available for the solution of static problems by

the displacement method:

1. (Basicr Static Analysis

2. Static Analysis with Inertia Relief

4. Static Analysis with Differential Stiffness

5. Buckling

6. Piecewise Linear Analysis.

Figure 1 shows a simplified flow diagram for Ba~ic Static ~nalysis. Eacn block in the flow

diagram represents a number of program modules. The actual number of modules called is aporoxi

mately equal to thirty. The functions indicated in Figure 1 are described in succeeding subsec

tions of the Theoretical Manual. It suffices at present to indicate the general nature of the

tasks performed.

The Inout File Processor, as the name implies, reorganizes the information on input data

cards into Data Blocks consisting of lists of similar quantities.

The Geometry Processor generates coordinate system transformation matrices, tables of gria

point locations, a table defining the structural elements connected to each grid point, and other

miscellaneous tables such as those defining static loads and temperatures at grid points.

The Structure Plotter generates tape output for an automatic plotter that will plot the

structure (i.e., the location of grid points and the boundaries of elements) in one of several

available three-dimensional projections. The structure plotter is particularly useful for the

detection of errors in grid point coordinates and in the connection of elements to grid points.
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Note that the structures plotter may also be used at the end of the program to superimpose images

of the deformed and undeformed structure.

The Structural Matrix Assembler generates stiffness and mass matrices referred to the grid

points from tabular information generated by the Input File Processor and the Geometry Processor.

The mass matrix is used in static analysis for the generation of gravity loads and inertia loads

on unsuoported structures,

In block 5 of Figure 1, the stiffness matrix is reduced to the form in wnich it is finally

solved through the imposition of single and multi-point constraints, and the use of matrix par

titioning (optional).

Load vectors are then generated from a variety of sources (concentrated loads at grid points,

pressure loads on surfaces, gravity, temperature, and enforced deformations) and are reduced to

final form by the aoplication of constraints and matrix partitioning,

The solution for independent displacements is accomplished in two steps; Decomposition of

the stiffness matrix [K] into upper and lower triangular factors; and solution for {u} for speci

fic load vectors, {P}, by means of successive substitution into the equations represented by tne

~riangular factors of [K] (the so-called forward and backward passes). All load vectors are pro

cessed before oroceeding to the next functional block.

In block 8 of Figure 1, dependent displacements are determined from the independent displace

~ents by means of the equations of constraint. The internal forces and stresses in each' element

are then computed from knowledge of the displacement components at the corners of the elements

and the intrinsic structural equations of the element. Finally the Output File Processor pre

pares the results of the analysis for printing.

The Loop for Additional Constraint Sets shown in Figure 1, is introduced to facilitate solu

tions for different boundary conditions, which are applied by means of single point constraints.

In particular, the symmetric and antisymmetric resoonses of a symmetric structure are treated in

th is manner.

The flow diagram for Rigid Format No.2, Static Analysis with Inertia Relief, is, to the

level of detail considered here, identical to Figure 1. The inertia relief effect consists of a

modification to the load vector to include inertia loads due to the acceleration of an unre

strained structure. The manner in which the incremental load is calculated is explained in
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Section 3.6.3.

A simplified flow diagram for Rigid Format No.4, Static Analysis with Differential Stiff-

ness, is shown in Figure 2. The differential stiffness matrix is a first order aoproximation to

large deformation effects, such as those considered in beam-column action. It is directly pro-

portional to the level of the applied loads.

The differential stiffness matrix is calculated, in block 11 of Figure 2, from the deflec

tions of each structural element that are caused by the primary loading condition. The equations

that are used in the calculation of differential stiffness are derived in Section 7.

The dlfferential stiffness matrix is reduced to final form in block 12 in precisely the same

way that the structural stiffness matrix is reduced to final form in block 5. It is then added

to the structural stiffness matrix and the solution and data recovery portions of the program are

reexecuted. Additional solutions may be obtained for conditions in which the differential stiff

ness matrix and the applied load vector are multiplied by a sequence" of ccnstant factors, corres

ponding to different levels of the same loading condition.

A simplified flow d~agram for Rigid Format No.5, BuCkling, is shown in Figure 3. In it the

differential stiffness matrix [KdJ corresponding to a particular applied loading condition is

used in conjunction with the structural stiffness matrix [K] ~o formulate an eigenvalue proolem

(l)

The eigenvalues, Ai' are the load level factors for various buckling modes. They and the corres

ponding eigenvectors,{$i}' are extracted by the Real Eigenvalue Analysis module. Additional data

(constrained displacement components and stress patterns for each buckling mode) are recovered in

Block 15, which is virtually a duplicate of Block 8. and the buckling mode shaoes are plotted, if

desired.

A simplified flew diagram for Rigid Format No.6, Piecewise Linear Analysis, is shown in

Figure 4. In piecewise linear analysis solutions are obtained for structures with nonlinear,

stress-dependent, material properties. The load level is increased to its full value by small

increments, such that stiffness properties can be assumed to be constant over each increment.

After each increment, the combined strains in nonlinear elements due to all load increments are

used, in conjunction with stress-strain diagrams, to determine the appropriate stiffnesses for

the next load increment. The procedures, summarized in Figure 4, are described in Section 3.8.
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Figure 1. Simplified flow qiagram for Basic Static Analysis,
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Figure 2. Simplified flow diagram for Static Analysis with Differential Stiffness.

3.2-5



STATIC ANALYSIS BY THE DISPLACEMENT METHCO

I I

I
1 Input File I 5 Application of Constraints andIProcessor

I
". Partitioning to the Stiffness Matrix

+ ~
2 Geometry I 6 Generation and Transfor~ation

Processor I of Load Vectors
I

~ ~
3 Structures i 7 Solution for Independent

Plotter Disp1acements
I I

~ ~
4 Structural Mattix 8 Recovery of Dependent Displacements

Assembler and Stresses

I ~
11 FOi"m Differenti a1

Stiffness Matrix

~
12 Application of Constraints and IPartitioning to the Differential I

Stiffness Matrix i

+
14 Real Eigenvalue

Extraction

+
15 Recovery of Dependent
Displacements and Stresses

~
9 Output File

Processor

+
10 Deformed Structures

Plotter
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Figure 4. Simplified flow diagram for piecewise linear analysis.
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3.3 NOTATION SYSTEM

Many of the operations performed in computerized structural analysis are conveniently

expressed in the notation of matrix algebra. In NASTRAN matrix arrays are represented by a root

symbol that indicates the type of physical quantity and by one or more SUbscripts and superscripts

that act as modifiers. The root symbols used in static analysis by the displacement method are

listed in Table 1. Square brackets, [ J, indicate two-dimensional arrays and twisted brackets,

{ }, indicate column vectors. Row vectors. which are less common, are usually indicated by ap-

pending tr.e transpose symbol. T, to the ~Nisted brackets.

Subscripts are used exclusively to designate the subsets of displacement comoone~ts to which

the root symbol aoplies as for example in the equation,

( 1)

which is used to recover single point forces of constraint, {qs}'" from displacements at constrai

ned poi~ts, {us}, and at unconstrained (free) points, {uf}' Nearly all of the matrix ooerations

in static analysis are concerned with partitionir.g, merging and transforming matrix arrays from

one subset of displacement components to another. All the components of displacement of a given

type (such as all points constrained by single~point co~straints) form a vector set tr.at is dis

tinguished by a subscript from other sets. A given component of displacement can belong to se-

veral vector sets. The mutually exclusive vector sets, the sum of whose members are the set of

all physical components of displacement, {u I, are listed in Table 2a.
p

In addition, a number of vector sets are defined as the union of two or more independent

sets. See Table 2b.

In dynamic analysis additional vector sets are obtained by a modal transformation derived

from real eigenvalue anaiysis of the set {u}. See Table 2c.a

The nesting of the vector sets in Table 2 is depicted by the following diagram:
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----}
uaUz u

d
------------

In static analysis we are concerned only with the grid point set, tUg}' and its sunsets.

The application of constraints and partitioning to the stiffness matrix involves, essentially,

the elimination of {urn}' {us}, {uo} and tUrf from {Ug} to form a stiffness matrix referred to

{u;; }.

The physical and computational siqnificances of these operations is explained in Section

3.5. For the present it will only be emphasized that the concept of nes:ed vector sets is ex

tremely important in the theoretical develooment of NASTRAN. The reader may. in fact, find it

useful at some point to memorize the relations, defined in Table 2, among the displacement sets.

Load vectors are distinguished by the same notation. Rectangular matrices are, whenever

necessary to clarify the meaning of the symbol, distinguished by double subscripts referring to

the vector sets associated with the rows and columns of the array. Superscripts have no ten-

sorial character and are used to identify arrays of different type or origin that refer to the·

same sets such as in the equation,

(2)

where [M~dJ is the structural mass matrix and [M~dJ is the direct input mass matrix.

Two types of operations occur repeatedly. These are the partitioning (or sort) operation,

for example,

(3)
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and the reccmbining (or merqe) operation

{4)

In the sort operation indicated, the elements of tUg} are sorted into two lists. In tne

merge oceration {u } and {u } are combined into a single list. In all sort and merge operations. n m

the resulting arrays are ordered according to the grid point sequence numbers of the displacement

components.

In addition to the formal symbols used in matrix ooerations, many other symbols are

required in the reduction of physical properties to matrix form. No special system is used for

the latter class of symbols. An attemot has been made, however, to adhere to established engineer

ing conventions.
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Table 1. Root Symbols Used in NASTRAN.

{u} vector of displacement components

{P} vector of applied load components

{q} vector of forces of reaction

{Y} vector of enforced displacements

[K] stiffness matrix

[M] mass matrix

[B] damping matrix

. [R] matrix of constraint coefficients, as in [R]{u} 0

[G] transformation matrix, as in {u }
m

[D] rigid body transformation matrix

em] rigid body mass matrix

[X] rigid body stiffness matrix

[L] lower triangular factor of [K]

[U] upper triangular factor of [K]
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Table 2a. Mutually Independent Vector Sets.

coordinates eliminated as independent degrees of freedom by multi-ooint constraints

coordinates eliminated by single point constraints

coordinates omitted by structural matrix partitioning

coordinates to which determinate reactions are applied in static analysis

the remaining structural coo~dinates used in static analysis (points left over)

extra degrees of freedom introduced in dynamic analysis to describe control sys
tems, etc.

Table 2b. Combined Vector Sets

ua - ur + U 0 , the set used in real eigenvalue analvsis
i,

ud = ua + ue ' the set used in dynamic analysis by the direct method

uf = ua + uo' unconstrained (free) structural coordinates

= uf + us' all structural coordinates n2l constrained by multi-point constraints

Ug = un + urn' all structural (grid) points inc1uding scalar points

up = ug + ue' all physical coordinates

Note: (+) sign indicates the union of sets

Table 2c. Modal Coordinate Sets

rigid body (zero frequency) modal coordinates

~ frequency modal coordinates

= ;0 + ;f' the set of all modal coordinates.

Uh = ;i + Ue' the set used in dynamic analysis by the modal method.

Note: (+) sign indicates the union of sets.
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3.4 PROBLEM FORMULATION

The explanation of any complex activity must be subdivided into phases or steps in order to

be intelligible. In the case of a computer program for structural analysis it is convenient to

divide the total effort into a Problem Formulation Phase and a Problem Solution Phase. The ter

mination of the Problem Formulation Phase is arbitrarily chosen to occur at the point where the

properties of the s:ructure have been reduced to matrix form. (In the case of basic static an

alysis this occurs between blocks 4 and 5 in the flow diagram of Figure 1. Section 3.2.)

3.4.1 Structural Modeling

The beginning of the Problem Formulation Phase occurs in the mind of the analyst. He con

templates nature (or his navel. or whatever). decides what he needs to know, and constructs a

mathematical problem whose solution. he hopes, will provide relevant answerS to his questions.

He will, naturally. require computational tools to solve his mathematical problem and, fortunately

or unfortunately. the available tools have a strong influence on the analyst's choice of a math

ematical problem. It would. after all. do no good to for~ulate a problem that coula not be

solved.

The range of choice in mathematical problem formulation proviced by NASTRAN is, however rich

in detail, limited to one basic approach, namely the use of finite element structural models.

This means that the substitute mathematical proolem refers to an idealized model with a finite

number of degrees of freedom, a particular selection of topological objects (grid points and ele

ments). and a limited range of structural behavior. The relevance of the behavior of the ideal

ized structural model to the analyst's questions clearly depends on the particular choice of

components for the model. This procedure, referred to as "structural modeling," is the most im

portant step in the problem formulation phase, since the results of an analysis can be no better

than the initial assumptions.

The User's Manual contains a chapter on structural modeling. Section 14 of the Theoretical

Manual describes some advanced modeling techniques that utilize special features of NASTRAN. For

the present, a small example will serve to indicate the general nature of the modeling process

and some of the features of NASiRAN that relate to it.

Figure la shows a typical aircraft structure. a ring frame with a partial bulkhead acting as

a floor support. Although poor results are obtained when such structures are analyzed without
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considering the shell to which the frame is attached, the analyst may have a special reason for

doing so. The resulting idealized model of the frame can, in any case, serve as part of the model

for the complete shell.

The idealized model selected by the analyst, Figure lb, contains

13 grid points

4 Bar elements (B)

2 Rod elements (P.)

2 Triangular Plate Elements (T)

3 Quadrilateral Plate Elements (0)

Each grid point has six degrees of freedom (three translations and three rotations). The

analY3t has, however, elected to analyze the response of the frame to a pair of vertical loads so

that it is unnecessary to consider out-of-plane motions of the frame. The out-of-plane motions

are eliminated by applying single point constraints to three of the degrees of freedom (two rota

tions and one translation) at each gridpoint (This can be implemented with a single data card).

One of the necessary tasks in preparing input data is to specify the location of grid points.

In NASTRAN grid point locations can be specified by rectangular, cylindrical or spherical coordi

nate systems (see Figure 2) and there may be an u~limited number of coordinate systems of each

type in a given problem. All that is required is that they be related, directly or indirectly,

to each other and to a "basic" coordinate system, which is rectangular. In the example of Figure

1, the analyst found it convenient to locate grid points on the ring frame (points 1 to 4) with a

cylindrical coordinate system and to locate points on the floor bulkhead (points 5 to 13) with a

re~tangular coordinate system.

A separate task is the selection of coordinate systems to express the components of motion

at grid points. In the example of Figure 1, the coordinate systems for motion have been selected

to be identical to the coordinate systems for grid point location, although this is not required.

It will be noted in Figure lb that the grid points for the ring frame are located on the outer

edge of the frame rather than along its centerline. This will not result in poor accuracy if the

provision for offsetting the neutral axis of Bar elements is exercised. Reinforcing Rod elements

(Rl and R2), which have axial stiffness only, are plac.ed between grid points 11, 12, and 13 to
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simulate the stiffener along the centerline.

The Plate elements (TIs and QI S ) are selected to contain membrane (plane stress) properties

only, since out of plane bending is precluded by the nature of the loading. No restraint on in

plane rotation (6 z) is provided by the plate elements so that the 6z component of motion must be

eliminated by more single point constraints at gridpoints 6 to 13. A special problem occurs at

grid point 5 because of the requirement to maintain compat~bility of inplane rotation between the

adjacent bar element (B4) and the adja~ent triangular plate (T, ). The problem is solved by means

of a multipoint constraint between inplane rotation (6z ) at grid point 5 and the vertical motions

(u ) at grid ooints 5 and 6. The equation of constraint isy .

(1)

Additional single point constraints are required along the centerline of symmetry to con

strain motions in the x direction (including the e direction at gridpoint 1). A special type of

single point constraint, known as a reaction, is used to constrain vertica1 motion at grid point

13. Constraints of this type are automatically removed when a static analysis is followed by a

dynamic analysis. In addition, a special check calculation is provided (see Section 3.5.5) to

determine whether the input impedance at reaction points is correct.

It will be noted that the grid points in Figure I have been numbered consecutively starting at

the top. More than a sense of orderliness is involved since the sequencing of grid point numbers

affects the bandwidth of the stiffness matrix and the resulting computer solution time (see

Section 2.2). Grid point sequencing strategy is discussed in the User's Manual. The main idea is

that the arithmetic differences between the sequence numbers of grid points that are physically

adjacent should be minimized.

In order to facilitate grid point sequencing for the preservation of bandwidth. the user is

permitted to specify grid point numbers in two different ways. The external identification numbers

can be assigned to grid points in any ~anner the user desires. Element connection and load infor

mation prepared by the user refers to the external identification numbers. The internal sequence

numbers are generated by the user in a paired list that relates external and internal numbers.

Since the internal sequence numbers appear nowhere else in the input data. they may easily be

changed. if desired, to reflect an improved banding strategy. Preparation of the paired list is
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optional and the sequence of the external identification numbers will be used if the paired list

is not provided.

Another sequencing feature of NASTRAN is the ability to insert new grid point sequence. numbers

anywhere in an established list. This is done by the use of Dewey decimal notation, similar to

that found in public libraries.

3.4.2 Inout Data Analysis

We have now arrived at the point in problem formulation where the digital computer appears on

the scene. The user assembles the information discussed above (plus a great many details that

were not mentioned) and enters it on punched cards that are input to the computer. In problems

that have many grid points arranged in regular patterns he may elect to write a small auxiliary

program that will prepare and punch most of the input data cards (or their card images on magnetic

tape). Such "supermarket" programs (so called because they can produce ~ shopping cartload of

data cards) are a regular internal feature of some structural analysis programs but not of

NASTRAN. They were not included because they become quite intricate, and hence, difficult to use,

as they are given the generality that is needed for diverse applications. It is easier, on the

average, to write a new supermarket program for each type of application. The user can, by means

of the ALTER feature (see Section 1.2), incorporate such subroutines into NASTRAN.

When assembled the NASTRAN data deck consists of the following three parts:

1. Executive Control Deck

2. Case Control Deck

3. Bulk Data Deck

The Executive Control Deck identifies the job and the type of solution to be performed. It

also declares the general conditions under which the job is to be executed, such as, maximum time

allowed, type of system diagnostics desired, and restart conditions. If the job is to be executed

with a rigid format, the number of the rigid format is declared along with any alterations to the

rigid format that ~ay be desired. If Direct Matrix Abstraction is used, the complete D~4P

sequence must appear in the Executive Control Deck.

The Case Control Deck defines the subcase structure for the problem, makes selections from the

Sulk Data Deck, and makes output requests for printing, punching, and plotting. The subcase struc

ture for each of the rigid formats is described in the User's Manual. Loading conditions,
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boundary conditions, and other items are selected from the Bulk Data Deck in order to define the

structural model for each subcase .

. The Bulk Data Deck contains all of the details of the structural model. Much of this deck is

associated with the definition of the grid points (grid cards) and the manner of connect1ng the

grid points with elements (connection cards).

A number of important preliminary operations are performed on the data deck by the Input F~le

Processor. It sorts the Bulk Data Deck, and stores it on the New Problem Tape. It c~ecks the

data cards for fatal errors. It creates the data blocks used by functional modules. If fatal

errors are detected, suitable error messages are wri~ten and the execution is terminated.

3.4.3 Geometry Processor and Structure Plotter

The various parts of the Geometry Processor (see Figure 1 of Section 3.2) perform the follow

ing general tasks:

1. Generate all required coordinate system transformation matrices and determine the

locations of all grid points in the basic coordinate system.

2. Reolace external grid point numbers with their internal (sequential) indices.

3. Generate multipoint constraint equations and lists of single-point constraints.

4. Generate flags indicating the displacement components which are members of each displace

ment vector set (see Section 2.1.5).

Grid points may be defined in terns of the basic coordinate system or in terms of "local"

coordinate systems (see Section 3.4.1). The Geometry Processor calculates the location and orien

tation of each local coordinate system relative to the basic system. This information is saved

for later use by the various modules in making coordinate system transformations. The basic

system is used for plotting (see Section 13).

As explained in Section 3.4.1, coordinate systems for expressing comoonents of motion can be

freely selected so that, for example, each grid point may have a unique displacement coordinate

system associated with it. ihe collection of all displacement component directions in their own

coordinate syst-ems is known as the "global" coordinate system. All matrices are formed and all

displacements are calculated in the global coordinate system.
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The Structure Plotter is run after the second phase of the Geometry Processor. At this stage

Of the execution there is sufficient geometrical information in suitable form to prepare a plot of

the undeformed structure.

3.4.4 Assembly of Structural Matrices

Jhe Structural Matrix Assembler (SMA) generates the stiffness, mass, and damping matrices for

the structural model. For efficiency in restart, particularly when changing from statics to dy

namics problems, the Structural Matrix Assembler is divided into three parts. The first part gen

erates the stiffness and the related structural damoing matrices, [KggJ and [Kgg
4], the second

part generates the mass and viscous damping matrices, [M ] and [B ], and the third part adds thegg 99
contributions of General Elements, see Section 5.7, to the stiffness matrix.

The first two parts of the matrix assembler operate in a similar manner. The matrices are

formed one gridpoint at a time, by columns, according to the internal indices determined by the

Geometry Processor.

The matrices are generated by superposition of the contributions of all elements connected to

the grid point under consideration. The matrix assemblers refer to the appropriate "element" rou-

tines for calculation of the stiffness, mass, and damping matrices for each element. The elements

available for use are described in Section 5. The matrices for each element are initially gener

ated in an element coordinate system that is characteristic for each element type. The matrix

assemblers then transform the element matrices to the displacement coordinates which have been

defined for the grid ooint (global coordinate system).

Prior to writing the completed matrices for each grid point on secondary storage devices, they

are checked for singularities at the grid point level. Singularities remaining at this level,

following the application of the single-point constraints, are treated as warnings to the user.

They are treated only as warnings because it cannot be determined at the grid point level whether

or not the singularities are removed by other means, such as by general elements or by multipoint

constraints.

Singularities are detected by examining the diagonal'term for scalar grid points and the 3 x 3

diagonal matrices associated with the rotational and translational degrees of freedom for geo

metric grid points. If the diagonal term for a scalar point is null. this fact is noted in the

Grid Point Singularity Table (GPST). If either of the 3 x 3 matrices, associated with a geometric
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point, is singular, the diagonal terms and the 2 x 2 minors are examined to determine the order of

singularity and the column or columns associated with the singularity. The order and locations of

any singularities at geometric grid points are added to the GPST.

The assembly procedure that has been described, i.e., successive generation of columns ac

cording to grid points, means that some of the partitions of the element matrices are recalculated

for each grid point to which the element is connected. An alternate procedure. ~hicn ;s not used.

would be to calculate all of the element matrices once and store them on a secondary file for

future use when needed. The alternate procedure is less efficient for large problems, where ef

ficiency really counts, because the recalculation time is less than the time required to recover

element matrices from a secondary storage file.

Although the matrices generated by the Structural Matrix Assembler are symmetric, complete

columns are generated and retained for efficiency in succeeding matrix operations. This is neces

sary because all matrix operations are performed one column at a time (see Section 2) and in dy

namics applications tne matrices are not necessarily symmetric. Moreover, the availability of

symmetric matrices by rows or by columns is advantageous in some of the matrix operations.
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p

a. Ring frame ~/ith floor bulkhead.

b. Idealized structural model.

Figure 1. Example of structural modeling.

3.4-8



(a) Rectangular

(b) Cylindrical

(c) Spherical
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z

'------------Grid Point

~-------y

'------local System

x

Z u3 - Z direction

U2 - e direction

u, - r direction

'--~----Grid Point

u, - p direction

u3 - ¢ direction

direction

'--+--------Gri d Poi nt

Figure 2. Displacement coordinate systems.
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3.5 CONSTRAINTS AND PARTITIONING

Structural matrices are initially assembled in terms of the set, ug ' of all structural grid

points, which excludes only the set, ue ' of extra points used in dynamic analysis. This section

will describe the subsequent reduction of the structural matrices to the set, ui' which is the

set of coordinates that remain after all constraint and partitioning operations have been perfor-

med, and WhlCh is, therefore, the first set to be evaluated in static analysis.

The structural matrices whose assembly is discussed in the preceding section are:

[KggJ the structural stiffness matrix due to elastic structural elements

[K4 J the structural damping matrix of imaginary stiffness coefficientsgg

[ 8 J the viscous damping matrix due to damper elementsgg

[r~ggJ t~e structural mass matrix

The reduction procedures will be explained in full for the [KggJ matrix. Procedures for the

other matrices will be shown only when they differ from those for [Kgg ].

Repeated use will be made of the notation system described in Section 3.3, to which ~he

reader's attention is directed.

3.5.1 Multiooint Constraints

The multipoint constraint equations are initially expressed in the form,

( 1)

where the coefficients are supplied by' the user. The user also specifies the degree of freedom

that is made dependent by each e~uation of constraint, so that the tUg} matrix may immediately be

partitioned into two subsets,

(2)

where the set, um' is the set of dependent degrees of freedom. The matrix of constraint coeffi

cients is similarly partitioned

(3)
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so that Equation 1 becomes

[RmJ is a nonsingular matrix. We can, therefore, form the multipoint constraint matrix,

[G ] = -[R J-l[R J,m m n

so that Equation 4 may be stated as

Prior to the imposition of constraints, the structural problem may be written as

(4)

(5)

(6)

(7)

or, partitioning in terms of the coordinate sets, un and urn

(8)

Bars over sy~bols are used to desiqnate arrays that are replaced in the reduction process.

The addition of constraints to the structure requires that the forces of constraint be added

to the equilibrium equations. It is shown in Section 5.4 that the forces of constraint are pro

portional to the corresponding coefficients in the constraint equations. Thus, writing the equi

librium and constraint equations together in partitioned form,

(9)

where {qm} is the vector of constraint forces on tUm}' Straightforward elimination of urn and qm

gives

[K + K G + G TK T + G TK G J{u }nn nrn m m nm m mm m n
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or

where

and

K
nn

+ K G + G TK T + G TK G
nm m m nm m rom m '

P
n

= P + G Tp
n m m

( 11)

(12 )

(13)

The initial partition of Kgg and the operations indicated by Equations 5, 12 and 13 are oer

formed by appropriate modules of the program. The multipoint constraint matrix, Gm, is used in

structural matrix reduction (Equation 1~), load vector reduction, (Equation 13) and data recovery

(Equation 6). It is saved for these purposes in an auxiliary storage file.

The other structural matrices, [K~g]' [8gg ] and [Mgg], are transformed by formulas that are

identical in form to Equation 12.

3.5.2 Single Point Constraints

Single point constraints are applie~ to the set, us' in the form

(14 )

where {Ys } is a vector of enforced deformations, any or all of whose elements may be zero. The

set, un' is partitioned into Us and uf(the~ or unconstrained set)

(15 )

The stiffness matrix, Knn , is similarly partitioned

(16 )

The complete structural equations including the single point forces of constraint, qs' may be

written in partitioned matrix form as
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Straightforward elimination gives

( 17)

{P f}' (18 )

The forces of constraint are recovered by means of the middle row of Equation 17, i.e.,

( 19)

Thus all three of the distinct partitions of Knn (i.e., Kff , Kfs and Kssl are needed in subse

quent calculations, and are placed in auxiliary storage. For the other structural matrices

(K4 Bnn , and M l only the (ffl partitions are saved. The assumotion is made, implicitly, thatnn' nn

the effects of the other structural matrices on the single Doint forces of constraint may be ig-

nored.

3.5.3 Partitioning

At user option the set of free coordinates, uf ' may be Dartitioned into two sets, Uo and ua '

such that the Uo set is eliminated first. Thus

(20)

The equilibrium equations after the elimination of constraints (Equation 18) may be written

in partitioned form as

(21)

Rearrange the bottom half of Equation '21:

(22)

and solve for {u }:o

(23)

3.5-4



CONSTRAINTS AND PARTITIONING

(Note that in practice stiffness matrices are never inverted due to excessive computer running

time. The practical alternative will be explained presently.)

Substitute for u into the top half of Equation 21:o

It is convenient to define the matrix

[G] = [K J-1[K ]To - 00 ao '

so that Equation 24 becomes

[K + K G ]{u} = {?a} + [GoJT{po} ,aa ao 0 a

where advantage is taken of the symmetry of [Koo]'

Following the practice of condensation established in preceding subsections,

The [Go] matrix defined in Equation 25 is obtained practically from the solution of

(24)

(25)

(26)

(27)

(28)

(29)

(30)

where (K ]T is treated as a set of load vectors. Each such vector produces a column of [Go].ao
The [Koo] matrix is first decomposed into lower and upper triangular factors, using a subroutine

based on the techniques described in Section 2.2. The additional steps required in solVing the

matrix equation [A]{x} = {b} are described in Section 2.3.

Once {ua} is obtained the set of omitted coordinates, {uo}' is obtained as follows. D~fine

the set {u~} as the solution of

Note that the triangular factors of (Koo ] obtained in connection with Equation 30 are saved
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for use in connection with Equation 31 which cannot be soived until the load vector {Po} is for

med. Then, using Equations 2S and 31 in Equation 22,

(32)

Partitioning, which is an optional feature of the program, has a number of important uses.

The first is as an aid to improved efficiency in the solution of ordinary static problems where it

functions as an alternative to the Active Column technique (see Section 2.2J in reducing matrix

bandwidth. In this application the user puts into ths set ua those degrees of freedom that are

excessively coupled to the remainder.

In a related application, members of the set ua are placed along lines or in planes of the

structure such that the remaining Uo grid points in different regions are uncoupled from each other

as shown in the wing structure of Figure 1. The grid points are sequenced so that all grid points

in region (1) precede those in region (2), etc. As a result the decomposition of [Koo] is faster

because the bandwidth is smaller (reduced to approximately 1/3 in the example). The ua set is

small compared to Uo so that its solution is not particularly time consuming. Even here proper

grid point sequencing can introd~ce banding i~to the [Kaa ] matrix.

Matrix partitioning also improves efficiency when solving a number of similar cases with

stiffness changes in local regions of the structure. The ua and Uo sets ar7selected so that the

structural elements that will be changed are connected only to grid points in the ua set. The

[Koo] matrix is then unaffected by the structural changes ann only the sm~ller [Kaa] matrix need be

decomposed for each case. An application of partitioning that is important for dynamics is the

Guyan Reduction, described in the next subsection.

3.5.4 The Guyan Reduction

The Guyan Reduction(l) is a means for reducing the n~~ber of degrees of freedom used in dyna~

mic analysis with minimum loss of accuracy. Its basis is that many fewer grid points' are needed

to describe the inertia of a structure than are needed to descrioe its elasticity with comparable

accuracy. If inertia properties are rationally redistributed to a smal1er set of grid points. the

remaining grid points can be assigned to the Uo set described in the preceding subsection and eli

minated, leaving only the smaller ua set for dynamic analysis.

(l)Guyan, R.J., "Reduction of Stiffness and Mass Matrices". AIM Journal, Vol. 3, No. Z, Feb.
1965.
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In the Guyan Reduction, the means by which inertia (and damping) are redistributed is to

consider the [Go] matrix of the preceding subsection as a set of rigid constraints, such that

(33)

The [G ] matrix now has the same implications for the u coordinates that the multipoint con-o 0

straint matrix, [G ]. has for the u coordinates (see Equation 6). The reduced structural massm m
matrix is, by analogy with Equation 12,

[M ] ~ [M + M G + GTM T + GTM G]
aa aa ao 0 0 ao 0 00 0

(34)

Tre reduced damping matrices., [Kaa
4] and [Baa]' are formed in the same manner. The structural

stiffness matrix, [K ], is given by Equation 28. The reduced dynamic load vector is, by analogyaa
with Equation 13,

(P f ~ (P + GTp }.
. a' a 0 0

(35)

The approximation made in the Guyan Reduction is that the term {u~} in Equation 32 is neglec

ted; i.e. that the deformations of the Uo set relative to the ua set due to inertia and other

loads applied to the Uo set are neglected. The error in the approximation is small provided that

the ua set is judiciously chosen. The selection should be based, in part, on an estimate of the

relative deformatiDns, {u~}. Thus the members of ua should be uniformly dispersed throughout the

structure and should include all large mass items. The basic assumption made in the Guyan

Reduction is identical to that made in forming consistent mass matrices for individual elements,

see Section 5.5.

3.5.5 Scecial Provisions for Free Bodies

A free body is defined as a structure that is capable of motion without internal stress.

The stiffness matrix for a free body is singular with the defect equal to the number of stress

free (or free body) modes. A solid three-dimensional body has six or fewer free body modes.

Linkages and mechanisms can have a greater number. No restriction is placed in the program on

the number of stress-free modes in order to permit the analysis of mechanisms.

The presence of free body modes alters the details of many of the calculations in structural

analysis. In static analysis by the displacement method, for example. the free body modes must be

restrained in order to remove the singularity of the stiffness matrix. We are concerned, in this
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section, with some of the special provisions of the program for the treatment of free bodies in

cluding the specification of determinate reactions for use in static analysis, the evaluation of

the inertia properties of free body modes for use in dynamic analysis, and a special diagnostic

procedure for the detection of inconsistent constraints. Other special provisions are the cal CUe

lation of lnertia relief loads, treated in Section 3.6.3, and the procedures employee in the mode

acceleration method of dynamic data recovery, treated in Section 9.4.

If a problem concerning a free body includas both static and dynamic solution cases, a sub

set, Ur , of the displacement vector, ua ' must be constrained during static analysis. The subset.

ur ' is specified by the user such that the members of the set are just sufficient to eliminate the

stress-fre~ motions witnollt lntroducing redundant constraints. The complete static equilibrium

equations are

(36)

or, partitioning ua into ur and u
t

'

(37)

In static analysis the ur set is rigidly constrained to zero motion so that the final prob-

lem soived in static analysis 1S

(38)

The forces of reaction, {qrJ• which are of interest in their own right and which are also

needed in the solution of inertia relief problems, are evaluated from the equation

(39)

or, substituting for {u
Q
} from the solution to Equation 38,

(40} .

1: is convenient to define the matrix

(41)
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so that, taking advantage of the symmetry of [K~1]'

(42)

The [D] matrix is also used in the evaluation of the free body inertia properties of the structure.

It is obtained practically by solution of the matrix equation

(43)

[K££] is decomposed into triangular factors. [l~i] and [U£t]' which are saved and used in the

solution of Equation 38 after the load vector {P1} has been evaluated.

It may be seen from Equation 37 that, in the absence of forces on the u2 coordinates,

(44 )

Thus the [D] matrix expresses the rigid body motions of the structure in response to displace-

ments imoosed at the reaction points.

The mass matrix, partitioned according to the u1 and ur sets, is

(45)

If Equation 44 is taken as an equation of constraint for free body motion, the reduced mass

matrix referred to the ur coordinates is, by analogy with Equation 34,

(46)

The free body mass matrix, [mrJ, and the rigid body transformation matrix, [DJ, complete the spe

cification of the free body inertia properties that are used in dynamic analysis.

It is desirable to have a check on the compatibility of the single point and multipoint con

straints previously placed on the structure with the constraints placed on the reaction points,

ur ' Such a check is obtained by noting that, if the ut set is eliminated from Equation 37, the

reduced stiffness matrix referred to the ur set should be completely null. The reduced stiffness

matrix is
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(47)

The [X] matrix is computed by the program and its largest term is given to the user so that

he may take appropriate action. No automatic test is built into the program. The [X] matrix may

be nonzero for any of the following reasons:

1. Round-off error accumulation

2. fUr} is overdetermined (redundant supports)

3. {ur } is underdetennined (KH is singular)

4. The multipoint constraints are incompatible.

5. There are too many single point constraints.
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Grid Points in the
Interiors of Regions
are Placed in the

Uo Set

r-----------~---------Grid Points Along
These Interior Lines

are Placed in the
ua Set

Figure 1. Use of partitioning to decouple regions of the structure.
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3.6 STATIC LOADS

3.6.1 Generation of Loads

In NASTRAN, static loads are applied to geometric and scalar grid points in a variety of

ways, including

1. Loads applied directly to grid points.

2. Pressure on surfaces.

3. Gravity loads, (inter~ally generated).

4. Centrifugal forces due to steady rotation.

S. Equivalent luads resulting from thermal expansion.

6. Equivalent loads resulting from enforced deformations of structural elements.

7. Equivalent loads resulting from enforced displacements of grid points.

A force or a moment applied directly to a geometric grid point may be" specified ~n terms of

components along the axes of any coordinate system that has been defined. Alternatively, the di

rection of a force or a moment may be specified by a vector connecting a pair of specified grid

points or as the cross-product of two such vectors. A load on a scalar point is specified by a

single number since only one component of motion exists at a scalar point.

Pressure loads may be apolied to trianoular and Quadrilateral plates and to axisymmetric

shell elements. The positive direction of loadino on a triangle is determined by the order of the

corner grid points, using the right hand rule. The magnitude and direction of the load is auto

matically computed from the value of the pressure and the coordinates of the grid points. The

load is divided eaually to the three grid points.

The direction of pressure load on a quadrilateral plata is determined by the order of its

corner grid points which need not lie in a plane. The grid point loads are calculated by dividing

the quadrilateral into triangles in each of the two possible ways and applying one-half of the

pressure to each of the four resulting triangles. Severely warpea quadrilaterals should be sub

divided into triangles by the user in order to provide better definition of the surface.

The user specifies a gravity load by providing the components of the gravity vector in any

defined coordinate system. The gravitational acceleration of a translational component of motion,
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ai' at a geometric grid point is

(l)

where 9 is the gravity vector and ei is a unit vector in the direction of ui . For rotations, ai
is zero. The gravity load is then computed from

(2)

where [MggJ is the mass matrix referred to t~e ug displacement set. It should be noted that the

gravitational acceleration is not calculated at scalar points. The direction of motion at scalar

points is established indirectly by constraints and by other forms of coupling with geometric grid

points. The user is required to introduce gravity loads at scalar points directly.

A centrifugal force load is specified by the designation of a grid point that lies on the

axis of rotation and by the components of rotational velocity in a defined coordinate system. The

components of force acting on a rigid body in a centrifugal force field are most simply expressed

in a Cartesian coordinate system that is centered at the center of gravity of the body with axes

directed as shown below.

x

\
~

3.6-2



STATIC LOADS

The components of load are

,.<:
{P~' } (3 )

wnere m is the mass of the body, Ixz =!pxzdV, and Iyz = ;oyzdV. For use in the program, the com

ponents of force and moment are transferred from the center of gravity to the grid point and its

local coordinate system; the elements of the mass matrix, Mgg , are used in the calculation of the

loads. Note, however, that the mass matrix is regarded as pertaining to a set of distinct rigid

bodies connected to grid points. Deviations from this viewpoint, such as the use of scalar masses

or the use of mass coupling between grid points, can result in errors.

The equivalent loads due to thermal e~oansion are calculated by separate subroutines for each

type of structural element, and are then transferred from the internal coordinates of the element

to the coordinates of the surrounding grid points. ihe equations that define the equivalent forces'

and moments are derived for ea~h element in Section 5.

ihe user may define temperatures by more than one method. For BARS, R0DS, and PLATES the

temperature may be specified for each individual element. The temperature soecification "for BARS

and R00S includes the average temperature and, in the case of the BAR element, the effective trans

verse thermal gradient at each end. The temperature of a.PLATE element can vary arbitrarily in

the direction of the thickness, but it is assumed to be independent of position on the surface.

For all other elements that permit thermal expansion, and for BARS, R0DS, and PLATES if their tem

peratures are not individually specified, the temperature is obtained by averaging the temperatures

specified at the grid points to which the element is attached. Temperature-dependent thermal

expansion coefficients and elastic moduli are stored in material properties tables which the user

applies to each structural element by specifying the code number of its material. The average

temperature of an element is used to determine its temperature-dependent material properties.

3.6-3 (4/lI72)



STATIC ANALYSIS BY THE DISPLACEMENT METHOD

Enforced axial deformations can be applied to the one-dimensional elements (BARS and RODS).

They are useful in the simulation of misfit and misalignment in engineering structures. As in the

case of thermal expansion, the equivalent loads are calculated by separate subroutines for each

type of structural element. In the case of a bar, for example, the equivalent loads placed at the

ends are equal to EA5u/~ where E is the modulus, A is the cross-sectional area, 6u is the enforced

expansion, and 1 is the length of the bar.

Enforced displacements at grid points are discussed in connection with single point con

straints, Section 3.5.2.

3.6.2 Reduction of Load Vectors to Final Form and Solution for Displacements

The operations by which structural matrices and load vectors are reduced from the ug set to

the u1 set have been described in Section 3.5. in the program, the reduction of load vectors to

final form is performed in a single module, (SSG2). The operations are summarized below.

1. Partition the load vector, {Pg}, whose generation is described in the preceding subsection.

according to the set of coordinates, um' that are restrained by multipoint constraints.

and the set, Un' that are not.

(4 )

2. Eliminate multipoint constraints.

(5)

3. Partition {Pn} according to the set of coordinates. us. that are restrained by single

point constraints and the set. ufo of free coordinates.

(6)

4. Eliminate single point constraints.

(7)
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5. Partition {Pf } according to the optional partition scheme described in Section 3.5.3.

(8)

6. Eliminate the set of nmitted coordinates, uo'

(9)

7. Partition {Pal according to the set of coordinates, ur ' that are restrained by free body

reactions, and the set, ul ' that are not.

(10)

{P1J is the load vector in final form.

In the progrqm the displacement vector set, ut ' is obtained from solution of the equation

(11 )

in a separate module, (SSG3). It will be recalled, Section 3.5.5, that the triangular factors of

[K~£] were previously computed i~ order to form the rigid body matrix, [0]. The operations per

formed in SSG3 are the forward and backward passe$ through the triangular factors of [K£~] (see

Section 2.3) for each loading condition.

The vector set, u~, that describes displacements of the omitted set relative to the re

maining set (see Section 3.5.3) is also obtained in SSG3 from solution of the equation

( 12)

The triangular factors of [Koo] were previously computed in order to form [Go]'

Double precision arithmetic is used in the formation and triangular decomposition of struc-

tural matrices, so that significant error due to the accumulation of round-off is regarded as un

likely. Such errors can occur, however, in exceptionally ill-conditioned problems (see Section
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15.1). A test is provided in NASTRAN on the solution of Equations (11) and (12) that will indi

cate the presence of trouble to the user.

In the test a residual load vector is first obtained from

(13 )

The work done by the residual load vector is then compared with the work done by the applied load

vector in the residual energy criterion,

{UQ.}T{cp
x
)

{u£}T{PZ}

(14 )

Iterative improvement, such as might be obtained by computing second and higher order resi

dual load vectors,

~15 )

is not attempted. The gain in accuracy from iterative improvement is largely illusory because

errors made in the formation of [K], which are of the same order as those made in the triangular

decomposition of [K], are uncorrected. This matter is discussed more fully in Sec:ion 15.1.

3.6.3 Inertia Relief

When a free body is subjected to loads that are not in equilibrium, the body is accelerated

in its rigid body (or more generally, free body) modes. If the time rate of change of the applied

loads is small compared to the frequency of the lowest elastic mode of the system, an approximate

state of equilibrium exists between the applied loads and the inertia forces due to acceleration.

Stresses in the body may be computed, in this case, from an applied load distribution that in

cludes the inertia forces. The term "inertia relief" is applied to the effect that the inertia

forces have on the stresses. In order for an "effect" to be defined, a condition in which tile

effect does not exist must be imagined. In the case of inertia relief, the "effect-free" condi

tion is one in which the free body is restrained by determinate supports. The choice of support

points is arbitrary, but usually corresponds to a natural or customary location (e.g. the inter

section between wing and fuselage of an aircraft). Although the condition including inertia ef

fects is the correct solution, the analyst may also be interested in the results for the supported

condition.
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The general procedure for including inertia relief in static analysis is as follows:

1. Select, from the displacement vector tU }, a subset {u } of determinate support points asa r
has been discussed in Section 3.5.5.

2. Find the accelerations {u } due to the applied loads {P}. This requires evaluation ofr a
the rigid body mass matrix [m ] referred to points {u }.r r

3. Calculate accelerations at all other points {ug.} and the corresponding inertia forces.

4. Add the inert~a force vector to the applied load vector and solve for the displacements

{u
1

} while the structure is rigidly restrained at points, {ur }. The forces of reaction

will be zero.

The equations of motion for the body, expressed in terms of the displacements, ur ' can be

written

~} = -{q}r r (16)

[mr ] is the mass matrix reduced to the ur coordinates. It is evaluated from partitions of the

[M ] matrix by means of Equation 46 of Section 3.5.5. {P} is the applied load vector reducedaa r
to the u coordinates. It is numerically equal to -{q}, the set of determinate reactions, eva-r r

luated i~ Equation 42 of Section 3.5.5.

Solution of Equation 16 gives

(17)

The accelerations of the remaining points {uz}, assuming uniform acceleration as a rigid

body, are obtained from Equation 44 of Section 3.5.5,

(18)

The inertia forces acting on the Uz coordinates are, utilizing the partitions of the [Maa ]

matrix shown in Equation 45 of Section 3.5.5.

{p1} = -[Mr..r..]{ur..} - [Mzr]{ur }

= [MooD + M, ][m ]-l{q }
~~ kr r r
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The vector {P~} is added to the applied load vector {P£} in problems where the inertia relief ef

fect is included. Since [m ] is usually of small order, its inversion is not troublesome.
r

The inertia relief effect is also included in the calculation of the displacement set, u~,

that expresses the motions of the omitted coordinates, uo ' relative to the ua coordinates. The

inertia force vector for the omitted coordinates is

Now, if acceleration as a rigid body is assumed,

(20)

and

{ii }
a

rDJ{" -= 1- u I =
L.1 r (21 )

{u'} = [G ] {u } .
o 0 a

Thus, the inertia force vector for the omitted coordinates is

which should be added to {Po} in Equation 12.
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3.7 DATA RECOVERY

Data recovery in static analysis by the displacement method is performed in two steps:

1. Recovery of displacement sets that were eliminated during the.reduction of the stiffness

matrix to final form, resulting in the formation of the complete grid point displacement

vector, ug'

2. Recovery of internal forces and stresses in structural elements, using the grid point

displacement vector, ug' to define the displacements at the corners of each element.

Margins of safety are also calculated. Separate subroutines are used for each type of

element.

The above steps are discussed in separate subsections.

3.7.1 Recoverv of Displacements

Solutions for the vector sets, u1 and u~, are discussed in Section 3.6.2. The remaining

operations required to recover the complete grid point displacement vector, ug' are as follows:

1. Merge ur ' whose elements are all zero in static analysis, witn u
1

to form ua '

~ {u}
a (1)

2. Recover the omitted coordinates, Uo

= (2)

3. Merge Uo and ua to form the vectors of free coordinates, ufo

4. Evaluate the single point constraint set, us'

=

{Ys} is the vector of enforced displacements.

5. Merge uf and Us to form un'
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(5 )

6. Recover the multipoint constraint set, urn'

(6)

7. Merge un and urn to form ug'

(7)

The matrices [Go] and [Gm], used in the data recovery process, were generated during the re

duction of the structural matrices to final form and were placed in auxiliary storage.

A miscellaneous task that is performed in the same module that recovers ug is the recovery of

the single P9int forces of constraint,

(8)

The multipoint forces of constraint are not recovered.

3.7.2 Recovery of Stress Data

Internal forces and stresses in structural elements are calculated from knowledge of the dis-

placements at tne grid points bounding the element and the physical parameters of the ele~ent. in

cluding geometric properties, elastic properties. and temperature. The equations by which inter-

nal forces and stresses are calculated are contained in a separate subroutine for each type of

element. They are dis~ussed in Section 5.

In the calculation procedure. the stress recovery parameters for as many elements as possible

are placed in the high speed memory. The stresses are computed from the ug vector for the first

loading condition. and are placed in peripheral storage. The ug vectors for other loading condi

tions are then processed sequentially. The procedure is repeated for additiopai s:ructura1 el~

ments (if any) that could not be stored initially. The procedure that has been described makes

minimum use of INPUT/OUTPUT data transfers. For most elements, I/O transfers are the limiting

factor on computational speed in stress data recovery_
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A number of different kinds of stress data are available for each type of element. With the

BAR element, for example, the user can request any or all of the following:

- Bending moments at both ends in two planes.

- Transverse shear forces in two planes.

- Axial force.

- Torque.

- The average axial stress.

- The extensional stress due to bending at four points on the cross-section at both ends.
The points are specified by the user.

- The maximum and minimum extensional stresses at both ends.

- Margins of safety in tension and compression for the whole element.
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3.8 PIECEWISE LINEAR ANALYSIS

The Piecewise Linear Analysis option of NASTRAN is used to solve problems in material plas

ticity. The load is applied in increments such that the stiffness properties can be assumed to

be constant over each increment. The stiffness matrix for each increment is dependent on the cur

rent states of stress in the structural elements. The increments in displacements and stresses are

accumulated to produce the final, nonlinear results. Since the algorithm assumes linearity between

sequential loads, the results will depend on the user's choice of load increments. When the user

selects large load increments and the material properties are changing rapidly, the results may be

unacceptably inaccurate. If small load increments are used when the structure is nearly linear the

solution will be very accurate but relatively costly.

3.8.1 Limitations and Available Options

The nonlinearity of a structural element is defined by the material used by the element. Any

isotropic material may be made nonlinear by including a stress-strain table defining its extension

test characteristics.

The stress-strain table must define a nondecreasing sequence of both stresses and strains.

Because the stiffness matrix for the first load increment uses the elastic material coefficients,

the initial slope should correspond to the defined Young's Modulus, E.

The nonlinear effects depend on the element type. The elements which utilize the plastic

material properties are described in Section 3.8.4.

Linear elements and materials. may be used in any combination with the nonlinear elements.

Elements with low stress states may be included in this category by providing them with "linear"

material properties even though their actual properties are decidedly nonlinear at high stress

levels. Linear elements are used in a more efficient manner than the nonlinear elements.

All static load options except temperature and enforced element deformation are allowed with

piecewise linear analysis. The reason for the exceptions is that the equivalent grid point loads

depend on the stiffness of the structure and hence on the sequence of their application. For ex

ample, changing temperature after a load is applied gives different results than changing temoera

ture before the load is applied.

All statics constraint options are available including enforced displacement at grid points.

The use of enforced deformation in combination with applied loads has the ambiguity discussed
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above. In the program enforced displacements are increased simultaneously with the other loads.

No protective steps are taken to prevent the attempted decomposition of a singular stiffness

matrix. If the structure fails by buckling or yielding, a solution is still attempted and the re-

sults will be obviously erroneous.

3.8.2 Overall Solution Logic

Although the Piecewise Linear Analysis rigid format uses many of the statics analysis modules,

the path through the various operations is substantially different. A summary flow diagram is

given in Figure 1. The various steps are given numbers corresponding to the explanations below:

1. The normal statics analysis "front end" is used to generate the grid point, element, and

loading tables. The stiffness matrix (and the mass matrix for gravity loads) is generated

in the normal manner using the moduli of elasticity given with the materials.

2. The element tables are separated into linear and nonlinear elements. The program recog

nizes a non]inear element as one that has a stress-strain table referred to by its mater

ial. _The linear elements are used to generate a linear stiffness matrix, [K~gJ. This

matrix will not change with loading changes.

3. The load vector for the whole structure, {Pg}, is generated by the normal methods except

that loads due to temperatures and enforced element deformations are ignored. The con

strained points are also identified in this stage.

4. The "current" stiffness matrix is initially the linear elastic matrix; for subsequent

load increments the matrix is changed as shown in step 8. The constraints are applied to

the matrix in the normal sequence to produce the [K££J, [KfsJ, [KssJ. and [Go] matrices.

The [Ku,J matrix is decomposed to produce the triangular matrices rUg] and [Lu.J.

In a similar manner the applied loads, incluoing enforced displacements at grid points,

are modified by the constraints to produce a load vector for the independent coordinates,

{Pt}' The current load increment is:

'" 1 ,2 .... n (1)

where al , aZ' ... n are a set of load level factors provided by the user.
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5. The incremental displacements are generated using the current stiffness matrix and the

current load vector increment. The dependent displacements are recovered in the normal

munner and merged to produce the increments for all degrees of freedom, {~Ugi}. The in

cremental forces of single-point constraint, {Aqsi}, are also recovered. The increments

are added to the previous vectors to produce the current vectors

i {u i-1} + {Au i} (2){ug } ..
9 9

i { i -11, + U.qs i} (3){qs } ..
qs '

6. The total nonlinear element stresses al'e calculated for output within the loop so that

the user may have some useful information in case of an unscneduled exit before the

end of the calculaticn. The method of calculating stresses is given in Section 3.8.4.

7. The stiffness matrix for the nonlinear elements, [KggnJ, is generated six columns at a

time for all nonlinear elements connected to a grid point. The table of el.ement connect

ions and properties is appended to include the current stress and strain values. The

modulus of elasticity is calculated from the slope of the stress-strain curve as

explained below.

8. The nonlinear element stiffness matrix, generated in step 7, is added to the linear

element stiffness matrix, generat~d in step 2, to produce a new stiffness matrix.

The next pass through the loop will reflect the new stress state of the structure.

9. When the results for all load increments have been produced, the data are output.

Stresses for the linear elements are. calculated directly from the total displacement

vector.

3.8.3 Piecewise Linear Stress-Strain Functions

In order to simplify input to the program, a single type of plastic material table is used. A

stress-strain tabular function is input for each nonlinear material. Only certain types of

elements may use the nonlinear tables.

In calculating the current elastic constants of a plastic element, an approximation" to the

slope of the stress-strain function is used. Because the elastic constants are to be used for

the interval between the present load and the next load, an extrapolation of current information is
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required. A linear extrapolation is used to estimate the strain due to the next load increment as

shown in Figure 3. The current strain increment. ~~i' is computed from the current displacement

increment ~Ugi by separate subroutines for each type of element. The next strain increment, ~~i+l.

is estimated by linear extrapolation,

(4)

where A is obtained by the curve fit through two previously computed points, ~i' and ~i-l'

The linear elastic modulus, Eo' is used for the first increment. For all succeeding

increments

. 0i+1 - °i
Ei +1 - Ei

(5)

where 0i and 0i+l are obtained from points on the stress-strain curve. Figure 2, corresponding to

Ei and Ei +l •

The actual strain components used above depend on the element type. A brief description of

the elements used in piecewise 1inear analysis is given below.

3.8.4 Element Algorithms fer Piecewise Linear Analysis

3.8.4.1 R~D. TUBE, and BAR Elements

The plasticity of these elements is assumed to depend on the state· of-extensional stress onlJ.

Bending and twisting stresses are ignored in the determination of the effective elastic constants.

If bending stresses are important. the bar may be represented in NASTRAN as a built-up structure

composed of rods, shear panels and/or plates. The estimated next extensional strain. is:

whet"e the coefficient Yi is the ratio of load increments

(6)

Yi =
CLi +1 - "i

O:i - "i-l
(7)
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The elastic constants for the new stiffness matrices and the next stress calculations are:

O"i+l - O"i
=

E: i +l - E i
(8)

where Go and Eo are the elastic shear and extensional moduli given with the material. These con

stants are used in the calculation of extensional, bending, twistlng, and transverse shear stiff-

nesses in the next increment.

3.8.4.2 Plate Elements

The in-plane stresses of plate elements are used to calculate the elastic properties for in

D1ane deformations. They are also used to calculate the elastic properties for bending and trans

verse shear, except in the case of those plate elements where the bending and transverse shear

material are different from the membrane material.

Plastic. rather than nonlinear elastic, behavior is assumed. The theoretical basis of two

dimensional plastic deformation as used in NASTRAN is tnat developed by Swedlow{l). Only a

summary of the theory will be presen~ed here. In the development a unique relationship between

the octahedral stress, TO' and the plastic octahedral strain, E
O
P, is assumed to exist. The total

strain components (EX' Ey ' E
Z

' and Yxy) are composed of the elastic. recoverable deformations and

the plastic portions {EX
P, E:y

P, E:z
P, and YXy

p
}. The rates of plastic flow, {Ex

p
, etc.}, are

independent of a time scale and are simply used for convenience instead of incremental values.

The definitions of the octahedral stress and the octrahedral plastic strain rate are:

(9)

= (10)

(1 )Swedlow, J. L., "The Thickness Effect and Plastic Flow in Cracked Plates", Aerospace Research
Laboratories: Wright Patterson Air Force Base, Ohio: ARL 65-216; October 1965.
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where

5" l(? - 0 )
P P

'3 _ox E: ll = E: xy

S12
P 1 PT E: 12 2" Yxyxy

l( 20 - (J )
P P

(" )
522

E: 22 E:3 y x Y

1 P P
S33 = _":"(:J +0) E:33 = E: z3 x Y

The Sij array is called the "deviator" of the stress tensor. ox' 0y' and 0xy are the Car

tesian stresses. The basic Prandtl-Reuss flow rule 1S:

(12)

where ~ is a flow rate parameter.

~ may be derived by multiplying Equation 12 by itself according to the rules of tensor analy-

sis to produce a scalar equation. The result is:

(13 )

Another basic assumption is that the material yields according to its octahedral stress and

strain. In other words, there exists a function. MT(To)' such that

(14 )

Combining Equations 12, 13. and 14 we obtain

(15)

Taking the derivatives of Equation 9 we obtain:

(l6)
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Substituting the relations between the 5ij and the O'ij terms we obtain:

The matrix relationship for the plastic flow is formed from Equations 11, 15, and 17:

(17)

• p \ 2 25
11

512
·E: x 511

511 522 O'x

• P 1 2 25 22512 · (18 )E:y
51 0

2 MT(lo)

511 522 522 cry

· p
25 22512 4512

2 ·Yxy 2511 512 \ 'xy

For piecewise linear analysis this matrix, COp], is assumed constant for a given load incre

ment. The time derivatives are replaced with incremental values. The total strain increments,

obtained by adding the plastic and linear elastic parts, are:

(19 )

where [G] is the normal elastic material matrix and [GpJ is the equivalent plastic material ~atrix.

A further relationship to be derived is that of the plastic modulus, MT(,o)' versus the slope

of a normal stress-strain curve. If a specimen is under an axial load, its stress and strain va1-

ues are:

crx = cra

0y = O"z = ,. = 'xz = lyz = 0·xy
p O'a (20 )E: x = '" +r-x

"'0

P \)O'a
E:y = "y -r

0

= P \JO'a
E

Z
E

Z - C-o

Yxy =Yyz =Yxz = Q

where Eo and v are the elastic modulus and Poisson's ratio for the elastic part of the stress

strain curve.

P P 1 PBecause of noncompressibi1ity the plastic strains are Ey = E: z = - 2 EX
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The stress-strain relationship given in the table is:

and

- F' (c- \- ~x I

The occahedral stresses and strains may be determined from Equations 9,10, and 11.

/2"
T 3" aa0

. P
P

c-. -x
E

0 12"

The tabular relation fer octahedral stress is, therefore:

The slope relation is from Equations 22 and 23:

/2" F' (E ) Q.E
3 x x

where from Equations 20 and 22:

(2l)

(22)

(23)

(24)

31iT~
.,. ----

/Z Eo (25)

The octahedral plastic strain-to-octrahedral stress function obtained by solving Equations 24

and 25, and substituting into Equation 24, is:

(26)

where Ei F' is the approximate slope of the stress-strain curve at each increment.
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In applying the theory the following steps are taken:

1. The strain increments. {~i}, ar~ determined from the incremental displacement vector and

the geometry of the element. Using the material plastic matrix from the preceeding steo

[Gp
i - l ], the new stresses are:

( 27)

3.

2. Using ~quations 9, 11, and 22 the new octahedral stress, 'oi, and its unidirectional

equivalent, Oa i • are calculated. aa i is used with the stress-strain table to determine
i . i-l . H"la strain ea' Using the previous stratn ea ,a new stra1n, ~a ,is e~t~mated by

linear extrapolation as in ~~e case of extensional elements.

In case aai exceeds the maximum tabulated value, the incremental modulus. Ei , is set

equal to zero on the assumption that the element has ruptured.

;'-1Using the stress-strain table, the next estimated stress, aa ,is found. The stress-

s trains lope is:.

...i+l _ a i

Ei • -a a
i+ \ 1e:a - e:a

(28)

4. The new stiffness matrix, [Gp
i ], is calculated from Equations 9, 11, 26, 18. and 19

using ax
i , ay

i • ':<.yi, and Ei as input data. [Gp
i ] is then used in the normal stiffness

matrix calculation routine.

The quadrilateral ela~ents use extra logic since they are composed of four overlapping triangles_

The primary difference is that the stress incra~ents are averaged over ~~e four triangles and ::'e

resulting material matrices must be ~reatad as anisotropic and rotated into each subela~entjs

coordinate system.
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~Iorma 1 Sta ti cs Formul ati on

2 Separate Linear and Non-linear

Elements. Form K~g Stiffness
Matrix from Linear Elements

3 Select Constraints and Generate
Pg Load Vector

4 Partition. Reduce. and Decompose

K ~Ur"L"r99 ",I. 1.1.

P ~ 6P i
9 2.

5 Solve for Displacement Increment LUi
Solve for Dependent Displacements

I and Increment ui = ui _l + LUi

6 Calculate Non-linear Element
Stresses and Update Stress Tables

Output Non-linear Stresses

Loop ~ Eod of Loop.r----------....::::.. Test >------.....;,--....

7 Calculate Non-linear Element
Stresses and Form Non-linear

Matrix K~g

8 Add Linear and Non-linear Matrices
- K = Kg, + Kn

99 99 gg

r

9 Calculate Stresses in Linear Elements
for All Steps and Output Displacements.

Forces, and Total Stresses in All Elements

Figure 1. Piecewise linear flow diagram.
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a i +1 _ ai
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Figure 2. Determination of elastic modulus from tabular stress-strain curve defi~ed by user.
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Figure 3. Method of extrapolating previous strains to produce estimate of next strain.
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4.1 AXISYMMETRIC STRUCTURES

The description of finite element structural analysis presented in Chapter 3 assumes a

structural model in which the degrees of freedom are defined at points in a three-dimensional

space. An entirely different formulation is available in NASTRAN for analyzing axisymmetric

structures. In this formulation, the degrees of freedom are the harmonic coefficients of displace

ment components defined on the perimeter of circles, called grid circles, which lie in planes

normal to the axis of symmetry. The special features of NASTRAN's axisymmetric structural analysis

capabilities are discussed. below.

4.1.1 Axisymmetric Element Library

NASTRAN includes four different axisymmetric structural elements. They are the conical shell

element (Section 5.9), the toroidal shell element (Section S.lO), and the triangular and trape

zoidal solid ring elements (Section S.ll). The reader is referred to the sections cited for

details. No attempt has been made to make these elements compatible with each other, or with

"ordinary" structural elements. The only axisymmetric elements that can be used together in the

same problem are the triangular and trapezoidal solid-ring elements. The conical shell elemen-:: is

the only element that accepts nonaxisymmetric loads. The others require that the loading be axi-

symmetric.

4.1.2 Coordinate Systems

The "gl oba1" coordi nate system for the coni ca1 shell element, and for the so1i d of revo1uti on

elements, is a cylindrical coordinate system as shown below:

z

arbitrary
reference
azimuth
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Force components are input parallel to the global coordinates, and displacements are output

parallel to the global coordinates.

For the toroidal shell element, the "global" system is a spherical coordinate system locally

tangent to the shell.

4.1.3 Harmonic Coefficients and Degrees of Freedom

The following equations are used to define harmonic coefficients:

a. Any vector component representing motions or forces in a plane that includes the z-axis:

v(r,<p,z)
m m *

vo(r,z) + I vn(r,z)cos(n~) + ) vn(r,z)sin(n~).
n= 1 n;;;l

(1)

b. Any vector component representing motions or forces normal to a plane that includes the

z-axi s :

u(r,¢,z)
* m m *

uo(r,z) + I Un (r,z)sin(n~) - I un(r,z)cos(n~).
n=l n=l

(2)

The motions corresponding to differen~ harmonic orders are uncoupled. Also, the starred and

unstarred param~ters are uncoupled. The degrees of freedom are the coefficients (urn' u~n' Uzn '

ern' 8¢n' 8zn and their "starred" counterparts) at discrete "grid circles." Note the (-) sign pre

ceding the starred series for u(r,¢,z). Because of the (-) sign, the starred parameters describe

motions that are shifted 2: in azimuth from the motions described by the unstarred parameters, since

and

-cos\no) = sin(n~ - I)'

sin(nr,l) = cos(n¢ - ~).

(3 )

(4)

The practical effect of the (-) sign in Equation 2 is that the stiffness matrices for th~

starred parameters are identical to the stiffness matrices for the unsta~red parameters for n>o.

Note that the unstarred coefficients represent motions that are sy~netrical with respect to

q, = 0, and that the starred coeffi ci ents represent anti symmetri ca1 mob ons.

The harmonic order, n, represents an additional dimension of the vector space that is not

present in "ordinary" structural analysis. The number of degrees of freedom per grid circle is
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equal to 6(2m + 1).

The solutions for different unstarred harmonic orders are calculated in the same run. For

statics and inertia relief problems only (Rigid Formats 1 and 2, see Section 3.2), the results

for unstarred harmonic orders may be combined with the results for starred harmonic orders,

thereby providing solutions for general unsymmetric loading.

For vibration mode analysis (Rigid Format 3, see Section 9.1), the user selects the highest

order, m, and all modes of order m and lower are calculated in the same run. There is no pro

vision for selecting individual harmonic orders.

The presence of harmonic coefficients complicates the selection of the order in which

degrees of freedom are processed. In NASTRAN, the degrees of freedom'are sequenced first by

location and then by harmonic order and last by symmetry (starred or unstarred). Thus, all Vo
coefficients precede all vl coefficients, etc. Since no coupling between different orders is

permitted, this is a sensible arrangement that minimizes bandwidth.

4.1.4' Application of Loads

The following types of static loads are available for use with the conical shell element:

a. Concentrated forces and moments applied at points on grid circles.

b. Uniform line load on a sector of a grid circle.

c. Uniform pressure 10ad on a region bounded by two gird circles and two meridians.

d. Harmonic components of force and moment along grid circles.

e. Gravity loads. The gravity vector may be arbitrarily oriented. It operates on the

global mass matrix and generates zero and first harmonic loads.

f. Thermal loads. The temperature is defined at specified points on grid circles and is

linearly interpolated. The provision for harmonic components of temperature described

on Page 5.9-28 has not been implemented. The temperature on grid circles is used by

element routines to compute thermal loads.

g. Enforced displacements at grid circles. Harmonic components are constrained to user

specified values.

The only static loads that can be applied when the solid-ring elements are used are uniform
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symmetrical line forces on grid circles and thermal loads.

uniform line forces and line moments on the grid circles.

The toroidal shell element accepts

It also accepts thermal loading.

At present, very special procedures are required to generate dynamic loads. The computer

generates internal gridpoint numbers for each harmonic at each grid circle. If the user knows

the algorithm by which gridpoint numbers are assigned, he can reference the internally assigned

numbers and apply a load to them. The procedure is described in Section 4.6 of the Programmer's

Manual.

4.1.5 Differential Stiffness

Differential stiffness (see Chapter 7) is available for the conical shell element only. It

provides a linear buckling capability for sylnmetrically loaded shells of revolution. If a non

symmetric loading is applied, NASTRAN extracts the zero harmonic component of the load and then

computes the resulting differential stiffness for all harmonics. It will also compute the buckling

modes for all harmonics.

4.1.6 Hydi'oelastic Capabi1 ity

The NASTRAN hydroelastic capability is described in Section 16.1. The properties of the

fluid are assumed to ~e axisymmetric, and a Fourier series expansion is used. At present, the

properties of the structure must be expressed with ordinary nonaxisymmetric structural elements

in hydroelastic problems.
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4.2 STRUCTURAL MATERIAL PROPERTIES

In NASTRAN structural material properties are normally specified with a Material Property

Card. The only exceptions are the scalar damper and the scalar spring whose material properties

are imbedded in their spring and damping constants. The material properties defined on Material

Property cards include density, elastic moduli, thermal expansion coefficients, allowable stresses

used in calculating margins of safety, and structural damping coefficients. All of the material

properties can be made functions of temperature and elastic moduli can be made functions of

stress for piecewise linear analysis (see Section 3.8).

At present three different types of material property cards are available. Table 1 sum

marizes the availability of the material property types for each of the NASTRAN structural ele

ments. The manner in which elastic moduli are treated by each of the Material Property Cards is

as foll ows:

MAT1 - specifies values of E, v, and/or G for isotropic materials. When two of the three

parameters are specified, the third is computed from G =E/2(1+v). If all three parameters are

specified, the value specified for G is replaced by this formula for surface and surface of revo

lution elements. For solid and solid of revolution elements all three parameters are used in the

form:

Yyz

,.... .,
1

I i
I

') V 0 0 0r - r - r
v 1 v

)
0 I 0 0- r r - r i I

I

V \) 1 I 0 , 0 I 0- r - r r ! !

I 1 i I <
0 0 0 I 0 ! 0

I G ,

I
1

j
0 0 0 0 I 0G 1

I

0 I 0 0 I 0 I 0 i 1
I I G

- -

(l )

Note that the material is not isotropic when G f E/2(l+v). For solid elements the material

axes to which Equation 1 refers are the axes of the basic coordinate system. The material

axes for solid of revolution elements are defined on Page 5.11-22.

4.2-1 (4/1/72)



MISCELLANEOUS GENERAL PROVISIONS FOR STRUCTURAL ANALYSIS

MAT2 - specifies a general anisotropic stress-strain relationship in the form

(2)

This format is available for flat surface elements only, as shown in Table 1.

MAn - specifies a general orthotropic stress-strain relationship with respect to three p€r

pendicular axes of symmetry in the form

(3)

o
-I

o

°

o

°

°

-
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o r"o i 0 ! 0 1: 0
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o I 0 I ° I 0 0 I G czxI I zx \

=

c .
y

Yzx
\

The matrix is symmetric so that

(4)

The inverse of the matrix in Equation 3 is of a similar form as that given in Equation 3

on Page 5.11-4. The MAT3 card is available for surface of revolution and solid of revolution

elements only. These elenents employ approprlate subsets of the (6x6) matrix.

The coordinate axes for the NASTRAN structural elements are defined as follows:

Linear elements (R0D, C0NR~D, and TUBE) have an element x-axis which points from end A to end B

of the element. Positive extensional forces are tension; and positive torques are defined by

the right-hand rule. The material properties are E (for tension) and G (for torsion).
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The linear bending element (BAR), has an element x-axis which points from end A to end B of

the bar. The ends may be offset from the grid points by rigid connections. The element y-axis

is determined by a user specified vector V. The y-axis is in the plane of the vettor Q and the

x-axis, and it is perpendicular to the x-axis. The z-axis forms a right-hand system. The

material properties are E (for extension and bending) and G (for torsion and transverse shear).

For composite beams, a reference value of E can be chosen, and the user can then evaluate the

effective area and moments of inertia. Similarly for G, the user can evaluate the effective

torsional rigidity (J) and transverse shear factors (Ky ' Kz) (see Section 5.2.1). Thus, E and

G are sufficient to describe sandwich type beams.

The surface elements have an element coordinate system internal to each element. The

element lies in its x-y plane, with the origin at the first listed grid.point, and the second

listed grid point on the x-axis. Element forces and stresses are given in this coordinate

system. References can be made to different material properties for membrane, bending and trans

verse shear deformations to account for sandwich plates. Either MATl or MAT2 type materials may

be used. The material matrix (if it is type 2) may be specified in a material coordinate system

whose x-axis makes an angle e with the x-axis of the element coordinate system, as shown in

Figure 1.

The theoretical development in Section 5.8.2.4 allows for a 2 x 2 transverse shear matrix

(5)

relating transverse shear deflections to shear forces. At present J xx = Jyy = l/Gh and J xy = 0;

where G is the value specified on a MATl card (0.0 implies G is infinite). The entire matrix is

set equal to zero if a MAT2 card is used.

The solid elements use the basic coordinate system and allow only isotropic material pro

perties, except as noted above in connection with Equation 1.

The surface of revolution elements have s (meridonal), $ (azimuthal), z (normal) coordinate

systems in place of x, y and z. The conical shell can specify separate isotropic (MATl) pro

perties for membrane, bending and transverse shear. The toroidal shell (zero harmonic only, no

transverse shear) has a single 2 x 2 matrix
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(6)

where s and ~ replace x and y and where the E's and v's may come from a MATl or a MAT3 format.

The solid of revolution elements use a cylindrical r, ~, z coordinate system..Either MATl

or MAT3 formats can be used.

Thermal expansion coefficients are also specified on the Material Property cards. On a

MAT1 card the thermal expansion is assumed isotropic. On a MAT2 card

(7)

On a MAn card

(8)

Note that the material is assumed to be symmetrical with respect to its axes on a MAT3 card.
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Table 1. Existing NASTRAN material capability.

Element
Type

Linear

Surface

E1 ement
Name

R0D, C0NR0D, TUBE

BAR

TRMEM, QOMEM

TRPlT, QDPlT, TRBSC

TRIA1, QUAD1

SHEAR, TWIST

Kind of
Strain

'tension, torsion

ltension, torsion,
(bending, shear

membrane

\ bending
ltran"sverse shear

I membrane
\ bending
~transverse shear

shear

MAT type

1, 2

1, 2*
1, (2 )

1, 2
1,2*

1, (2 )

1

Sol i d TETRA, WEDGE, HEXAl-2 3-dimensional

Surface of
Revolution

Solid of
Revolution

C0NEAX

T0RDRG

TRIARG, TRAPRG

membrane
bending
shear

1, 3

1, 3

*If MAT2 is used, the shear flexibility is 0.0
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CD

x (material x-axis)

., x

(a) Triangle

(mat2rial x-axis)

(b) Quadrilateral

Figure 1. Material axes for surface elements.
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4.3 SUBSTRUCTURE ANALYSIS

Substructure partitioning, as here defined, is a procedure in which the structural model is

divided into separate parts which are then processed, in separate computer executions, to the

point where the data blocks required to join each part to the whole are generated. The subse

quent operations of merging the data for the substructures, and of obtaining solutions for the

combined problem, are performed jn one or more subsequent executions, after which detailed

information for each substructure is obtained by additional separate executions.

Substructure partitioning may be required for logistic reasons in problem preparation, for

reasons of computational efficiency, or simply because the high-speed or peripheral storage

capacity of the computer is exceeded by the data generated in the solution of the problem as a

single structure. The logistic reasons refer to the possibility that the task of preparing the

mathematical model of the strucLure may be assigned to separate groups which work at different

places and times or at different rates and which require frequent access to the computer in

order to check their work. It may, in such situations, be cost effective to combine the results

of the separate computer runs, rather than their separate input data deCkS.

Sections 3.5.3 and 3.5.4 describe a matrix partitioning procedure which is available as an

internal part of the rigid formats and which does not, therefore, qualify as substructure parti-

tioning. It divides the degrees of freedom into two sets: the "a" set u which is retained,, a'

and the "0" set, u
o

' which is omitted in subsequent processing. The manner in which this pro

cedure may be used to generate true substructure partitioning is illustrated in Figure 1. If

the u set is selected as shown, the structural matrices for the u grid points in differenta 0

regions will be uncoupled from each other. For example, the nonzero terms in [Koo] will only

occur in diagonal partitions as shown in Equation below.

K(1) 0 0 0
00

0 K(2) 0 0
00

[Koo] (1)

a 0 K(3) 0
00

0 0 0 Etc.
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The generation of the reduced stiffness matrix [KaaJ and the reduced load vector {Pa} by

Equations 28 and 29 of Section 3.5.3 can then proceed independently for each region (i.e., sub

structure) . Specifi ca lly,

{Pa} = [P~p)] + ?{p~i)} ,
1

where the reduced stiffness matrix for each substructure

and the reduced load vector for each substructure

(2)

(3)

(4)

(5)

The terms [K(P)] and [Pa(p)] in Equations 2 and 3 represent terms added by the user in aaa
later stage.

Substructural analysis by the NASTRAN substructuring technique is logically performed in

at least three phases, as follows:

Phase I: Analysis of each individual substructure by NASTRAN to produce a

description, in matrix terms, of its behavior as seen at the boundary

degrees of freedom, ua '

Phase II: Combination of appropriate matrices from Phase I and the

inclusion, if desired, of additional terms to form a "pseudo-structure"

which is then analyzed by NASTRAN.

Phase III: Completion of the analysis of individual substructures using

the {ua} vector produced in Phase II.

The NASTRAN substructuring technique is available for all rigid formats, except piecewise

linear static analysis. In the case of static rigid format 1, no additional approximations

are introduced into the calculation by the substructuring operation. In the case of dynamic

rigid formats, the Guyan reduction is employed in Phase I, which restricts the dynamic degrees
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of freedom to the {ua} set (see Section 3.5.4). Thus, it is advisable, when solving a dynamic

problem, to include some degrees of freedom at interior points in {ua}. Also, {ua} must, of course,

include ~ degrees of freedom that are connected to more than one substructure.

Under certain circumstances, the substructure analysis may use more than three phases. For

example, if differential stiffness is included, five phases are required as follows: (1) initial

static preload analysis of each substructure; (2) combination static preload analysis; (3) recovery

of static preload stress data, and calculation of the differential stiffness matrix for each sub

structure; (4) combination analysis, including differential stiffness; and (5) completion of the

analysis of individual substructures. Note that rigid format 4, Static Analysis with Differential

Stiffness, is not used in the analysis sequence. A similar procedure is followed in the case of a

buckling analysis, except that it is advisable to include some degrees of freedom at interior points

in {ua}; otherwise the influence of differential stiffness on the buckling mode shape at interior

points will be ignored. Another example where more phases are used is an analysis where the sub

structures are fi rst combi ned into groups, and the groups are then combi ned into a complete "pseudo·

structure. "

As can be seen, a flexible substructuring capability is necessary to accommodate all practical

uses. This is provided by using the ALTER feature (see Section 1.3) to modify existing rigid formats

according to the user's requirements.

Figure 2 shows a typical flow diagram for the operation of substructuring in NASTRAN. It in

volves the application of three separate phases of NASTRAN execution to two substructures. In the

NASTRAN Phase I execution, the stiffness matrix [Kaa] and (if needed) the static load vector {PaJ

are computed independently for each substructure. In dynamic analysis, the matrices [Maa], [K~a]'

and [Baa] are also computed. All of these data are copied onto a user tape via the user module

0UTPUT1, which is altered into the rigid format. The computation of the dynamic load vector is

delayed until Phase II.

The first step in the NASTRAN Phase II execution is to merge the reduced matrices formed in

Phase I. This is done by the existing MERGE and ADD modules which are altered into the NASTRAN

rigid format selected for Phase II. The MERGE operation requires knowledge of the interconnections

between the degrees of freedom in the substructures. This information is contained in a partition

ing matrix, each of whose columns is inserted, via OMI cards, into the bulk data deck for a

particular substructure. The rules for generating the partitioning matrix are explained in Section
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1.10 of the User's Manual. In Phase II, the degrees of freedom in {ua} constitute a set of scalar

points, which is redesignated as the {Ug} set of the "pseudo-structure" and on which all normal

NASTRAN operations may be performed. In particular, direct matrix input (DMI), single and multi

point constraints (SPC's and MPC's), and both static and dynamic loads may be applied. The

partitioning matrix is employed by the user to identify the degrees of freedom in {Ug}.

In Phase III, each NASTRAN substructure execution is restarted with the partition of the

Phase II {u g} vector corresponding to the {ua} vector for each substructure. All normal data

reduction procedures may then be applied. In dynamic analysis, Phase III can be omitted if output

requests are restricted to the response quantities in the ua set.

In a dynamic analysis the user may, if he wishes, employ the Guyan reduction in Phase II. The

complete substructure analysis then involves a "double reduction" in ~Ihich some degrees of freedom

are eliminated in Phase I and some are eliminated in Phase II. This is useful b~cause, as noted

earlier, the {ua} vector generated in Phase I contains ~ of the degrees of freedom on the

boundaries between substructures, as well as a selected set of freedom at interior points. The

density of the boundary freedoms may well be greater than necessary, and these freedoms can be

removed for the sake of economy by the second Guyan reduction. The final set of freedoms retained

for dynamic analysis will be those actively selected by the user and no more. The double reduction

technique is recommended for structures with very many static degrees of freedom, where-it will be

competitive with component mode synthesis (see Section 14.1) in many cases.

Detailed instructions for the NASTRAN substructuring procedures are given in Section 1.10 of

the User's Manua 1.
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SUBSTRUCTURE ANALYSIS

Grid Points Along
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are Placed in the

ua Set

Figure 1. Use of partitioning to decouple regions of the structure.
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NASTRAN
BULK DATA

DECK

NASTRAN
BULK DATA

DECK

DMI,MPC's,SPC's,
DYNAMIC LOADS, *

STATIC LOADS, etc.

NORMAL
OUTPUT

*Any items that are user-specified for the pseudostructure

Figure 2. Flow diagram for NASTRAN sUbstructuring.
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5.1 INTRODUCTION

Much of the individuality of a structures program is exhibited in the structural elements

which it employs. Here, more than elsewhere, the designers of the program express their concep

tion of intended applications; whether, for example, the program will be used mainly for air

frames, for steel frameworks, for massive concrete structures, or for pipe networks. The intended

range of NASTRAN includes all of these types of construction and many more, so that the number of

different structural elements is larger and their properties are less specialized than in most

other structural programs.

In NASTRAN a structural element defines the properties of a physical object that is con

nected to a (relatively small) number of grid points. In static analysis, stiffness properties

are input exclusively by means of structural elements, and mass properties (used in the generation

of loads) are input either as properties of structural elements or as properties of grid points.

In dynamic analysis, mass, damping, and stiffness properties may be input either as properties

of structural elements or as properties of grid points (direct input matrices). There are four

general classes of structural elements.

1. Metric elements which are connected between geometric grid points. Examples include rod,

plate, and shell elements.

2. Scalar elements which are connected between pairs of scalar points (i.e. between any two

degrees of freedom) or between one scalar point and ground.

3. General elements whose properties are defined in terms of deflection influence coeffi

cients and which can be connected between any number of grid points.

4. Constra i nts

The first class (metric elements) incorporates specific assumptions about the mechanical be

havior of structural components. It is the most commonly used class of structural elements. The

latter three classes are introduced to expand the generality of the program; they can, for

example, be used to synthesize structural components not included in the list of metric elements.

The description of a structural element contains several different kinds of information that

are used by the program in different ways. The description of a metric element includes

1. Connection and orientation information (e.g. identification of the grid points to which
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it is connected).

2. Geometric properties, such as thickness or cross-sectional area.

3. Material properties, such as density, elastic moduli, and thermal expansion coefficients.

4. Enforced deformations.

5. Data recovery information, such as the location of points where stresses will be com
puted.

Four different kinds of data cards are regularly used to describe structural elements in

NASTRAN. They are:

1. Material Property Definition Cards that define the material properties for each of the

materials used in the structure. The mat~rial properties include density, elastic mO

duli, thermal expansion coefficients, allowable stresses used in calculating margins of

safety, and structural damping coefficients. Separate card forms are available for iso

tropic and anisotropic materials. Elastic moduli can be made functions of temperature

or of stress (for pieceWise linear analysis).

2. Element Property Definition Cards that define geometric properties 'such as thickness

(of plates) and cross-sectional areas and moments of inertia (of beams). TIther included

items are the nonstructural mass per unit area (or per unit length in the case of beams)

and the locations of points where stresses will be calculated. Except for the simplest

elements, each Element Property Definition Cal"d will reference a Material Property De-

finition Card.

3. Element Connection Cards that identify the grid points to which each element is connect

ed. The order of grid point identification defines the positive direction of the axis of

a one-dimensional element and the positive direction of the surface of a plate element.

The Element Connecticn Cards also include orientation information, such as the direc-

tions of the principal axes of a beam referred to the coordinate systeni of one of its

grid points, or a vector defining the offset of the end points of a beam relative to its

grid points. Except for the simplest elements. each Element Connection Carj references

an Element Property Definition Card. If many elements have the same prooerties, this

system of referencing eliminates a large number of duplicate entries.

4. Constraint Cards that define the degrees of freedom involved in each equation of
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constraint and their coefficients.

Masses assigned directly to grid points by the user are also described by means of Connection

and Element Property Definition Cards. Masses are also assigned to elements by means of the

structural and nonstructural density parameters, and are transferred to grid points by the pro

gram. The nonstructural mass density parameters are used to describe coatings, stored fluids,

secondary structure, and other distributed items that have negligible stiffness. Two different

methods of mass transfer, known as the Lumped Mass and the Coupled Mass methods are available to

the user. They are discussed in Section 5.5.

Each of the structural elements in NASTRAN is discussed in the subsections that follow. In

the program the equations for each structural element are implemented by four or more subrou-

tines corresponding to different structural modules. One subroutine is used for computing the

stiffness matrices, another is used for mass matrices, another is used for the generation of loads,

and a fourth is used for recovering stress data. The discussion of structural elements will, in

most cases, fall short of presenting the complete set of equations that are implemented by the

program. The reader is referred to the NASTRAN Programmer's Manual for the complete equations.

Two other topics which directly involve structural elements, namely differential stiffness

and piecewise linear analysis, are respectively treated in Sections 7 and 3.8 of the Theoretical

Manual. In addition, the relationships involved in transferring the stiffness and mass of

structural elements to grid points are discussed in Section 3.4.

NASTRAN includes a provision for- "dummy" structur-al elements, which allows users to investigate

new structural elements with a minimum of programming effort. The user is only required to write

FORTRAN code for the element routines and to perform a link edit for selected links in order to

include dummy elements in NASTRAN. The element routines are those which compute the stiffness,

mass, and damping matrices for each particular element, generate thermal loads, gener-ate the

differential stiffness matrix, and recover stresses. No provision is made for including dummy

elements in piecewise linear- analysis. Dummy elements can be plotted and changes in dummy elements

can be included in modified restarts. Input for the dummy elements is provided on connection and

property cards. The code required to interpret the information on these cards is put into the

element routines.
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5.2 RODS AND BEAMS

Although it is one of the simplest of structural elements and one that is well known to

everybody, the beam has been a troublesome element in the development of NASTRAN, due to diffi

culty in selecting the properties that it should have. In retrospect it seems clear that the ver

satility of the beam concept is the cause of the difficulty. It is used by engineers to describe

the structural behavior of everything from a simple round rod to a highly tapered airplane wing.

The large number of parameters required to describe the beam element adequately in the latter ap

plication would impose an unreasonable burden of data card preparation on the user in the former

application. Thus, if the number of different forms of the beam element is to be kept reasonably

small, compromises must be made.

There are two basic forms of the beam element in NASTRAN at the present time. The BAR which

includes extension, torsion and bending properties; and the ROD which includes only extension and

torsion. A number of important restrictive assumptions have been accepted for both forms. They

are that the elements are straight, unloaded except at their ends, and that their properties are

uniform from end to end. The first two assumptions are co~plementary in the analysis of continu

ously loaded curved beams because, if such a beam is replaced by a set of straight chords, the

loads should be lumped at the intersections in order to obtain accurate results. These two as

sumptions were adopted in the interest of reducing the number of beam forms in the initial version

of NASTRAN. Straight elements must be included even if curved elements are not.

The third assumption (uniformity) was adopted because of the large number of parameters re

quired to specify the several different kinds of taper that are potentially useful (linear depth

variation, linear EI variation, etc). It was, furthermore, reasoned that the Guyan reduction,

Section 3.5.4, provides a means for specifying a nonuniform beam by subdividing it into several

uniform segments without increasing the number of degrees of freedom to be used in dynamic ana

lysis.

The complete mathematical equations that describe the beam elements may be found in Section

4.87 of the NASTRAN Programmer's Manual. The properties that the elements have are described

below in separate subsections.
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5.2.1 The BAR Element

The BAR element includes extension, torsion, bending in two perpendicular planes and the

associated shears. The orientation of the principal axes is freely selected by the user. The

shear center is assumed to coincide with the elastic axis, i.e., with the centroid of the struc

tural material. This assumption is restrictive only when both properties are important in the

same problem. It is permitted to offset the elastic axis from a line joining the grid points

to which the bar is attached. It is also permitted to eliminate the connection between any of

the six motions at either end of the bar and the adjacent grid point, provided that at least one

connection remains. This feature has several uses including, for example, the representation of

beams that are fixed at one end and pinned at the other.

The specified cross-sectional properties of the bar are its area; its moments and product

of inertia; its torsional stiffness factor, J; the factor K (in KAG) for computing transverse

shear stiffness (see for example, Reference 1); and the nonstructural mass per unit length. The

material properties, obtained by reference to a material properties table, include the elastic

moduli, E and G, density, P, and the thermal expansion coefficient, a, determined at the average

temperature of the element. The temperature data for the bar may be specified by either of two

methods. In the first method, the average temperature and the effective transverse gradient of the

temperature is specified at each end; the temperature is assumed to vary linearly along the bar.

In the second method, the temperature is assumed to be uniform throughout the bar and equal to the

average of the temperature assigned to the grid points which it connects. An extensional deforma

tion (misfit) may also be enforced.

The stiffness matrix of the bar element is a 12X12 matrix of coefficients expressing the

forces and moments acting on the degrees of freedom at its ends. The stiffness matrix is first

calculated with respect to translations and rotations parallel to an internal coordinate system

with one axis coincident with the axis of the bar (see Figure 1) and is then transformed into the

directions of the degrees of freedom assigned to the adjacent grid points.

(l)Roark, R. J., "Formulas for Stress and Strain", McGraw-Hill, 1954, P 120.
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z

Figure 1. Bar coordinate system, showing degrees of freedom for bending in the xz plane.

For example, the portion of the stiffness matrix that describes bending in the xz plane of

the element, assumed to be a principal plane, is given by

where

I I I

R I 4R I -R I -4R_ -I - ,,=2__ .1. _ J. _..1 _
I I

I ~2 ~ I ~ : ~2 ~
14 R + Q. ¥14 R -.Q,, ,
-- ---1- -1-----

I R 1 4R
I__ I__~ --

I .Q, 2 El vSYMMETRICAL I - R + ~
I 4 Z

(1 )

(2)

The complete stiffness equation, including extension, torsion, and bending in two planes,

written in the element coordinate system, may be represented in symbolic form as

(3)

The degrees of freedom, ue ' at the ends of the element in its internal coordinate system are

related to the degrees of freedom, ug' of the adjacent grid points by
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(4)

where [TJ is a matrix whose elements are calculated from direction cosines and offsets.

The stiffness matrix for the element written in the global (grid point) coordinate system is

(5)

The structural and nonstructural mass of the bar are similarly transferred to the adjacent

grid points by either of two methods as explained in Section 5.5. The center of gravity is assumed

to lie along the elastic axis; cross-sectional rotary inertia effects, including torsional iner-

tia, are neglected.

Equivalent thermal loads on the adjacent grid points are developed as follows. Beam theory

predicts the average strain and curvatures of an unloaded beam, for cases where a does not vary

with depth, to be:

where

Eav *JT dA

2
3 Uz

i3 - I: JTz dA3l y

2
~ Bz - 2.. JTY dA •3i Iz

A ~ cross sectional area

a ~ thermal expansion coefficient

T ~ temperature above ambient

y,t ~ coordinates of a point in the cross section (see Figure 2)

Iy,I z ~ moments of inertia of the cross section about the y and z axes respectively.

(6 )

(7)

(8)

The integration is carried out over the cross section, with y ~ 0 and z = 0 at the centroid.

Define the temperature resultants:

*JT dA

+- f Tz dA ,
Y
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T = i- f Ty dA •
y z

(11)

, ,
Note that if the temperature distribution has a linear gradient, the resultants Tz and Ty are the

gradi ents.

Let the temperature (and therefore the temperature resultants) vary 1inear1y between the ends

of the beam. If end b (x = Q.) were fi xed, the deflections at end a (x = 0) would be:

0

- ; a(Ta
\ - T

x) dxf sav dx
a _ aQ. (T + T ) (12 )uxa +

Q. 2 a b
Q, 0

The slopes would be

eya

dU
--.1
dX fo ( Szb - S )S + za x dx

- I za 9.

aQ. I I

- - (T + T )2 za zb

aQ. (T' + T
y
' b)

2 ya (13 )

(14 )

The displacements obtained by integrating the rotations are

0 2 I I

- ~ (2T + T )6 yb ya
(15)

and. similarly,

0 2 I I

= - ~ (2T + T )6 zb za (16 )

The loads which must be applied to the bar to produce equivalent displacements will be a

function of the material elastic moduli. E and G; the bending inertias~ Iy ' Iz • and Iyz ; the shear

factors Ky and Kz ; the cross sectional area, A; and the results of applying pin joints which dis

connect various degrees of freedom of the ends of the bar from the grid points. If no pin joints

are applied and the material properties do not vary through the depth, the equivalent loads are

neatly expressed in terms of the stiffness matrix. In element coordinates the loads are:
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(17)

where {Pa} and {Pb} are the six components of load on each end of the beam; [KaaJ, [KabJ, etc. are

the six by six partitions of the stiffness matrix; {u~} and {U;1 are the secs of displacements at

each end resulting from temperatures. The nonzero components of {u~} are given by Equations 12-16.

{u~} is null. The loads are transformed to grid point coordinates by oremultiplying Equation 17 by

[TJT where [TJ is defined in Equation 4.

If pin joints are used, the stiffness matrix is partitioned and reduced as follows:

a) The matrix is partitioned:

[K] (18 )

where the subscript "0" refers to degrees of freedom thc:t are disconnected.

b) A transformation matrix [GoJ is defined as:

c) The reduced matrix with pin joints is:

where

d) The loads on the reduced set are:
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where {P~} and {Po} are loads on the unreduced set; see Equation 29, Section 3.5.3.

The temperature field produces loads on the unpinned bar by the equations:

{P :
0'

(22)

(23 )

where {uI} and {u~} are the displacements

f ' t, ' t,equal to the components 0 IUa , and 1ub:,

ates are, from Equations 21, 22, and 23:

due to thermal effects. Their components are

rearranged. The loads on the reduced coordin-

Using Equation 19, the second and fourth terms cancel and the resulting load is:

(25)

The matrix in the parentheses is exactly equal to the reduced stiffness matrix for the

unpinned coordinates (Equation 20).

The equations used in stress data recovery for the element thermal loads are modifications

of Equations 12 through 17, and 25. The applied thermal forces and moments, {P
t
}. are subtracted

from the computed forces and moments. Stresses are calculated from the resulting internal loads.

The following types of stress data output can be requested

- Bending moments at both ends in two planes

- Transverse shear force in two planes

- Axial force

- Torque

- The average axial stress

_ The stresses due to bending at four points on the cross-section at both ends.
The points are specified by the user.

_ The maximum and minimum extensional stresses at both ends
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Margins of safety in tension and compression for the whole element.

5.2.2 ROD Elements

The ROD element is a simplified form that includes extensional and torsional properties only.

Extensional and torsional properties are combined in one element in order to reduce the number

of separate types of data cards; it is unlikely that both properties will often b~ used simul

taneously.

The specified cross-sectional properties of the rod are its area; its torsional stiffness

factor, J; its nonstructural mass per unit length; and a factor for converting torque into shear

stress. Material properties are obtained by reference to a material properties table.

The R0D, like the BAR, can be subjected to thermal expansion and enforced axial deformation

except that thermal gradients are ignored. The treatment of mass properties is explained in

Section 5.5.

The TUBE element is a specialized form of the ROD that is assumed to have a circular cross

section. The outer diameter and the wall thickness of the tube are specified rather than its

area and torsional stiffness constant, J.

Another kind of rod element is the viscous damper, VISe, that has extensional and torsional

viscous damping properties rather than stiffness properties.
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')'an~ ,

b

-......,--------t... uzb

a) BAR coordinate system.

y, P1 ane ,

I = I2 yy

..... +-_--.;y=c,
c

z = c2

z ,P1 ane 2

I1 Izz

b) Cross section with stress recovery points.

Figure 2 BAR geometry
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5.3 SHEAR PANELS AND TWIST PANELS

A shear panel is a two-dimensional structural element that resists the action of tangential

forces applied to its edges (plus the action of other forces when necessary to preserve

equilibrium) but does not resist the action of normal forces. Shear panels are created in the

process of obtaining idealized models for elastic sheets. If a sheet has heavy stiffeners, it is

reasonable to lump the normal stress-resisting properties of the sheet into stiffeners and to

lump the shear-resisting properties of the sheet into shear panels. This idealization can some

times be justified even if the sheet has light stiffeners or no stiffeners at all. The shape of

a shear panel is determined by the directions of the bounding stiffeners, and, although the rec

tangle can be considered to be the normal shape for a shear panel, other quadrilateral shapes

must be considered in practice.

The twist panel is the bending analog of the membrane shear panel. It is, in fact, equi

valent for bending action to a pair of parallel shear panels.

Consider the flat quadrilateral panel shown in Figure 1. (The effects of warping will be

treated later.) The panel is in equilibrium under the action of tangential edge forces, F1, F2,

F3 and F4• In NASTRAN, the forces on elements are applied only at their corners. i.e •• at grid

points. In Figure 1. the equivalent corner forces. fA. fB" f C and f D• are made collinear with the

diagonals. Only one of the·edge forces is independent. the others taking values to satisfy equi

librium. The auxiliary quadrilateral BEFC in Figure 1 is a force polygon that may be used to

evaluate the ratios of the edge forces. SF is drawn parallel to AC and EF is drawn parallel to

AD. Since the resultant of Fl and F4 must lie along AC in order to balance the resultant of F2
and F3• the triangle BEF expresses the relationship among F1, F4 and their resultant. It is as

sumed (arbitrarily) that one-half of the adjacent edge forces are reacted at each corner. Thus,

if ql is the average shear flow along edge AB,

~ _ q, AB·BF
fA = IC - 2~

(2)

If the strain energy can be expressed as a quadratic function of q,.

(3)
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then the stiffness matrix referred to motions at the corners is derived from Equations 1, 2 and

3 as follows.

Let the el~ent stiffness matrix [KeeJ be defined by

(4 )

where

(5)

and the elements of {ue} are components of corner motions collinear with the elements of {fe},

Equations 1 and 2 may be written in matrix form as

(6 )

The strain energy is related to corner motions by

It is convenient to define a generalized disolacement, 5, conjugate to q" such that

(8 )

and

(9)

Still other ways to express the strain energy are

(l 0)

(11 )

where Equation 6 has been used in the second form. Comparing Equations 9 and 11

(12 )

so that, substituting into the second form of Equation 9

(13 )
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Finally the stiffness matrix is obtained by comparing Equations 7 and 13.

(14 )

Let tUg} be the degrees of freedom at adjacent grid points in the global coordinate system,

to which the element coordinates {ue} are related by a geometric transformation

(15 )

The stiffness matrix of the shear panel referred to grid point coordinates is

(16 )

A final task is to evaluate the constant z in the expression (Equation 3) relating strain

energy to the average shear flow on side 1 of the panel. For a rectangular panel the shear flow

is constant over the surface and

z = ~t (17)

where A is the area, t is the thickness and G is the shear modulus of the panel. For a parallelo

gram the shear flow is still constant and it can easily be shown that

z = 8- (1 + 2tan
2
e )

Gt 1+1)
(18 )

where e is the skew angle of the parallelogram (i.e., the complement of the smaller interior

angles) and u is Poisson's ratio.

In order to analyze more general shapes (the trapezoid and the trapezium) it is first neces-
'1)

sary to make an assumption regarding the distribution of shear flow. Garvey\ has suggested a

distribution of shear flow that satisfies all equilibrium conditions but does not satisfy the

strain compatibility condition except in the limiting case of a parallelogram. This distribution

is illustrated in Figure 2. The tangential force per unit length on an infinitesimal parallelo

gram the extension of whose sides pass through P and Q is assumed to be inversely proportional to

the square of the distance from the baseline PQ.

{l)Garvey, S. J., "The Quadrilateral Shear Panel". Aircraft Engineering, p.134, May 1951
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For the assumed distribution of shear flow, the strain energy per unit area is

where? is the skew angle of the infinitesimal parallelogram.

(19 )

Integratjon of Equation 19 for the

general quadrilateral is straightforward but tedious. The expression derived by Garvey for the

general case will be found in the Programmer's Manual. For the special case of a trapezoid, see

Figure 3, an expression for the quantity z in Equation 3 is

z
A
Gf (20)

The approximations in Garvey's formulatlon becom~ more serious as the distortion of the

oanel from a rectangular shape increases. Most of the difficulty is with the assumption, Which is

basic to the concept of a shear panel, that the tangential forces on a quadrilateral element do

not couple elastically with the normal forces. This assumotion is simply incorrect for noo-

rectangular shapes and tt can lead to erroneous results. Garvey's formula~ion is used in NASTRAN

because it is plausible and easy to apply, and because, given the lack of rigor in the shear

panel concept, more elaborate formulations cannot be justified.

Four points cannot, in general, be restricted to lie in a plane, and so allowance must be

made for the effects of warping in the development of the equations for a shear panel. Trouble

with static equilibrium is avoided by directing the corner fo.ces along the diagonals even though

they are no longer coplanar. The important parameters (z and {A}) are evaluated for an ecuiva-

lent plane quadrilateral that is parallel to both diagonals. The locations of the cor~ers of the

equivalent plane figure are obtained by normal projection of the corners of the actual panel.

The physical properties of a shear panel that are specified by the user are its thickness,

its nonstructural mass per unH area and a reference to a material properties nble where the

density, shear modulus and Poisson's ratio are stored. T~ermal expar.sion is not apolied to

shear panels, even though the generalized displacement, 8, includes seme dilatacil~ wher t~2 pal~31

is nonrectangular. The user is, therefore, warned against using severely skewed shear Danels in

thermal stress analyses.

The mass of the panel is transferred to adjacent grid points as follows, The panel is
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divided into two triangles by one of the diagonals and one-third of the mass of each triangle is

assigned to each of its corners. The assignment of mass is then repeated using the other dia-

gonal to form the triangles. Finally the two assignments are averaged.

The quantities computed in stress data recovery are the corner loads in the directions of

the diagonals. the shear stresses at the corners (in skewed coordinates parallel to the exterior

edges), the average of the corner shear stresses, and the maximum shear stress. Explicit formulas

for the calculations are given in Section 4.87 of the Programmer's Manual.

The twist panel performs the same function for bending action that the shear panel performs

for membrane action. Couples are applied by imposing forces at the corners in planes parallel to

the diagonals, see sketch below. The stiffness matrix of a twist panel is equal to that of a

shear panel multiplied by t 2/l2 where t is the thickness of the panel. which is assumed to be

solid. For built-up 'pane1s, t must be adjusted to give the correct moment of inertia of the

cross-section.
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Figure 1. Snear panel and its force polygon.

2q·d = Ccns,tant

Figure 2. Garvey's assumption regard~ng ~nternal stress cistributior. of a quadrilateral panel.
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Figure 3. Trapezoida1 pane1.
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5.4 CONSTRAINTS

A mathematical analysis of the manner in which degrees of freedom are eliminated by equa

tions of constraint is given in Section 3.5. There are two kinds of constraints: single point

constraints in which a degree of freedom is constrained to zero or to a prescribed value; and

multipoint constraints in which a degree of freedom is constrained to be equal to a linear com-

bination of the values of other degrees of freedom.

A number of different Constraint Definition Cards are provided for the convenience of the

user in specifying constraints. They can be separated into four types: single point constraint

cards; multipoint constraint cards; cards to define reaction points on free bodies; and cards

to define the omitted coordinates, uo' in matrix partitioning. The latter type strictly defines

a constraint only in dynamic analysis, see Section 3.5.4.

A single point constraint applies a fixed value to a displacement or rotation component at a

geometric grid point or to a scalar point. One of the most common uses of single point con

straints is to specify the boundary conditions of a structure by fixing displacements and/or

rotations at certain points. The structure may have a line of symmetry at which only symmetric

or antisymmetric motions are allowed. The single point constraints may be used to fix the proper

degrees of freedom on these boundaries. Alternate sets of constraints can be stored in the pro

gram to facilitate treatment of different symmetry conditions as subcases (see Figure 1 of Sec

tion 3.2).

The elements connected to a grid point may not provide resistance to motion in certain direc

tions, causing the stiffness matrix to be singular. Single point constraints are used to remove

these degrees of freedom from the stiffness matrix. A typical example is a planar structure com

posed of membrane and extensional elements. The translations normal to the plane and all three

rotational degrees of freedom must be constrained since the corresponding stiffness matrix terms

are all zero.

If a grid point has a direction of zero stiffness, the single point constraint need not be

exactly in that direction. For example, two collinear rod elements that are connected to a point

may be constrained as shown:
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direction
of

constraint

direction of free motion
before constraint was
imposed

The direction of constraint allows the point to move only vertically, but, since the rods are

collinear. the force of constraint is zero and the forces in the elements are still valid. The

NASTRAN system detects singularities of individual grid or scalar points during problem formula-

tion, see Section 3.4. As in the above examole, more than one valid way exists for constraining

a geometric grid point. The possible constraints are listed in a warning message in their order

of preference.

Multipoint constraints are a feature of NASTRAN that is not commonly found in structural

analysis programs. Each multipoint constraint is described by a single equation of the form

\" R u
L c9 gg

o . (1)

The degree of freedom that occurs in the first term of the equation is the one that is eliminated.

8y this means the user, rather than the program, selects the degrees of freedom to be removed from

the equations of motion. As an example. consider the rigid bar segment shown on the next page.

The equation of constraint is

(2)

where wb is as the dependent coordinate.
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wa wb

cb Iaa

/- -1

A multipoint constraint also applies forces, qcg' to each of the degrees of freedom included

in the equation of constraint, Equation 1. A double subscript is used to indicate the force on

the gth degree of freedom due to the cth constraint. The forces are proportional to the coeffi-

cients, Reg' in Equation 1, as will be shown. Thus

(3)

where q is a constant, called the force of constraint. Since the equation of constraint is
c

altered so that the coefficient of the lead term is unity, see Section 3.5.1, qc is in fact

equal to the force of constraint on the degree of freedom that is eliminated.

One of the defining properties of a constraint is that it does no work. Thus

Wc = L q u = 0 • (4)
9 cg g

The only way that Equation 4 can be satisfied for all permissible values of the u 's is if
g

the qCg'S satisfy Equation 3, thereby reducing Equation 4 to Equation 1.

Some of the uses of multipoint constraints are

a. To enforce zero motion in directions other than those corresponding with components of

the global coordinate system. The multipoint constraint will, in this case, involve

only the degrees of freedom at a single grid point.

b. To describe rigid elements and mechanisms such as levers, pulleys and gear trains. One

of the criticisms of the displacement method has been that matrix ill-conditioning occurs

in the presence of very stiff members when they are treated as ordinary elastic elements.

Treatment of such members as rigid constraints eliminates the ill-conditioning.
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c. To generate nonstandard structural elements and other special effects. Consider, for

example, a pressurized container such that changes in the enclosed volume produce signi

ficant changes in internal pressure. The change in volume may be exoressed as a linear

combination of displacements normal to the surface. Regarding the c,ange in volume as a

degree of freedom (scalar point), its effect on the container is simulated by a multi

point constraint that relates it to the normal displacements at the surface, and by a

scalar spring connected between the new (constrained) degree of freedom and ground.

d. To describe parts of a structure by local vibration modes. This important application

is treated i~ Section 14.1. The general idea'is that the'matrix of local eigenvectors

represents a set of constraints relating phys1cal coordinates to modal coordinates.

At present the user provides the coefficients in the equations of multipoint constraint.

Modifications to the program are contemplated in which some constraints will be generated inter

nally. For example. in specifying a rigid body, the user will only need to specify the degrees

of freedom to which the body is connected.
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5.5 TREATMENT OF INERTIA PROPERTIES

Inertia properties have two different kinds of application in linearized structural analy

sis: as generators of applied loads in static analysis; and as generators of matrix coefficients

in dynamic analysis. The former application includes gravity loads, centrifugal loads and inertia

relief effects, sUbjects that are treated in Section 3.6. The latter application includes the

matrix of ordinary mass coefficients, and also, in problems defined in rotating coordinate sys

tems, matrices of (Coriolis) damping" coefficients and (centrifugal) stiffness coefficients.

Automatic treatment of dynamic inertia effects in rotating coordinate systems is contemplated,

but not as yet implemented, in NASTRAN.

Inertia properties are specified directly as mass elements attached to grid points and in

directly as the properties of metric structural elements. In addition, in dynamic analysis, mass

matrix coefficients may be specified that are directly referred to the global coordinate system.

A number of types of data cards are provided for specifying masses attached to grid points.

They include;-

1. The CMASS card, that defines a scalar mass connected between a pair of degrees of free

dpm (at either scalar or geometric grid point~) or between one degree of freedom and

ground. Thus, f l =M(xl - x2) where'x2 may ~e absent. The CMASS card (which has four

variations) is necessary whenever scalar points are used. Other applitations include

selective representations of inertia properties, such as occur in shell theory where in

plane inertia forces are often ignored.

2. The CONM2 card, that defines the properties of a solid body as its mass, the three co

ordinates of its center of gravity, its three moments of inertia. and its three products

of inertia, referred to any (selected) coordinate system.

3. The CONMl card, that defines a 6x6 matrix of mass coefficients at a geometric grid point

in any (selected) coordinate system. Since the only restrictions are that the matrix be

real and symmetric, there are 21 independent coefficients. The CONMl card therefore per

mits somewhat more general inertia relationships than those of a solid body which has

only 10 independent inertia properties. This should be remembered in applications re

quiring unique centers of gravity, such as in the calculation of centrifugal forces.

All of the metric structural elements (rods, bars, shear panels, twist panels, plates, and
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shell elements) may have umfonnly Jistricutea structUl"al and nonstructural mass. Structural

mass is calculated from material and qeo~etrlc prODerties. The mass is assumed to be concen-

trated in the middle surface or along the neu-::r~J axis in the case of rods and bars, so that ro-

tary inertia effects, including the torsional inertia of beams, are absent. Such effects can, of

course. be assigned by the user to gria points. The masses of metric structural elements are

transferred to the adjacent grid points by eith:::' ryF t,iO methods, referred to as the Lumped Mass

and Coupled Mass methods, at the OC~lon of the user.

In the Lumped ~ass method the mass of a;1 element is simply divided and assigned to surround-

ing grid points. Thus, for uri form roas ana bars, one-half of the mass is placed at each end;

for·uniform triangles, one-third of the mass is olaced at each corner; quadrilaterals are treated

as two pairs of overlapping triangles (see Seccions 5.3 and 5.8). It will be noted that second

mass moments are not preserved with the Lumped Mass m~thod. The virtues of the method derive

from its simplicity. Off-diagonal terms in the mass matrix are restricted to those involving a

single geometric grid point. Progl"amming .. fforr. and computer running time are less, often by all

insignificant amount, than for ~ore sophisticated methods of mass assignment. The mass matrix

is independent Of the elastic properties of elements and the user has a better feel for the

character of the matrix. The accuracy of the results, which is the key question, will be ex-

amined later.

In Coupled Mass methods, the mass matrix due to a single structural element includes off

diagonal coefficients that couple adjacent grid points. The best known of the Coupled Mass me

thods is the Consistent Mass Matrix of Archer(l).

The general procedure for generating a consistent mass matrix is as follows. Consider, for

simplicity, a one-dimensional structural element wnose degrees of freedom are represented by

translations and rotations at the two ends of the element. Corresponding to aach degree of free

dom, ui ' there is a displacement function, wi(x), within the element obtain~dby giving unit value

to ui and zero value to all other degrees of freedom. The functions, Wi' satisfy the differential

equations of the element. The element Mij of the mass matrix [M] is obtained from the formula

-~, ..u. = -( rim(x)w.(X)W.(X)dX) u.lJ 1 0 1 J 1

(1 )Archer, John S., "Consistent Mass Matrix fOl" Distributed Mass Systems". Journal of the Struc
tural Division, ASCE, Vol. 89, No. 5T4, p.161, August 1963.
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Equation 1 is obtained from the principle of virtual work. In essence ui is regarded as a

generalized coordinate for which wi(x) is the "mode shape". The inertia force acting at x due to

ui is -m(x)wi(x)ui . Multiplication of the inertia force by wj gives the generalized force acting

on coordinate uj '

The idea of "consistency" enters because the functions wi are also used to calculate the

stiffness matrix [Kij ] from strain energy considerations. It can be shown that the vibration

frequencies so obtained are upper bounds. The reason is that the selection of a finite number of

specific functions, Wi' is equivalent to the imposition of rigid constraints on the structure.

As an elementary example consider a uniform extensional rod with distributed mass, as shown

below

()

-ua -ub

The degrees of freedom are ua and ub and the displacement functions are wa 1 - x/2 and

wb x/2. The resulting consistent mass matrix is

(2 )

whereas the lumped mass matrix is

The stiffness matrix is

[K]

(3)

(4 )

Some information on the question of accuracy can be gained by calculating the error in na

tural frequency due to finite element assumptions for simple structures. Anaiysis of a uniform
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rod with any combination of free and fixed ends(2) shows that the error in frequency that results

from using Equations 3 and 4 (the lumped mass method) is

(
:approx\

exact ~
(5)

where N is the number of cells per wavelength. The corresponding result for Equations 2 and 4

(the consistent mass method) is

(6)

Note that the consistent mass and lumped mass methods give errors that, for large N, are the

same in magnitude but opposite in sign. A much smaller error is achieved if the mass matrices for

the two methods, Equations 2 and 3, are averaged.

The error in this case is given by

(
wapprox\ " 1 + 10 (~)4 + 0 (*)6
wexact ) a

The mode shapes are exact for all three methods.

(7)

(8 )

Equation 7 has been adopted in NASTRAN as the coupled mass matrix for the extension of rods

and bars. It wi 11 also be applied to the torsion of beams, if and when distributed torsional

inertia is added as a property of beam elements.

Archer's paper(l) includes a derivation of the consistent mass matrix for the lateral ben

ding of a uniform beam without transverse shear flexibility shown below.

wa ..__---__ £ wb

6a ( 1(L...--.. 11) 6b

-(2 )
MacNeal, R. H., ELECTRIC CIRCUIT ANALOGIES FOR ELASTIC STRUCTURES. John Wiley &Sons, 1962.
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The consistent mass matrix referred to the coordinate set {u} {wa ' ea , wb' eb}T is

156 I -22£ I 54 131
I I------------

-22£ I 4.e. 2 I -13£ I -312
__ .l.. __ ..l __ ~ _

I I I
54 I -132 I 156 I 221-

- -----------
I 2 I I 2

132 I -3.e.. I 222 I 41

(9)

The paper also includes the results of numerical error analysis for free-free and simply

supported beams. For simply supported beams the errors in the lumped mass and consistent mass

formulations are approximately equal and opposite, and they are surorisingly small. An equation

for the frequency error associated with the lumped mass formulation (2) is

(
waoprox\ 1 _ ~O (*)4 + 0 (*)6 (10)
Wexact1

For free-free beams the error in the consistent mass formulation appears to be of the same

order as that given by Equation 10, but the error in the lumped mass formulation is one or two

orders of magnitude larger. Similar results may be expected for cantilever beams.

Archer's consistent mass matrix, Equation 9, has been adopted in NASTRAN as the coupled

mass matrix for the lateral deflection of bars. No modification is included for the effect of

transverse shear flexibility, which is slight.

The consistent mass formulation has also been applied in NASTRAN to the lateral deflection

of plates. The procedures used are described in Section 5.8. In the cases of the doubly curved

shell element, Section 5.10, and the solid of revolution elements, Section 5.11, the consistent

mass formulation is the only method of mass transfer that is available.

Only the lumped mass method is available in NASTRAN for shear panels, twist panels, the mem-

brane action of plates, and the conical shell element, which completes the current list of metric

elements. Coupled mass methods are not applied to shear panels and twist panels because of their

peculiar status as incomplete physical objects. The membrane action of plates was excluded be

cause structural models built from such elements generally tend to be too stiff and the use of

any logical coupling method would only tend to increase the frequency. The conical shell ele

ment, Section 5.9, was excluded because its complexity makes the development of a consistent

mass matrix an expensive task.
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5.6 SCALAR ELEMENTS

Scalar elements are connected between pairs of degrees of freedom (at either scalar or geo

metric grid points) or between one degree of freedom and ground. Th~ stiffness matrix for a

scalar sprlng is given by

(1 )

or by

(2)

Other available forms of scalar elements are the scalar mass and the viscous damper.

Scalar spring elements are useful for representing springs that cannot conveniently be mo

deled by the metric structural elements. Scalar masses are useful for the selective representa

tion of inertia properties, such as occurs, when a concentrated mass is effectively isolated for

motion i~ one direction only. The scalar viscous damper is one of two elements with exclusively

damping properties included in NASTRAN. The other is the viscous rod element, see Section 5.2.

It is possible, using only scalar elements and constraints, to construct a model for the

linear behavior of any structure. These elements are, in fact, the basis for the Direct Analog

Co~puter method of structural analYSis(l) where inductors represent springs, resistors represent

dampers, capacitors represent masses, and transformers represent equations of constraint. They

have also been made the basis of several digital computer orograms.

Turning the electrical analogy around, we can say that the scalar elements give NASTRAN the

ability to analyze any passive electrical network, including for example, large electrical dis-

tribution systems. Heat transfer problems can also be solved because of the analogies between

heat capacity and mass, and between a heat conductor and a viscous damper.

Perhaps of greater importance to the structural analyst is the fact that electrical circuits

and heat transfer can be included as part of an overall structural analysis, as for example, in a

problem that includes electromechanical devices. This subject is discussed further in Sections

9.3 and 14.2.

(1) MacNeal, R. H., ELECTRIC CIRCUIT ANALOGIES FOR ELASTIC STRUCTURES. John Wiley & Sons, N.Y.
1962.
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5.7 THE GENERAL ELEMENT

The general element is a structural stiffness element connected to any number of degrees of

freedom, as specified by the user. In defining the form of the externally generated data on the

stiffness of the element, two major options are provided to the user.

(i) Instead of supplying the stiffness matrix for the element directly, the user provides

the deflection influence coefficients for the structure supported in a non-redundant manner. The

associated matrix of the restrained rigid body motions may be input or may be generated internally

by the prog ram.

(ii) The stiffness matrix of the element may be input directly. This stiffness m~trix may

be for the unsupported body, containing all the rigid body modes, or it may be for a subset of

the body's degrees of freedom from which some or all of the rigid body motions are delated. In

the latter case, the option is given for automatic inflation of the stiffness matrix to reintroduce

the restrained rigid body terms, provided that the original support conditions did not constitute

a redundant set of reactions. An important advantage of this option is that, if the original

support conditions restrain all rigid body motlons, the reduced stiffness matrix need not be

specified by the user to high precision in order to preserve'the rigid body properties of the

element.

The defining equation for the general element when written in the flexibility form is

(1)

where:

[z] is the matrix of deflection influence coefficients for coordinates {u i } when coordinates

{ud} are rigidly restrained.

[$] is a rigid body matrix whose terms are the displacements {ui } due to unit motions of the

coordinates {ud}, when all f i = O.

{fi } are the forces applied to the element at the {u i } coordinates.

{fd} are the forces applied to the element at the {ud} coordinates. They are assumed to be

statically related to the {f.} forces, i.e., they constit~te a nonredundant set of
1

reactions for the element.
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The defining equation for the general element when written in the stiffness form is

l-~:-l [:;;;-----:~;;-sJ~-::-l (1,)

where all symbols have the same meaning as in fauation 1 and [k] = [Z]-l, when [k] is nonsingular.

Note however that it is permissible for [k] to be singular. Equation la is derivable from

Equation 1 when [k] is nonsingular.

Input data for the element consists of lists of the ui and ud coordinates, which may occur

at either geometric or scalar grid points; the values of the elements of the [Z] ~atrix, or

the values of the elements of the [k] matrix; and (optionally) the values of the

elements of the [5] matrix.

The user may request that the program internally generate the [5] matrix. If so, the ui and

ud coordinates can occur only at geometric grid points, and there must be six or fewer ud coordi

nates that provide a nonredundant set of reactions for the element as a three-dimensional body.

The [5] matrix is internally generated as follows. Let {ubi be a set of six independent

motions (three translations and three rotations) along coordinate axes at the origin of the basic

coordinate system. Let the relationship between {ud} and {ubi be

(2)

The elements of COd] are easily calculated from the basic (x,y,z) geometric coordinates of

the grid points at which the elements of {ud} occur, and the transformations between basic and

global (local) coordinate systems. Let the relationship between {u j } and {ubi be

(3)

where [oi] is calculated in the same manner as [Od]. Then, if COd] is nonsingular,

(4)

Note that, if the set {ud} is not a sufficient set of reactions, [Dd] is singular and [5] cannot

be computed in the manner shown. When {ud} contains fewer than six elements, the matrix [Dd] is

not directly invertable but a submatrix [a] of rank r, where r is the number of elements of {ud},

can be extracted and inverted.
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A method which is available only for the stiffness formulation and not for the flexibility

formulation will be described. The flexibility formulation requires that {ud} have six components.

The method is as follows. Let {ud} be augmented by 6-r displacement components {ud '} which are

restrained to zero value. We may then write

(5)

The matrix [Dd] is examined and a nonsingular subset [a] with r rows and columns is found.

{u b} is then reordered to identify its first r elements with {uct }. The remaining elements of {ub}

are equated to the elements of tUd' }. The c~plete matrix [0] then has the form

with an inverse

t-1 I -1 J_ -1 a ~ -a b
[0] = --O---~----I---

Since the members of {ud'} are restrained to zero value,

where [Dr] is the (6xr) partitioned matrix given by

The [Oi J matrix is formed as before and the (SJ matrix is then

(6)

(7)

(8)

(9)

(10 )

Although this procedure will replace all deleted rigid body motions, it is not necessary to do

this if a stiffness matrix rather than a flexibility matrix is input. It is, however, a highly

recommended procedure because it will eliminate errors due to nonsatisfaction of rigid body pro

perties by imprecise input data.

The stiffness matrix of the element written in partitioned form is
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When the flexibility formulation is used, the program evaluates the partitions of [Kee] from·

[l] and [S] as follows:

[K .. ] = [Zr1
11

[Kid] = _[Z]-l[S]

[K
dd

] = [S]T[Z]-l[S]

(12)

(13 )

(14 )

If a stiffness matrix, [k], rather than a flexibility matrix is input, the partitions of

[Kii ] = [k]

[Kid] = -[k][S]

[Kdct ] = [S]T[k][S]

No internal forces or other output data are produced for the general element.
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5.8 PLATES

NASTRAN includes two different shapes of plate elements (triangular and quadrilateral)

and two different stress systems (membrane and bending) which are, at present, uncoupled.

There are in all a total of eleven different forms of plate elements as follows:

1. TRMEM - A triangular element with finite inplane stiffness and zero bending stiffness.

2. TRBSC - The basic unit from which the bending properties of the other plate elements

are formed. In stand-alone form, it is used mainly as a research tool.

3. TRPLT - A triangular element with zero inplane stiffness and finite bending stiffness.

It is composed of three basic bending triangles that are coupled to form a Clough

composite triangle; see Section 5.8.3.3.

4. TRIAl - A triangular element with both inplane and bending stiffness. It is designed

for sandwich plates in which different materials can be referenced for membrane,

bending, and transverse shear properties.

5. TRIA2 - A triangular element with both inplane and bending stiffness that assumes a

solid homogeneous cross section.

6. QDMEM - A quadrilateral membrane element consisting of four overlapping TRMEM elements.

7. QDMEMl - An isoparametric quadrilateral membrane element.

8. QDMEM2 - A quadrilateral membrane element consisting of four nonoverlapping TRMEM

el ements.

9. QOPLT - A quadrilateral bending element. It is composed of four basic bending triangles.

10. QUADl - A quadrilateral element with both inplane and bending stiffness, similar to

TRIAL

11. QUAD2 - A quadrilateral element similar to TRIA2.

Anisotropic material properties may be employed in all plate elements. TRMEM and TRBSC

are the basic plate elements from which all of the others, except QDMEM1, are formed. Their

stiffness matrices are formed from the rigorous application of energy theory to a polynomial

representation of displacement functions. An important feature in the treatment of bending

is that transverse shear flexibility is included.
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All of the properties of plate elements are assumed uniform over their surfaces.

The detailed discussion of plate elements is divided into subsections, according to the

following topics: membrane triangles; the basic bending triangle; composite triangles and

quadrilaterals; the treat~ent of inertia properties; and the isoparametric quadrilateral

membrane element, QDMEM1. The accuracy of the bending plate elements in various applications

is discussed in Section 15.2, and the accuracy of the quadrilateral membrane elements is

discussed in Section 15.3.
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5.8.1 The Membrane Triangle

Consider the triangular element shown in Figure 1 below

y

Material Orientation Axis

0,0 x

Figure 1. Triangular Membrane Element

u and v are the components of displacements parallel to the x and y axes of the local (ele

ment) coordinate system. The inplane displacements at the corners of the element are represented

by the vector

, u
a

va

ub
rUe}

vb

Uc

Vc

Let [KeeJ be the stiffness matrix referred to the vector rUe}; i.e.,

(1)

(2)

where the elements of {fe} are the inplane forces at the corners of the element. The stiffness

matrix [KeeJ is derived by constructing an expression for the strain energy of the element under

the assumption that the inplane displacements, u and v, vary linearly with position on the surface

of the element,
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(3)

(4)

The quantities ql' q2' ... q6 may be regarded as generalized coordinates to which the dis

placements at the corners of the element are uniquely related,

[H]{q} (5)

The elements of [H] are easily evaluated by inspection of Equations 3 and 4. Since the in

verse of [H] will later be required, the choice of six generalized coordinates to match the six

corner displacements is not accidental. Indeed, it is fortunate that the complete linear repre-

sentation of the displacement functions, Equations 3 and 4, contains six coefficients. A similar-

ly symmetrical relationship cannot be achieved for the bending triangle, as will be seen.

The membrane strains are related to the generalized coordinates by

= au
EX ax q2

av
E ay q6y

av au
qs + q3y ax + ay

or, using matrix notation,

(6)

(7)

(8)

{e:} (9)

The membrane strain energy of the element is

(10)

where t is the thickness of the element. Since the strains, and therefore the stresses, do not

vary with position, Equation 10 may be written in matrix notation as

(11 )

The stress vector. {a}. is related to the strain vector by the two-dimensional elastic
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modulus matrix [Ge].

(12 )

In NASTRAN materials may be entirely anisotropic so that the only restriction on [Ge] is that

it be symmetrical. The user can also specify isotropic materials, in which case

E
~2

l-u

o

vE
:-zl-v

E
--2
l-u

o

o

o

G

(13 )

In the case of anisotropic materials, the user specifies their properties with respect to a

particular orientation, which does not necessarily correspond to the principal axes. The input

data for each triangular element includes an angle, e, that references the material orientation

axis to the side ~" <!) of the triangle (see Figure 1). The material elastic modulus matrix is

transformed into the element elasti~ modulus matrix by

(14 )

where

cosesine

[U] :: -cosesine

-2cosesine 2cosesine cos2e - sin2e

(15)

is the transformation matrix for the rotation of strain components.

Substitute Equation 12 into Equation 11 to obtain an equation for the elastic strain energy

in terms of strains

(16)

By virtue of Equations 5 and 9 and the nonsingular.ity of [H],

(17) .
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so that, defining [C]

(18)

The strain energy of any element, expressed in terms of its stiffness matrix, is

(19 )

so that, comparing Equations 18 and 19,

(20)

The only remaining analytical task of any consequence, before turning the job over to the

computer programmer, is to evaluate the elements in the [C] matrix. The result of this exercise

is

[C]

o I 0.1 0 1
0

xb I 1 xb I I I---,--- --------
o I L(Xc - 1)1 0 1_...2£.-1 0 IL

Yc xb I I YcXb I 1yc
l-(~ll--l -I-~-I -1 Tl-I~

Yc xb - ~I - xb I - YcXb I xb 1 yc I
I I I I I

(21)

As a last step, the stiffness matrix is transformed from the local element coordinate system

to the global coordinate system of the grid points. Let the transformation for displacements be

(22)

Then

Thermal expansjon of an element produces equivalent loads at the grid points. Thermal expan

sion is represented by a vector of thermal strains

{a }T
e (24)

where {ae} = [U]-l{am} is a vector of thermal expansion coefficients. [U] is given in Equation 15
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and {am} is the vector of thermal expansion coefficients in the material axis system. When grid

point temperatures are specified, T is assumed uniform and equal to the average of the temperatures

specified at the corners of the element. T may also be specified priorly with element temperature

field data. The three elements of {am} are independent for anisotropic materials.

An equivalent elastic state of stress that will produce the same thermal strains is

An equivalent set of loads applied to the corners of the element is

At[C]T{at}

AtT[C]T[G
e

] {Cte }

(25)

(26a)

(26b)

The validity of the first form, Equation 26a, follows from the general energy requirement

that

(27)

The equivalent loads are transformed from local element coordinates to grid point co

ordinates by

(28)

After the grid point displacements have been evaluated, stresses in the element are computed

by combining the relationships

to form

{u
e

} [T]{u
g

}

{E} = [C]{ue},

{a} = [Ge]{E - Et }

(29)

(30)

(31)

The principal stresses and the maximum shear are computed from the elements of {oJ. The

direction of the maximum principal stress is referenced to the side ~, ~ of the triangle.

5.8-6 (4/1/72)



PLATES

5.8.2 The Basic Bending Triangle

The coordinate system used in the analysis of the basic bending triangle is shown in Figure

2.

y

L a.
x , a

0,0 x

Figure 2. Coordinate Geometry for the Basic Bending Triangle

The deflection w is normal to the x,y plane, with positive direction outward from the paper.

The rotations of the normal to the plate, a. and S, follow the right-hand rule.

The stiffness matrix is developed in terms of the translations and rotations at the three

vertices of the triangle. The displacement vector is defined by

(l)

Before proceeding with the details of the derivation, some general relationships will be des

cribed. Of the nine degrees of freedom of the triangle, three describe rigid body motions. The

stiffness matrix will be partitioned according to rigid body and flexible body motions in order to

reduce computational effort. In general. the vector of forces applied to the vertices is related

to displacements by

(2)

Partition this equation as follows

(3)

where
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IU.}. 1 (4)

[Kii ] is computed from the elastic properties of the triangle.

as follows.

( 5)

[K. ] and [K ] are computedla aa

The partition [K .. ] is nonsingular so that Equation 3 can be rearranged as follows to place
- 11

ui and fa on the left hand side

( 6)

When no forces are placed on the ui coordinates, i.e., when f i 0, the plate moves as a

rigid body such that

(7 )

where the elements of [S] may be calculated from simple kinematics. Comparing Equation 7 with the

top half of Equation 6, it is seen that

[K.] = - [K .. ][S]
la 11

(8)

Furthermore, the forces, f a ,_ are completely determined by the forces, f i , so that, from the lower

half of Equation 6

or, using Equation 8,

° (9)

(10)

The main part of the effort is the calculation of [Kii ]. In the calculation, use is made of

the following transformation between relative motions, {ur }, and generalized coordinates, {qr}'

(11 )

where
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{u} = {u.} - [5]{u } .
r 1 a (12 )

The coordinates {qr} are taken to be the coefficients in a power series expansion of normal

deflection, w, over the surface of the plate. The stored elastic energy is expressed as

(13 )

where the integration takes place over the surface of the plate and [kq] is the stiffness matrix

per unit area. The elements of the stiffness matrix [Kq], referred to {qr} are then computed from

(14 )

The stiffness matrix [Kii ] is then obtained from

Note that [H] must be a nonsingular six-by-six matrix. It is this fact that causes all the

controversy in the development of plate elements, since if [H] were a six-by-seven matrix, it

would permit the inclusion of all of the cubic terms in the power series expansion for w.

Details of the analysis follow.

5.8.2.1 Rigid Body Matrix, [S]

We start with an easy task, the calculation of [5]. From Figure 2 and elementary kinematics,

in rigid body motion

wb 0 I -x b
I

CLb 0 I 0

[)Bb 0 0
I
I----- (16 )

Wc yc I -x (,: )
c

I
Ci.c 0 I 0

I
Be 0 0 I

The six-by-three matrix in this equation is [5].
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5.8.2.2 Power Series Expansion

let displacement normal to the plate, with {ua} = 0, be represented by the follnwing series

(17)

Note that the x2y term is omitted. The omission of one of the terms in the series is necessary

in order that [H] be nonsingular. The coefficients Yx and yy are transverse shear strains which

are assumed constant throughout the plate. The q's are the generalized coordinates discussed

above.

The omission of the x2y term destroys the invariance of the properties of the element with

respect to rotation of the x, y axes. In fact, since the x-axis coincides with the edge ~, ~

of the triangle, the omission of the x2y term is equivalent to the imposition of a constraint

such that the rotation a varies linearly from ~ to (§). An interesting consequence is that, if

another triangle with a similar constraint lies adjacent to the side ~, ~, the deflections and

slopes of the two triangles will be continuous at all points along their common side.

If an arrangement of elements can be contrived such that continuity of displacements is pre

served along all element boundaries (as in the Clough triangle, .Section 5.8.3.3, for example) then

certain theorems can be proved about the resulting structure. For example, if the "consistent"

mass lumping technique (see Section 5.5) is used, then all of the vibration mode frequencies will

be too high, because all of the approximations used in deriving the finite element model can be

interpreted as the progressive application of constraints. It does not follow, however, that ele

ments with displacement continuity give better results than all other elem~nts (see Section 1502).

The rotations are obtained from the definitions of transverse shear strain. which are, for

our problem,

Yx = dW + 6eX

dW
Yy

,,- - Ci.
dy

(18 )

09 )

Hence. from Equations 17. 18 and 19

-8
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5.8.2.3 General Expression for [h] Matrix

One of the required tasks is to express Yx and Yy in terms of the generalized coordinates,

qr. let the relationship be

{y}

The vector fUr} can be written directly as

{u }
r

Then, from Equations 11, 22, and 23

[H ]{Y} + [H]{q} .uy r

(22)

(23)

We can write down [H y] and [H] from preceding results. From Equations 17, 20,21, and 23
u'

, vlb ql

Cl q2b

Sb

[H,y] t~ + (m
q3

~\
(25)

q4
, y,

qs

q6Bc '

where

Xb
I 0
I

0 I 0
I

a I 0
[HuY] = --1-- (26)

Xc I Yc
I

0 I 0

I
0 I 0
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[R] =

X
2 0 0 x 3 0' 0

b 1 lib I. I
- --1- --,- -,---1- -,--
o I xb I 0 1 0 i 0 I 0

- --1- --1- -1- -2-1--'--
-2xb I 0 I 0 I -3xb , 0 I 0
2-1- --1- 2-1-3-r - -2-j- 3
Xc I Xcyc I Yc I Xc I XcYc I Yc
- --1- --1- -I - -, - -I -2
o I Xc I 2yc I 0 I 2xcyc \ 3yc·

- --1- --1- -, -.-- -2-I -2-1--
-2xC I -Yc I 0 I -3xc I -yc I 0

(27)

5.8.2.4 Elastic Relationships

The following relationships are obtained from the theory of deformation for plates.

The curvatures are defined by, (using our notation)

Bending and twisting moments are related to curvatures by

(28)

= [D] (29)

where [D] is in general a full symmetric matrix of elastic coefficients. For a solid isotrooic

plate,

[0] = 212 (1-v )

I 0 1
, v I

--,---;--
v 0

I !
--j--I~-~

o I 0 I ""'"2

(3D)
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For anisotropic materials, the orientation between the x, y axes and the axes that the user

specifies for computing [0] must be accounted for. The method used is identical to that for the

membrane triangle, see Section 5.8.1.

The positive sense of bending and twisting moments and transverse shears is given by the

following diagram.

v
y

. ,®

o

y

L,
The following moment equilibrium equations are obtained from the diagram:

oM oM
V

x
+ _x + ---2StoX ay

V +~ + a
M

XY = 0
y oy ax'

Transverse shear strains are related to the shear forces by

(31)

(32)

(33)

[J] is, in general, a full symmetric 2 x 2 matrix. For a plate with isotropic transverse shear

material
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[Jj • G:' ~ :]
*where G is the shear modulus and h is an "effective" thickness for transverse shear.

5.8.2.5 Evaluation of [HyqJ Matrix

From Equations 31, 32 and 33 we may write

(34 )

[
3M 3M j-1 ---E.-- J12 oy + 3x (35)

and

From Equation 29

where the symmetry of the [D] matrix has been used.

(36 )

(37)

The curvatures may be related to the generalized coordinates by means of Equations 28, 20,

and 21.

Thus
dB- ax = 2q1 + 6xq4

dCX
dy = 2q3 + 2xQ5 + 6YQ6

del 313 4- - - = 2q2 + yqsdX ay

5.8-14
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and

dX X 6q4; 5- 2qS;
dXXY

ax dX dX

dXX = 0; 5- = 6q6;
dXXY

ay dy dy

Substituting into Equation 37 and thence into Equations 35 and 36

o

(39 )

dM
xy

ax
(40)

and

yx -J11[6Dllq4 + 2D12q5 + 6D23q6 + 4D33qS] - J12[6D22q6 + 4D23qS + 5D13q4 + 2D 33qS]'

(41 )

or

YX - 6(J ll D11 + J12D13 )q4 - [J l1 (2D12 + 4D33 ) + 6J12D23]QS - 6(Jll D23 + J12022 )Q6 .

(42)

Interchanging J12 for Jl1 and J22 for J12 , we also get

Yy = - 6(J12D1l + J 22D13 )Q4 - [J 12 (20l2 + 4D33 ) + 6J22D23]QS - 6(J12D23 + J22D22 )Q6

(43)

The complete [Hyq ] matrix is, therefore, from Equation 22

[H
yq

] • _I~ ~o~ ~t(~O~+~12013_)_! ~~20,~+':33) ~6J~2023
La 10 10 : 6(J12Dll + J22D13 ) : J12 (2D1Z + 4033) + 6JZZOZ3

5.8-1S

)_6(:,0
23 ~J~O~J

: 6(J12DZ3 + J2ZDZ2 )

(44)
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The complete [H] matrix can now be written explicitly using Equations 24, 26, 27 and 44. This

will not be done here. Note that, if the plate is assumed to be rigid in transverse shear, [H ]yq

is null.

5.8.2.6 Strain Energy and Stiffness Matrix [Kq]

The strain energy for a plate may be written

(45)

where (M} is the vector of bending and twisting moments, (X} is the vector of curvatures, (V} is

the vector of transverse shears, and {y} is the vector of transverse shear strains. From previous

results, Equations 29 and 33;

(46)

where [G] [Jr'. The {x} and {y} vectors are related to the general ized coordinates by

and

(47)

(48)

[Hyq] is given by Equation 44. [HXq] is, from Equation 38:

2 ; a i a I 6x I a : a
- -1---1---1---

1
-- -,---

a : 0 : 2 : a I 2x I 6y
--1--1--1- -1--'--

a I 2 I a I 0 1 4y j 0

Substituting Equation 47 and Equation 48 into Equation 46.

From Equation 13
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and from Equation 14 the elements of [K
q] are

K q = f{H }T[O]{H }dA + A{H }T[G]{H }
rs xr ";IS yr ys (52)

where {H } is the rth column of [H ], etc. Note that, since the elements of [Hy ] are indepen-
Xr Xq q

dent of x and y, the integration of the second term in Equation 50 is trivial and has been perfor-

med in Equation 52. A is the surface area of the triangle.

In Equation 51 explicitly

20n I 2013 I 2012 I 6xOll I 2x012 + 4y013 I 6y012
___I __1 1 1 I _

I I I I I
2°12 I 2°23 I 2°22 6x012 I 2x022 + 4y023 ! 6y022

---I--1-----1----1--
2013 I 2°33 i 2°23 6x013 I 2x023 + 4y033 1 6yD23

. (53)

I 4xD12

~1_1__I_4~ _1_
4D12

_1_12XD11_1_+ 8YD13_ ~D12
. I II , 4xD •

4013 I 4033 4023 12xD13 I + 8 63
12y023

1 I I I Y 33 I

----i- ---1- -- -----I-~-I--

4012 I 4023 I 4022 12xD12 I + 8 62 I 12y022
I , I I Y 23 I

----- -------------
I I i I 12io I

12xOll 1 12xD13 I 12xD12 I 36iD11 I + 24Xy62
1 36xyD12

i I I I 13 I
---I----1----1- ---I-4x~-I----

4xD12 I 4xD23 I 4x022 I 12io12 ' + 16X~623 I 12xy022

+ 8y013 I + 8y033 I + 8yD23 1 + 24xyD13 I 2: + 24io
I I i I + 16y °33 i . 23

-- -,- ---,--- -1- -- -I-12XYD -1---
12yD12 I 12y023 1 12yD22 1 36xy012 I 2

22 I 36/022
1 1 I I + 24y °23 1

(54 )
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It is convenient to define the following integrals:

J dA A jidA p/A

jxdA xA fidA p/A

jydA VA jxydA 2APxy

(55)

Xand y locate the center of gravity of the triangle. Px and Py are the radii of gyration about

vertex @ of the triangle. Px/A is the cross-product of inertia.

After performing the integration, the comolete [Kq] matrix is

where

(56)

S YMMET RIC A L

and

I
D I 0 0 3xD1111 I 13 ! 12 I I + 2YD13 I

---1---1-----1---1----1--
- xD -I 033 I D23 I 3x013 I 23 I 3y023

I I I I + 2YD33 I
~ - - -:- ~2- -1-3xD

12
-:-+ ~~2- -:- 3YD2~

, I I Y 23 IL- _

I I 2 I
I 2 3px °12 2
I 9px °11 I 2 I 9p

xy °12
I + 6PXY D13 IL _
I 2 II Px 022 2

I + 4p 20 I 3
p

xy °22
xy 23 I + 6 20

J + 4 2D I Py 23
Py 33 IL. _

I 2
I 9py 022

(57)

(58 )

Note that [KYJ ~ 0 if [GJ ~ 00 because [HyqJ goes to zero in this case.
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5.8.2.7 Summary of Calculations for Stiffness

The following operations are required to obtain the stiffness matrix [Kee] referred to

degrees of freedom at the vertices of the triangle.

1. Compute elastic matrices [0], [G], and [J]

for the basic triangle (see Figure 2).

2. Compute [KX] from Equation 57 (6x6)

3. Compute [H ] from Equation 44 (2x6)yq

4. Compute CKY] from Equation 58 (6x6)

5. Compute [Kq] from Equation 56 (6x6)

6. Compute [H ] from Equation 26 (6x2 )uy

7. Compute [H] from Equation 27 (6x6 )

8. Compute [H] from Equation 24 (6x6)

9. Compute [Kii ] from Equation 15 (6x6)

10. Compute [S] from Equation 16 (6x3)

11. Compute [Kia] from Equation 8 (6x3)

12. Compute [Kaa ] from Equation 10 (3x3)

13. Assemble [Kee ] from Equation 3 (9x9)

[G- l ] in the reference coordinate system

For triangles that are rigid in transverse shear, steps 3, 4 and 6 are omitted. After [Kee]

has been formed it is transferred from the local element coordinate system to the global coordi

nate system of the surrounding grid points, in the same manner as for all other elements.

5.8.2.8 Equivalent Thermal Bending Loads

The stress-free strains developed in a free plate due to a variation of temperature with depth

are:

{Et } ·t! {cxeH (59 )Eyt

Yt
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where T is the temperature above the reference state and rae} is the vector of thermal expansion

coefficients in the element coordinate system.

An applied stress vector which would produce the thermal strains is:

where [GeJ is the matrix of elastic coefficients at the point on the cross section. The work done

by the applied stress field on a strain field {E} is:

(61)

where the integration is carried out over the volume.

The work done by equivalent thermal loads {P;} acting on grid points (in the global coordinate

system) is

(62)

so that. comparing Equations 61 and 62

(63)

The strains {E} are related to the curvatures {X} by

{E} = -z{X}. (64)

where z is measured from the neutral surface of the plate. Also, from Equations 59 and 60

(65)

so that

(66)
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It will be assumed that the temperature varies only in the z direction. i.e., that it is

uniform with respect to x and y. It is convenient to define the equivalent thermal moment vector

-f [Ge]{cte}Tz dz
z

Note that, if the temperature varies linearly over the cross section such that

T = T + T' z
o '

then

(67)

(68)

f Tz dz = T' Jz2 dz = IT' (69)
z

where I is the moment of inertia of the cross section and Tt is the thermal gradient. For plates

in which the material moduli and the thermal expansion coefficients of the effective bending

material do not vary with depth, the vector of equivalent thermal moments {Mt } is related to an

"effective" thermal gradient, T', by

where

T' = +f T z dz

(70 )

(71)

and the integration is carried out over the effective bending material. In NASTRAN the user has

the option of providing either {Mt } using Equation 67 or T' using Equation 71. For solid homoge

neous plates the further option is provided to specify the temperature as a tabular function of

depth, in which case Equations 70 and 71 are evaluated by the program. Equation 67 should be used

if it is desired to include the effect of temperature gradient on the material properties. [G ]
e

and tete}' If Equation 71 is used, NASTRAN assumes that [Ge] and rete} are constant for the element;

they are computed for the average temperature, T.

Substituting Equation 67 into Equation 66,

(72)
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where the integration is carried out over the surface of the element. The vector of curvature,

[x], is linearly related to the vector of generalized coordinates {qr} by Equation 47. Thus

(73)

Note, from Equation 49 that the elements of [H ] are at most linear functions of x and y. Thus,Xq
since {Mt } is constant over the surface,

(74)

where [HXq(X'y)] is [HXq] evaluated at the centroid (x,y) of the plate and A is the surface area.

The generalized coordinates {qr} are related to the relative corner displacements {u r} by the

matrix [H] in Equation 11. Let the relationship between the relative corner displacements and the

global grid point displacements tUg} be

(75)

Then, substituting Equations 11 and 75 into Equation 74,

(76 )

so that, performing the indicated differentiation,

(77)

Equation 77 is evaluate.d by the program to obtain the equivalent grid point thermal loads.

5.8.2.9 Recovery of Internal Forces

The internal forces are recovered at a point (x ,y ) which is either the center of gravityo 0

(x,y) or, in the case of a Clough triangle, vertex c (xc'Yc).

The first step after transforming u into u is to obtain the relative motions at verticesg e

band c from

(78)
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Then the generalized coordinates, {qr}' are evaluated from

The curvatures are evaluated from Equations 47 and 49 with x Xo and y =Yo:

[H ] {q} .
Xq r

Moments are then obtained from

(80)

(81)

where [D] is the matrix of elastic bending coefficients (see Equation 29) and {Mt } is the equivalent

thermal moment vector (see Equation 67).

The transverse shears are evaluated from Equations 31 and 32 and the subsequent numerical

reduction of coefficients.

The details are as follows. Note first that {Mt } is uniform over the surface. Then

aM aM
_2._~

dX ay

aM aM
_-1_~

ay ay

Equations 82 and 83 may be written in matrix form as

(82)

(83)

{V} (84)

where
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The bending and twisting moments can be reduced to outer fiber stresses and combined with membrane

stresses in the composite plate elements. If, in addition, the temperature is specified by the

user at a point where outer fiber stresses are calculated, the thermal expansion due to the differ

ence between the specified temperature and the temperature that would be produced by a uniform

gradient, T', is assumed to be completely restrained. Stated differently, the second and higher

order moments of the thermal expansion are assumed to be completely restrained by elastic stiff

ness. The resulting stress increment is

(86)

where [GeJ and {ae} are evaluated for the average temperature of the element, T.
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5.8.3 Composite Plate Elements

5.8.3.1 The Quadrilateral Membrane Element

The quadrilateral membrane element is composed of four triangular elements. Since four

points, in general, do not lie in a plane, care must be taken to ensure equilibrium and compatib

ility. Rather than try to define a warped surface, an averaging process is used with noncop1anar

triangles. If a highly warped or curved surface is being analyzed, it is suggested that the user

employ four triangular membrane elements and specify the location of the center point. The only

penalty will be two extra degrees of freedom. The matrix formulation time will be somewhat

1ess.

The quadrilateral is divided into four triangles as shown in the figure below:

'------...... 2 2

= +

4

If the corners do not lie in a plane, the composite element forms a shell which has zero

stiffness for moments applied at the corners.

The thickness used for each triangle is one-half that given for the quadrilateral. Since no

special calculation time is saved by generating a unique element coordinate system, the locations

of the corner points are used to calculate individual coordinate systems for the triangles.

The stiffness matrix of the composite element is simply equal to the sum of the stiffness

matrices for the component triangles, each transformed into the global coordinate system. EQui

valent temperature loads are computed for each triangle separately and summed. During stress

data recovery, the state of stress in the composite element is assumed'to be the average of the

states of stress in the component triangles.
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5.8.3.2 The Quadrilateral Bending Element

The quadrilateral bending element uses two sets of overlaoping basic bending triangles as

shown below

4

2

+

4

2

For each triangle the x-axis lies along a diagonal so that internal consistency of disolacements

and rotations of adjacent triangles is assured. Each triangle has one-half of the bending stiff

ness assigned to the quadrilateral.

In a preliminary operation the corners of the quadrilateral are adjusted to lie in a median

plane. The median plane is selected to be parallel to, and midway between, the diagonals. Tbe

adjusted quadrilateral is the normal Drojection of the given quadrilateral on the median plane.

The short line segments joining the grid points to the corners of the adjusted quadrilateral

element are assumed to be rigid in bending and extension.

The logical arguments supporting the chosen arrangement for the quadrilateral bending

element are
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1. For the special case of a square element, its properties are invariant with respect to

90° rotations, thereby compensating an important defect of the basic bending triangle.

Since the purpose of a quadrilateral element is to model (nearly) rectangular fields of

grid points, the property of rotational invariance should provide improved accuracy

over the simple basic triangle for such applications.

2. It is simple to program because the stiffness matrices of the component triangles are

directly additive.

The accuracy of the quadrilateral plate element for the solution of problems is compared

with that for other composite elements in Section 15.2, "Modeling Errors in the Bending of Plate

Structures."

In stress data recovery, the stresses in the subtriang1es are calculated at the point of

intersection of the diagonals and averaged.

Since coupling between membrane stiffness and bending stiffness is not, at present, included

in NASTRAN, quadrilateral elements with both membrane and bending properties are treated by

simple superposition of their membrane and bending stiffness matrices. Specifically, the over

lapping quadrilateral membrane element, QDMEM, is combined with the bending quadrilateral,

described above (QDPLT), to form QUADl and QUAD2.
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5.8.3.3 The Clough Bending Triangle

The Clough bending triangle(l) is formed by subdividing the given triangle into three basic

bending triangles as shown below .

.-::;;;.---.;:,..--- ~_;;:.iIt®

The x-axis of each subtriangle corresponds with an exterior edge, so that continuity of

slope and deflection with surrounding Clough triangles is assured. The added grid point in the

center is like the other grid points in that equilibrium of forces and compatibility of displace-

ments are required at the center point. In addition, the rotations parallel to the internal

boundaries at their midpoints, points ®, ® and (J) , are constrained to be continuous across

the boundaries. The equations for slopes in the basic triangles contain quadratic and lower or

der terms, and since the normal slopes along interior boundaries are constrained to be equal at

three points (both ends and the middle), it follows that slope continuity is satisfied along the

whole boundary. Displacement continuity on all boundaries is automatically satisfied when the

displacement function contains only cubic and lower order terms. Thus complete continuity of

slope and displacement on all interior and exterior boundaries is assured for the Clough triangle.

The imposition of the internal slope constraints causes the only additional complications

in the analysis of the Clough triangle. In each of the component triangles, expressions for the

rotations ~l and ~2 (see figure on following page) are obtained in terms of the displacements at

its vertices.

(1)Clou9h, R. W. and J. L. Tocher, "Finite Element Stiffness Matrices for Analysis of Plate
Bending". Proc. of Conference on Matrix Methods in Structural Mechanics, Air Force Flight
Dynamics Laboratory Report AFFDL-TR-66-80. December, 1965.
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c
y

a
b

x

where

(1)

(2)

is the vector of corner displacements, expressed in a local coordinate system for the component

triangle. {ut } is a rotated subset of the displacements at the corners of the composite tri

angle, {ue}, and the displacements at the center, {uc}' expressed in a Cartesian coordinate

system for the element as a whole,

(3)

The equations of constraint are

,I, r + ,I, III
'+'1 "'2 = a

,I. II + d, I
'+'1 "'2 a (4)

which, by virtue of Equations 1 and 3, result in a set of three constraints relating displace

ments at the center point to the displacements at the corners,
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The equilibrium equations. including the forces of constraint, qc' are

t
il ] IU

e

' !'K I K I G T f

_::T~ _'c_:_ c_ "c(. '~(
Kec I Kcc I - I ( 0

I I q J
c

(5 )

(6 )

The stiffness matrix, whose partitions are Kee , Kec ' Kec
T and Kcc ' is obtained by simple super

position of the stiffness matrices of the component triangles. Straightforward elimination of

Uc and qc from Equations 5 and 6 results in the final stiffness matrix

where

[K ] = [K + K G + G TK T + G TK G]ee ee ec c c ec c cc c

(7)

(8 )

The details of the relationship expressed by Equation 1 are as follows. The rotations ~1

and t 2 are related to their component rotations about the x and y axes of the local coordinate

system by

iJJ l (9)

Referring to Equations 20 and 21 of Section 5.8.2,

(10)

(11 )

(12 )

and similarly for e and e Combine Equations 9 to 12 to form the matrix equation
x2 Y2
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\ 0;1 I
+ [:

cosoa ,j,', ]1"'1
<. '> [H,jiq]{qr}

-sin l\ ) Cia \I ~ \ coso b. 2,
\ Sa -'

(13 )

where

(14 )

From Equations 11 and 12 of Section 5.8.2

(15 )

where {u i } is the union of the displacements at vertices band c. Equations 13 and 15 are com

b; ned to form

(16 )

where

and

COSO a
(17)

[ H : H ] = [H ] [H]-l
~b I ~c Wq (18 )

In stress data recovery the displacement vector at the center point is computed by means of

Equation 5. Internal forces and stresses are then computed at vertex c for each component tri

angle by the procedure described in Section 5.8.2.9, and are averaged to provide representative

values for the composite triangle as a whole.
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The Clough triangle is superimposed with a membrane triangle to form triangular elements with

both membrane and bending stiffness.

5.8.3.4 The Nonoverlapping Composite Quadrilateral Membrane Element, QDMEM2

The QDMEM2 quadrilateral membrane e;ement is subdivided into four triangles connected to a

center point as shown in the sketch below: 3

e:------'------ 2

Figure 1.

Point c is located at the intersection of straight lines connecting the midpoints of the

sides. Note that these lines intersect even if the four corner points do not lie in a plane.

Stiffness matrices, and thermal loads, are generated for each of the four triangles and are added,

treating the center point like a normal grid point. The matrices and load vectors are then

reduced from order 5 to order 4, i.e., to the four exterior grid points.

Two methods are available for removing the degrees of freedom at the center point. The

first will be called elastic reduction and the second will be called rigid reduction. The forces

applied to grid points, after combining the triangular sections but prior to eliminating the

center point, may be expressed in partitioned form as follows:

where subscript (p) refers to corner points and subscript (c) refers to the center point. {Pp}

and {Pc} are the thermal load vectors.

In the method of elastic reduction, the vector of resultant forces on the center point. ffc}'

is set equal to zero and {uc} is eliminated by direct solution of Equation 1 with the result

where

{f } = _[Ke ]{u } + {pel
p pp p p
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and

(4)

In the method of rigid reduction, {uc} is set equal to the average of the corner displace

ments, i.e., in terms of Cartesian components,

(5)

Since the coordinates of the center point (Xc' Yc' zc) are equal to the averages of the

coordinates of the corner points (see Figure 1), Equation 5 does not violate the element's rigid

body property. Expressed in general matrix form Equation 5 is

(6)

Application of Equation 6 to Equation 1 as a rigid constraint then produces the result

where

[Kr ] [K + K G + GT KT + GT KG]pp pp pc c c pc c cc c

(7)

(8)

(9)

Similarity with the method for eliminating multipoint constraints, Section 3.5.1, is evident.

The method of elastic reduction can be expected to give more accurate results and it would be

preferred in the present case were it not for the singularity that occurs in [Kcc] when the

element is flat. A combination of the two methods is actually used as follows: the lines joining

the midpoints of opposite sides are used to define a mean plane. The inplane components of dis

placement at the center point (uc ' vc) are removed by elastic reduction and the out-of-plane

component of displacement, wc ' is eliminated by rigid reduction except that, when the quadrilateral

is severely warped, elastic reduction is also used for wc ' The criterion used to define severe

warping is

5.8-28a (12/15/72)



STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

£b.. > 0.2
IA

(10 )

where h is the distance from the mean plane to each grid point and A is the area of the quadri

lateral projected onto the mean plane.

The mass properties of the QDMEM2 element are treated in exactly the same manner as the QDMEM

element, see Section 5.8.4.

In stress recovery, the stresses are computed in each of the four triangles and averaged.

Internal force output includps the components of the corner forces colinear with the sides, as

shown below, and the "kick loads" at each corner normal to the plane of the colinear corner forces.

The "kick loads" are required for equilibrium when the element is warped.

f 14 f
23

In addition, a "shear flow" is calculated for each side, e.g.,

(12 )

where ~12 is the length of side (2) -0. The "shear flow" as calculated by Equation 12 derives

from a conceptual model of the panel consisting of four edge rods and a central shear panel. It

is not a measure of the shear stress on the edge of the element.

5.8-28b (12/15/72)



5.8.4 Inertia Properties of Plate Elements

The mass of a plate element, like its other physical properties, is assumed to be uniformly

distributed over the surface of the element. The mass consists of two parts: the mass due to the

density of the structural material; and nonstructural mass, the surface density of which is speci-

fied separately by the user. The mass is assumed to lie in the middle surface of the plate so

that rotary inertia due to finite thickness is ignored.

In the Lumped Mass method of mass transfer, o~e-third of the mass of a triangular element

is placed at each of its vertices, an arrangement that preserves the location of the cen~er of

gravity of the element. A quadrilateral is treated as a set of four overlapping triangles

(see Sections 5.8.3.1 and 5.8.3.2) whose masses are calculated and transferred separately to

the surrounding grid points. This procedure i~ also used for the isoparametric quadrilateral

membrane element, QDMEM1.

A Coupled Mass method of mass transfer is available for motions normal to ~he surface of

a plate element. As discussed in Section 5.5, a satisfactory coupled mass method for inplane

motions has not been devised. Thus, when the Coupled Mass method is specified by the user,

the terms in the element mass matrices corresponding to inplane motions will be the same as

in the Lumped Mass method. The use of the Coupled Mass method introduces a complication, in

that it is no longer possible to assign masses directly to grid points before calculating the

global mass matrix. Instead, the mass matrix for each element is first calculated in its own

coordinate system and is then transferred to the global coordinate system by the same trans

formations that are used in the assembly of the global stiffness matrix from element stiffness

matrices.

The Archer consistent mass technique (2) is used in formulating the Coupled Mass matrix

for motion normal to the surface of a plate element. Thus, the bending properties of the

plate element affect its mass matrix. The Coupled Mass method cannot be used for elements

with membrane stiffness only.

The procedure employed with the basic bending triangle is described below in detail.

(2) Archer, J.S., "Consistent Mass Matrix for Distributed Mass System~ II Journal of the
Structural Division, ASCE, August 1963.
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Quadrilaterals are treated as four separate overlapping bending triangles. The Clough bending

triangle requires additional procedures that will be explained.

The consistent mass matrix for any element is obtained from the kinetic energy under the

assumption that the inertia loading does not alter the displacements at interior points. Thus

the kinetic energy may be expressed as a quadratic function of the displacements at the corners

of the element, using the geometric and elastic properties of the element to compute the func

tional relationship.

Consider a flat plate that is inertia loaded normal to its plane. The kinetic energy for

sinusoidal transverse motion, w, at radian frequency w, is

v 1 2 2
2"wfmwdA (1)

The translational d1splacement function, w, is related to corner displacements, uk' by

so that

Elements of the consistent mass matrix are given by

(2)

(3)

(4)

In the case of the basic bending triangle described in Section 5.8.2, a modified procedure

will be used due to the complexity of the expressions for the coefficients, Ck. Repeated re

ferences to Section 5.8.2 will be made. Equations in Section 5.8.2 will be referred to as Equa-

tion 2-x.

It is convenient to relate w to a modified set of displacements, urn' consisting of the three

displacements of grid point (a) and the six generalized coordinates, qr' defined in Equation

2-17. Thus

(5)

or, using matrix notation

(6)
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where the symbol r 1 indicates a row matrix. The mass matrix referred to the modified coordi

nates, [MmmJ, is partitioned according to ua and qr as follows

[
I JMaa I Mar

M TIM
ar I rr

(7)

The elements of [M J are, by analogy with Equation 4, ana employing matrix notation,
IT1'I1

~M JL ar

f mrcalTrCal dA

f mrCalTrCrl dA

I mrcrlTrCrl dA

(8 )

(9)

(10)

The mass matrix [~\nmJ is transferred to the corner displacements fUel by means of the

transformation

(11 )

Thus

(12)

The transformation matrix [TJ is obtained by noting that, from Equation 2-11,

where

(13)

~u 1, aJ (14 )

Consequently

(15 )

which defines [TJ in terms of quantities that have already been comouted.
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The row matrix fCal, evaluated from a consideration of rigid body motion about grid point

(a), shown below, is

b

rl, y, -xl

y

c

3
a

a~-------------""'-x

Equation 2-17 gives the relationship of w to {qr}:

(16 )

( 17)

The shear strains Ix and yy' assumed to be constant over the surface of the plate, are related to

{q t by the [H J matrix, defined in Equation 2-22, and evaluated in Equation 2-44. Thus, separa-
r' yq

ting the two rows of [H J,yq

(18 )

The first three terms of fH 1 and fH 1 are zero (see Equation 2-44). Substitute Equation
yxq yyq

18 into Equation 17 and obtain the elements of the [C
r

] matrix

rCrl = fx2; xy; y2; x3 + H x + H y; xy2 + H x + H y; y3 + H x + H yl.
yxQ4 yyq4 yxqs yyqS yxQ6 yyQ6

(19 )

The remaining steps in the evaluation of the consistent mass matrix are:

1. Substitute for rCal from Equation 16 and rCrl from Equation 19 into Equations 8, 9 and

10 and evaluate the integrals, giving the elements of the mass matrix in modified

coordinates.
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2. Calculate thp-[T] matrix, defined in Equation 15, from the[H]-l and [S] matrices that

are used in calculation of the stiffness matrix.

3. Compute the mass matrix referred to element coordinates by means of Equation 12.

4. Transform the mass matrix from element coordinates to grid point coordinates in the usual

manner. Note that the portions of the mass matrix corresponding to motions in the plane

of the element are treated in the usual manner, i.e., 1/3 of the mass of the plate ele

ment is placed at each corner.

Step 1 above involves the evaluation of integrals of the form

(20)

where it is assumed that the mass density is constant over the surface of the triangle.

For example,

(21)

The other partitions, [Mar] and [MrrJ, are less simple due to the shear strain coefficients

in Equation 19.

The above results for the basic bending triangle can be used directly with the composite

quadrilateral plate element. The Clough triangle, on the other hand, requires the imposition of

constraints. The most straightforward procedure is first to calculate the mass matrices of the

three component triangles separately, and then to eliminate the displacement at the center point

by means of the constraint relationship, Equation 5 of Section 5'.8.3."3,

(22)

The resulting mass matrix referred to exterior vertices is, by analogy with Equation 8 of

Section 5.8.3.3,

(23)
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5.8.5 The Isoparametric Ouadrilateral Membrane Element. QDMEMl

5.8.5.1 Introduction

This element, shown in Figure 1. was first formulated by I. C. Taig and is described in

*References 1, 2 and 3. The present development is based on the derivation in Reference 3 and

the important characteristics of the element are that:

1. the stresses and strains vary within the element in an essentially linear manner,

2. the element may have a warped shape. i.e .• the four vertices need not be coplanar,

3. Gaussian Quadrature with a 4x4 grid is used to evaluate the stiffness matrix.

4. the temperature is assumed constant over the element,

5. differential stiffness and piecewise linear analysis capability are not implemented at

present.

The element is compared for accuracy with the other NASTRAN quadrilateral membrane elements.

QDMEM and QDMEM2, in Section 15.3. The calculation of its mass properties is discussed in

Section 5.8.4.

5.8.5.2 Geometry and Displacement Field

As indicated in Figure 1. two coordinate systems are used to define the shape and kinematic

behavior of the element. The first is a set of element parametric coordinates (~,n) which vary

linearly between zero and one with the extreme values occurring on the sides of the quadrilateral.

Lines of constant ~ and lines of constant n are straight as indicated on the figure. Second, a

se~ of element rectangular coordinates (x,y.z) is defined as follows: the x-axis is along the

line connecting the first two grid points; the y-axis is perpendicular to the x-axis and lies in

the "plane" of the element (if the element is nonplanar, the "plane" of the element is defined by

a mean plane as described later in this section); finally, the z-axis is normal to the plane of

the element and forms a right-handed coordinate system with the x- and y-axes.

*1. Irons, B.M •• "Engineering Applications of Numerical Integration in Stiffness Methods," AIAA J.,

Vol. 4, No. 11. November 1966, pp. 2035-2037.

2. Zienkiewicz, D.C., and Cheung, Y.K., The Finite Element Method in Structura1 and Continuum
Mechanics. McGraw-Hill Publishing Company, Ltd .• 1967.

3. Przemieniecki, J.S .• Theory of Matrix Structural Analysis. McGraw-Hill Book Co., Inc., 1968.
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The two coordinate systems are related as follows:

(1)

where the subscripts refer to grid point numbers. The displacement components along the x- and

y-directions are denoted by u and v, respectively, and are assumed to vary with ~ and n in the

following manner:

u(~,n) (l-~)(l-n)ul + ~(1-n)u2 + ~nu3 + (l-~)n u4 I

v(~,n) = (l-~)(l-n)vl + ~(1-n)v2 + ~nv3 + (l-~)n v4 )

(2)

Properties of the assumed displacement field are that on lines of constant ~, u and v vary linearly

with n, and on lines of constant n, u and v vary linearly with~. In particular u and v vary

linearly on the edges between grid points and as a result, displacements of adjacent elements are

matched all along their cOllll1on edges. Thus, the element is a "conforming" element as defined in

Reference 2. It is noted from a comparison of Equations 1 and 2 that the eQuations which relate

the displacements at any point in the element to its grid point values are

identical in form to the corresponding equations for the x and y coordinates. Thus, the term

"i soparametri c" is used to characteri ze the element.

As mentioned previously, the four grid points wh1ch define the quadrilateral need not be

coplanar. If they are not, a mean plane is defined as shown in Figure 2. The mean plane is

located such that it is alternately H units above or below each grid point. The grid points are

then projected normally onto this plane resulting in a modified but planar quadrilateral (as

denoted by the primed grid point numbers). The element matrices are derived for the modified

quadrilateral. These matrices are then transformed so that they are expressed in terms of

displacements at the original (non-coplanar) grid points. As a result of the latter transforma-

tion, the matrices have stiffness contributions at each grid point against translations in three

directions instead of two.

5.8.5.3 Strain and Stress Fields, Potential Energy

Membrane strains are related to the displacement components by the familiar relations
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e = vy 'y (3)

where a comma indicates partial differentiation. Use of Equation 2 permits the strains in

Equation 3 to be expressed in terms of sand n. Thus,

ex = u's s,x + u'n Jl,x

ey = v's S'y + v'n n,y

exy u's S'y + U, 11,y + v,.,. s'x + v,,,,, n,x11 " 'I

where

.,. 1
;:;"y

1

\

""x J y'n - J x'n

1 1
n,x = - J y's n,y =J x 'I;

and

x 'I; x'n I
J

y'n Iy,.,.
"

(4)

(5)

(6)

is the Jacobian of the transformation between the two element coordinate systems. For a rectangular

shaped element, the x and I; directions are identical, as are the y and n directions. For this

case ex is linear with respect to y and constant with respect to x, and ey is linear with respect

to x and constant with respect to y. The shear strain exy varies linearly with respect to both

x and y. For nonrectangu1ar-shaped elements the strain behavior is not linear with position.

The strain-displacement relations may be written in a convenient matrix form by combining

Equations 1 to 5 as follows:

(7)

where
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The non-zero elements of the 3x8 matrix [A] are as follows:

where

All = (-Y4 + Y3n - Y34()/J

A13 = (Y4 - Y4n + Y34;)/J

A15 = Y4n/ J

All = -Y3n/ J

A22 = (-x24 + x23n + x34;)/J

A24 = (x14 - x14n - x34;)/J

A26 = (x14n - x12()/J

A28 = (-x12 - x23n + x12;)/J

A31 =A22

A32 = All

A33 =A24

A.34 =A13

A35 =A26

A36 = A15

A37 = A28

A38 =A17

J = -Y4x12 - Y34x12~ - (Y4x23 - Y3x14)n (8 )

and the components of side lengths are expressed as follows in terms of grid point coordinates:

(9)

The constitutive stress-strain relationships are written as
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nO)

where Ox and 0y are stresses in the x and y directions, respectively, 0xy is the shear stress,

and [G J is a symmetric 3x3 matrix with properties referred to the elemente
coordinate system (see p. 5.8-4). The quantities ax' ay , and axy are thermal expansion coeffi-

cients and T is the temperature of the element above the stress-free temperature To' If the

element temperature is not specified directly, it is computed in terms of grid point temperatures

as

(11 )

Tne potential energy for an element of thickness h including the temperature effect may be

wri tten as

Substituting Equation 10 into Equation 12 and making use of Equation 7 gives

(12)

1 1

V = %{ue}Tf f [A]T[Ge][AJ

o 0

(13)

The first integral represents the usual elastic strain energy of the element, and the second

integral represents the thermal strain energy. An irrelevant additive constant in the above

equation involving the square of known element temperature has been omitted.

5.8.5.4 Stiffness Matrix and Thermal Load Vector for the Element

The form of the potential energy written in terms of the displacement vector, {ue}, the

stiffness matrix, [KeeJ, and the thermal load vector, {Pe}, is as follows:
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Comparing Equations 13 and 14 yields the following formula for the required matrix and vector:

(15 )

(16 )

The reader will recall that the elements of matrix [AJ as well as the quantity J are functions of

~ and n. As a result, the integration indicated in Equation 15 is best performed numerically, and

it will be carried out by use of Gaussian quadrature using a 4x4 grid (see Reference 3 for a

discussion of the method of Gaussian quadrature). It is noted that the grid size is finer than

the minimum size (2x2) required to guarantee convergence. However, preliminary studies indicated

that the refined grid resulted in improved accuracy over the 2x2 grid for nonrectangular elements.

The integration in Equation 16 can easily be carried out in closed form since, if the temperature,
-
T, is taken to be constant over the element, the integrand is linear in sand n.

The stiffness matrix and thermal load vector given in Equations 15 and 16 have been derived

for an element which is assumed to be planar. If the grid points are not coplanar, then the

derived element is the projection of the actual element onto the mean plane. In the latter case

a transformation of the stiffness matrix and the thermal load vector is required, which relates

displacements and forces at the projected grid points in the mean plane to displacements and

forces at the actual grid points. It is highly desirable that the transformation produce only

forces and not moments at the grid points because it is quite probable that there may be no other

elements present (such as beams and bending plates) which can resist moments. Thus. the trans

formation can be expressed in the form

(17)

where:

is the vector of grid point forces, and
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is the vector of forces on the projected plane element.

The magnitudes of the inplane forces (fxl ' Tyl ' etc.) are the same in both vectors. A

method for selecting the out-of-plane forces (fzl ' f z2 ' f z3 ' f z4 ) which satisfies the three

required out-of-plane conditions of equilibrium and which exhibits symmetry with respect to per

mutation of grid point numbers is as follows: Let the forces on the corners of the plane quadri

lateral be resolved into components colinear with the sides as shown in Figure 3a. In the edge

wise view of side (a) shown in Figure 3b, the vertical force couple, f za ' is applied to grid

points 1 and 2 so that equilibrium will be preserved when the forces f 12 and f 21 are transferred

from the mean plane to the grid points. Thus,

and in like manner, for the other three sides,

f Zb = - ~: (f23 + f 32 )

f =~ (f
34

+ f 43 )
zc £c

f Zd = - ;d (f4l + f 14 )

The combined vertical force components at the grid points are

f z2 = f zb f za

)
(

)

(18 )

(19 )

(20)

Generation of the elements in the rows of the [B] matrix corresponding to the vertical forces

is accomplished by expressing the colinear force components, f 12 , f 21 , etc., in terms of the

Cartesian components, f xl ' fyl ' etc., and substituting the result into Equation 20. The nonzerO

elements of [B] are as follows:
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B33 = H/ia
H cot 82B34 = --;;i-";;;'

a

B = H sin Y
37 £d liZ

B = H cos Y
38 t d lI2

8
61

= -B31

H cot 81
862 = - t

a

B63 = 8
31

H cot 82 H

864 = - t
a

+ £b sin 8
2

B =_ H sin y
65 Rob lI1

B = _ H cos y
66 £.b £11

B7S =1

BS6 =1

B = _ H
94 t b sin 82

{sin y sin 52}
B9S = H\R.

b
II

I
+-r;t:lJ

H sin 8
1

897 = - i
c

lI
2
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Bll ,8 = 1

B = H
12,2 i d sin el

H sin e2
B12 ,5 = - i

c
6

1

H cos 62
B12 ,6 = - i

c
6

1

(

COS e )B =H~ l
12,8 2d 62 i c 62

where

61 = sin(e2 - y)

t z = sin(e l + y)

The transformation of displacements from the mean plane to the actual grid points uses the same

[B] matrix and is written

where

(21)

and w is the displacement component normal to the mean plane. In addition to the above trans

formation, two standard NASTRAN transformations are required. These are the element-to-basic

system transformation utilizing matrix [E] and the basic-to-global system transformation utilizing

the matrix [T]. Combining all three transformations results in the required global forms of the

stiffness matrix [Kgg ] and thermal vector {Pg},
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[Kgg] = [T]T[E][B][Kee][B]T[E]T[T]

{Pg} = [T]T[E][B]{Pe}

(22)

(23)

The 12x12 stiffness matrix [KggJ is singular with defect equal to seven. The seven defects

correspond to the six rigid body motions and an unrestrained out-of-plane warping. Out-of-plane

warping would also be unrestrained if the nonplanar quadrilateral were represented by a pair of

triangles but not if it were represented by two pairs of overlapping triangles, as in the case of

the QDMEM element.

5.8.5.5 Stress Recovery

The stresses at any point (~,n) in the element in terms of the displacements in the element

coordinate system are obtained by combining Equations 7 and 10

(24)

where it will be recalled that [A] is a function of ~ and n. The stresses are evaluated at the

intersection of the diagonals of the mean plane. in order to be compatible with stress calculation

in the NASTRAN plate bending elements. For a parallelogram, the diagonals intersect at ~ = n = 1/2

but for more general shapes the values of ; and n at the intersection point depend on the element

dimensions. The required form of the stress recovery equation in terms of the global displace-

ments is obtained by utilizing the three transformations described previously along with Equation

24. Thus,

(25)
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Figure 1. Coordinate systems for quadrilateral membrane element.

Figure 2. Mean plane for quadrilateral membrane element.
(Actual grid points are indicated by unprimed numbers and projection

of grid points onto mean plane are indicated by primed numbers.)
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(a) Plan view

f z:a

--0-r:-.-.f2l

. ---f2l,-
(b) Side view

Figure 3. Method of transferring forces from a
plane quadrilateral element to adjacent nonplanar grid points.

5.8-44 (12/15/72)



STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

5.9 THE CONICAL SHELL ELEMENT

The properties of the conical shell element are assumed to be symmetrical wito respect to

the axis of the shell. The loads and deflections, on the other hand, need not be axisymmetric;

they are expanded in Fourier series with respect to the azimuth coordinate. Due to symmetry, the

resulting load and deformation systems for different harmonic orders are independent, a fact that

results in large time saving when the use of the conical shell element is compared with an equi

valent model constructed from plate elements.

Equations for the element are developed in terms of Fourier coefficients with respect to

azimuth and in terms of polynomial coefficients with respect to meridional distance. An important

and unusual feature of the NASTRAN conical shell element is that it includes transverse shear

flexibility. At present the conical shell element cannot be combined with other types of struc

tural elements in the solution of problems.

5.9.1 Coordinate Notation

The coordinate geometry for the conical shell element is shown in Figure 1. The internal

coordinate system for the element is oriented in and normal to the surface of the shell. The

coordinate system for grid points at the ends of the element will usually be parallel and per

pendicular to the axis of ~he shell.

Stiffness matrices will be derived in terms of element coordinates evaluated at the ends of

the element. The stiffness matrices must then be transformed into the global coordinate system,

which matter is not treated here.

Although the general case of a conical shell is treated, the results obtained are valid for

the limi~ing cases of a cylinder, ~ = 0, and of a flat circular plate, $ = ~/2.

5.9.2 Harmonic Dependence on Azimuth Position

Since the conical shell element is assumed to be axisymmetric, the motions of the shell at

meridional position, s, can be expanded in a trigonometric series with respect to azimuth position,

¢:
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u(s,cp)

V(s,¢)

W(s.ep)

S(s,¢)

m * m *I un(s) sin(ncp) + u (s) - I un(s) cos(ncp)
n=l 0 n=l

m m *
= vo(s) + I vn(s) cos(n¢) + I vn(s) sin(n¢)

n=l n=l

m m *
woes) + I wn(s) cos(n~) + I wn(s) sin(nep)

n=l n=l

m m *
= ao(s) + I ~ (s) cos(n¢) + I an(s) sin(nep)

n=l n n=l

m * m *I Sn(s) sin(nep) + So(s) - I Sn(s) cos(nep)
n=l n=l

(1)

The rotations a and B are independent motions because of the transverse shear flexibility.

Rotation about the normal to the surface is not included, such rotation being adequately repr~-

sented by the gradients of u and v.

5.9.3 Cases to be Treated

The motions corresponding to different harmonic orders (different values of n) are elas

tically uncoupled. Furthermore, motions represented by starred parameters are not coupled to mo

tions represented by unstarred parameters. For n > 0 the stiffness matrices for the starred and

unstarred motions are identical. The reason is that the starred parameters describe motions

that are all shifted ;n in azimuth from the motions described by the unstarred parameters.

Thus. -cos(nep) = sin(nep - I) anc sin(n~) = cos(nep - I)' The unstarred motions will be used to

develop the stiffness matrices for n > O.

The set of parameters, vo(s), woes) and (;Lo{s) describes axisymmetric motion of the shell,

* *The set of parameters, uo(s) and So(s), describes rotation and twisting of the shell about its

axis. The stiffness matrix for n = 0 will include both starred and unstarred motions.

The degrees of freedom for'the shell element are taken to be the values of the Fourier

coefficients appearing in Equation 1, evaluated at the ends of the shell element. Separate

stiffness matrices will be evaluated for the following parameter sets,

* * * *
~ao' vao ' wao ' aao' Sao; ubo ' vbo ' wbo' CLoo' SboJ

5.9-2
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and in general

(4)

where sUbscripts a and b refer to the ends of the segment, see 'Figure 1. Note that, as previously

shown, the stiffness matrices for the starred components are identical to those for the unstarred

components, for n > 0, and need not be separately calculated. The general starred parameter set is

* * * * * * * * * *
Luan , van' wan' aan' San; ubn ' vbn ' wbn' abn SbnJ (5)

If transverse shear flexibility is negligible, the rotations, Sa and 6b, are not independent

degrees of freedom. Soecial procedures are reqUired for the case of zero transverse shear flexi-
~ .

bility. Stiffness matrices will be separately derived for the follOWing cases, in the following

order. Note that the stiffness matrices for n > 0 can be derived with n as a parameter.

a. Finite shear flexibility, n > O.

b. Finite shear flexibility, n = O.

c. Zero shear flexibility, n > O.

d. Zero shear flexibility, n = O.

5.9.4 General Plan for Deriving the Stiffness Matrices

For each harmonic index the displacements of the shell are approximated by power series with

respect to distance along the shell. The power series include a number of independent constants

equal to the number of degrees of freedom. For example, the general case of finite shear flexi-

bility and n > 0 requires ten independent constants. i.e. one for each element of {u }. Theen
relationship between degrees of freedom and the independent constants. {q }, can be explicitly

n

stated as

{u } = [H J{q}en uq n (6)

The next step is to express strains in terms of the independent constants. The strains, of

course. have harmonic dependence on azimuth similar to Equation 1. so that the required relation

ships are between harmonic coefficients of strain and the independe~t constants for the same
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harmonic. Three kinds are involved.

is}

, 1

t Y ! {Ys' y¢}T, transverse shear strains, and

T{Xs ' X¢, xs¢} , bending curvatures.

(7)

(8)

(9)

The required relationships are:

(10)

(11) .

(12 )

The matrix coefficients are evaluated by combining the relationship between strains and dis-

placements with the relationsr.ip between displacements and the independent constants.

The total strain energy for the conical shell element is

_~ J
R. J27T T T T[{F} {~} + {V} {y} + {M} {x}] rdQds

o 0

where, for a unit width of shell,

{Fs ' F¢, Fs¢}' membrane forces

{Vs ' V$}' transverse shear forces, and

{M}T = {Ms ' M¢, Ms¢}' bending and twisting moments.

(13)

(14 )

(15)

(16 )

Forces and moments are related to strains by elasticity. It is assumed that the three types

of strains are uncoupled so that

{F}

tV}

t[E]{d (17)

(18 )

{M} = [D]{X}
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where t is the thickness of the shell for membrane stiffness, and t s is the thickness of the

shell for transverse shear stiffness, both assumed constant over the surface of the element. Be-

cause of the symmetry of the shell, certain terms in [E], [G] and [0] are zero. The remaining

terms, assumed to be constant over the surface of the element, are

(20 )

and

[G]

[D]

G:J
(21 )

(22)

By substituting from Equations 17, 18 and 19 into Equation 13, we obtain:

t Ii I2rr
[t{s}T[E]{S} + ts{y}T[G]{y} + {x}T[D]{x}] rd¢ds

o 0

(23)

Because of the assumed symmetry, the strain energy can be written as the sum of a series of inde-o

pendent terms

m * m *
V +'V +V +lVeo L en eo w enn=l n=1

(24)

where each term has the form given by Equation 23, with the addition of a sin2n¢ or a cos2n¢ fac

tor, and the substitution of harmonic strain coefficients for the strains. Integration with res

pect to ¢ then gives, for n = 0

Veo = rrfi[t{Eo}T[E]{Eo} + ts{yo}T[G]{yo} + {xo}T[D]{xo}] rds
o
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and, for n > 0

i f£[t{Sn}T[EJ{Sn} + ts{yn}T[G]{yn} + {xn}T[DJ{xn}] rds
o

and similar results for the starred terms.

Substitution of Equations 10, 11 and 12 into Equation 26 then gives

where

(26)

(27)

[I<~J - r[t[Hsq]nT[E][HsqJn + ts[Hyq]/[G][HyqJn + [HxqJnT[D][HxqJnJ rds. (28)
a

The result for r. = 0 is th£ same except that the factor rr is replaced by Zrr.

[K~J is the stiffness matrix referred to the independent constants. The stiffness matrix

referred to the degrees of freedom for the element is

(29)

which is the final result.

The plan of the analysis is to develop explicit formulas for the terms in [HuqJn and [K~J.

The integration indicated in Equation 28 makes it very difficult, if not impossible, to express

[K~J as a sum of products of elementary matrices.

5.9.5 Stiffness Matrix for Finite Shear Flexibility, n > 0

5.9.5.1 Power Series Expansions

The ten independent constants for each harmonic order, {qn}' are chosen to be the coefficients

in the power series expansions for displacement and shear strain amplitude coefficients as Shown

below. Shear strains rather than rotations are employed for convenience.

5.9-6
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Y is assumed constant and independent of s.sn
The magnitude of Ysn is determined in terms of
the ten independent constants.

Harmonic Components
of Transverse
Shear Strains

(33)

Other choices'of expansions are possible. The above has been selected by virtue of the fol

lowing arguments.

a. Only four constants should be associated with un and vn because, in the limiting case of

of a flat circular plate, u and v become uncoupled from the other degrees of freedom.

b. The choice of a cubic expansion for w is analogous to the expansions used for the trans

verse deflection of beam and plate elements.

c. The identity of two of the independent constants with the circumferential shear strains

"is necessary because, in the limiting case of zero circumferential shear flexibility, Sa

and Bb are no longer independent degrees of freedom. In this limit q9n and qlOn are

omitted.

5.9.5.2 Strain-Displacement Relationships

The strain-displacement relationships for a conical shell are as follows (refer to Figure 1):

a. Membrane Strains

E::¢ ~(~~ + v simp + w cos1J.)

E:: :: ~ - 1 (u sin'" _ av)
s¢ "S r 'I' a¢

b. Transverse Shear Strains

aw
Ys = as-a:

1 aw ur a¢ - r cos1/i + S

5.9-7
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c. Bending Curvatures

x =¢i
1 (136 .)r - d¢ + as~n~

(39 )

(40 )

where ew is the rotation about a normal to the shell surface.

(41)

(42)

Note that the conventions for E
S

and E¢ give positive strains for tension and that the con

ventions selected for curvatures are such that the fiber strains due to bending and stretching

are algebraically added on the~ surface of the shell.

The above strain-displacement relationships are, with the exception of the twisting strain.

fairly standard and they can be checked by reference to text books or to simple diagrams. For the

derivation of the twisting strain refer to Figure 2. The twisting strain is defined by

(43)

a rather than a is used because ~~ is not zero in a rigid body rotation of a surface element

about the normal to the surface. a is defined to be collinear on opposite edges of the element.

From Fi gure 2b:

(44 )

so that

(45)

Substitution of Equation 45 into Equation 43 gives Equation 41. Eauation 42 fer the rotation

about the normal can be readily verified by simple diagrams.

For the unstarred parameter sets, the components of strain have the following dependence on

azimuth, assuming only one harmonic order, the nth, to be present. The choice of a sine or cosine

dependence is made from a consideration of symmetry.
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~ "

Esn

E¢ Edln

t1 to'!(:: = cos(n¢) Ysn
YO \

sin(n¢) Ycjln (46 )

Xsn Xs~ Xscjln

X¢ Xllm

The relationships between the Fourier components of strain and the Fourier components of

displacement are derived by inserting Equation (46) into the strain-displacement relations. The

SUbscript (n), which modifies nearly every dependent variable from now in section 5.9.5. is

dropped for convenience.

a. Membrane Strain Components:

E =¢

E
S

~ (nu + vsinljJ + wcos1j) )

OU 1 ( . ,j, )= ~ - - us,n'!' + nv
"s r

(47 )

(48 )

(49 )

b. Transverse Shear Strain Components:

y
s

aw
-- aas

(50)

1'1> =

c. Sending Curvature Components:

- ~ (nw + UCOS1jJ) + 8 (51 )

(52)

X¢ = ~ ( -nB + aSintjl) •

aB 1 [ . 1 .,,(au + usim/l + nv)J- as + r -na + SSHllJ - ! cos", as -r- r

(53)

(54)

5.9.5.3 Development of [P.UqJ

Equations 50 and 51 are used to obtain tne relationships between a.S and the independent con

stants. Substituting from Equations 30 through 33 into Equations 50 and 51. and drooping ·sub-

scripts (n).

a: =

5.9-9
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1
~nw + ucos~) + y
r ¢

(56)

In order to express a in terms of the independent constants,Ys must first be expressed i~

terms of the independent constants. Writlng Equations 30 through 32 and 55, 56 in matrix notation

yields

{u,) = [H J{q} + {H }y
uq uy S

(57)

where the bar notation is used to indicate a subset of the complete [H ] matrix.
uq

Y, will be found 1n terms of {q} later. From Equations a and 11

where LH J is a partition of [H ] in Equation 11. Thus, c~mparing with Equation 6ysq yq

(58)

(59)

The nonzero terms in the [H J matrix are, recalling the order of disolacement comnonentsuq

in Equation 3:

Cl. : H46a

6 : H5l
cosw. H55

:;
n H

S9a r . r aa

ub: H61
1 . H62 = 2-,

Vb: H?3 1; H74 = 9.

9.
2 ; H88

'l

wb: H85 1 ; Ha6 £.; HS? :1.'''

CLb: Hg6 1; Hg? 29. ; Hg8
3£2

5.9-10
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Bb: Hl 0,1
cosw

H,0,2
~.

H10,S
n

R"10,6
n2

-r- , = -; ;r
b

,
r

b
r

bb

H10 ,7
n22

HlO ,8
n23

H, 0,9 1.
H10,10 = ,\'.

r
b

; r
b

; ,

{H } is a column vector with -1 in the 4th and 9th elements and zero elsewhere.
u)'

5.9.5.4 Development of [H~qJ and [HXqJ

From Equations 47 and 31:

From Equations 48 and 30 to 32:

(60)

From Equations 49.30 and 31:

Hence:

(62)

~ s

o

o

o

Eep ~s¢>

!!. -sinlj!
r r

ns - 2.. sinlj! 2r r

sinlj! -n 3r r

ssinw .:.!!2.. 4r r

~ 0 5r (63)
SCOSlj! 0 6r

s2cos1JJ 0 7r

s3COSlj!
0 8r

0 0 9

0 0 10

5.9-11
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For the bending strains we consider the dependence on the independent constants and on Ys

separately. Thus

[H ]{q} + {H }Ysxq xy

so that using Equation 58

(64 )

[H ] =
Xq

(65)

From Equations 52 and 55 and the assumption that ys is constant,

From Equations 53, 55 and 56

(66)

Xc = ~ [-n8 + asin1/!]

+ q ( nscostlJ) + (n
2

) + (Sinw sn
2

) + (2ssinw n
2
;2 )2 - -2- qs - 2 q6 -r- - ~ q7 -r- -~

r r r r

+ q (3S2Sinili _ n
2
s
3

) + q (_!!.) + q (_ ns) sin~ y
8 r r2 9 r 10 r r s

From Equations 54, 55 and 56

(
3sint!Jcos1/! ) + (3sSintl'Cos..:, 3COStiJ) + (ncos•./!) + (nsco5tP )ql 2 q2 2 - -- q - -:-z q - --:z-

2r 2r 2r 3 2r 4 2r

(67)

50 that, in matrix form,

5.9-12
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-ncos$ sin$ H yq
---,,-- - - 11r<: r

3sin~osw + ~ H yq
. r 11
2r

where

o

o

o

a

o

2

6s

o

o

-ncos~ sin~ yq-r- -r- H12

-simp H YG
r 13

-s;nlj; H yq
r 14

2 .
.:!!.- -~ H yq

r2 r 15

s;n~ n2s sinlj; H yq
-r- - 2 - -r- 16

r

2ssinw _ n2s2 _ s;nlji H yq
r r2 r 17

o

1 (ss i nl/lcos~ _ COSljl) + !!. H yq
2 r2 r r 12

-nc02lj1 + !!. H yq
2r r 13

-nscosljI + !!. H yq
2r2 r 14

2nssinlli _ 2n + !!. H
1

yq
r2 r r 6

simp + !!. H yq
r r 19

- 1 + ~ sinljl + !!. H yqr r 1,10

(69)

2

3

4

5

6

7

8

9

10

.!!.
r

(70)

has been used to form the terms involving H;jyq.
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5.9.5.5 Development of [~(q]

The first row of [H q] is LH J ..~ ysq

zeroes for the first eight elements and for the remaining two:

H YO = 1;
29

yq
H2,lO s

LH qJ is developed by means of an equation of moment equilibrium into which the meridion~l com
Ys

ponent of transverse shear enters.

Consider a surface element as shown below. The symbols refer to physical quantities rather

than to their Fourier components.

(r + ts sinw)t¢

~sc

The positive dlrection of moments shown above is consistent with the positive convention for cur-

vatures.

Equilibrium about the ~-axis requires, COnSljerlng terms of the same order of smallness, that
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To firs~ order in 6S and ~¢,

o (71 )

i1' r's (72 )

and

Substituting Equation 72 and 73 into Equation 71, and dividing by ~¢~S,

(73)

(74)

Since ys
n

and since

we arrive at

M~ sin(n¢) for the condition described by Equation 46, we may write,
s'+'n

rVs + ~ (rM ) + nM - M~ sinw = 0 •
n S sn s¢n '+'n

~ Vs ' we can now write, suppressing n as a subscript:
S 11 n

1 r a . Jy = --- L- - (rM ) - nM + M Slnws rtsG11 as s s¢ ¢ ,

\", On D12 0 Xs

t °12 °22 0 X¢

, Ms¢ 0 0 D33

(75)

(76)
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Define

(78)

The relationship between {X} and the independent constants has already been found (Eauation 69).

Substitute Equation 78 into 77.

Equation 79 is an exact relationship that indicates Ys to be a variable over the surfa:::e.

In order to comply with an ea~lier assumption, Equation 33, Ys must be assumed constant in energy

calculations. let Ys be the weighted average v4lue of Ys obtained by integrating Equation 79 over

the surface.

(80)

where

Thus, assuming Ys to be constant on the right hand side of Equation 79

y =s

(81)

where
x,

= ;r f smrl-"ds
J

o

5.9-16
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Write

Q (83)

Then

tr [ra (ollXS(a) + °12Xlj>(a)) - r b (DllXs(b) + °12Xq,(b))

+ (( - nD33xsq, + Sin$(D12xs + 022Xq)) ds ]
o

(84 )

Evaluation of the right side of Equation 84 by substituting for the X's from Equation 69, now

gives Ys in the form Ys = LH I{q}; LH I is the first row of [H ]. The nonzero elements ofysq- ys<r' yq
the second row of [H J are:yq

H yq = 1· H yq = s
29 ' 2,10 .

On evaluation of the right hand side of Equation 84, we get

Hn
yq

1 [ c 1) n . 103 ( ) J= Q °12ncoslp rb - r
a

- 2" cosws lOW TI 033 + 2°22

H12
yq 1 [ nicos1/! 1. 113 ( ) + 3 nD COS$ 102 ]Q °12 r

b
- 2" nSlnljJcosw TI 3033 + °22 '2 33 1T

'(q 1 [1 2 ,103 ]H13 Q 2" n 033cos~
(8Sa)

H yq 1[ln20 cos,I 13 ]14 Q 2 33 ~

H yq 1 [2 C 1) 2. 103 ( ) ]= Q t1 012 r
b

- r
a

- n Sln1/l -:;r 2033 + 02215
.

H yq 1 [ (n
2
£) 2 In ( ) 102 ( 2 2)]= Q 012 --r;;- - n sin1/l TI ,2°33 + 022 + rr 2n 033 + sin $022 '16

H yq 1 [ (n
2
£2) 21 12 (2 . 2 \

17 Q 2011 (ra - rb) + 012 ~ + -;:r- 2n 033 + S10 $022}

2, 123 ( ) ]- n sln~ 2033 + 022 '
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H yq
18

(85b)

[ ( ) I ( )]
yq _ 1 . 12

Hl,lO - Q ni D12 + 033 - nSlnw -;- D22 + 033 .

We are now able to compute [HUq ] from Equation 59 and to evaluate the constants HijYQ in

Equation 69.

5.9.5.6 Explicit Form for [Kq
]

[Kq] is, for convenience, separated into parts due to stretching transverse shear, and

bending.

where

£.
~t J [H ]T[EJ[H J rds

o e:q e:q

£
~t f [H JT[GJ[H qJ rds

s 0 yq Y

£
" J [H ]T[OJ[H ] rds

o Xq Xq

In the case of [Kqy], the calculation is performed as follows. Let

Then, since [GJ is a diagonal matrix and {H q} is independent of s, we may write
Ys

5.9-18
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where. noting that 1
00

is defined in Equation 82.

qy T
[K sJ = tsGllIOO{HYsq} {Hysq }

and

(92)

qy
[K tPJ (93)

q'(

[K SJ is a full symmetric ten by ten matrix obtained by crossmultiplying the terms in Equa-

t~on 79. Explicitly:

(94)

qy
[K ¢J is a symmetrlc matrix that is zero except in the 9th and 10th rows and columns. These

terms are:

(95)

In the case of [KqEJ, explicit formulas were written for the individual terms. The terms

include integrals over the slant length in the form given by Equation 82. The formulas which

are not difficult to write, will be omitted in the interest of brevity.

In the case of [KqXJ explicit formulas were also written for the individual terms. The

formulas occupied eleven typewritten pages and it was virtually impossible to verify their cor-

rectness, not to mention that of the corresponding FORTRAN code. At this pOlnt it was decided

that the computer should be taught to perform analysis. i.e. that it should evaluate the integral

in Equation 89 from the formulas for the elements of [H J that inc1ude the variable of inteQra-Xq -
tion (see Equation 69). The analysis procedure involves recognition of the fact that the inte-

gral of the product of terms A and B where

is

A = and

i
TI

o
! ABrds = abIm+i •n+j

5.9-19

B

(96)



STRUCTURAL ELEMENTS FOR THE DISPLACEMENT METHOD

A subroutine was written in which the powers of rand s in the individual products of

[HXqJT[D][HXqJ were logically added and used to call the appropriate integrals. The programmer's

task was greatly reduced, and the reliability was correspondingly increased, because only about

sixty coefficients (see Equation 69) were involved rather than about six hundred. The only use

made of the explicit formulas for the elements of [KqXJ was to check the results of the computer

subroutine for enough terms to ensure its correctness.

5.9.5.7 Summary of Procedures

In summary, the computational steps required to form the stiffness matrix of the conical

shell element for the general case, n > a with finite shear flexibility, for both the starred and

unstarred quantities are

l. Form [H J and {H }. See Section 5.9.5.3.uq uy

2. Form {H } from Equation 85.
ysq

3. Form [HUqJ from Equation 59.

4. Invert [H ].uq

5. Form [KqE
] • See Section 5.9.5.6.

6. Form [KqYJ. See Section 5.9.5.6.

7. Form [KqXJ. See Section 5.9.5.6

8. Form [K qJ from Equation 86.n

9. Form [K u] from Equation 29.n

5.9.5.8 Evaluation of Integral, Imn

The integral to be evaluated is

where

(96)

r = a + bs, a = ra, and b =

Dwight's Table of Integrals, Formula 89, gives an explicit formula for the evaluation of Imn . In

terms of our notation the formula is
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m!
1f -

bm+l

[

~ (_a)jrm- n- j+2

j~O (m-j)! j! (m-n-j+2)

ji"m-n+2

(_a)m-n+2log (r) ] r
b

+ (m-n~2)! (n-2)!

J=m-n+2
ra

(97)

(98)

The second (log r) term replaces the term in the series far j = m-n+2 and should not be in-

eluded unless j = m-n+2 for some j. This will happen if, and only if, m + 2 ~ n ~ 2.

5.9.6 Stiffness Matrix far Finite Transverse Shear Flexibility, n = 0

The formulas presented in the preceding section are valid for n = 0, provided that the final

stiffness matrix, as computed from the formulas of the preceding section, is multiplied by two.

5.9.7 Stiffness Matrix for Zero Transverse Shear Flexibility, n > 0

The first consequence of zero transverse shear flexibility is that Sna and Snb disappear as

independent degrees of freedom. The following equations of constraint then occur:

= L (nw + cosij!U )r _ na na
a

(99)

In the element stiffness matrix, [Kn
u], the fifth and tenth rows and columns are deleted.

[Kn
u] is evaluated as before with the following changes:

(a.) In the transformation matrix, [HUqJ. the fifth and tenth rows and the ninth and tenth

columns are deleted. Also [HUqJ = [HUq].

(b.) In the stiffness matrix referred to independent constants, [KnQJ. the ninth and tenth

rows and columns are deleted. Also [Kqy] = 0, and all Hyq terms in [Kqx] are set equal

to zero.

No~e that it is not correct simply to delete the fifth and tenth rows and columns of [Kn
U]

from the results of Section 9.5.5.
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5.9.8 Stiffness Matrix for Zero Transverse Shear Flexibility, n = J

The formulas obtained by the procedures outlined in the preceding section are valid provided

that the final stiffness matrix is multiplied by two.

5.9.9 Static Loads

Special procedures are required in generating loads and reducing data for axisymmetric

shells due to the use of harmonic functions of azimuth position in the analysis.

The basic coordinate system for the shell is a cylindrical (G,z,r) system, as shown in

Figure 3 below. The local coordinate systems used to define loads and displacement components

at grid points may either be cylindrical (¢,z,r) or spherical (i!>,e,;:J). All such coordinate sys-

terns must have the same azimuth reference as the basic coordinate system.

coordinates for
conical shell
element

w

I®
I
I
I

I \ I r

r \ I b

I P \ I
r al \ I

___'I-I---1.0_\ --1-:_

• z

Figure 3. Coordinate systems.

I / .
~~ re~erence
I OJ;' aZlmuth

I /
-1/
.u

The element coordinate system is a conical system (~,s,w) where s is a parallel to the gene-

rator of the element.

The motions along each grid circle are the components of ~he vector,

{u }
g

5.9-22
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The components of {u } depend on azimuth position. Such dependence is eliminated by Fourier
9

series expansion as explained in Section 5.9.2.

Under certain conditions either 6z or 6r • or both. will be eliminated as degrees of freedom

by single-point constraints. For example. if all of the elements of the structure are rigid in

transverse shear both 6z and 6r will be eliminated. Also if the elements joined together at a

grid circle have the same cone angle. either 6z or er should be eliminated.

The degrees of freedom used in analysis are the Fourier coefficients of the motions at grid

points. The loads. or generalized forces. acting on the degrees of freedom are computed by the

following fundamental theorem.

Let f i be the forces applied to points where the motions are Yi. Let the motions Yi be

linearly dependent on a set of parameters uj . Then the generalized force on each u
j

is

(101 )

In the present instance the motions Yi are the components of the {Ug} vector defined by

Equation 100. and the parameters uj are the harmonic coefficients in the Fourier expansion of

{ug}. The expansion of {Ug} is explicitly:

m m
I * *u:p = u¢nsinn¢ + u¢ - L u¢ cosn¢

n=l a n=l n

m m
*Uz L uzncosn¢ + Uzo + I Uzn sinn¢

n=l n=l

m m *Ur = I urncosn¢ + Uro + I Urn sinn¢
n=l n=l

m m (lO2)
*e4> = I e¢ncosn4> + 64> + I e¢n sinn4>

n=l a n=l

m m
I * *6z = eznsinn~ + 6zo - I 6zn cosn¢

n=l n=l

m m
I * *er = ernsinn¢ + era - I ern cosn¢

n=l n=l
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The motions corresponding to different harmonic orders are uncoupled. Also the motions cor

responding to starred and unstarred coefficients are uncoupled. The minus signs have been intro

duced in order to ma,ke the stiffness matrices for starred and unstarred parameters identically the

same for n > O.

The load vectors (generalized forces) acting on the degrees of freedom are designated by;

{P }T {Pzo ' Pro' M¢o}0

{P *}T * * *
{P$0 Mzo ' Mro }

0

{P }T = {P¢n' Pzn' Prn' M<I>n' Mzn ' Mrn}• n > 0n

\
\

(103)

* *{Po} and {Po} are combined into a single load vector. {Pn} and {Po} may be regarded as

separate loading conditions for the same idealized structure, since the stiffness matrices for

the starred and ~nstarred systems are identical for n > O.

The specific treatment for various type? of loading are discussed Delow.

5.9.9.1 Loads Designated at Grid Points

The following options are available to the user for the specification of static loads applied

directly to the grid points of an axisymmetric shell.

(a) Specification of the harmonic coefficients of a line load density. {f},

along a grid circle. (The local coordinate system need not be cylindrical.)

(b)

(c)

Specification of concentrated loads {F i
c} at azimuth positions 9i.

Specification of uniformly aistriDuted line loads {f.d} between azimuth positions,
J

<1>1' < ¢I. < <1>2' •J J J

Considering option (a), let the component of the line load in the 0 direction be given by

m m
a~o ~ ) a cosn¢ + I b~ sinn¢

'" n;;;l elln n=l 'l'n

Then from Equations 101 and 102. replacing the summation by an integration,

5.9-24
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TIrbcPn , n > 0 , (l05)

*P
·¢n -TIra¢n' n > 0 .

Let the component of load in the z direction. be given by

m m
aze + I az cosn¢ + L bznsinn¢

n=l n n=l

Then from Equations 101 and 102

Pzo 21irazo

Pzn rrra zn ' n > 0

*Pzn = rrrbzn ' n > 0

(106)

(107)

The other components of generalized force and moment follow either the pattern of Equation

105 or the pattern of Equation 107.

Considering option (b), let the component of the ith concentrated load in the ¢ direction

be F~ic. Then from Equations 101 and 102

P¢n I F c .
i

¢i slnn¢i

* -I c
Plj>n F(jli cosn¢i"

i

(108)

For the components of load in the Z direction,
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Pzo L Fzi
c

i

P Z
c (109)= Fzi cosn¢izn i

* 'i F c .Pzn /.. zi s1 no'lli
i

and similarly for the other components of force and moment.

Considering option (c), let the component of the jth distributed load in the ¢ direction be

f¢jd. Then from Equations 101 and 102

Pqln

*
P~n

\' J¢2 j f d. rd¢:: L ¢j Slnncp =
j ¢lj

r " d ( )- n~ f¢j cosndiZj - cosn4>l j (110)

and for the components of load in the z direction.

5.9.9.2 Pressure Loads

/

(111 )

The user has the option to specify pressure loads acting normal to the surface of a conical

shell element. The direction of the load is in the w direction shown in Figure 3. Each pressure

load, Pj' (there may be several j's for each element) is uniform over the slant length of the

element, .e, and between azimuth positions ;;:1" <~" < 'il2 "
J J J
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The pressure load is beamed to the adjacent grid points in such manner that the center of

pressure is preserved. The generalized forces at grid point@ due to pressure load on the coni

cal shell element between grid points ® and ® in Figure 3 are

( r r b )P 9. f +"6 ~ Pj(¢2j - 0lj )

IWo J

Q.Ca r b) . - Sinn¢lj) , (112)P
Wn n ~ +"6 J Pj(slnn¢2j

)
* Q.(ra r b)P - - ~ +"6 I p.(cosn0? - cosn¢l .).w n , j J -J Jn

The generalized forces in the w direction must, of course, be rotated into the directions of

the degrees of freedom at the grid point.

5.9.9.3 Mass Distribution and Gravity Loads

The user specifies the total mass to be associated with a grid circle. The program then di

vides the total mass by 2 for n >0 and constructs a diagonal 3 x 3 grid pcint mass w.at~ix in the

usual manner. (The total mass is used for n = 0.) The user car. also specify e.g. offsets in the

(r,z) plane and rotary inertias about three orthogonal axes. Rotary inertias are specified as

inertia per unit length for each grid circle and are multiplied by 2rrr for n =0 and by rrr for

n > O.

Structural mass density, Ps' and nonstructural mass density, Pns ' can also be specified for

each conical shell element. The equivalent concentrated mass at grid point @ due to the element

between ® and ® in Figure 3 is

(113)

which is divided by 2 for n > O.

The gravity vector is specified by its magnitude, by its azimuth (¢g) and by the angle (Og)

that it makes with the negative z axis (see Figure 3). Gravity loads excite deformations in the

n =0 and n = 1 harmonics only. The distributed gravity forces acting on a grid circle are
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f 9 - ~ cose
z 21Tr 9

f,g = - ~ sine sin(¢-¢ )
cp 21Tr 9 9

so that, usin9 Equations 101 and 102

27T 9= f fz rd~ M9 cose'" - 9o

I (114 )

27:
= - f f¢9cos¢ rd¢ =

o
(115 )

27f
f f r9cos¢ rd¢
o

27T
f fr9sin<ll rdo
o ;

which are the only nonzero generalized forces. Note that the lateral load is divided equally be

tween a radial (r) and a tangential (¢) component.

5.9.9.4 Loads Due to Temperature and Enforced Strains

Temperature is specified at each grid point circle in either of two ways:

(al As the harmonic coefficients in the expansion

m m *
T = T + I T cosn¢ + I T sinn¢

o n=l n n=l n
(116 )

(b) As a set of values, Ti , at azimuth positions. ¢i" The temperature is assumed to vary

linearly between azimuth positions where it is specified.

The harmonic coefficients in Equation 116 are in the correct form for use with the starred

and unstarred degrees of freedom in Equation 102. If the second method of specifying temperature

is used, the harmonic coefficients are computed as follows:
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21T

-2
1 f T(tP)d¢

1T 0
(117)

where ¢k is the last specified position, ¢k+l = 2" + ¢l' and Tk+1 =11,

T, } l2~(,)oo,", d¢ " ~ J, (i.' [Ti • (I:.; \) (\., -Ti)}o", d,

"J, 'H"- " [("'H' ; Ti•"') ('inn'H' - 'in"'i )

(
Ti +1n- T. ) ( )~+ 1 cosn¢i+l - cosn¢i + n¢i+lsinn¢i+l - n0isinnOi ~. (118 )

Tn
*

2n
- f T(¢)sinn¢ d~

" o

*J, 'i."_ 'i [( Ti'i.; ; TH,'i ) (-oo,n,;., •mn', )

(119 )

The temperature is assumed to vary linearly along conical shell elements between grid cir

cles. Thus for a conical shell element between grid circles CD and @.

The harmonic coefficients of temperature vary in the same manner. The incremental strains

due to temperature and enforced strain are

(121 )

The harmonic coefficients of strain have the same form, i.e.,
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LI£SO Ct T + o£SOS 0

ILI£sn = Ct.sTn + OEsn (122)

* * *LlEsn = Ct.sTn + o£sn

and similarly for the ~ components. Incremental shear strains, 6£S~' are excluded because they

cannot be induced by temperature in an axisymmetric shell and because there is little application

for enforced shear strains. The incremental strain vector for the nth unstarred parameter set may

be written

+ O£ (\sn
+ o£sn
a

(123)

The generalized forces acting on strain components that are generated by the incremental

strains are

n > a
(124 )

and the generalized forces on the independent constants {qn} are

Q,

f [H qJT{Fn} ds
a £

n > 0 (125)

The generalized forces acting on the degrees of freedom {uen} at the ends of the element and

represented in the coordinate system for the element are

[H -l]{p }
uq qn (125 )

The integration indicated in Equation 125 can be neatly exoressed in terms of the integrals

Imn defined in Equation 82. The results for the unstarred parameter sets are, for n > 0,
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{P2n} n(1llAn + 121 8n)

{P3n} si n1);( 101 An + I" Bn)

{P4n} sinw(IllAn + 121 Bn) + IOlen + I"Dn

{Psn } = COS\IJ(IOl An + III Bn)

{P6n} cos~(I"An + I21 8n)

{P7n } cos\JJ(I21 An + 131 Sn)

{PSn} cos~(131An + I41 Bn)

{P9n} 0

{P1O,n} 0 ,

where

(127)

The results for starred parameters are the same with the substitution of starred temperature

components. The results for {Pqo} are obtained by multiplying the above formulas by 2.

5.9.9.5 Enforced Displacements

Enforced displacements at a grid ring are introduced into the program by specifying the har

monic coefficients in Equation 102. Note that the motions at all points on a grid ring in a given

coordinate direction (e.g., u¢) are thereby restrained. It is not possible to constrain motions at

selected azimuth locations and to leave all other points free, without destroying the symmetry of

the structure.
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5.9.10 Data Reduction

Displacement information can be requested in two forms:

(a) The harmonic coefficients of motion· on a grid circle defined in Equation 102.

(b) The motion at ~ecified locations; ~i' on a grid circle obtained by evaluating Eq~ation

102 for each 91

Internal force, moment and stress information can be requested in the same forms, evaluated

at the two ends of a conlcal shell element (or within other types of elements if such are pro-

vided).

The internal force and moment components within a conical shell element are

{F , F , F ~}Ts ~ s~
membrane forces/unit width

it: {Vs ' V~}T transverse shear forces/unit width

!~} {Ms ' M¢, Ms¢}T bending and twisting moments/unit width

Fs ' F~, Vs ' Ms and M~ have even symmecry, similar to Uz in Equation 102. Fs¢' V~ and Msm

have odd symmetry, similar to u¢ in Equation 102.

The Fourier components of internal forces are evaluated by the following procedure, il1us-

trated for unstarred components.

1. Dbcain the displacement vector for the element, {uen }, from the {Ugn} vectors at its

two ends.

2. Evaluate the independent constants {qn} from

{ } = [H ]-l{u 'qn uq en!

3. Evaluate the harmonic components of strain from
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4. Evaluate internal forces from

{Fn} t[E]{En - .6.En}

\
{V 1 ts[G]{Yn} (130)n'

{Mn} = [D]{xn}

where {~sn} is the incremental strain vector given by Equation 123. [Hsq]n' [Hxq]n and {.6.En}

contain distance along the.shell, s, as a parameter. The formulas are to be evaluated for s = 0

and s = £. The procedures for starred components and for n = 0 are identical. (No factor of 2

this time).

Membrane stress components are obtained from

(131)

In evaluating combined membrane and bending stresses at a distance h from the neutral sur

face in the w direction. it is assumed that the material property is expressed by [E]. Thus

Components of lnternal forces and stresses at specified azimuth positions, {~;}. are ob

tained by

for quantities with even symmetry, and by

(133 )

F(¢i) =

for quantities with odd symmetry.

m *r F sinn¢. + F
n=l n 1 0
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reference
azimuth

r

Figure 1. Coordinate geometry for conical shell element.
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Figure 2. Geometrical relationships used in calculation of twisting strain.
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5.10 THE DOUBLY CURVED SHELL ELEMENT

5.10.1 Introduction

The formulation of the toroidal ring (and shell cap) elements described herein is derived

from, and is mathematically consistent with, the formulation described in Reference 1.

One of the first discrete element models put forward and one which has since been the subject

of numerous research inve~tigations and reports is the singly curved ring element formed by a

sec~ion cf revolution of a thin conic shell, (see References 2, 3, 4, 5). The reason for this

widespread attention is twofold. First, there exists a broad and important class of axisymmetric

thin shell structures which are readily idealized with the conic ring. Second. behavior pre-

dictions based on the conic ring have proved. in some cases. to be very poor.

References 6 and 7 have attempted to lay down guidelines in developing shell discrete elements.

These references identify the primary sources of difficulty with the associated discontinuities in

slope which occur along element circumferential interface lines in the conic shell idealization.

Having made this identification. it follows that an advanced ring element is needea which avoids

the troublesome discontinuities. The analytical develop~ent of the dOUbly curved shell element

used in NASTRAN is presented herein.

A mathematical representation is formulated for a doubly curved ring element. This versatile

configuration, defined by an arbitrary section of revolution of a complete rlght circular toroidal

shell. permits a smoothly continuous idealization of general axisymmetric thin shell problems.

Sec~ion 5.10.3 is devoted to the construction of admissible displacement functions. The importance

of selecting appropriate displacement functions cannot be over-emphasized since they serve as a

basis for all response characteristics of a discrete element model. Osculatory membrane and hyper

osculatory flexure displacement functions which embody generalized degrees of freedom are con

structed to achieve smoothness in stress predictions and to minimize the number of discrete ele-

ments required in a structural idealization.

A general Lagrangian function is utilized to derive a set of element matrices. The appro-

priate function is,

(1)
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where

r th generalized displacement coordinate

rth generalized velocity coordinate

(j>l

~2 '"

total potential energy

total kinetic energy

Application of this Lagrange equation yields the following element matrices

l. Stiffness [K]

2. Pressure Load {Fp}

3. Thennal Load iFT}

4. Prestrain Load {F }
E

5. Gravity Load {FG}

6. Stress [S]

7. Mass [M]

At present other types of structural elements cannot be combined in NASTRAN with the doubly

curved shell element in the solution of problems. The loads that are applied to the doubly curved

shell element must be axisymmetric. For more general loading conditions the conical shell element

described in section 5.9 may be used.
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5.10.2 Coordinate System Definition

The basic coordinate system employed is toroidal. which is a right-handed orthogonal curvi

linear system as shown in Figure 1. The midplane of the shell .is defined by the (~.6) coordinate

surface. Principal curvatures of the shell are aligned with the coordinate axes. Complete

characterization of the coordinate system is achieved by specification of the metric parameters.

A and B. and the principal curvatures of the shell surface. R~ and RS•

The definition of an increment of length. for a toroidal shell. is

(1)

where d~ is the increment of length along the mertdian. and dn is the increment of length along the

azimuth. This leads immediately to the definition of the Lame parameters. i.e•• the metric

parameters.

(2)

where ~ is defined in Figure 1, and S is the rotation about the polar axis.

Restricting consideration to circular cross sections. we first write from observation of

Figure 1 the expressions for the coordinate radii of curvature:

Rc = a +~
~ Sln~

(3)

By virtue of the curvilinear coordinate axes chosen. these are the principal radii of curvature of

the shell midsurface. The radius of curvature R is simply the radius of the circular cross
~

section. Note that, while R is constant. R~ is a function of the a coordinate.a ~

The Lame parameters of the coordinate system also follow directly from observation of

Figure 1:

A ~ a

B = b + a sina

5.10-3
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The conventional characterization of the curvilinear coordinate system, just stated, does not

allow convenient transition of the toroidal segment ring element to a conic segment ring element

as a special case since (a), and therefore (A), would approach infinity. A specification based

on arc length is developed in order to incorporate the conic segment ring element as a special

case. With reference to Figure 1, the system characterization is modified as follows:

R = a
0.

R. a +
r1 a sin ell

;,
sin(~l + il sin(Cl.1 + f)

A 1.0

6 r- + a sin(al + §.) - a sinal
I a

(5)

where

An alternate specification is now easily derived for the case of the conic segment ring

element. This special form is obtained by rewriting Rs and B as

sin(Cl.l + ~)

B

)
)

(6)

Invoking L'Hospital's rule we octain the desired characterization of the~ ring

r l cosell
--+ E;......-
S 1 nCl.l s1 nCl.l
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A 1.0

where

Note that further specialization to a cylindrical segment ring is immediate, i.e.,

co

(8)

A ::0 1.0

Also note that for the special case of the shell cap element, "1 =0, and r l =0, so that

in this case

R = aa.

R
S = a

(9)

A 1.0

B a sin(f)
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5.10.3 Displacement Functions

5.10.3.1 Introduction

The geometric shape and the notation used with the doubly curved ring element are illustrated

in Figure 1. By virtue of the assumed axisymmetry of the problem the displacements are functions

of a single ~oordinate. In particular, with reference to Figure 1, the displacements may be

written in terms of the meridional arc length coordinate ~, i.e.

u(:;,S) u(t.;)
( 1)

w(~,s) w(~)

Explicit consideration is given to the construction of displacement functions Which satisfy

ac~issibility requirements. Specifically, admissibility requires that the assumed displacement

fun~tions be complete up to the order of truncation, embody all rigid body displacement modes, and

provide for interelement contlnuity. Adherence to this definition of admissibility allows con-

vergence criteria, proven within the framework of ~ontinuous mechanics, to be invoked in inter-

preting ~redicted behavior.

5.10.3.2 Membrane Displacement Function

The construction of complete displacement functions which provide for interelement continuity

is particularly simple in the present problem since the functions are essentially one-dimensional.

The proper incorporation of rigid body displacement modes cen be verified using the strain dis-

placement relations presented in Section 5.10.4.

D~splacement parallel to the meridian will be called "membrane" displacement because it is

the principal contributor to ~mbrane strain, see Equation 2 of Section 5.10.4. The membrane dis-

placement function is taken to be a complete cubic in the meridional arc length ;, i.e.

S + S - + "3>2 + S4p3
1 21", "'" " (2)

The coefficients 6i in the assumed function are referred to as "generalized coordinates". Although

only two generalized coordinates are needed to establish the required piecewise continuity of

membrane displacement, fOIJr are prOVided by the assumed complete cubic. The two "extra" coeffi-

cients are included to Obtain improved stress continuity across element interfaces by imposing
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continuity of the first derivative of displacement.

The use of generalized coordinates as degrees of freedom affords maximum simplification in

the development of algebraic expressions for the energy funytions; however, in order to apply

physical boundary conditions to an element it is necessary to transform to element boundary or

gria point degrees of freedom {q }, i.e.rm

where

{6
m

}T LSl ' 62, :3 3 , 64-.J

T Lul , uE,;2-.J
{qr } u_ , uZ'

m 1;1

in which the notation implies that

(3)

(4)

(5)

(6)

The transformation matrix is obtained by imposing the fcllowing boundary conditions on the

assumed function:

(7)

(8)

Thus

0 0 0

0 0 0
[rem)] (9)Sr 3 Z 3

-~ s ~ s

2 1 Z 1
~ s2 -~ ;Z

~
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It is pertinent to note that, while the above development has been conceptually and algebra

ically simple, the development of admissible modes for arbitrary two and three dimensional shapes

would be much more difficult.

5.10.3.3 Flexural Displacement Function

Displacement normal to the meridian will be called "flexural" displacement because it is the

only contributcr to flexural curvature, see Equation 3 of Section 5.10.4. The flexural displace

ment function is taken to be a complete quintic polynomial in the meridional arc length ~. i.e.

(10 )

Only four of the six generalized coordinates are required to establish interelement continuity

of transverse displacement and slope. As in the case of the membrane displacement function, the

additional degrees of freedom are provided to obtain improved stress continuity across element

interfaces by imposing continuity of a higher order displacement derivative. Accordingly, con-

tinuity of the transverse displacement function value, first derivative, and second derivative

is maintained.

The generalized coordinates are employed in the derivation of the element representation.

Transformation is then made to grid point degrees of freedom {qr } i.e.
f

(11)

where

{q }T, = Lwl , wi:" ' wi:"r: ' w2 , wee , w,""" -.J
r f "1 "''''1 '"'2 '"'''2

(12)

(13 )

Tte transformation matrix [r (f)] is ob-I".ained by imposing the following boundary conditionsSr '
on the assumed function;

w(t;) l~=o wl w(E;)I~=s Wz
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>J~(';) \ ';=0 WE;
2

(14 )

Thus

0 , 0 0 0 0

0 0 0 0 0

0 0
1 0 0 02'

[r (f) ]
10 6 3 10 4 1

-3' -2' -25 , 3' - 2 ' 25 (15 )
Sr s s s s

15 8 3 . 15 7 1
"If' 3' Z;Z' - -:4 ' 3' -Z;Zs s s s

6 3 1 6 3 1
- 5 ' -4'" -j' 5' -4'"

253
s s 25 S S

----'

The full transformation from generalized coordinates to displacement degrees of freedom can

now be wri tten

where

{p} (16 )

{q}T = Lul , u:- , uZ' u:- ' w1' w~ , w1:1:: , w2 , w1: , W1::1::-.J
"1 "'2 <;1 ....1 ...z .....2

(17)

(l8)

(19 )

The reader may recognize the membrane displacement function as a well known Lagrange

oscu1atory interpolation formula and the flexural displacement function as a hyperosculatory

interpolation function. The final form of the displacement forms might well have been written
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immediately without development. The approach taken here was adopted for two reasons. First, it

is applicable without conceptual extension to complex elements where standard interpolation

formulae are not applicable, and second the generalized coordinates afford considerable algebraic

simplification in deriving element representations.
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5.10.4 Potential Energy

Consideration of the potential energy function must be preceded by a statement of the strain

displacement and stress-strain relations appropriate to the axisymmetric thin shell problem. The

general strain-displacement relations are:

e + zH
Q\ Q\

(1)

where the membrane strains are

e
Q\

(2)

and the flexural curvatures are

(3)

Introducing the coordinate system characterization derived in Section 5.10.2. the following

relationships are obtained:

(4)

(5)

where the notation Aj is defined as follows:

1= R
co
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1 dB
B~

1
R

S

(6)

It must be remembered in givlng explicit expression to the A
j

that the degenerate conic and

cylindrical configurations require a special form.

Linear elastic material behavior is assumed. In accordance with this assumption a generalized

Hooke's law is employed. The elastic material behavior is assumed to take place from an initial

state of prestrain, Ei , and an initial state of prestress, °
0

, i.e.

(7)

The initial stress and strain vectors are assumed to be prescribed. The coefficient matrix

[E] is

[E] (8)

Since the matrix must be symmetric, Ea vSa = Es v~B' Note that orthotropic materials are

permitted. Having written equations governing strain-displacement and stress-strain, the desired

energy function can be constructed. Beginning from the strain energy density definition

u' = f Ldc:J {cr}

the governing stress-strain relation is introduced to obtain

where {E i } is the prestrain and {Co} is the prestress.

(9)

(10)

Carrying forward the previously defined separation of membrane strain {e} and flexural

curvature {H} yields, after integration over the shell ~hickness,the follOWing expression for the

potential energy.
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u J[t (fdZ) LeJ [E]{e} - (j dz )LeJ [E]{ei }

+ (fdZ )LeJ {orno} + t (fidZ) LHJ [E]{H}

- (jldZ ) LHJ [E]{H i } + (f2dZ ) LHJ {Ofo} 1dA

(11 )

The prestrain and the prestress are related to their membrane and bending components by

(12)

Up to this point no assumptions have been made regarding the form of the prestrain and pre

stress distributions along the meridional coordinate. Explicit consideration will be given to the

specification of these quantities sUbsequently; it is assumed here, however, that the prestrain

distribution is linear and that the prestress is constant. The membrane prestrain and the curva-

ture can be expressed in terms of their constant and linear components,

( 13)

where s is the arc length of the element.

Invoking these assumptions and introducing a convenient symbolic notation. the energy func

tion is rewritten as:

s

U = f [t LeJ [Ik]{e} + LeJ Ha}

o

( 14)

+ t LH.J(Jk]{H} + LH..J{JQ'}

- LHJ {J~} - (t) LHJ {J E:
1

} ] Bd~
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where, with the thickness of the shell represented by t,

[lk] 2nt[E]

O} 21rt{oO}
0

{I~} 0[lk]re i }

{I 1} 1
E:

[Ik]{e i }

2 ..3
[Jk] -rr-[E]

{Jo} [Jk]{uf }
0

{JO, [Jk]{H~}
E:

I

{J 11 1
E: '

[Jk]{H; }
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5.10.5 Element Stiffness Matrix

The next step in constructing the element representation is to discretize the element by

introducing the previously derived displacement functions. The generalized coordinates are trans

formed to displacement degrees of freedom, and the energy functions are.substi~uted into the

Lagrange equation. The element stiffness matrix and the load vectors then arise as stationary

conditions of the total potential energy. The stress recovery matrices are derived from equili-

brium conditions.

The contribution of linear elastic stiffness to the energy function is, from Equation 14 of

Section 5.10.4. omitting terms due to prestress and prestrain

s

il'k = f [t Le.J [Ik]{e} + ~: LH-l [Jk]{H}] Bdt;
o

(1)

SUbstituting for strains in terms of displacements, using Equations 4 and 5 of section 5.10.4.

yields

1 2
+ '2 Ik [2A2UUC; + 2A3Ut;W + 2A1A2uW + 2A1A3w ]

12

1 .22 22+ '2 Ik [A2U + 2AZA3WU + A3W ]
22

1 2
+ z-J kll [Wr;t; ]

1
+ 2 J k [2A2Wt;WC;C;]

12

+ t J k [A~W~]] Bdt;
22

(2)

The development of an algebraic expression for the elastic strain energy is now pursued by con

sidering each of the energy contributions of Equation Z individually. That is. each displacement

quantity is expanded in terms of the assumed functions, and the indicated integration is carried

out.
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Addition of all the energy contributions yields

(3)

Transformation from generalized coordinates to displacement degrees of freedom by means of

Equa~ion 16 of Section 5.10.3 produces the eleme~t stiffnes matrix

(4)

Explicit algebraic representation of the elements of [K], Wh1Ch is a 10 x 10 matrix with as

many as thirteen terms in each element, is given in Section 4.87 of the Programmer's Manual. The

terms are functions of the following integrals, with the index (j) ranging from zero to ten.

;
0"

6

s

f ;jBdE; \

0

s

f c;j )'2Bd;

0

s

! ".j\ Bd~.., ·3';
0

(5)

s

f C;jA~BdE;
0

IS C;jA2A3Bdc;
0

s

f c;j). 2Bd;
3

0

The A's are defined in Equation 6 of Section 5.10.4. The most general form of B is given by

Equation 5 of Section 5.10.2.
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5.10.6 Load Vectors

5.10.6.1 Prestrain Load Vector

The prestrain membrane contribution to the potential energy is, from Equation 14 of Section

5.10.4

s

9me: f [LeJ {I~} + tLeJ {Ie;
1

} ] Bde;

o
(1 )

s

.= f lLeJ [IkJ{e~} + f LeJ [I]k{e i 1} J Bdt:
o

Substitution of the stress-strain relationships, Equation 4 of Section 5.10.4, and integration

yields

where

The 61 integrals are defined in Equation 5 of Section 5.10.5.

The prestrain flexure contribution to the potential energy is

s

¢fe: / [ LH-.J {J~} + f Lu {Je:
1
}] Sdt:

o

(2)

(3)

• (4)

(5)
sf [LHJ {Jk}{H~} + t LH.J [Jkj{H i 1} J Bdt:

o
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Substitution of Equation 5 of Section 5.10.4 into Equation 5 yields

(6)

~ ,0

G,0

,0 ,0 .0. 0, -Z8~, -68~, -128~, -ZOC~l

O 0 0 _0 "51 3-2 4- 3 5~4, ,. -°2' -,- Z' - °Z' - c 2' - U z
(7)

~
'O'O'O'O'

CF 1] = 1
fE S

0,0,0,0,0,

( 8)

Transforming from generalized coordinates to grid point displacement coordinates and sub-

stituting into the Lagrange's equation, Equation 1 of Section 5.10.1, the prestrain load vector

is obtained.

'F } [r ]T[F O,T[I ]re~} + [; ]T[F l]T[I ]Ie."
t E I3r mE.I k t 1 I3r mE k ' 1 J

(9)

where

Note that the f terms correspond to the extra displacement deg~ees of freedom and have no physical

meaning.

5.10.6.2 Pressure Load Vector

The external work done by the normal pressure on the displacements is,

w = ~p(~) w (~) dA
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Assume a linear pressure distribution with ~

(12)

dA

Thus

w

271"Bd~

271" JS p{~) W (~) Bd~
o

( 13)

(14)

SUbstituting for pressure and displacement yields

where {Fp} contains only integrals of the type

Explicitly,

0

0

0

0

0 +
Pz - Pl

61
Plol s 1

{Fp} 271" 1 Pz - Pl .2Pl o1 +
s °1

2 Pz - P1
63Pl o1 +

s 1

3 P2 - Pl
84P,ol + s 1

.4 Pz - P1 ~5
I

Pl °1 +

j
s "

5 Pz - P1
06

P1 c1 + s 1
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Introduction of the transformation from generalized coordinates to grid point displacement

degrees of freedom, and sUbstitution into the Lagrange's equation yields the pressure load vector

(18)

5.10.6.3 Thermal Load Vector

The thermal load vector is a special case of the prestrain load vector. The necessary change

is effected by substitution of the thermal strains into the prestrain vectors.

Four temperatures are given:

T1i inner temperature at grid point

Tlo outer temperature at grid point

TZ; inner temperature at grid point Z

TZo outer temperature at grid point Z

( 19)

The thermal mew~rane strains and the flexural curvatures are

eZi : TZo Tn + T )
{eTl}T = 2 10 Las, ClBJ

Tli - T rc:' ClSJ{HO}T 10
= 2T

{H l}T = eZi ; TZo _ Ili ; 110) l:~ 'ClSJ
T

(20)

Substitution of these expressions into the prestrain load vector, Equation 9, yields the

thermal load matrix.

5.10.6.4 Gravity Load Vector

The gravity load vector is obtained by calculating the work done by displacing the element

mass. Thus

w = rD Gw dV (21)
J

The mass density is given by D, and the acceleration of gravity by G. w is the deformation along
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the z axis. This deformation is

(22)

where u and ware given by Equations 2 and 10 of Section 5.10.3.

Substitution into Equation 1 with dV = tBd;dB yields

(23)

where

fS sin (CL1+<P)Bd';

1
0 5
f sin (CL1+¢)';Bd~

0 5
f sin (CL1 +9 )E;2Bd.;

0
5

I sin (CL1+¢).;3Bd.;

0 5
£"FG} 2rrpGt f cos (CL1+CP)Bd';

0
5

f cos (CL1+¢)~lBd';

0

/5 cos (CL1+¢);2Bd.;

0

s

I cos (CL1+¢).;3Bdi;

0

IS cos (CL1+¢)1;4Bdl,;

0

s

f cos (CL1+¢).;5Bd.;
0

(24)

Introduction of the transformation from generalized coordinates to grid point coordinates and

substitution into Lagrange's equation yields the gravity load vector
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{F
G

} = [r JT(F}
Sr G

5.10-22
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5.10.7 Stress Recovery

The element stresses are given by Equation 7 of Section 5.10.4 as

'tlhere

{a} (1)

(2)

For shell problems it is more convenient to work with stress resultants acting in the middle sur-

face of the element. These are given by Novozhilov, Reference (8) :

t/2

\ Jor, ( 1 + ~ )dz
-t/2 S

t/2
T

S JOB (1 + ~ )dz
-t/2 Ct.

r./2
(3)

HS Jar. (1 + ~ )zdz
-t/2 S

t/2

Mr. .los (1 + ~ )zdz

-t/2 CJ.

In determining the displacements. the contribution of the sheal' stress 'i;z to the strain energy

was neglected.

The transverse shear force, Q" can, however. be evaluated from moment equilibrium, see.,

Figure 2 and Reference (8).

(4)

By substitution of the stress relationships, Equation 1, into Equation 3, and by subsequent sub

stitution into Equation 4, all stress resultants are obtained. Figure 2 shows the positive dir-

ection of the stress resultants. The stress resultants arising from elastic stress, prestrain

and prestress will be developed separately.
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By proper substitution the elastic stress resultants are obtained in terms of the

displacements:

where

and the simplifying assumption

has been made.

Introducing the assumed displacement functions into Equation 5, yields.

where

5.1D-24
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(8)

The elements of [51J, [52J and [53J are listed in Table 1 on pages 5.10-31 and 5.10-32.

Introduction of the transformation from generalized coordinates to grid point displacements

yields the stress resultants

(9)

where

(10)

For the special case of the shell ~ element, the following specializations are made

COS(Cl.l + ~S)
CI.

r, - Ro.[sina, - sin(a, + ~s)J
CI.

1..3 = 1
R

CI.

1..4
,

= - (R7
CI.

(11 )

( 12)

(13)

Equations 4, 5, and 6 are then mOdified to reflect these changes. In addition, the re1ation-

ships in Table 1 are replaced by
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Sl.2 = E12 + E"

52 •2 E22 + £12

S3.7 = -2(£12 + Ell)

S4,7 2(E22 + E12 )

From Equations 11 and 12 of Section 5.10.4 the prestrain is

{~.} = {{e~} + ~ {e!}} + z {{H.} + f {H~}}
1 1 e, 1 s 1

where

The stress inducea by pres~rain is

(14)

( 15)

(16}

( 17)

Substitution of Equation 17 into the stress resultants, Equations 3 and 4, produces the prestrain

stress resultants

{Ti } ~ t{[EJ{e~} + f [EJ{e~}}

{M
1
·} ~ ~ {[EJ{H~} + f [EJ{H~}}

1<: 1 S 1

Qi = .f('-2LEll - £12' E12 - E2ZJ {{H~} + ~ {H~}}

1 LE E : 'H 1'. )+ S 11 ' 12~ t i'

( 18)

The thermal stress resultants follow immediately by substitution of the thermal strains,

Equation 20 of Section 5.10.6, into Equation 18.
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The prestress relationship, Equation 12 of Section 5.10.4, is

The prestress stress resultants are given by

Finally the complete stress resultants are:

(19 )

(20)

{M} {M } - {M.} + {M }e , 0 (21)

Note that the stress resultants at any point within the element may be obtained by sUbstitution of

the proper value of the ~ coordinate.
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5.10.8 Kinetic Energy and Mass Matrix

The approach taken in expressing the element kinetic energy is the consistent mass approach

first put forward by Archer in Reference (9). The same displacement functions employed in repre

senting the element elastic properties are used to find the element kinetic energy. It is further

assumed that the rotational energies are small compared to the translational. By virtue of these

assumptions, the kinetic energy functional takes tne form

(1)

where

are the mass density coefficients in the meridional and normal directions, which need not be equal.

The element mass matrix is obtained oy substituting the kinetic energy into Lagrange's

equation. Introducing the assumed displacement functions into the kinetic energy functional,

Equation 1, yields

where

and

[Mll ]

<l>KE

[M]
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.2 .3 ,4 ,5 ,6
°1" °1" "1" "1" "1

-4 ,5 .6 ,7
°1" "1" °1" "1

,6 .7 ,8
"1" °1" "1

,8 ,,9
"1" "1

(5)

(See Equation 5?f Section 5.10.5 for definition ,of oi.) The transformation from generalized

coordinates to displacement degrees of freedom in Lagrange's equation yields the grid point mass

matrix.
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Table 1. Stress Resultant Matrices.

AZE1Z'; + Ell

2
A2E1Z'; + ZEn i;

3 2AZE1Z'; + 3Ell r;:

2(A1E11 + A3E12).;

(A1E11 + A3E12)~3

4(A1E11 + A3E12)1;

a

A2EZZ; + E1Z

2A2EZ2'; + 2E12';

3 ZA2EZ2'; + 3E1Z;

3
(A1 E1Z + A3[2Z)';

(A,E12 + A3EZ2 ).;4

(A1E1Z + A3E22).;5

a

l
E12A1AZ'; - E1ZA2

2E1ZA1AzI; - 2E1ZAZ'; - ZE11

E1ZA1A2.;3 - 3E1ZAZ';Z - 6E 11 .;

E12A1A2.;4 - 4E12A2.;3 -lZE11 .;2
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Table 1 (Continued)

o

o

o

o

o

22£;(-A2£22 + A4E12) + E11 (2A2)

2 2
3£; (-A2£22 + A4E12 ) + El1(6~A2 + 6)

4£;3(-A~E22 + A4E12 ) + £11(12~2A2 + 24£;)

5C"4( ,2£ +' t.~ ).;. = (20.3, + 50-2)
~ -A2 22 A4 12 w11 ~ A2 ~
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Section A-A

Figure 1. Toroidal thin she11 ring representation.
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z
Tf;

z

Figure 2. Definition of stress resultants.
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5.11 SOLID OF REVOLUTION ELEMENTS

5.11.1 Introduction

The formulation of the triangular and trapezoidal cross-section ring elements described here-

in is derived from, and is mathematically consistent with, the formulation described in References

1 and 2. The ring elements provide a powerful tool for the analysis of thick-walled and solid

axisymmetric structures of finite length. They may be used to idealize any axisymmetric structure

taking into account:

1. arbitrary axial variations in geometry,

2. axial variation in orientation of material axes of orthotropy.

3. radial and axial variations in material properties,

4. any axisymmetric loading system including pressure and temperature, and

5. degradation of material prooerties due to temperature.

The discrete element technique was first applied to the analysis of axisymmetric solids by

Clough and Rashid(3). The formulation of the triangular cross-section ring was extended by

Wilson(4) to include nonaxisymmetric as well as axisymmetric ~oads.

Wilson's formulat~on for the axisymmetric case is extended here to include orthotrop~c

material properties with variable orientation axes. In addition, the integration of the strain

energy over the volume of the ring is effected more precisely. Thermal and pressure load vectors

and mass matrices are calculated.

Thus, the discrete element representation presented consists of algebraic expression for the

following matrices;

1. Stiffness [K]

2. Pressure Load {Fp}

3. Thermal Load {FT}

4. GraVity Load {~}

5. Centrifugal Load {CG}

6. Stress [S]

7. Mass [M]
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The matrices arise as coefficient matrices in the Lagrange equations for the element. The

appropriate generalized form of the Lagrange equation is

diPl + L (d iP2) = 0
Clq dt Ciq

r r

where

r th generalized displacement coordinate

total potential energy

kinetic energy

r th generalized velocity coordinate

( 1)

The triangular ring element will be described first, followed by a presentation of the addi

tional theoretical features of the trapezoidal element. The triangular and trapezoidal ring ele

ments can be used separately or together in the solution of problems with axisymmetric loads. At

present they cannot be combined in NASTRAN with other types of structural elements.
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5.11.2 Displacement Functions for the Triangular Element

A linear displacement field is assumed in the rand z directions (see Figure 1)

(1)

(2)

Note that continuity of displacement across element boundaries is preserved. A transformation

from generalized coordinates to grid point displacement coordinates is effected by writing

(3)

The generalized coordinates, {S}, can be expressed in terms of grid point coordinates {q} as

(4)

wh~re

(5)

(6)

From Equation 3, with reference to Figure 1,

r l z, 0 0 0

0 0 0 r, Zl

[fsqT
1 r2 z2 0 0 0

= (7)
0 0 0 r2 z2

r3 Z3 0 0 0

0 0 0 r 3 z3

which is nonsingular.
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5.11.3 Potential Energy

The total potential energy is derived as the sum of strain energy and external work contribu-

ti ons.

The strain energy density is defined as

where

U' (1)

(2)

(3)

Linear elastic material behavior is assumed from the initial state of strain {E i } to the fin

al state of s~ress {a} and strain {E},

(4)

where the superscript (m) is used to indicate that the elastic modulus matrix [E(m)] is evaluated

in a coordinate system defined for the material that may be different than the r. z system (see

Figure 1).

The matrix of elastic constants for an orthotropic body with respect to cylindrical coordin-

ate axes is

r--

Er(l - vezvze }' Er(ver + vzrvez )' Er(vzr + vzever), 0

IE6(1 - vrzvzr ) , Ee(vze + vrevzr )' 0 (5)

where

SYMMETRIC

5.11-4
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From symmetry

(7)

Poisson's ratio, vij ' is defined as the ratio of the strain in the j direction to the strain in

the i direction due to a stress in the i direction.

Equation 5 is more conveniently written in the following manner:

Ell E12 E13 0

I

[E(m)] E22 E23 0 (8)

E33 0

SYMMETRIC E44

Substitution of the assumed constitutive relations into the strain energy density, and inte-

gration, yields

(9 )

If the material axes {rem)} are oriented at an angle y from the element geometric axes (see

Figure 1), a transformation must be introduced

(10)

(ll)

where
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2 2 , sinycosycos y o , sin y

0 , 1 , 0 0

[T £0.J

. 2 , 0 2 , -sinycosyS1n y , cos y

-2sinycosy , 0 , 2sinycosy , (cos2y-sin2y)

(12)

Substituting back into Equation 9 and integrating over the volume of the element, we obtain

where

r 1 T T
U = J H{e:} [E]{e:} - {d [E]{£i}) dV (13)

[E] (14)

Equation 13 is the desired form of the potential energy.

The strains, Equation 2, are related to displacements as follows in a cylindrical coordinate

system.

where

{ ~TE,

au
ur '" or ,etc.

5.11-6
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5.11.4 Stiffness Matrix For The Triangular Element

In order to effect the discretization of the element. the assumed displacement functions are

introduced into the potential energy function. Substitution of the total potential energy func

tion into the Lagrange equations yields the element matrices with respect to gridpoint displace-

ments. Stiffness and mass matrices. as well as load vectors. are derived in this way.

The element stress matrix is derived from the strain-displacement and stress-strain relations.

The energy contribution of linear elastic stiffness is. in terms of strains.

(1)

Express the strains in terms of the generalized coordinates using Equations 1 and 2 of

Section 5.11.2, and Equation 15 of Section 5.11.3.

{e:} = [D]{S}

where

(2)

and

o • • 0 • o , 0 , 0

- z 0 • 0 0
[0] = r r

C • 0 • 0 • 0 • 0 •

0 • 0 • 1 • 0 • 1
, 0

By substitution back into Equation 1 we obtain

where the cylindrical volume differential is

(3)

(4)

dV 211"rdzdr

5.11-7
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Substituting back and noting that the generalized coordinates are not variable functions of rand

z we can write

where the triple matrix product

r(D]T[E][D] =

SYMMETRIC

(6)

o 0

(7)

By inspection of the matrix in Equation 7 we see that all the integrals in Equation 6 are of the

type

(B)

The integration is carried out over the interior of the element, shown in Figure 1.

The-integration is performed in two parts:

1) Between the lines 1-2 and 1-3, i.e., between z = k12 r + m12 and

z = k13 r + m13 from r1 to r3•

2) Between the lines 1-2 and 3-2, i.e., between z = k12 r + m12 and

z = k
32

r + m
32

from r
3

to r2•

where
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Zz - zl
m12 =

rlzZ - rZzl-rZ - r1 r Z - r l

z3 - zl
m13 =

rl z3 - r3z1 (9)-r3 - r l r3 - r l

z2 - z3
m32 =

r3z2 - r2z3-r 2 - r3 rZ - r 3

The potential energy is related to the stiffness matrix, [R), referred to generalized coordinates,

as follows.

(l 0)

[K] is recognized as the integral in Equation 6. Its terms are evaluated by substituting the ap

propriate 8ij integrals (see Equation 8) for the powers of rand z in Equation 7. The result is

presented in Equation 11.

(E +E )8
12 22 00

E 5 +E 0
22 -11 2" 00

o E C
2" 00

E 8
23 00

(E +2E +E ) c , (E +E ) 8 + (E +E )c , 0, (E +E ) <5 , (E +E )0
11 12 22 10 12 22 01 I" 14 10 14 24 10 1~ 23 10

E 0 +2E 5 +E c , 0 , E 0 +E 5 , E c +E 8
22 -12 24 01 44 10 24 01 .4 10 23 01 34 10

[KJ = 2'11'
o , a 0

E 8 E c5

I~4 10 34 10

E C J33 10

(11)

Equation 4 of Section 5.11.2, and

SYMMETRIC

Introducing the transformation to gridpoint displacements,

taking the first variation with respect to the displacements, we obtain the element stiffness

matrix

(12 )
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5.11.5 Load Vectors For The Triangular Element

5.11.5.1 Pressure Load Vector

Assume a linearly varying normal pressure distribution on the boundary between corners in

Figure 1. Note that the direction of the load is determined by the order of the gridpoints so that

the gridpoints should be numbered consistently. Counterclockwise order is assumed by the program.

For side (i), ([) ,

p(r,z) (1)

where

(P2 - Pl)zl
r l z2 - r2z1

(P2 - Pl )r l
r l z2 - r2z,

The external work done by the pressure is

W = J' (p u + P w)dAr z

\vhere

Pr -P sino.

Pz = P coso

dA 2';Trds

dr
COSCL

Substituting back into the work equation

I
)

(2)

(3)

(4)

r2
W = f [-(P1+a, r+a 2z} (Sl+S2r+S3z}si nCL+(Pl+a,r+a 2z) (64+6S+S6z)cosa]2grcg;a .(5)
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This expression results in three definite integrals

rz 2 2 rZ 3 3 rZ 4 4

°1 I rdr
r2 -rl ; 62 ( r2dr

rz -rl
°3 f r

3
dr

rZ -rl
Z I 3 4,

r l r l r l

(6)

Substituting into Equation 5 we may write the work equation as

{- 1where ,Fp" the forces on the generalized coordinates, are

/
-klZ[Pl+a2mlZ)o,+(a,+azklZ)02]

(7)

• (8)

A special case is obtained when r Z = r1 and the formulation must be changed. Equation 3 be-

comes

where

w (9)

thus

w

Z2

f -(p,+a1r1+a2z)(B,+B2rl+B3z)2~rldz

z,

5.11-1'
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Note that a may take two values, 90° and 270°, and sin a changes sign accordingly. There will be

three definite integrals:

(12 )

The generalized force vector 1S

I
-[(Pl+alrl)c4+a205J

)
\

-[(Pl+alrl)rlc4+a2rlc5]

(Fp} 21Tr l
-[(Pl+alrl)o5+a2c6J \,

\
Q

0

Q J

(13 )

Transforming from generalized coordinates to gridpoint displacement coordinates and substituting

into the Lagrange equation, we obtain the pressure load vector

where

(14 )

5.11.5.2 Prestrain and Thermal Load Vectors

...r ,
Pr 2

F J .Pz3

(15 )

The prestrain load vector is constructed assuming uniform distribution of prestrain across

the element. The prestrain contribution to the total potential energy is

(16 )
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Substitute Equations 2 and 5 of Section 5.11.4 into Equation 16,

Let

[0] = 2~J [D]rdzdr

which may be written in terms of the 0ij integrals, as

0 , °10' 0 , 0 , 0 , 0

°00 , °10 , °m' 0 , 0 , 0

[D] = 2~

0 , 0 , 0 , 0 , 0 , olD

0 • 0 • °10' 0 • °10' 0

(17)

(18)

(19 )

Transformation of Equation 17 to gridpoint displacement coordinates and substitution into the

Lagrange equation yields the prestrain load vector

(20)

where the load components are

and the prestrain components are

(21)

= (22)

The thermal load vector is a special case of the prestrain load vector. Let the initial or

thermal strain be

(23)
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where 6T is the average temperature rise of the element above ambient, obtained by averaging the

adjacent gridpoint temperatures.

Substitution into Equation 20 yields the thermal load vector

(24)

5.ll.5~3 Gravity and Centrifugal Load Vectors

The external work done by the force of gravity on the displacements can be written as

follows:

where

dV 211"rdzdr

w f pGwdV (25)

Thus

G = Acceleration of gravity

p Mass Density

w = Assumed displacement function in the z direction.

W = 211"pG J (w)rdzdr

211"pG J (B4+SSr+S6z)rdZdr

(26)

Expressed in general form

(27)

where the vector of forces on the generalized coordinates is, in terms of the integrals defined by

Equation 8 of Section 5.11.4,

(28)
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The vector of gravity forces on gridpoint coordinates is

(29)

The external work done by centrifugal force due to spin about the axis of symmetry can be written

as follows:

w = r pt.;.,2rudv
J

(30)

where w is the spin rate, and 0 is the mass density, assumed constant throughout the element.

Thus

w

So that, by analogy with Equation 27,

where

A

2"pw2 f (Sl+S2r+s3z)r2dZdr

A

(31 )

(32)

;-CG'IT - 2 2 L"' "' "' 0 0 011, - 1TOW \)20' \)30' \)21' , , J

The vector of centrifugal forces on gridpoint coordinates is

5.11-15
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5.11.6 Recovery of Stresses in The Triangular Element

The element stresses are given by

The stresses are evaluated at the centroid of the cross-section. i.e .• at

In Equation 1, substitute. for strains in terms of displacements,

(1)

(2)

{a} (3)

where. from Equation 3 of Section 5.11.4,

0 C 0 0 0

Zo 0 0 0ro ro
[DoJ

0 a 0 0 0

0 0 0 0

Equation 3 is used to evaluate elastic stresses.

(4)

Thermal stresses are obtained by multiplying thermal strains by the matrix of elastic coef-

ficients, Equation 14 of Section 5.11.3.
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5.11.7 Mass Matrix For The Triangular Element

The kinetic energy of the element is

where U and ware the components of radial and axial velocity. Substitute for u and win terms of

the generalized coordinates. Then Equation 1 becomes

(2)

Since the S's are independent of r and z~the integral is a linear function of the 0ij functions

introduced in Equation 8 of Section 5.11.4. The kinetic energy can therefore be written in matrix

terms as

(3)

\'there

°10 °20 0" 0 0 o .

°30 °21 0 0 0

°12 0 0 0

[M] = 2'ITp (4)

°10 °20 °11

SYMMETRIC °30 °21

°12

The mass matrix referred to gridpoint coordinates is, using the transformation matrix [rSqJ,

[M] [rSq]T[M][r BqJ (5)
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5.11.8 The TraDezoidal Ring Element

The trapezoidal ring element is shown in Figure 2. The displacement fields employed for the

element are

(1)

(2)

It is to be noted that the assumed displacement functions are continuous across element boundaries

when the elements employed are rectangular. In addition the number of generalized coordinates is

increased from six to eight for the trapezoidal ring element. The transformation from gridpoint

coordinates to generalized coordinates is

(3)

where

and

. , T
1..6:

(4)

(5 )

The elements of the inverse of the transformation matrix [rSq]-l are the coefficients Df the

SiS in Equations 1 and 2, evaluated at the corners of the element. It is a nonsingular matrix

that is inverted in the program to produce [rSqJ.

A special case arises when the trapezoidal ring is used as a core element. (See Figure 3.)

In this case r l = r4 = 0 and ul = u4 = O. Generalized coordinates 81 and 63 in Equation 1 are

dropped, thereby reducing the order of [req] from 8X8 to 6X6.

The stiffness matrix is formed in the same manner as that for the triangular element. The

final form referred to gridpoint coordinates is

(6)
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where

[K] = 2TI J r[D]T[E][D]dzdr (7)

[E], the matrix of elastic coefficients, is defined in Equation 14 of Section 5.11.3. The

[D] matrix, which expresses strains in terms of generalized coordinates,

{~} = [D]{S}

is, explicitly,

0 0 z 0 0 0 0

- ~ z 0 0 0 0
[D] r r

0 0 0 0 0 0 r

0 0 r 0 0
~

(8)

(9)

The procedure for evaluating [K] is the same as that for the triangular ring element in

Section 5.11.4. Explicit algebraic expres3ions for the terms in the stiffness matrix are in Sec

tion 4.87 of the Programmer's Manual.

The load vectors are evaluated in the same general manner as for the triangular ring element.

The pressure load is assumed to vary linearly along each edge, as shown in Figure 2. The

equivalent loads at gridpoints are derived from the formula fer the work done by pressure

(10)

u and ware replaced by their expansions in terms of the generaiized coordinates, Equations 1 and

2. The coefficients of the S's in the resulting equation are the forces due to pressure on the

generalized coordinates, {Fp}' The loads on gridpoints are obtained by the transformation

(11 )

The prestrain load vector is computed in the same manner as for the triangular ring element,

Equation 20 of Section 5.11.5. The thermal strain vector is treated differently than in the case

of the triangular ring element in that temperature is permitted to be a function of position.
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Specifically,

(12)

where the K's are evaluated so that Equation 12 gives the known temperatures at the gridpoints.

The contribution of thermal prestrain to the total potential energy is

where

{s.}
1

(13)

(14 )

in which the a's are thermal expansion coefficients. Upon substitution for {s.} from Equation 14
1

and replacement of {s} by its relationShip to gridpoint displacements. Equation 13 becomes

(15 )

where {FT} is the equivalent thermal load vector at gridpoints. The integral in Equation 1S is

easily evaluated in terms of the cij coefficients.

The gravity and centrifugal force load vectors are, by analogy with the expressions for the

triangular ring element.

where

{F ,J
g'
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The formula for stress in the trapezoidal element is identical to Equation 3 of Section 5.11.6.

(20)

The elements in the [0] matrix are evaluated in Equation 9. The stresses are evaluated at the

corners of the element. The averages of the corner stresses are also computed.

The mass matrix referred to gridpoint coordinates is. by analogy with Equation 4 of Section

5.11.7.

[M] = [r8q]T[MJ[r8q] (2l)

where

°10 °20 °11 °21 0 0 0 0

°30 °21 °32 0 0 0 a

a 0 0 a

a 0 0 0

[MJ =: 21l"p (22)

°10 °20 °11 °21

Syt+tETRIC °30 °21 °32

~
°22

°32
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Figure 1. Triangular ring element.
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Figure 2. Trapezoidal ring eiement.
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Figure 3. Core element specidlization of trapezoidal ring element.
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5.12 CONSTANT STRAIN SOLID ELEMENTS

5.12.1 Introducti on

Solid polyhedron elements have been implemented to model three-dimensional elastic regions,

which do not have axial symmetry (see Section 5.11 for solid of revolution elements). The geo

metry of the polyhedron elements is defined by grid points at the vertices. Three geometries have

been implemented (see Figure 1):

1. Tetrahedron. The tetrahedron is a triangular pyramid which can be constructed between

any four non-coplanar vertices. Ie is the basic building block which is used to build up

the other elements.

2. Wedge. The wedge is a truncated triangular pyramid that is defined by six vertices. It

has two triangular and three quadrilateral faces.

3. Hexahecron. The hexahedron is a generalized cube. It has six quadrilateral faces.

These elements are subject to the following conditions and limitations:

1. Constant strain in each tetrahedral subelement,

2. Uniform, isotropic material properties,

3. Uniform temperature in each tetrahedral subelement,

4. uifferential stiffness, buckling and piecewise linear analysis have not been implemented,

5. Only translational degrees of freedom are used at the grid points,

6. Stress output is in the basic coordinate system.

A necessary task in formulating a finite element is to relate the coefficients of functions

approximating the displacement field to those displacements at the grid points on boundaries of

the element. One method to do this is to solve a set of simultaneous equations that equates the

functional representation to the actual displacements at the vertices of the element. The tetra

hedron element with constant strain is defined as being compatible since it has twelve grid point

degrees of freedom (three translations at each of four vertices) and twelve generalized displace

ments (coefficients of the constant and linear terms for u. v and w). Thus, the matrix of coeffi

cients relating the two types of displacements is nonsingular. The wedge ·and hexahedron are not

modeled directly but are built up by tetrahedron elements. The coefficient ~atrices for the wedge

and the hexahedron are expressed as sums of the coefficient matrices of the tetrahedra into which

they are decomposed, see Figure 1.
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5.12.2 Displacement Functions for the Tetrahedron

The displacement field is assumed to be linear in the Cartesian coordinates, x, y and z, i.e.,

u(x,Y,z) ql + q2x T qsY + q4z

v(x ,y ,z) c- + Q6 x + Q7Y + qaz ,
:J

w(x,y,z) qg + ql0x + qn Y + q12z

(1)

(2)

(3)

The NASTRAN basic coordinate system will be used. The assumed displacement field produces uniform

strain and stress within the element. In addition the displacements on common faces of adjoining

elements are compatible. The generalized coordinates, (q's), can be determined from the displace-

ments at the four vertices of the tetrahedron by solving:

ul 11 xl Yl zll ql

u2 t
x2 Y2 z2 q2

(4)
u3 x.., Y3 z3 q..,

....

, u
4 x4 Y4 z4J q4,

for the u components of displacement, and similar equations for the v and w components. In E~ua

tion 4, ul = u(x

"

Yl' zl)' etc. A similar relation is written for vI to v4 and w1 to w4 in terms

of q5 to qs and qg to Q12'

The determinant of the matrix in Equation 4 is six times the volume of the tetrahedron

defined by points I, 2, 3 and 4.

Xl Yl Zl 1

X2 Y2 z21 = ± 6 • Volume. (5)
x3 Y3 z3

x4 Y4 z4

Hence, the matrix in Equation 4 will be nonsingular if the volume of the tetrahedron is nonzero.

5.12.3 Strain, Stress and Potential Energy

The generalized displacements are related to the grid point displacements by
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ql q5 qg hn h1Z h13 h14 ul vl I'll

qz q6 qlO h21 h2Z hZ3 h24 Uz Vz Wz (6)
q3 q7 qll h31 h32 h33 h34 u3 v3

w
3

q4 qa qlZ h41 h42 h43 h44 u4 v4 w4

In Equation 6, the [h ij ] matrix is the inverse of the matrix of Equation 4. The equations for v

and w have been adjoined as additional columns. The six strain components are given by

Sx = oU/dx = q2 (7 a)

S = oV/oY = q (7b)Y 7

EZ = oW/oz = q12 (7c)

Yyz = ov/az + oW/oY = qa + qll (7d)

Yzx = ow/ax + ou/oz = qlO + q4 (7e)

Yxy = au/oY + av/ax = q3 + q6 (7f)

Eliminating the q's from Equation 7 usir:g Equation 6,

I" h21 0 0 h22 0 0 h23 0 0 h24 0 0

:: 0 h31 0

I:}
0 h32 0

m·
0 h33 0 0 h34 0

/::1 + 1::1
0 0 h41 0 0 h42 0 0 h43 0 0 h44

t'
0 h41 h31 0 h42 h32 0 h43 h33 0 h44 h34

'Yzx Ih41 0 hZ1 h42 0 h22 h43 0 h?_ h44 0 h24-,j

Yxy Lh
31

h21 0 h32 h22 0 h33 h23 0 h34 h24 0
,

(8)

This will be abbreviated as

4
{s} = E [C.]{u}.

i =1 1 1
(9)

The sUbscript i in {u}i refers to the vertex of the tetrahedron and not to the component of the

vector. The elements of [C.] are either h2", h3·, h4 ·, or zero. The first row of hiS is not
1 1 1 1 .
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needed. If T ;s the average temperature rise, the stresses are given by

where the stress and thermal strain vectors are:

(10)

l
yz

'zx

'xy

and {a} (11)

[GeJ is a (6x6) stress-strain matrix in basic coordinates. When material properties are

given in terms of E and v, then

G44 = GSS = G66 = E/2(1+v) .

(12)

All other terms are zero. The strain energy density is a constant over the volume; hence, the

strain energy is

The volume can be found from Equation 5.
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5.12.4 Matrices in Basic Coordinates

The stiffness matrix for the tetrahedron is of order twelve. It is convenient to represent

the matrix in terms of sixteen 3 x 3 matrices each representing interaction between a pair of

grid points. The 3 x 3 partition of the stiffness matrix associated with grid points i and j is

given by

(14 )

The thermal loads on point are

(15 )

One-fourth of the mass of the tetrahedron is lumped at each vertex. This choice preserves

the center of gravity. The density is assumed uniform; hence, the mass at the point i is

5.12.5 ~edge and Hexahedron Elements

mi = i0volume)p (16 )

The wedge and hexahedron elements are decomposed into subtetrahedra. As seen in Figure 1,

the wedge can be cut into three subtetrahedra. Of the six possible ways to subdivide a wedge,

only one has been implemented. Other subdivisions and overlapping methods have not been coded

since it is not expected that the wedge will be used often enough to justify the additional

effort. It is expected to be used primarily as a fillet. The hexahedron can be cut into five

subtetrahedra in only two different ways. The code implemented for the hexahedron allows the

user to choose a single subdivision into five subtetrahedra or to use the average of the results

of the two types of subdivisions. The latter choice, but not the former, results in symmetrical

deformations when symmetrical loads are applied to a symmetrical hexahedron.

The geometries of the wedge and hexahedron are determined by the coordinates of the vertices.

The quadrilateral faces may not be coplanar for general grid point location. There is no guarantee

of the results if these are not coplanar, and the user should be careful to keep the vertices of

the quadrilateral faces nearly in one plane. The resulting stiffness and thermal load matrices

are the sums of those due to the subtetrahedra. All matrices must be put into global form, which

requires multiplication by unitary rotation matrices.
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5.12.6 Stress Recovery

The stresses, in the basic coordinate system, can be recovered for the tetrahedron using

Equations 10 and 9. In addition to the stress components, output also includes the pressure

and the octahedral stress

_ 1
P - - ." (0 + G + G )o ..) x y z ( 17)

;; =l..3((c; _0)2+(:; _0)2+(0 _0)2+ 6/ +6T2 +6.,.2)1/2. (18)
0, x y y z z x yz 'zx 'xy

The stresses in the wedge and the hexahedron are obtained as the weighted average of the stresses

in the subtetranedra. The weighting factor fer each tetrahedron is proportional to its volume.
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TETRAHEDRON

2

WEDGE AND ONE OF ITS SIX DECO~~OSITIONS

H[XAHEDRO~! AND ITS TWO DEC~MPOSITIaNS

~
5 I 6

~~__ 3

1 / ~

2

~_ 3

1------
2

5

~~
1 2

Figure 1. Polyhedron elements and their subtetrahedra.
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7.1 INTRODUCTION

The term "differential stiffness" applies to linear terms in the equations of motion of an

elastic body that arise from a simultaneous consideration of large, nonlinear motions and the ap

plied loads. The theory of differential stiffness is not an exact theory and it involves inherent

assumotions that are arbitrary and that may be changed depending on their practical effect. The

approacn presented here to the theory of differential stiffness is based on Lagrange's equations

for the motion of a system with a finite number of degrees of freedom. This approach is useful

because it points out some of the assumptions and limitations of the general theory.

Consider a system with a finite number of degrees of freedom, qr; with a set of springs whose

potential energy is Vi and with a set of loads, Pa , applied to displacements uc . The equations of

motion for the system may be written

where the generalized force

r = 1, 2,3, ... n

au
= I _a p

a aq
r a

(1 )

(2)

Wis the work done by the external forces. It is assumed in the theory of differential stiffness

that the potential energy is a quadratic function of the degrees of freedom, i.e.,

v = -2
1 I a..q. q .

• . 1 J 1 J
1 ,J

(3)

au
but that the partlal derivatives, ~, are not necessarily constants.

a qr

As a simple example tc illustrate concepts, consider a pendulum with spring restraint shown

on the following page.
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The potential energy of the spring is

v (4)

The displacement at the point of application and in the direction of the applied load is

ua = R.(cose-l)

so that as a result of Equations 1 and 2,

Pa Q.sine

At this point the term on the right is linearized with the result

(K + P i)e = 0e a

PaZ is the "differential stiffness".

(5)

(6)

(7)

In a practical problem with many degrees of freedom it is difficult to calculate the partial

derivatives appearing in Equation 2, primarily because the points of application of the loads may

be remote from the degrees of freedom. The problem is simplified by replacing the applied loads

by a statically equivalent set of loads acting directly on structural elements, such as are used

in free body diagrams. The generalized forces Or are then computed from the work done by the load

subsets for individual elements and Equation 2. As an example consider the following pendulum.

7.1-2



INTRODUCTION

--,~-_P a

The single load P is replaced by the following pair of equivalent loading systems
a

The work done by loading system (1) during general motion is:

(8)

while the work done by loading system (2) is:

(9 )

It may be concluded, by referring to Equation Z and linearizing, that Pa t 1 is the differ

ential stiffness for 61 and that PalZ is the differential stiffness for 62,

It is important to observe that the equivalent loading systems remain fixed in magnitude and

direction, and move with their points of application during motion of the system, so that the
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equivalent loading systems are in equilibrium with each other during the motions. This implies

that the actual applied loads also remain fixed in magnitude and direction and move with their

points of application.

The Lagrangian discrete element approach can be applied to a general elastic body, if it be

imagined that the body is made up of. infinitesimal cubes, each of which is joined to its six

neighbors by a universal joint at the midpoint of each face. For a given stat~c loading on the

body the stress distribution is computed throughout the body, ignoring differential stiffness ef-

fects in the process. This internal stress distribution is taken as tne equivalent loading, and

is applied to each cube in turn to determine the differential stiffness for the cube.

The degrees of freedom for each cube are taken to be its three translations, three rotations

and six elastic strains. It is clear that not all of the degrees of freedom can be independent,

in view of the attachments to other cubes. It is, however, permissible to consider them to be in-

dependent in computing the work done on each cube.

The work done by the static loads is computed for general motions of the degrees of freedom

using Equation 2. The !erms in the differential stiffness matrix for the cube are then computed

from

(10)

for the condition qr = qs = 0, which is the linearizing assumption.

Consider a view of a unit cube from the positive z axis shown on the following page. During

general motion the loads applied to the cube remain fixed in magnitude and direction and remain

attached to the midpoints of the faces. It is clear that no work is done on the cube during trans

lation because the forces acting on the cube are in equilibrium. The strains are eliminated from

consideration on the assumption that they are small compared to the rotations. This assumption is

not essen~ial, and it may be removed in cases, such as occur in built-up structures, where the

elastic resistance to some strain components is small. The remaining degrees of freedom, the ro

tations, are the only significant ones.

During a rotation about the z axis, point {1} in the following figure moves to the left by

the amount ~ (1 - coswz) and moves upward by an amount of ~ sinwz The work done by the forces

acting at point (1) during rotation about the z axis is
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W1,z (11)

T
1

fy
'XyI

(i)~
'xy

® (i) ax

T Wz
Wx

xy
@

T xy
-J-x

I

The total work done by all forces is

Wz = - (1 - COSW )(0 + 0 )z x y
(12)

so that the differential stiffness, for rotation about the Wz axis is, from Equation 10

= a +0x y (13 )

For the case of general motions wx' wy ' and Wz considered simultaneously, first compute the

work done by the force components in the z plane shown in the above figure. The work for other

force components can then be evaluated by permutation of indices. The work done in rotations wx'

wy ' and Wz by the normal stresses, ax and 0y' is, (for small w)

w = - *£21 w 2 (0 + a ) + w 20 + w 20 ]o z x y xy yx (14 )

The cross-product wxwy also produces work via the shear Txy . Consider that the rotation Wx occurs

first, causing outward motion at point (2) and inward motion at point (4) both approximately equal

to i wx· A subsequent rotation wy ' about the original y axis, produces motion at points (2) and
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(4) approximately equal to ~ wxwy in the direction of the applied shear loads. The work done is

therefore

W
T

(15 )

The same result is obtained if the order of rotations is reversed, the work being done, how-

ever, by the shear forces on the vertical faces. Thus we conclude that Equation 15 is correct for

any general small motion.

The total work done by all components of force on a cube of volume ~v is, by extension of the

above resu1ts •

- 2t0 W T - 2w W T - 2wzW
X

T
ZX

]
X Y xy y z yz

(16 )

10

The matrix of differential stiffness coefficients for a cube of volume ~v is, from Equation

w
y w

Z

C" + a I -T -T WxY Z I xy zx

to[K dJ
--- --

toV -T I a + a I -T W (17)
ww xy z x yz y

I I---
I a + 0- Wz-T -T X Yzx I yz

The above general result is aop1ied, in subsequent sections, to the evaluation of differen-

tial stiffness matrices for specific structural elements. The steps for including differential

stiffness in a problem are

1. Solve the linear static response problem for the structure in the absence of differen-

tial stiffness, and comoute the internal forces in elements.

2. Using the results of Step 1, calculate the differential stiffness matrices for individual

elements. and aoply the standard reduction procedures (constraints and partitioning) to

fonn the differential stiffness matrix [KaadJ in final form.
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3. In buckling problems, find eigenv~lues and eigenvectors for

a (18)

The eigenvalues are the factors by which the applied static loading is multiplied to pro

duce buckling.

4. In response problems in which the stiffening effect of a static preload is desired, add

[KaadJ to [KaaJ and proceed in the normal manner.

At present, rigid formats which include differential stiffness are provided only for the buck

ling problem and for static problems in which the applied load is a multiple of that used to calcu

late [KdJ, (see Section 3.2). Other applications of differentia: stiffness, such as its inclusion

in dynamic problems, can be treated by using the ALTER feature, Section 1.3, to modify one of the

rigid formats.

An imoortant limitation of the automatic orocedures provided with NASTRAN is in the assumption

that the applied loads from which the differential stiffness is derived remain fixed in magnitude

and direction during motion of the structure, and that their points of apolication move with the

structure. An example in which the direction· of the load changes is the buckling of a container

loaded by external fluid pressure. An example of a stability problem in which both the magnitude

and direction of the loads change is the development of a bulge on a balloon. In such examples,

the burden is placed on the user of NASTRAN to prescribe the additional stiffness terms (via di-

rect stiffness matrix input) that result from changes in the magnitudes or directions of applied

loads. Such terms are usually unsymmetrical. Dynamic routines (comolex eigenvalue extraction,

and frequency response) are then used to solve the proolems. The frequency response module pro

vides the means for solving static response problems with unsymmetrical stiffness matrices. The

user selects the frequency to be zero.
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7.2 RODS. BEAMS. AND SHEAR PANELS

7.2.1 Extensional Rods

The calculation of differential stiffness for an extensional rod is particularly simple. If

the x axis is selected ~o coincide with the axis of the rod. ax is the only nonzero stress and the

work done by static preload is

W
r

iAax 2 2
- -- (w + w )2 y z

iF 2 2
- -2x (w + w )y z (1)

where £ is the length of the rod. A is its cross-sectional area. and wyand Wz are rotations about

transverse axes. F is the axial force in the rod. Consider the following diagram.x

The rotations are computed from deflections at the ends

Thus the work done by axis

Wr
_ Fx [(u _ u )2 + (u _ u )2l

2£ zb za ya yb J

7.2-1
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The differential stiffness matrix is given by

1:::/
-1 a a uya

F -1 0 0 Uybx
(5)

\ f )

l
0 a -1 uza("

f Zb a 0 -1 uzb

Note that Fx is positive for tension.

7.2.2 Quadrilateral Shear Panels

Treatment of differe~tial stiffness for the quadrilateral shear panel is simple because the

forces exerted on the shear panel are directed along the prir.cipal diagonals as shown below.

Forces Fl and F2 are evaluated from corner displacements during stress data recovery (see Section

5.3). The diagonals are treated as independent extensional rods. for the purpose of calculating

differential stiffness. The resulting matrices are then transformed from element coordinates.

which are oriented parallel and perpendicular to the diagonals. to grid point coordinates. Details

of the procedure are described in Section 4.87 of the Programmer's Manual.
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7.2.3 Prismatic Beams

The differential stiffness matrix for a prismatic beam (BAR), is relatively complicated if

the effects of moments and shears as well as of axial force-are considered. This is done in

NASTRAN in order to achieve generality of application. Consider a small length of prismatic beam

shown below.

All forces. moments, displacements and rotations follow right-hand rules. The rotations of

an infinitesimal element located within the beam are also indicated in the figure.

For a prismatic beam the stress components cry = 0z = Lyz = O. Thus the energy due to static

preload can. from the general theory developed in Section 7.1, be expressed as

1 J 2 2W = - -2 [cr (w + w ) - 2w W L - 2wxwzLzx]dVx Y z x y xy

where the integration is carried out over the entire volume.

(6)

The rotations appearing in Equation 6 are related to the motions that define the position and

orientation of the beam axis by the following formulas.
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(7)

w =z

-uz (8)

(9)

The rotations wyand Wz appearing in Equations 8 and 9 are the rotations of filaments or~gin

ally parallel to the x axis. They differ from the average rigid body rotations by one half of the

corresponding shear angles. It is clear that they are the correct rotations to use for the axial

stress terms in Equation 6, and it can be shown that they are also correct for the shear terms.

Equation 6, written in terms of the local slopes of the beam axis. is

( 10)

The terms in the differential stiffness matrix are obtained from

(ll )

I I T
where u; is an element of {Ui } lUy • Uz • ex • exJ . Thus. for a di fferentiale1ement of

length dx

Kll
d

JOxdV F dx (12 )= = x

K12
d = 0 ( 13)

K13
d

[ZOxdV - Mdx (14 )
Y

K14
d

- f'zxdV = Vzdx (15 )
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K22
d JOXdV = Fxdx (16)

K23
d faxYdV - Mdx ( 17)z

K24
d JT dV = V dx (1 B)xy y

K33
d J°Xcl + i)dV = (l) Fxdx (19 )

K34
d fCYT XY + z'zx)dV 0 (20)

K44
d 0 (21)

In Equation 19, I is the polar area moment of inertia about the centroid and A is the cross-

sectional area. It is assumed, in Equations 19 and 20, that the cross section is symmetrical

about the Y and z axes. The assembled differential stiffness matrix for an incremental beam of

unit length is

Uy Uz ex e
x

I I I
Fx I

0 I -M I -Vz uyy

-----
0 I F I -M I V

d I x , z I y Uz
[Kij ] = - -- --- (22)

I I IFx
I

-M -M 0 exY I z l A I
-- - --- -

-v I v I 0 0 ex
z I Y

I

The energy due to static preload for the entire beam can now be written as

W = ~ J:Cu)T [Ki/J{ui}dX (23)

In order to obtain the differential stiffness matrix in terms of displacements at the ends of

the bar, {ue}, let the relationship· be~Neen local displacements {u
i
} and {ue} be
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The differential stiffness matrix referred to {ue} is related to the energy by

(24)

W (25)

so that, substituting Equation 24 into Equation 23 and comparing with Equation 25

b
[K d] = J [D]T [Ki .d][D]dx (26)

ee a J

The result clearly depends on the form assumed for the terms of the [0] matrix. Let us con-
I

sider, for example, only the first row of [0], which giyes the bending slope uy ' If it is assum-

ed that the variation in displacement is linear, i.e., if

then the terms in [KeedJ corresponding to uya and uyb are

d _ Fx [ 1
[Kee ] - """T -1

•
which is identical to the result for an extensional rod expressed in Equation 5.

(27)

(28)

More accurate results are obtained if the elements of [0] are chosen-to correspond to the de

flection functions for beam bending.(l)

Since the deflection function for a uniform beam is a cubic function of distance from one end,
,

the slope will be a quadratic function. The exact relationship between uy and end motions is,

neglecting trar.sverse shear strair.,

(1 )H. C. ~1artin, "On the Derivation of Stiffness r~atrices for the Analysis of Large Deflection and
Stability Problems", Univ. of Wash., Dept. of Aero. and Astronautics Report 66-4, June 1966.
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where x = x/9-

Similarly

and

RODS, BEAMS, AND SHEAR PANELS

~ ex - x 2 )(u - u b)- a (2x - 3x2
) + azb(l - 4x + 3xZ

)9- ya y za

1 (a a)
.e. xa - xb

(29)

(30)

(31)

(32 )

The coefficients appearing in Equations 29 t~rough 32 are the nonzero terms in the [0] matrix.

Substitution of the coefficients and Equation 22 into Equation 26 results, upon integration, in the

differential stiffness matrix shown on the following page~ For example, the leading diagonal term

is

K d
11

(33)

In performing the integration the variations of the bending moments with distance,

( 34)

(35)

are used. Note that the convention for positive direction of end moment gives M = - M andy yb

The final operations on the differential stiffness matrix are to remove the effects of pin

flags (which constrain one or more of the end forces and moments to ze~o value) and to transfer

the resulting matrix from element coordinates to grid point coordinates. See Section 4.87 of the

Programmer's Manual for details of the proced~re.

7.2-7



f .
ya

mya

DIFFERENTIAL STIFFNESS AND BUCKLING
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7.3 PLATES

7.3.1 The Energy of Differential Stiffness

The coordinate system for the basic triangular NASTRAN plate element ;s shown below.

z

l:'u

Figure 1. Plate element.

The stress distribution in the plate is:

crz a

- Mxz
Ux = crx - -1-

Mz- --'Lcry cry - I

- Mxl
'xy 'xy I

V
X

'xz h

v
'yz

..1
h
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DIFFERENTIAL STIFFNESS AND BUCKLING

where

Ox' 0y' 0xy are average in-plane (membrane) stresses,

Mx' My' Mxy are bending moments,

vx' Vyare transverse shear forces,

3
I is the bending coefficient ( ~2 for a homogeneous plate) .

Applying Equation 1 to Equation 16 of Section 7.1 and integrating over the depth of the plate

(- %< Z < ~) results .in the energy per unit area of the plate.

u· = ~ [w2 0 + w2 0 - 2w ~ T + w2 (0 + 0 )] - w w V - w w V (2)A 2 x y y x x y xy z x y .x z x y z y

The last three terms involve rotations about an axis normal to the plane of the plate and

they are frequently omitted in buckling analyses. The w~ term. however, is important for the

overall buckling behavior of a built-up beam-like structure and will be retained. The terms

proportional to V and V will be omitted.x y

The rotations are expressed in terms of displacements as follows:

w = 1 [2.Y. _ .i!!.]
z 2 ax ay .

(3)

Equations 2 and 3 are the basis for calculating differential stiffness of a plate on the

assumption that the strains are small compared to rotations. This assumption will not be

made. In removing it, the inp1ane rotations. ~x and wy' will be treated differently than the

normal rotation wz' The transverse s~ear strains are

aw +.i!!. =
ax az

aw + ~
oy az

(4)
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so that

(5)

The transverse shear strains, y and y , are usually small and unimportant. They are. how-x y

ever, important for sandwich plates with stiff face plates and a soft core. For such plates, the

rotations Wx and wy should be replaced by ~; and - ~~ in Equation 2 as can easily be shown.

Consider the term -Zh w2cr in Equation 2 for a sandwich element that is subjected to simple shearx y

as shown below.

z

t cry'--~
-t---.: y

Figure 2. Shear deformation of a sandwich plate.

The core material is subjected to a shear strain. yy' and also experiences a volume change,

~V/V = - iy~, which produces tractions tending to increase the length of the face plates. Since

the face plates are stiff compared to the core material, they will not change in length and the

energy due to differential stiffness is simply

~w = 1. A i a (aW)2
2 c y ay

(6)

where A is the cross-sectional area of the face plate material. It is seen that Equation 5c

would give a different result. For sandwich plates Wx should, therefore, be replaced by ~; in

Equation 2 and w should be replaced by - ~w. Since the shear strains are small for other types
Y aX

of plates, these substitutions will be used in all cases.
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The situation with respect to the nonnal rotation, wz ' 1s much more delicate, and a correct

treatment of the effect of strains depends on assumptions regarding the behavior of materials with

finite strains. Biot(l), has developed the following formula for the energy of differential

stiffness of compressible materials in plane strain problems.

u

where

(7)

1. (av + ~) 1
E xy 2 ax ay IY

au
EX ax

ave: oyy

(8)

An independent proof of Equation 7 is as follows. Consider a unit cube under a constant

axial tension which undergoes shear strain as shown in Figure 3.

Figure 3. Shear deformation of a unit cube.

(l)Biot, M. A., Mechanics of Incremental Defonnation, Wiley &Sons, 1965, p 136.
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The moment about the z axis due to the displaced force is

(9)

The shear strain, y 2£XY' and the average rotation wz ' are given by the following

equations:

~ + au
ax 'Oy

Solving Equations 10 and 11:

au 1
ay "2 Y - Wz

elv 1
oX "2 y + Wz

The work done due to the moment is

(10 )

(11 )

(12 )

( 13)

w
c (14 )

Substituting Equations 9 and 12 into Equation 14 gives

Wz
ay J (~y - wz ) dwz

o

Integrating Equation 15 produces

(15 )

-0 (1.) - WE:)Y 2 z z xy (16 )

which is the same as the second term in Equation 7. The terms proportional to Ox and 'Xi in

Equation 7 may be similarly derived. In particular the term proportional to Txy is obtained by

considering the equivalent normal stress components in a coordinate system rotated through 45°.

In summary, the expression that is used for the energy of differential stiffness per unit
,

area of a plate element consists of a part, Ub, due to out-of-plane (cending) motions and a Dart,
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.
Urn' due to in-plane (membrane) motions

( 17)

where

( 18)

is the energy for bending motions obtained by substituting 3aW and ~w for -wand w respectivelyx oy y x

in ~quation 2, and where

2TXy (Ey - EX)WZ} ,

(l9 )

is the energy for memb~ane motions obtained from Equation 7.

The differential stiffness matrices are developed below separately for bending and membrane

motions.

7.3.2 Differential Stiffness for the Basic Bending Triangle

The notation and development in Section 5.8.2 will be used without further reference.

The out-of-plane deflections of the basic triangle are described by the polynomial

w = 2 2 3 2 3
wa + yQa - XBa + xYx + YYy + qlx + q2xy + q3Y + Q4x + Q5xy + Q6Y

(20)

where wa ' ~a and Pa are the out-of-plane displacement and rotation at point (a) in Figure 1.

The linear terms are combined in the equations

(21 )
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The slopes of the surface at any point x. y. may be described by the matrix [H eq] where:

-wx
-

~ 811 \ 'w ~
w

ax Y

(6;-1 t~~-
[Heq(X.Y)]

ql

q2

q6

(22)

and

(23)

The differential stiffness in terms of the slopes at any point x.y. is given by the equation

K~~
1J

~2U I
o b

dA
a8 i d8j

(24)

Substituting Equation 18 into Equation 24 results in the matrix:

(25)

The differential stiffness for the entire plate in terms of generalized displacements,

(26)

Explicit formulas for the terms of [Kdq] are given ,"n Table 1 ,"n t f "t 1 I d f" derms a 1n egra s kt e ine as

(27)
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The integra1s are easily evaluated by using the natural coordinate functions f i defined by

the equation:

r(x,y) (28)

where r is a linear function over the area, and r l , r2, r3 are the values of the function at

gridpoints a, b, and c, respectively, in Figure 1.

Since x and yare obviously linear functions we may use the equations:

(29)

A property of these transformations is that:

I f'1 f~ f~ dA
a!S!Y!

2A (2 + ~ + 5 + v)! (30)

Substituting Equation 29 into Equation 27 results in the function:

(31)

This expression, with the aid of Equation 30. is used directly to evaluate the integrals.

For example.

= h 2 r [f2 J 2 +
Y3 J 2 13 x2

A

(32)

Using Equation 30 for each of the three terms, produces the result

(33)
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The remaining task is to define the variables wx' wy • and {q} in terms of the displacements of the

connected points. In this connection. the following matrix equations are taken from Section 5.8.2.

r l \ [S]{u
a
}: •{q } = [H /{u i } -

C:l [Hyq]{q} •

where

wb

c;,

t:1 Sb
{u i }

Wc

Ctc

Sc

l"a
l

' F}
Sa

(34)

(35)

(36)

(37)

In the actual application. three 6 x 3 matrices are generated by multiplication and partitioning

as follows:

-[Hr1 [S] •

7.3-9 (4/1/72)
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The generalized coordinates are then related to gridpoint displacements by

(40)

where, using ~quations 21, 34, 35, 38, and 39:

r~~~:
0 0 -1

0 0

+ -------
0

L a

tt,~_t~
Hb J

(41)

(42)

(43)

The differential stiffness matrices in terms of the disolacements at the corners of the

triangle are given by the matrix [~dt], where

~dt ! Kdt I Kdt
:ia ' ab I ac

---+--+---
Kdt : Kdt : Kdt

ba I bb , bc
--~---+---

Kdt : Kdt I Kdt
ca I cb I cc

7.3-10 (4/1/72)
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7.3.3 The Membrane Triangle (TRMEM) and Quadrilateral (QDMEM)

For out-of-plane motion the membrane triangle is assumed to rotate as a rigid body. The

energy is expressed in terms of rotations w , w , w_, and strains E , E , and E ,assumed. x y <. X y xy

constant over the surface of the triangle. From Equations 17, 18, and 19:

(45)

where hA is the volume of the element.

The differential stiffness matrix in terms of the rotations and strains is

(46)

The rotations and strains are related to corner displacements by

{

U
l

}I d ---

,C3] ~~-

(47)

The differential stiffness in terms of the corner displacements is

(48)

[ d d d d .The elements of matrices KwJ, [C1J. [C2J. and [C3J are shown 10 Table 2.

Quadrilateral elements (QDMEM) are treated as overlaoping pairs of triangular elements for

the calculation of elastic stiffness, and their differential stiffnesses are similarly treated.
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7.3.4 The Triangular Composite Elements (TRIA and TRIA2)

For inplane motion, the elements are assumed to have constant rotation and strain. For this

purpose, the equations for the triangular membrane, Equations 45 - 48, are used with no contribu-

tions from w and ~ .x y

For out-of-p1ane motion, the element is assumed to have the same deflected shape as that

assumed in generating the elastic stiffness matrix. The inp1ane stresses are calculated using the

membrane properties. The centroid of the triangle is used to divide the triangle into three sub-

triangles as shown in Figure 4 below.

3

• y

2

Figure 4. Clough triangle.

The displacement of the center point is constrained to produce compatible slopes, ~i'

between adjacent triangles, see Section 5.8.3.3.

The calculation procedure is as follows. First, the partitions of Equation 44. are generated

for each subtriang1e. These matrices are then transformed to the element coordinate system and

added to produce [K~~J where i,j = 1, 2, 3 or 4.
lJ

The equations of slope constraint are

(49)

where ~wl' ~~2' ~~3 are the differences in slope between adjacent triangles when point 4 is free,

and
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Iuzl ~exl • etc., are the displacements

eyl

ate system. See Section 5.8.3.3 for details.

of the corner points in the element coordin-

Applying the equations of constraint to eliminate the elewents of {u4} results in the

differential stiffness matrix of the element, [K~.J. referred to the vertices of the composite1J

trianole. Each oartition of the matrix corresponding to points and j is:

[K1j ] = [K1~J - [K~~JT[G4J-l[GjJ - ([G4-1J[GiJ)T[K~jJ + ([G4J-l[GiJ)T[K~~][G4J-l[Gj]

(50)

7.3.5 The Quadrilateral Composite Elements (QUAD1 and QUAD2)

These elements are composed of four overlapping triangles. The inplane differential stiff-

ness of each triangle is calculated with the same equations as the membrane triangle, Section

For out-of-plane motions, the element is7.3.3. except that the ~ and w terms are ignored.x y

assumed to lie in a plane. parallel to. and midway between the diagonals. The corners of the

element are connected to the four grid points by rigid bars. The inplane stresses ox' 0y' and 'xy

are calculated independently for each triangle and the differential stiffness is calculated using

the equations given in Section 7.3.2. The differential stiffness matrix terms for each triangle

are then transformed to the element coordinate system and added.
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Table 1 Elements of [Kdq ]

The elements of the (8 x 8) differential stiffness matrix [Kdq ] are evaluated below from

Equati on 26. The matrix is symmetric so only the upper triangle terms are given. The superscript

(dq) is omitted for conve~ience.

K
ll ax 100 K36 60x 130

K12 T loa K37 2(:Jx 112 + 2, 121 )

Kn 2c x 110 K38 6T r12

K14 a 101 + " 110 K44 Ox 102 + 2, III + 0 120x y

K, _ 2, 101
K45 2(T 102 + 0y Ill)

,::>

K16 ::lcx 120
K46 3(ox 121 + T 130 )

K47 Ox 103
... 3T 112 + 2ay 1

21K17 Ox 102 + 2, III

K18 3;:- 102
K48 3(T 103 + 0y 112 )

K22 a '00
KSS 40

y
102y

K23 2T 110
KS6 6T 121

K24 ': 101 110
KS7 2(-r 103 + 20" 112 )+ :Jy y

K25 2c T KS8 60 103y "01 y

K26 3T 120
K66 90 140x

K27 T 102 20y III
K67 3(vx 122 + 2T 131 )+

;{28 3c 102
K68 9T 122y

K33 4cx 120
Kn Ux 104

... 4T 113 + 4o"y 122

2kx III 120 )
/ 3(T 104 + 20y 113 )K34 + T "78

K35 4, III
Kg8 9c 104y
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Table 2 Matrices for the TRMEM Element.

cry -cr 0 0 0 0xy

°xy crx 0 0 0 0

0 0 (crx+cry) -T T (ax-cry)
[Kd]

xy xy
A

W 0 a -T 0 0 0xy

0 0 Txy 0 0 0

0 0 (ax-cry) 0 0 0

The corresponding degrees of freedom are: wx' wy ' wz• EX' Ey ' and E
XY

.)

0 0 '(3-Y2

0 0 Yl

'(2-Y3 Y,
0-2- -2

[Cd] =1
-'(1 0 0

0 '(3-'(2 0

Y2-Y3 '(1
0--2- -2

0 0 -'(3

0 0 -'(1

'(3 '(1
0T T

[Cd] =2 0 0'(1

0 -'(3 0

'(3 '(1

o J-T "2
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7.4 THE CONICAL SHELL ELEMENT

The elastic stiffness matrix for the conical shell element is derived in Section 5.9. The

differential stiffness matrix due to static axisymmetric preload is derived here using the nota

tion and the results of Section 5.9 and the general theory of differential stiffness developed in

Secti on 7. 1.

7.4.1 General Method

The static preload used to generate differential stiffness must be axisymmetric because an

unsymmetrical distribution of preload provides an unsymmetrical distribution of differential stiff

ness. thus violating the symmetry assumption of the conical shell element. Furthennore. the ef

fects of static bending moments and transverse shears on differential stiffness will be neglected.

which is the usual practice in the analysis of the buckling of shells. leaving only the direct

membrane stresses. ° and cr~ • of zero harmonic order as contributors to differential stiffness.so ",0

The stiffening effect of membrane shear stress of zero hannonic order. 0s¢o' is not axisymmetric.

since shells that have been subjected to a clockwise twist can be distinguished from those that

have been subjected to a counter-clockwise twist.

The potential energy of differential stiffness for a conical shell element can be written as

follows. using the result given in Equation 14 of Section 7.1.

(l )

Fso and F¢o are the direct membrane forces per unit width of zero harmonic order in the meri

dional and azimuthal directions. w~, Ws and Ww are rotations about the orthogonal axes defined in

Figure 1 of Section 5.9. The rotations w6 and Ws should be computed from translational motions

normal to the neutral surface rather than from the tangential motions of points on the inner and

outer surfaces. They are. therefore, equal to the quantities a and 8 in Equations 37 and 38 of

Section 5.9. with the transverse shear strains. Ys and Yd' set equal to zero. Ww is identical to

8w given by Equation 42 of Section 5.9. Thus the rotations are related to translational displace

mer.ts by
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_1 [dU +~ .:. 1 dVJ
UJw 2 dS r r d¢

The rotations have the following harmonic dependence

(2)

m m
*I" W n cosnep + W + n~l w<pn

sinn<p
n;l ¢ <po

m
*

m
*I Wsn sinnep + Wso I Wsn cosn¢ (3)

n=l n=l

m
* m *I Wwn sinncp + w I Wwn cosnep

n=l wo n=l

As with all other displacements and strains. the harmonic coefficients of different harmonic

orders are uncoupled. and the starred and unstarred coefficients of the same harmonic order are un-

coupled. By virtue of these facts. Equations 2 can be written for each harmonic coefficient as

follows

.!!.w +~u
r n r n

and ~imilarly for the starred coefficients.

+.!!.v]r n

(4)

The potential energy of differential stiffness can be separated into independent terms

m * m *I vdn + vdo + I vdnn=l n=l

7.4-2
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integration with respect to $

* t[ * 2 (Fso + FC/lO)W:0
2

] rdslido 1f 0 Foowso +

'dn = I ( [FsoW¢/ + F w 2 + (F + F ) 2 ] rds
¢l0 sn so 4>0 wwn

(6)

(7)

(8)

jentical to that for Vdn with the substitution of starred coefficients.

to define the following diagonal matrix

[ F 1
0"

o

o

o

FepO

o

o

a

F + Fso $0

(9)

{Wn} I::! (10 )

I":!{wo} wso (11 )

*Wwo

7 and 8 can be written as,

* r T
Vdo + VdO = 1f 0 {wo} [Fo]{wo} rds (12)
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and

n > 0 (13 )

The Fourier components of rotation are related to the independent constants {qn} by

{w }
n n > 0 (14 )

so that

(15 )

(16 )

and

( 17)

where

(18)

and

are the differential stiffness matrices referred to the independent constants. (Note that the

differential stiffness matrices for starred and unstarred coefficients are identical.) The dif

ferential stiffness matrices referred to the degrees of freedom for the element. {ue}. are

n > a (20)

Formulas for evaluation of the elements of [HUq] are given in Section 5.9.

The remaining task is to derive formulas for the elements of [K qd]. The formulas for
n

[Ko
qd ] differ only by a factor of two. (compare Equations 18 and 19).
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7.4.2 Evaluation of [Knqd]

The relationship between the harmonic coefficients of displacement and the independent con-

stants is stated in Equations 30, 31, and 32 of Section 5.9. Substituting into Equation 4 and sup

pressing the subscript (n), we find

(21)

The coefficients in these equations are the elements of the [H ] matrix, written below in transu.:q

posed form

o

o

[H]T 0
UJC1

2s

cos1jl/r - sinTji/2r

scosljl/r 1 s-sin1j,/2r 2- 2"-

0 - n/2r 3

0 - ns/2r 4

n/r 0 5 (22)

ns/r 0 6

ns 2/r a 7

ns3/r 0 8

0 0 9

0 0 10

Ws W
w

Turning now to the evaluation of the elements of [FoJ, Equation 9, it is required to find the

explicit dependence of the elements of [F J on distance, s, along the conical segment. From Equa-o -

tion 17 of Section 5.9:
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(23)

where the ~E'S are enforced strains including those produced by temperature.

From Equations 60 and 61 of Section 5.9, with n = 0,

(24)

Formulas_for the ~E'S are given in Equation 123 of Section 5.9. Thus, Fso and F~o may be written

(25)

where

(26)

(27)
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and q30--qaO are, of course, obtained as part of the stress data reduction procedure for the pre

ceding static solution, see Section 5.9.10.

The elements of [KnqdJ will now be evaluated from Equation 19, carrying out the indicated

integration. For the purpose it is convenient to define the integrals

(28)

A + Bmn mn

Am~ and Bmn can be evaluated in terms of the integrals Imn defined in Equation 82 of Section

5.9, and the coefficients defined in Equations 26 and 27.

b I + b I + b I + b Io mn 1 m+l,n 2 m+2,n 3 m+3,n (29)

The evaluation of the (i,j) element of [K qdJ consists of multiplying the ith row of Equation
n

22 by the jth row, with the weighting factors Amn , 8mn , and emn applied to the terms from the

first, second, and third columns respectively. m is equal to the power of s appearing in the num-

era tor of the product, and n is equal to the power of r occurring in-the denominator of the pro

duct. The resulting matrix is symmetric. Explicit formulas for the elements will be found in

Section 4.87 of the Programmer's Manual.
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8.1 GENERAL FEATURES

An analogy between the thermodynamics and the mechanics of solid bodies has been exploited

to extend the capability of NASTRAN to heat transfer analysis. As in the case of structural 

analysis, the analysis of heat transfer in a solid continuum can be reduced by f~nite element

*techniq~es to the solution of a set of equilibrium equations in which the unknowns are defined

at a discrete set of points. Thus, the general equation that is solved when finite element

methods are applied to heat transfer analysis may be written in the form

where

[K]{u} + [B]{u} = {PI + {N}, (1 )

{u} is a vector of temperatures at gridpoints

{P} is a vector of applied heat flows that are known as functions of time

(N} is a vector of nonlinear heat flows that depend on temperature

[K] is a symmetric matrix of constant heat conduction coefficients

[B] is a symmetr~c matrix of constant heat capacity coefficients.

The symbols used in Equation 1 have been deliberatel~ chosen to coinciae with some of

the structural analysis symbols defined in Table 1 on Page 3.3-4, thereby defining the

thermo-mechanical analogy. Heat transfer analysis with NASTRAN uses all of the normal analyt-ical

tools provided for structural analysis, the difference being that the arrays [K], [8]. (P} and

{N} are computed from thermodynamic properties. rather than from structural properties.

Gridpoints are used to locate temperatures just as they are used to locate displacements in.

structural analysis. However, one of the major differences between thermodynamics and mechanics

is that temperature is a scalar function of position, whereas displacement is a vector which

NASTRAN assumes may have as many as six components. Thus, in heat transfer analysis, NASTRAN

provides only one degree of freedom at each gridpoint.

* See, for example, O.C. Zienkiewics and Y.K. Cheung, The Finite Element Method in Structural

and Continuum Mechanics, Chapter 10, McGraw-Hill, 1967.
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The heat conduction matrix, [KJ, and the heat capacity matrix, [8J, are formed from

"element" properties, just as in structural analysis. Volume heat conduction "elements"

are analogous in many ways to structural elements and they even use the same connection and

property cards. In addition, a part of the heat conduction matrix may be associated with

surface heat convection or radiation. The theory for NASTRAN's volume heat conduction elements

is derived in Section 8.2, and the provisions for surface heat transfer are described in

Section 8.3.

The components of the applied heat flow vector, {p} are associated either with surface heat

transfer or with heat generated inside the volume heat conduction elements. The vector of

nonlinear heat flow {N} results from surface radiation, from temperature-dependent surface

convection, and from temperature-dependent heat conductivi~y.

In the case of linear static analysis, [B] and {N} are null, and Equation 1 is solved in the

same manner as in linear static structural ~nalysis. The flow diagram on Page 3.2-4 applies to

this case. The user has the opticn to employ both single and multipoint constraints and many other

specialized features normally associated with structural analysis. New solution techniques are

used in nonlinear static analysis and in transient analysis. Flow diagrams for these cases are

shown in Figures 1 and 2. Details of the computational procedures are explained in Section 8.4.

The output of a NASTRAN heat transfer analysis includes the temperature at gridpoints, the

temperature gradients and heat fluxes within volume heat conduction elements, and the heat flow

into surface elements. The heat flow into surface elements is further separated into components

due to user-prescribed flux, radiation, and convective heat flux.
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Conduction matrix assembler **

*Generate radiation matrix, combine
with conduction matrix

Apply constraints, partition
matrix, decompose

*

*

*

**

Iterate solution to nonlinear equations

Deformed structure plotter

Modules used only for heat transfer analysis

Existing modules to which heat transfer capability has been added.

Figure 1. Simplified flow diagram for

thermal nonlinear statics analysis.
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**Conduction

Generate radiation matrix, combine
with conduction matrix

*

Apply constraints, partition matrices

Dynamic pool distributor

*

*Transient

Assemble dynamic matrices I,
Integration of equations, with
nonlinear loads and radiation

IRecover dependent temperatures
and element fluxes

*

Deformed structure plotter

* Modules used only for heat transfer analysis

** Existing modules to which heat transfer capability has been added

Figure 2. Simplified flow diagram for

thermal transient analysis.
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8.2 VOLUME HEAT CONDUCTION ELEMENTS

The volume heat Conduction elements are the same as NASTRAN structural elements. The elements

for which heat conduction is available are listed in the following table:

Heat Conduction Elements

Type Elements

Linear BAR, R0D, C0NR0D, TUBE

Planar TRMEM, TRIAl, TRIA2,-
QDMEM, QUAD1, QUAD2

Solid of Revolution TRIARG, TRAPRG

Solid TETRA, WEDGE, HEXA1' HEXA2

Scalar elements, single point constraints, and multipoint constraints are also available for heat

transfer analysis. The same connection and property cards are used for heat ~ransfer and struc-

tural analysis. Linear elements have a constant cross-sectional area. For tne planar elements,

the heat conduction thickness is the membrane thickness. Elements with bending properties, such

as BAR and TRIAl, have been included so that the user may use the same elements for the thermal

and structural analyses of a given structure. The bending characteristics of the elements do not

enter into heat conduction problems. The trapezoidal solid of revolution element, TRPRG, has been

generalized to accept general quadrilateral rings (i.e., the top and bottom need not be perpendi

cular to the z-axis) for heat conduction only.

The heat conduction elements are composed of constant gradient lines, triangles and tetra

hedra. The quadrilaterals are composed of overlapping triangles, and the wedges and hexahedra are

formed from sub-tetrahedra in exactly the same way as for the structural case.

Thermal conductivity and capacity are specified on MAT4 (isotropic) and MATS (anisotropic)

bulk data cards.

The heat conduction matrix for a volume heat conduction element may be derived from a thermal

potential function in the same way that the stiffness matrix of a structural element is derived

from the strain energy function. The thermal potential function is
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u - ~ f q • lJu dV ,
V

(1)

where q is the heat flux density, lJu is the temperature gradient, and the integration is performed

over the volume, V. The components of the heat flux are related to the components of temperature

gradient by

(2)

where kij is an ~lement of the material conductivity matrix and the index j is summed over the

dimensions of the space (one, two, or three dimensions). Using Equation 2, Equation 1 may be

expressed in matrix ~orm as

(3)

The temperature, u, at an interior point }s a linear combination of the temperatures, {ue},

at the vertices of the element, i.e.,

where, in general, the elements of the row vector LleJ are functions of position. The thermal

gradient vector is, therefore,

(5)

where the derivative matrix [l .J is, for the case of a two-dimensional triangular element,e,J

all

aL1lax ay

[le,j]
al2 alz

(6)ax

'~3Jal3
ax ay
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In general the number of rows and columns of [L JO] are the number of vertices of the element,e,

and the dimension of the space, respectively. The substitution of Equation 5 into Equation 3 pro-

duces an expression with the form

where -the element heat conduction matrix is

f [L o][k 0 .][L oJ TdV
V e,' lJ e,J

Equation 8 is a general form that is valid for all cases.

Elements of the heat capacity matrix [8] are calculatec by the Lumped Mass method, see

Section 5.5.

8.2.1 Constant Gradient Heat Conduction Elements

(7)

(8)

For the special case of d constant gradient element with homogeneous properties, [L .J ande, ,

[kijJ in Equation 8 are constant within the element, so that

(9)

where Ve is the volume of the element. There is only one general type of constant gradient

element for each type of space, i.e., a line segment for a one-dimensional space, a triangle for

a two-dimensional space, and a tetrahedron for a three-dimensional space. In the constant gradient

case, the elements of the vector {Le} are called the "natural coordinates" of the element. It is

apparent from Equation 4 that each natural coordinate has unit value at one vertex and zero value

at all other vertices of the element. The natural coordinates are obtained by the solution of

where the specific forms for one, two and three dimensions are

(10 )

one dimension
(line segment)

(11 )
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two dimensi ons
(triangle)

(12 )

L1

~:Ithree dimensions
xl x2 x3 x4 L2 (13)

(tetrahedron) Y1 Y2 Y3 Y4 L3 (zl z2 z3 z4 L4 z )

The determinant of the [H] matrix has a useful property, namely that:

for one dimension, det[H] 2, the length of the segment,

for two dimensions, t det[H] =A, the area of the triangle,

for three dimensions, i det[H] =V, the volume of the tetrahedron.

In order to obtain the derivatives of {Le} required in Equation 9, we observe that, for the

two-dimensional case,

where [H]-l is a matrix of constant coefficients. The derivative matrix may, by comparing

Equations 6 and 14, be expressed formally as

(14 )

(15 )

which means

dimensions,

that [L .] is equal to the last two columns of [H]-i.e,J
[L .] is equal to the last (n) columns of [H]-l.e,J

In general, for a space of (n)

For the case of the tetrahedron, the [H] matrix is inverted numerically, [L JO] is taken toe,

be ~he last three columns of [H]-l, and [Ke] is evaluated numerically from Equation 9. All
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calculations are performed in the basic coordinate system. For one and two-dimensional elements

it is more practical to write explicit formulas for the natural coordinates. In fact. for one

dimensional elements the heat conduction matrix is simply

(16 )

where A is the cross-sectional area. k is the thermal conductivity. and 2 is the length of the

element.

In the case of a triangular element. the x-axis is taken along the side :D - "~' as shown

below:

The natural coordinates are. by inspection.

(17)
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and the derivative matrix is

~'/X2_ ~(~ ---x~~y~l
1/x2 -x3/x 2Y3

o -1- -1/~3 - -J
(18 )

The material conductivity matrix [kmJ is specified 1n the material coordinate system which

makes an angle e with respect to the element coordinate system as shown above. The conductivity

matrix referred to the element coordinate system is

[k 00]
1J [

COS e

sin e
-sin 6J[km] [COS E
cos a -sin 6

sin eJ
cos 6

(19)

Equat10ns 18 and 19 are used in Equation 9 to obtain the heat conduction matrix for a tri-

angle. The volume, Ve , is equal to the product of the surface area and the thickness.

For the triangular solid of revolution element (TRIARG) the differential vOlume to be used

in Equation 8 is 2"r dr dz, where rand z are cross-sectional coordinates. The temperature is

assumed to be constant in the circumferential direction and to vary linearly over the cross-

section. Thus, Equation 8 becomes

[Ke] = [L . '[k .. [L ojT 2-rr fr dA
e,l~ 1J e,J

~ T
= -3 (r, + r 2 + r 3 )A [L .][k.J[l oje e, 1 •~ e,J (20)

where Ae is the cross-sectional area. Equation 20 is identical to Equation 9 since the volume of

a triangular ring is exactly

(21 )

Quadrilateral plane and revolution elements are formed by overlapping triangular elements

in exactly the manner described in Section 5.8.3.1. Hexahedra and wedges are formed from sub

tetrahedra in exactly the manner described in Section 5.12.6.
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Elements of the heat capacity matrix [6] are calculated by the Lumped Mass method. see

Section 5.5. The total thermal capacity of an element is distributed equally among the connected

grid points for lines. triangles and tetrahedra. In the case of triangular solid of revolution

elements. the heat capacities lumped at the three grid circles are selected so that the total heat

capacity and its center of gravity in the transverse plane are preserved. The equation for the

heat capacity lumped at grid circle (i) is

(22)

where, in addition to previously defined terms, cp is the heat capacity per unit volume.

The heat capacity matrices of elements formed by overlapping triangles or tetrahedra are

computed by assigning one-half of the capacity to each overlapping set of sub-elements.

Thermal gradients are produced as part of the output, using Equation 5 and the various

expressions derived above for the derivative matrix. [L J"J. The components of the heat flux aree.
also output. using Equation 2, and the thermal gradient vector.

The temperature gradient and the heat flux are. of course, assumed constant over each sub-

element. In the case of overlapping elements, a weighted average is computed. The areas of the

subtriangles are used as weighting functions in the case of planar elements. and the volumes of

the subelements are used as weighting functions in the case of solids.
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8.3 SURFACE HEAT TRANSFER

Four types of surface heat transfer are provided for both steady state and transient analysis.

The types are a prescribed heat flux, a convective heat flux due to the difference between the

surface temperature and the local ambient temperature, radiation heat exchange, and a prescribed

directed vector heat flux from a distant radiating source. In all cases the heat flux is applied

to a surface element defined by gridpoints. There are six distinct types of surface elements:

1. POINT. a flat disc defined by a single gridpoint.

2. LINE. a rectangle defined by two gridpoints.

3. REV, a conical frustrum defined by two grid circles.

4. AREA3, a triangle.

5. AREA4, a quadrilateral.

6. ELCYL. an elliptic cylinder defined by two gridpoints. Its use is restricted to pre-

scribed vector heat flux.

The user supplies the area. A. for POINT, and supplies a width, w, for LINE to be used with

the distance,~ between its grijpoints in calculating the surface area. For ELCYL the user specifies

the principal radii of the cross-section. The surface area is calculated automatically in the

other cases.

8.3.1 Prescribed Heat Flux

The user defines a distributed heat flux. Q. and the program calculates the vector of heat

flows {pe} to be applied to the grid points connected to an element. The general form of the

cal~ulation for the jth component of {pe} is

p~ = A~ Q~ (1)
J J J

where Aj is a subarea of the element associated with its jth vertex and Qj is the heat flux at the

jth vertex. There are two options for assigning heat fluxes to eleme!1ts. In tne first option

(QBDYl card) the user specifies a heat flux that is constant over the surface of the element. In

option 2 (QBDY2 card) the user specifies separate heat fluxes at the vertices of the element,

which are then used directly in Equation 1. In transient analysis, the time dependence of the
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The subareas Aj are calculated in the same manner as heat

one-half of the width multiplied by the distance between the

flux is specified on a TLOAD card.

capacities. Thus, for LINE, A: is
J

end points, and for AREA3, A: is equal to one-third of the total area. For AREA4, A~
J J

puted from the areas of the overlapping subtriangles connected to the jth grid point.

is com-

For REV

the total area is distributed to the two end points so as to preserve its center of gravity.

ELCYL is not available for prescribed heat flux.

8.3.2 Convective Heat Flux

Convective heat flow into an element's grid points is described by the general relationship

(2)

where {Ta - ue} is the difference between ambient and surface temperatures at the vertices of the

element. The surface conduction matrix [Ks] is calculated as follows for each surface element

type. In the equations, K is the thermal conduction coefficient, which may be a function of

temperature.

POINT:

LINE:

(3)

(4 )

REV: [Ks] _ 7TK~ fr2- =-r~ ~~ +-''-J- -6-
r l + r2 : r l + 3r2

AREA3: [Ks] KA [: 2 :J=12

where A is the area of the triangle.

(5)

(6 )

AREA4: (7)

I 1 if i = j
where 0i j !. 0 if i of j

ai area of the subtriangle which does not touch vertex (;).
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The surface conduction matrices are, in each case, derived under the assumption that the

temperature difference varies linearly over the surface of the element, except that, in the case

of the quadrilateral (AREA4), the temperature difference is assumed to vary linearly over the

surface of each overlapping subtriangle. Each ambient temperature, Ta , is assigned a degree of

freedom in the analysis. The value of Ta may be specified on an SPC card in linear static

analysis. The method used in nonlinear static analysis is described in Section 8.4.1. In transi-

ent thermal analysis, the various techniques for prescribing a displacement in transient structural

analysis are used.

8.3.3 Radiation from a Distant Source

Radiation from a distant source, such as the sun, can be treated as a prescribed heat flux.

The flux into a surface element depends upon the orientatio~ of the radiation vector relative to

the element. The total heat to a single element from a single distant source is given by

where

- - *P = -aA(e-n) QO

P power into the surface element from the source

Qo power per unit area in the beam

A surface area of the element

e = unit vector of radiation beam (the source is so distant that rays are parallel)

-n = outward normal to surface

(8)

a = absorptivity (if a < 1, it is assumed that the reflected radiation is lost from the.
system)

- - *(eon) is replaced by zero in the equation when e·n is positive, i.e., when the radiation
comes from behind the surface.

No provision is made for shading by other surface elements.

In addition to the POINT, LINE and AREA elements, the elliptic cylinder element, ElCYl, can

receive prescribed vector radiation, as shown below. An integration of the normal component of

flux over the surface is needed to compute the power.
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Figure 1. Elliptic Cylinder, ELCYL.

The result of the integration is

(9)

where ey, ez are components of e; ny, nz are components of n; and i is the length of the cylinder.

In dynamic analysis the flux in the incident beam, QO' and the components of e may be pre

scribed functions of time. The latter provision is useful in the analysis of rotating spacecraft.

*8.3.4 Radiation Exchange Between Surfaces

The form of the relationship between the vector of radiative heat flows, {Qg}' into grid

points, and the grid point temperatures, {ug}, is

* For an introduction to the theory of radiation exchange, see Max Jacob, Heat Tr'ansfer, Vol. II,

Wiley & Sons. 1957, pp. 1-24.

t If {T} is a vector, {T}~ is defined as the vector whose components are the fourth po~er of the

elements of {T}.

8.3-4 (12/15/72)



SURFACE HEAT TRANSFER

The addition of Ta converts ug to an absolute temperature scale. The grid point radiation matrix

[Rg] will be derived. As an intermediate step, an element radiation matrix, [ReJ. will be found

which relates the radiative heat flow (power) into a finite element to the temperature of the

element by

(11)

where Ue is the temperature of the element measured on an absolute scale and assumed to be con

stant over the element.

The radiation power into a surface area may be considered as the result of two effects:

q~ut (radiosity), the power per unit area leaving the surface, due either to direct radiation or

to reflection of incoming radiation; and q~n (irradiation), the power per unit area arriving, due

to the radiosity of the other elements. The radiation exchange formula is

[AJ{q}~n = [F]{q}~ut

where [A] is a diagonal matrix of areas, and [F] is a matrix of exchange coefficients whose

elements are given by

(12)

case. cose.
1 J dA,. dA

2 j1Tri j
(13 )

where r .. is the length of a line connecting two points on the surfaces, and 6. and e. are the
1 J 1 J

angles between the connecting line and the normals to the surfaces. The range of integration must

be limited to regions of the surfaces which "see" each other. The [F] matrix has units of area

and is symmetric. Its elements are related to the more commonly used form factors (or shape

factors) f i j by

(14 )

where f ij is the fraction of the power leaving element j which reaches element i. The elements of

[F] are supplied by the user; it is expected that, in many cases, they will be comouted by a

separate computer program. The surface condition is

{q}out = aCE ]{U }~ + ~Lr - E ]{e,ine € e Ct ,Ie
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where EE and Ea are diagonal matrices of emissivities and absorptivities and J is the Stefan

Boltzmann constant. For gray bodies with no transmission, EE is equal to Ea , according to

Kirchoff's Law.

The simultaneous solution of Equations 12 and 15 yields

{q}in = a[(A _ F(I - E ))-1 F E ]{U }~
e nEe

{q}out = a[E + (I - E )(A - F(I - E ))-1 F E ]{U }~
e E a a E e

The net power exchange is

The element radiation matrix, found by substituting Equations 16 and 17 into Equation 18 and

comparing the result with Equation 11, is

[R ] = cr[AE - AE (A - F(r - E ))-1 FE]e E a a E

(16)

(17)

(18)

(19)

This matrix is symmetric if Ea = EE and F is symmetric. The transformation from element heat

flow to grid point heat flow is given by

(20)

where [G]T is a matrix of constant coefficients. The nonzero elements of [GJT are easily found

for each element type. They are, in fact, the fractions of the area of the element attributed

to the connected grid points, see Section 8.3.1. The same matrix transposed is used to inter

polate the fourth powers of temperatures, i.e.,

{U }~ = [G]{u + T }~ega (21)

Combining Equations 20 and 21 with Equation 11, and comparing with Equation la, it is seen that

(22)

which is also a symmetric matrix if [Re] is symmetric. The net heat flow into the element due to

radiation, which is available as output frcm NASTRAN, is

(23)
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The sources of the information required to simulate radiation heat exchange are:

a. Parameters a, Ta

~b. Properties Ee:' Ea
User Supplied

c. Exchange Matrix [F]

d. Areas A

~
Computed from grid geometry and

e. Transformation [G] element properties
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8.4 METHODS OF SOLUTION

The types of heat transfer problems that are solved with NASTRAN are described in Section 8.1.

There are three types: linear steady-state analysis, nonlinear steady-state analysis, and

transient analysis. Nonlinear relationships are optional in transient analysis.

Linear steady-state analysis uses the NASTRAN statics rigid format (format No.1). The

principal additions are subroutines for conduction and heat capacity matrix generation, described

in Section 8.2, and for surface heat transfer, described in Section 8.3.

Flow diagrams for nonlinear steady-state analysis and for transient analysis are shown in

Figures 1 and 2 of Section 8.1. Special features of the solutions are described in the subsections

that follow.

8.4.1 Nonlinear Steady-State Analysis

The nonlinear properties permitted in steady-state heat transfer analysis with NASTRAN are

radiatjon, temperature dependent film conduction, and temperature dependent volume heat conduction.

The general form of the equation to be solved is

*(1)

The temperature set {u } includes degrees of freedom that are restrained by single point and
g ~

multi-point constraints, see Section 3.3. The vector {qg} represents the forces of constraint.

Sections 8.2 and 8.3 describe the manner in which the heat conduction matrix, [Kgg]. the radiation

matrix, [Rgg], and the applied heat flow vector. {Pg}, are formed from the properties of volume

elements and surface elements. The elements of [Kgg ] may be functions of temperature.

The first step in the solution is to rewrite Equation 1 in terms of the set of temperatures,

{un}' from which multi-point constraints have been removed. The procedures used are identical to

those described in Section 3.5 for structural analysis. In order to avoid difficulties in inter

polating temperatures to form the nonlinear terms. a restriction is placed on the form of the

multi-point constraint relationships, namely that, if a grid point is adjacent to a volume or

surface element with nonlinear properties, the constraint relationship is restricted to be an

*If {T} is a vector, {T}~ is defined as the vector whose components are the fourth power of the
elements of {T}.
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"equivalence." The tenn "equivalence" means that the constrained temperature is equal to one of

the independent temperatures.

The fonn of the .thermal equilibrium equation after the multi-point dependent temperatures

{urn} have been eliminated is

[K ]{u} + [R ]{u + T }~ 2 {q } + {P }nn n nn nan n (2)

If {un} is partitioned into {Uf} (free points) and {us} (Single point constraints). Equation

2 may be written in partitioned fonn

(3)

The components of {us} have values prescribed by the user. and the lower half of Equation 3

is used to evaluate the single point "forces" of constraint {qs} during data recovery. Rearrang

ing the top half of Equation 3 we obtain

(4)

Equation 4 is solved by an iterative method. The technique used is to expand {uf} into

constant, linear. and higher order tenns with respect to an initial estimate. rUt}. supplied by the

user. The linear terms are kept on the left hand side of Equation 4 and all other terms are placed

on the right hand side. where they are evaluated precisely for the current estimate of {uf}. If we

define {L} to be the left hand side of Equation 4. then the new left hand side is

(5)

where the partial derivatives are evaluated for {uf} ={u}}. Using this expression. Equation 4

may be written as

(6)
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where

(7)

It is convenient, for computational purposes, ~o combine terms proportional to {uf } and {us}

on the right hand side of Equation 6 to produce terms proportional to {un}' Thus, if we define

* [KfsJ + 4[Rfs J~ Us + T ,J 3[KfsJ a

[KfnJ [Kff : KfsJ

[KfnJ [K1 • Kfs]ff'

[Rfn] [Rff : RfsJ

(8)

then Equation 6 may be written as

(9)

where

The first term in Equation 10 is a constant, and the other terms are functions of temperature.

Equation 9 is an exact relationship. The iteration algorithm consists of evaluating {Nf } for

{un} = {u~}, the current estimate of the temperature distribution, and of solving Equation 9 to

obtain a new estimate, {u~+l}. of the unknown temperatures. The starting vector is {u}}. supplied

by the user.

The algorithm is simple enough, but the number of iterations to obtain satisfactory con

vergence (if indeed convergence can be achieved) remains an open question. The question of con

vergence can be treated without difficulty in a small neighborhood of the correct solution within

which the nonlinear load may be approximated as a linear function of the error in the temperature

distribution. The iteration algorithm is
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(11)

As an approximation, let

(12)

where [C] is tne matrix of the partial derivatives of {Nf } with respect to changes in {uf }.

Substituting Equation 12 into Equation 11 and using Equation 9, the iteration algorithm is,

approximateiy,

* i+1 i[Kff]{ou _ } = [C]{ou } (13)

Equation i3 resembles the power method of eigenvalue extraction, see Section 10.4, and its

convergence is related to the distribution of the eigenvalues of the associated eigenvalue problem,

*[Kff - ACj{OU} = 0 (14)

In order ~c establish the condition for convergence, expand the iterates [oui~ and {ou"+1}

in terms of the eigenvectors {¢j}' i.e.,

i \ i{ou } = L a.{¢.}
j J J

. i-l \ i-ltOU } = L a· {¢.}
j J J

(15)

(16)

It can be proved quite generally (see, for example, Section 10.4.4.3) that a property of the

linearized iteration algorithm is that

i-l =A. i
~ J ~

(17)

,
where Aj is the eigenvector corresponding to {~j}' Thus. it is seen that, iT !Ajl < 1, aj will

increase in magnitude at each iteration and the algorithm will be divergent. The necessary and

sufficient condition for convergence in a small neighborhood of the correct solution is that all

eigenvalues of Equation 14 have magnitudes greater than one.

NASTRAN provides both an estimate of the lowest eigenvalue and an estimate of the error in

the solution after each iteration. If the iteration has proceeded to the point where one
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eigenvector, {~l}' dominates the solution, it is seen from Equations 15, 16, and 17 that

(18)

so that the ratios of successive increments in the elements of the solution vector provide an

estimate of the lowest eigenvalue. By analogy with a procedure used in the inverse power method

with shifts, see Section 10.4, a single weighted estimate is obtained by multiplying both sides

of Equation 18 by the transpose of the nonlinear load vector. Thus, the estimate is

(19 )

Equation 19 is evaluated after every iteration starting with the third, i = 4.

The vector {cui} is the error in the solution at the beginning of the ith iteration. In

order to obtain a measure of the error, we observe, from Equations 15, 16 and 17, that if only

one eigenvector is present

i i-l ( ){ i{ou - eu } = 1 - Al eu} (20)

The measure of the error in temperature used in NASTRAN is the ratio of the work done by the

nonlinear loads acting on the error vector to the work done by the nonlinear loads acting on the

total solution, i.e.,

. T .
{N1

} {eu'}

{N
i / {uf }

(21)

Another error measure is also provided, which measures the error in the applied heat flux,

including nonlinear terms. That measure is

II N~ - Ni-1 11

IIN~II
(22)

where I IXI I is the Euclidean norm of the vector {X}.
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The iteration algorithm will terminate for any of the following reasons:

a) E+ is less than a user-specified value and also IA~I > 1: Normal convergence.

b) IA~I < 1 for i ~ 4: The algorithm is assumed to be divergent.

c) The number of iterations reaches the maximum number specified by the user.

d) The available time is used up.

In all cases, the values of Ei, E~ and A~ may be output for every iteration, and the solution

vector for the last iteration will be output.

Radiated heat flux is proportional to the fourth power of the temperature, thereby providing

a very strong nonlinear effect if the radiation terms are large compared to other terms. In

order to guage the effect of radiation on convergence of the iteration algorithm, consider an

isolated perfectly-conducting body in thermal equilibrium with radiation from distant sources.

The thermal equilibrium equation is

Ru" = P (23)

where u is measured on an absolute scale, and P is constant. The user supplies an estimate of

the temperature, u1. The iteration algorithm used by NASTRAN is, in accordance with preceding

discussion,

(24 )

The derivative of the right hand side at the correct solution (u i =u) is

(25 )

so that the eigenvalue problem corresponding to Equation 14 is

(26 )

The eigenvalue is

(27)
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The critical value for convergence, A = -1, is achieved if

or

. 794u
~

Thus, the solution converges if u1 is greater than about 80% of the correct temperature.

measured on an absolute scale. The user can assure convergence, at the expense of extra iterations.

by overestimating the temperature.

8.4.2 Transient Analysis

The nonlinear terms permitted in transient heat transfer analysis include radiation and the

general purpose nonlinear elements described in Section 11.2. Nonlinear heat conduction and heat

capacity are not permitted. The reason is that the computational effort required to recalculate

the heat conduction and heat capacity matrices at each time step oy the finite element method used

in NASTRAN is judged to be excessive. The general purpose nonlinear elements can, however, be

used to represent nonlinear surface film conduction and other relatively simple nonlinear relation

ships.

The general equation solved in transient analysis has the form

[K]{u} + [B]{u} = {P} + {N} (l)

...
The conduction matrix includes linearized radiation terms. It is. in fact. identical to [Kff ]

given by Equation 7 of Section 8.4.1, except possibly for terms due to "extra points," see

Section 9.3.2. The nonlinear term in Equation 1 is

(2)

where {Ne} is due to general purpose nonlinear elements and the second term is due to radiation.

An option is available to substitute {u 1 } for {u} in the second term, which reduces it to a

constant vector and which, thereby, linearizes the effect of radiation.

The load vector {P} may be formed in the same manner as for static heat transfer analysis

with certain parameters permitted to be functions of time. These include the prescribed volumetric
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and surface heat fluxes, and the prescribed vector heat flux. In the latter case, both the

direction and the magnitude of the heat flux are permitted to be functions of time. The user

also has available the methods used to prescribe transient loads in structural dynamic analysis,

see Section 11.1. Prescribed temperatures at grid points, and the ambient temperatures used for

film heat transfer are treated in the same manner as prescribed displacements in dynamic analysis.

The user connects a large scalar conduction element, KO' to the grid point in question and also

applies a thermal load P = TKO to the grid point, where T is the desired temperature function of

time.

The algorithm used to integrate Equation 1 has been selected with the following criteria in

mind:

1. Unconditional stability for linear problems, regardless of the size of the time step,

2. Ability to handle a singular heat capacity matrix,

3. Good stability for nonlinear problems,

4. Good efficiency,

5. High accuracy.

A useful general observation is that stability, efficiency and accuracy are conflicting require

ments that must be compromised. The algorithm that has been selected can satisfy the first two

criteria and scores reasonably well on the last three. Basically, it is a difference equation

approximation to Equation 1 with a free parameter that is adjusted to produce a compromise of

the stability, efficiency and accuracy requirements. In this respect it is analogous to the

Newmark B method used in structural dynamics, see Section 11.3. The form of the difference

equation is

(3)

The subscript n refers to the nth time step. The parameter, B, may be selected by the user

in the range 0 < B < 1. Putting terms proportional to {un+11 on the left side yields the itera

tion algorithm
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+ s{P +l} + (: - S){ P } + (1 + 8){ N } - B{N 1}n n n n- (4)

The matrix [lI~ B + SKJ is first decomposed into its triangular factors from which the

equations are solved at each time step using a forward and backward substitution procedure, see

Section 2.3. The time step, ~t, may be changed at discrete times by the user. Certain values of

the parameter B result in well-known algorithms, viz.,

B 0 Euler integration

B 1/2: Central differences

B Backward di fferences

Euler integration (8=0) is usually the most efficient choice because only the [B] matrix,

which is frequently diagonal, is decomposed. However, Euler integration cannot be used if [B]

;s singular and it suffers with respect to both stability and accuracy as will be seen.

The effect of S on stability will be examined for the linear case, for which the matrix

equation of motion is

[K]{u} + [B]{u} P

A more convenient set of equations is obtained by a transformation of {u} into modal

coordinates, {~i}:

(5)

where each column of [~] is an eigenvector of Equation 5. The equation for each modal coordinate

is uncoupled from tne others and has the form

where A; is the eigenvector and Pi is the generalized force on ~;' The system of equations is

stable if all Ai ~ O.
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Applying the integration algorithm to Equation 7 we obtain

(8)

where the subscript (i) has been omitted for clarity. The solution for the homogeneous case

(Pn = Pn+l = 0) has the property that

I;;n+l =E I:n (9)

where E is a constant, called the shift operator. If lEI ~ 1, the homogeneous solution is stable

because it approaches zero for large n. By substituting Equation 9 into Equation 8 for the homo-

geneous case, we obtain

[ 1... {E - 1} + A. (B E + 1 - B)ll: = 0
l!.t 1 j n

Setting the coefficient of ~n to zero. which must occur if I:n is not to be zero, produces a

functional relationship between E. 8. and Ai~t, which may be expressed in the form

1 - E
Ait.t = E 8 + 1 - B

(lO)

(11 )

The range of E for stability is -1 s E s 1. Substitution of the upper limit into Equation 11

is seen to produce no restriction on the time step_ Substitution of tne lower limit. however,

gives as a stability limit

ThUS, if e = 0 (Euler integration) the stability limit is Ai~t =2. Since Ai is the recipro

cal of the time constant of the ith mode of the system, the practical restriction on Euler inte-

gration is that the time step can be no greater than twice the smallest decay time constant of the

system. If B=1/2. there is seen to be no limit on the time step, nor is there for B > 1/2,

which can most readily be seen by solving Equation 11 for E:

1 - (1 - 8}Ait.t
E = (13)

+ B ";l!.t

From the viewpoint of stability then, B should be chosen greater than or equal to 1/2. For

linear problems 6 = 1/2 is adequate. but for nonlinear problems in which the nonlinear terms must
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necessarily be evaluated at the nth and earlier time steps, a larger value of 6 may be advisable.

Insight into the question of accuracy can be gained by examining the eigenvalues produced by

the integration algorithm and comparing them with the eigenvalues of the real system. The eigen

value, Ai' produced by numerical integration is defined implicitly by

-A .l1t
~ - e 1 ~
"n+l - "n

or, by comparison with Equation 9,

So that, using Equation 13,

-1
lI. i = lit tn E

-1 (1 - (1 - S)AiM )
hi =I1t tn 1 + 6 Aillt .

(15)

(16)

If Ai l1t is assumed to be less than one, Equation 16 can be evaluated by power series expansion

wi th the resuIt

(17)

It is seen that, if the time step, l1t, is small compared to the decay time constant of the

mode, l/Ai' the error will be a minimum near 6 =1/2. Since efficiency or stability considera

tions will be overriding in many cases, the choice of 6 is left to the user. The default value,

in the event that the user declines to make a choice, is 6 =0.55.

The provisions for initial conditions are as follows. The initial thermal load (for

Equation 4 at n =0) is taken as

(18)

which sets {u} to zero initially (see Equation 1). Since {un} is not defined for negative n, the

nonlinear load at t = -l1t is taken to be

(19)

Equations 18 and 19 have the property that they yield smooth results when step loads are

applied to degrees of freedom without thermal capacity. Special conditions are also needed if it
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is desired to change the time step. The situation is similar to the starting equations except

that the new initial velocity vector, {u}, is set equal to the old final vector. let N be the

index of the last step with the previous time step At1" Let At2 be the new time step and let the

time step counter be reset to zero. The new initial conditions are

The new initial thermal load is

{P } = [K]{u } - {N } - [B]{u }o 0 0 0

Interpolation is used to produce an estimate of the nonlinear load at t = -At2:

(20)

(21)

(28)

(23)

These provisions are designed to minimize discontinuities associated with time step changes.

The coefficient matrices in Equation 4 are recomputed, an~ the matrix coefficient of {un+1} is

decomposed before continuing the integration with the new initial values.
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9.1 GENERAL PROBLEM FLOW IN DYNAMIC ANALYSIS

Figure 1 is a flow diagram showing the major functional modules employed in the solution of

dynamic problems by the displacement method. Three basic types of analysis are performed (Eigen

value Extraction. Frequency Response Analysis, and Transient Response Analysis) according to either

of two methods of problem formulation (Direct or Modal). In all there are seven different paths

through the flow diagram of Figure 1, corresponding to the following seven rigid formats for dy

namic analysis, which supplement the five rigid formats for static.analysis described in Section

3.2. (The numbers are the Rigid Format numbers assigned in the Program.)

3. Normal Modes Analysis

7. Direct Complex Eigenvalue Analysis

8. Direct Frequency and Random Response Analysis

9. Direct Transient Response Analysis

10. Modal Complex Eigenvalue Analysis

11. Modal Frequency and Random Response Analysis

12. Modal Transient Response Analysis

In the modal method of dynamic problem formulation. the vibration modes of the structure in

a selected frequency range are used as degrees of freedom, thereby reducing the number of degrees

of freedom while maintaining accuracy in the selected frequency range. In the direct method, the

degrees of freedom are simply the displacements at grid points.

It is important to have both direct and modal methods of dynamic problem formulation in order

to maximize efficiency in different situations. The modal method will usually be more efficient

in problems where a small fraction of all of the modes are sufficient to produce the desired ac

curacy and where the bandwidth of the direct stiffness matrix is large. The direct method will

usually be more efficient for problems in which the bandwidth of the direct stiffness matrix is

small, and for problems with dynamic coupling in which a large fraction of the vibration modes

are required to produce the desired accuracy. For problems without dynamic coupling, i.e.• for

problems in which the matrices of the modal formulation are diagonal. the modal method will fre

quently be more efficient. even though a large fraction of the modes are needed. The choice of

method is, of course. left to the user.
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The flow diagram in Figure 1 is simplified to the extent that it shows only the major oper

ations that are performed. Complete descriptions of the sequences of module calls for all rigid

formats are contained in the NASTRAN User's Manual. The functions indicated in Figure 1 are de-

scribed in succeeding subsections of the Theoretical Manual as follows.

Section 9.2 - Real Eigenvalue Analysis, READ
Complex Eigenvalue Analysis, CEAD

Section 9.3 - Dynamic Pool Distributor, DPD
Direct Dynamic Matrix Assembler, GKAD
Modal Dynamic Matrix Assembler, GKAM

Section 9.4 - Dynamic Data Recovery, DDR

Section 11. - Transient Response Analysis, TRO

Section 12. - Frequency Response Analysis, FRRD
Random Analysis Module, RAN00M

The use of the real eigenvalue analysis mOdule. READ, for buckling problems has been describ

ed in Section 3.2. Section 9.2 contains information concerning the selection of methods, the

checks that are performed, and other organizational details for both real and complex eigenvalue

analysis. The mathematics of the eigenvalue extraction methods employed with NASTRAN are develop

ed in Section 10.

A basic feature of NASTRAN is its generality and flexibility with regard to the specification

of input data for dynamic analysis. The general means provided for specifying damping. control

system characteristics, aerodynamic influence coefficients, etc., are described in Section 9.3.

Further information on special problem formulation techniques for dynamic analysis is given in

Section 14. At present the input data formats do not provide for any specific aerodynamic or

hydrodynamic theory, or for the characteristics of any particular control system components.

Provision has, however, been made for incorporation into NASTRAN of subroutines to perform such

tasks.
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Figure 1. Simplified flo~1 diagram for dynamic analysis by the displacement method.
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9.2 EIGENVALUE ANALYSIS

Real and complex eigenvalue analyses are performed in NASTRAN by separate modules, as indi

cated in Figure 1 of the preceding section. The real eigenvalue analysis module. READ, is used

to obtain structural vibration modes from the symmetric mass and stiffness matri~es, [MaaJ and

[KaaJ, generated in the statics part of the program, and to obtain buckling modes from the elas

tic stiffness and differential stiffness matrices, [KaaJ and [Kaa
d]. All other eigenvalue prob

lems, i.e., those with matrix terms from additional sources, are solved in the complex eigenvalue

analysis module, CEAD. Examples include the vibration modes of damped systems, the stability

analysis (flutter) of structures with aerodynamic coupling and/or control system feedback, and

the buckling of structures with nonsymmetric terms in the differential stiffness matrix.

The eigenvectors and eigenvalues produced by READ may be used to generate modal coordinates

for further dynamic analysis by the modal method. The results of CEAD, on the other hand, are an

end product. The organization of the real and complex eigenvalue modules is discussed below in

separate subsections.

9.2.1 Real Eigenvalue Analysis

A flow diagram for the real eigenvalue analysis module, READ, is shown in Figure 1. The

user has a choice of two methods for solving buckling problems and of three methods for solving

vibration mode problems. More than one method is provided in order to optimize efficiency for

different types of problems and also to provide back up in case one method gives unsatisfactory

results in a particular case. The tridiagonal method is not provided as an option for buckling

problems because it would require that the differential stiffness matrix be negative definite,

which is seldom the case. The methods of eigenvalue extraction used in NASTRAN are described in

detail in Section 10. The intrOduction, Section 10.1, includes a comparison of the methods for

different types of problems.

The general form of the eigenvalue problem for vibration modes is

o (1)

2The eigenvalues Ai = wi are the squares of the natural vibration frequencies. The results of

the calculation performed by the module are the eigenvalues, Ai' and corresponding eigenvectors

{~ .}. normalized in one of three optional ways. At the user's request the modal mass matrixal

9.2-1



ORGANIZATION OF DYNAMIC ANALYSIS

is calculated and checked for orthogonality of the modes (see page 9.2-5).

are the eigenvectors, {9ai}'

The general form of the eigenvalue p'roblem for buckling is

(2)

The columns of [¢ .Jal

o (3)

The eigenvalues ~i are the factors by which the static loading condition must be multiplied to

produce buckling. The results of the calculation performed by the module are the eigenvalues, Ai'

and the corresponding eigenvectors {$aiJ. Additional data processing is performed by other modu

les, as indicated in Figure 1 of Section 9.1.

The user has a choice, for either type of problem, of the number of eigenvalues to be ex-

tracted and/or of the range of A within which they are to be extracted. The available options,

which vary slightly for the different methods, are explained in Section 10.

Rigid body vibration modes are calculated by a separate procedure provided tnat a set of re

action (support) points, u , have been specified by the user (see Section 3.5.5). This is done to
r

improve efficiency and, in some cases, reliability. The supports are not applied to the structure

during calculation of the remaining eigenvalues. If the user does not specify the reaction points

(or if he specifies an insufficient number of them) the (remaining) rigid body modes will be cal

culated by the method selected for the finite frequency modes.

It will be recalled, Section 3.5.5, that the rigid body mass matrix referred to the reaction

points, [mr ], and the rigid body transformation matrix, [DJ, in the equation relating the remain

ing degrees of freedom, u~' to ur '

(4)

are computed in the static portion of the program. The rigid body modes are a set of vectors

(5)

such that the modal mass matrix,
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[m J =o
(6)

is diagonal and normalized. The Schmidt orthogonalization procedure(l) is used to obtain the

vectors (¢ro} tnat are the columns of the modal matrix [QroJ. The specific procedure used in

NASTRAN is as follows.

1. Define a set of vector delta functions

, etc., (7)

a set of unnormalized eigenvectors {Via}'

ei genvectors C;'i o}' i = 1, 2, . . . r.

2. The relationship between {~io} and {Viol is

1,2, ... r, and a set of normalized

({v. }T [m ]{V. })1/2
10 r 10

i.e., {~io} is normalized to unit generalized mass.

3. Set the first unnormalized eigenvector equal to the first delta function.

4. The second unnormalizea eigenvector is obtained from

(8)

(9)

(10)

where ( 11)

(l)See for example, F. B. Hildebrand, "Methods of Applied Mathematics", Prentice-Hall, New York,
1952, p.35.
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5. Generalize, to obtain the remaining eigenvectors

where

i-l
{Il·} - La .. {¢>. }

j=l J1 JO

{¢. }T [m ] {1. }
JO r 1

i = 2, 3, ... r, (12)

( 13)

Turning to another peripheral matter, the form of the tridiagonal method used in NASTRAN re

quires that the eigenvalue problem be stated in the form

[J - AI]{w} = 0 (14 )

where [I] is the identity matrix and [J] is symmetrical. The operations indicated in blocks 4 and 5

of Figure 1 put the problew in this form. The first operation is to perform a Cholesky decompo-

sition of the matrix

[C][C]T (15 )

where [C] is a lower triangular matrix. The·procedures used to obtain the decomoosition are ex-

plained in Section 2.2.

The symmetrical [J] matrix is then obtained by the following transformation of the eigenvalue

problem. Premultiply Equation 1 by [C]-l and substitute for [Maa ] in Equation 15.

Let

[crl,T {w}

(16 )

(17)

where {w} is called the transformed vector. Equation 16 then reduces to Equation 14 with

[J] (18)

After the transformed eigenvectors of Equation 14, {¢w}' have been calculated by the tri

diagonal method they are converted to physical form by
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[crl,T{q,}
w (19)

In order that the Cholesky decomposition, Equation 15, be possible, it is required that [M ]
aa

be a positive definite matrix. For many problems [MaaJ would naturally be singular, as for ex-

ample, when rotary inertias at rotational coordinates are zero. In these cases the user should

request that the Guyan reduction, Section 3.5.4, be used to eliminate the massless degree of

freedom, if the tridiagonal method is used.

The inversion of the [C] matrix is not difficult to perform since [C] is triangular. In addi

tion [C]-l will be banded if there is no mass coupling between grid ooints and if the Guyan reduc-

tion has not been used extensively.

Once the finite frequency eigenvectors, {!Paf}' have been calculated by the selected method,

they are merged with the zero frequency eigenvectors, {oao}' to form the complete modal matrix of

eigenvectors

(20 )

The last operations performed by the real eigenvalue analysis module are to normalize the

eigenvectors and to perform the mass orthogonality test, if it has been requested by the user.

The test requires that

(21)

where £ is supplied by the user, and {¢ .} has been normalized to unit generalized mass, i.e.,al

(22)

If the test fails, the program provides the number of mode pairs failing the test and the

value of the largest off-diagonal term.

It is recognized that the eigenvectors of extremely close or identical eigenvalues may be

substantially correct'even though they do not pass the orthogonality test. Eigenvectors obtained

with the inverse power method are orthogonalized wlth respect to all previously extracted eigen

values. If the determinant method has been selected a preliminary test on the closeness of

eigenvalues
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(23)

is made. If a group of adjacent eigenvalues satisfy the closeness condition, the orthogonality

test, Equation 21, is applied to the group. The eigenvectors of the group that fail the orthogon-

ality test are then orthogonalized by the Schmidt procedure

i-l
2m.. {~ .}

j=l lJ aJ
(24)

where {¢ai} is a "purified" eigenvector, and the sum extends over preceding members of the group.

Once the purification of close eigenvectors is completed, the complete mass orthogonaiity test is

performed.

The user may request anyone of the following forms of no~alization for the eigenvectors

1. Normalize to unit generalized mass.

2. Normalize so that the largest element of the vector is unity.

3. Normalize so that a particular element of the vector ~s unity.

The generalized mass, {~ai}T [MaaJ{~ai}' is included in the output for each eigenvalue.

9.2.2 Complex Eigenvalue Analysis

The form of the complex eigenvalue problem using a direct formulation is

o (25)

the damping matrix, ~dJ and the stiffness matrix, [Kddr may

may be symmetric or nonsymmetric, singular, or nonsingular.

The vector {udJ includes the

set of extra points, ue ' that are

set, u , of degrees of freedom at structural grid points and the
a

described in Section 9.3. The elements of the mass matrix, ~d~'

be real or complex and the matrices

The eigenvalue, p., corresponds to
J

a homogeneous solution of Equation 25,
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(26)

or

(27)

where uj is the real part of Pj and wj is the imaginary part.

The form of the complex eigenvalue problem using a modal formulation is

(28)

The components of {Uh} are the set of modal coordinates, ~., and the set of extra points, U ,
1 e

(see Section 9.3). As in the case of the direct formulation, there are no restrictions on the

matrices in Equation 28.

Two optional methods of eigenvalue extraction, the inverse power method with shifts, and the

determinant method, are provided. They are described in Section 10.

The eigenvectors are normalized to a maximum element value of unity, or to a value of unity

for a specified element, according to user's option. Generalized modal masses are not calculated

and orthogonality tests, if such could be defined, are not performed.
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Figure 1. Flow diagram for the real eigenvalue analysis module. READ.
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9.3 ASSEMBLY OF DYNAMIC MATRICES

The matrix properties of the dynamic system are assembled in three different modules, as

shown in Figure 1 of Section 9.1. The modules are

1. DPD, The Dynamic Pool Distributor

2. GKAD, The Direct Dynamic Matrix Assembler

3. GKAM, The Modal Dynamic Matrix Assembler

The Dynamic Pool Distributor performs a number of preliminary bookkeeping chores. It gener

ates flags defining members of various displacement sets; it generates tables relating internal

and external grid point numbers, including Extra Points introduced explicitly for dynamic analysis;

it organizes Transfer Function data and Eigenvalue Extraction data; it prepares tables for Dynamic

Loads and Nonlinear F.unctions; and it compiles lists of response quantities for Transient Analysis.

The function of the Direct Dynamic Matrix Assembler is to assemble the mass, damping, and

stiffness matrices from various sources in terms ~f displacements at grid ooints. The function of

the Modal Dynamic Matrix Assembler is to apply a modal transformation to the mass, damping, and

stiffness matrices.

Other modules performing functions in connection with dynamic sys~em assembly are the Frequen

cy Response Analysis Module, which assembles loads, and the Transient Response Analysis Module,

which assembles loads and nonlinear terms in the equations of motion. Discussion of these func

tions is included with the discussion of the other functions of the modules(see Sections 11 and

12).

9.3.1 Notation System

Before proceeding to a detailed description of' the process of matrix assembly, it is well to

review the notation system used in dynamic analysis, which was briefly described in Section 3.3.

The main differences from static analysis are the addition of modal coordinates, ~i' and the addi

tion of extra points, ue . The nesting of the displacements sets used in dynamic analysis is de

picted by the following diagram.
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The definitions of the mutually exclusive sets are

points to which determinate reactions are applied in static analysis.

tne remaining structural points (ooints left over) which are evaluated in static
analysis by direct solution of the stiffness matrix,

extra degrees of freedom introduced in. dynamic analysis to describe control sys
tems. etc.•

E;,o rigid body (zero frequency) modal coordinates.

finite frequency modal coordinates.

The combined displacement sets are

ua u + u the set used in real eigenvalue analysis,r 2.,

~i ;0 + E;,f the set of all modal coordinates,

ua ua + ue the set use~ in dynamic analysis by the direct method.

uh E;,i +ue • the set used in dynamic analysis by the modal method.

Load vectors and two-dimensional arrays employ the subscripts of the displacement sets with

which they are associated. Occasionally additional subscripts are used to distingu~sh between ~~o

members of the same set. Superscripts are used to distinguish different kinds of entities. See

Section 3.3 for further details.
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9.3.2 Extra Points and Transfer Functions

In NASTRAN dynamic analysis is performed via a basic quadratic format,

[ Mp2 + Bp + K]{u} {P} (l)

Situations occur, rather frequently, where some of the properties of a dynamic system cannot

be expressed directly as constant coefficients in a mass, damping, or stiffness matrix. If the

problem is formulated in the frequency domain, as are many problems in aeroelasticity and hydro-

elasticity, terms may occur that have other than constant, linear or quadratic dependence on p.

These terw~ may, however, be expressed as frequency-dependent coefficients in the mass, damping,

or stiffness matrices. This creates a certain awkwardness in eigenvalue extraction, but it is not

a serious inconvenience in frequency response analysis.

If the problem is formulated in the time domain, in which case p is a derivative operator, the

nonconforming properties cannot, even conceptually, be treated as time-deoendent coefficients.

There are two types of nonconformities: those in which the resulting forces are nonlinear func-

tions of disolacements and of their de~ivatives; and those in which the resulting forces are linear

functions of higher order derivatives, or, in general, are convolution integrals of the displace

ments. The former type of nonconformity, which is included only in transient analysis, is discuss-

ed in Section 11.2. The latter type is discussed here.

A convenient representation of a convolution integral is its transfer function in the frequen

cy domain, i.e., its Laplace transform. The properties of control system components, or even of

comple~e control systems, are most frequently described by transfer functions. represented by

algebralc expressions of the form

ez H1Z(p)el {2}

where

a p2 +
n

ao + alP + + a p
H12 (P) 2 n (3)

b + blP +
2 + b pm

0
b2P + m
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el and e2 may be variables representing voltages in amplifier circuits, valve positions in hydraul

ic actuators, etc. All such quantities are treated as degrees of freedom and are included in the

displacement vector {ue} (extra points). Transfer functions, Equation 3, are brought within the

basic quadratic format as follows.

If n < 2 and m < 2, then Equation 2 may be written

(4)

which may properly be regarded as a differential equation of second order, (p = d/dt). The co

efficients bZ' b" and b are, respectively, the diagonal terms of the [MJ, [8J, and [KJ matrices. a

in the row reserved for eZ' The terms -a2, -al , and -ao are, respectively, those in the row cor

responding to eZ and the column corresponding to el in the (M], [8J, and [K] matrices.

If 2 < n < 4 or 2 < m ~ 4, the transfer function H12(P) may be factored into a pair of quad

ratic fractions such that

(5)

= H(a) (p) • H(b) (p)

The transfer function is then brought within the required format by defining another extra

point, e3, such that

(6)

e - H(b) (p) • e
2 - 3

The extension to higher order polynomials is evident. The factoring of polynomials, which

will not often be reGuired, is left to the user. An alternative reduction of the high order trans-

fer function is prOVided by fraction series expansion:
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(7)

which has the advantage of not requiring the numerator to be factored.

In this case auxiP1ary variables ei are introduced such that

and

= 3, 4, 5, etc •• (8)

Equation 8 is treated as a set of differential equations. as before. Equation 9 is also

treated as a differential equation where the only non-zero matrix elements are in the row of K

corresponding to eZ•

In order to facilitate the treatment of control systems, NASTRAN includes an input data for

mat for the specification of transfer functions in the form

(10)

which is interpreted by the program as a differential equation with terms in the rows of [M], [B].

and [K] corresponding to ue• ue must be an extra point, but ui can either be an extra point or

any structural point contained in ug•

Structural loads proportional to displacements at extra points are represented by adding

terms in the stiffness matrix at the intersections of r~ls corresponding to the structural points

and columns corresponding to the extra points. DireGt input data cards are provided for this pur

pose. The superposition of all such terms. including those generated by transfer functions. is

called the direct input stiffness matrix, [KZ]. The direct input mass and damping matrices are

[M2] and [62J. Terms in the direct input matrices may refer to extra points, to structural points

or to both. Since dynamic loads may also be applied to extra points, the means are available for

the complete simulation of subsystems by means of extra points. Some applications to control

system simulation are described in Section 14.2.
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9.3.3 Direct Dynamic Matrix Assembly

The Direct Dynamic Matrix Assembler, GKAD, performs three main functions.

1. It decodes transfer function information and adds it to the direct input matrices [Mpp
2],

[B pp
2], and [Kpp

2] as explained above.

2. It reduces the direct input matrices by the application of constraints and partitioning

from the displacement set, up' (all physical points) to the ud set. See Section 3.3.

3. It assembles the complete dynamic matrices [MddJ, [BddJ, and [KddJ from the direct input

matrices and from the structural matrices generated in the statics portion of the program.

Direct input matrices are, at present, generated by transfer functions or they are supplied

directly by the user. It is possible to modify the program so as to provide internal calculation

of direct input matrices corresponding to particular aeroelastic and hydrodynamic environments.

The extra points are carried along in the application of constraints and partitioning to the

direct input matrices, at the positions in up indicated in the grid point sequence list. For this

"purpose the multipoint constraint matrix [GmJ (see Section 3.5.1), and the Guyan reduction matrix

[GoJ, (see Section 3.5.4), are expanded to include the ue coordinates. The corresponding columns

are, of course, null.

The specific steps in the reduction as applied to [Kpp
2J are:

1. Eliminate multipoint constraints.

[K 21 = OR 2] + [K 2J[G J + [G JT [K 2J + [G ]T [K 2][G J (11)nn ~ nn nm m m mn m"mm 111

where the partitions of [K 2J are given bypp

( 12)

(The ue coordinates are included in the un coordinates.)
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2. Eliminate single-point constraints by extracting [Kff
2] from

[
2 1 2j:ff, ]1 :f',

sf ss

(The ue coordinates are included in the uf coordinates.)

3. Eliminate the omitted coordinates, uo' via the Guyan reduction

where the partitions of [Kff
2] are given by

[
- 2 I 2]
~:~
K 2 'l K 2od 00

(The ud set is the union of ua and ue.)

(13 )

(14 )

(15 )

The direct input mass and damping matrices are treated in a~ identical manner. When the ele

ments of the direct input matrices are complex numbers, which they may be for frequency response

and complex eigenvalue analysis, the real and imaginary parts are reduced at the same time.

The final assembly of the dynamic matrices is performed as follows. The structural matrices
4[KaaJ, [Kaa ], [Maa], and [Baa] are expanded by the addition of zeroes in the rows and columns

1 4 1 1 4corresponding to extra points, to form [Kdd ], [Kdd ], [Mdd ], and [Bdd ]. [Kaa ] is a structural

damping matrix obtained by multiplying the stiffness matrix [Ke] of an individual structural ele

ment by a damping factor, ge' and combining the results for all such structural elements. Each

element may have a different damping factor. [Baa] is a viscous damping matrix resulting from

viscous rod elements (extension or twist) and viscous scalar dampers.

For frequency response analysis and complex eigenvalue analysis the complete dynamic matrices

are

(16 )
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1 2[Bdd ] + [Bdd ]

1 2[Mdd ] + [M dd ]

[Kcd
l ] is multiplied by the factor (1 + ig) to include uniform structural damping in

cases where it is appropriate. The constant 9 is specified by the user.

For transient response analysis the complete dynamic matrices are

1 2 a 1 1 4
[Bdd J + [Bdd ] + ~ [Kdd ] + w

4
[Kdd ]

( 17)

( 18)

( 19)

(20)

(21 )

The constant w3 is the radian frequency at which the term ~ [KddlJ produces the same damping

forces as the term i9[Kdd
l ] in frequency response analysis. The viscous damping forces are larger

at higher frequencies and smaller at lower frequencies. A small value of g/w3 is frequently use

ful to ensure stability of higher modes in nonlinear transient analysis. The user selects the

values of w3 and w4. If they are omitted the corresponding terms are ignored.

9.3.4 Modal Dynamic Matrix Assembly

The Modal Dynamic Matrix Assembler, GKAM, assembles the dynamic matrices [M hh ], [Bhh]. and

[Khh ] in the general dynamic equation

(22)

The modal analysis coordinates, Uh, are related to the corresponding physical coordinates,

ud' as follows. The set uh is the union of the modal coordinates ~i ana the extra points ue

(23)
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while ud is the union of ua and ue . The transformation between ~i and ua 1s

(24)

where [¢ai] is the matrix of eigenvectors obtained in real eigenvalue analysis, (see Section 9.2.1).

The transformation from uh to ud is obtained by augmenting [~ai] to include the extra points.

Thus

CUd} [¢dh] {uh}

where

[¢dh] ~;:~

(25)

(26)

[¢dh] is actually in this form because the components of ue are placed last in uh and also in ud
for modal analysis.

The dynamic system properties, exclusive of loads, included in dynamic analysis by the modal

method are the direct input matrices [Mdd
2], [Bdd

2], and [Kdd
2], obtained from the Direct Dynamic

Matrix Assembler, and the modal matrices, [mil, [bi ], and [k i ], obtained from the Real Eigenvalue

Analysis module. [mi ] is the modal mass matrix defined by Equation 2 of Section 9.2.1, with off

diagonal terms (which should be zero anyway) omitted. The damping matrix [bi ] and the stiffness

matrix [ki ] are obtained from [mi ] by

[k.] = [w. 2 m.], "

(27)

(28)

where Wi is the radian frequency of the ith normal mode and g(wi ) is a damping factor. g(wi) is

'obtained by interpolation of a table, g(w), supplied by the user to represent the variation of

structural damping with frequency.

It will be noted that the specification of damping properties for the modal method is some

what less general than it is for the direct method in that viscous dampers [Baa] and nonuniform

structural damping [Kaa
4] are not used. The damping function g(w) is regarded as an adequate sub

stitute.
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The complete dynamic matrices for the modal method of dynamic analysis are obtained from

(29)

(30)

(31)

The user can specify the number of modes, starting from zero frequency and including rigid

body modes, or he can specify that all the modes witnin a prescribed frequency range be used.

A useful feat~re of NASTRAN is that the user can specify the structural properties of parts

of the structure by means of scaiar elements and constraints whose values are derived from sub-

structure modes (see Section 14.1). The program treats such elements in the same manner as all

other elements, so that their effects are included in [KaaJ, [MaaJ, and [8aa J.
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9.4 DYNAMIC DATA RECOVERY

The dynamic analysis modules for complex eigenvalue analysis. frequency response analysis.

and transient response analysis produce either {ud} or {uh} as solution vectors. depending on

whether a direct or a modal formulation has been.employed. The transient response module also pro

duces the first and second time derivatives of the solution vectors. The additional operations in

the data recovery chain are indicated in Figure 1 of Section 9.1. The $olution vector is parti

tioned. transformed, and augmented in various ways to obtain the vectors rUg} from which internal

stresses are computed.

The main function of the Dynamic Data Recovery module (DDR) is to produce a displacement

vector, fu_} , which can be processed by the static data recovery modules to produce the complete
a

structural displacement vector, rUg}' and the internal forces and stresses in selected structural

eleMents (see Section 3.7). The module also partitions out and stores the extra point solution

A flow diagram for the Dynamic Data Recovery module is shown in Figure 1. The operations are

self-explanatory except for those involved in application of the mode acceleration meL~od of s~lu

tion improvement. Use of the method is optional.

In the mode acceleration method the vector {ua} that describes unconstrained motions of the

st~ucture is replaced by another vector {u:} that will produce more accurate estimates of the

stresses. The motivation stems from the fact that when modal analysis is employed, the modal vec

tor {;iJ that replaces {Ua} is nearly always a smaller set from which higher modes have been omit

ted. The influence of the higher mode$ can be approximated by observing that their response to low

frequency dynamic excitation is almost purely static. Thus the inertia and damping forces on the

structure contain very little contribution from the higher modes. In the mode acceleration method,

the inertia and damping forces are computed from the modal solution. These forces are then added

to the applied forces and are used to obtain a more accurate displacement vector for the structure

by static analysis. The details of the computation are as follows.

When the general dynamic system is formed using modes, the vector {u. } used in the analysisn

contains the modal coordinates {~i} and the extra degrees of freedom fUel. The system from which

{~l'} is abstracted consists of the stiffness matrix [K ], the mass matrix [M J. and modal dampingaa aa
elements, bi . The presence of the modal damping elements is ignored in data recovery. The general
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system includes, in addition, direct input matrices [M2J, [B2J, and [K2J and loads {P } and {P }a e
applied, respectively, to points {ua} and {ue}.

In order to apply the mode acceleration method, the system that existed prior to the applica-

tion of modal constraints is reconstructed, as follows:

(1)

{Ud} differs from {ud}, the solution vector actually obtained, due to the presence of higher

modes. Note the presence of [Bdd
2J from Equation 30 of Section 9.3.4.

The elastic properties of the structure are represented by [KddlJ which is the structural

stiffness matrix [Kaa] augmented by zeroes in the rows and columns corresponding to the extra
1 .

points, ue ' (see Section 9.3.3). [Kdd ] represents the complete structure as opposed to the modal

stiffness ~atrix [k.] which ignores the higher deformation modes. The viewpoint is taken that the
1

transformed solution vector, {ud} = [¢dh]{uh}, is adequate to evaluate the inertia (and damping)

loads on the structure but that stresses derived from it could be improved.

The improved solution is the vector {u~} obtained by solving

(2)

where, comparing Equations I and 2

(3)

The derivative operator p in Equation 3 is simply a number for complex eigenvalue and fre

quency response analysis. For transient analyses the velocity and acceleration vectors, {pudJ and

{p2 ud} , are contained in the output of the transient analysis module.

The procedure indicated in Equations 2 and 3 is modified in the program by the removal of

extra points, ue ' and by the use of a special procedure for free bodies. First {P~} and {u~} are

partitioned

(4)
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(5)

Then, if there are no free body motions, {u:} is obtained by solving

(6 )

by the standard procedures used in static analysis. Note that for complex eigenvalue extraction

and for frequency response analysis {P:} may he complex, in which event the real and imaginary

parts are considered as separate loading conditions. The operations of the static data recovery

module are then applied separately to the real and imaginary parts of {u:}.

If free·body modes are present, [KaaJ is singular, indicating the need for an alternate pro

cedure. It is assumed that the motions at a set of fictitious reac~ion points, ur ' (see Section

3.5.5) are correctly given by the modal solution. The elastic deformations of the remaining points,

u
i

' relative to ur are obtained by solving

(7)

where {P~} is the appropriate partition of

(8)

The improved solution vector is obtained from

(9)

where [0] is the matrix that evaluates the rigid body motions of the structure (see Section

3.5.5).

Although the mode acceleration technique will produce better stresses, it may be expensive,

particularly in transient analyses involving many time steps. Its use must, therefore, be separ-

ately justified for each application.
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{ud} = {~~}

Exit
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Note: Velocities and Accelerations
in Transient Analysis are processed
similarly to displacements except
that the mode acceleration method
is not applicable.

Modal

No

1 Transform
{Ud} = [$dh] {Uh}

4 Partition:

{p/} = {;:~}

{ud} = {~;}

Exit

No Yes

7 Form {u a}
a

Exit

Figure 1. Dynamic data recovery.
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10.1 INTRODUCTION

Three methods of eigenvalue extraction are provided with NASTRAN because no single method,

or pair of methods, has been found that is satisfactory with respect to efficiency, reliability,

and generality of application in all situations. We are living in a time of rather explosive

growth, engendered by the digital computer, in the variety and capability of eigenvalue extrac

tion routines. New methods will be added to NASTRAN and old methods will be improved as dis

coveries are made.

Most methods of algebraic eigenvalue extraction belong to one of two groups - transformation

methods and "tracking" methods. In a transformation method the matrix of coefficients is first

transformed, while preserving its eigenvalues, into a special form (diagonal, tridiagonal, or

ypper Hessenberg) from which eigenvalues may easily be extracted. In a "tracking" method the

roots are extracted, one at a time, by iterative procedures applied to the original dynamic

matrix. One of the methods used in NASTRAN is a transformation method (the Tridiagonal Method),

and the other two (Determinant Method and Inverse Power Method with Shifts) are tracking methods.

The preliminary transformation procedure of the transformation methods requires that the

major share of the total effort be expended prior to the extraction of the first eigenvalue.

Thus the total effort is not strongly dependent on the number of eigenvalues that are extracted.

In marked contrast, the total effort in the tracking methods is linearly proportional to the num

ber of extracted eigenvalues. One might suspect, therefore, that tracking methods are more effi

cient when only a few eigenvalues are required and less efficient When a high proportion of all

the eigenvalues are required.

The general characteristics of the methods used in NASTRAN are compared in Table 1. The

Tridiagonal Method, due to restrictions on matrix form, is available only for the evaluation of

the vibration modes of conservative systems (see Section 9.2) and not for buckling or complex

eigenvalue analysis. The other two methods are available for all real and complex eigenvalue

j)roblems currently solved by NASTRAN. The Detenninant Method would, in addition", be applicable to

future problem types in which the coefficients of the dynamic matrices are general functions of

the eigenvalue.

It may be noted, from Table 1, that a narrow bandwidth. as well as a small p~portion of

extracted roots, tends to favor the tracking methods. An example of such a problem is the evalu-
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ation of the lowest few modes of a launch vehicle. When the bandwidth is relatiyely large, and/or

when a high proportion of the eigenvalues are required, the Tridiagonal Method will probably be

more efficient.

The Determinant Method and the Inverse Power Method with Shifts have the same general charac

teristics with respect to all current NASTRAN problems. The Inverse Power Method is, however,

more efficient except when the bandwidth is extremely narrow as, for example. in beam problems.

The main advantage of including both methods is the redundancy that is provided in case one

method should fail (as sometimes happens with any method of eigenvalue extraction).



INTRODUCTION

Table 1. Comparison of Methods of Eigenvalue Extraction

~
Tridiagonal Inverse Power DeterminantMethod With

Characteristic Method Shifts Method

Most general form of [A - pI] [Mp2 + Bp + K] [A{p)]matrix

Restrictions on A real. sym., M, Band K Nonematrix character constant constant

Obtains eigenvalues All at Nearest to (Usually) nearest
in order once shift point to starting points

Takes advantage of No Yes Yesbandwidth

Number of calculations, O{n3) O{nb2E) O{nb2E)order of

Note: n = number of equations

b semi-bandwidth

E number of eigenvalues extracted
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10.2 THE TRIDIAGONAL METHOD

10.2.1 Introduction

The tridiagonal method is particularly effective for obtaining vibration modes when all, or

~ substantial fraction, of the eigenvalues and eigenvectors of a real symmetric matrix are desired.

The general restrictions on the use of the method within NASTRAN are described in Section 10.1.

The basic steps employed in the method ara as follows. First, the eigenvalue problem,

is "transformed to the form

[A]{x} = A{x}.

(1)

(2)

Second, [A] is converted, while preserving its eigenvalues. to a tridiagonal matrix by the Givens

Method, Reference 1. Third, all the eigenvalues of the tridiagonal matrix are extracted using a

modified Q-R algorithm. Fourtn, the eigenvectors are computed over a given frequency range or for

a given number of eigenvalues, and are converted to physical form. The transformation of the

eigenvalue problem from Equation 1 to Equation 2 and the conversion of the eigenvectors to physical

form are described in Section 9.2. A simplified flow diagram for the tridiagonal method is shown

in Figure 1.

10.2.2 Tridiagonalization by the Givens Method

The most stable transformation methods of solution of eigenproblems for large symmetric

matrices are based on the tridiagonalizat;on techniques of Givens (Reference 1). Lanczos (Referance

2), and Householder (Reference 3). The Givens method, which is used by NASTRAN. depends on orthog

onal transformations [T] [A] [T]T of a symmetric matrix [A]. An orthogonal transformation is one

whose matrix [T] satisfies

[T][T]T = [T]I[T] = [1].

The eigenvalues of a matrix are preserved under orthogonal transformation since

(3)

[T] ([AJ - A[IJ) [T]T = [T][A][T]T - A[I]. (4)

Consequently if det ([A] - A[IJ) vanishes, then det ([T][A][TJT- A[IJ) also vanishes.
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The effect of a se~ies of orthogonal transformations on the eigenvectors of a matrix is that

of a succession of multiplications by orthogonal matrices. For if

[A]{x} = A{X}, (5)

and if [T1J, [Tz], ... , [T r ] are orthogonal matrices, then

= \ {y},

where Equation 3 is applied repeatedly to obta,n the final form. It follows that {y; is an

eigenvector of the transfonr~d matrix

and that [x} may be obtained from {y} by

The Givens methoG uses orthogonal matrices [T] which are identical with the unit matrix [1J

except for the four elements

t'+l "1 = t. ,= COS6'+1 . 'j, ,'''' J, J '. J

t i +l J' = -to ,'+1 = sin6'+1 -.,J, 1 ,J

(6)

(7)

(8)

(9)

The orthogonal trans forma ti on [n [AJ [T]T 1eaves unchanged a11 the elements of [AJ except those in

the i+l st and jth rows and columns, the so-called plane of rotation. The four pivotal elements of

the transformed matrix are
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2 + a· . 2e + a. 1 sin26i +1•o.i+1. i+l ai +l • i+1 cos 6i+1• j J. j 51n i+l. j 1+ • j j

. 26 2 sin26·+1Cl. ai+l • i+1 Sln i+l. j
+ a· j cos 6i+1• j - ai+1• j j • (10)J. j J. 1 •

cos26i+1•
1

j) sin2:'+1o.i+l. = 0.. i+1 = ai +1• j j - '2 (ai+1• i+l - a.j J. J. 1 •

where a. . etc•• are elements of the untransfonmed matrix. The other elements of the i+l st and
J. J

jth rows and columns of the transformed matrix are:

o.i+l. s = ClS• i+1 ai +1, s COS6i+1• j + aj • s sins i +l • j I

o,j. s =as. j = -ai+1, s sin6i +1• j + aj • s cosei+1• j ~

In the Givens method 6i+l , j is chosen such that o.i. j will vanish. which happens when

(11)

(12)

The calculation of 6'+1
1 •

followed ~y the orthogonal transformation
j

(13)

is carried out for a sequence of iterations with [A(O)] = [A]. The values of i used in Equations

9, 10. 11. and 12 are 1. 2, 3••••• (n-2) and for each i. a set of n - i - 1 such transformations

is performed, with j taking values i + 2. i + 3, •••• n before the next value of i is used. The

result is that elements in the matrix positions (1.3). (1,4), •••• (l,n). (2.4). (2.5) ••••• (2.n) •

•••• (n-2,n) are successively reduced to zero. together with their transposes. the (3.1). (4.1).

(n.n-2) elements. The set of transformations thus reduces the matrix to tridiagonal form.

NASTRAN employs a procedure introduced by Wilkinson (Reference 4) in which the Givens method

is modified by grouping togetner the Cn - i 1) transformations which produce zeros in the i th

row and column. This procedure should not be confused with the Householder method. Reference 3.

which annihilates a row and column at a time. The Wilkinson process is particularly advantageous

when the matrix [A] is so large that the elements cannot all be left in core storage at one time;

it requires only n - 2 transfers of the matrix to and from auxiliary storage instead of the (n-1)

(n-2)/2 transfers required by the unmodified Givens method. The method requires 4n core storage
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locations for working space and these are divided into four groups of n storage locations each.

The first (i-l) rows and columns play no part in the i th major step. This step has five substeps:

1. The i th row of [Al is transferred to the set of core storage locations in group 1.

2. The values of COS6 i+l , ;+2' sin6 i+l , i+2 ..•. cOS6 i+l , n' sin6 i +l , n are computed

successively from

a(j-l)
i , i+l

+ a? j1 ,

\
(14)

a. j1 ,

+ a? j1 ,

COS6i+1, j

sin6 i+l , j

where the superscripted term is computed by

a(j-l)
i, i+1

(15 )

and the starting value for j '" i + 2 is

(i+l) '" a
ai, 1+1 i. i+1

The case,. . may be overwritten on the elements of the untransformed matrix, a. which are.J l,j'

no longer required. and the sin6'+1 . are stored in the group 2 storage locations., , J

3. The i+l st row of [Al is transferred to the group 3 storage locations. Only those

elements on and above the diagonal are used in this and succeeding rows.

For k '" + 2, ; + 3••.. , n in turn, the operations in sUbsteps 4 and 5 are carried out.

4. The kth row of [Al is transferred to the group 4 storage locations. The elements

ai +1, ;+1' ai+l • k and ak, k are subjected to the row and column operations involving COS6 i • k

and sine. k' For i = k + 1, k + 2•..•• n in turn. the part of the row transformation
1 ,

involving COS2;+1, k and si06 i +1, k is performed on ai +l , i and ak• i' For i '" k + 1, k + 2,

•.•• n in turn, the part of the coluw.n transformation involving COS8i+1, i and sin8 i+l , i is

performed on ai +l , k and ak•· t' Now all the transformations involving the i th major step have

been performed on all the elements of row k and on elements; + 2, ; + 3, ... , n of row i + 1.

10.2-4 (12-1-69)



THE TRIDIAGONAL METHOD

5. The complet;d kth row is transferred to auxiliary storage.

When substeps 4 and 5 have been completed for all appropriate values of k, the work on row

i + 1 has also been completed. The values of COS6;+l, k and s;ns i+l , k for k = i + 2, i + 2, ..• , n

are transferred to auxiliary storage and row i + 1 is transferred to the group 1 core storage

locations. Since the i + 1st row plays the same part in the next major step as did the i th in the

step just described, everything is ready for substep 2 in the next major step. Suostep 1 is, in

fact, only required in the first major step because the appropriate row is already in the storage

locations of group 1 in subsequent steps.

10.2.3 Extraction of the Eigenvalues of a Tridiagonal Matrix

NASTRAN employs the Q-R transformation of Francis (Reference 5) which is an orthogonal trans

formation [Ar+1 J = [Qr]T [ArJ [QrJ suCh that [Arl may be factored into the product [Qr] [Rr ] where

[RrJ is an upper triangular matrix. Thus

(16)

and

Now [Qr]T[Qrl = [I] by virtue of the orthogonality property, Equation 3, so that

(17)

It follows that [Ar+l] is determined from [Ar] by performing in succession the decomposition

given by Equation 16 and the multiplication given by Equation 17. Francis has shown that if a

matrix [A] = [Al ] is nonsingular, then, in the limit as r + =, [Ar ] will approach an upper trian

gular matrix; because eigenvalues are preserved under orthogonal transformation, it follows that

diagonal elements of the limiting matrix are the eigenvalues of the orlginal matrix [AJ. Although

the method can be applied to any matrix, it is particularly suitable for tridiagonal matrices

because the bandwidth of the matrix can be preserved. as wiil be shown. In the case where [A] is

symmetric. the matrix [Ar] will, of course, tend to a diagonal form as r +~.
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It may be shown that the upper triangular matrix. [RrJ. and the orthogonal matrix [QrJ are

unique, Reference 4, page-Z4l; several methods, however, are available for performing the decompo

sition. In the method of calculation devised by francis, [QrJ is expressed as a product of (n-l)

elementary rotation matrices, where n is the order of [ArJ:

The nonzero elements of the jth elementary rotation matrix are

( 18)

tU)
j+l, j

-t(j)
j. j+l

s (19 )

The manner in which the c· and s. cceffic:ents are obtained from the elements of [A J will be
J J r

shown shortly. [RrJ is, from Equation 16 and the orthogonality property,

(20)

Let the nonzero ele~ents of [ArJ, [Ar+iJ and [RrJ be defined as follows:

(21)

br.
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[J"r+1] (22)

a
n

_1 b
n

and

(23)

The coefficients of the elementary rotation matrices are selected so as to reduce the sub

diagonal terms of [Rr] to zero. Specifically.

j =1. 2, ••.• n - 1, (24)

where

(25)

j = 3. 4, ...• n - i
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Substitution into Equation 20 yields the elements of [R J.r

r. = c.p. + s.b'+l , j 1, 2, . .. , n - 1

I
J J J J J ,

r = Pn •n

)
(26 )

q1 c1 b2 + 51 a2 •

qj = Sj aj+l + Cj Cj_1 bj +1 , n = 2, 3, ...• n-1 ,

t j = Sj bj +2 • j 1. 2. •••• n - 2 .

The elements of [Ar+1] are. from Equation 17,

!a1 cl r 1 + sl q1 •

+ s. j 2, 3. ( (27)
aj

c
j

_
1 cj r. qj , •• .• n - 1 ,

J J

an cn_l rn • )
Dj +1 s. rj-l , j 1. 2, •••• n -J

NASTRAN uses a variation. Reference 6. of Francis' original method that avoids the calculation

of square roots. This is done by using the following equations in place of Equation 27

j 1,2•... ,n-l,
)
)

)
(28)

a gnn

7L 2 2 ... 2 )
bj +1 Sj (Pj+1 . bj +2

b2= s2 p2 .n n-l n

j 1, 2 •...• n - 2 ,
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Where,

91 a1 ,

2
(a j + g. 1) j9j c

j
_l Pj a. sj-1 , 2, 3, ..... , n ,

J J-

2 2 (30)Pl a1

2 2 2
Pj 9j / cj -1 if c j _1 ! 0 , j 2. 3. ..... , n ,

2 b~ if 0 j 2. 3.c
j

_
2 cj-l = , ...... , n

J

;he reason that the use of Equations 28, 29 and 30 in place of Equation 27 avoids the calcu

lation of square roots can best be seen by considering the terms input to and produced by these

equations.

For Equation 27, the input terms consist of the elements of [ArJ· That is; al , a2, ..•• an

and bZ' b
3

, •••• bn. The data produced is al , a2, ••• , an and b2, b3, ••• , bn which are the ele

ments of [A lJ. Hence. this completes one iteration step, but involves the calculation of squarer+
roots.

However, for Equations 28. 29. and

b;. The data produced are al , a2•

2 230 the input terms consist of ai' a2•.•.• an and b1, b2•
- ,.:z,.:z ~. .... , an and b1• b2, •.. , b~ WhlCh serve as the lnput to

the next iteration step. Here no square roots need to be computed.

Convergence of the tridiagonal matrix to a diagonal form is speeded up by origin shifting.

NASTRAN employs a procedure suggested by Wilkinson (Reference 7). who has shown that when the

eigenvalues are real. the best shift strategy is to subtract a from each diagonal element of [AJ,
n

thereby reducing each eigenvalue by a .
n

Another useful device in speeding up the determinatlon of eigenvalues of tridiagonal matrices

takes advantage of zeroes which may Occur in the off-diagonal rows. Let the [ArJ matrix be

represented in partitioned form as follows.
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r--

la1 b1
b1 a2 b2.

a
j

_
2 b. 2J-

b. 2 a
j

_
1J-

a. b.
J J

bj aj +1 bj +l

bm_2
.

ba
m

_
l m-l

b
m

_
l am

am+1

l
.

an

-

(31 )

In this matrix the diagonal terms in the lower right hand partition are eigenvalues that have

been determined in previous iterations. The jth row is the next lowest in which the off-diagonal

term, b. l' vanishes, thereby uncoupling the equations in the first j-l rows from the rest. As a
J-

result, the eigenvalues of the matrix in the central block may be obtained separately. Other

uncoupled blocks may be found in the upper left partition.

The iteration described by Equations 29 and 30 is continued until b 21 vanishes to satisfacm-
tory accuracy so that am may be accepted as an eigenvalue of the shifted matrix. b 21 must bem-
negligible compared to am

2• (b 21 + a 2 must approximately equal a 2). a is transferred to them- m m m

lower partition and the process is continued until all the eigenvalues of the partitioned matrix

have been extracted.

10.2.4 'Computation of Eigenvectors

The eigenvector corresponding to any eigenvalue, ~i' of the tridiagonal matrix may be deter

mined by solving (n-l) of the equations:
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(32)

b x 1 + (a - A.) x = 0n n- n 1 n

If the first (n - 1) equations are used, the solution is obtained by taking xl to be unity and

back substituting in the equations to obtain values of x2 ' x3 ' ••• , xn' Wilkinson (Reference 7)

has shown that this method is unstable and has suggested the following approach which is used

in NASTRAN.

The tridiagonal matrix [A - A. I] is factored into the product of a lower unit triangle [L.]
1 • 1

and an upper triangle CUi]' In the decomposition partial pivoting is used, i.e., the pivotal row

at each stage is selected to be that equation which has the largest coef!icient of the variable

being eliminated. At each stage there will be only two equations containing that variable. The

eigenvector {~i} is then obtained from solution of the equation

(33)

where [e] is arbitrarily selected. The solution is easily obtained by back substitution because

CUi] has the form

Pl ql r 1

P2 q2 r2

CUi] (34)

Pn-2 qn-2 r
n
_
2

Pn-l qn-1

Pn-l

An improved solution is obtained by repeated application of Equation 33 using the current

estimate of {~i} on the right hand side. Thus
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(35)

where {~~O)} = [e]. Wilkinson. Reference 7. shows that. if the computed eigenvalue Ai is a close

approximation to the true eigenvalue. convergence is ~o rapid that more than two iterations are

never required. The test applied is that the maximum component of the eigenvector does not

change (to single precision accuracy) in one iteration. The initial vector [C] is chosen so that

each element is unity.

In the case of a double eigenvalue, the above method gives one eigenvector {¢l}' If we start

with any initial vector {b} orthogonal to {¢l} and apply the previous algorithm, convergence to

{~2}' the other eigenvector. will reSult. The fo11owing procedure is used in NASTRAN to extract

multiple eigenvalues. If eigenvectors {~l}' {~2}' •.•• {~m} with elements {¢s} = L.a ls ' aZs'

ans-J T have been obtained, an initial vector {b} orthogonal to each of these eigenvectors is

obtained by taking the components bm+l' bm+Z' ...• bn as unity and solving the simultaneous

equations
n

\b1 all ~ bZ aZl + .•• + bm am1 L (as 1)
s=m+l

In

b1 a
12

+ bZ a
22

+ ••. + bm am2 = - E (as2)

s=m+l (36 )

n

b1 alm + bZm aZm + ••• + bmamrn = - L: (a sm)

s=m+l

Accumulated rounding errors will result in the computed multiple eigenvectors not being exactly

orthogonal to one another. The following Gram-Schmidt algorithm described by Bodewig (Reference 8)

is used to produce an orthogonal set of k eigenvectors {Ys} from the almost orthogonal Set {xs}'

For s = 1, select

(37)

Then for 1 < S ~ k, ca1culate
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s-l

)L ({XS}T {Yt }) {Yt } , and

t::1

)
(38)

II {Zs} II ,

'\1 2 2 2
m. ~ zsl + zs2 + + zsn ' of a vector LZsl '

ar product of the vectors {xs} and {Yt }•

. the tridiagonal matrix have been extracted, the matrix

out to obtain ~e eigenvectors of the original matrix
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ENTER

Convert the Eigen-
value Problem to
the Form
rA] {X} =x{X}
See Section 9.2.1

"
Reduce (A] to
Tridiagonal Form
by the Gi yens r·lethod
See Section 10.2.2

1

Extract Eigenvalues
by the Q-R t4ethod
See Section 10.2.3

Calculate the Eigen-
vectors of [Al
See Section 10.2.4

1r

Transform the Eigen-
vectors to the
Phys i ca1 Systern
See Section 9.2.1

1 r

EXIT

Figure 1. Simplified flow diagram for the tridiagonal method.
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10.3 rriE DETERMINANT METHOD

10.3.1 Fundamentals of the Determinant Me~~od

The basic notion employed in the determinant method of eigenvalue extraction ;s very simple.

If the elements in a matrix CA] are polynomial functions of the operator P. ~~en the determinant

of CA] can be expressed as

(1)

where Pl' PZ' P3 .

nisnes for p ~ ~i'

'Pn are the eigenvalues of the r.1atnx. The value of the cieterminant va-

= l,Z,3 • n.

In the aeterminant method, the determinant is evaluated for triai values of P. selected

~c:ording to some iterati~e pr~cedure. and a criterion is established to determine wnen D(A) ~s

s~fficiently $mall or when p is sufficiently close to an eigenvalue. The eigenvector is then

found ~y iolution of the equation

.·I1~1t one of the elements ",f {u} ~reset.

CA]{u} a a ( 2)

The most convenient proca~re for evaluating the determinant of a matrix employs the :rian

gular dec~position

CAl :0 [L.](UJ (3)

~here [l] is a lcwer unit triangular matrix (unit values on the diagonal) and CU] is an upper tri

angu1ar rna tTi x. The detanni nant of CA} is aqua 1 to tne prodtlct of the eli agona1 terms of [uJ•

Two versions of the :riangular deCClIIIPosition otlera:ion ara providaa. tn the standard ver

Slon row intercnanges are ~sed in order to im~rove numerical stability. in an optional version.

~nich is availab1e for real eigenvalue extraction only, row int~rchar.ges are not ~sed. The

optional version is approximately four times as fast as the standard version for banded matricas.

~ut it. includes a small risk of nlJlllerical failure due to the fac;t t!'lat [A] is seldom a pOSitive

~efinite matrix. The algorithms employed in both versions are described in Section 2.2.

The matrix (A} may be expressed as

[A] :0 -p[M] + [K]
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for real eigenvalue problems, and as

[A] = p2[M] + pCB] + [K]

for complex eigenvalue problems.

(5)

The determinant method is not a particularly efficient method because a large number of

triangular decompositions of the [A] matrix are performed if more than a few eigenvalues are de-

sired. An exception occurs in the case of very narrowly banded matrices, such as those in beam

problems, where matrix decomposition is a relatively rapid operation. The main strength of the

determinant method is its insensitivity to the functional form of the elements of the [A] matrix

which could, for example, contain poles as well as zeroes, or be transcendental functions of p.

These ef~ects occur frequently in hydroelastic and aeroelastic problems.

10.3.2 Iteration Algorithm

Wilkinson's recent, but already standard, treatise(l) includes an authoritative discussion

of polynomial curve-fitting schemes for tracking the roots of a detei-minant. He shows that little

is to be gained by using polynomials higher than the second degree. Accordir.gly, Mul12r's Quad

ratic method (Wilkir.son, p.435) is used in NASTRAN. The form of the algorithm in our notation is

as follows.

Consider a series of determinants, Dk_2, Dk_l , Ok' evaluated for trial values of the eigen

value, p = Pk-2' Pk-l' Pk· A better approximation to the eigenvalue is obtained from the foilow

ing calculations. Let

h
k Pk - Pk-l (6 )

A
k

h
k (71h

k
_

1

O. 1 + Ak (8 )
K

Then

hk+l \+lh k
(9)

(l)Wilkinson, J. H., "The Algebraic Eigenvalue Problem", Clarendon Press, Gxford, 1965.
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(10)

where

(11 )

in which

(12 )

The (+) or (-) sign in Ecuation (11) is selected to minimize the absolute value of Ak+l"

In the case when Pk' Pk-1' and Pk-2 are all arbitrarily selected initial values (starting points),

the starting points are arranged such that

(13 )

and the (.) or (-) sign in Eauation 11 is selected to minimize the distance from Pk+l to the

closest starting point rather than to Pk"

In a real eigenvalue analysis, it is possible to calculate a complex value of Ak+l from

Equation 11. In order to preclude the occurrence of comclex arithmetic in a real eigenvalue

analysis.only the ~eal part of Ak+l is used to estimate Pk+l" The real part corresponds to the

minimum absolute value of tne parabolic approximation.

10.3.3 Scaling

In calculating the determinant of [A] (Equation 3), some form of scaling must be employed.

because the accumulated product will rapidly overflow or underflow the floating point size of a

digital computer. Accordi"9ly, the accumulated product of the diagonal terms of [UJ is c:alQllated

and stored as a scaled number

where

o " d x 10"

S d < 1

(14)

(lS)

The arithmetic operations indicated in Equations 11 and 12 are calculated in scaled arithme

tic. Ak+l is then reverted to unsealed for.m.
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10.3.4 Sweeping of Previously Extracted Eigenvalues

Once an eigenvalue has been found to satisfactory accuracy, a return to that eigenvalue by

the iteration algorithm can be prevented by dividing the determinant by the factor (p - Pi '),

where Pi' is the accepted approximation to Pi' in all subsequent calculations.

Thus

D(A)
P - Pi'

(16 )

should be used in place of O(A) after the first eigenvalue has been found. In general, the re

duced determinant used for finding the i+lst eigenvalue is

= O(i-l)(A)
p _ p. i

1

O(A) (17) .

Wilkinson states that this sweeping procedure is quite satisfactory provided that all p.'
1

have been calculated to an accuracy that is limited only by round-off error.

In some instances there are known eigenvalues for which calculations need not be made. An

important example is the set of rigid body (zero-frequency) modes that are calculated by a sepa-

rate subroutine (see Section 9.2). In addition, the user may know of other eigenvalues, such as

those extracted in a previous execution or those resulting from transfer functions (see Section

9.3), that should be avoided. A special data card (EISP) is used in complex analysis to specify

the location of such roots. They are then eliminated from the detenninaJIt by a preliminary

operation

(18 )

where mk is the multiplicity of the known eigenvalue, Pk'

For problems with conjugate complex eigenvalues (complex eigenvalue analysis with real ma

trices) the conjugates of the extracted eigenvalues are also swept from the determinant. Thus

where Pi I lS the conj ugate of Pi'.

(p - Pi')(P - Pi')
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There is a danger in this procedure that if Pi' is very near the axis of reals, the exact

eigenvalue may, in fact, be real. To avoid this situation a test is apolied to the imaginary oart

of Pi' and the conjugate of Pi' is swept only if

, 1m Pi I ~ lOOO.O(Rmax )(::)

The parameters Rmax and E are discussed in the next two sections.

10.3.5 Search Procedures

(20)

Three initial values of p (starting points) are needed in order to start the iteration algo-

rithm. rne determinant method is essentially a root-tracKing method that finds nearby roots with

ease and remote roots with difficulty. Thus it is not advisable to use the same three starting

points for all eigenvalues because the eigenvalues are usually distributed throughout a region of

the p-plane and at least some of the eigenvalues will be remote from any given set of three

starting points.

In the case of real eigenvalue analysis. the sets of starting points are uniformly distributed

in an interval of p_ The user specifies the lowest and highest eigenvalues of interest. Rmin and

R . He also supplies an estimate, N~, of the number of roots in the range. 2N~ + 1 star~ingmax ~ ~

points are then located such that the first coincides with Rmin , the last c~incides with Rmax and

the rest are placed at uniform intervals between Rmin and Rmax . The process of extracting eigen

values is initiated from the three smallest starting points. PSI' Ps2 and Ps3- After all eigen

values within the Urange" of these starting points have been extracted, Psl is drop,ed, Ps4 is

added. and the search is repeated. The details will be described later.

The search procedure for complex eigenvalues is more complicated because the roots are dis-

tributed throughout a plane rather than along a line. Fortunately, in structural analysis. most

roots are found near the imaginary axis so that a set of starting points placed along tne imagi

nary axi$ will usually produce satisfac~ory results. In order to provide for more general prob

l~rectangular search regions may be located by the user in any part of the complex plane as

shown in Figure!. It is-intended that all eigenvalues within the search regions be extracted (as

limited by the desired maximum number of roots). There may be any number of search regions, and

the search regions may overlap. The search re910ns are established by means of the coordinates

of end points (A., S.) and the width of the region (1.). The user estimates the number of roots
J J J
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{~ ) in each search region. For problems with real coefficients, all roots are either real or
eJ

they occur in conjugate complex pairs, and it is ineificient for the user to specify regions in

the lower half of the cc~?lex plane since the existenc~ of conjugate pairs is assumed. The user

will not, however, be prevented from specifying a search in the lower half of the complex plane

since it is useful. in many cases. for a search region to include the origin or a band along the

real axis.

The steps in the search procedure for complex eigenvalue extraction are as follows:

1. Select 2Nej + 2 starting points equally distributed along the line Aj • OJ. 00 not use

Aj and Bj as starting points.

2. Find the starting point in Region I that is nearest to the origin as shown in Fiqure 2

and designate it Psl. Draw a line perpendicular to AlB, midway between Psl and Ps",

the point next nearest to the origin, thereby dividing Region I into Regions IA and lB.

3. select the three .starting points in Region IA nearest to the line. a - a', as the initial

set and proceed to extract roots. Then proceed to the three starting points in Region 18

(psl ', PsZ', Ps3') that are closest to the line a - a'. Then return to the points Ps2'

Ps3' Ps4 in Region lA, and, in general, alternate back and forth between the two regions

until all starting points have been used once, or until termination occurs for some other

reason.

4. When all starting points in Region -I have been used once, proceed to Region II, etc.

Sweep out all previously ex~racted roots from whatever region", in evaluating determi-

nants.

5. When all starting points in all regions have been used once, return to Region I, II, etc.

in turn and re~eat the above procedure. Continue to repeat until no new roots are found

in any pass through the regions or unt~l termination occurs for some other reason.

w~en searching for either real or ccmolex roo~s from any set of starting po~nts, the search

:s ~=:~inated if a root is preoicted tc lie outside of the local search region. In the case of

complex analysis, the local search region for the current starting point set is bounded by lines

pd~a11~J to AjB j at a distance t and extends from the first starting point on the other side of

d - 3' ~o a line that is 55% of the way between the current starting point that is farthest from

a - a' and the starting point that will be picked up in the next set (see Figure 2).
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In the case of real eigenvalue analysis the local searCh region extends fro~ R. to a
. :1'1 n

point that is 55~ of the way from the largest current starting ooint to tne one that will be

oicked up in the next set. The reason for oermitting the local searen region to extend all the

way back to R. is to imorove the chance of finding eigenvalues that were initially bypassea.m1n
Additional assurance is obtained by making reoeated passes through all of the startino ooints

until no new eigenvalues are found on one comolete pass. The comoutational effort for the last

pass is trivial because the determinants for all starting ooint3 are saved.

The search for eigenvalues is finally terminated when no additional roots are found in one

complete oass through all regions or when the maximum desired number of roots for each region.

Ndj , as re<luested by the user, have b~n extracted.

Failure to find additional roots normally occurs ~ecause all of the roots within t~e desirea

region(s) have been extracted. Situations can occur in which some ~oots will be missed. ire

most common occurs in comolex eigenvalue analysis when one or more desired roots lie ~t a large

distance f~m the centerline of the region, see Figure 2, and several other roots lie just beyond

the ends of ~he regi on. The search procedure is 1i Ite1y to be attracted toward the 1attar roots

and may not find the former. The possibility of such failures is one reason fer permitting mul

tiple search regions. Another possible reason for mnssing roots is failure of the iteration al

gorithm to converge, as discussed below.

10.3.6 Convergence Criteria

The convergence criteria are based on successive values of the incremen~ hit, in the estimatea

eigenvalue. No tests on the magnitude of the determinant or on any of the diagonal terms of th~

triangular decomposition are necessary or desirable.

Wilkinson(Z) shows that, for hk sufficiently small, the magnitUde of hk is approximately

squared for each successive iteration when using Huller's ~thod to find isolated roots. This is

an extremely rapid rate of convergence. In a very few iterations the "zone of indeterminacy" is

reached within which hk remains small but exhibits random behavior due to round-off error.

(2)Wilkinson. loc. cit .• p.437
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Wilkinson states that, if it is desired to calculate the root to the greatest possible precision,

the convergence criterion for accepting ok as a root should be

We accept his advi~e, tempered by practical considerations. The first of these is that Eaua-

tion 21 may be satisfied during the first few iterations while the root tracking algorithm is

picking up the "scent". Thus it must, in addition, be required that Ihkl, Ihk_ll and Ihk_2 1 be

reasonably s~all. The second practical consideration is that several iterations may be wasted

within the zone of indeterminacy while waitiog for Equation 21 to be satisfied. This can be

avoided by accepting Pk if !h
k

! is sufficiently small. Finally, if the number of iterations be

comes excessively large w~thout satisfying a convergence criterion, it is best to give UP and

proceed to a new set of starting points.

Figure 3 is a flow diagram of a set of tests which meet the require~ents discussed above for

real eigenvalue Droble~s. The tests are based on calculated values of H1, H2, and H3 which are

defined as

Hl

!h
k
_

l
I

~
I Pk I

I h '
H2

I k I

/1 Pkl

H3
Ih k+l I

ITPJ

(22)

(23)

(24)

where Ok = kth estimate of an eigenvalue, and hk = Pk - Pk- l

The standard test in Figure 3 for accepting an eigenvalue is

H3 ~ 2E~max (25)

E may be specified by the user. An equivalent expression. in terms of vibration mode frequencies,

is

wmax (26)

where wmax is the hignest frequency of interest. A similar set of tests are performed for
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:cw.cl~x slgenva1ue ~roclems.

7~e mag~itude ~f :r.e convergence criterion, s, should be selected as a comoromise betwe~n

:"lJnl1ing time and accurac::o ~f, for example, it is found that the a.lgorithm fails to find roots

oecause of ar. excessive numcer of iterations, the value of s should be increased. If failure

occ~rs because the numoer of iterations exceeds ·the iteration limit, NIT' for two successive sets

OT star~ing points, the value of ~ is increased by a factor of ten. If successive pairs of fai

~ures still occur, ~ is again increased by a factor of ten, until the number of permissible

cnange5 in ~, N~, is exceeded. The user is informed of the reduced precision of the calculations.

The 'va1ues of the convergence pal'"ameters used in NASTRAN are

:: 20

7he above value of s may be overridden by the user.

The convergence rates for the Muller method are quite satisfactory for isolated roots and

for double roots. For hjgher order multiple roots. the asymptotic rate of convergence is linear,

i . e. ,

a .: 1 (27)

Ccnverger.ce is progressively slower as the multiplicity increases. Zero freauency roots are the

~niy ~ind that commonly occur with high multiplicity in structural analysis and provision is made

~~r =i~minating them. or other known roots, beforehand (see Sect~on 10.3.4).

Experience with the determinant method indicates that, on average. convergence to isolated

roots is achieved in about six iterations. The number of iterations increases for problems with

multiple roots. many close roots, or roots clustered just beyond the ends of the desired ~ion.

10.3.7 Test for Closeness to Startins Point

Once an eigenvalue nas been extracted it is testea for closeness to one of the starting

points, and if it is found to be too ~lose. the starting point is shifted. The reason for the

soi~t is that the value of the determinant near a root is small and contains considerable
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round-off error, so that the value of the swept daterminant, D/(p - Pk) may have considerable

error. The criterion for shifting in real eigenvalue analysis is

The magnitude of the shift is

(28)

(p .)
S,l shifted

10.3.8 Recovery of Eigenvectors

(29)

Once an approximate eigenvalue, Pj' has been accepted, the eigenvector is determined by back

substitution into the previously computed triangular decomposition of [A(Pj )). Now since

(30)

and since [L(p.») is nonsingular, only [U(p.») is used. The last diagonal term in [U(PJ')] is nor-
J J

mally the only term with very small value. The normal appearance of [U(Pj») is as follows, for

n = 7.

x X X

X X

X

o

x 0 0 0 ul

X X 0 0 u2

X X X 0 u3

X X X X u4 0 (31)

X X X Us
X X Us

0 u7

The terms in the upper right corner are zero due to bandwidth, 0 is a very small number.

The eigenvector may be extracted by assigning an arbitrary value (such as 1.0) to u7 and solving

successfully for u6 , uS' etc., from the preceding rows. Note that this is equivalent to olacin9

a load vector {F} on the right hand side that is null except for the last term which is set eaual

to o.

Situations may occur in which Unn is not the smallest diagonal term. Let Uii be the smallest

diagonal term with i < n. The most common reason for this occurrence is that the degrees of
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freedom ui~l' ui +2 ... un are, for some reason, not coupled to the preceding degrees of freedom.

In this case all of the elements in the ith row of [U(p.)] will be very small as shown below for
J

i=4,n=7.

X X

x

a

x X 0 0 0 , LI,

X X X 0 0 LIZ

X X X X 0 u3

°44 545 546 °47 u4 = 0 (3Z)

X X X us)
X X u,

0

X 47

In the event of multiple or pathologically close eigenvalues, ~MO or more rows or [U(P j )]

will cons1st of very small values, exhibited below for the very exceptional case when Unn is not

very small.

X X X X 0 0 0 ul

X X X X 0 a Uz
X X X x a U3

0 °44 545 °46 °47 u4 " 0 (33)

X x X Us

°66 °67 Us

X u7

In order to accommodate the exceptional cases described above with the more common case when

only the last diagonal term is small, a full load vector, {F}, is used in the eigenvector calcula

tions. A different load vecter is formed for each eigenvalue to ensure that independent eigen-

vectors are calculated for multiple or pathologically close roots. The ith component of the vec

tor {F} is calculated by the following formula.
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where

5 = smallest Uii

j eigenvalue count

n = number of rows .

(34 )

There is a possibility that the smallest diagonal element of [UJ may be exactly zero for

some eigenvalue, i.e., that an accepted eigenvalue (p.) may be an exact eigenvalue of the prob1em.
J

When this situation occurs. the zero diagonal element is set equal to a small finite number.

Eigenvectors are checked for orthogonality and normalized (see Section 9.2).
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Region II

Figure 1. Search regions~

Real

Point nearest
to the or; g; n

Reai
~+----~~~4.-.,t-,'-----

Search region for the set
of points (Ps2' Ps3' Ps4)

Figure 2. Location of starting points in a region.
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K = K + 1

K = K + 1

No

Continue
Iterations

Yes

K - Iteration Counter

Ie - Criterion Change Counter

Yes

No

Accept Pk as an
Eigenvalue

No

Reject Starting Point
Set. Iterat~on Faiiure

No

No

Yes

£ = lOE
IC = IC + 1

Thi s tes t forces the ,'outi ne
to complete two iterations

No

Yes

Yes

No

Is
HZ ~ 20£ JRmax

Begin
Convergence Tests

Figure 3. Real eigenvalue convergence tests.
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10.4 THE INVERSE POWER ~ETHOD WITH SHIFTS

10.4.1 Introduction

The Inverse Power Method with Shifts is particularly effective for problems that are formu-

lated by the displacement approach when only a fraction of all of the eigenvalues are required.

The rudiments of the method are described in Wilkinson's recent bOOk(l) where it is regarded

chiefly as a powerful method for refining the accuracy of eigenvalues and eigenvectors that have

been aoproximately located by other methods. In NASTRAN the method is used as a stand-alone

method to find all of the eigenvalues within a domain specified by the user.

It is well known that the standard inverse power method has a number of important defects for

the solution of structural oroblems by the displacement approach. These include: aWKwardness of

procedure in the presence of zero eigenvalues (rigid body structural modes); slow convergence

rates for clasely spaced roots; and deterioration of accuracy in the higher modes as more roots

are found. All of these defects are eliminated or minimized by the following modification of the

method.

Let the eigenvalue problem be stated as follows,

[K - :l..M]{u} = 0 (l)

where, employing structural semantics, [K] is a stiffness matrix, [M] is a mass matrix, tU} is a

displacement vector, and A is the square of the natural frequency. Let

A = A + A (2)o

where ~o is called the shift point. The iteration algorithm is

{u 1
n'

= [M]{u 1;n-

= 1 r w 1.r n'n

(3)

(4)

where en is equal to the value of ~he element of {wn} with largest absolute value. It is easy to

prove that llCn converges to ~" the shifted eigenvalue nearest to the shift point, and that !un:

(l)Wilkinson, J. H., THE ALGEBRAIC EIGENVALUE PROBLEM. Clarendon Press, Oxford. 1965.
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converges to the corresponding eigenvector of Equation 1. The following observations are perti-

nent.

1. A tr~,H1cular decomposition of the matrix r" - )."] is required in order to evaluate {w :
- "" 0 n

from Equation 3. The effort required to perform the triangular decomposition is greatly

redu~ed if [k - .0"J is a narrow band matrix. Structural analysis by the displacement

aoprcach is characterized by narrowly banded stiffness and mass matrices.

2. It is unnecessary for [K] to be nonsingular, so that rigid body modes cause no special

difTic:Jlty.

3. The shift point 1
0

may be ct:an£led (at tile cost of an additional triangulal'" decomposition)

in_order to iMprove the rate of convergence toward a particular eigenvalue. or to im?rove

accur~cj and convergence rate after severai roots have been extracted from a given shift

ooint.

4. Ao can be placed so as to obtain the eigenvalues within a desired frequency band and not

just those that have the s:;'1allest a~501uti! value.

The Inverse Power ~~thod \~th Shirts can 31so be applied to complex eigenvalue problems. In

NASTRAN the method is app~ied to orcble~s stated in the quadratic form

(5)

whel"'e [M]. [8J and tKJ lnay.~e real 0: complex. symmetrix or nons~nmetric. singular or nonsingular.

The develc~ment of the ~ethod is divided into separate subsections for real eigenvalue analy-

SiS. Section ~0.4.2. and cc~olex eigenvaiue analysis. Section 10.4.4. I~ addition the procedures

used by the pl·ogram are summarized in Sections 10.4.3, real eigenva~ue analysis. and Section

10.4.S, c-p~.....~..... analysis.
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10.4.2 Theorv for Real Eiaenvalue Analvsis

1a. ·L 2. 1 I terati on A1gori thm

The problem. is to find the eigenvalues and eigenvectors for

[K - AM]{u} = 0 (1)

Both [K:and~lare symmetric, but they may be singular. The eigenvalues may be either positive

or negat1ve, but we are predominantly interested in the positive eigenvalues. Eigenvalues may be

multiole. It is required to find all the eigenvalues and eigenvectors within a specified range

of A.

Let

,\ = A + A
o

(2)

where \0 is a constant called the shift point, so that A replaces A as the eigenvalue parameter.

The algorithm used in the nth iteration step is

{u } = t- {w }
n n n

(3 )

(4)

where Cn is equal to the value of the element of {wn} with largest absolute value. It may be

shown that lien converges to Al , the shifted eigenvalue nearest to the shift point, and {un} con

verges ~ the corresponding eigenvector. Convergence is proved as follows. In the proof use will

be made of the orthogonality properties for the theoretically obtainable normaliZed exact eigen-

vectors, ;i and ¢j' of Equation 1 which are

~j 'Melli ,z 0, ; j (5)

T 1 (6)~j Mlll j =

;ll.TK<:i. = a , ; j, and (7)
J 1

T A
j

(8)9j Kcb j =

Note that tne use of brackets to indicate matrix quantities has been omntted in the interest of

conciseness. Expand the trial vectors, un and un_i ' in terms of eigenvectors:
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Un rQ;. n<Pl'1 l,

where Q;. and Q;,' n-l are coefficients.l.n ,

the orthogonality conditions. Then it is seen that

or, substituting Aj = Ao + Aj ,

(9)

(10)

(11)

P.J,n
1

CnAj
(l2)

Equation 12 snows that the relative proportion, P. , of an eigenvector in successive trialJ,n
vectors increases in inverse proportion to the magnitude of its shifted eigenvalue. Thus the pro-

portion of the eigenvector that is closest to the shift point increases at the expense of the

others and the process converges to the eigenvector whose eigenvalue is closest to the shift

point. The product CnAl converge~ to unity.

10.4.2.2 Convergence Criteria

The most common method for gaging the convergence of eigenvectors is to compare the difference

of the elements of successive trial vectors, each of which has been normalized so that the largest

element is unity, to an arbitrarily selected small number

< E:

This method is not used in NASTRAN because it is unscientific in two respects:

1. The criterion E: is not related to the mass orthogonality test which is finally used to

judge the suitability of eigenvectors.

2. NormaliZing on the largest element of un neglects the fact that the sizes of elements are

largely determined by scaling, (e.g., angles are usually much smaller than translations).

Closely related methods can be devised that overcome these objections and that also predict the

rate of convergence. In NASTRAN, the convergence criteria are derived from the parameter E: that is

supplied by the user for the mass orthogonality test

10.4-4
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where the approximate eigenvectors, ii' have been normalized such that

(14. )

The mass orthogonality test is applied after all the eigenvalues have been ~puted.

For a pair. of well~converged approximate eigenvectors that have close eigenvalues but ~hich

are well removed from all other eigenvalues:

(15)

(16)

since it may be assumed on the basis of Equation 12 that the power method yields negligible contri

butions of all other eigenvectors. Thus

-T-
¢l "~2 = 1::12 '" ::21 (17)

The program is able to estimate 1::12 and ::21 from tests that will be described. A reasonable

convergence criterion to be applied after each iteration is tha~

(18 )

for all i and j where:: is the criterion used in the mass-orthogonality test and A is a factor,

less than unity, introduced to ensure passage of the mass-orthogonality test.

It has been shown (Equation lZ) that the contributions of eigenvectors to the trial vector

increase f~m iteration to iteration in inverse proportion to their shifted eigenvalues. Thus,

during the late stages of iteration for $1' it may be assumed that only two eigenvectors have sig

nificant contr1butions:

(19 )

(20)

(21)

where ~ a f;lZ is introduced for later convenience and ~n (see Equation 9) is shortened to Cl.n•

By virtue of Equation 12 the relative contribution af ¢Z in the preceding iteration step will be

larger by the ratio of the sl1ifteli eigenvalues AZ/l\l. Thus for the two previous steps

un_1 = Cln_1(~l'" ~~ ~ q,2)
un_2~ Cln_2(~l ... (;~~yn; ~2).
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It will be assumed that 1~21>1~1 I.

Applying the mass orthogonality properties, Equations 5 and 6, to Equations 19 and 20, it is

seen that

Assuming I~~I ~ I
ii. I

« 1 where 21Xl

= 0. 2(1 + is )
n n

> 1, then to a very close approximation

(22)

(23)

0. ::: ... (u TMu )1/2
n-1 - I.: n-l n-l

From Equation 12. a good approximation to the eigenvalue is

(24)

(25)

(26)

where Cn is the normalizing factor introduced in Equation 4. The ambiguity in sign is removed by

comparing the signs of selected components in u and u l' A better approximation that can ben n-

evaluated when 1i.2/A1 and on are'known is obtained by using Equations 22 and 23 for an and o.n_l'

(27)

Equation 27 snows that Equation 26 is good enough because on must be extremely small in order

tnat E12 = ~ oass the eigenvector convergence test. Equation 26 is used in NASTRAN.

Turning now to the evaluation of cn and ~2/Al' we first define the normalized difference of

successive trial vectors,

10.4-6
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Then, from Equations lS, 20 and 21:

and, by virtue of Equation 6

eU
n

'"' (1 _1\2).f""'O""
1\1 n 2

(29)

(30)

so that

= (1 _'I.z) 2:5A1 n
(31 )

(32)

and

The convergence criterion is

!\2
=

(oun)TMoUn_l

Ai (ou ) TMou
n n

on =
{OUn)TMoUn

M1 --
1\1

(33 )

(34 )

(3S)

Note that the application of the criterion requires three successive trial vectors. In some

cases the rate of converqen~e may be so rapid that A2/~l' as comouted by Ecuation 33~ may have

lost all numerical significance. In order to avoid this difficulty and also to improve efficiency

in the event of rapid convergence, a te~, based on only twO trial vectors is ap~lied first.

The rapid convergence test is based on the fact that the sweeping procedures. Section

10.4.2.4, guarantee the orthogonality of very close eigenvalues. It is only necessary to avoid

contamination with eigenvectors that are not in the cluster. Thus if

(36)

where y is a small parameter built into the program, then it is not required that Equation 35 be

satisfied.
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If the criterion obtained by multiplying Equations 35 and 36 together, namely

I~~ :~~I ~ <. AEY (37)

;s satisfied, then either Equation 35 or 36, or both, are satisfied. From Equation 34

(38)

The rapid convergence test is, therefore

(39)

~. is evaluated from Equation 26. The test requires only two successive trial vectors, and it is
I

performed as often as possible. The value of y stored in the prog'ram is .01.

iJ.~.2.3 Change of Shift Point

The rate of convergence of the iteration algorithm can be estimated from the parameters,

Ai' hZ' and on' From Equations 19 and 20, the estimated proportion of the second eigenvector in

the {n+k)th trial eigenvector is

(40)

If ~he (n+kjth trial eigenvector satisfies the convergence criterion, Equation 35, then

(~)k <

V'2

c~d t~e estimate of the required number of additional iterations, beyond the nth, is

(41)

k >

log (~)

log I~~I

10.4-8
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If 1:'2/"'11 is nearly equal to unity, the required number of iterations may be very large.

Suppose, for example. that

'0-4:z I •
.~11 ,. 1.10. Then

Ie 109P 05)
> log{1.' I z 119

If. ,",owever. the shi ft poi nt is changed to the current estima~ of- the e'i genva1ue. ,'", n +- ,\ 0 •

the number of additional iterations will usually be quite small. The error in the calcula~icn of

A, from Equation 26 is of the order of on' as may be seen by comparing Equation 25 and Eauation

27. Thus assUllling the n~ shift point. to be loca.teel. at .\,(l-on), the ratiQ af the. first and

sec:cnci eigenvalues from the new shift point is

(43)

. Using this result in the previous example. the estimated number of iterations from the new

shift point is

z l.6 .k' • 1oap 05)

109(103)

In many cases the time required to complete the estimated number of iterations from the old

shift point may exc~d the time required to malee a triangular deco.."osition and til complete the

iteration from the new shift point. In such cases a decision to shift is made at the earliest

time that it can reliably be maele,

Let Tei be the time for one triangular decomposition and let Ti be the time for one iteration.

rnen. !f

(44)

a new shift point is selected. -The minimum estimate of k' is Z. to pennit testing for convergence

afbr the shift, The relative times for decomposition and iteration depend on the banc!width of

the dynamic matrix, As a first approximation

(45)
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where B is the semibar.dwidth. Thus, as a first approximation, a new shift point should be selec-

ted if

B < 3(k-k'). (46)

In prac~ice accurate values of Td and Ti are available to the comouter because at least one

triangular decomposition and several iterations have already been performed.

Although the test described above wi11 predict the rate of convergence, it is not fooloroof

for two reasons. The first is the requirement that the proportion in the trial vectors of-all

eigenvectors except the two lowest be very small. The second is that there must be a suffic~ent

proportion of t~e second eigenvector to permit reasonably reliable calculation of A2. A check on

the convergence criteria is provided by examining the series of values of ~1 and A2. If the dif

ferences between successive values decrease monotonically, we are assured of uniform convergence.

On the othe~ nand, a sudden jump in the value of A2 will indicate that the limit of digital pre

cision has been reached.

Two. additional tests are performed in NASTRAN to improve reliability.

Define the normalized increments in the approximate eigenvalues from successive iterations

and

hZ =.n

A. - A1 ,n 1 ,n-l
Ro

A - A2,n 2,n-l
Ao

(47)

(48)

where Ro is a normalizing factor to be specified later (see Equation 69). The shift test, Equa

tion 44, is applied provided that

(49)

The criterion ~l is not made very severe. The reason for the criterion is that, if we de

cide to shift, we wish some assurance that the new shift point is SUbstantially better than the

original shift point.

The second test relates to the reliability of Az. If

E2 > jh2 ! > Ih2 11,n ,n-
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then '~2."-1 will be used in all subsequent calculations of ~ from Equation 34. Otherwise continue

to compute ~2 at each stee. Note that the ratio l'z/A, from EQuation 33 is no longer reauired

after the ~2 test has failed.

lO.4.?4 Sweeping of Previously Found Eigenvectors

The trial vectors must be swept to elimlnate contributions due to previously found eigen

values that are closer to the shift point than the current eigenvalue. The algorithm is developed

as follows. l.et the -unswept trial vector be un which. from Equation 9. can be represented as:

(51 )

~here ~i' i ~ l,Z•••m, are exact values of the previously extracted eigenvalues andoun is the

5~e~t trial vector which will include only contributions from the remaining modes. ine :amputad

values for previously extracted eigenvectors are

It'u. u Mu. N
1 ,11 1 •

where ui •N is the last (Nth) trial vector obtained in the iteration for A
f

•

If ~i were an exact eigenvector. then, from the mass-orthogonality properties.

(52)

and

eli •n •
-T:
~f Mun (53)

whiCh is the sweeping algorithm.

(54)

l.et us exami ne the eM"Or in the process. Suppose

i". •1 (55)

where ~i and $j are exact eigenvectors and ;i is the eigenvector that is currently being extract

ed. Also let

Un ~ eli ~. +°el. ~.,n 1 J ,n J

10.4-11
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Thus,

-T-(¢. Mu) = a· + Ea.
1 n 1 ,n J,n

and, considering only one previously swept eigenvector in Equation 54

un a. cp. + 0.. cp. - (a. + ECL. )(</). + E1>.)',n 1 J,n J l,n J,n 1 J

Redefine the coefficients of $i and ¢j in Equation 58

Ct.. <jl.+a. cp.J,n J l,n 1

(57)

(58)

(59)

The ratio of the relative amplitudes of eigenvector components in the unswept vectors obtained

after the next iteration is, for E« 1,

(50)

Convergence to ~j rather than to 0; requires that

1
£ ~ I < 1

1 I

(51)

If all prev.ious eigenvectors are reasonably accurate, we need only to be concerned for cases

;n which Aj »Ai . This is, however, precisely the condition that exists at the shifted shift

point, Ao '. Thus, Ao' should not be used for obtaining additional eigenvalues.

Furthermore, if an eigenvalue is found to be very close to the original shift point, then

the shift pvint should be changed in the search for other eigenvalues. The criterion for chang

ing starting points (original shift points) may be written

(62 )

where £ is the coefficient specified in the mass-orthogonality test, Equation 13, Al is the first

eigenvalue found from the starting point Ao' Ro is the distance from Ao to the farthest eigenvalue
-6 -2to be extracted from Ao' and £3 is a safety factor. Suppose, for example, E = 10 and E3 = 10 .

Then the starting point should be changed if
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< (63)

Another conclusion to be derived from Eauation 62 is that the trial vectors should be swept

at each iteration. If, for example, trial vectors were swept every k iterations, proper conver-

gence would require that

(64 )

which, if k were larger than about 3 or 4, would require continuous changing of starting points.

10.~.2.5 Initial Trial Vectors and the Extraction of Multiple Eigenvectors

The choice of a trial vector for finding the first eigenvalue from any starting point is

clearly arbitrary. The vector used in ~TRAN has a broad spectrum with regard to spatial distri-

~ution in order to provide efficient extraction of eigenvalues in the complete wavelength range.

There is an advantage in finding successive eigenval~es from the same starting ooint, in

using one of the trial vectors emoloyed in a late stage of the previous iteration. The reason

for the advantage is that such a vector, after having been swept, is quite "rich" in the eigen-

vector that is next closest to the starting point and will, therefore, converge more rapidly.

There is a difficulty, however-, in that, if the previous eigenvalue is a multiple eigenvalue, a

return to it will probably be prevented since the swept trial vector contains no comconent of the

multiple vector(s}. If the process of transforming trial vectors is repeated often enough, how

ever, the process will eventually return to the multiple eigenvalue by virtue of the growth of

!"Qund-off error. Unfortunat!!ly this cannot be relied upon. The safer course. which is to use a

new initial trial vector for each eigenvalue. w~ll require more iterations since there is no

"enrichment" .

The following scheme, in which we might have our eate and eat it too. is used in NASTRAN:

1. Find the first eigenvalue from a starting point with an arbitrarily selected trial vec-

tor.

2. Use the next to last trial vector obtained at the starting point during the first itera

tion sequence as the initial trial vector for the second iteration sequence. This

will ensure a very large proportion of the next closest eigenvector. Since we are
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required to save two vectors at every iteration step in order to check convergence.

this should be no burden on storage requirements. Furthermore, since all calculations

are done in double precision. and only single-precision convergence of eigenvectors can

be required, the swept vector should not contain much random noise.

3. Continue until an eigenvalue is fcund that is outside the prescribed range of the star

ting point (see Section 10.4.2.6).

4. At this stage, use a new arbitrarily selected initial vector and find one eigenvalue,

5. If the eigenvalue found in step 4 is outside the range of the starting point, go to a new

starting point. If it is not outside the range, repeat steps 2, 3 and 4 until the eigen

value found in step 4 is outside the range. The maxiw~m number of times that steps 2, 3

and 4 will be performed is equal to the multiplicity of the eigenvalue with greatest

multiplicity.

An exception to the above sequence occurs if step 1 yields an eigenvalue outside the range.

In that case, the program goes directly to a new starting point.

10.4.2.6 Distribution of Starting Points

For Vibration Analysis the user specifies:

1. The maximum frequency of interest. fmax

2. The minimum frequency of interest, fmin .

3. The estimated number of modes in the range, Ne ,

4. The desired number of modes. Md. to be computed.

For Buckling Analysis the user specifies:

1. The maximum eigenvalue of interest. Amax .

2. The minimum eigenvalue of interest, Amin' which may be negative.

3. The estimated number of modes in the range, Ne .

4. The desired number of modes. Nd, to be computed.

For Vibration Analysis. the eigenvalue
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(65)

If the des i red number of modes, Nd' ; s not specifi ed. then a11 modes in the range wi 11 be

found provided that there are not more than 3Ne modes. If the desired number of eigenvalues is

less tr.an the expected number, those that.are closest to zero will be computed.

Starting points are distributed on the assumption that the eigenvalues are uniformly distri

buted with respect to A, (frequency-squared), and that about six eigenvalues will be found from

each starting point.

The number of starting points, N~. is selected such that..

and they are distributed as follows.

(66 )

A •sn

A .nnn

where U :a >max - ~mi n :a-

Amax

(27l'fmin )2: Thus the nth starting point,

1n--
A + 2 IImin ~s

(67)

The search-ranges for the starting points are selected to overlap each other by 10%. Thus,

the search-range for shifted eigenvalues, A a A - Asn ' is

10.4-15
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".-;here

.55 ~A
s

(69)

R is also used both in deciding whether or not to relocate starting points, Equation 62, and in
o
~~c £1 oreliminary convergence test, Equation 47.

10.4.2.7 Termination

7r.e process of finding eigenvalues can be terminated for any of the following reasons:

1. Al~ of the eigenvalues that the problem contains have been found.

2. ~11 of the eigenvalues in the desired range, Amin < ~ < Amax ' have been found.

3. The desired number of eigenvalues, Nd, have oeen found .

.:;. The nUlilber of ei genva1ues that have been found is 1arger by some facto I' than the number

esti~~ted tD bE If the desired range.

R~a$on i is u.perative tec3use, if the iteration precess is ~ontinued, it will converge on

eigervalues that f~ has already found and give false results. A reasonable, although not f901

preof, test fer whet:.e r or no:: a1: (finite) eigenvalues have been found is to compute the total

nU~lt;er of ei genva1ues frOlll

\'1here

Neq - N - N Mo o.

Neq number of rows in the dynamic matrix.

(70)

N number of zero eigenvalues prescribed by the user, and found by separateo

procedures.

NO~~ number of diagonal terms of the mass matrix that are equal to zero.

7he test is not foolproof because the mass matrix can be singular even if none of the diago-

~a1 terms are zero. The detectior. of general singularity is regarded as too difficult to be

~ortr.wnile for the present application.

Reason 2 is detected Quite simply by applyinq the range test to the last startlrog Doint.
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The recommended value for the factor mentioned in reason 4 is 3.0.

Once the process of extracting eigenvalues has terminated, all of the eigenvalues and eigen

vectors that have been found (and not just the desired number or those within the desired range)

are prepared for output. If eigenvalues are to be used in a modal solution they will all be

positive and only the desired number closest to the origin (if that number has been specified),

or the total number within the specified frequency range, whichever is less, are used.
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10.4.3 Summary of Procedures for Real Eiqenvalue Analysis

Flow diagrams illustrating recommended procedures are shown in Figures 1. 2 and 3. The pro

cedures· involved in each block are summarized below.

1. Compute Distribution of Starting Points (see Section 10.4.2.6)

a. Select number of starting points. \. by:

N - 1s
< N

s (1)

where Ne is the estimated number of eigenvalues in the frequency range of interest.

b. Locate starcing points by:

where

(2)

2. Select a Startlng Point

:\ .
m"!n

2 ?(271"f ) - (271"f . ) -max mln (3)

The first starting point is Asl ' the second starting point is As2 ' etc., until all starting

points are used up or until the desired number, Nd, of roots has been found.

3. Select an Arbitrary Starting Vector

Each arbitrary starting vector is distinct from all preceding starting vectors. The vector

should have a broad spectrum with regard to spatial distribution (i.e., not concentrated i~ the

long waveler.gth or in the short wavelength range).

4. Compute Ope Eiaenvalue and 0"2 Eige~vector

See flow diagram for this block, Figure 2.

4.1 Decompose Dvnamic Matrix

The matrix to be decomposed is [K - AoM] which is real and symmetric and where ~o

is either a starting DOint, As' a moved starting Doint, )'s', or a shifted 5nHt p:int,

Ao'. Real arithmetic without pivoting is used. Partial pivoting is available on an

optional basis.
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4.2 One Vector Iteration (see Sections 10.4.2.1 and 10.4.2.4)

The iteration algorithm is:

(4)

(ij' }, n
1= - {w }Cn n

(5)

{} .- t i [ T - ] {un = ':. un' - 4 Q. Mu $.},
1 1 n ,

(6 )

wnere Cn is equal to the element of (wn} with largest magnitude an~ {~i} is a normalizeQ

eigenvector, previously found:

r '.
'U i ,11'

I T i
U. " Mu. N1 ,n 1 "

(7)

{U. 'I} is the last vector found in iterating for the ith eigenvalue. The sum on (i) in
1 tJ1

Equation 6 extends over all eigenvectors previously found, including rigid body modes

found in separate procedures. The sweeping operation, Equation 6, is also applied to

r- ~starting vectors, ,uo"

4.3 Convergence Tests (see Section 10.4.2.2)

See flow aiagram for this block, Figure 3.

a. The quantities ~1' Ilz. ~, and 6 are computed as follows.

1. Fonn (8)

which is also reouired in the next iteration (see Equation 4).

2. Compute ::'n '" ({un}T{Pn})1/2

3. Compute {un} _ {un_l}
{' \ '"oUn'

CIon
CIo

n
_
1

4. Compute {F
n

} {F
n

_
1
}

[oF '. '" ---• n" .:tn
CIo
n
_

l
Then

5. A1
1

<:L
n
_
l

::
Cn a:;-
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6.
(13)

used in the rapid convergence test.

7.

8.

(14 )

(15 )

exce~t that the maximum value of (1 - ~ )2 is. limited to 10.0.

b. In the rapid convergence test,

criterion specified by the user for the mass-o~thogona1ity check,

(16 )

'{

A

close root criterion (= 10-2),

safety factor (= 10-1).

The default value of E is 10-4.

c. The test sequence

-6
T) 1 < 10n-

~n > 1.01I')n_l

(17)

(18 )

is introduced to provide for situations in which round-off error dominates the conver-

gence criteria. These tests were not discussed in Section 10.4.2.

d. The £2 test is:

Otherwise: Pass.

Fail .
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where. using successive values of A2 computed by Equation 14.

h2.n =
A - A2.n 2.n-l

A
O

(20)

The value of s2 stored in the program is .02.

If the s2 test fails. the value of l~ is set equal to Az.n-l in calculating 6

(Equation 15) and is not changed until the shift point is changed or an eigenvalue

is found.

4.4 El Test (see Section 10.4.2.3)

The sl test is

if
A - A1.n 1,n-1

R < sl
a

Pass. Proceed to 4.5. (21)

Otherwise: Fail. Return to 4.2.

Where

R =a
c;- A"A

._::1 N
s

(22)

The value of E1 stored in the program is 10-3. The El test is also applied as part of

the rapid convergence procedure, see Figure 2.

4.5 Shift Decision (see Section 10.4.2.3)

The criterion for shifting is

if (23)

or if for two successive iterations

I~l < 1

Otherwise: Continue to iterate.

Shift.
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Where

Td estimated time for one triangular decomposition,

Ti estimated time for one vector iteration,

k estimated number of additional iterations.

k is evaluated from

4.6 Change Shift Point

Change shift point to

k

A '
o

ln j 12.1'
AE (24)

(25)

where Al is computed by Equation 12.

4.7 Reset Iteration Counter

Set n =0, and also remove the flag that the s2 test has failed.

5. Are We Done?

The answer is yes if:

a. The total desired number of eigenvalues, Nd, have been found, or

b. The number found exceeds three times the estimated number, Ne , or

c. The number of eigenvalues found equals the total number in the problem. The total number

in the problem is computed from

where

N --N - NoMeq 0
(26)

Neq number of rows in the dynamic matrix,

No number of zero eigenvalues prescribed by the user and found by separate procedures,

NoM ~ number of diagonal terms of the mass matrix that are equal to zero.
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6. Is Eigenvalue Outside Range? (see Section 10.4.2.6)

The test is:

-R < A
1
• - A < +Ra s 0

Otherwise: Outside range.

Inside range. (27)

7. Select Next-to-Last Trial Vector as Starting Vector (see Section 10.4.2.5)

a. If there was no shift in finding the previous eigenvalue (i.e .• if Equation 23 has never

been satisfied) set:

ui,N-l (28)

b. If there were one or more shifts, set ui+l,o equa1 to last trial vector before the

first shift.

8. Too Close to Starting Point? (see Section 10.4.2.4)

The criterion is:

where

R
E A 0 A > E3i s

Too close (29)

E = criterion used in mass orthogonality test,

Ai eigenvalue just found.

AS starting point.

RO = range. see Equation 22.

The value for E3 stored in the program is .05.

9. Move Startino Point

Change starting point location to

where the (+) or (-) is selected to move the starting point away from the eigenvalue.
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10. Is This the First Eigenvalue Found Since the Arbitrary Starting Point Vector Was Changed?

See Section 10.4.2.5 on Initial Trial Vectors.

11. Last Starting Point?

If the answer is yes, we are done. If the answer is no, select a new starting point.
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10.4.4 Theory for Complex Eigenvalue Analysis

10.4.4.1 Iteration Algorithm

The problem is to find the eigenvalues and eigenvectors for

[Mp2 + Bp + KJ{u} o ( 1)

where [HI. [8], and [!(lmay be real or complex, symmetric or nonsymmetric, singular or nonsingular. Ei-

genvalues may be multiple. All the eigenvalues within specified regions of the p-plane are to be

found.

Define the velocity vector

{v} = p{u}

Equation 1 may then be rewritten in par~itioned form as

(2)

Let

p o (3)

p A + lI.
o

(4)

where the constant Ao is called the shift point. Substituting Equation 4 into Equation 3:

or, assuming for the moment that [M] is nonsingular:

(5)

10.4-24
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Equation 6 is an eigenvalue problem in standard form, i.e.,

where

[A]{x} A{x} (7)

{x} {-:-}

The standard iteration algorithm for the inverse power method is

(8)

where C
n

is a normalizing factor to be determined. Convergence of the algorith~ is discussed in

Section 10.4.4.3.

An alternate form of the iteration algorithm corresponding to Equation 5 is:

A form that is more convenient for computation is obtained as follows: From the second row

of Equation 9, suppressing matrix brackets for conciseness.

Substitute Equation 10 into the top row of Equation 9:

-(B + A M) (A u + -cl u 1) - KUno 0 n n-n

or

1C MVn_1n

(10)

( 11)

Let
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The complete algorithm is. then

(A 2M+ A B + K)w
o 0 n

(14)

Cn is selected equal to the element of wn with largest magnitude. Note that triangu1ar de

composition of the dynamic matrix [p2M+ pB + K] is required at the point p = A .
o

10.4.4.2 Orthogonality Properties for Nonsymmetric Matrices

Development of orthogonality properties is required in order to prove convergence and to de

rive sweeping techniques. Consider the pair of eigenvalue problems

Ax Ax (15 )

( 16)

where A is a general. nonsymmetric. real or complex matrix. The eigenvalues of Equation 15 are

the zeroes of the detenninant IA - AI I. The eigenvalues of Equations 15 and 16 are the same be-

cause

IA - All = TI(A - AI) I ( 17)

The eigenvectors of Equations 15 and 16 are not. however. identical. The eigenvectors

satisfy

T =(A - 1\.)<p.
J J

o

o

( 18)

(19)

<Pi is called a right eigenvector of A and ~j is called a left eigenvector of A because, transpos

ing Equation 19.
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¢.T(A - A.) = 0
J J

(20)

The" left and right eigenvectprs are orthogonal for Ai"f A
j

. To show this, premultiply Equa

=Ttion 18 by ¢j

or, using Equation 20

so that, for Ai f Aj

o

o

o (21)

(22)

(23)

which is known as the property of biorthogonality.

Equation 23 will be useful in proving convergence of the iteration algorithm. It is not use

ful for sweeping procedures because transposition of the A matrix in Equation 6 leads to a form

that is extremely awkward for computation. A more convenient form of orthogonality property is

developed as follows. Let mi be an eigenvector satisfying

2(p. M+ p.B + K)¢.
1 1 1

=and ¢j be an eigenvector satisfying

o

o

(24)

(25)

Premultiply Equation 24 by Pj¢jT, postmultiply Equation 25 by Pi~i' and subtract;

=T 2 =T 2PJ'¢J' (p" M+ p"S + K)¢,. - ¢. (p. M+ p.B + K)p.~.J J J i 1

10.4-27
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Combi ne terms:

so tnat for p. i p.
1 J

o (27)

KJ¢ .
1

a (28)

Postmultiply Equation 25 by ~i' and find that

=T
-¢. K (ji.

J 1

Substitute this result into Equation 28:

=T Z¢. (p. M+ p.B)¢.
J J J 1

(29)

(Pl. + p.)~.TM cD. + ¢".TB ¢. = 0
J J 1 J 1

(30)

which is the desired result. Equation 30 is used in the sweeping algorithm. Note tha~ Equation

30 is the analog of the mass orthogonality relationship (Equation 5 of Section 10.4.2.1) extended

to complex unsymmetric matrices. including the presence of damping.

10.4.4.3 Proof of Convergence for the Iteration Algorithm

Consider the vector

introduced in Equation 7. Expand {xn} and {xn_1} in terms of eigenvectors

L (l. cD.
i 1. n ,

( 31)

(32)

(33)

=TThen. substituting into Equation 8 and premultiplying by ¢. which is the left eigenvector
J

satisfying Equation 20,
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or, using Equation 18,

-T
"¢.Alo:· ¢.

J i 1,n 1

=TL CL. l\.cj>. <p.
i l,n 1 J ,

1 =T-Ia. l¢·ct.Cn i 1,n- J 1

_1 \" = T
L a· 19. <!I.Cn i 1,n- J 1

(34)

(35)

and using the orthogonality property, Equation 23,

1
aj,n = l\jC

n
CLj,n_l (36)

Thus the eigenvector with lowest value of l\j (i.e., with eigenvalue closest to the shift

point) increases more rapidly than the others. The above proof of convergence is curious in that

it requires the postulation of a second eigenvalue problem. It would be more satisfying if such

were not required.

A more serious objection to the proof of convergence is the assumption that the mass matrix,

[MJ, is nonsingular, which assumption is required in the reduction of the eigenvalue problem to

standard form (see Section 10.4.4.1). The objection may be resolved by examining what happens as

[M] approaches singularity. What happens, in fact, is that one (or more if the defect of [MJ is

greater than one) of the eigenvalues approaches infinity. Convergence to the corresponding eigen

vector from any (finite) shift point is impossible. Otherwise the problem is not exceptional, and

it may be concluded that convergence to finite eigenvalues will exist even in the limit when [M]

is singular.

It will be noted that the rate of convergence of eigenvectors is the same as the rate of con

vergence in the real eigenvalue problem (see Equation 12 of Section 10.4.2.1). Thus arguments

concerning the rate of convergence of eigenvectors in the real eigenvalue problem also apply to

the co~plex eigenvalue problem. In particular, the test used in the decision to change the shift

point is the same.

10.4.4.4 Sweeping of Previously Found Eigenvectors

tor
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follm·/s. Represe~t {xn} as

(37)

where OJ is a previously accepted approximation to an eigenvector, where the sum extends over all m

pre;'i ous ly extracted eigenvectors, and where ~he 1ast term on the ri ght is the "purifi edIt tri a1

vector. The problem is to evaluate a.J,n Fo~ this purpose it is helpful to form the scalar

matri x prod uct

=T
MVn + BUn] (38)Sjn ¢. [p .Mu +

J J n

where ~. is a previ ous ly accepted left eigenvector. Expanding un and vn in terms of eigenvectors
J

as in Equation 37, except that m ranges over all eigenvalues,

- T m ~ )S . = ~. I a. (p. + p.) M¢. + B¢.
In J i= 1 1, n 1 J 1 1

or using the orthogonality relationship, Equation 30,

=T0..1>- (2p.M+B)¢J-J,n J J

Thus, compa/ing Equations 38 and 40,

(39)

(40)

Ct.J,n

=T1>. [p .Mu +- Mv + BUn]
J J n n (41)

A subtle point is the fact that the same factor a· may be used for both un and vn as indiJ,n
cated in Equation 37. The reasons are that it is valid, under most circumstances, to regard the

union of un and vn as an independent vector (xn), and that the dimension of the vector

xn i, equ,1 to th, numb" of ,i,env"ue,. Thu' the independent eigenvector, l-'~:!-l
basis for the vector space of xn except for the circumstance described below.
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when the damping matrix, [8J, is null, the orthogonality condition, Equation 3D, is identical

in form to the orthogonality condition for real eigenvalues, ¢jTM~i = O. As a result, consider

ing only the bottom half of Equation 37, the factors a. may be calculated from
J,n

(42)

as well as from· Equation 41. Since vn is not rigidly dependent on Un' Equations 41 and 42 will.

in general, give different values of a. n' ThUS, iflj)J is null, the assumption that a. may beJ, J,n

~sed for both un and vn is not valid. For this case Equation 42 is used to evaluate (un)p; (Vn)p

is obtained by substitution of (un)p into the basic iteration algorithm, Equation 14,

(43)

The left eigenvector ;j required in Equations 41 and 42 is evaluated after the corresponding

;igrlt eigenvector, ~j' and the eigenvalue, Pj' have been found. The procedure is to forn-: the 1()1,~

~I' and upper triangular factors [Lx] and CUi] of the dynamic matrix at the accepted value of the

-=igenvalue.

= [M p.l + 8 p. + K]
J J

(44)

~:ld :hen to solve the equation

(45)

for
,.= ..
,o.! by forward and backward substitution (see Section 2.3).

J
The excitation vector, {r; , may

be specified arbitrarily since CUi] is nearly singular (see Section lO.3.B}.

The above procedure is similar to that used in finding eigenvectors by the determinant il'ethod

\see Section iO.3). It has the disadvantage that it requires an additional triangular decomposi-

tion of the dynamic matrix for each eigenvalue extracted in order to evaluate the left eigenve:tor.

It is, however, more certain to obtain the correct left eigenvector than any other method that has

been examined, and it is relatively efficient for problems with narrow bandwidths.
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10.4.4.5 Convergence and Shift Criteria

The convergence and shift criteria for real eigenvalue analysis developed in Sections 10.4.2.2

and 10.4.2.3, and summarized in Equations 9 to 24 of Section 10.4.3, are used with slight modifica

tion in complex eigenvalue analysis. It should be noted that the ambiguity with respect to the

sign of an noted in Equation 24 of Section 10.4.2.2 is still present and that it is removed by

comparing the p~ases of selected component.s of un and ur._l.

The derivation of formulas for the convergence parameters, Al , A2 , and on' uses the mass

orthogonal icy property of eigenvectors. Sir.ce the mass orthogonality property, ~.TM~. =0 for i1j.J ,

does not apply in complex eigenvalue analysis, these formulas require revision.

The orthogonality condition for complex eigenvalue analysis, as derived in Section 10.4.4.2,

is

= T¢. [(po T p.)t4 + BJ¢. = 0, i l' j .
J 1 J 1

(46 )

It cannot be used directly in the convergence criteria because we have no advance kno«ledge of
= Tthe left eigenvectors, ~j' For the special case of symmetric matrices, however, the left eigen-

vectors are equal to the right eigenvectors. For use in che general case, define

T( 1 ~0,·=9' M+ S¢.,
lJ 1 Pl,n-i + PZ.n-l J

(47)

which is assumed to be normalized to unity for i = j. The parameters PJ,n-l and Pz,n-l are the

current estimates of Pl and PZ' Also define

A = uT1M + 1 B)Un .
m,n m\' Pl n-1 ~ P2,n-l

\ ,
(48)

Then, substituting for um anc un from Equations 19 and 20 on ?age 10.4-5, and using Equation 47,

we find that

I~O\, .,

and

(50)
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Substil:lH:i'lg from Equations 49 and 50 into Equation 36, a good approximation to the lowest

eigenvalue is

(
A )1/2(II = 1 n-l,n-l

"1 c- An n,n
1

(51)

The ell~r in replacing the last bracketed term by unity is seen to be, since on « ~ , of the

Ol-der of '~ (612 + °21 ),

The nOI-ma] ized difference of successive trial vectors is. by comparison with Equation 28 of

Section 10.4.2.2,

Substituting from Equations 49 and 50. and asswning on « .ro; (012 + 621 ) « 1.

and. using Equations 19 and 20 of Section 10.4.2.2
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Similarly

- (., + (~ )''r..,) (1 -}~~ )''r. ('12 +621 ))

· ~: (1 -~ );;;;~, -} ('12 + '21 1., )

Therefore. using Equation 47,

II = QUT (M + 1 B)OUn~,n n P1,n-1 + P2,n-1

:I-

= (1 - ~) 6n [1 + t (°12 + 021)2 - ~ (e12 + 521 ):1-],

and

ton n-1 = ouT(M + 1 B)OUn_1, n~ Pl,n-l +P2,n-1

Dividing Equation 56 by Equation 57, it is seen that

From Equation 56,
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Since we do not know what 012 and 021 are, we will assume that they are zero. It is seen that

the resulting approximation to on is accurate only if (012 + 621 )/2 « 1. If this condition is not

satisfied, on' which is used to estimate the degree of convergence, may have a large error. Con

vergence itself, however, is guaranteed by Equation 36. The only dangers are that the algorithm

will stop iterating before satisfactory convergence is achieved, or that it will iterate too long.
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10.4.4.6 Search Procedures

In extracting complex eigenvalue~ rectangular search regions are set up in the complex plane

as shown in Figure 4. It is intended that all eigenvalues within the search regions be extracted

(as limited by the desired maximum number of roots). There may be any number of search regions,

and the search regions may overlap. The user establishes s~arch regions by means of the coordin

ates of end points (A., B.) and the width of the region (£.). The user estimates the number of
J J J

roots (N j ) in each search region. For problems with real coefficient~all roots are either real

or they occur in conjugate complex pairs, and it is inefficient for the user to specify regions in

the lower half of the complex plane since the existence of conjugate pairs is assumed. The user

will not, however, be prevented from specifying a search in the lower half of the complex plane

since it is useful, in many cases, for a search region to incl~de the origin or a band along the

real axis.

The tasks performed by NASTRAN in the search procedure are as follows:

1. Divide region into square subregions and place a starting point at the center of

each subregion. The side length of the square subregion is set equal to £1' and

the number of subregions is selected to be

(59)

The sum of the subregions redefines the search region as shown in Figure 5. The

redefined search region is symmetrical with respect to the center of the original

search regi on.

2. Select the starting point that is closest to the origin as the first starting point.

Select the next closest starting point as the second starting point, etc.

3. Terminate search from any starting point when a root is found outside of a circle

passing through the corners of its square, according to rules set forth in Section

10.4.2.5.

4. When the search in region 1 has been comple~ed, proceed to regions 2, 3, etc., in

order. Sweep out all previously extracted eigenvectors from whatever region.

10.4-36



THE INVERSE POWER METHOD WITH SHIFTS

10.4.5 Summary of Procedures for Complex Eigenvalue Analysis

The procedures for complex eigenvalue analysis are very similar, and in many instances identi-

cal, to those for real eigenvalue analysis. The only major change in the flow diagrams for real

eigenvalue analysis (Figures 1, 2, and 3) is the amendment of Figure 2 to include the calculation

of the left eigenvector after passage of the convergence tests. Changes in procedure are indicated

bel~~ according to the numbered blocks in the flow diagrams.

1. Compute Distribution of Starting Points

See Section 10.4.4.6.

2. Select a Starting Point

See Section 10.4.4.6.

4.1 Decompose Dynamic Matrix

The matrix to be decomposed is

[A 2M+ ). B + K]
o 0

which is, in general, complex and nonsymmetric and where A
o

is either a starting point, As' a

moved starting point, As', or a shifted shift point, Ao'. Double-precision arithmetic with partial

pivoting is used.

4.2 One Vector Iteration (see Sections 10.4.4.1 and 10.4.4.4)

The iteration algorithm is, for B i 0,

[Ao
2
M+ AB + K]{w} = -[8 + A M]{u } - [M]{v l}o n 0 n-l n-
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where

EIGENVALUE EXTRACTION METHODS

(5)

(6)

=
- T - - -{¢.1 {p.Mu + Mv + Bu }J" J t1 n n

f¢,.}T[2p.M + B]{¢.}
J J J

(7)

Cn largest element (in magnitude) of {Wn} ,

{~j} previously found eigenvector

{¢j} previously found left eigenvector

Pj previously found eigenvalue

A shift point.
o

The sweeping operation, Equations 5 and 6, is also applied to starting vectors. The sum on

(j) extends over all previously found eigenvalues.

For the special case, [B] = 0, Equation 6 is replaced by

and Equation 7 is replaced by

4.3 Convergence Tests

{¢j}T[M]{u
n

}

(;j}T[M]{¢j}

(8)

(9)

The convergence tests are identical to those for real eigenvalue analysis except that

{Fn} is formed in the following manner

10.4-38 (4/1/72)



THE INVERSE POWER METHOD WITH SHIFTS

{Fn} = [M + 2A + f, 1 + Ii B]{Un}
o 'l,n-l ·2,n-l

(9a)

where Al •n_1 and A2,n_l are the estimates of Al and AZ from the previous iteration.

4.8 ComDute Left Eigenvector

Left eigenvectors satisfy the equation

~:h'~re Pj is identically equal to the eigenvalue for the given problem,

(p.~~ + p.6 + KJ{¢.} = 0
J J J

See Section 10.4.4.4 for the method employed in calculating {~.}
J

5. Have We Found All the Eiaenvalues?

i.e. ,

( lC)

'1' .
I.. ~ t :

The answer is "yes" if the number of eigenvalues found equals the total r:umber estimated to

be in the oroblem. The number found should include conjugate eigenvalues for problems with real

M. B. and Kmatrices. T~e total number estimated to be in the problem is

for problems in which [6] , 0, and

for problew~ in which [6] = 0 and where

N = number of rows in dynamic matrixeq

NoM = number of columns of the mass matrix that are null.

6. Is Eioenvalue Outside Rance? (see Figure 5)

The test is:
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where Rc is the distance from the starting point As to the corners of the starting point's se3rch

region. see Figure 5.

7. Select Next-to-Last Trial Vector as Starting Vector

a. If there was no shift in finding the previous eigenvalue

(15)

(16)

b. If there were one or more shifts: Select ui+1 •o and Vi +1 •o equal to the last

vector before the first shift.

8. Too Close to Starting Poi~t? (see Section 10.4.2.4)

The criteriJn is

Too close (17)

where

E criterion specified by user for convergence of

eigenvectors (Default value = 10-4)

Pi eigenvalue just found

As starting point

R
C

range.

The value stored in the program for ~3 is .05.
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Enter

2 Se, :":-:: a
Start; n~ U-:; i lIt

3 Select an Arbitrary
Starting Vector

Compute Distribution
of Starting Points

4 Compute One Eigenvalue 9 Move Starting
and One Eigenvector Point

No

Exit

Yes

Yes
10 Is This the First
Eigenvalue Found Since
the Arbitrary Starting
Vector Was Changed?

No

No Yes......_-.....c

7 select
Next-to-last
Trial Vector
As a Starting

Vector

Figure 1. Overall flow diagram for inverse power method with shifts.
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4.2 One
Iteration Steo

Yes

4.1 DecorJOose
Oyna",ic
Matrix

Convergen'~c~e---------------------

Rapid Convergence
Normal

Yes
One

Iteration Step

Pass

Exit

4.3 Convergence
Tests

4.5 Change Shi't
Point

4.7 -ess+.
i t.~ I. a t i O~ r..ount~ t~

No
Convergence

Fa i 1

tic shift

No

Figure 2. Flow diagram for block 4, compute one eigenvalue and one eigenvector.
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Enter

Compute nand '\1

Yes

Yes

No

No

No

No

Yes

No

Fail

Has £2 Test Failed
Previously?

No

JT5T < Ae:
Yes

Yes

Exit, Normal Exit, No
Convergence Convergence

Figure 3. Flow diagram for block 4.3. convergence tests.
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Imag
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Region II

Figure 4. Search regions.
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1
p •
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search
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•
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........... _/

search region
for Ps1

origina
search
region

Figure 5. Distribution of starting points within a search region.
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11. TRANSIENT ANALYSIS

Figure 1 of Section 11.1 shows a simplified flow diagram for the transient analysis module.

Each of the functional blocks in Figure 1 is discussed in a separate subsection. The equations

that are solved by the module may be expressed in terms of physical coordinates, ud' or in terms

of augmented modal coordinates, uh" Section 9.3 should be consulted for a complete explanation of

the assembly of the matrices in the equations of motion. If, in a modal formulation, there is no

direct input, i.e., if [Mdd
2] = (Bdd

2] = [Kdd
2] = 0, and if there are no nonlinear terms, the

equations of motion for the individual modal coordinates are uncoupled.

(1)

The uncoupled equations are sufficiently simple that they are integrated by analytical rather

than strictly numerical methods, see Section 11.4. The cou~led equations are solved by a rela-

tively simple numerical integration algorithm that has been develoned to meet the reauirements of

structural analysis, see Section 11.3.

The results of the transient analysis module are the displacement vectors, {ud} or [uh}, and

their first and second time derivatives. They are passed to the Dynamic Data Recovery Module

Tor further processing, see Figure 1 of Section 9.1. The final results, which also include inter-

nal forces and stresses, are printed and/or plotted versus time. In addition, for a list of times

provided by the user, structural displacements may be superimposed on a plot of the undeformed

structure, see Section 13.
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11.1 TRANSIENT LOADS

In static analysis a number of automatic load generating subroutin€s (gravity load, pressure

load, temperature induced load, etc.) are employed in order to simplify the user's task of input

1ata oreparation. Similar schemes are not made available for transient analysis mainly because

Jf tne great variety in the possible sources of dynamic load. Instead the user is provided with

flexible input data formats which allow for a varying degree of generality vs. simplicity.

The generation of transient loads can be a formidable task. The most general form of loading

1S one wnich has a different time history of load for each point in the structure. Even for a

Qroblem of moderate size (say 50 loaded points and 200 time intervals) the data set required to

specify a general loading is large (50 x 200 10,000 entries). Thus it is essential to provide

data formats that accommodate special cases.

In NASTRAN, the applied transient load vector,

c9n~tructed as a combination of component load sets

that is used in a specific subcase is

(2)

;1nere Sck is a factor that gives the orooortion of component load set k used in combined load set

r The advantage of this system is that it facilitates the examination of different combinations

of loads from different sources.

Two separate forms are provided for sp€cifying component load sets. In the first, or general,

form

(3)

where Ajk and 'jk are tabulated coefficients that may be different for each loaded degree of free

dom (j). k given table of coefficients (A or ,) may be referenced by more than one comoonent load

set. Fk(t - ,) is a tabulated function of time that is linearly interpolated between entries. The

faroll provided by Equation 3 is particularly useful for loads due to traveiing waves. In such

Droblems Fk represents the pressure produced by the wave, Ajk is the eXDosed area associated with

the jth degree of freedom,and 'jk is the travel time reauired for the wave to reach the jth degree

of freedom.

In the second, or special, form of transient loading
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(4 )

0, 0 > t and t> T2k - T1k

where

(5)

The coefficients Ajk and 7 jk have the same meaning as they do in the general form, Eouation

3. The six constants, T1k , T2k , nk, ok' f k and ck are entered on a separa~~ data card for each

load set. Although the appearance of Equation 4 is formidable, its application to a variety of

special cases is straightforward. The time constants, T1k and T2k , define the time limits of

nonzero load for a point at which the time delay Tjk is zero. A square wave between Tlk and T2k

is specified by setting nk ok = f k = ek = O. A sine wave with frequency f starting at t =T1k
is specified by settina nk ~k = 0, f k = f and ~k = -~/2. A polynomial function, P = a + bt +

ct2 + .. , is specified by combining a number of load sets with different integral values o~ nk
and ak = wk = ~k = O. Since blank entries are interpreted as zeroes by the co~puter, the extra

burden on t~e user due to the generality of Equation 4 is minimal in all of the above examples.

The loads are referred by the user to the displacement set, up' of all physical points

(structural grid points, ug, plus extra points, ue ). The reduction to final form consists of

applying single and m~ltipoint constraints, the Guyan reduction, and in the case of a modal for-

mulation, the transformation to modal coordinates. Except for the modal- transformation, the

steps are identical to those for the reduction of static loads to final form described in Section

3.6.2. The loads on extra points are included in their proper sequence in each intermediate load

vector.

Since the number of ~ime steps is large (typically of the order of lOaD), the reduction pro-

cedure would be slow and cumbersome if it were aoplied cirectly to the load vector at each time

step. A more efficient procedure, if the number of loaded Doints is fewer than tne nu~ber of ti~e

steps, is to precompute a load transformation matrix, [Tct) or [T,,), s:Jcr, th2t :'">2 :"nai coml:';r;?~l

load vector is calculated by

(6)
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in the case of a direct formulation, or by

(7)

~n the case of a modal formulation. {Pjc(t)} is the vector of loads on physical points, up' with

the terms for unloaded degrees of freedom removed.

The load transformation matrices are calculated as follows (compare with Section 3.6.2).

1. Form ~matrix [T .] with the number of rows, p, equal to the total number of physicalPJ .
points, and the number of columns, j, equa1 to the nu~ber of loaded physical points.

Identify each loaded point with a oa-rticular physical point by placing a "one" at the

appropriate row-column intersection. All other elements of the matrix are zerQ.

'2. Partition [Tpj ] into [TmjJ, points eliminated by multipoint constraints, and [TnjJ.

3. Aoply ~ultipoint constraints.

[T .J + [G ]T[T .J
nJ m mJ

(8)

(9)

4. Partition [TnjJ into [TSjJ, points eliminated by single point constraints, and [TfjJ.

[TnjJ (10)

5. Partition [TfjJ into [TojJ, points eliminated by the Guyan reduction, and [Tdj ].

(11)

6. Apply the Guyan reduction

(12)

which completes the load transformation for a direct problem formulation.
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7. For a modal problem formulation only. transform (Tdj ] to the modal coordinates. (see

Section 9.3).

(13 )

When the time delay coefficients,Tjk , are all zero (or all the same) for a given load set,

the load reduction procedure can be simplifiec even further because the time histories of 10ads at

different points are proportional. The reduction procedure is, in this case. applied to the area

coefficients. {Ajk}. resulting in transformed area coefficients {Adk } or {A hk}. which are substi

tuted for {A. } in Equations 3 or 4.
JK
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Enter

1 Assemble Applied Loads

~ Piecewise Continuous
Integration

Exit

Uncoupled
Modal

Coupled Modal
Or Direct

2 Calculate Non-linear
Terms

3 Finite - Difference
Integration

Exit

Figure 1. Simplified flow diagram for transient analysis mOdule, TRD.
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2. Multiplier

Uj and uk are any (permissible) pair of displacement compon~nts. They may be the same.

3. Positive Power Function

(3)

o u. ~ 0
J

4. Negative Power Function

_S.(_U.)Cl
1 J

(4)

= 0

The negative power function is the negative reflection of the positive power function for

the negative range of Uj ' ex may be any positive or negative real number. Taken together the

positive and negative power functions are useful in representing such things as pneumatic sp~ings.

hydraulic dampers, and latching mechanisms whose characteristics are freQuently represented by

power functions.

As an example of the application of the nonlinear elements. consider the Coulomb damper con

nectea between degrees of freedom u1 and u2 shown below.

ul
F{V)

Fj

Structure Coulomb V
Damper

~

u2

Figure 1. Coulomb damper.
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The forces exerted on the degrees of freedom are

FZ = -F(V)

,

~ (5)

where V =Uz - u, and F{V) is the step function of velocity shown above. The arbitr~ry function

generator is used to simulate the Coulomb damper. but since the independent variable must be a

displacement. it is first necessary to create extra point ue such that
1

(6)

This may be done by means of a transfer function (see Equation 10 of Section 9.3.2). ~e

may then declare a pair of nonlinear loads

F(u )e l

NZ = -F(u )e l

(7)

applied respectively to u1 and uz. In order to avoid difficulty with numerical integration. the

step in the force-velocity curve shown in Figure 1 should be replaced by a ramp as shown below.

F(V)

v

Figure 2. Recommended force-velocity curve for coulomb damper.
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The slope of the ramp should be large enough that, when the velocity changes sign, the value

of the velocity will lie within the interval ~V for at least a few time stees in the numerical in-

tegration.

If a modal formulation has been used, the nonlinear loads may not be applied directly to

structural gridpoints. In this case a second extra point, ue ' is created and the nonlinear load
2

is applied to it;

N = F(u )eZ el

In addition, terms are added to the direct input matrix, [Kpp
Z], in order to provide u

e2
with a

unit spring restraint (so that it will be numerically equal to N ) and to produce forces on uleZ
(and uZ) that are equal (and opoosite) to u The added terms to the equations of motion areeZ

o

o

o

o

o

o

(9)

The Coulomb damper may also be used to assist in the dynamic representation of plastic defor-

mation as shown in Figure 3

F

I~ llu ~
u3 uz

Kl K2/ (Kl - ~)- --. -. u,
K,

Coulomb
Damper
(=F )

0

Figure 3. Plastic deformation element.
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The springs shown in Figure 3 may be represented by scalar elements. The Coulomb damper is

represented in the manner described previously. The composite element exhibits the hysteresis

illustrated in Figure 3, which is a characteristic of plastic deformation. Additional break

points in the force-displacement curve can be produced by adding more springs and more Coulomb

dampers.
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11.3 INTEGRATION OF COUPLED EQUATIONS

The price paid for high efficiency in the numerical integration of differential equations is

a tendency toward instability. Frequently, a choice exists between an efficient algorithm that is

unstable for large time steps and an inefficient algorithm that is excessively stable and rela-

tively inaccurate.

In a structural dynamics problem, the stability limit of the integration aJgorithm may be ex

pressed as the ratio of the maximum permissible time step to the period of the hig~est.vibration

mode of the system. For very large systems a limitation of this kind is intolerable because the

period of the highest mode of the system is generally not known and is, in fact, zero for the

very practical case when the mass matrix is singular. Thus, every effort should be made to pro-

vide an integration algorithm that is stable for the widest possible spectrum of practical pro-

blems without sacrificing either accuracy or efficiency.

An integration algorithm will be described that satisfies these requirements. It is a

particular form of the Newmark Beta Method.(l) The stability of the algorithm will be examined and

compared with the stability of other algorithms in the class to which it belongs.

The differential equations of a linear structural problem may be written in the general ma-

trix form

where p = £...dt

[p2M+ pB + K]{u} = {P} (1)

Numerical integration is achieved by replacing p and p2 by finite difference operators.

p = f l (E)

p2 = f
2

(E)

where the shifting operator, E, is defined by

Un is the value of u at t = tn'

(2)

(3)

In examining the stability of a numerical integration procedure as applied to Equation 1, it

(1) N. M. Newmark, "A Method of Computati on for Structural Dynami cs". Proc ASCE J. Eng. Mech. Di v.
EM-3, July 1959, pp. ·67-94 (1959).
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is convenient to transform {u} into the normal coordinates {~} by means of the matrix of eigen-

vectors, [cj>]:

Ju} [¢]HJ (4)

The resulting equations for {~}are uncoupled and their stability may be examined one at a time.

The actual integration algorithm is applied to {u} rather than UJ. Before makinq the transfor

mation, we must be sure that the transformation matrix [cp] is independent of the way in which p

is related to E in order to ensure that the results of the stability analysis apply to the actual

algorithm. If [B] is a linear combination of [M] and [KJ, i.e._, if

[8] = a[M] + b[K] (5)

where a and b are constants, the damping is said to be "uniform". For a condition of uniform

damping the eigenvalue problem is

[(p2 + ap)M + (1 + bp)K]{u}

or, dividing by 1 + bp,

[AM + K]{u} = a

where

a (6 )

(7)

p2 + ab
1 + bp

= (f2(El)2 + a f l (El
, + b f 1(E) (8)

The eigenvalues, Ai' of Equation 7 are related by Equation 8 to the corresponding eigen

values, Ei , of the shift operator. The eigenvectors of Equation 7 depend only on the values of

the elements of [M] and [K]. They are, therefore, independent of the functional relationships
2between A, p, P and E.

For the more general case of nonuniform damping, the eigenvectors are not independent of the

functional relationships between p, p2 and E. For such cases the stability theory to be presented

can only be regarded as approximate.

The Question of stability has, by the above maneuver, been reduced to the examination of a

single second order differential equation that is representative of the uncoupled equations for

the normal coordinates, namely
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( Mp2 + Bp + K)C; = P (9)

In performing numerical integration of this equation by whatever scheme, the differential ooera

tor, Mp2 + Bp T K, is replaced by a function of the shifting operator, f(E), so that the stability

equation becomes

f(E) = a (10)

which may have a number of roots, £1' [2' [3' etc. The condition for stability of the integra

tion scheme is that the amplitude of the homogeneous solution not increase as time increases.

which requires that

IE - I ~ 1 for i = 1, 2, 3. . . •
1

for each of the normal coordinate equations. This is required because, from Equation 3

IU~:l I = lEI

(11 )

(12 )

For all numerical integration procedures f(E) is, or may be reduced to, a polynomial. Consi

der, for example. the case in which we let

pC; (13)

p2~ = _1_ (c; _21; + 1; ) = _1_ (E2-- 2E +1)~ (l4)
~t2 n+2 n+l n ~t2 n

Then the stability equation is

Mp2 + Bp + K = ~:2 (E2
- 2E + 1) + ~~ (E - 1) + K = 0

which is a quadratic equation in E.

(15 )

The cases in which f(E) is a second degree polynomial are of special ir.terest because they

represent the simplest integration schemes that can be applied to a second order differential eaua-

tion and also because they permit a thorough algebraic examination of the Question of stability.

Let the quadratic equation be written in the form,
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E2 + 2bE + c = 0 (16 )

where the constant coefficients band c are real functions of the physical parameters of the pro

blem.

The roots of the stability equation are

(17)

For c ~ b2 , IE1,2 1 = c, so that for this condition the system is stable provided that c < 10

For c < b2, the roots of Equation 17 are both real, so that

= (18)

Stability limits may be obtained by substituting the limiting value IE1,2
1

= 1 into Equation 18

and solving for c in terms of b. The result is

c = -1 :: 2b

which represents a pair of straight lines in the b, c plane.

(19)

The stability limits that-have Deen found bound a region of the b, c plane within which both

solutions to the quadratic equation are stable. The region is depicted in Figure 1, below.

c

I O. -1

Figure 1. Stability triangle.
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As an example of the application of the above analysis. consider Equation 15 with the dam-

ping coefficient. B. set equal to zero. For this condition Equation 15 may be written as

E2 _ 2E + 1 + ~~2 = 0 (20)

where ~o Lt ~ is the phase change associated with the time step ~t. The stability para-

meters are b = -1. c =1 + ~¢2. The point (b,c) is outside the stability triangle for any value

of ~¢ except zero and the numerical integration will yield an unstable solution.

As a second. and more important example. consider the following central difference equivalent

of Equation 9 wherein (a) is an arbitrary coefficient. to be determined.

(21)

Note that the expression is symmetrical with respect to the n + 1st time step, a condition

that will result in greater accuracy than an unsymmetrical expression. ihe coefficient (al will

be determined by stability considerations. Normalize Equation 21 by multiplying by ~t2/M. which

results in the following stability equation:

E2 - 2E + 1 + f (E2 - 1) + M2 ( aE2 + (l - 2a)E + a) = 0

where T = AtB/M is a dimensionless time constant and A~ has the same meaning as before.

The stability parameters are

(22)

b

c =
... 2- "l + aM

+ 1. + aM2
2

(23)

The case ...= 0 is of special interest because it implies no structu~al damping in which case

the original differential equation from which Equation 21 was derived is marginally stable for all

values of ~~. For this case
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-1 + -} (1 - 2a) M 2

1 + a[;¢2
(24)

c =

so that, as ~¢ increases from zero, the point in the b, c plane starts at the upper left corner

of the stability triangle and moves along the upper edge of the triangle. We desire that the

system be marginally stable for all values cf ~o. In Equation 24 let b attain its limit~n9 value,

+1 as ~¢ - 00. Then for the system to be stable

i - 2a:::"-za-

or

a > 1."4

(25)

(26)

This is an interesting result because it shows that unconditional stability (instability in

oependent of size of time step) can be aChieved with Eauation 21 for certa~n values of (a). In

the usual finite difference aporoximation, (a) is set equal to zero which, of course, g~ves un-

stable results for sufficiently large ~¢.

It remains to show that the system ooint remains within the stability triangle for all posi-

tive values of l and all values of ~~, provided that Equation 26 is.satisfied. The system point

remains below the upper edge of the triangle, C = 1, for positive '. as may be seen from Equation

23. The condition for crossing either of the lower edges is, from Eouation 19

c + 1 : 2b = 0

which becomes, after substit~tin~ for band c from Equation 23

(27)

- 2-±+a(t.-t)

+ t + a(M)2
+ 1 (28)

The denominator may be cleared since it is always positive for T > 0 and a > 0, with the resu1t

(29)
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when the plus sign is chosen, and

4 + (4a - 1)6~2 = 0 (30)

when the minus sign is chosen. Neither condition can be satisfied for a finite 6¢ provided that

a ? 1/4. Furthermore, band c are, from the form of Equation 231 continuous functions of T and 6¢

for a > O. The system point never crosses the boundaries of the stability triangle, and the sys

tem is stable for any M provided that T ~ 0 and a ~ 1/4. Thus, if the original system of dif

ferential equations is stable, the substitute finite difference system will also be stable. Fur

thermore, if one of the roots of the original system is neutrally stable, (Ti =0), the corres

ponding root of the substitute system is also neutrally stable.

In the integration algorithm provided with NASTRAN (a) is chosen equal to 1/3, which is

somewhat larger than the stability limit, and which provides a margin of stability for more gene

ral problems (e.g., those in which the damping is nonuniform or in ~hich nonlinear terms occur:

than have been considered in the derivation. The difference equation, in terms of physical coor-

dinates, u, based upon Equation 21 with (a) set equal to 1/3, is:

L:2 M + 2~t B + t KJ {un+Z} = t {Pn+2 + Pn+l + Pn} + {Nn+l } +L.~2 M - t K] {un+l }

[
-1 1· 1 ] { }

+ t.t2 M + Zt.t B- 3 K un (31)

{Nn+l } is the nonlinear load vector described in Section 11.2. Note that the load vector {P} is

averaged over three adjacent time steps in the same manner that [K] is averaged. This is done in

order to provide statically correct solutions for massless degrees of freedom.

As long as the time step, 6t, remains constant, the matrix coefficients of {un+21. {un+l }

and {un} do not change with time and they may be precomputed. The coefficient of {un+2} is

decomposed in a preliminary step into its triangular factors [l2] and [U2]. The solution algo

rithm consists of the forward pass

(32)

and the backward pass

(33)
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where

[Al ] [_2 M_1 K] (34), ..2 3
U~

[A ] [-1 1 1] (35)-M+\=B--K
0 6t2 2~~ 3

The nu~ber of scalar multiplications required at each time sLep is approximately equal to

4Nb where N is the number of equations and b is the bandwidth. A forward integration scheme

in which the coefficient of {un+2} is [M]/Lt2 where [M] is diagonal anti nonsingular, requires

a~out one-half as many multiplications. The latter procedure, ho\~ver, has stability and accu-

racy difficulties which can be overcome by reducing the time step to a very small value.

A great acvantage of the unconditionally stable integration procedure is that it permits

large phase steps in the higher modes without incurring instability. The only limitation on the

time step is provided by accuracy considerations. It should be noted in this regard that exces

sively small time steps produce large round-off errors while large time steps produce large finite

difference errors.

A measure of finite difference error in the nu~erical integration is the discrepancy between

the eigenvalues of the original system of differential equations and the eigenvalues of the sub-

stitute finite difference system. Of equal importance is the discreoancy in the amplitude of the

transient response. Numerical studies indicate that errors in amplitude and errors in frequency

have the same order of magnitude. A conventional error analYSis(l) of the integration algorit~m

has been made in wnich it is assumed that the phase step. a~. is small cOmpared to unity. Under

these conditions the error in frequency (for a = 1/3) is given by

(36)

where wf is the frequency for the finite difference system and ~e is the exact frequency. If ~Q

is 1/4 radian, the error in frequency is a little less than 1%. The error in damping is given by

~f

(37)

(1)See, for example, R. H. MacNeal "Electric Circuit Analogies for Elastic Str-uctures", J. Wiley
and Sons, N. Y., 1962, P 182. .
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One oercent error in damping is obtained for 6¢ equal to about 1/6 radian. Note that the

error in damping is proportional rather than additive as in the case of bootstrap integration

procedures in which only the mass matrix is inverted.

In order to illustrate the error in the amplitude of response to transient excitation, consi-

der a simple unaamped oscillator with prescribed initial conditions

The correct solution is

mu + ku

u(o)

u(o)

o

o

(38)

(39)

The approximating difference equation is

with initial conditions

=

(40)

The exact solution of the difference equation and the initial conditions. as obtained by the

method of undetermined coefficients, is

where

cos n8 + cos~ - sin n6
slnB (41)

and the phase step

cosS = (42)

11 .3-9
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For small phase ~teps, from Equation 36

(44 )

The ratio of the approximate amplitude of response obtained from Equation 41 to the exact ampli-

tude of response is

S2 sin 2
sin S (45 )

Thus the error in amplitude has the same value and opposite sign as the e,ror in fre~uency.

An estimate of the total number of time steps required may be obtained with the aid of Eaua-

tion 36. For example, assume that a solution is to be obtained for a time interval equal to five

times the period of the lowest mode. Assume further that 10% error in frequency and amplitude is

permissible for modes with frequencies higher than ten times the frequency of the lowest mode.

The permissible phase step relative to the lowest mode is therefore about .09 radian. The total

number of time steps is 5 x 2~/.09 = 318.

Initial conditions are specified by the user as the values of physical displacements {up} and

velocities {up} at t = O. Nonzero initial conditions are only permitted for a direct problem for

mulation. The specification of nonzero initial conditions for a modal formulation is not permit-

ted because the selection of a number of modes less than the total number of aegrees of freedom

places constraints on the physical points that are incompatible with an arbitrary set of displace-

ment values.

In a direct formulation, the initial conditions for all unspecified degrees of freedom are

assumed to be zero, so that the user must be careful to provide a complete set of initial condi-

tions. Initial conditions specified for points that are eliminated by constraints or by the

Guyan reduction are ignored.

The initial conditions presented to the integration algorithm, Equations 32 and 33, are the

values of {uo}' {u_ l }, {Po}' {P- l }. The values of {u_ l } and {P- l } are computed on the assumption

that the acceleration for t < 0 is zero. Since the mass matrix [M] may be (and often is) singu

lar, the evaluation of the acceleration at t = 0, from the load at t = 0, may be impossible in

any case. Thus
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{u} {~}t,t
o 0

In addition, the load specified by the user at t = 0 is replaced by

[K]{u } + [B]{u }o 0

(46)

(47)

(48)

which, in effect, sets the acceleration to zero at t = O. The main reason for doing so is tc

avoid the "ringing" of massless degrees of freedom that are subjected to steo loads. Consider,

for example, that !M~ [B1 and [N] are zero in Equation 31, which then becomes

(49)

If the values for {P l} and {P } given by Equations 47 and 48 are substituted into Eauation 49,
- 0

then

(50)

i.e., {ul~ is the correct static solution for any initial conditions. Solutions at subsequent

time steps will also be correct. On the other hand, suppose that Po = Pl = Pz ... = 1 and that

the initial conditions are Uo = Uo = O. Then u_ l = 0, from Equation 46, and the seauence of

values of un' considering only a single degree of freedom, are

uo 0

u1
2
K

1
Uz K

U3 a (51 )

2u4 K

Us K

u6 0

etc.
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Thus the solution continues to "ring" indefinitely. The example cited is quite practical

because the application of a load to a Doint which is restrained by a very stiff spring is often

used to simulate the time history of an enforced displacement.

It is frequently advantageous to change the size of the time step one or more times during

a solution. For example, higher frequency components may be damped out quickly so that after a

while errors in the higher frequency modes become unimportant, and an ecomony without loss of

accuracy can be obtained by increasing the size of the time step. At the time of the change, the

system matrices [Ao]' [Al ], [l2] and [U2], Equations 32 to 35, are recalculated and initial condi

tions {uo}' {u_ l :, {Po} and tP_ l } are set internally to restart the integration algorithm. The

criterion used for selecting the new initial conditions is that the displacement, velocity and

acceleration are continuous at the time of transition.

let N be the ,ast step with the previous time step, ttl' The formulas used for calculating

the previous velocity and acceleration at the transition are

Iu 1 1 - uN_l }-;;-;:- tUN -. 0)
--1

[u 1 1 2u N_l + "\
. 0' --2 ,uN - u~4_2 '

H-
I

l (52)

\
/

T~e initial conditions for the new integration are

(53)

{u~~:

'p f'w

(54)

(55)

[K]{u , ~ + [B]{u - Ltzu } + [M]{uo:-, a a (56)

where utz is the new time step. Note the assumption, in Eouations 54 anG 56, that the accelera

tion is uniform for t ~ N~tl' A smooth transition is thereby assured.

The outputs of the transient analysis module include velocities and accelera~ions as well as

displacements. The formulas used for velocity and acceleration are
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(57)

1- {u
tlt2 n+1

(58)

The output may be requested at even multipies of the integration time step, i.e., for every

step. every second step. or every third step. etc. This feature affords some economy in output

data preparatiun in cases where a small time step is needed for greater accuracy.
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11.4 INTEGRATION OF UNCOUPLED LINEAR EQUATIONS

2 2 2When there are no direct input terms, i.e., when [Mdd ] = [Bdd ] = [Kdd ] = 0 , and when

there are no nonlinear terms, the equations of motion using the modal formulation are uncoupled.

Each modal coordinate, ~., satisfies a separate second order differential equation,
1

(1)

which is convenient to rewrite as

where

b.
1

2m i

W 2
o

(2)

(3)

(4)

The general solution to Equation 2, expressed in terms of arbitrary initial conditions, ~i,n

and ~i,n at t = tn' and a convolution integral of the applied load, is, for t ~ tn'

1 rt
= F(t-t).;. + G(t-t ) t· + - J G(t-c) Pi (c) dTn l,n n l,n mi t

n

The functions F and G are combinations of the homogeneous solutions

(-8 ± ~62 - W 21 )(t-t )
= eon

(5)

(6)

F and G satisfy, respectively, the initial conditions for unit displacement and unit velocity.

The applied load, Pitt}, is calculated by the procedures described in Section 11.1 at times

t n = to + nh where h is the time increment and to is the time of the last change in time incre

ment. It is assumed that the load varies linearly between t n and t n+l , so that, in Equation 5,
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P. +1. (P _ p. )
1,n h i,n+l 1,n (7)

For this form of the applied load the integral in Equation 5 can be evaluated in closed form.

The general form of the solutions at the next time step, t = t n+1, in terms of the initial condi

tions at t = t and the applied loads, is
n

t: i ,n+l = F t:. + G "i,n + A P. + B P. +1 (8)1,n 1,n 1,n

I , .
';i,n+l F ';i,n + G t:i ,n + A P. + B P. 1 (9)1,n 1,n+

The coefficients are functions of the modal parameters, mi , S, w
C

2
, and of the time incre

ment, h. The uncoupled modal solutions are evaluated at all time steps by recurrent application

of Equations 8 and 9. The a~celerations, which may be requested as output, are calculated by

solving for ~ from Equation 2:

~i,n+l
P. 1

= ~- 2°-., ';,i ,n+1mi
(l0)

The algebraic expressions for the coefficients in Equations 8 and 9 depend on whether the

homogeneous solutions are underdamped (w
0

2 > 82 ), critically damped (~02 =6Z
), or overdamped,

(w
O

Z < SZ). In addition, a separate set of expressions is used for undamped rigid body modes,

'w =6 =0). For reasons of numerical stability, the expressions for the critically damped
'0 0

case are used within a small interval near the critically damped condition, (lwo
Z

- 62 1 < EI W
0

2 ),

and the expressions for the undamped rigid body case are used within a small region near the

rigid body condition, (WZ + &)1/2 h < E z . The coefficients for all four cases are listed in

Table 1.

Once the coefficients have been evaluated, the integration algorithm, Equations 8 and 9, pro

ceeds very rapidly, provided that the time step, h, is not changed frequently. The algorithm is

about as efficient as the finite difference integration algorithm, Equation 31 of Section 11.3,

but is much more accurate. It is also more efficient, by a very large factor, than algorithms

that employ convolution integrals over the entire preceding time history.
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Table 1. Formulas for the Coefficients in Equations 8 and 9.

Define:

k = w zm.
o 1

1. Underdamped Case. (w 2 _ B2 )/w Z ~ E =10-8
o 0 1

F e-Bh(coswh + ~ sinwh)
w

A
)

. ( 2wB ) ] 28w }-he Slnwh - w
e

2
+ hw coswh + we Z

. 2wB ] 2Bw}smwh + - coswn + wh - -z
w Z w

o 0

F =
W 2

o
W

e-8hsinwh

G e-8h(coswh - ~ sinwh)
w

A = __1__ [e-Bh{CB + hw 2)sinwh + wcoswh} - w]
hkw 0

B 1 -Bhhkw [-e Cesinwh + wcoswh) + w]

2. Critically Damped Case.
W 2

o

-8
< E 1 =10

F

G

A

he- 13h
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-8
3. Overdamped Case, (w :? - S2.)/w 2. ::!: - E 1 = -10o a

F

G

A

B

e-Bh(coshwh + ~ sinhwh)
w

1 -wh
- e sinhwhw

_1_ {e-Bh [w 2
+ S2 sinhwh + 2wB COShwhJ + wh _ 2Bw}

hkw 2. w 2 til 2
We a 0

W 2

F = -.....£. e-13hsinhwh
w

G -Bh 13e (coshwh - - sinhwh)w

B h~ [-e-13h (6sinhwh + weoshwh} + w]
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4. Undamped Rigid Body Modes, (w 2 + 62 )1/2 h < £2 = 10-6

F

G

A

B

F

G

A

B

h

o

h
2m;
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12. FREQUENCY RESPONSE AND RANDOM ANALYSIS

The ability to calculate the response of a system to steady sinusoidal excitation is important

both because such excitation exists in the real world and because methods for solving other prob

lems often depend on the knowledge of frequency response. The latter category of problems includes

stability analysis (via Nyquist diagrams or Bode plots), random response analysis, and transient

resoonse analysis (via Fourier or Laplace transforms).

In NASTRAN, the calculation of frequency response and its use in random response analysis are

~erformed by seoarate modules. There is at present no internal application of frequency response

results to stability problems or to transient problems.

It is assumed that the reader is familiar with the theory of steady-state frequency response

(which reduces linear differential equations to linear algebraic equations) and with the rudiments

of rando~ noise theory. The equations of motion are assumed to be 1inear and the statistical pro

oerties of the random excitation are assumed to be stationary with respect to time.
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12.1 FREQUENCY RESPONSE

Figure 1 shows a simplified flow diagram for the frequency response module. The calculations

are of two kinds: the generation of loads; and the solution of the dynamic equations to obtain a

displacement response vector. Subsequent data reduction procedures are discussed in Sections 9.1

and 9.4.

In static analysis a number of automatic load generating subroutines (gravity load, pressure

load, temperature-induced load, etc.) are employed in order to simplify the user's task of input

data preparation. Similar schemes are not made available for dynamic analysis, mainly because of

the great variety in the possible sources of dynamic loads. All that is done in frequency response

analysis, and perhaps all that should be done, is to provide the user with a flexible input data

format which allows for a varying degree of generality vs. simplicity.

The generation of dynamic loads can, at least in principle, be a formidable task. The most

general form of loading in frequency-response analysis is one that varies arbitrarily in magnitude

and phase with respect to the point ~f load application and with respect to frequency. Even for a

"problem of moderate size (say 200 degrees of freedom and 50 frequencies) the data set required to

specify a general loading is large (200 x 50 =10,000 entries). Thus it is desirable to have input

data forms that accommodate special cases.

In NASTRAN, the dynamic load vector that is used in a specific subcase, {Pj
C
}, is constructed

as a combination of component load sets, {Pj
k}.

(1)

where Sck is a factor that gives the prooortion of component load set k used in comoined load set

c. The advantage of this system is that it facilitates the examination of different combinations

of loads from different sources. The form provided for specifying a component load set is

(2)

where Ajk , 8jk and Tjk are tabulated coefficients that may be different for each degree of freedom

(j). Gk(w) is a tabulated complex function of frequency (with two alternate forms) that is lin

early interpolated to the frequencies, Wi' at which solutions are requested. The form provided by
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Equation 2 is most useful for loads due to traveling waves (in air. under water, or in the earth).

A meaningful interpretation of the symbols in Equation 2 for such problems is that Gk(w) is the

pressure produced by the wave, that Ajk is the exposed area associated with the jth degree of free

dom, and that Tjk is the travel time required for the wave to reach the jth degree of freedom.

The coefficients Ajk , ejk and 'jk are tabulated separately and on~ list of coefficients may

be referenced by several load sets. Complete generality can be obtained with Equations 1 and 2 by

identifying each load set with a specific frequency, i.e., by specifying

(3)

o

The loads are referred by the user to the displacement set. up; that includes all physical

points (structural points. ug' and extra points. ue ). The reduction to final form consists

of applying single and multiooint constraints, the Guyan reduction, and in the case of a modal

formulation, the transformation to modal coordinates. Except for the modal tr'ansformation, the

steps a~ identical to those for the reduction of static loads to fi~al form described in Section

3.6.2. The loads on extra point~ are simply included in their proper sequence in each intennedi-

ate vector. The specific operations are

i. Partition P :nto P , loads on points eliminated by inultipoint constraints, and Pn.
D m

(4)

2. Apply multipoint constraints.

(5)

3. Partition Pn into Ps ' loads on points eliminated by si~gle ooint constraints, and Pf .

(6)

4. Partition Pf into Po' loads on points eliminated by the Guyan reduction. and Pd'
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(7)

5. Aooly the Guyan reduction.

(8)

6. For a modal proble~ formulation only, transform Pd to the moaal coordinates uh ' see Sec

tion 9.3.

(9)

The above operations can be time-consuming if there is a large number of load vectors to be

transformed. If the vector of time :onstants, Tjk , in Equation 2 is null, the relative magnitudes

and phases of the loads at different grid points are independent of frequency. In that event the

load transformatio~ is apolied once for each load set to the complex coefficients, 8jk Aj~ e i9jk,

before the transformed load sets are combined. If :jk is net null for every load set in a parti

cular combined load, {Pp
c:, the reduction procedure is apolied to the combined load for each fre

quency.

For a direct formulation the equation to be solved is

(10)

while for a general modal formulation, including direct (nonstructural) input the equation is

(11 )

The direct input matrices [Mdd
2], [Bdd

2], and [Kdd
2] (see Section 9.3.3), are permitted to be

dependent on frequency. If they are, an exit is made to the dynamic matrix assembler, GKAD, after

each frequency (see Figure 1). The user can request solutions for a specified list of frequencies,

or he can request a uniform or a logarithmic distribution of frequencies in a specified range.

The selection of zero as a frequency permits the user to solve static problems with nonstructural,
2[Kdd ], terms.
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The standard matrix decomposition and solution routines provided with the program are used in

the solution of Equations 10 and 11. The following options are available: (a) double-precision

arithmetic with row interchanges (partial pivoting); (b) double-precision without pivoting; (c)

single-precision without pivoting. Option (a) is the default option.

If, in a modal formulation, there is no direct input, i.e., if [Mdd
2] = [Bdd

2J = [Kdd
2J = 0 ,

the equations are uncoupled and a separate procedure is used as indicated in Figure 1. The solu-

ticn for the modal coordinates is simply

(12 )

where mi , bi , and ki are the generalized mass, damping and stiffness of the itn mode (see Section

9.3.4), and Pi is the ith component of {Ph}.

The evaluation of Equation 12 is trivial compared to the solution of Equation 10. It is not

true, however, that a modal formulation of an uncoupled problem is always more efficient than a

direct formulation, since it is first necessary to calculate the modes and to transform the loads

and then, afterwards, to obtain physical coordinates from ~i by the modal transformation. ~ne

question of whether the modal approach is more efficient for any given problem depends on several

factors, including the number of modes, the number of response frequencies, the bandwidth of the

problem when formulated directly, and the presence or absence of nonstructural coupling.

The results obtained by the Frequency Response module are passed to the Dynamic Data Recovery

module for further processing and thence to other modules in the data recovery chain. see Figure

of Section 9.1. The results that may be requested in either printed or piotted form include the

components of displacement, acceleration and velocity; components of applied loads; and selected

internal forces and stresses. The printed information may be sorted by frequency or by component.

The plotted information consists of the magnitUde and phase angle of any component plotted versus

frequency. The magnitude scale is either linear or logarithmic and the frequency scale is either

1inear or logarithmic.
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Enter

Assemble {P
p
}' loads

on All Physical Points

Reduce {P p} to {Pd} by

Application of Constraints

Reduce {Pd} to {Ph} by

Modal Transformation

Solve Directly
for {;i}

Yes

Modal
Formulation

Direct

Pick Frequency

Form and Decompose
[_Mw2 + iBw + K]

Solve

[_Mw2 + iBw + K] {u} ={PI

Exit
Yes No

Figure 1. Flow diagram for freQuency response module. (FRO).
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12.2 RANDOM ANALYSIS

The application of frequency response techniques to the analysis of random processes requires

that the system be linear and that the excitation be stationary with respect to time. The theory

includes a few imoortant theorems which will be reviewed.

An important Quantity in random analysis theory is the autocorrelation function, Rj(T), of a

physical variable, u., which is defined by
J

1 · 1 rT
1m - J (t) (t )'dtT ~ ~ T Uj ' Uj -:

o
(1)

Note that R;(o) is ~he time average value of u. 2, which is an importa~~ quantity in the an-
~ J

alysis of structural failure. The power soectral density Sj(~) of uj is defined by

lim £ 1( e-iwt
U

J
_(t)dt I

2

T ..... T J 0
(2)

It may be shown (using the theory of Fourier integrals) that the autocorrelation func~ion and

the power s!Jectral density are Fourier transfonns of each other.. ThusCl}

1 t'-2 J S-(w) cos (orr) dw
or 0 J

from which follows the mean-square theorem,

(3)

R.• (0)
J

(4)

The transfer function theorem(2) states that, if Hja(w) is the frequency response of any

physical variable. uj ' due an excitation source. Qa' which may be a point force. a loading condi

tion or some other form of excitation, i.e., if

(l)The factor 2~ in Equation 3 is omitted by some authors, and is sometimes replaced by other fac
tors. The value of the factor depends on the definition of Sj(w), Equation 2.

(2i See , for examole, Bisolinghoff, Ashley and Halfman, Aeroelasticity. Addison-Wesley, p.823.
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u.(w) = H. (w) • Q (w)
J Ja a

(5)

where u·(wl and °(w) are the Fourier transforms of u· and Q , then the power spectral density of
J a J a

the response, Sj(w), is related to the power spectral density of the source, Sa(wl, by

(6)

Equation 6 is an imoortant result because it allows the statistical properties (e.g., the

autocorrelation function) of :he response of a system to random excitation to be evaluated via the

techniques of frequency response. Another useful result is that, if sources °1, 02' Q3' etc., are

statistically independent, i.e., if the cross-correlation function between any pair of sources

(7)

is null, then the power soectral density of the total response is equal to the sum of the power

spectral densities of the resoonses due to individual sources. Thus

(8)

If the sources are statistically correlated, the degree of correlation can be expressed by a

cross-spectral density, Sab' and the spectral density of the response may be evaluated from

(9)

*where Hjb is the complex conjugate of Hjb .

In applying the theory it is not necessary to consider the sources to be forces at individual

points. An ensemble of applied forces that are comoletely correlated (i.e., a loading condition)

may also be treated as a source. For example, a plane pressure wave from a specified direction

may be tereated as a source. Furthermore the response may be any physical variable lncluaing

internal forces and stresses as well as displacements, velocities and accelerations.
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RANDOM ANALYSIS

In NASTRAN, Random Analysis is treated as a data reduction procedure that is applied to the

results of a Frequency Response analysis. The Frequency Response analysis is performed for loading

conditions, {Pa}, at a sequence of frequencies wi' Normal data reduction procedures are applied

to the output of the frequency response analysis module (see Figure 1 of Section 9.1), resulting

in a set of output quantities, uj . The calculation of power spectral densities and autocorrelation

functions for the output quantitites is perfermed in the Random Analysis module.

Figure 1 is a simplified flow diagram for the Random Analysis module. The inputs to the mod

ule are the freauency responses, H. (w.), of quantities u~ to loading conditions {P } at frequen-. . Ja 1 J a

cies, w., and the auto- and cross-spec~ral densities of the loading conditions, Sand S b' The
1 a a

response quantities, u
j

' may be displacements, velocities, accelerations, internal forces, or

stresses. The power spectral densities of the response quantities are calculated by Equation 9 or

by EQuation 6, depending on whether the loading conditions are correlated or uncorre1ated. At

user's option the spectral densities due to all sources, considered independent, may be comoined

by means of Equation 8.

The autocorrelation function is com~uted by the following aoproximation to Equation 3

N-llS,(W,+ l ) - S.(wi )zk.L J 1 J [cos(Wi+1') - cos(Wi')]
1=1 (wi+l - Wi)'

+ 'j(W'+') s'n(w,+,') - 'jew,) s'n(w,') }

which assumes that Sj(w) varies linearly between Wi and "'i+1' The user specifies the sequence of

values of T. The rms value of the response, uj ' is evaluated as the square root of a trapezoidal

approxima~ion to Equation 4, i.e.,

_ [ 1 tl-l ~1/2
u. = -4 I [5.(",\. 1) + S.(w.)](w·+l - "'.)

J 1T i+1 J 1+ J 1 1 1
(11)

The power spectral densities, Sj' are olotted versus frequency and the autocorrelation func

tions, Rj(T), are plotted versus the time delay, T, at the user's request.

Cross-correlations and cross-spectral densit~es between different output quantities are not

calculated.
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Enter

*
sJ" II H. HJ"b sabab Ja

yes no

S.
Ja

no

compute rms value

yes

yes

no

compute Autocorrelation
Functions

Figure 1. Flm~ diagram for random analysis module.
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13. COMPUTER GRAPHICS

13.1 STRUCTURE PLOTTER

Structures, as modeled by the finite element method employed in NASTRAN, readily yield to

pictorial presentation by automatic plotters. The structural model is defined by a group of grid

points, each of wnich has its location in space defined by a set of coordinates. These grid

points are connected by structural elements with straight edges, which are easily drawn on the

two-dimensional surface of the plotter output media.

For structures with many elements, plotting is a vitally important tool for detecting errors

in the geometric location of grid points and in the connection of elements to grid points. Gross

errors are prominently displayed, particularly if the structure has a regular geometry.

Structure olotting is also an important aid for visualizing the vibration and buckling mode

shapes of geometrically complex structures, and the deflections of statically loaded structures.

The aoility to display t~e deflections at selected times of dynamically loaded structures is also

available and may prove to be useful for some applications, in spite of the relatively large

expense.

Since grid point coordinates are available in a common basic coordinate system (see Section

3.4), the operations of theoretical interest which the plot generating modules perform are:

1. to obtain the coordinates of a projection of the structural model on a user-selected
two-dimensional surfac~ by one of three available projection systems;

2. to convert the coordinates of points on the user-selected two-dimensional surface to
plotter coordinates;

3. to scale the structural deformations in order to produce observable deflections of the
structural model.

The theory used to produce orthograpnic, perspective, and stereoscopic projections will be

described. followed by a discussion of mOdel-to-plotter and deformation scaling.

A discussion of the means by which the NASTRAN user requests structure plots will be found

in Chapter 4 of the User's Manual.

13.1.1 Structure Plotter Coordinate System and Orthographic Projection

In order to define the coordinates of an orthographic projection of the structural model, an

R, S, T plotter coordinate system is defined as shown in Figure 1.
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., s

R

Figure 1. Plotter coordinate system.

The $-T plane is taken as the plane of projection. The structural model is defined in the basic

coordinate system, which is denoted as the X, Y, Z coordinate system. The user specifies the

position of the structural model with respect to the 5-T projection plane by the angles y, Band

a. These angles position the X, Y, Z coordinate system with respect to the R, 5, T coordinate

system. The two coordinate systems are coincident for y = 6 =a =O. The sequence in which ~he

rotations are taken is crucial and has been abritrarily chosen as y, the rotation about the T-axis

fOllowed by E, the rotation about the 5-axis, followed by a, the rotation about the R-axis.

Normally, a is not used since it does not affect the appearance of the 5-T projection, but only

its orientation on the page.

The orthographic projection is obtained by computing the 5 and T coordinates of each point

having coordinates X, Y, I from the transformation equation

m= [A ][AS][A ] m, (1)a y

13.1-2



STRUCTURE PLOTTER

where

[A ]
y

and

[A ]
::t

[OOSY -siny

~]slny cosy (2)

0 0

[ 00';
0 s:n,]

-s ~nB
(3)

0 casS

[
0

~ l
0 coso: (4)-maJ
0 sino: COSet

In order to illustrate clearly the orientation process, Figure 2 shows a rectangular

parallelepiped as it is rotated througn the y, $, 0: sequence. The final S-T plane shown in

Figure 2d contains the desired orthograpnic ?rojection.

13.1.2 Perspective Projection

In addition to tile three angular relationships required for orthographic projection, the per

specti ve ;Jrojecti on requi res knowl edge of the vantage poi nt in the R-S-T sys tern (i.e., the three

coordinates of the observer), and the location of the projection plane (plotter surface). The

vantage point is selected by the user (or automatically by the program), and lies in the positive

R half space as shown in Figure 3. The projection plane is chosen to lie between the observer

and ~he S-T plane.

For each point, the coordinates Sf and T' OR the projection plane (see Figure 3) are obtained

from the orthographic projection coordinates R, S, T by

(5)

where Ro' So' To are t~e coordinates of the vantage point and do is the separation distance

between the vantage point and the projection plane.

13.1-3



COMPUTER GRAPHICS

13.1.3 Stereoscooic Projection

The stereoscopic effect is obtained through the differences in images received by the left

and right eyes. Each is a perspective image, but with a different vantage point. The U'lO vantage

points are separated horizontally by 70 mm (2.756 inches), the nominal ocular separation standard

used in commercially available stereoscopic cameras and viewers. Two plots are produced for view

ing with a stereoscopic viewer.

13.1.4 Projection Plane to Plotter Transformations

Since the plotter surface is defined differently for each of the plotters used in NASTRAN, and

since it is desirable to minimize the amount of special coding for each plotter, a common interface

with the plotter routines is provided wherein the plotted surface is assumed to have a lower left

corner defined by x, y coordinates (0,0) and an upper right corner defined by x, y coordinates

(1,1). Plotter utility routines are utilized to convert from this system to each individual

plotter.

Since the coordinates of points in any of the projection planes previously discussed may

have arbitrary numerical values, a linear mapping of the form

(6)

is used, where the transformation constants [Aij ] and xo' Yo are determined as shown below so as to

fill that portion of the x, y space required by the user or automatically selected by the program.

In the case of a perspective projection, {Sf and {T} are replaced by {S'} and {T ' } Since we

desire no distortion of the plotted object and the orientation has already been specified, we set

Let

M 1 [(T T) - (S - 5 'J2 max - min max min'

13. 1-4
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Then, to fill the available x, y space we requi re, for 1<1 > 0,

a AT. + Yorn,n

A Trnax + Yo
(9)

m = A SInin + x
0

1-m A Smax + x
0

or, for M< 0,

m = AT. + Yomu:

l-m

o

ATmax+yo

A Srnin + Xo

(10 )

where m is the hori zental margi n for M > 0 and the verti ca1 margi!1 for M < O.

From (9) or (lO) the quantities m, A, xo ' Yo' and thus the plotter coordinates, are deter-

mined.

13.1.5 Deformation Scaling

In plotting deformed structures, the components of displacement are added to the coordinates

of the undeformed grid points to obtain the coordinates of the grid points of the deformed struc

ture. Since the numerical magnitude of the physical structural displacements is usually much

smaller than the size of the structure itself, additional scaling must be performed on the dis

placement vectors in order to obtain a viewable plot. In NASTP~ this is done by the user who

specifies a value for the magnitude of the maximum structural deflection i~ units of length of the

undeformed structural model. Thus, if max {Tmax - Tmin , Smax - Smin} were, say, 1000 units, a

specification of 50 would result in a plotted maximum deformation equal to 5% of the maximum plot

size. In addition, the scale of the deformed structure, described in Section 13.1.4, is reduced

by 5% to accommodate the deformation vectors.

13.1.6 Structure Plotter Examples

Figures 4 and 5 show examples of plots generated by the NASTRAN Structure Plotter using the

Stromberg-Carlson SC-4020 electronic plotter. Titling information usually presented on plots has
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been deleted from the figures.

Figure 4a shows a typical undeformed orthographic projection of a section of the structural

model for a large dish antenna. This is about as detailed a model as one should attempt using

the SC-4020 since the ability to "see" the object being depicted is marginal. Using one of the

table plotters. however. a plot up to 30 inches square may be requested. Thus, considerably more

detailed objects may be plotted without loss Qf clarity on the table plotters.

Figure 4b shows a perspective view of an undeformed 5 x 10 plate model. Grid point labels

have been requested and are shown positioned adjace~t to each grid point. A vector deformation

request has resulted in the displacement patterns indicated. On the table plotters, a different

pen could be used to draw the vectors with heavier or lighter lines than those of the undeformed

shape, or with lines of a different color, or even on a transparent overlay. For the electronic

plotters, only a heavier line density can be employed to make the vector lines contrast with those

of the ~ndeformed structure.

Figure 5 shews two perspective views of plate models using the shape deformation option.

These deformed shapes may be superimposed on the undeformed snape if desired.
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Figure 2. Plotter -model orientation.
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Structural Model
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Vantage Point
(Ro ' So' To)

Figure 3. Perspective projection geometry.

13.1-8

s



STRUCTURE PLOTTER

Undeformed plot (orthographic projection)

(b) Deformed plot using vectors (perspective project~on)

Figure 4. Structure plotter examples.

13.1-9



COMPUTER GRAPHICS

(a) Deformed shape (perspective projection)

(b) Deformed shape (perspective projection)

Figure 5. Structure plotter examples.
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13.2 CURVE PLOTTER

The NASTRAN curve plotter provides the user with the ability to generate x-y graphs of any

available response quantities as functions of frequency (for frequency response analysis) or time

(for transient response analysis). Scaling, axes, axis labeling, grid lines, logarithmic scales,

and titling are all features automatically provided by the plotter. The user also may control

those items if he wishes. Two basic fonms are provided, the whole frame and the split frame.

Whole frame curve plots utilize the whole sheet of graph paper or camera frame, whereas the split

frame consists of an upper half frame and a lower half frame. The latter form is useful for

plotting complex quantities resulting from frequency response analysis or for making comparisons.

On any of the frames described above, one or more curves may be plotted. If not controlled

by the user, scaling will be accomplished so as to accomodate all curves on the same frame. Only

one ordinate and one abscissa scale is provided for any single frame. The user has the option of

drawing lines between the points of the tabular function, drawing symbols at the points of the

tabular function or both. The use of different symbols for the several curves of a single frame

is not provided, however.

The detailed descri pti on of the user input c3r'ds needed to requast curve plots wi 11 be found

in Section 4.3 of the User's Manual.
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13.3 MATRIX TOPOLOGY PLOTTER 

The NASTRAN Matrix Topology Plotter generates a picture showing the 

location of nonzero elements in a matrix. This feature is useful in 

displaying a stiffness matrix since the bandedness and location of 

active-columns are important for efficiency as described in Section 2.2. 
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14.1 REPRESENTATION OF PART OF A STRUCTURE BY ITS VIBRATION MODES

It is sometimes required in a structural analysis to describe part of a structure by ortho

gonal vibration modes. In so~e instances structural information may not be available in other

forms. The modal information may be derived either from ether analyses or from vibration tests.

In the methods to be described, no special programming instructions and no special input data

are used in describing the substructure to NASTRAN. The simulation of the part within the com

plete idealized model is accomplished by weans of ordinary scalar elements and multipoint con-

straints. The particular arrangements of eiements to be described are not the only possible ones,

and the user is encouraged to employ variations of his own. The only general restrictions are

th0se imposed by linearity, conserva~ion of energy, and reciprocity.

The main purpose of this section is to illustrate the manner in which scalar elements and

multipoint constraints can be used to simulate structural properties when they are expressed in

abstract terms (e.g. by modal coordinates). A secondary purpose is to illustrate procedures that

have been found useful in many practical situations.

When part of a structure is described by vibration modes, it ~ust first be ascertained how

the degrees of freedom at which it is connected to the remainder of the structure were supported

when the vibration modes were measured (or computed). Three cases are distinguished:

1. All connection coordinates free.

2. All connection coordinates restrained.

3. Some connection coordinates free and some restrained.

The first condition is usually employed in vibration tests or analyses of large parts, such

as an airplane fuselage. It is recognized that often it is not possible to achieve test condi

tions that are effectively free from restraint. (No such Qualification applies of course to cal

culated modes). The second condition is usually employed in vibration tests or analyses of small

parts. such as a horizontal stabilizer.

Case 1 will be discussed first, because it is the simplest. The required data are the

vibration mode frequencies, Wi' the mode shapes or eigenvectors. {~i}' and the mass distribution

of the part, expressed by the mass matrix [MpJ. The eigenvectors need not be normalized in any

particular manner. Let the degrees of freedom at the points of connection to the remainder of

the structure be designated by the vector {uc}. Then the motions of these points are related to
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modal coordinates {~i} of the part by

(1)

(See Section 9.3.4 for a discussion of modal transformations.) The columns of [¢ci] are the

eigenvectors, {~i}' abbreviated to include only the degrees of freedom at connection points, {uc}'

The us~al approximation of including only a finite number of eigenvectors in [¢ci] produces an

idealized model for the part that is too stiff. Specification of the part is completed by calcu-

lating the generalized mass, mi , stiffness, ki , and damping, bi , associated with each modal coor

dinate, ~i' as follows (See discussion in Section 9.3.4).

m. • '.T[M ] { 1 (2)
1 \-~i' 0 °i'

k. 2 (3)Wi m.
1 1

bi 9imi wi (4)

where gi is a damping factor fer the ith mode. frequently 9i will not be accurately known.

The equation of motion for the generalized coordinate, ~i' is

= (5)

where {fc} is the vector of forces applied to the subst~Jcture at the connection points, and {¢ci}

is the eigenvector {¢i} abbreviated to include only the degrees of freedom at connection points.

Equations 1 through 5 contain all of the information required to describe the part. The

way in which Equation 1 is used in the construction of the idealized model is to regard each of

its rows as an equation of constraint between a constrained degree of freedom, uc ' and the free

scalar points, {~i}' mi , ki , and bi are, respectively, concentrated scalar mass, stiffness, and

damping elements connected to ~i' Figure 1 illustrates the interconnection of the elements in

diagrammatic form.

The user prepares the idealized model of Figure 1 for NASTRAN by filling out data cards that

declare the existence of scalar points, ~i; the values of scalar structural elements mi , bi , and

k,; and the coefficients in the equations of constraint. Since the information is input to the
I

program at the element level, it is available for the solution of any static or dynamic problem

by any of the rigid,formats provided with NASTRAN.
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The derivation of an idealized model for the case when some or all of the connection points

are restrained during measurement (or calculation) of the substructure modes is considerably more

involved. A general solution, that was first devised in Reference 1, is developed below. The

objective is to derive a set of relationships between the modal coordinates and the degrees of

freedom at connection points (both free and restrained) that can be treated as equations of con

straint. The modal mass, damping, and stiffness properties will, as in case 1, be simulated by

scalar structural elements. The reader may find it helpful to review the notation and procedures

described in Section 9.3 before proceeding.

let the degrees of freedom of ~hc substructure be partitioned into {ua}, degrees of freedom

that are free in the substructure modes, and rUb}' degrees of freedom that are restrained in the

substructure modes. The equations of motion for the substructure (without damping) can then be

written as

(6)

{fa} and {fb} are forces applied to the substructure. ihe mass of the substructure is assumed to

be concentrated at the free coordinates, {ua}, which include all coordinates not restrained in the

substructure modes. Any substructure mass on the restrained coordinates, {ub}, should be lumped

into the remainder of the structure because the masses on restrained coordinates produce no effect

during the vibration modes of the substructure. They are, therefore; ignored in the modal repre

sentation of the substructure. The stiffness matrix is partitioned in Equation 6 according to free

and restrained coordinates. Note that {ua} contains the free connection coordinates as a subset.

The substructure mode shapes are described by a modal t~ansformation beuveen the free coor-

dinates, {ua}, and modal coordinates,

(7)

The corresponding generalized forces on the modal coordinates are

(8)

(1 )R. H. MacNeal. "Vibrations of Composite Systems", Office of Scientific Research Report OSR
TN-55-120, October, 1954.
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By virtue of the orthogonality property of vibration modes

where [kiJ and [mi ] are diagonal matrices of the modal coefficients computed by Equations 2 and 3.

Thus, using Equations 7, 8, and 9 to transform.Equation 6,

It is convenient to separate the inertia forces from Equation 10, so that, defining

{f,.} = {f.} - [m.]{p2~.}1 , ,

(l0)

(11 )

(12 )

Equation 12 is a stiffness equation in stanaard form. A form that leads more directly to a

useful physical model is obtained by placing ~. on the left-hand side.
. 1

where

and

Thus

(13)

(14 )

(5)

If the set of restrained points, {ub}, is nonredundant, the matrix rKbbJ, is null (see

Section 5.7). This condition will be assumed. The matrix [¢ib] is calculated f~m properties of

the vibration modes as follows. Duri"ng a vibration mode, {ub} = 0, and the vector of forces
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acti~g on the constraints is, from Equation 13,

(16 )

Define [Kbi ] to be the matrix of forces on the constraints due to unit values of the modal coor

dinates while "the substructure is vibrating in its normal modes.

(7)

Then, comparing Equations 16 and 17,

(18)

or, in other words, [uib] is equal to [KbiJT with each row divided by the appropriate element of

[k). ['~ibJ may a1so be used to define an auxiliary set of modal coordinates

(19)

Then, from the top half of Equation 13,

(20)

The free connection coordinates {uc} are a subset of {ua}· The relation between {uc} and the

modal coordinates {~i} is

{u 1 = [0 .]{P.>
C' C1 '">1 '

where [~ci] is the appropriate partition of [mai ]·

(21)

Equations 11, 19, 20 and 21 provide a complete description of the substructure. They are

also used to construct the idealized model of the substructure, shown in Figure 2. The modal

dampers, bi , are placed across the modal springs, ki , if they simulate structural da~ping. If

they simulate damping due to the viscosity of a surrounding fluid environment, they should be

placed between the modal coordinates and ground. The user may also, if he desires, retain some

non-connection coordinates in the model in order to record motions at other points in the sub-

structure. This is done by constructing constraints from additional rows of Equation 7. Equation

19 expresses a new se~ of constraint eq~dtions between the auxiliary modal coordinates and the

degrees of freedom that are r2strai~ed in substructure modes.
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The input data for the program cons i st of the coeffi ci ents. of the equati ons of cons tra i nt,

[oci] and [~ibJ, the values of the scalar elements, mi , bi , and ki , and their connections.

The techniques discussed above provide the capability for complete dynamic partitioning of

a structure, since all of its parts, rather than a few, may be represented by their respective

vibration modes(2). The general case diagrammed in Figure 2 is particularly useful for this

purpose. Consider for example, the missile structure shown in Figure 3. The missile is physi

cally partitioned with support conditions for the calculation of uncoupled vibration modes as

shown in the figure. The first partition, (a), is unsupported while the others are cantilevered.

The lumped element model for the compos~te system consists of parts with the form of Figure 2 con

nected in tandem. It is evident from the form of the lumped element model that the independent

degrees of freedom consist of the modal coordinates {~a}' {~b}' {~c}' etc. The displacement sets

{ua,b}' [~b}> {ub,c}' etc., are' all constrained. The dynamic equations> when written by the stiff

ness method> are banded with bandwidth equal to the number of modal coordinates in three successive

partitions.

The user should be cautioned against an uncritical use of dynamic partitioning techniques.

Use of a smaller number of modes as degrees of freedom to represent a dynamical system always re

sults in a loss of mass, a loss of flexibility, or both. Procedures have been developed(1,3) for

incorporating the "residual mass" or the "residual flexibility" into the analysis with substantial

increase in accuracy. In general, however, established techniques for truncating the modes of a

complete system do not automatically give good results when applied to partitions.

(2)W. C. Hurty "On the Dynamic Analysis of Structural Systems using Component Modes" AIM
Journal, April 1965.

(3)R. H. tAacNeal and R. G. Schwendler, "Optimum Structural Representation in Aeroelastic Analysis"
ASD TR-6l-680. January, 1962.
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{u } = [$ .] {~.}
C C1 1
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Structural
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Figure 1. Representa tion of part of a structure by its vibration modes when all connection
points are free while the modes are calculated.

Structural
Coordinates

{ub}

Constraints
{~i} ; [~ibJ tUb}

"3

~2
0-4--_----.~,.,.,._r_-+_o;2 ['f

i
bJ

III

Constraints
{ . [ 1 {. ,
uc ! = ~ci· ~ij

Structural
Coordinates

{ u ',.
c'

Figure 2. Representation of part of a structure by its vibration modes in the general case when
some connection points are free and some are rigidly constrained.
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(a) (b) (c) (d) (e)

Missile structure, unpartitioned

Support conditions for partitions while calculating substructure
vibration modes.

I
• (a) -----1------- (b)-----.......,1

Portion of composite model

Figure 3. Dynamic partitioning of missile str~cture.
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14.2 REPRESENTATION OF CONTROL SYSTEMS

The principal means by which linear control systems are treated in NASTRAN are the Extra

Points and the Transfer Function, described in Section 9.3.2. Nonlinear control systems employ,

in addition, the Nonlinear Elements described in Section 11.2.

The general viewooint is taken that the control system is an adjunct of the structure, rather

than vice versa. Thus, the properties of the control system are expressed in the quadratic format

(Mp2 + Bp + K) of dynamic structural analysis. Since some readers, including control system ana-

lysts, may not be familiar with the technique, an example that includes the major points is des-

cribed below.

The variables that exist in control systems (voltages, valve positions, etc.) are assigned

degrees of freedom, ue ' that are called extra points. The vector of extra points, {ue}, is merged

with {ua}, the degrees of freedom at structural gridpoints, to form the dynamic analysis set tUd}

(see Section 9.3.1). In the direct method of problem formulation, the extra points can be assigned

sequence 'numbers such that they are interspersed with structural degrees of freedom. In the modal

method of problem formulation they are collected together at the end of the augmented modal vec~or

{uh} (see Section 9.3.4).

In order to facilitate the treatment of control systems, NASTRAN incluaes an input data format

for the specification of transfer functions in the form

(9)

where ue must be an extra point but ui can be any degree of freedom. As explained in Section

9.3.2, Equation 9 is treated as a differential equation

which is incorporated into the genera1 dynamic matrix equation

o (1 0)

{P} (11 )

The coefficients in Equation 10 thereby assume the roles ,of coefficients in the direct input stiff

ness, damping and mass matrices, [Kdd
2J, [Bdd

2j, and [Mdd
2]. The user may also add terms directly
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to these matrices by means of a separate direct matrix input format. It is also permitted to ap

ply a load to an extra point. so that the vector {P} in Equation 11. includes trre vector of such

loads. [Pe}' as a subset.

As an example of the general approach, consider the control system shown in Figure 1 which

might represent a simp1ified model of the autopilot of a launch vehicle. It contains many of the

components found in control systems including attitude and rate sensors, signal conditioners, and

a nonlinear mechanical actuator with local feedback. The structure is represented in Figure 1 by

the displacement components which are sensed by the control system, or to which loads are applied.

The equations of the control system are listed in TabJe 1. The first six equations give the

outputs of the devices labeled 1 to 6 in Figure 1 in terms of their inputs_ Equation 7 defines

the input signa1 4 u10 , as a known function of time. Equation 8 states that the force on the struc

ture. Fl1 , is a function of the input to the mechanical actuator, u9-

In the analysis, an Extra Point is assigned to each of the new variables, u4 - - - UlO . ,he

coefficients of the transfer functions, expressed by Equations 1 to 8, are listed in Table 2. In

the case of the input signal, Equation 7, a load equal to e(t) is Dlaced on coordinate 10, and the

diagonal term in the stiffness matrix, bo' is set equal to unity.

The mechanical force produced by the control system, Fl1 , is a nonlinear function of the in

put to the actuator, u9 , as shown in Figure 1. This function is most easily treated by the Arbi

trary Function Generator element (see Section 11.2). for which the governing equation is

where N. (t) i s the load app 1ied to u.,
1 1

5i is an arbitrary (convenience) factor,

F(u j ) is a tabulated function,

uj is any permissible displacement component.

(12)

If the actuator were linear. such that

(l3)

the effect could also be represented by placing -K in the element of the direct input stiffness
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matrix [Kdd
2J corresponding to the row of u1l and the column of Ug. Nonlinear terms are not per

mitted in complex eigenvalue analysis or in frequency response analysis, so that the linear form

of representation is required for such cases. Also, in a modal formulation of a transient res

ponse problem. it is not permitted to apply nonlinear loads directly to s~ructural grid points.

This restriction is imposed in order to avoid the modal transformation of nonlinear terms. If a

modal formulation has been selected, the representation of the mechanical actuator in Figure 1 is

modified as shown below.

Linear
Actuator

Nonlinear
Actuator

~.

An additional extra point, u12 ' is created to which the nonlinear force F12 = F{ug) is ap

plied. Two terms are added to the direct input stiffness matrix: the element of [Kdd
2] corres

ponding to the row and column of u12 is set equal to +1; the element of [Kdd
2J corresponding to .

the row of u11 and the column of u12 is set equal to -1. By this means the force on the structur~

Fll , is made equal to F12, and modal transformation of the nonlinear force is avoided.
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TABLE 1. Equations of Example Contra' System

1 (ApI1Z + Bpu 3) (1)114 + T1D

,
(~\

Us 11 "+ TZP ,

u6 ' U (3)
+ T3P '0

Ao + A,p
(C u4 + 0 Us ~ E u6) (4 )u7 B

O
+ 81P + BZp

2

G un
(5)u8 1 + '4P

u9 u7 - u8 (6)

U,O = e( t) (7)

Fn F(ug) ( 8)
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TABLE 2. Transfer Function Table

Transfer b b, b2
a

Function u ui a, a
2e 0 0

No.

, u4
,

" u2 A

u3
B

2 Us ,
'2 u,

,
., Us 1 '3 u10

,
oJ

4 u7 Bo B, B2 u4 C A C A,
0

Us o Ao o A1
Us E A E A,

0

S Us 1 '4 u11 G

6 ug
, u7

1

Us -1

7 u'o
,
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Figure 1. Example control system.
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ERROR ANALYSIS

15.1 SELECTION OF SIGNIFICANT FIGURES BASED ON ROUND-OFF ERRORS

One of the more important early decisions in the design of NASTRAN was the decision to use

double-precision arithmetic (approximately sixteen decimal digits) in most of the calculations made

with NASTRAN. including the formation of structural matrices and matrix decomposition. Since most

existing structural analysis programs employ single-precision for stiffness matrix formation and

matrix decomposition, an explanation of the reasons for the decision is in order. It should, per

haps, be emphasized that the decision was ~de on the assumption that a singl~-precision number has

27 binary bits (approximately eight decimal digits) rather than the 21 bits that are available with

the IBM 360/370 computers, or the 48 bits that ar~ available with the CDC 6000 series computers.

The only significant exceptions where single-precision is used in NASTP~'N occur in calculations

inyolving previously computed response vectors, such as in modal transformation and in the calcula

tion of stresses from displacements.* Section 2 of the Programmer's Manual documents the precision

of the matrix data blocks. If a matrix data block is in double-precision format, then it was gen

erated using double-precision arithmetic. All table data blocks are in single-precision format.

It was known at the time the decision was made that NASTR~N would be called upon to solve

structural problems that were large according to the then current standards. Previous experience

with single-precision arithmetic was not, therefore, regarded as a reliable guide, and a brief ana

lytical and experimen~al investigation was made of the effects of round-off errors in beam and

framework problems. No attempt was made to develop a comprehensive view of the effects of grid

point sequencing, stiffness tapering, different kinds of elements. etc.,-on the growth of roundoff

error. It was known from previous experience that beams (particularly cantileve~ beams) have no

toriously ill-conditioned stiffness matrices so that results based on the study of beams should be

conservative for other structures. Since the decision to be made was whether or not to include

eight additional decimal digits, only very rough accuracy was required. The results of the study

are reported below.

Two different kinds of errors were considered: errors arising in the calculation of the ele

ments of a stiffness matrix; and errors arising in the SUbsequent triangu:ar decomposition of a

stiffness matrix. One of the more interesting results of the study was that errors of the first

kind have about the same magnitude as errors of the second kind.

* Single precision has been selectively added to the CDC version of NASTRAN for most

matrix' operations. Details are described in Section 5.5.1 of the Programmer's Manual.
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The equilibrium equation for the displacement method

[K]{u} = {P}

. becomes. in ~he presence of errors in the stiffness matrix.

(1)

[K + K J{u + u }
E e;

{P} (2)

where [K~] is the error in the stiffness matrix and {u } is the resulting error in the solution... . e:

vector. Neglecting the product of two errors and subtracting Equation 1 from Equation 2 results in

[K]{u} = -[K ]{u} = {P }
E e: E

(3)

This result shows that the error vector can be (approximately) calculated from the application of

a load vector, {PEl, to the original structural system which is the product of the error matrix

ana the correct displacement solution vector.

An idea of the magnitude of error due to this source in uniform beams may readily be ccn

structed if it is assumed that the error exi·sts only in the diagonal (self) term for displacement

at the free end of an end-loaded cantilever beam. Let the magnitude of the error be one .binary

bit in the 27th place. The term under consideration in the stiffness matrix is equal to 12EI/~x3

where ~ is the length of one element in the beam. Tnus the corresponding term in the error ma-

trix is

The correct solution for the displacement at the free end is

u =

(4)

(5)

where i is the total length of the beam. The load to be used in Equation 3 (Which in this case

reduces to a scalar equation) is. therefore.

-K ue: (6)

The ratio of the displacement error to the true displacement at the free end is equal to the

ratio of load, so that
p

= e: =p (7)
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where N = t/ux is the number of cells in the cantilever beam. This result is shown in Figure 1

for various numbers of elell'ents in the beam as the line labeled "tip modified."

A more meaningful (and probably conservative) estimate for the error ratio c~n be calculated

by assuming that all diagonal elements in the stiffness matrix are in error in the same direction

by one binary bit in the 27th place. The result of this calculation for a uniform cantilever beam

and for unifonn square frames is shown in Figure 1 as the 1ines 1abeled "all elements modified."

It will be noted, in the case of the beam, that the error increases as the fourth power of the

number of grid points, as may be expected since the number of terms in the error load vector, {P },
e:

increases in direct proportion to the number of grid points, and the error in displacement for a

single tenn increases as N3. If the errors are randomly distributed with respect to sign, the ra

tio of the net error loading to the erro~ loading for a single term will increase approximately in

proportion to the square root of the number of grid points. Thus it may be expected that, in prac-

tical problems where rounding errors are randomly distributed, the error in the displacement at

the tip of the beam will increase as the 3.5 power of the number of grid points.

Several experim~ntal points indicating the errors for actual problems are -also shown in Figure

1. In the experiments. the accumulation of significant additional error during triangular decom

position was avoided by using higher precision in the decomposition. Severe local variations in

the stiffness of elements can cause substantially greater er~rs than those indicated in Figure 1.

Examination of Figure 1 indicates that if three significan~ decimal digits are desired in the

solution vector and single-precision arithmetic is used to generate the stiffness matrix, canti

lever beam problems are limited to about 20 grid points and square frames are limited to about 150

grid points. Since it was desired to solve larger problems, and since this error cannot in general

be reduced substantially except by carrying more binary bits in the stiffness matrix, it was con

cluded that all stiffness matrices must be generated using double-precision arithmetic. With 8

additional decimal digits in the stiffness matrix, examination of Figure 1 indicates tha~ the prob

lem size for cantilever beams can be extended to several thousand grid points, and for square frames

to hundreds of thousands of grid points before significant round-off error is accumulated.

The errors that occur during decomposition of the stiffness matrix (round-Off errors) were

investigated by experimental means only. Care was taken to ensure that the terms in the stitfness

matrix were integers that would not be truncated in the conversion from decimal to binary arith-

metic. Some experimental determinations of error ratios due to round-off in the solutions for
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cantilever beams and square frames are indicated in Figure 2. The results indicate that if three-

figure accuracy is desired, the number of grid points is limited, with single-precision aritnmetic,

to about 30 for both cantilever beams and square frames. If, on the other hand, double-precision

arithmetic is used, extrapolation of Figure 2 indicates that problem size can be extended to sev

eral thousand grid points for cantilever beams and to hundreds of thousands of grid points for

square frames.

Some improvement in the accuracy of single precision calculation can be achieved by means of

an iterative solution technique (see Section 3.6.2) provided that double precision is used in ac-

cumulating the residual load vectors. The error ratio must, however, be less than unity in order

for the iteration algorithm to be stable, so that, by inspection of Figure 2, only a modest in

crease in problem size is afforded.

Similar concl~sions on the necessity for using double-precision arithmetic for generating the

stiffness matrix and for decomposing matrices result if one considers dynamic problems. Consider,

for example, the fundamental frequency of a cantilever beam with a concentrated mass at the free

end. Let the error in the stiffness matrix be equal to 2-27 in the self term for lateral dispiace

ment of the free end and be equal to zero elsewhere. Then the calculated frequency, is

(8)

where

The ratio of the calculated frequency to the analytically correct frequency, ~a' is

(9)

Thus the erro.r in frequency is about one-half as great as the error in displacement for the cor

responding static problem, Equation 7.

In the analysis of free-free structures the accumulation of truncation error in the formation
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of the stiffness matrix may be interpreted as ~ set of springs (either positive or negative) that

restrain the rigid body motions. Analysis shows that. for direct numerical integration of the

equations of motion, double-precision formation of the stiffness matrix is required in order to

contain the errors in the rigid body motions. For such problems single-precision arithmetic is

inadequate for beam problems with more than about ten grid points.

A consideration that does not enter into the examples treated above is the effect of varia

tions in stiffness with position in the structure. A common mistake made by beginners in the dis

placement method is to simulate a rigid constraint by ~cnnecting two grid points with a very stiff

spring. Such an element will, of course, obliterate the contributions of other elements to the

subpartition of the stiffness matrix corresponding to the pair of grid points, and wrong answers

will result. (A stiff element connected from an independent grid point to ground will not. on the

other hand. produce errors.)

NASTRAN provides the means. via multipoint constraints, to avoid errors associated with ex

tremely stiff elements. The user must, however. still decide whether to treat a stiff element as

an elastic body or as a rigid body. The decision will probably be based on an estimate of whether

the modeling e~ror made in repiacir.g an elastic element by a rigid elemer.t is significant. Assum-

ing that the elastic representation will be retained provided that the modeling error is greater

than 10-3, the expected degradation in accuracy due to increased round-off error is approximately

a factor of 1.000. Even so. Figures 1 and 2 indicate that. if double-precision is used. accurate

results can be obtained for cantilever beams with several hundred grid points and square frames with

several thousand grid points.

The conclusion of the investigation can be stated very simply. For problems of the size for

which! NASTRAN has been designed. double-precision arithmetic (16 decimal digits) is necessary. and

the accuracy of the solutions obtained with couole precision arithmetic should be satisfactory, in

the vast majority of cases.
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Figure 1. Effect of stiffness matrix error in static solutions.
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Figure 2. Effect of roundoff error in static solutions.
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15.2 MODELING ERRORS IN THE BENDING OF PLATE STRUCTURES

15.2.1 Triangular Element

The ~rrors associated with the use of the Clough bending triangle are documented in Reference

1. One of the checks made on the Clough triangle in NASTRAN was to run several plate bending pro

blems and compare the results with those given in Reference 1. These results confirmed the equi

valence between the triangle of Reference 1 and the triangular bending element in NASTRAN.

15.2.2 Quadrilateral Element

The quadrilateral element used in NASTRAN is a new development. In order to check the accur

acy of this new element. comparisons were made with the Clough triangle and the Melosh(2) rec

tangle. In developing the stiffness matrix for the Melosh rectangle. the bending curvatures are

.obtained by assuming that the displacements along the edges are third order polynomials. and that

the curvature varies linearly in the direction normal to the edge. It is further assumed that the

twisting effects are resisted by a state of uniform twist in the element. Unlike the NAS~i

quadrilateral. the Melosh rectangle cannot be applied to nonrectangular shapes.

Results of the comparisons of the NASTRAN quadrilateral with the Clough triangle and the

Melosh rectangle are shown in Figures 2 through 9. The schedule of the eight cases considered is

shewn in Figure 1. All calculations were made on a quarter section of the plates with the indi

cated mesh sizes. The central deflection was used as a measure of the quality of the results. In

the case of uniformly loaded plates. the central deflection is given ?y

~ex D (l)

where ex is a deflection coefficient, Dis the flexural rigidity, a is the length of the shorter

side (see Figure 1) and q is the load intensity.

(1 )Clough. R. W. and J. L. Tocher. "Finite Element Stiffness Matrices for Analysis of Plate Bend
ing". Proc. of Conference on Matrix Methods in Structural Mechanics. Air Force Flight Dynamics
Laboratory Report AFFDL-TR-66-80. December, 1965.

(2)Melosh. R. J .• "A Stiffness Matrix for the Analysis of Thin Plates in Bending". Journal of
Aeronautical Sciences. Vol. 28. P.34. 1961.
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For the concentrated load cases, the central deflection is given by

P a2
8-0-

where e is a deflection coefficient and P is the concentrated load.

(2)

Examination of the curves reveals that, in the case of the square plates, the NASTRAN quadri

lateral gives results that are quite similar to those for the Melosh rectangle. However, for the

plates with 2/1 aspect ratio, the Melosh rectangle gives somewhat better results, particularly for

the coarse meshes. In all cases the quadrilateral gives better results than the triangle, parti

cularly in the case of the square plates, where the accuracy is substantially better. The com

parisons indicate that the NASTRAN quadrilateral is a good element to use for plate structures in.

the case of nearly rectangular geometry and with the aspect ratio near unity. This is precisely

the case for which the element was designed.

Experience indicates that the error associated with increased aspect ratios tends to grow

roughly in proportion to the aspect ratio. Therefore, it is desirable to avoid Quadrilateral ele-

ments with large aspect ratios, particularly when using coarse meshes. Although the quadrilateral

element is not restricted to a plane figure, it should not be used in modeling sharply curved sur

faces. In this case triangular elements are preferred.

Triangles are also preferred if the geometry departs significantly from a rectangular pattern.

Experience with rhombic elements, having a 45-degree sweep angle, indicates errors that are two to

five times greater when using quadrilateral elements than when using tri-angular elements with acute

angles. The error is even greater if obtuse triangular elements are used. The large error for

the quadrilateral element in the 45° swept case is probably the result of the composite nature of

the element. Relatively large errors are associated with the two obtuse triangles forming half of

the quadrilateral element, and significantly smaller errors are associated with the two acute tri-

angles fo~ing the other half of the element, see Section 5.8.3.2.

With regard to twisting behavior, the quadrilateral element does not involve any approxima

tion for the case of a square element subjected to uniform twisting moments alor.g its edges. In

this case, the constraints imposed on the diagonals of the quadrilateral conform exactly to the

deformed shape..
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MODELING ERRORS IN THE BENDING OF PLATE STRUCTURES

CASE b/a EDGES LOAD

1 1 SS U

2 2 5S U

3 1 C U

4 2 C U

5 1 55 C

6 2 55 C

7 1 C C

8 2 C C

Edges: Simply Supported (55) or Clamped (C)
Loading: Uniform (U) or Concentrated at Center (C)

Figure 1. Schedule of rectangular pJate analyses.
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15.3 MODELING ERRORS IN MEMBRANE PLATE ELEMENTS

NASTRAN includes three quadrilateral membrane plate elements (QDMEM, QDMEMl and QDMEM2) which

are identical in their connections and physical properties but which produce different results due

to differences in mathematical formulation. All three elements give identical correct results for

a flat element in a state of uniform plane stress. The differences occur when the element is

warped out of plane and, more significantly, when the state of stress is not uniform within the

element.

A frequent application of quadrilateral membrane elements is to model the central web of a

beam, in which .case they are subjected to a steep constant stress gradient. The extraordinarily

large errors displayed in this application by the original NASTRAN quadrilateral membrane element

(QDMEM) were an imoortant motivating force for introducing the other two quadrilateral membrane

elements. Figure 1 shows a comparison of results for the three NASTRAN elements when a pure

bending couple is applied to a square. The improvement of QDMEMl and QDMEM2 over QDMEM is

evident, although even their accuracies are low. The use of two triangular membrane elements

(TRMEM) will produce almost the same result as QDMEM in this example. In the case of the i50

parametric element (QDMEM1), the result shown in Figure 1 can be extended to a general rectangular

shape by means of the formula

~eQDMEM1 = _.....;..1-...:;'V_2_~

~e BEAM + 1-2'V (t
h

\2
THEORY J

(1)

Better accuracy can be achieved by sUbdividing the beam web into two or more rows of elements.

*Figure 2 shows results taken from Reference 1 for a cantilever beam modeled by two rows of

elements. The error in tip displacement for QDMEMl is 14%, which might be acceptable for some

applications, but the error for QDMEM is still unacceptable by any standard.

*1. H.M. Adelman, J.E. Walz and J.l. Rogers, Jr., "An Isoparametric Quadrilateral Membrane Element

for NASTRAN," published in "NASTRAN: USER'S EXPERIENCES," NASA TM X-2637, p. 315-336, Sept. 1972.
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INTEPACTION BETWEEN STRUCTURES AND FLUIDS

16.1 COMPRESSIBLE FLUIDS IN AXISYMMETRIC TANKS

16.1.1 Approach

In the class of problems considered here, the motions of the fluid are assumed to be small

compared to the dimensions of the container so that nonlinear terms in the equations of motion can

be ignored. Such problems should properly be classified as acoustic problems rather ~han as fluid

flow problems. Another general restriction is that the shape of the container is axisymmetric.

There is, however, no implication that the structure of the container has axisymmetric mechanical

properties or that the combined motions of the nuid and the structure are axisymmetric. The

restriction regarding container shape is introduced in order to simplify the equations of the

fluid which, due to the assumption of small motions, can then be decomposed into uncoupled Fourier

components with respect to azimuth position.

Compressibility of the fluid and the effects of gravity on a free surface are both included

in the formulation. Thus, the capability described below can be used to solve a wide practical

range of fluid-structure interaction problems for both liquids and gases.

Two different mathematical approaches are practical for the solution of linear fluid-structure

interaction problems with interface surfaces of arbitrary shape. In the first approach a funda

mental solution of the fluid field equations is used to formulate an integral equation relating

motions and pressures at the fluid surface; the integral equation is then replaced by a finite set

of simultaneous linear equations. In the second approach the field equations are approximated by

a set of linear difference equations (or linear finite element equations) in which the variables

are defined at a finite set of points within the fluid and on its surface: The Tirst approach

has the advantages that it results in a smaller number of equations and that the user is not

burdened with the task of locating grid points within the fluid. It has the disadvantages that

the resulting matrices are completely full. that problems involving compressible fluids can only

be formulated in the frequency domain. that the matrix coefficients a~e transcendental functions

of frequency if the fluid is compressible. and that the effects of inhomogeneous fluid density

cannot be treated. It is, however, an excellent method for homogeneous, incompressible fluids and

it is the only practical method when the fluid is infinite in extent. The second approach has

been selected for the class of problems considered here mainly because it can easily handle

compressibility and space-variable fluid density for all types of analysis. The restriction to

axisymmetric shapes reduces the disadvantage regarding the location cf grid points in the fiuid,
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in that grid points. need only be specified on a cross-section of the fluid and not throughout its

volume. A finite element formulation has been selected, rather than a finite-difference formula

tion, in order to facilitate the solution of problems with arbitrary axisymmetric tank shapes.

The field equations can be expressed directly in terms of the components of motions or, if

the fluid is irrotational, they can be reduced to the solution of the wave equation for a scalar

potential function. The latter formulation has the advantage that the number of variables is only

one third as large, but it has the disadvantage that the enforcement of compatibility at the

boundary between the fluid and the structure is awkward. The awkwardness is not, however, so

great as to cause serious difficulties in problem solution, so that a formulation in terms of a

scalar potential function (specifically the pressure) has been adopted.

In summary, the selected approach is one in which the unknown variables include the harmonic

components of pressure at a finite number of grid points in the fluid, and also the structural

displacements throughout the structure, including points on the interface. The harmonic components

of pressure are mathematically treated by NASTRAN as components of displacement. The inertia

properties of the fiuid are represented by a matrix that is treated like a stiffness matrix and the

compressibility is represented by matrix terms similar to a mass matrix. These matrices are

generated from the properties of "fluid elements" interconnecting fluid grid points. The coupling

between the fiuid and the structure is represented by special matrices that are treated as direct

input matrices (see Section 9.3.3).

The above capability is implemented in NASTRAN primarily by modification of existing func

tional modules. The modules that are affected most significantly are the Input File Processor,

the Structural Matrix Assembler (which processes the fluid elements), and the Geometry Processor.

A new functional module is introduced to generate the fluid-structure interaction matrices.

All of the existing analysis types are available for the solution of fluid-structure inter

action problems, including the calculation of vibration modes, the solution of frequency response

problems and the solution of transient problems. In addition, vibration mcdes can be obtained for

the fluid alone, with a rigid container replacing the structure.
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16.1.2 Fluid Field Equations

The governing equations used in the analysis of the irrotational motions of an inviscid

compressible fluid are:

-+ -+ -+
1 r -) - I7p - PdQPdo + 2" 0d'il u-u == (1)

p = - BV-u (2 )

°d p - 'il- (pu) (3)

where:

u ;s a small displacement of the fluid from a fixed reference point,
..
u is the velocity, (au/at).

..
il is the acceleration, (a 2u/Clt2 ).

p is the mass density of the fluid, at rest,

0d is the mass density of the perturbed fluid,

9 is the vector of the gravity field (opposite to the direction of free fall),

p is the pressure,

B is the bulk modulus of elasticity.

Due to the assumption of small motions, the second term on the left side of Equation 1 will be

ignored. The second term on the right side of Equation 3 will be ignored on the grounds that it is

small and unimportant for most problems. If small motions are assumed, it is significant only in-

problems where the effects of gravity are included and the density varies throughout the fluid.

Ilith these assumptions, Equation 1 may be replaced b:Y the following simplified equation:

(la)

Equations la and 2 are combined as follows to obtain a single equation in terms of the

pressure. Taking the second time derivative of Equation 2, and the divergence (~-) of Equation la

we obtain: ..
p - BI7-u (4)

\7-u 1 -+
(5)- \7- - \7p - \7-g

P
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Combining Equations 4 and 5:

1 P _ \j. 1 V'p = Veg-B p

where ~og :: a is assumed in the following development.

a (6)

Equation 6 is a form of the wave equation. Energy expressions will be derived from it, with

the aid of which equivalent stiffness and mass matrices can be formed. To this end define the sum

of the terms on the left side of Equation 6 to be the generalized force;

1 .. 1
J :: B P - 'iJo p IJp (7)

Introducing the concepts of the calculus of variations, the volume integral of the product of

the variation of the pressure, op, times the generalized force will produce a variation of the

generalized energy:

cH :: r J ap dV :: J (t p - 1J. ~gp) ap dV

~ V

The 7 operations may be transformed by the identity:

'Vo[aP (~Vp)] :: OP\7o(~ vp) + t V(op)ol7p

Substituting Equation 9 into Equation 8 results in

(8)

(9)

oH :: Ii p op dV + Ji 17poV(OP) dV

V V

f \7o[opCi 17~)] dV •

V

(10)

Applying the divergence theorem to the third integral produces an integral over the surface S

(1 J 1 ..&Vo(Sp Co Vp)] dV :: S op (0 \7p) odS (11 )

where the vector S is normal outward from the surface. The first and second integrals in Eaua-

tion 10 may be modified by the identities:

( )X)2 d (ax)o ()t :: 2 dt at ox 2xcSx
(12 )
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where x is any function.

The variation in energy 8H after applying Equations 11 and 12 to Equation 10 is:

6H (l3)

The generalized energy internal to the fluid is the value of the first integral which, it is seen,

contains a term similar in form to kinetic energy, and a term similar in form to potential energy.

The energy flow through the boundary is given by the second integral.

In the finite element method of solution, a set of variables, Pi' equal to the values of p at

specific points, is chosen and the volume is divided into SUbregions, called fluid elements, with

vertices defined by the location of the variables. A "stiffness" matrix [K] is formed from the

potential energy U by the equation:

The "equivalent" po'tential energy for each subregion is, from Equation 13,

U = (-L Vp·~p dVJ 2p
V

(14 )

(15)

The pressure field for each subregion {fluid element} is dependent on the pressures Pi at its

vertices.

The "equivalent" kinetic energy for a fluid element is, from Equation 13,

T = fis {p)2 dV

V

A "mass" matrix [M] is fonned from the kinetic energy by the equation

(l6)

M... =
lJ

(l7)

The set of simultaneous equations describing the pressures at discrete points may then be written

. in matri x form as
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(18)

where {p.} is the vector of pressures at fluid points and {Ii} is the vector of generalized forces
. J

imparted to the fluid. For the uniform gravitational field treated by NASTRAN, {Ii} is null except

at the boundaries.
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16.1.3 Boundary Conditions

Two types of fluid boundaries will be defined. The first is a free surface, which is defined

as an area with zero pressure relative to ambient pressure. Since the fluid pressure is measured

at points fixed in space, the actual surface will be displaced and the pressure measured at the

original position may not be zero. The second type is a structural boundary, through which the

fluid may not diffuse, and at which it must have displacement compatability normal to the surface.

Viscous boundary layer and rough surface friction effects depend on relative tangential velocities.

These effects will be ignored for the present.

A fluid-to-fluid interface is a trival matter since nonuniform fluid density and bulk modulus

are allowed. Except for gravity effects, the pressure and flow through these interfaces are con-

tinuous and compatible. When finite elements are used, the differential equations of motion are

set up in each fluid element separately and each element may have a separate set of physical

parameters.

From Equation 13, Section 16.1.2. the outward energy flow through the boundary is:

OH(boundary) = - (1)

showing that

= J
Si

1 ...
(- l7p)·dS
p

(2)

is the generalized force acting on the pressure over an element of surface area 5i • From Equa

tion la of Section 16.1.2.

so that

...
-ii - 9 (3)
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It is interesting to note that at interior points the quantity

....
I 1- vp

p
-u - g (5)

assumes a role that is analogous to the gradient of the stress tensor in elasticity or to

current density in electrical conduction.

. On the structural boundary define

as the average normal displacement ov~r Si' Then from Equation 4

(6 )

= -So u .
1 n1

(7)

At the ~tructural interface. uni is a structural displacement. Eauation 7 shews that the coef

ficient Si has the form of a mass coefficient.

At a free surface the acceleration may be directly related to the pressure as follows.

dis~laced s~rTace

(zero oressure)

ori~inal surface

For small motions it may be assumed that the pressure near the surface varies linearly with

distance from the displaced surface. Thus. at a point on the original surface. using Equation la.

(8)

The pressure is evaluated at points on the original surface rather than on the displaced surface

due to the Eulerian view point taken in fluid mechanics i.e •• that the reference frame remains

fixed as the fluid moves about. Differentiating Equation 8 twice with respect to time, and
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....
ignoring the nonlinear term, u·cu,

o
........

pu·g (9)

It will be assumed that the gravity vector is in the direction of the outward normal to the

original surface (which is necessary for the original surface to be in equilibrium). Thus

.... ....
ij·ctS

dS 7: ....
9 u·g

dS ..
Pg P (10)

.... ....
where dS and g are the magnitudes of dS and g. Substituting Equation 10 into 4

1 .•
- p dSog I .... ....

g·dS

5;

(11)

Define the average pressure over surface element 5i ,

Pi
1 r
~ j p dS

5i

(12 )

Then from Equation 11, if P9 is uniform over 5i ,

$.
'" 1 •.

- pg Pi (13)

The first term in Equation 13 can be represented as a generalized inertia force in which the

mass coefficient is $i/og. If the gravity field is absent (or is ignored) the mass coefficient

becomes infinite and

p. '" 0
1

(14)

on the surface. Equation 14 is treated in NASTRAN as a rigid constraint.

The effect of the term J 9·dS in Equations 7 and 13 is to produce a static variation of
5i

pressure with depth. It is neglected in NASTRAN dynamic analyses since pressures are measured

relative to static equilibrium.

16.1-9 (411/72)



INTERACTION BETWEEN STRUCTURES AND FLUIDS

The force produced by the fluid on a structural grid point at the boundary is obtained as

foll ows.

....
g

')r~ ci na1
s ur:face

dis:laced surface

/

\

According to the Lagrangian formulation which is used in structural mechanics, the force on

the structural interface is equal to the integral of the pressure over the disolaced surface,

which, to first order in small quantities, equals the pressure on the original surface plus a term

due to the gravitational force on the fluid between the two boundaries. Thus the force on the

boundary structural grid point in the direction of the normal is, assuming small motions,

(15 )

where Pi is the average pressure defined in Equation 12 and ui is the displacement vector of the

structural point. The terms in Equation 7 and in Equation 15 can be written as follows in matrix

form.

[

-P9t" S. : -09 . S. : S'l/Util
= -----~--~-1-----~~-2~-l---~- ~~~

o I -So S I 0 ---
I 1 I

Pi )

(16 )

where s = d/dt and gni and gti are the components of gravity in the normal and tangential direc

tions. Equation 16 is a statement of the boundary conditions at the structural interface.

As an example to illustrate the theory developed to this point consider the following simple

problem.
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r- s
-,

i ncompressi b1e
fluid

structural
mass, Mo

h

I
t

Compute the vertical motion uz ' in response to an oscillating vertical applied force, F.

1. If uniform vertical motion is assumed. the pressure gradient is a ~onstant function of

the pressures, Pi' at the upper and lower surface:

~
az (17)

From Equations 14 and 15. Section 16.1.2. the elements of the "stiffness" matrix are:

r 1 2- (vp) dV) 20
IJ

2
i [ 1(Pl - P2)~-- Sh o

---ap.ap. 2c h
1 J

The complete "stiffness" matrix is. therefore.

(18 )

S[1[K .. J = -
1J ph_l

(19 )

2. Due to free surface effects, the additional generalized force at point P, is, from

Equation 13

S P = _.i. 52 P
l

•- pg 1 09
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3. Noting the fact that the gravity vector and the displacement Uz are both opposite in

direction to the normal vector at the lower fluid boundary, the forces due to the inter-

face, obtained from Equation 16, are

(21 ) .

where FZ2 is the force on the structure. in the direction of uz ' due to fluid pressure.

4. The total equilibrium equation, includlng the contributions of Equations 19, 20 and 21,

and of the structural mass, Mo' is:

\: 2.+.i. s2 S 0ph og
I

ph
I P1/

-------------~-------~-----------I I

5 I S I _Ss2 (22)I

Oh
I

::\I., ph I I
• I_____________ L_______ L ___________
I I
I I Ms20 I S I - Og~I I 0

The pressures and forces, it must be remembered, are measured relative to the static

equilibrium. The applied force ~F is therefore:

(23)

The validity of Equation 22 is verified as follows. The first two rows of Equation 22

are solved to obtain:

1
h P2 9

Pl = 17 =
9 + hs2 P2

-+-
h 9

and

2
P2 Pl + phs Uz

(24)

(25 )
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or, substituting Equation 24 into Equation 25,

g

which reduces to

Substituting Equation 26 into the third row of Equation 22 results in:

Substituting for. ~F from Equation 23 produces the final equation of motion:

(M + phS)(u + g) = Fo z

(26 )

(27)

which is the obvious answer for the uniform acceleration of the total mass of the system.
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16.1.4 Fluid Elements

16.1.4.1 Method of Derivation

The mathematical model for the-compressible fluid consists of a gridwork of points at which

pressures are calculated, and a set of "fluid elements" which are connected to the grid points and

which fill the space occupied by the fluid. The model is analogous to a finite element structural

model. The pressure is analogous to displacement and the pressure gradient is analogous to strain.

The problem is assumed to have axial symmetry so that the "structural" model is defined by a set

of fluid grid ooints in a plane that includes the axis of symmetry. Each fluid element occupies

the interior of a circular ring that is concentric with the axis of symmetry. The surfaces of the

ring are cones which intersect along circles that pass through the fluid grid points. For this

reason the fluid grid points will also be referred to as fluid circles.

Due to the assumption of axial symmetry. the pressure within a fluid element can be expanded

in a Fourier series with respect to the azimuth coordinate, ¢,

p(r,-n,z)
N
)' pn cos n<p +

n;l

N
'"L.

n=l

n*P sin n$ (1)

o n n*The coefficients P , P and P are functions of position in a radial plane. They will be

expanded in truncated power series o~ the radial and axial coordinates. Thus.

n n n
qo + ql r + q2 z +

n* n* n*
qo + ql r + q2 z + .. ,

n <: 0

n ~ 1

(2)

(3)

The coefficients qj and qj* are called the generalized coordinates of the element. They are

selected to make the values of pn and pn* match the values of the pressure coefficients at the

fluid grid points located at the corners of the element.

Thus, if p~ is the value of pn at the i th fluid grid point,

[Hn ] {P~}qp 1
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where [H~p] is a matrix of constant coefficients. Note that the matrices for the starred and

unstarred coefficients are identical. Since [H~p] is evaluated from its inverse, see Section

16.1.4.2, it must be a square matrix, and the number of generalized coordinates for harmonic coef

ficient must be equal to the number of fluid grid points to which the element is attached.

The generalized potential energy contained within the volume of the element is, from Equa

tion 15, Section 16.1.2,

1 (lJp.\7p) dV
p

(6 )

where the gradient of the pressure, \7p, is the vector:

\7p

Using Equation ell. the gradient is:

~e + l~ -;; + ~-;
ar r r a~ ¢ az z (7)

N (apn "pn* •L az cos n¢ + --az- SlO
n=l

(8)

The integral over the volume consists of separate integrals over the angle, ¢, and over the

cross-sectional area, A. Thus,

(9)

where dA = dr dz.

The inner integration results in zero values for all products of different harmonics and all

sine-cosine products. The potential energy expression after applying the inner integration is:
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N
+ I

n=l J
r.7!!. f,( ;;p")2 + (3pn )2

20 L: '1r ;;z

(10)

Note that the narmonics. n. are uncoupled. and that the starred and unstarred terms are uncoupled.

The pressure coefficients po. pn and pn*, which vary throughout the element. are evaluated in
o n n*terms of the constant coefficients (or generalized coordinates) qj' qj and qj. Thus the energy

can be expressed as a quadratic function of these coordinates. The elements of the generalized

stiffness matrix referred to the generalized coordinates for t,e nth harmonic order are

K~~
lJ

(11 )

Using Equation 4. which expresses a linear relationShip between the pressure coefficients at

grid points and the generalized coordinates. the stiffness matrix for each harmonic is:

rK~.] = [H" JT [K~qJ [H n ]
- lJ qp lJ qp

The stiffness matrix for the starred pressure coefficients is identically the same.

(12 )

The equivalent mass matrix is derived in a similar manner. The "kinetic" energy. given by

Equation 16 of Section 16.1.2. is first expanded in terms of the harmonic pressure coefficients.

When the integration with respect to 0 is carried out. the result is

where

T
N

To + I
n=l

T +
n

(13 )
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T = I rrr {po)2 dA
0 B

Tn f ~ (pn)2 dA (14)28
A

*

I !!. (pn*) 2 dATn 28

The pressure coefficients at interior points can, by combining Equation 2 with Equation 4 and

Equation 3 with Equation 5, be expressed in terms of the pressure coefficients at the fluid grid

points. The result is

pn = l tj (r,z) Pj
J

P"n* __ \ '"'.' ( ) "n*/.. T. r,z PJo
j J

n ~ a

n ~ 1

(15 )

where tj (r,z) is an, as yet, undetermined function.

The terms in the mass matrix, referred to pressure coefficients at the fluid grid points, are

n ~ 1 (16)

The result for n = 0 is twice as large. The mass matrices for the starred terms are identical to

those for the unstarred terms.
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l6.i.4.2 Triangular Fluid Element

A triangular fluid element contains the volume of fluid interior to a ring of triangular cross-

section. Each circular edge of the ring defines a fluid point in the cross-section. The pressure

in the element is assumed to be a linear function over the triangular section. A Fourier series is

used to represent the variation of pressure around the circuMference. The pressure is:

N N n*p(r.¢.z) pO + I pn cos n¢ + I P sin n¢
n=l n=l

where the assumed pressure distribution over the cross section is:

pn(r.z) n
+ q~ r + q~ z ~ o ,

~
qo n

n* n* n* n*
~ 1P (r,z) qo + ql r + q2 z , . n .

(17)

(18)

n n nwhere qO' ql' and q2' n = O,l, ...•N. and the corresponding starred terms, are the generalized

coordinates of the element.

The transformation matrix [Hr. J. defined in Equation 4. isqp

[Hn Jqp

-1

(19 )

Substituting Equation 18 into Equation 10, the potential energy for each harmonic is:

n '> 0 (20 )

* J~r [( n*)2 (n* 2 n
2

( n* n* n* )2JUn 2p ql + q2 ) + r 2 qo + ql r + q2 z dA, n > 0
A
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The terms in the upper half of the symmetrical stiffness matrix referred to the generalized

coordinates are, from Equations 11 and 20,

n = 0:

21T r
p 20

(21)

n > 0:

2
Knq = !1....2!. I
00 p 00

2
Knq = !1....2!. 1

01 o 10

2

~~ = .!l..!. Io 01

(22)
Knq '!'(1 2= + n ) 120

,11 p

2
KnG .!l..!. r12 o 11

~i = ~ (120 + n
2

102 ) •

and similarly for the starred terms. The Ik£ coefficients are the following integrals over the

cross section:

Ik£ = J r"-l z.e. -dA.

A

(23)

The integrals 1ki may be evaluated by dividing the triangular surface into three trapezoids

as shown below:
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z
c

a

b

'-----:..--.....;;;;-.....:.-..:;..--""""':.--.....:.---.... r

The three points a. band c are described by their rand z coordinates at ¢ = O. The

integrals take the form:

(24)

The general trapezoidal integral Gk£ is de~ived as follows. Let Gki be evaluated for two points

01 = r 1, zl and P2 = r2, z2' Then

(25)

Performing the integration with respect to z results in the expression:

A convenient set of parameters is:
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t;.z (27)

Rearranging the integrand of Equation 26 in terms of these parameters

The polynomial expansion of a binomial raised to a power is a series of the form:

= 2+1 (.~.+l)! 62+1- j r j

j~O (j!){;.+l-j)! (29)

Substituting Equation 28 into Equation 27 and rearranging gives a series of simple integrals:

k-1+jr
1 nz £+1

m(nr)
2+1
Ie.

j=O J

(30)

ihe term for j = 0 requires special treatment. Thus.

r
1 r

Co 62+1
J

r- l 2+' log ~= dr 6 I k =0
r2

r2

and
r l

6£+1 k k62+1
J k-l

Co = r dr = -k- (r1 - r2 ) , k 'F 0
r2

The complete series is
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(32)

If ~r = 0, Gk£ should be set equal to zero.

In the evaluation of the mass matrix by means of Equation 16, the function f~ may be written

r(z2 - z3) + r2 (z3 - z) + r3(z - z2)

rl (z2 - z3) + r2(z3 - z,) + r 3(zl-z2) (33)

which is a linear function of rand 2 that equals unity at (rl , 21) and vanishes at (r2 , Z2) and

(r3 , 2 3), f~ and f~ are similar with appropriate permutations of subscripts. The final result,

for both starred and unstarred terms, is

lrmere

M~. "
-rrA ( ... r

2
+ r3 + + r.) (1 + 01)lJ 60B r l r i J J

o~ " 1 , if i = j
J

0, ifi 'f j

n>O (34)

and A is the surface area in the (r,z) plane. The mass matrix for n = 0 is just twice as large.

16.1.4.3 Quadrilateral Fluid Element

The quadrilateral fluid element consists of four triangular fluid elements defin~d by the

exterior edges and diagonals of the quadrilateral as shown below:

+

The "stiffness" and "mass" matrices for the quadrilateral are taken as one-half of the sum of

stiffness and mass matrices for the individual triangles.
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16.1.4.4 Center Element

Triangular and quadrilateral fluid elements are not permitted to be connected to a fluid point

on the axis of symmetry because the resulting pressures will be inconsistent and the element

integrals may be singular. For safety in computation it is not recommended that a fluid grid point

be placed close to the axis. Instead a special element may be used which is bounded by two paral

lel planes perpendicular to the axis and a conical cuter boundary. The geometry of the element is

specified by two rings at the outer edge of the upper and lower planes as shown:

z

The pressure is assumed to have the following functional form, which is an asymptotic solution

of the wave equation as r ~ 0:

p(r,cj),z) :: pO +
N
I pn cos ncj) +

n=l

NI pn* sin n¢

n=l

o 0 N
(q, + q2z) + I (r)" (q~ + q~z) cos n¢

0=1

N
+ I (r)n (q~* + q~*z) sin no (35)

n=1

This function disappears at the axis for all harmonics except zero. Its gradient approaches zero

at the axis for all harmonics except the Zero and first harmonics.

The relation between the generalized coordinates q~ and the harmonic coefficients of the
J

pressure on the two corner rings is:
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(36)

The generalized potential energy for each harmonic, according to Equation 10, is:

J
..2r... r2n2r(2n-l) ( n n )2 ...

A Zp L ql + qzz ' n :> 0 , (37)

The stiffness matrix terms, K~j, extracted by using Equation 11, are:

Kqn 2~ n2 I

I11 c 2n,0

qn Kqn 2, 2 I n ? 0K12 2i en 2n,1

~~ 2 (2r.2 I + 120+2,0) , )p , 2n,2

n > 0 .

(38)

where 1kt is defined in Equation 23. The starred terms are identical to the above and the zero

harmonic (n = 0) terms are multiplied by 2.

The integrals Iki are evaluated as follows. From the definition of tne integral and the shape

of the region

Cz-
r

)z2

r
r = r 1 + Z2-Z~ (Z-Zl)l

,

1u. I r r'-l,' dr I dz

J L J J
zl r=O

(39)

After performing the integration with respect to r,
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1
k k > 0 (40)

From Equation 38 it is seen that the integrals for k = 0 are not actually required since their

coefficients are zero. Define ~r = r2 - r1 and ~z = z2 - zl' and integrate Equation 40 by parts

with

The result is

du

v = z'l-

k
+ ~; (z-zl)) dz

(41)

~ k+1(r1 + ~ (Z-Zl))

(42)

The integral term in Equation 42 is replaced by zero for ~ =o.

The integration by parts is performed Z times, i.e., until the exponent of z in the integral

is zero. The result may then be expressed as

!J.z [( k+1 z1 k+1.Q.) b.Z [( k+2 ~-1 k+2 £-1)
IkZ l«k+1 )nr rZ 2 - r 1 z, - {k+2)!lr r2 Z2· - r 1 zl

(43)

Equation 43 has 1+1 closing brackets. The following approximation may be used for the special

case in which nr/r1 « 1.

Z2

Ik.Q. = J r~ z~ dz =
Z,

(44)

The stiffness matrix referred to the harmonic coefficients of pressure at the fluid grid

points is

16.1-25 (4/1/72)



INTERACTION BETWEEN STRUCTURES AND FLUIDS

[K~.} = [Hn JT [K~~J [Hn J1J qp 1 J qp

The elements of [H~p]-l are shown in Equation 36.

(45)

The mass matrix associated with the center element is generated from the kinetic energy

integrals. Equation 14. Substituting

pO n(.n ·n )(r) ql + q2 z (46 )

into Equation 14, the generalized kinetic "energy" of the element for each harmonic is

f -.rr 2n ( ·n .n)2Tn = 2B (r) q1 + q2 z dA n > 0 (47)

The mass matrix terms for the generalized coordinates are calculated from the equation:

M~~
1J

ITo (48)

In terms of the previously defined integral parameters, I k£, the terms in the mass matrix for

the generalized coordinat~s are:

Mqn = :!. I11 B 2n+2,O

i 12n+2 •1 n > 0 (49)

The elements of the starred mass matrix are identical. For n =0 the above results are

multiplied by 2. The mass matrix referred to the harmonic coefficients of pressure at the fluid

grid points is

= [Hn]T [K~~] [Hn ]qp 1J qp
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16.1.5 Boundary Matrices

The relation between the pressures, {P j }, forces, {Fi }, and displacements, {uil, at the

structural boundary, given for an individual point by Equation 15 of Section 16.1.3, has the

general matrix f~rm

(1)

The terms in the vector {Fi } are the forces on the displacements, {ui}. The [Kg] matrix is a

function of tne gravity.

The generalized forces on the fluid, {I.}, corresponding to pressures, {p.}, are dependent on
J J

the structural acceleration, {u i }, as shown by Equation 7 of Section 16.1.3. The general matrix

relation has the form

{I .} = 52 [R] {u. }
J 1

(2)

where s =dldt. In order to conserve the energy flow, {ui}T{Pi}' through the surface, it is

necessary that

[R] _ [A]T

Several structural points are attached to each boundary fluid circle as sho~n in tlie

following figure.

z
Fluid Circle

\
Structural ~oints ~
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where r k is the radius of the circle

:<. is the slant length of an equivalent conical surface associated with the circle

¢i is the angular position of point i
....

is displacement vector of pointui the

Pk(O) is the pressure around the kth fluid circle
....

vector normaln is the to the equivalent conical surface

Ii; is the angle between nand the (r, ¢) plane

The pressure function around the circle is

r' (pn pn*.)L k cos n¢ + k Sln n¢ .
n

(4)

The outward ~ol~al force on an increment of area, given by Equation 15, Section 16.1.3. is

(5)

Thus the total outward force acting on the element of surface area associated with the i th

structural grid point can be found by integrating

F.
1

(6)

The vertical displacement Uz can be expressed in terms of the available components of structural

displacement, uj ' Thus

(7)

o n n* 6 d .where the coefficients Ai' Ai' Ai and Kij will be found by expanding Equation an comparlng

the result with Equation 7.

In order to produce the coefficients in Equation 7, ~e must define the limits of integration

in Equation 6 and the manner in which the direc~ion of the normal varies in the vicinity of the

fluid circle. The pressure function of a fluid circle is assumed to be a function of ¢ onlY and
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acts over the area as defined below.

The boundary is assumed to consist of conical surfaces interconnecting fluid circles as shown

below. The forces acting on a fluid circle are taken as the forces acting on the adjacent halves

of the adjacent conical surfaces as shown.

Z

-

The forces on each of the two sections. for a unit increment of azimuth angle. are

£1

Fl = Of P r, dSl •
0

(9)
£2

F2 = J p rZ dS2
0

where
1

j(Zk_l
2 2

2.1 = 2 - Zk) + (rk_l - rk)

, J(zk
Z 2

£2 = '2 - Zk+l) + (rk - rk+,)

(10)

r, = rk - s,
(rk - rk_1)

2~

rZ = rk + 52
(rk+1 - rk)

2£.2
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Performing the integrations indicated in Equation 9 we obtain:

F.
I Pi, 'k [> - t('k ;:k-1 )J

"2 rk[1 +t(rk+;k- 'k)J

(11 )

Resolving the forces into rand z components and adding them, produces the radial and vertical

components of the force on the ring:

(12)

where

D.z 21 ~ 1.('k - 'k-1 ~(Zk-l -Zk ) + ,,[ + 1 (rk+1 - 'k~Zk ;~k+1)
4 rk 2£.1 4 rk

~ -

(13)

D.r 11
1.('k - 'k-1~('k - 'k-1) [ lCk+i - 'k~'k+J~ 'k)4 r 22 + t z 1 + 4. r kk 1

An equivalent conical section, which produces the same magnitude and direction of force, has

a slant length, i, and cone angle, ~, given by:

(14 )

ljJ '" Arctan (~)

The structural grid points are, in general, placed at irregularly spaced azimuth angle, ¢i'

around the fluid circle. The limits of integration for the i th grid point are ¢1; = (¢i+l+¢;}/2

and ¢o; '" ($;+$;_1)/2. Thus, using the results expressed by Equation 14 in Equation 6, the

force applied to the i~ grid point in the direction of the normal, n, is
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4>li

r k£ J [p~ + P~
<POi

n* ]cos n<jl + Pk sin n¢ - p9 (Uni sin ~ + Uti cos~) d<p OS)

where uni is the normal component of displacement and Uti is the tangential component of displace

ment at the i th grid point. Note that the assumption is made, implicitly. that the angle (<p - <p.)
1

between the local normal and the radial direction at the i th grid point is small enough that

cos(<jl - ¢i) may be assumed equal to unity.

Performing the indicated integration, the coefficients in Equation 7 are:

The components of force in a cylindrical (r, <jl, z) coordinate system are

( Fir l-l cos 1/JIj FiAo. - 0 Fi

(F.'" sin~
lZ

(16)

(17)

In order to produce loads on the point in any other coordinate system. the vector in Equa

tion 17 is multiplied by a transformation matrix. The stiffness coefficient in Equa~ion 7 that

relates normal force, Fi , to motion in the direction of the normal is

(18)

The off-diagonal term that relates normal force to tangential motion, ut ' is

(19 )

These coefficients are rotated into the directions taken locally by the global coordinate system.
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As an example, the boundary stiTfness matrix in a cylindrical (r,¢,z) coordinate system is, for

an individual structural grid point,

(r) (0) (z)

r: 0 cos )lil( r)

[Kij ] rklpg (~l i - '';;Oi) 0 (20)or
Lo 0 sin 11; z)

In summary, the arrays which describe the interconnection of the fluid and the structure are

the matrices of the coefficients A~, A~, A~*, and Kij defined in Equation 7 and evaluated in

Equations 16 and 20. The A~, A~, and A~* coefficients also serve, by virtue of Equations 2 and 3,

as the arrays that give the generalized forces on the harmonic pressure coefficients due to "he

structural displacements. In the latter capacity they have tne form of a mass matrix. NASTRAN

includes a seoarate functional module, the Boundary Matrix Generator, for the generation of these

arrays. The outputs of the module are treated as direct input matrices by the Direct Dynamic

Matrix Assembler (GKP.D). See Section 9.3.3 for details.

The boundary condition at a free fluid surface is given by Equation 13 of Section 16.1.3.

Neglecting the static term, it is seen that the boundary condition describes a surface "mass"

distribution with surface density equal to l/og. If the gravity field is absent (g = 0), the

pressure is zero at the surface. T~is condition is treated automatically in NASTRAN by applying

single point constraints to the degrees of freedom that are the harmonic pressure coefficients at

the free surface.

~Ihen gravi ty is present, the program sati sfi es the free surface boundary conditi on by con-

necting a mass matrix to the harmonic pressure coefficients at surface grid points. The elements

in the mass matrix are obtained by an energy method. The pressure is assumed to vary linearly with

radius between two adjacent fluid circles on the free surfdce, so that the pressure coefficient is

(21)

between the two fluid circles. The "kinetic" energy for the nth harmonic coefficient is, by

analogy with Equation 14 of Section 6.1.4
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r 2

Tn = 2~9 J (pn)2 r dr
r l

The elements of the mass matrix interconnecting p~ and p~ are then obtained from

ap~ ap~
1 J

The results are, for both the starred and unstarred coefficients,

(22)

(23)

The values are multiplied by two for" = O.

" > 0 (24)

For the region between the axis of symmetry and the first fluid circle. the pressure

coefficients are assumed to be proportional to the nth power of the radius (see Section 16.1.4.4).

Thus. in this region,

and

pn p" (.!:. )"
1 r l

-!!- (p")2
r l

r (~l /"Tn = f dr, " > 02pg 1
0

The element of the mass matrix is

(25)

(26)

2
'IT r

1
(2n+2)pg
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2;rr
1

pg
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16.1.6 Applications

The hydroelastic capability described in the preceding subsections may include many different

effects ~uch as variable density and compressibility, ~ free surface, rigid or flexible structural

boundaries, multiple boundaries, free surfaces with gravity, and user defined matrices for the

simulation of viscous effects and auxiliary connections to the fluid.

The general restrictions on the problem to be solved are: 1) the fluid must have axisymmetric

geometry and properties; the motions, however, may be general; 2) the mathematics are valid only

for small displacements; 3) the solution is accomplished only for dynamic pertubations from the

static equilibrium. Both of the latter restrictions rule out direct solution of problems with

large steady-state velocities. Indirect methods may be applied to these problems, but they must be

provided by the user via direct input matrices.

In order to mocel fluid problems, a number of special considerations must be kept in mind:

1. The degrees of freedom for the fluid are harmonic pressure coefficients. The generalized

forces acting on these degrees of freedom are actually the accelerations of the fluid.

The applications of a dynamic force is not allowed except through a structural boundary.

2. At a free surface the gravity effect is modeled automatically with finite elements. If

gravity is missing the pressures at a free surface will be constrained to zero. If

gravity is present, the geometry of the free surface must be compatible with static

equilibrium, i.e. it must lie in a plane perpendicular to the axis of symmetry.

3. The structural boundary may be either rigid or flexible. A fluid with no boundary defini

tion in the input data will have a fixed rigid boundary.

4. The effects of variable fluid density and of a gravity field are not comoleteiy compatible.

If the effects of either gravity or variable density are small they may be used together

but second order errors may result.

The hydroelastic capability may be used with any of the available rigid formats. The rigid

formats for static analysis and for elastic stability analysis will, however, produce trivial

results. since the fluid-structure interaction matrices are ignored by these rigid formats. Recom

mended Rigid Formats and the restrictions on each are described below:
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Rigid Format No.3 - Normal Modes Analysis

The modes of a fiuid in a rigid container may be extracted with this rigid format. Any

structural data in the deck will be treated as a disjoint problem. (The structure may also produce

normal modes.) Free surface effects with or without gravity will be accounted for.

Rigid Format No.7 - Direct Complex Eigenvalue Analysis

The combined modes of the fluid and structure are obtained with this rigid fermat. If no

damping or direct input matrices are added, the resulting complex roots will be purely imaginary

numbers, whose values are the natural frequencies of the system. The mode shape may be normalized

to maximum quantity (pressure or displacement) or to a specified structural displacement.

Rigid Format No.8 - Direct Frequency and Random Response

It should be remembered that loads may be applied only to structural grid points. The use of

overall structural damping (parameter g) is not recommended since the fluid matrices will be

affected.

Rigid Format No.9 - Direct Transient Response

Transient analysis may be performed for the fluid-structure system. The follo~ng rules apply.

1. Applied loads and initial conditions may only be given for the structural degrees of

freedom..

2. All quantities are measured relative to static equilibrium. Th~ initial values of the

pressures are assumed to be in equilibrium.

3. Overall structural damping (parameters w3 and g) should not be used.

Rigid Formats 10, 11, and 12 - Modal Formulations

Although these rigid formats may be used in a fluid-structure interaction problem, their

practicality is limited. The modal coordinates used to formulate the dynamic matrices are the

normal modes of both the fluid and the structure solved as uncoupled systems. Even though the

range of natural frequencies is typically very different for the fluid and the structure, a

similar number of modes should be chosen from each. The safest method with the present version of

NASTRAN is the extraction of a large number of modes using the Tridiagonal Method. ihis procedure,
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however, results in a dynamic system with large fUll matrices. The Direct Formulation is probably

~ore efficient.

I~ applying the hydroelastic capability, the user selects the harmonic coefficients for the

~e?resentation of the fluid. There is no requirement relating the number of harmonics and the

r.u~ber of structural grid points around the circumference nor is it required that the structural

grid Do~nts be evenly spaced. The results for harmonic orders greater than one-half the number of

structural grid points around the circumference wi·ll, however, be meaningless. For problems with

transverse symmetry planes it will frequently be possible to eliminate the starred (sine) harmonic

coefficients.

The program includes a provision whereby advantage may be taken of one or more planes of

structural symmetry. The user specifies an even number m, where 11m is the fraction of the circum-

ference used in the structural model. The boundary conditions at the radial planes bounding the

structural model may be both symmetric, both antisymmetric or one of each. The matrix, [AJT,

defining the generalized forces on the pressure coefficients is multiplied by m. The matrices

de7ini~g the fluid forces on the structure are unchanged. It is required that the pressure

har~onics selected by the user be consistent with the symmetry assumptions. Thus, if m = 6, the

oermissible values of n are 0, 3, 6, 9, etc.

At present the axisymmetric structural elements (conical shell, doubly curved shell, and

solid of revolution) cannot be used in hydroelastic problems. All other structural elements

are available.

The topology of the fluid surface is quite arbitrary. Figure 1 shows several examples of

permissible topologies. The major restriction is that, when the problem contains two or more

tanks, they must have the same axis of symmetry. As an aid in establishing topology, the user

must provide seoarate sequential lists of free surface points and structural boundary points for

each disjoint boundary segment. The fluid must be located to the right of the boundary when the

boundary is traversed according to the sequence in the list. Rigid inclusions or rigid external

boundary segments, are not included in the lists. The existence of a rigid boundary is implied

simply by the absence of elements in the boundary matrices.
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The input data consists of card entries that describe the following.

1. The cross-sectional coordinates of fluid grid points (fluid circles).

2. Connection information aod physical properties (density and bulk modulus) for fluid

elements.

3. Identification of structural grid points.

4. Sequential lists of fluid circles on free surfaces and on structural boundaries.

5. The har~onic components of pressure to be considered.

6. The magnitude of the gravity vector.

7. Identification of radial planes of symmetry.

8. Tne location (radius and azimuth) of points on free surfaces at which normal displacements

are desired for output.

9. The location of points in tne fluid at which values of the pressure are desired for output

(pressure points).

10. Direct input matrix terms coupling fluid degrees of freedom with each other or with any

other structural aegree of freedom or extra points.

A useful special feature of the program is that the specification of a pressure point in the

fluid, item 9 above, may be used in conjunction with direct matrix input, item 10, to define a

pressure transducer in a servo control system. In this application the pressure point is related

to the harmonic pressure coefficients by the analyst using a multipoint equation of constraint.

Another use of direct matrix input occurs in the treatment of viscous damping due to tank

wall friction. The effect may be represented by viscous dampers interconnecting the harmonic

pressure coefficien~s in the fluid. and the resulting matrix of damping coefficients may ~e

inserted by means of the direct matrix input feature. The arrangement of the viscous dampers is

derived as follows. Let the frictional effect be represented by uniformly soaced porous oaftle

plates normal to the wall as shown below.
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liD_____8 l:!:) _

Boundarv
Layer -

The frictional force on the wall per unit of surface area is,

f = - 11 ~ = C Uxt>x
(1)

The height of the baffle, n, is made equal to the thickness of the boundary layer. Consid

ering the sides of the baffle to be external fluid surfaces, Equation 7 of Section 16.1.3 may be

used to calculate the generalized force transferred through the baffle,

Ix = - S U = - S s Ux x

where S is the area of the baffle and s =d/dt. Substituting for ux from Equation 1,

I = Sh .(po)
x CAx U

(2 )

(3)

Substituting harmonic coefficients for Ix and p, and integrating over the circumference,

2
In = 'Il'rh ll(pn)
x CllX

1° 2'1l'rh
2

£,(po)
x CllX

n > 0

(4)

n =0

2
The coefficient Bn = ~~ (l+o~) has the form of a viscous damping coefficient. A model

which incorporates its effect is shown below.
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Fluid
Element

l
;luid

Element

Each fluid grid point on the boundary is replaced by a pair of closely spaced grid points.

between which a viscous damper, Bn• is connected for each harmonic orde~. One, but not both, of

each pair of fluid grid points is identifiea as lying on the structural interface.

The above model neglects the velocity of the structure and also neglects ~he frictional force

on the structure. These relatively sma1l effects may be incorporated by means of additional

direct matrix terms.
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Figure 1. Examples of permissible topologies.
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16.2 COMPRESSIBLE FLUIDS IN ROTATIONALLY SYMMETRICAL CAVITIES WITH SLOTS

This section describes an application of NASTRAN to the acoustic analysis of cavities with

the symmetry properties shown in Figure 1. The cavity is assumed to consist of an axisymmetric

central region and two or more symmetrically arranged slotted extensions. The application does

not consider interaction with the surrounding structure. Internal procedures and data cards have

been designed t~ automate the computation of the vibration modes of the cavity. Additional

information is included in the User's Manual and in reference (1).

16.2.1 Formulation of the Problem

The general case of an unsymmetrical acoustic cavity may be solved with a finite element

model representing the wave equation in three dimensions. In the case of symmetrical cavities.

the problem may be reduced, depending on the actual symmetry and shaDe of the cavity. The various

choi ces of s impl i fi cati on are:

1. If planes of symmetry exist in the cavity, a three dimension finite element model may be

used to model a portion of the cavity and the acoustic resonance modes may be extracted

in separate runs using different boundary conditions. Figure 2 shows an example of the

use of symmetry to reduce the model to one-fourth size using two planes of symmetry.

2. If the shape of the cross section does not vary along the axis, the problem may be solved

with a two dimensional model of the cross section. See Figure 3 for an illustration of

this technique.

3. If the cavity is axisymmetric, i.e., if the outer radius is indeoendent of the circumfer

ential angle, the problem may be reduced to a two dimensional problem in r (the radius)

and z (the axis). T~e motion is expressed as harmonics about the circumference and each

harmonic is solved as a separate disjoint problem. This is the type of problem treated

in Section 16.1.

(l) D. N. Herting, J. A. Joseph, L. R. Kuusinen and R. H. MacNeal. "Acoustic Analysis of Solid
Rocket Motor Cavities by a Finite Element Method," Air Force Rocket Propulsion Lab Report
AFRPL-TR-71-96, 1971.
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4. A special case exists for typical solid rocket motor cavities wherein the cross section

contains a round central hole and symmetrically arranged radial slots as shown in

Figure 1. If the slots are sufficiently narrow the gradient of pressure across them can

be ignored; and if the slots are evenly spaced. the formulation of the orob1em in terms

of harmonic degrees of freedom becomes relatively easy. The net result is that the

vibrations within the slots can be modeled by harmonics. Thus both the slots and the

central circular cavity reduce to two dimensional orob1ems in harmonic analysis. This is

the formulation that has been selected.

The theoretical treatment of the axisymmetric central region is identical to that described

in Sections 16.1.2 and 16.1.4. The cross-section is divided into triangular and quadrilateral

elements and special trapezoidal elements next to the axis. The slotted region is also divided

into triangular and quadrilateral elements. The complete finite element model has the appearance

s~own in Figure 4. Note that axisymmetric tubu1ar regions that have no direct connection to the

central cavity may be attached to the slots.

The main subjects treated in follOWing sections are the development of finite elements for

the slot region. and the procedures used to interconnect the slots with the axisymmetric regions.

The formulas required to recover velocity components for both types of regions are also described.

The slot elements can also be used by themselves to solve both static and dynamic two

dill~ns;onal potential problems including. in addition to acoustic problems. fluid flow. heat

conduction. gravity waves in shallo~'water, electrical wave transmission. etc. The user can

s~ecify a different slot width at each gridpoint in the field.

15.2.2 Fluid Elements for the Slots

16.2.2.1 Energy Expressions

A slot region is defined as a series of narrow. evenly spaced cavities with their midplanes

defined by planes passing through the axis of the fluid. If the pressure gradient across each

slot is ignored, the pressure in the jth slot can be described by a finite Fourier series:

+
N
I pn(r.z) cos n~j

n=l
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The slots are placed at angles

'" = N'+'j M j = 0,1,2, ... , M-l (2)

where Mis the total number of slots. The total number of terms in the series, l+N+N*, must equal

Min order to provide a unique decomposition of an arbitrary pressure distribution into Fourier

components. If Mis an odd number

N N* M-l= ""2

IfM is an even number

M \

N 2 (
N* M 1 . ~2-

(3)

(4)

For this case sin (~¢j) =sin(j~) = 0, so that the sine coefficient of order n* =; provides no

pressure and we may select the upper limit of N* equal to ~ if we wish.

The equation for generalized potential energy is the same as Equation 9 of Section 16.1.4,

except that the integration over ¢ is carried out as foll~/s:

21T

J f(¢)r d¢ =
o

(5)

where f(¢) is any function and w is the slot width assumed to be equal for all slots.

Substituting Equation 5 into Equation 9 of Section 16.1.4 results in the following exoTession

for the potential energy:

u (6)

where dA = dr dz.

Ignoring the gradient in the ¢ direction, the equation for the oressure gradient is:
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~!i n*
n¢)] er[apO

+
2 ( n

I7p = )' 1L cos n¢ + ~sinar n;1 ar ar

[~ +
K'~( , n* ,.~I 2fcos 2.E....- sin ....

(7)+ n¢ + ezaz n=l a aZ

where K= M/2 for Meven and K = (M-l)/2 for Modd.

Substituting Equation 7 into Equation 6 results in a rather involved exoression. T~e cross

product terms between different harmonics will, however, disaopear, which may be shown as follows:

Since ~ = G is a plane of symmetry:

1 M-l ( 2' 2- . \
2" j~O\cos ~J(m-n) + cos7 (m+n») ,

M-l
cos 2mnj sin 27Tnj\"

j;o;O M M

Define the coeffici ents :

M-l
cos 2mnj 21TnjRmn = I),. M cos M

j=O

a all m,n (8 )

5 =mn
M-lL sin 2mnj si~
j=O M M

lM-l( 2- 2")= 2".L cos ~J (m-n) - cos~m+n) . (9)
J=O

The only conditions under which the sums of the cosine terms give a nonzero result occurs

when m~n = a or 1. or when nMm = a or 1. The latter condition can occur only if n = m. Since

n ~ M/2 and m ~ M/2 the former condition can occur only if m = n = a or if m = n = M/2. Thus all

of the cross product terms (m 1 n) disappear. In addition.

R Snun
M M= = 2"nun for m1 0, 2

ROO = RMM M (10)

2'2

500 = SM M = a
2'2
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Since the cross-product terms disappear, the potential energy may be written,

where

u
KS~ M

2 * '"I (Un + un ) + u~ ,
n=l

(ll)

o < n < Ii
2 '

n*U o < n* < Ii
2

(12)

Uo ~ J~ (~2Po)·(~2po) dA
A

M

U2 ~ J~ (~2pM/2)·(~2pM/2) dA
A

~2 is the two dimensional gradient operator

(13)

In an analysis of the vibration modes of the cavity, the results for the sine coefficients.

p"*, will be identical to the results for the cosine coefficients, and they are. therefore. of no

further interest. Each distinct cosine coefficient. 0 ~ n ~ M/2, produces a distinct set of

vibrati on modes.

The kinetic energy may be analyzed in the same manner as the potential energy. From

Equation 16 of Section 16.1.2

Tn = i J i (pn)2 dA o < n < M/2 ,
A

TO = ~ J~ {po)2 dA2 B
A

TM/2 ~ J~ (pM/2)2 dA
2 B

A

16.2-5 (4/1/72)
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16.2.2.2 Triangular Slot Elements

The pressure distribution within each triangular slot element is assumed to be linear with

respect to rand z and of the form:

(l5 )

nwhere Pj' j = 1, 2, 3, are the values of pressure at the corners.

Each term of the stiffness matrix is calculated as a second oartial derivative of the energy,

~2 Un
Kn . 0

lJ ~ n ~ n
"Pi OPj

Thus, from Equations 1Z, 15, and 16,

~f;-'72 (f)o'7Z (fj ) dA

""

(16 )

(17)

for 0 < n < ~. For n =0, ;, the stiffr.ess matrix terms are twice as laroe. In an analogous
Nmanner the mass matrix terms for 0 < n < 2 are, using Equation 14,

M r w f2 J B ifj dA
A

(18 )

The functions f i may be evaluated as follows. Observe that the exoression

r Z
1
1 r l zl r l zl

rZ Zz X1 + 1 r Z X2
.,. r2 z2 X31

r3 Z3 r3 z3 r Z

X(r,z) (19 )

r l zl

r2 z2

r 3 z3

implies that X is a linear function with values Xl' X2, and X3 at positions (r1, zl)' (rZ' zZ) and

(r3, z3) respectively. fl' f Z' and f 3 are thereby eaual to the coefficients of Xl' XZ' and X3
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respectively in the equation above. The value of the denominator equals twice the cross sectional

area.

The integrals given in Equations 17 and 18 are evaluated under the assumotion that the com-

pressibility, B. and the density, P. are constant over the element. The thickness, W, is assumed

to vary linearly o~er the element. It may, therefore, be expressed by the equation:

(20)

The gradients are:

(21 )

where j and k are the other two points in cyclic order and A is the area of the trian91e.

Observing that the gradient of pressure is constant over the element, the stiffness matrix

terms. obtained by inserting Equation 20 into Equation 17, are

K~j = do 172(fi }'v2(fj ) J (flwl + f2w2 + f 3w3) dA
A

Combining Equations 18 and 20 the mass matrix terms are:

The integral equations for stiffness and mass may be evaluated by the identity

(22)

(23)

a! B! Y!
(2+a+B+A)! 2A (24 )

where i, j and k are distinct and A is the area of the triangle.

Substituting Equation 24 repeatedly into Equations 22 and 23 results in stiffness and mass

terms for the triangular slot element for 0 < n < M/2 as follows:
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where:

,! (25)

1,

D,

and

j

"I j

For n = 0, M/2, the values are twice as large.

16.2.2.3 Quadrilateral Slot Elements

The quadrilateral slot element consists of four triangular slot elements defined by the

exterior edges and diagonals of the quadrilateral as shown below:

z

+

The points may be input in any order but each interior angle must be less than 180 degrees.

The stiffness and mass matrices for the quadrilateral are taken as one-half the sums of stiffness

and mass matrices for the individual triangles.
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16.2.3 Corrections for the Effects of Finite Slot Width

16.2.3.1 Circumferential Variation of Pressure

In the central cavity, it is assumed that the pressure

Pc = p~ (r,z) cos n¢

It is also assumed, in the slotted region, that, in the mth slot,

(1)

Ps,m (2)

wh~re ~m is the azimuth angle at the midplane of the mth slot. see sketch below. A question then

arises as to how the pressure at the mouth of the slot is related .to the oressure in the cylindri

cal region.

~---tJ.C

We might, for example, assume that the pressure in the mouth of the mth slot. 0s,m' is eaual

to the pressure in the cylindrical region evaluated at ¢ =~m' the midpoint of the slot. A better

assumption, particularly for wide slots. is that ps.m is equal to the average pressure in the

cylindrical region, averaged over the slot width. Thus, using Equation 1, the pressure in the

width of the mth slot is
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...~
"m 2ro

(3)

Note that the ratio Ps m/p is independent of m so that, upon substituting Equations 1 and, c,m

2 into Equation 3,

nw
n

(ro'z)
sin _0

Ps 2ro (4)n nwoPc (ro'z)
2ro

nw
The factor 2 0 achieves a maximum value of w/2 for n = M/2 (the highest mode index) andro
Wo =2~ro/M, i.e., if the slots occupy the entire circumference. The following table shows how

the ratio of p~ to p~ depends on rowo/2ro

nwo 0 .2 .4 .6 .8 1.0 ~/22ro

n
~ 1.0 .995 .975 .942 .898 .840 .636
pn
c

Note that the effect becomes significant for nWo/2ro > 0.5, i.e., when each slot covers greater

than a twelfth of a wave length.
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16.Z.3.Z Effect of Sharp Corners

It may be shown that the effect of an abrupt change in the diameter of a oipe is to add a

coupling impedance that is equivalent to a short additional length of pipe(l). Our oroblem is a

little different in that the slot is long (in the z direction) compared to its width. Smythe(Z)

has solved the analogous problem for the added resistance of a conducting strip whose width

suddenly changes. His solution may easily be expressed in terms of the added effective length,

le' of the strip whose dimensions are shown below.

j

The impedance of the added length is

(S)

where 0 is the density of the fluid and t is the transverse dimension of the slot in a direction

normal to the plane of the figure. Smythe's expression for le is

where h =wI/Z and K =WZ/Z. Manipulation of Equation 6 leads to

(6)

~e
wl [ 1 8+1 (6+1 Hs-l) 1
Zrr (6 + s) loge s:T + Zl0ge 46 J' (7)

(l) Rschevkin, S. N., "The Theory of Sound", The MacMillan Co., N.Y., 1963, p 218.

(2) Smythe, L~. R., "Static and Dynamic Electricity.", McGraw Hill, N.Y., 1939, DD 230 - 233.
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Equation 7 is plotted in Figure 5. The bracketed expression has a logarithmic singularity

as B ~ 00, but it is seen that £e/1wlw2 remains finite (in fact approaches zero) as 6 ~ 00. By

way of comparison, the effective length of a round pipe of diameter wl approaches 4wl/3~ = .42w1

as 8 ~ 00.

In our application

Wl width of slot mouth, W I0

w2 = 27Tr/M

Ke
Mwot o < n M

\2p£e
<2

(8)

r~For n = O. 2' Ke is twice as large; t is the length of slot in the (r,z) plane associated with the

grid point.

16.2.3.3 Combination of the Two Effects

The effects described in the two preceding subsections may be combined to define a stiffness

matrix that couples p~ and P~. The two effects may be represented schematically as follows

qot
side

vvv

,.--------, -n
PsConstraint

",\n c.....l---o+-4
'c -

Cavity
Side

The eouation of constraint is
nw

sin _0
2ropn __~

c nwo
2ro

(9 )

The scalar spring is given by Equation 8. The equation of constraint and the scalar spring

produce a "sti ffness" matrix as follO\'/s
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where

( 10)

a. =

nw
sin _0

2ro (11 )

In the finite element model, Figure 4, the grid points on the slot boundary each have two degrees

of freedom, p~ and p~, which are coupled by the stiffness matrix in Equation 10. All other grid

points have only one degree of freedom. In the limiting case of sharp corners between slots)

w2/W1 = 1.0, so that the effective length, t e , is zero and the stiffness Ke is infinite. In order

to avoid recoding for this special case, the effective length is chosen to be not less than one-

hundredth of the width of the slot.

16.2.4 Recovery of Velocity Comoonents

The velocity components within the fluid are calculated in the stress recovery ohase of

NASTRAN. Using the momentum relation, Equation la of Section 16.1.2,

*u 1
- - 'i7p

p
(1)

Since the frequency is known in the cases of interest. the velocity is:

....
u

1
- iwp I7p (2)

where w is the radian frequency and i is the imaginary number indicating a phase shift of 90

degrees. In normal modes analysis, the velocity is considered to be co~oosed of real numbers and

the phase shift is ignored. In frequency response analysis the velocity will be 9iven as a comolex

number. In complex eigenvalue analysis, the complex eigenvalue p = iw ~ cr is used instead of iw.

The velocities in a triangular fluid element at any point (r,z) in the axisymmetric region

are:
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V(j>

__1_ £E.
iWD ar

__n_£E.
iwpro a¢

__1_.£E. =
iwp az

n ( n n )- -.--- q + qlr + °2z •lwpr 0 .

(3)

(4)

(5)

where q~ are the generalized coordinates described in Section 16.1.4.2. In the elements for the

slotted regien. Vr and Vz have the same formulas. but V¢ is zero. The velocities are evaluated

at four points. the centroid and the midpoints of the outer edges. The velocity in the circum

ferential direction, V¢. is the value that occurs at Q = - ;n • n 1 O. The other values occur at

¢ =o.

At the centroid:

~v,
0 0

n
Pl

r: nZe [Hn ] n (6)

('; - il:JD n P?rc r e QP

Vz I 0 0 n
P3 I

where

(7)

and [H~p] is the matrix which transforms pressures. P~. to generalized coordinates, Q~. see

Equation 19 of Section 16.1.4.2.
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At the midpoint of each edge:

where

v~ . 1 Pj - °i
lJ - iwp .t ..

lJ

vt j
n Pi + p.

= J
iwp r i + r.

J

j (r;
2

(zi
2R. •• r.) + - Zj)lJ J

(8)

These formulas are derived using the assumotion that the pressure is a linear function of

position. V~j is the component of velocity directed along the edge of the element in the r.z

plane (at ¢ = 0). vr j is the velocity in the circumferential direction (at ¢ = - ~/2n).

The velocities of the quadrilateral fluid element are calculated at the intersection of the

diagonals by averaging the velocities of each of the four subtriangles. The velocities along each

edge are calculated using the same equations as with the triangular fluid element.

The velocities in the trapezoidal fluid elements next to the axis of symmetry are calculated

at the center (r =0) and along the outer edge. The velocity at the center has nonzero values

only for n = 0 and n = 1. At the center:

Vr
1 (Pl + P2)

= iwp (rl + r2)

Vr = 0

Vz
(P2 - p,)

- iwp (z2 - zl)

Vz = 0

n = 1

n ; ,

(9)

n = 0

n ; 0
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where

V
<P

-n n-.-plwpr (10 )

Since the velocities are calculated at the midpoint of the outer edge, the terms are

evaluated at:

-r

-z

(11 )

The derivatives of the pressure at the midpoint of the outer edge are:

-n
nr (n n)--- ql + °2z

r
(12)

where the generalized coordinates at points (1) and (2) are related to the pressure coefficients

by,

See Equation 45 of Section 16.1.4.4 for evaluation of [H~p].

Evaluating Equation 11 through 13 results in the velocity vector a'on~ the outer edge:

[

<r2-r1 ) : nz(r2-r1 ) + r(Z2-Z')]

- n-l i I i-i:O ---+--------
n I nz

I
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Figure 1. Symmetrical acous~ic cavity with slots.
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C:;0J:'

. I

___~L
I

:=::T:.::'"f-

---~,.,.
I
I

I

t--+-t
I

-l.. ....._r

---+-t--
I
I

Arrows (t) denote flow direction at boundary

SYM = Symmetric Boundary

ANTISYM = Antisymmetric Boundary

Figure 2. Boundary conditions for one-quarter symmetry.
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~ / Tir~e n~~nsio~al Cavity

E:,uivalent T··fa ~imensio!'la1 ·~odp.l

n = O. 1, 2. 3 - ~um~p.r of l~~aitud;~al

Waves. Connected to each Sridnoint.

T ·iC '); f!1~ns;ona1
~a~lac2 Ele~~rts

Figure 3. Two dimensional reoresentation of a three dimensional oroblem.
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:':e~tra 1 CavH:'

Figure 4. Finite element model of acoustic cavity.
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('.4

'1.3

f1.2

0.1
<;!

,1""1 '32 '"2
q = ' ..

1

0
0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.~ 100.0

Figure 5. Effective length of an abrupt change in the width of a strip.
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