
Oracle® Communications Order and
Service Management
Cloud Native Deployment Guide

Release 7.5
F60011-01
November 2023

Oracle Communications Order and Service Management Cloud Native Deployment Guide, Release 7.5

F60011-01

Copyright © 2020, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

1 Overview of the OSM Cloud Native Deployment

About the OSM Cloud Native Deployment 1-1

OSM Cloud Native Architecture 1-1

About the WebLogic Domain 1-3

About Kubernetes Custom Resource Definitions (CRD) and Domain Configuration
Config Map 1-4

About Oracle WebLogic Server Deploy Tooling (WDT) 1-5

About Projects and Instances 1-5

About Specification Layers 1-5

About Helm Overrides 1-6

About the OSM Cloud Native Toolkit 1-6

2 Planning and Validating Your Cloud Environment

Required Components for OSM Cloud Native 2-1

Planning Your Cloud Native Environment 2-2

Setting Up Your Kubernetes Cluster 2-2

Synchronizing Time Across Servers 2-4

Provisioning Oracle Multitenant Container Database (CDB) 2-4

Provisioning an Empty PDB 2-4

Provisioning a Seed OSM PDB 2-6

About Container Image Management 2-7

Installing Helm 2-7

Setting Up Oracle WebLogic Server Kubernetes Operator 2-8

About Load Balancing and Ingress Controller 2-9

Using Traefik as the Ingress Controller 2-10

Using Domain Name System (DNS) 2-11

iii

Configuring Kubernetes Persistent Volumes 2-12

About NFS-based Persistence 2-13

About Authentication 2-13

Management of Secrets 2-13

Using Kubernetes Monitoring Toolchain 2-14

About Application Logs and Metrics Toolchain 2-15

Role of Continuous Integration (CI) Pipelines 2-15

Role of Continuous Delivery (CD) Pipelines 2-16

Planning Your Container Engine for Kubernetes (OKE) Cloud Environment 2-16

Compute Disk Space Requirements 2-17

Connectivity Requirements 2-17

Using Load Balancer as a Service (LBaaS) 2-18

About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones 2-18

Using Persistent Volumes and File Storage Service (FSS) 2-18

Leveraging Oracle Cloud Infrastructure Services 2-19

Validating Your Cloud Environment 2-19

Performing a Smoke Test 2-19

Validating Common Building Blocks in the Kubernetes Cluster 2-21

Running Oracle WebLogic Kubernetes Operator Quickstart 2-24

3 Creating OSM Cloud Native Images

Downloading the OSM Cloud Native Image Builder 3-1

Prerequisites for Creating OSM Images 3-2

Configuring the OSM Cloud Native Images 3-2

Creating OSM Cloud Native Images 3-7

4 Creating a Basic OSM Cloud Native Instance

Installing the OSM Cloud Native Artifacts and the Toolkit 4-1

Using Oracle Autonomous Database Serverless 4-1

Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller 4-5

Installing the WebLogic Kubernetes Operator 4-5

Installing the Ingress Controller 4-6

Installing the Traefik Ingress Controller as Alternate (Deprecated) 4-6

Creating a Basic OSM Instance 4-8

Setting Environment Variables 4-8

Registering the Namespace 4-9

Creating Secrets 4-10

Configuring OpenID Connect for OSM Microservices 4-12

Assembling the Specifications 4-15

iv

Installing the OSM and RCU Schemas 4-15

Configuring the Project Specification 4-17

Tuning the Project Specification 4-19

Configuring the Instance Specification 4-21

Creating an Ingress 4-22

Creating an OSM Instance 4-22

Validating the OSM Instance 4-24

Scaling the OSM Application Cluster 4-25

Deploying the Sample Cartridge 4-25

Submitting Orders 4-26

Deleting and Recreating Your OSM Instance 4-27

Cleaning Up the Environment 4-27

Troubleshooting Issues with the Scripts 4-28

Next Steps 4-30

5 Planning Infrastructure

Sizing Considerations 5-1

Managing Configuration as Code 5-1

Creating Source Control Repository 5-2

Managing OSM Instances 5-2

Deciding on the Scope 5-2

About the Repository Directory Structure 5-2

Deployment Considerations 5-4

Setting the Repository Path During Instance Creation 5-4

Setting Up Automation 5-4

Securing Operations in Kubernetes Cluster 5-8

6 Creating Your Own OSM Cloud Native Instance

Configuring OSM Runtime Parameters 6-1

Configuring Schema Validation 6-2

Configuring Target Systems for Events and System Interactions 6-3

Configuring OSM Gateway Readiness 6-4

Configuring the Order Operations User Interface 6-5

Configuring the Alerts Displayed in the Order Operations Dashboard 6-6

Configuring Session Timeout 6-7

Preparing Cartridges 6-7

Working with Kubernetes Secrets 6-9

About Mandatory Secrets 6-10

About Optional Secrets 6-10

v

About Custom Secrets 6-11

Accommodating the Scope of Secrets 6-12

Mechanism for Creating Custom Secrets 6-14

Adding JMS Queues and Topics 6-15

Generating Error Queues for Custom Queues and Topics 6-16

Creating a JMS Template 6-17

Provisioning Cartridge User Accounts 6-18

Working with Cartridges 6-23

Cartridge Deployment Tool in OSM Cloud Native 6-23

Single or One-off Cartridge Deployment 6-24

Specification-driven Cartridge Deployment 6-24

Offline Cartridge Deployment Using the OSM Cloud Native Toolkit 6-25

Online Cartridge Deployment Using the OSM Cloud Native Toolkit 6-26

Deploying Cartridges Using Design Studio 6-27

Listing Deployed Cartridges Using the OSM Cloud Native Toolkit 6-27

Cartridge par Sources 6-27

Local Files 6-27

Remote File Repository 6-28

Container Images 6-28

Selecting Deployment Style and Cartridge Source 6-29

Deploying Cartridges in Open Environments 6-29

Deploying Cartridges in Controlled Environments 6-29

7 Extending the WebLogic Server Deploy Tooling (WDT) Model

About the Custom WDT Extension Mechanism 7-1

Using the WDT Model Tools 7-1

WDT Discover Domain Tool 7-1

WDT Validate Model Tool 7-2

Common WDT Extension Mechanism 7-2

Using the Sample Scripts to Extend the WDT Model 7-5

Adding a JDBC Datasource 7-6

Adding a JMS System Resource 7-7

Deploying Entities to an OSM WebLogic Domain 7-8

Extending the WDT Metadata for an External Authenticator 7-10

Accessing Kubernetes Secrets from WDT Metadata 7-13

Troubleshooting WDT Issues 7-13

8 Exploring Configuration Options

Setting Up Authentication 8-1

vi

Working with Shapes 8-3

Creating Custom Shapes 8-5

Injecting Custom Configuration Files 8-6

Choosing Worker Nodes for Running OSM Cloud Native 8-7

Working with Ingress, Ingress Controller, and External Load Balancer 8-8

Using an Alternate Ingress Controller 8-10

Reusing the Database State 8-11

Recreating an Instance 8-12

Creating a New Instance 8-13

Setting Up Persistent Storage 8-14

Setting Up Database Optimizer Statistics 8-16

Leveraging Oracle WebLogic Server Active GridLink 8-17

Managing Logs 8-17

Configuring Fluentd Logging 8-18

Obfuscating Sensitive Data in Logs 8-21

Configuring Logging and Log Rotation 8-25

Managing OSM Cloud Native Metrics 8-27

Configuring Prometheus for OSM Cloud Native Metrics 8-27

Viewing OSM Cloud Native Metrics Without Using Prometheus 8-28

Viewing OSM Cloud Native Metrics in Grafana 8-28

Exposed OSM Order Metrics 8-29

Managing Microservices Metrics 8-31

Managing WebLogic Monitoring Exporter (WME) Metrics 8-35

Enabling WebLogic Monitoring Exporter (WME) 8-35

Configuring the Prometheus Scrape Job for WME Metrics 8-36

Viewing WebLogic Monitoring Exporter Metrics in Grafana 8-37

9 Integrating OSM

Connectivity With Traditional OSM Instances 9-1

Connectivity With OSM Cloud Native 9-2

Connectivity Between the Building Blocks 9-3

Inbound HTTP Connectivity 9-4

Inbound JMS Connectivity 9-5

Inbound JMS Connectivity Within the Same Kubernetes Cluster 9-5

Outbound HTTP Connectivity 9-6

Outbound JMS Connectivity 9-7

Configuring SAF 9-7

Applying the WebLogic Patch for External Systems 9-10

Configuring SAF On External Systems 9-11

Setting Up Secure Communication with SSL 9-11

vii

Configuring Secure Incoming Access with SSL 9-11

Generating SSL Certificates for Incoming Access 9-12

Setting Up OSM Cloud Native for Incoming Access 9-13

Configuring Incoming HTTP and JMS Connectivity for External Clients 9-15

Configuring Access to External SSL-Enabled Systems 9-16

Loading Certificates for Outgoing Access 9-16

Enabling SSL on an External WebLogic Domain 9-17

Setting Up OSM Cloud Native for Outgoing Access 9-18

Adding Additional Certificates to an Existing Trust 9-20

Debugging SSL 9-21

10

Running the SAF Sample for OSM Cloud Native

Preparing the WebLogic System to Run the Emulator 10-2

Deploying the Emulator on the WebLogic System 10-3

Deploying the SimpleProvisioning Sample Cartridge 10-3

Preparing the OSM Cloud Native Instance 10-3

Validating the SAF Endpoints 10-5

Submitting Orders 10-6

Submitting Orders with HTTP 10-6

Submitting Orders with T3 over HTTP 10-6

11

Maintaining the OSM Cloud Native Environment

Before You Upgrade 11-1

About Upgrade Paths and Procedures 11-1

Rolling Restart 11-2

Identifying Your Upgrade Path 11-2

Offline Change Upgrade Paths 11-4

Online Change Upgrade Paths 11-5

Exceptions 11-6

Unsupported Tasks 11-6

OSM Cloud Native Upgrade Procedures 11-6

PDB Upgrade Procedure 11-7

OSM Application Upgrade 11-7

Offline Cartridge Deployment 11-7

Online Cartridge Deployment 11-8

Upgrades to Infrastructure 11-8

Miscellaneous Upgrade Procedures 11-10

Running Operational Procedures 11-10

Triggering Introspection 11-11

viii

Scaling Down the Cluster 11-11

Scaling Up the Cluster 11-11

Restarting the Instance 11-12

Fast Delete 11-12

Upgrade Path Flow Chart 11-13

12

Upgrading your OSM Cloud Native Deployment

Overview of the Upgrade Steps 12-1

Installing WebLogic Kubernetes Operator 12-1

WKO Monitoring Mechanism 12-1

Operator Installation 12-2

Unregistering and Registering the Namespace with Weblogic Operator 12-2

Ingress Controller 12-3

Updating Specification Files 12-3

Updating the Project Specification 12-3

Updating the Instance Specification 12-4

Updating Shape Specification 12-5

Upgrading to OSM Cloud Native 7.5.0 12-5

Prerequisites for the Upgrade 12-5

Preparation Steps for the Upgrade 12-6

Updating the Secrets 12-6

Update Existing Secrets 12-7

Creating New Secrets 12-7

Upgrading the OSM DB Schema 12-8

OSM Application Upgrade 12-9

13

Moving to OSM Cloud Native from a Traditional Deployment

Supported Releases 13-1

Performing Pre-move and Post-move Tasks 13-1

About the Move Process 13-1

Pre-move Development Activities 13-3

Moving to an OSM Cloud Native Deployment 13-4

Quiescing the Traditional Instance of OSM 13-5

Exporting and Importing JMS Messages 13-5

Migrating JMS Messages By Using the Cloud Native Toolkit 13-5

Migrating JMS Messages By Using the WebLogic Administration Console 13-8

Upgrading the Database 13-9

Upgrading the Database Server 13-9

Preparing the Required Database Entities for OSM Cloud Native 13-10

ix

Upgrading the OSM Schema and Cartridges 13-10

Switching Integration with Upstream Systems 13-10

Reverting to Your OSM Traditional Deployment 13-10

Cleaning Up 13-11

14

Debugging and Troubleshooting

Setting Up Java Flight Recorder (JFR) 14-1

Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console 14-2

Recovering an OSM Cloud Native Database Schema 14-7

Finding the Issue that Caused the OSM Cloud Native Database Schema Upgrade
Failure 14-8

Restarting the OSM Database Schema Upgrade from the Point of Failure 14-8

Resolving Improper JMS Assignment 14-9

Common Problems and Solutions 14-11

Known Issues 14-16

A Differences Between OSM Cloud Native and OSM Traditional
Deployments

B Reference of Secrets Created by the Scripts

DB Credentials Secret B-4

RCU DB Credentials Secret B-4

WebLogic Credentials Secret B-5

WebLogic Runtime Encryption Secret B-5

FMW Wallet Encryption Secret B-5

FMW Secure Wallet Secret B-5

OSM Internal User Passwords Secret B-5

OSM OIDC Credentials Secret B-6

OSM Fluentd Credentials Secret B-6

Certificate and Key to Access the Gateway HTTPS Endpoint B-6

Certificate and Key to Access the OSM HTTPS Endpoint B-6

Certificate and Key to Access the OSM WebLogic Admin Console HTTPS Endpoint B-6

Certificate and Key to Access the OSM t3 over HTTPS B-7

Trusted CA Injection B-7

Secure Identity B-7

ADB Wallet Secret B-7

ADB Admin Secret B-8

Cartridge Defined Custom User Credentials B-8

External LDAP Information B-8

x

SAF Credentials B-8

Generic Credentials B-9

Security Scheme Credentials B-9

xi

Preface

This document describes how to install and administer Oracle Communications Order
and Service Management (OSM) Cloud Native Deployment.

Audience
This document is intended for DevOps administrators and those involved in installing
and maintaining Oracle Communications Order and Service Management (OSM)
Cloud Native Deployment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of the OSM Cloud Native
Deployment

Get an overview of Oracle Communications Order and Service Management (OSM) cloud
native deployment, architecture, and the OSM cloud native toolkit.

This chapter provides an overview of Oracle Communications Order and Service
Management (OSM) deployed in a cloud native environment using container images and a
Kubernetes cluster.

About the OSM Cloud Native Deployment
You can deploy OSM in a Kubernetes-based shared cloud (cluster) while implementing
modern DevOps “Configuration as Code” principles to manage system configuration in a
consistent manner. You can automate system lifecycle management. You set up your own
cloud native environment and can then use the OSM cloud native toolkit to automate the
deployment of OSM instances. By leveraging the pre-configured Helm charts, you can deploy
OSM instances quickly ensuring your services are up and running in far less time than a
traditional deployment.

OSM cloud native supports the following deployment models:

• On Private Kubernetes Cluster: OSM cloud native is certified for a general deployment
of Kubernetes.

• On Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE): OSM cloud
native is certified to run on Oracle's hosted Kubernetes OKE service.

OSM Cloud Native Architecture
This section describes and illustrates the OSM cloud native architecture and the deployment
environment.

The following diagram illustrates the OSM cloud native architecture.

1-1

Figure 1-1 OSM Cloud Native Architecture

The following diagram illustrates the runtime deployment in Kubernetes.

Figure 1-2 OSM Cloud native Runtime Deployment in Kubernetes

The following diagram provides legend for the runtime deployment in Kubernetes
diagram.

Chapter 1
OSM Cloud Native Architecture

1-2

Figure 1-3 Legend for the run-time deployment in Kubernetes diagram

The OSM cloud native architecture requires components such as the Kubernetes cluster and
WebLogic Kubernetes Operator, which are under your control to install and configure. A
single WebLogic Operator can manage multiple OSM domains in multiple namespaces. Each
domain is a dynamic cluster with multiple managed servers that is configured for integration
with both optional and required components. The OSM cloud native artifacts include two
container images built using Docker and the OSM cloud native toolkit.

About the WebLogic Domain
The following diagram illustrates the OSM cloud native deployment environment and
important concepts about producing a WebLogic domain that is capable of supporting OSM
cloud native.

Chapter 1
OSM Cloud Native Architecture

1-3

Figure 1-4 OSM Cloud Native Deployment Environment

In the deployment environment, the Helm chart that is provided with the OSM cloud
native toolkit is deployed into the Kubernetes cluster producing two Kubernetes
resources. These resources are then consumed by the WebLogic Kubernetes
Operator (WKO).

About Kubernetes Custom Resource Definitions (CRD) and Domain
Configuration Config Map

The Kubernetes API provides extensions called custom resources. To understand
more about a Custom Resource Definition (CRD) and why it might be used, see the
Kubernetes CustomResourceDefinition (CRD) documentation at: https://kubernetes.io/
docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

To configure the operation of your WebLogic domain, you set up and configure your
own domain resource. The domain resource does not replace the traditional
configuration of the WebLogic domains found in the domain configuration files, but
instead co-operates with those files to describe the Kubernetes artifacts of the
corresponding domain. Refer to the "WKO Quickstart" to understand how to use a
CRD to describe a WebLogic domain resource.

While the domain resource describes much of the operational details for a domain
such as domain identification, secrets, pod creation, server instances, startup and
shutdown, security, logging, clusters, admin and managed servers, and JVM options,
the details about the more traditional configuration (deployed applications, JMS
Queues, data sources and so on) are provided in a configuration map and are
described using a metadata model specified by the Weblogic Deploy Tooling (WDT).

Chapter 1
OSM Cloud Native Architecture

1-4

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

The OSM cloud native toolkit provides the base configuration to produce these resources.

About Oracle WebLogic Server Deploy Tooling (WDT)
The WebLogic Server Deploy Tooling (WDT) has the following main purposes:

• It provides a metadata model that describes a WebLogic Server domain configuration.

• It provides scripts that perform domain lifecycle operations, simplifying the definition and
the creation of domains. This capability provides an alternative to programmatic ways of
defining domain configuration such as WebLogic Scripting Tool (WLST) or Java Mbeans
manipulation.

The OSM cloud native toolkit leverages the WDT metadata model only. It does not use the
scripting capabilities directly.

The toolkit provides the WDT metadata for a domain that is capable of supporting OSM. The
toolkit enables you to easily override much of the base configuration through the use of Helm
charts. Additionally, the toolkit framework allows you to add supplementary WDT metadata
fragments to the domain. WDT provides tools that help with this task by inspecting an existing
domain to produce the WDT metadata required for the configuration.

For more details about WDT, see the Oracle WebLogic Server Deploy Tooling documentation
on GitHub at: https://github.com/oracle/weblogic-deploy-tooling

About Projects and Instances
A project is a function of OSM. Examples of OSM functions include order management roles
such as SOM and COM. For example, in a COM role, a solution cartridge contains
configuration requirements that dictate how COM processes orders. This might include the
JMS queues for messaging, credentials for communication with external systems, additional
applications deployed to the WebLogic server (external system emulators), or SAF setup for
connectivity to peer systems. All of these configuration requirements can be scoped to a
project.

An instance is a specific flavor of OSM for a given project. Test, development, and production
are all instances of an OSM COM project. Some bits of the configuration makes more sense
to be applied on a per-instance basis. The production instance of OSM in a COM role uses
different values for tuning parameters and may employ a different logging and metrics
strategy than a development instance of COM.

In order to create a running WebLogic domain, the target project and instance must be
determined so that the appropriate configuration can be assembled.

About Specification Layers
The OSM configuration defines the footprint, layout and tuning of OSM. Treating this as one
monolithic configuration is not optimal for sustainability or risk management. The result is a
layered approach to the configuration.

There are three layers defined, each scoping a set of values that are specific to the function
of that layer:

• Project: The project layer contains configuration that is common and applicable for all
instances of an OSM project. Examples of content in this layer are JMS Queues and
external authentication details.

Chapter 1
OSM Cloud Native Architecture

1-5

https://github.com/oracle/weblogic-deploy-tooling

• Instance: The instance layer contains configuration that is unique to each OSM
instance, such as database identity and cluster size.

• Shape: The shape layer defines the hardware resource utilization and the
resulting tuning. Java Heap Size is an example of a configuration value found in
the shape specification.

The layers are implemented as specification files written in YAML:

• project-instance.yaml

• project.yaml

• shape.yaml

You can build a palette of re-usable, common portions of a configuration for a shape
and project. When a new environment is needed, you can pick from this palette,
adding an instance specification, which is unique to a single instance of OSM.

About Helm Overrides
The specification files are consumed in a hierarchical fashion. If a value is found in
multiple specification files (layers), the one further up the hierarchy takes precedence.
This allows the instance specification to have the final control over its configuration by
being able to override a value that is prescribed in either the shape or project
specifications. This also allows Oracle to define sealed, base configuration, while still
providing you the control over the values used for any specific OSM instance.

Following are the specification files, listed in the order of the highest priority to the
lowest:

• project-instance.yaml

• project.yaml

• shape.yaml

• values.yaml

While the specification for an instance points to the specification for the shape to be
used (implying the order here may be out of sequence), the values found in the
specification for the shape are actually loaded for processing before the values in the
specification for the instance.

The instance specification remains the final authority on any values that are found in
multiple specification files.

About the OSM Cloud Native Toolkit
The OSM cloud native toolkit is an archive file that includes the default configuration
files, utility scripts, and samples to deploy OSM in a cloud native environment. With
OSM cloud native, managing the domain configuration as code (CaC) is paramount.
OSM cloud native provides guidance on effective management of this configuration to
ensure that instances can be created in a standardized and repeatable fashion.

Contents of the OSM Cloud Native Toolkit

The OSM cloud native toolkit contains the following artifacts:

• Helm charts for OSM and OSM database installer:

Chapter 1
About the OSM Cloud Native Toolkit

1-6

– The Helm chart for OSM is located in $OSM_CNTK/charts/osm.

– The Helm chart for the OSM DB Installer is located in $OSM_CNTK/charts/osm-
dbinstaller.

• WebLogic Server Deploy Tooling (WDT) metadata model for an OSM WebLogic domain

• Mechanism to extend the domain and WDT samples and scripts for some common use
cases

• Utility scripts to help with the lifecycle of WebLogic Kubernetes Operator

• Sample scripts to manage pre-requisite secrets. These are not pipeline-friendly.

• Scripts to manage the lifecycle of an OSM instance. These are pipeline friendly.

Chapter 1
About the OSM Cloud Native Toolkit

1-7

2
Planning and Validating Your Cloud
Environment

In preparation for Oracle Communications Order and Service Management (OSM) cloud
native deployment, you must set up and validate pre-requisite software. This chapter
provides information about planning, setting up, and validating the environment for OSM
cloud native deployment.

See the following topics:

• Required Components for OSM Cloud Native

• Planning Your Cloud Native Environment

• Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

• Validating Your Cloud Environment

If you are already familiar with traditional OSM, for important information on the differences
introduced by OSM cloud native, see "Differences Between OSM Cloud Native and OSM
Traditional Deployments".

Required Components for OSM Cloud Native
In order to run, manage, and monitor the OSM cloud native deployment, the following
components and capabilities are required. These must be configured in the cloud
environment:

• Kubernetes Cluster

• Oracle Multitenant Container Database (CDB)

• Container Image Management

• Helm

• Oracle WebLogic Server Kubernetes Operator

• Load Balancer

• Domain Name System (DNS)

• Persistent Volumes

• Authentication

• Secrets Management

• Kubernetes Monitoring Toolchain

• Application Logs and Metrics Toolchain

For details about the required versions of these components, see OSM Compatibility Matrix.

In order to utilize the full flexibility, reliability and value of the deployment, the following
aspects must also be set up:

2-1

• Continuous Integration (CI) pipelines for custom images and cartridges

• Continuous Delivery (CD) pipelines for creating, scaling, updating, and deleting
instances of the cloud native deployment

Planning Your Cloud Native Environment
This section provides information about planning and setting up OSM cloud native
environment. As part of preparing your environment for OSM cloud native, you
choose, install, and set up various components and services in ways that are best
suited for your cloud native environment. The following sections provide information
about each of those required components and services, the available options that you
can choose from, and the way you must set them up for your OSM cloud native
environment.

Setting Up Your Kubernetes Cluster
For OSM cloud native, Kubernetes worker nodes must be capable of running Linux 7.x
pods with software compiled for Intel 64-bit cores. A reliable cluster must have multiple
worker nodes spread over separate physical infrastructure and a very reliable cluster
must have multiple master nodes spread over separate physical infrastructure.

The following diagram illustrates Kubernetes cluster and the components that it
interacts with.

Figure 2-1 Kubernetes Cluster

OSM cloud native requires:

Chapter 2
Planning Your Cloud Native Environment

2-2

• Kubernetes
To check the version, run the following command:

kubectl version

• Flannel
To check the version, run the following command on the master node running the kube-
flannel pod:

docker images | grep flannel
kubectl get pods --all-namespaces | grep flannel

• Docker
To check the version, run the following command:

docker version

Typically, Kubernetes nodes are not used directly to run or monitor Kubernetes workloads.
You must reserve worker node resources for the execution of Kubernetes workload. However,
multiple users (manual and automated) of the cluster require a point from which to access the
cluster and operate on it. This can be achieved by using kubectl commands (either directly on
command line and shell scripts or through Helm) or Kubernetes APIs. For this purpose, set
aside a separate host or set of hosts. Operational and administrative access to the
Kubernetes cluster can be restricted to these hosts and specific users can be given named
accounts on these hosts to reduce cluster exposure and promote traceability of actions.

Typically, the Continuous Delivery pipeline automation deploys directly on a set of such
operations hosts (as in the case of Jenkins) or leverage runners deployed on such operations
hosts (as in the case of GitLab CI). These hosts must run Linux, with all interactive-use
packages installed to support tools such as Bash, Wget, cURL, Hostname, Sed, AWK, cut,
and grep. An example of this is the Oracle Linux 7.6 image (Oracle-Linux-7.6-2019.08.02-0)
on Oracle Cloud Infrastructure.

In addition, you need the appropriate tools to connect to your overall environment, including
the Kubernetes cluster. For instance, for a Container Engine for Kubernetes (OKE) cluster,
you must install and configure the Oracle Cloud Infrastructure Command Line Interface.

Additional integrations may need to include LDAP for users to be able to login to this host,
appropriate NFS mounts for home directories, security lists and firewall configuration for
access to overall environment, and so on.

Kubernetes worker nodes should be configured with the recommended operating system
kernel parameters listed in "Preparing the Operating System" in the OSM Installation Guide,
or if they are engineered systems, "Installing OSM on Engineered Systems" of the OSM
Installation Guide. Use the documented values as the minimum values to set for each
parameter. Ensure that OS kernel parameter configuration is persistent, so as to survive a
reboot.

The basic OSM cloud native instance, for which specification files are provided with the
toolkit, requires up to 12 GB of RAM and 3 CPUs, in terms of Kubernetes worker node
capacity. A small increment is needed for WebLogic Kubernetes Operator and Traefik. Refer
to those projects for details. For detailed breakdown of CPU and memory capacity
requirements, see "Working with Shapes."

Chapter 2
Planning Your Cloud Native Environment

2-3

Synchronizing Time Across Servers
It is important that you synchronize the date and time across all machines that are
involved in testing, including client test drivers and Kubernetes worker nodes. Oracle
recommends that you do this using Network Time Protocol (NTP), rather than manual
synchronization, and strongly recommends it for Production environments.
Synchronization is important in inter-component communications and in capturing
accurate run-time statistics.

Provisioning Oracle Multitenant Container Database (CDB)
OSM cloud native architecture is best supported by the multitenant architecture that
enables an Oracle database to function as a multitenant container database (CDB). A
container database is either a Pluggable Database (PDB) or the root container. The
root container is a collection of schemas, schema objects, and non-schema objects to
which all PDBs belong. A PDB container for OSM cloud native contains the OSM
schema and RCU schema. Each instance of OSM has its own PDB. OSM cloud native
requires access to PDBs in an Oracle 19c Multitenant database. For more information
about the benefits of Oracle Multitenant Architecture for database consolidation, see
Oracle Database Concepts.

You can provision a CDB in an on-premise installation by following the instructions in
Oracle Database Installation Guide for Linux. Alternatively, you can set it up as an
Oracle Cloud Infrastructure DB system. For details on the supported versions, see
OSM Compatibility Matrix. The provisioning process can vary based on the needs and
the setup of your organization.

OSM cloud native requires certain settings to be configured at the CDB level. You can
find those details in the section about Database Parameters in OSM Installation Guide.

CDB hosts should be configured with OS kernel parameters as per Knowledge Article
1587357.1 on My Oracle Support. Use the recommended values specified in the KM
article as the minimum values. Ensure that OS parameter configuration is persistent so
as to survive a reboot.

Once the CDB is ready, you can follow one of the following strategies for the PDB:

Provisioning an Empty PDB
To create an empty PDB:

1. Run the following SQL commands using the sys dba account for the CDB:

CREATE PLUGGABLE DATABASE _replace_this_text_with_db_service_name_
ADMIN USER _replace_this_text_with_admin_name_ IDENTIFIED BY
"_replace_this_text_with_real_admin_password_" DEFAULT TABLESPACE
"USERS" DATAFILE '+DATA' SIZE 5M REUSE
AUTOEXTEND ON;
ALTER PLUGGABLE DATABASE _replace_this_text_with_db_service_name_
open instances = all;
ALTER PLUGGABLE DATABASE _replace_this_text_with_db_service_name_
save state instances = all;
alter session set
container=_replace_this_text_with_db_service_name_;
GRANT CREATE ANY CONTEXT TO SYS WITH ADMIN OPTION;

Chapter 2
Planning Your Cloud Native Environment

2-4

GRANT CREATE ANY CONTEXT TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT CREATE ANY VIEW TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE SNAPSHOT TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE SYNONYM TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE TABLE TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE USER TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE VIEW TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT CREATE materialized view to _replace_this_text_with_admin_name_;
GRANT GRANT ANY PRIVILEGE TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT QUERY REWRITE TO _replace_this_text_with_admin_name_ WITH ADMIN
OPTION;
GRANT UNLIMITED TABLESPACE TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT SELECT ON SYS.DBA_TABLESPACES TO
_replace_this_text_with_admin_name_ WITH GRANT OPTION;
GRANT SELECT ON SYS.V_$PARAMETER TO _replace_this_text_with_admin_name_
WITH GRANT OPTION;
GRANT SELECT on SYS.dba_jobs to _replace_this_text_with_admin_name_ with
grant option;
GRANT "CONNECT" TO _replace_this_text_with_admin_name_ WITH ADMIN OPTION;
GRANT "DBA" TO _replace_this_text_with_admin_name_ WITH ADMIN OPTION;
GRANT "EXP_FULL_DATABASE" TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT "IMP_FULL_DATABASE" TO _replace_this_text_with_admin_name_ WITH
ADMIN OPTION;
GRANT "RESOURCE" TO _replace_this_text_with_admin_name_ WITH ADMIN OPTION;
GRANT EXECUTE ON SYS.DBMS_LOCK TO _replace_this_text_with_admin_name_
WITH GRANT OPTION;
grant execute on utl_file to _replace_this_text_with_admin_name_ with
grant option;
grant sysdba to _replace_this_text_with_admin_name_;
ADMINISTER KEY MANAGEMENT SET KEY USING TAG 'tag' FORCE KEYSTORE
IDENTIFIED BY "sys_password" WITH BACKUP USING 'db_service_name_backup';

2. Log into the PDB as the sys dba account for the PDB (defined by the
_replace_this_text_with_admin_name_ parameter in the above commands) and adjust
the PDB tablespace by running the following command:

Note:

In the command, replace DATA with the proper name from v$asm_diskgroup.

create tablespace osm datafile '+DATA' size 1024m reuse autoextend on next 64m;
ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE OSM;

Chapter 2
Planning Your Cloud Native Environment

2-5

Choosing Tablespaces

OSM cloud native supports the OSM best-practice of separate tablespaces for order
data, order data indexes, OSM model data, and OSM model data indexes. Production
and production-like instances must utilize this separation.

For a simple instance, such as a developer instance, separate tablespaces are not
necessary. The default tablespace can be named as the tablespace for each of these
categories in the OSM cloud native specification files.

To create PDBs for such instances, additional tablespaces can be added using the
"sys dba" account for the PDB:

create tablespace osm_model datafile '+DATA' size 1024m reuse
autoextend on next 64m;
create tablespace osm_model_index datafile '+DATA' size 1024m reuse
autoextend on next 64m;
create tablespace osm_order datafile '+DATA' size 1024m reuse
autoextend on next 64m;
create tablespace osm_order_index datafile '+DATA' size 1024m reuse
autoextend on next 64m;

Choose tablespace names and datafiles as per your database management
guidelines. Choose the initial tablespace size depending on the desired OSM partition
size as per the following table:

Table 2-1 Partition Sizes and Tablespace Sizes

Partition Size Tablespace Size

2000000 (2 million) > or = 1024 MB

10000000 (10 million) > or = 10240 MB

20000000 (20 million) > or = 20480 MB

The tablespace names and the partition size chosen will be required to populate the
OSM cloud native specification files for the instance that connects to this PDB.

Oracle recommends using the smaller partition size for developer instances and small
test instances. Larger partition sizes are applicable for heavy-duty test instances (for
example, for stress tests and performance tests) and production-grade instances.

If securing OSM data is a requirement, the recommended approach is to use
transparent data encryption (TDE) to encrypt the tablespaces used to store OSM and
WebLogic data. For more details, see OSM - Encrypting Database Tablespaces and
WebLogic Protocols (Doc ID 2399723.1) knowledge article on My Oracle Support.

In that context, note that all OSM data is stored in tablespaces and, as a result, it is not
necessary to supplement TDE encryption by setting the database parameter
db_securefile to PREFERRED. While OSM supports PREFERRED, which has
been the default since 12c, it is sufficient to set db_securefile to PERMITTED.

Provisioning a Seed OSM PDB
You can create a "master PDB" for OSM cloud native for a particular project or a
subset of users by cloning a seed PDB and then running the OSM cloud native DB
installer on it to deploy the OSM schema. At this point, you can deploy your cartridges

Chapter 2
Planning Your Cloud Native Environment

2-6

to this PDB. The resulting PDB can serve as a master that you can clone for each instance
that needs those set of cartridges.

You can also add the Fusion MiddleWare RCU DB schema to the master PDB. However, the
master PDB must never be directly used in an OSM cloud native instance, as the RCU DB
schema contents are inextricably linked to that instance. OSM cloud native instances must
only use clones of the master PDB.

The advantage of a master PDB for OSM cloud native is that it standardizes a PDB for a
significant number of users, and eliminates the need to perform some of the tasks related to
creating instances in pipeline.

About Container Image Management
An OSM cloud native deployment generates container images for OSM and OSM database
installer. Additionally, images are downloaded for WebLogic Kubernetes Operator and Traefik
(depending on the choice of Ingress controllers).

Oracle highly recommends that you create a private container repository and ensure that all
nodes have access to that repository. Images are saved in this repository and all nodes would
then have access to the repository. This may require networking changes (such as routes and
proxy) and include authentication for logging in to the repository. Oracle recommends that
you choose a repository that provides centralized storage and management of not just
container images, but also other artifacts such as OSM cartridge PAR files, Fusion
MiddleWare patch ZIP files, and so on, as needed.

Failing to ensure that all nodes have access to a centralized repository will mean that images
have to be synced to the hosts manually or through custom mechanisms (for example, using
scripts), which are error-prone operations as worker nodes are commissioned,
decommissioned or even rebooted. When an image on a particular worker node is not
available, then the pods using that image are either not scheduled to that node, wasting
resources, or fail on that node. If image names and tags are kept constant (such as
myapp:latest), the pod may pick up a pre-existing image of the same name and tag, leading
to unexpected and hard to debug behaviors.

Installing Helm
OSM cloud native requires Helm, which delivers reliability, productivity, consistency, and ease
of use.

In an OSM cloud native environment, using Helm enables you to achieve the following:

• You can apply custom domain configuration by using a single and consistent mechanism,
which leads to an increase in productivity. You no longer need to apply configuration
changes through multiple interfaces such as WebLogic Console, WLST, and WebLogic
Server MBeans.

• Changing the OSM domain configuration in the traditional installations is a manual and
multi-step process which may lead to errors. This can be eliminated with Helm because
of the following features:

– Helm Lint allows pre-validation of syntax issues before changes are applied

– Multiple changes can be pushed to the running instance with a single upgrade
command

– Configuration changes may map to updates across multiple Kubernetes resources
(such as domain resources, config maps and so on). With Helm, you merely update

Chapter 2
Planning Your Cloud Native Environment

2-7

the Helm release and its responsibility to determine which Kubernetes
resources are affected.

• Including configuration in Helm charts allows the content to be managed as code,
through source control, which is a fundamental principle of modern DevOps
practices.

OSM requires a helm version compliant with the information in the Compatibility
Matrix. This should be installed and available as "helm" in the PATH.

Note:

The Helm version mentioned in the commands is used as an example only.
See OSM Compatibility Matrix for the recommended versions.

The following text shows sample commands for installing and validating Helm:

$ cd some-tmp-dir
$ wget https://get.helm.sh/helm-v3.9.3-linux-amd64.tar.gz
$ tar -zxvf helm-v3.9.3-linux-amd64.tar.gz

Find the helm binary in the unpacked directory and move it to its
desired destination. You need root user.
$ sudo mv linux-amd64/helm /usr/local/bin/helm

Optional: If access to the deprecated Helm repository "stable" is
required, uncomment and run
helm repo add stable https://charts.helm.sh/stable

verify Helm version
$ helm version
version.BuildInfo{Version:"v3.9.3",
GitCommit:"c4e74854886b2efe3321e185578e6db9be0a6e29",
GitTreeState:"clean", GoVersion:"go1.20.3"}

Helm leverages kubeconfig for users running the helm command to access the
Kubernetes cluster. By default, this is $HOME/.kube/config. Helm inherits the
permissions set up for this access into the cluster. You must ensure that if RBAC is
configured, then sufficient cluster permissions are granted to users running Helm.

Setting Up Oracle WebLogic Server Kubernetes Operator
Oracle WebLogic Server Kubernetes Operator provides WebLogic servers and
clusters in a manner that is compatible with Kubernetes. The WebLogic Server
Kubernetes Operator software is available as a container image.

For details about the version of WKO, see OSM Compatibility Matrix.

Chapter 2
Planning Your Cloud Native Environment

2-8

Note:

Oracle recommends that if you use any of the recommended components listed in
the compatibility matrix, then consider upgrading all other components in the
Kubernetes technology stack to the recommended versions.

For more details about WKO, see Oracle WebLogic Kubernetes Operator User Guide.

For instructions on validating the operation of the WebLogic Server Kubernetes Operator on
your Kubernetes cluster, see "Validating Your Cloud Environment".

About Load Balancing and Ingress Controller
Each OSM cloud native instance is a WebLogic cluster running in Kubernetes. To access
application endpoints, you must enable HTTP/S connectivity to the cluster through an
appropriate mechanism. This mechanism must be able to route traffic to the appropriate OSM
cloud native instance in the Kubernetes cluster (as there can be many) and must be able to
distribute traffic to the multiple Managed Server pods within a given instance. Each instance
must be insulated from the traffic of the other instance. Distribution within an instance must
allow for session stickiness so that OSM client UIs bind to a managed server wherever
possible and therefore not require arbitrary re-authentication by the user. In the case of
HTTPS, the load balance mechanism must enable TLS and handle it appropriately.

For OSM cloud native, an ingress controller is required to expose appropriate services from
the OSM cluster and direct traffic appropriately to the cluster members. An external load
balancer is an optional add-on.

The ingress controller monitors the ingress objects created by the OSM cloud native
deployment, and acts on the configuration embedded in these objects to expose OSM HTTP
and HTTPS services to the external network. This is achieved using NodePort services
exposed by the ingress controller.

The ingress controller must support:

• Sticky routing (based on standard session cookie).

• Load balancing across the OSM managed servers (back-end servers).

• SSL termination and injecting headers into incoming traffic.

Examples of such ingress controllers include Traefik, Voyager, and Nginx. The OSM cloud
native toolkit provides samples and documentation that use Traefik as the ingress controller.

An external load balancer serves to provide a highly reliable singe-point access into the
services exposed by the Kubernetes cluster. In this case, this would be the NodePort
services exposed by the ingress controller on behalf of the OSM cloud native instance. Using
a load balancer removes the need to expose Kubernetes node IPs to the larger user base,
and insulates the users from changes (in terms of nodes appearing or being
decommissioned) to the Kubernetes cluster. It also serves to enforce access policies. The
OSM cloud native toolkit includes samples and documentation that show integration with
Oracle Cloud Infrastructure LBaaS when Oracle OKE is used as the Kubernetes
environment.

Chapter 2
Planning Your Cloud Native Environment

2-9

Using Traefik as the Ingress Controller
While OSM cloud native supports the use of Traefik as Ingress Controller, it is
recommended to use an Ingress Controller that supports the generic Kubernetes
ingress API as described in "Installing the Ingress Controller".

If you choose to use Traefik as the ingress controller, the Kubernetes environment
must have the Traefik ingress controller installed and configured.

For details about the supported versions of Traefik, see OSM Compatibility Matrix.

To install and configure Traefik, do the following:

Note:

Set providers.kubernetesCRD.namespaces,
providers.kubernetesIngress.namespaces and the chart version
specifically using command-line.

1. Ensure that the following tasks are completed:

• Your Kubernetes environment is configured to pull images from Docker Hub.

• The Helm repository is updated successfully as per the Helm section in this
chapter.

2. Run the following commands to install Traefik using the $OSM_CNTK/samples/
charts/traefik/values.yaml file in the samples:

$ helm repo add traefik https://helm.traefik.io/traefik
$ helm install traefik-operator traefik/traefik \
 --namespace $TRAEFIK_NS \
 --version $TRAEFIK_CHART_VERSION \
 --values $OSM_CNTK/samples/charts/traefik/values.yaml \
 --set "providers.kubernetesCRD.namespaces={$TRAEFIK_NS}" \
 --set "providers.kubernetesIngress.namespaces={$TRAEFIK_NS}"

Once the installation of Helm succeeds, the Traefik operator monitors the namespaces
listed in its providers.kubernetesCRD.namespaces,
providers.kubernetesIngress.namespaces field for Ingress objects.

By default, the image is pulled from DockerHub. If you want to use the default image,
you need access to DockerHub. However, if you have mirrored or cached the image in
a local repository, you can use that instead by editing the values.yaml file. If the
Traefik image is being pulled from a repository that does not allow anonymous access,
the user must create a secret to pull the image and must specify it by uncommenting
and filling in the following section in the $OSM_CNTK/samples/traefik/values.yaml
file.

deployment:
 imagePullSecrets:
 - name: imagepull_secret

Example of Traefik Installation

Chapter 2
Planning Your Cloud Native Environment

2-10

Changes in the $OSM_CNTK/samples/traefik/values.yaml file.

image:
 registry: Traefik_image_registry
 repository: Repository
 tag: "2.9.10"
 pullPolicy: IfNotPresent

Commands to run for installing Traefik:

$ helm repo update traefik

$ helm install traefik-operator traefik/traefik
 --namespace $TRAEFIK_NS
 --version 22.1.0
 --values $OSM_CNTK/samples/charts/traefik/values.yaml
 --set "providers.kubernetesCRD.namespaces={$TRAEFIK_NS}"
 --set "providers.kubernetesIngress.namespaces={$TRAEFIK_NS}"

Using Domain Name System (DNS)
A Kubernetes cluster can have many routable entrypoints. Common choices are:

• External load balancer (IP and port)

• Ingress controller service (master node IPs and ingress port)

• Ingress controller service (worker node IPs and ingress port)

You must identify the proper entrypoint for your Kubernetes cluster.

OSM cloud native requires hostnames to be mapped to routable entrypoints into the
Kubernetes cluster. Regardless of the actual entrypoints (external load balancer, Kubernetes
master node, or worker nodes), users who need to communicate with the OSM cloud native
instances require name resolution.

The access hostnames take the prefix.domain form. prefix and domain are determined by the
specifications of the OSM cloud native configuration for a given deployment. prefix is unique
to the deployment, while domain is common for multiple deployments.

The default domain in OSM cloud native toolkit is osm.org.

For a particular deployment, as an example, this results in the following addresses:

• dev1.wireless.osm.org (for HTTP access)

• admin.dev1.wireless.osm.org (for WebLogic Console access)

• t3.dev1.wireless.osm.org (for T3 JMS/SAF access)

These "hostnames" must be routable to the entry point of your Ingress Controller or Load
Balancer. For a basic validation, on the systems that access the deployment, edit the local
hosts file to add the following entry:

Chapter 2
Planning Your Cloud Native Environment

2-11

Note:

The hosts file is located in /etc/hosts on Linux and MacOS machines and in
C:\Windows\System32\drivers\etc\hosts on Windows machines.

ip_address dev1.wireless.osm.org admin.dev1.wireless.osm.org
t3.dev1.wireless.osm.org

However, the solution of editing the hosts file is not easy to scale and co-ordinate
across multiple users and multiple access environments. A better solution is to
leverage DNS services at the enterprise level.

With DNS servers, a more efficient mechanism can be adopted. The mechanism is the
creation of a domain level A-record:

A-Record: *.osm.org IP_address

If the target is not a load balancer, but the Kubernetes cluster nodes themselves, a
DNS service can also insulate the user from relying on any single node IP. The DNS
entry can be configured to map *.osm.org to all the current Kubernetes cluster node IP
addresses. You must update this mapping as the Kubernetes cluster changes with
adding a new node, removing an old node, reassigning the IP address of a node, and
so on.

With these two approaches, you can set up an enterprise DNS once and modify it only
infrequently.

Configuring Kubernetes Persistent Volumes
Typically, runtime artifacts in OSM cloud native are created within the respective pod
filesystems. As a result, they are lost when the pod is deleted. These artifacts include
application logs, Fusion MiddleWare logs, and JVM Java Flight Recorder data.

While this impermanence may be acceptable for highly transient environments, it is
typically desirable to have access to these artifacts outside of the lifecycle of the OSM
cloud native instance. It is also highly recommended to deploy a toolchain for logs to
provide a centralized view with a dashboard. To allow for artifacts to survive
independent of the pod, OSM cloud native allows for them to be maintained on
Kubernetes Persistent Volumes.

OSM cloud native does not dictate the technology that supports Persistent Volumes,
but provides samples for NFS-based persistence. Additionally, for OSM cloud native
on an Oracle OKE cloud, you can use persistence based on File Storage Service
(FSS).

Regardless of the persistence provider chosen, persistent volumes for OSM cloud
native use must be configured:

• With accessMode ReadWriteMany

• With capacity to support intended workload

Log size and retention policies can be configured as part of the shape specification.

Chapter 2
Planning Your Cloud Native Environment

2-12

About NFS-based Persistence
For use with OSM cloud native, one or more NFS servers must be designated.

It is highly recommended to split the servers as follows:

• At least one for the development instances and the non-sensitive test instances (for
example, for Integration testing)

• At least one for the sensitive test instances (for example, for Performance testing, Stress
testing, and production staging)

• One for the production instance

In general, ensure that the sensitive instances have dedicated NFS support, so that they do
not compete for disk space or network IOPS with others.

The exported filesystems must have enough capacity to support the intended workload.
Given the dynamic nature of the OSM cloud native instances, and the fact that the OSM
logging volume is highly dependent on cartridges and on the order volume, it is prudent to put
in place a set of operational mechanisms to:

• Monitor disk usage and warn when the usage crosses a threshold

• Clean out the artifacts that are no longer needed

If a toolchain such as ELK Stack picks up this data, then the cleanup task can be built into
this process itself. As artifacts are successfully populated into the toolchain, they can be
deleted from the filesystem. You must take care to only delete log files that have rolled over.

About Authentication
OSM cloud native requires the use of two-level LDAP with embedded first and then external
next. All OSM system users are created in embedded LDAP during instance creation. It is
highly recommended that all system users and all users configured for automation tasks and
API servicing be created in embedded LDAP for performance and reliability reasons. Human
users are recommended to be served via access to an external (corporate) LDAP system.

For complete details on the requirement of an external authenticator, see "Using WebLogic
Server Authenticators with OSM" in OSM System Administrator's Guide. When OSM cloud
instances use external authentication, ensure that you create separate users and groups for
each environment (or class of environments) in the external LDAP service. The specifications
of this depend on the LDAP service provider.

OSM cloud native toolkit provides a sample configuration that uses OpenLDAP to
demonstrate how to integrate with external LDAP server for human users. For details on
setting up the OpenLDAP server and the layout of the data within it, see "Setting Up
Authentication."

Management of Secrets
OSM cloud native leverages Kubernetes Secrets to store sensitive information securely. This
sensitive information is, at a minimum, the database credentials and the WebLogic
administrator credentials. Additional credentials may be stored to authenticate with the
external LDAP system. Your custom cartridges may need to communicate with other
systems, such as Unified Inventory Management (UIM). The credentials for such systems too
are managed as Kubernetes Secrets.

Chapter 2
Planning Your Cloud Native Environment

2-13

These secrets need to be secured over their lifecycle by the Kubernetes cluster
administration. RBAC should be used to restrict the entities that can describe, view, or
mount these credentials.

OSM cloud native scripts assume that a set of pre-requisite secrets exist when they
are invoked. As such, creation of the secrets is a pre-requisite step in the pipeline.
OSM cloud native toolkit provides a sample script to create some of the common
secrets it needs, but this script is interactive and therefore not suitable for Continuous
Delivery (CD) automation pipelines. The sample script serves to provide a basic
mechanism to add secrets and illustrates the names and structure of the secrets that
OSM cloud native requires.

You can create the secrets manually by using the sample script for each instance. The
sample can be augmented to include additional custom secrets. This method requires
exposing RBAC for creating secrets for a larger group of users, which might not be
desirable. It can also result in human errors, such as mistyping a password, which will
only be detected during the runtime of the OSM instance.

A more sustainable and scalable option is using a secrets management system. There
are several secrets management systems available for use with Kubernetes. Choose a
system that offers a secure API (to be called from the CD pipeline) and populates the
sensitive information as secrets into Kubernetes, as opposed to populating into pods
through environment variables. The installation, configuration, and validation of such a
secrets management system is a pre-requisite to uptake OSM cloud native. For details
on setting up the secrets management system, see the documentation of the system
that you adopt.

Using Kubernetes Monitoring Toolchain
A multi-node Kubernetes cluster with multiple users and an ever-changing workload
requires a capable set of tools to monitor and manage the cluster. There are tools that
provide data, rich visualizations and other capabilities such as alerts. OSM cloud
native does not require any particular system to be used, but recommends using such
a monitoring, visualization and alerting capability.

For OSM cloud native, the key aspects of monitoring are:

• Worker capacity in CPU and memory. The pods take up non-trivial amount of
worker resources. For example, pods configured for production performance use
32 GB of memory. Monitoring the free capacity leads to predictable OSM instance
creation and scale-up.

• Worker node disk pressure

• Worker node network pressure

• Health of the core Kubernetes services

• Health of WebLogic Kubernetes Operator

• Health of Traefik (or other load balancer in the cluster)

The namespaces and pods that OSM cloud native uses provide a cross instance view
of OSM cloud native.

Chapter 2
Planning Your Cloud Native Environment

2-14

About Application Logs and Metrics Toolchain
OSM cloud native generates all logs that traditional OSM and WebLogic Server typically
generate. The logs can be sent to a shared filesystem for retention and for retrieval by a
toolchain such as Elastic Stack.

In addition, OSM cloud native generates metrics and JVM Java Flight Recorder (JFR) data.
OSM cloud native exposes metrics for scraping by Prometheus. These can then be
processed by a metrics toolchain, with visualizations like Grafana dashboards. Dashboards
and alerts can be configured to enable sustainable monitoring of multiple OSM cloud native
instances throughout their lifecycles. The OSM JFR data can be retrieved by Java Mission
Control or such similar tools to analyze the performance of OSM at the JVM level.
Performance metrics include heap utilization, threads stuck, garbage collection, and so on.

Oracle highly recommends using a toolchain to effectively monitor OSM cloud native
instances. The dynamic lifecycle in OSM cloud native, in terms of deploying, scaling and
updating an instance, requires proper monitoring and management of the database
resources as well. For non-sensitive environments such as development instances and some
test instances, this largely implies monitoring the tablespace usage and the disk usage, and
adding disk space as needed.

Another important facet is to track PDB usage to ensure PDBs that are no longer required are
deleted so that the resources are freed up. Sensitive environments such as production and
stress test instances require close monitoring of the database resources such as CPU, SGA/
PGA, top-runner SQLs, and IOPS.

A key implication of the dynamic behavior of OSM cloud native on the database is when the
instances are dehydrated. Very often, there is a requirement to have an OSM instance kept
around even when it is not being actively used. This is because it captures a particular state
(for example, cartridge lineup or order load) or is non-trivial to recreate. Such an environment
lies idle until it is needed again. With OSM cloud native, there is no retained state within the
run-time instance. The information on creating the instance is in the CD artifacts (the various
specification files), and all the OSM application information is in the PDB. As a result, when
the instance is not actively needed, all Kubernetes resources for it can be freed up by
deleting the instance. This does not delete the PDB. The CD artifacts and the PDB can be
used to rehydrate the instance when required. In the mean time, if the instance is not
required for a while (or if there is database capacity pressure), the PDB can be unplugged to
no longer consume any run-time resources. An unplugged PDB can even be transferred to
another CDB and plugged in there.

Role of Continuous Integration (CI) Pipelines
The roles of CI pipelines in an OSM cloud native environment are as follows:

• To generate standard OSM cartridge PAR files and store them in a central location with
appropriate path and naming convention for deployment. Developers run this automation
as they modify cartridges for testing. Standalone mechanisms that generate "official"
cartridge builds for testing and production use also run automation.

• To generate custom OSM cloud native images. The OSM cloud native images contain all
the components needed to run OSM cloud native. However, you may require additional
applications to be co-hosted by the OSM WebLogic cluster. Examples of such
applications include MDBs to mediate communication with an external system and third-
party Java EE monitoring tools. These applications must be layered on top of the OSM
cloud native image to generate a custom image. Automation can accomplish this by

Chapter 2
Planning Your Cloud Native Environment

2-15

using the file samples that are provided in the toolkit. The generated images must
be uploaded to the internal container repository for use by deployment. The path
and naming convention must be followed to designate images that are in
development versus images that are ready for testing; and to version the images
themselves.

OSM cloud native does not mandate the use of a specific set of tools for CI
automation. Common choices are GitLab CI and Jenkins. As part of preparing for
OSM cloud native, you must evaluate CI automation tools and choose one that fits
your business needs and the desired source control mechanisms.

Role of Continuous Delivery (CD) Pipelines
The role of CD pipelines in an OSM cloud native environment is to perform operations
on the target Kubernetes cluster to automate the full lifecycle of an OSM cloud native
instance.

The following are the main operations you must implement:

• Create instance: This must drive off the source-controlled OSM cloud native
specification files and run through the various stages (secrets creation, PDB
creation, OSM database installation, OSM instance creation, load balancer
creation, and cartridge deployment) to create a new OSM cloud native instance.
Variability should be built in for some key phases as secrets may already exist and
may need to be updated, or PDB may already exist with or without OSM schema,
and so on. As a result, this automation is written to a "create-or-update" pattern.

• Update instance: This must be a variant of the instance creation automation,
skipping the PDB creation and perhaps the load balancer (Ingress) creation. The
automation takes the source-controlled OSM cloud native specification files, which
have presumably been modified in some way since the instance was created, and
runs through the steps to make those changes appear in the provisioned OSM
instance. The specification changes could be as simple as a change in the number
of desired Managed Servers, or could be as complex as introducing a new OSM
container image. On the other hand, the only change might be a new version of
the cartridge to be deployed.

• Delete instance: This must clean up the Kubernetes resources used by the
instance. Typically, the PDB is left alone to be handled separately, but it is possible
to chain its deletion to the clean up operation as well.

OSM cloud native does not mandate the use of a particular set of tools for CD
automation. Common choices are GitLab CD and Jenkins. As part of preparing for
OSM cloud native, you must evaluate CD automation tools and choose one that fits
your business needs and the target Kubernetes environment.

Planning Your Container Engine for Kubernetes (OKE)
Cloud Environment

This section provides information about planning your cloud environment if you want to
use Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE) for OSM
cloud native. Some of the components, services, and capabilities that are required and
recommended for a cloud native environment are applicable to the Oracle OKE cloud
environment as well.

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-16

• Kubernetes and Container Images: You can choose from the version options available
in OKE as long as the selected version conforms to the range described in the section
about planning cloud native environment.

• Container Image Management: OSM cloud native recommends using Oracle Cloud
Infrastructure Registry with OKE. Any other repository that you use must be able to serve
images to the OKE environment in a quick and reliable manner. The OSM cloud native
images are of the order of 3 GB each.

• Oracle Multitenant Database: It is strongly recommended to run Oracle DB outside of
OKE, but within the same Oracle Cloud Infrastructure tenancy and the region as an
Oracle DB service (BareMetal, VM, or ExaData). The database version should be 19c.
You can choose between a standalone DB or a multi-node RAC.

• Helm and Oracle WebLogic Kubernetes Operator: Install Helm and Oracle WebLogic
Kubernetes Operator as described for the cloud native environment into the OKE cluster.

• Persistent Volumes: Use NFS-based persistence. OSM cloud native recommends the
use of Oracle Cloud Infrastructure File Storage service in the OKE context.

• Authentication and Secrets Management: These aspects are common with the cloud
native environment. Choose your mechanisms to deliver these capabilities and
implement them in your OKE instance.

• Monitoring Toolchains: While the Oracle Cloud Infrastructure Console provides a view
of the resources in the OKE cluster, it also enables you to use the Kubernetes
Dashboard. Any additional monitoring capability must be built up.

• CI and CD Pipelines: The considerations and actions described for CI and CD pipelines
in the cloud native environment apply to the OKE environment as well.

Compute Disk Space Requirements
Given the size of the OSM cloud native container images (approximately 2 GB), the size of
the OSM cloud native containers, and the volume of the OSM logs generated, it is
recommended that the OKE worker nodes have at least 40 GB of free space that the /var/lib
filesystem can use. Add disk space if the worker nodes do not have the recommended free
space in the /var/lib filesystem.

Work with your Oracle Cloud Infrastructure OKE administrator to ensure worker nodes have
enough disk space. Common options are to use Compute shapes with larger boot volumes or
to mount an Oracle Cloud Infrastructure Block Volume to /var/lib/docker.

Note:

The reference to logs in this section applies to the container logs and other
infrastructure logs. The space considerations still apply even if the OSM cloud
native logs are being sent to an NFS Persistent Volume.

Connectivity Requirements
OSM cloud native assumes the connectivity between the OKE cluster and the Oracle CDBs
is a LAN-equivalent in reliability, performance and throughput. This can be achieved by
creating the Oracle CDBs within the same tenancy as the OKE cluster, and in the same
Oracle Cloud Infrastructure region.

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-17

OSM cloud native allows for the full range of Oracle Cloud Infrastructure "cloud-to-
ground" connectivity options for integrating the OKE cluster with on-premise
applications and users. Selecting, provisioning, and testing such connectivity is a
critical part of adopting Oracle Cloud Infrastructure OKE.

Using Load Balancer as a Service (LBaaS)
For load balancing, you have the option of using the services available in OKE. The
infrastructure for OKE is provided by Oracle's IaaS offering, Oracle Cloud
Infrastructure. In OKE, the master node IP address is not exposed to the tenants. The
IP addresses of the worker nodes are also not guaranteed to be static. This makes
DNS mapping difficult to achieve. Additionally, it is also required to balance the load
between the worker nodes. In order to fulfill these requirements, you can use Load
Balancer as a Service (LBaaS) of Oracle Cloud Infrastructure.

You must create a Kubernetes service as per OCI LBaaS documentation to expose
your Ingress controller via Load Balancer. Once this is done, you can describe the
resulting service and note down the "EXTERNAL-IP" and "PORT(S)". The
EXTERNAL-IP must be used for DNS mapping and in places where an access
hostname-or-IP is required. PORT(S) provide the access port - the number before the
colon ":" for each port set.

If you are using Traefik as your ingress controller, you can refer to $OSM_CNTK/
samples/oci-lb-traefik.yaml as an example load balancer service. Specify the
appropriate LBaaS subnet ID for your OCI environment if you use this sample.

For additional details, see the following:

• "Creating Load Balancers to Distribute Traffic Between Cluster Nodes" in Oracle
Cloud Infrastructure documentation.

• "Load Balancer Annotations" in Oracle GitHub documentation.

About Using Oracle Cloud Infrastructure Domain Name System (DNS)
Zones

While a custom DNS service can provide the addressing needs of OSM cloud native
even when OSM is running in OKE, you can evaluate the option of Oracle Cloud
Infrastructure Domain Name System (DNS) zones capability. Configuration of DNS
zones (and integration with on-premise DNS systems) is not within the scope of OSM
cloud native.

Using Persistent Volumes and File Storage Service (FSS)
In the OKE cluster, OSM cloud native can leverage the high performance, high
capacity, high reliability File Storage Service (FSS) as the backing for the persistent
volumes of OSM cloud native. There are two flavors of FSS usage in this context:

• Allocating FSS by setting up NFS mount target

• Native FSS

To use FSS through an NFS mount target, see instructions for allocating FSS and
setting up a Mount Target in "Creating File Systems" in the Oracle Cloud Infrastructure
documentation. Note down the Mount Target IP address and the storage path and use
these in the OSM cloud native instance specification as the NFS host and path. This

Chapter 2
Planning Your Container Engine for Kubernetes (OKE) Cloud Environment

2-18

https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/File/Tasks/creatingfilesystems.htm

approach is simple to set up and leverages the NFS storage provisioner that is typically
available in all Kubernetes installations. However, the data flows through the mount target,
which models an NFS server.

FSS can also be used natively, without requiring the NFS protocol. This can be achieved by
leveraging the FSS storage provisioner supplied by OKE. The broad outline of how to do this
is available in the blog post "Using File Storage Service with Container Engine for
Kubernetes" on the Oracle Cloud Infrastructure blog.

Leveraging Oracle Cloud Infrastructure Services
For your OKE environment, you can leverage existing services and capabilities that are
available with Oracle Cloud Infrastructure. The following table lists the Oracle Cloud
Infrastructure services that you can leverage for your OKE cloud environment.

Table 2-2 Oracle Cloud Infrastructure Services for OKE Cloud Environment

Type of Service Service Indicates Mandatory /
Recommended / Optional

Developer Service Container Clusters Mandatory

Developer Service Registry Recommended

Core Infrastructure Compute Instances Mandatory

Core Infrastructure File Storage Recommended

Core Infrastructure Block Volumes Optional

Core Infrastructure Networking Mandatory

Core Infrastructure Load Balancers Recommended

Core Infrastructure DNS Zones Optional

Database BareMetal, VM, and ExaData Recommended

Validating Your Cloud Environment
Before you start using your cloud environment for deploying OSM cloud native instances, you
must validate the environment to ensure that it is set up properly and that any prevailing
issues are identified and resolved. This section describes the tasks that you should perform
to validate your cloud environment.

You can validate your cloud environment by:

• Performing a smoke test of the Kubernetes cluster

• Validating the common building blocks in the Kubernetes cluster

• Running tasks and procedures in Oracle WebLogic Kubernetes Operator Quickstart

Performing a Smoke Test
You can perform a smoke test of your Kubernetes cloud environment by running nginx. This
procedure validates basic routing within the Kubernetes cluster and access from outside the
environment. It also allows for initial RBAC examination as you need to have permissions to
perform the smoke test. For the smoke test, you need nginx 1.14.2 container image.

Chapter 2
Validating Your Cloud Environment

2-19

https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes
https://blogs.oracle.com/cloud-infrastructure/using-file-storage-service-with-container-engine-for-kubernetes

Note:

The requirement of the nginx container image for the smoke test can change
over time. See the content of the deployment.yaml file in step 3 of the
following procedure to determine which image is required. Alternatively,
ensure that you have logged in to Docker Hub so that the system can
download the required image automatically.

To perform a smoke test:

1. Download the nginx container image from Docker Hub.

For details on managing container images, see "Container Image Management."

2. After obtaining the image from Docker Hub, upload it into your private container
repository and ensure that the Kubernetes worker nodes can access the image in
the repository.

Oracle recommends that you download and save the container image to the
private Docker repository even if the worker nodes can access Docker Hub
directly. The images in the OSM cloud native toolkit are available only through
your private Docker repository.

3. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/
deployment.yaml # the deployment specifies two replicas
kubectl get pods # Must return two pods in the Running state
kubectl expose deployment nginx-deployment --type=NodePort --
name=external-nginx
kubectl get service external-nginx # Make a note of the external
port for nginx

These commands must run successfully and return information about the pods
and the port for nginx.

4. Open the following URL in a browser:

http://master_IP:port/

where:

• master_IP is the IP address of the master node of the Kubernetes cluster or
the external IP address for which routing has been set up

• port is the external port for the external-nginx service

5. To track which pod is responding, on each pod, modify the text message in the
web page served by nginx. In the following example, this is done for a deployment
of two pods:

$ kubectl get pods -o wide | grep nginx
nginx-deployment-5c689d88bb-g7zvh 1/1 Running 0
1d 10.244.0.149 worker1 <none>
nginx-deployment-5c689d88bb-r68g4 1/1 Running 0
1d 10.244.0.148 worker2 <none>

Chapter 2
Validating Your Cloud Environment

2-20

$ cd /tmp
$ echo "This is pod A - nginx-deployment-5c689d88bb-g7zvh - worker1" >
index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-g7zvh:/usr/share/
nginx/html/index.html
$ echo "This is pod B - nginx-deployment-5c689d88bb-r68g4 - worker2" >
index.html
$ kubectl cp index.html nginx-deployment-5c689d88bb-r68g4:/usr/share/
nginx/html/index.html
$ rm index.html

6. Check the index.html web page to identify which pod is serving the page.

7. Check if you can reach all the pods by running refresh (Ctrl+R) and hard refresh
(Ctrl+Shift+R) on the index.html Web page.

8. If you see the default nginx page, instead of the page with your custom message, it
indicates that the pod has restarted. If a pod restarts, the custom message in the page
gets deleted.

Identify the pod that restarted and apply the custom message for that pod.

9. Increase the pod count by patching the deployment.

For instance, if you have three worker nodes, run the following command:

Note:

Adjust the number as per your cluster. You may find you have to increase the
pod count to more than your worker node count until you see at least one pod
on each worker node. If this is not observed in your environment even with
higher pod counts, consult your Kubernetes administrator. Meanwhile, try to get
as much worker node coverage as reasonably possible.

kubectl patch deployment nginx-deployment -p '{"spec":{"replicas":3}}' --
type merge

10. For each pod that you add, repeat step 5 to step 8.

Ensuring that all the worker nodes have at least one nginx pod in the Running state ensures
that all worker nodes have access to Docker Hub or to your private Docker repository.

Validating Common Building Blocks in the Kubernetes Cluster
To approach OSM cloud native in a sustainable manner, you must validate the common
building blocks that are on top of the basic Kubernetes infrastructure individually. The
following sections describe how you can validate the building blocks.

Network File System (NFS)

OSM cloud native uses Kubernetes Persistent Volumes (PV) and Persistent Volume Claims
(PVC) to use a pod-remote destination filesystem for OSM logs and performance data. By
default, these artifacts are stored within a pod in Kubernetes and are not easily available for
integration into a toolchain. For these to be available externally, the Kubernetes environment
must implement a mechanism for fulfilling PV and PVC. The Network File System (NFS) is a
common PV mechanism.

Chapter 2
Validating Your Cloud Environment

2-21

For the Kubernetes environment, identify an NFS server and create or export an NFS
filesystem from it.

Ensure that this filesystem:

• Has enough space for the OSM logs and performance data.

• Is mountable on all the Kubernetes worker nodes

Create an nginx pod that mounts an NFS PV from the identified server. For details,
see the documentation about "Kubernetes Persistent Volumes" on the Kubernetes
website. This activity verifies the integration of NFS, PV/PVC and the Kubernetes
cluster. To clean up the environment, delete the nginx pod, the PVC, and the PV.

Ideally, data such as logs and JFR data is stored in the PV only until it can be retrieved
into a monitoring toolchain such as Elastic Stack. The toolchain must delete the rolled
over log files after processing them. This helps you to predict the size of the
filesystem. You must also consider the factors such as the number of OSM cloud
native instances that will use this space, the size of those instances, the volume of
orders they will process, and the volume of logs that your cartridges generate.

Validating the Load Balancer

For a development-grade environment, you can use an in-cluster software load
balancer. OSM cloud native toolkit provides documentation and samples that show
you how to use Traefik to perform load balancing activities for your Kubernetes cluster.

It is not necessary to run through "Traefik Quick Start" as part of validating the
environment. However, if the OSM cloud native instances have connectivity issues
with HTTP/HTTPS traffic, and the OSM logs do not show any failures, it might be
worthwhile to take a step back and validate Traefik separately using Traefik Quick
Start.

A more intensive environment, such as a test, a production, a pre-production, or
performance environments can additionally require a more robust load balancing
service to handle the HTTP/HTTPS traffic. For such environments, Oracle
recommends using a load balancing hardware that is set up outside the Kubernetes
cluster. A few examples of external load balancers are Oracle Cloud Infrastructure
LBaaS for OKE, Google's Network LB Service in GKE, and F5's Big-IP for private
cloud. The actual selection and configuration of an external load balancer is outside
the scope of OSM cloud native itself, but is an important component to sort out in the
implementation of OSM cloud native. For more details on the requirements and
options, see "Integrating OSM."

To validate the ingress controller of your choice, you can use the same nginx
deployment used in the smoke test described earlier. This is valid only when run in a
Kubernetes cluster where multiple worker nodes are available to take the workload.

To perform a smoke test of your ingress setup:

1. Run the following commands:

kubectl apply -f https://k8s.io/examples/application/deployment.yaml
kubectl get pods -o wide # two nginx pods in Running state;
ensure these are on different worker nodes
cat > smoke-internal-nginx-svc.yaml <<EOF
apiVersion: v1
kind: Service
metadata:

Chapter 2
Validating Your Cloud Environment

2-22

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.traefik.io/getting-started/quick-start/

 name: smoke-internal-nginx
 namespace: default
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 app: nginx
 sessionAffinity: None
 type: ClusterIP
EOF
kubectl apply -f ./smoke-internal-nginx-svc.yaml
kubectl get svc smoke-internal-nginx

2. Create your ingress targeting the internal-nginx service. The following text shows a
sample ingress annotated to work with the Generic NGINX Ingress controller:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: nginx
 name: smoke-nginx-ingress
 namespace: default
spec:
 rules:
 - host: smoke.nginx.osmtest.org
 http:
 paths:
 - backend:
 service:
 name: smoke-internal-nginx
 port:
 number: 80

If the Traefik ingress controller is configured to monitor the default namespace, then
Traefik creates a reverse proxy and the load balancer for the nginx deployment. For more
details, see Traefik documentation.

If you plan to use other ingress controllers, refer to the documentation about the
corresponding controllers for information on creating the appropriate ingress and make it
known to the controller. The ingress definition should be largely reusable, with ingress
controller vendors describing their own annotations that should be specified, instead of
the Traefik annotation used in the example.

3. Create a local DNS/hosts entry in your client system mapping smoke.nginx.osmtest.org
to the IP address of the cluster, which is typically the IP address of the Kubernetes
master node, but could be configured differently.

4. Open the following URL in a browser:

http://smoke.nginx.osmtest.org:Ingress_Port/

where Ingress_Port is the external port that Ingress has been configured to expose.

Chapter 2
Validating Your Cloud Environment

2-23

5. Verify that the web address opens and displays the NGINX default page.

Your Ingress controller must support session stickiness for OSM cloud native. To learn
how stickiness should be configured, refer to the documentation about the Ingress
controller you choose. For Traefik, stickiness must be set up at the service level itself.
For testing purposes, you can modify the internal-nginx service to enable stickiness
by running the following commands:

kubectl delete ingress smoke-nginx-ingress
vi smoke-internal-nginx-svc.yaml
Add an annotation section under the metadata section:
annotation:
traefik.ingress.kubernetes.io/affinity: "true"
kubectl apply -f ./smoke-internal-nginx-svc.yaml
now apply back the ingress smoke-nginx-ingress using the above yaml
definition

Other ingress controllers may have different configuration requirements for session
stickiness. Once you have configured your ingress controller, and the smoke-nginx-
ingress and smoke-internal-nginx services as required, repeat the browser-
based procedure to verify and confirm if nginx is still reachable. As you refresh
(Ctrl+R) the browser, you should see the page getting served by one of the pods.
Repeatedly refreshing the web page should show the same pod servicing the access
request.

To further test session stickiness, you can either do a hard refresh (Ctrl+Shift+R) or
restart your browser (you may have to use the browser in Incognito or Private mode),
or clear your browser cache for the access hostname for your Kubernetes cluster. You
may observe that the same nginx pod or a different pod is servicing the request.
Refreshing the page repeatedly should stick with the same pod while hard refreshes
should switch to the other pod occasionally. As the deployment has two pods, chances
of a switch with a hard refresh are 50%. You can modify the deployment to increase
the number of replica nginx pods (controlled by the replicas parameter under
spec) to increase the odds of a switch. For example, with four nginx pods in the
deployment, the odds of a switch with hard refresh rise to 75%. Before testing with the
new pods, run the commands for identifying the pods to add unique identification to
the new pods. See the procedure in "Performing a Smoke Test" for the commands.

To clean up the environment after the test, delete the following services and the
deployment:

• smoke-nginx-ingress
• smoke-internal-nginx
• nginx-deployment

Running Oracle WebLogic Kubernetes Operator Quickstart
Oracle recommends that you validate your new Kubernetes environment for OSM
cloud native by performing the procedures described in Oracle WebLogic Kubernetes
Operator Quickstart available at: https://oracle.github.io/weblogic-kubernetes-operator/
quickstart/

The quickstart guide provides instructions for creating a WebLogic deployment in a
Kubernetes cluster with the Oracle WebLogic Kubernetes Operator. The guide also

Chapter 2
Validating Your Cloud Environment

2-24

https://oracle.github.io/weblogic-kubernetes-operator/quickstart/
https://oracle.github.io/weblogic-kubernetes-operator/quickstart/

provides instructions for downloading and installing a load balancer, and a domain. Follow the
instructions provided above for Helm 3.x.

When you run and complete the tasks in the quickstart successfully, the following aspects of
the cloud environment are tested and verified:

• Private Docker repository (or procedures to sync per-node Docker cache on a multi-node
Kubernetes cluster)

• Initial view of the chosen in-cluster load balancers

• RBAC for WebLogic Kubernetes Operator

• Procedure to introduce secrets into the cloud environment

• Basic compatibility of the cloud environment with WebLogic Kubernetes Operator

The quickstart also contains instructions for cleaning up the environment after you finish the
validation and testing. Perform these clean-up procedures to return the environment to the
original state for OSM cloud native.

After completing the clean-up procedures, ensure that the WebLogic Kubernetes Operator
CustomResourceDefinition (CRD) is removed from your cluster by running the following
commands:

$ kubectl get crd domains.weblogic.oracle
if this returns an existing CRD even after WKO quickstart cleanup, then
run:
$ kubectl delete crd domains.weblogic.oracle

Chapter 2
Validating Your Cloud Environment

2-25

3
Creating OSM Cloud Native Images

OSM cloud native requires container images be made available to create and manage OSM
cloud native instances. This chapter describes how to create those OSM cloud native
images.

OSM cloud native requires two container images. The OSM DB Installer image is used to
manage the OSM and Fusion MiddleWare schemas - create, delete, upgrade - as well as
deploy and fast-undeploy OSM cartridges in the OSM schema. The other image is the OSM
image itself. This image is the basis for all of the long running pods - the WebLogic admin
server and all the Managed Servers that comprise an OSM cloud native instance. Each
image is built on top of a Linux base image and adds Java, Fusion MiddleWare components
and OSM product components on top.

OSM Cloud native images are created using the OSM cloud native builder toolkit and a
dependency manifest file. The OSM cloud native Image Builder is intended to be run as part
of a Continuous Integration process that generates images. It needs to run on Linux and have
access to the local Docker daemon. The versions of these are as per the OSM statement of
certification in the OSM documentation. The dependency manifest is a file that describes all
the versions and patches required to build out the image.

See the following topics for further details:

• Downloading the OSM Cloud Native Image Builder

• Prerequisites for Creating OSM Images

• Specifying Configurations for the OSM Cloud Native Images

• Creating the OSM Cloud Native Images

Downloading the OSM Cloud Native Image Builder
You download the OSM cloud native image builder from My Oracle Support at: https://
support.oracle.com

The OSM cloud native image builder is bundled with the following components:

• An unpatched dependency manifest file.

This file does not include any artifacts that require contract-driven access to Oracle
download sites (for example, for Fusion MiddleWare patches). Use this unpatched
manifest file for evaluation purposes only.

For production use (and throughout the adoption lifecycle leading up to production),
obtain the latest dependency manifest file. See OSM Compatibility Matrix for details
about the latest recommended manifest file for your OSM release.

• OSM cloud native builder kit. The kit contains:

– The OSM Domain WDT Model.

– The OSM DB Installer scripts and manifest files.

– The WDT Deployment tool and the WebLogic Image tool.

3-1

https://support.oracle.com
https://support.oracle.com

• Staging directory structure.

Prerequisites for Creating OSM Images
The pre-requisites for building OSM cloud native images are:

• Docker client and daemon on the build machine.

• Installers for WebLogic Server and JDK. Download these from the Oracle
Software Delivery Cloud:

https://edelivery.oracle.com

• Oracle Instant Client. Download this from Oracle Software Downloads:

https://www.oracle.com/downloads/

• Required patches. Download these from My Oracle Support:

https://support.oracle.com/

• Java, installed with JAVA_HOME set in the environment.

• Bash, to enable the `<tab>` command complete feature.

See OSM Compatibility Matrix for details about the required and supported versions of
these pre-requisite software.

Configuring the OSM Cloud Native Images
The dependency manifest file describes the input that goes into OSM images. It is
consumed by the image build process. The default configuration in the latest manifest
file provides all the necessary components and required patches for creating OSM
cloud native images. Refer to the Compatibility Matrix to know more about the
supported versions of various components.

You can also modify the manifest file to extend it to meet your requirements. This
enables you to:

• Specify any Linux image as the base, as long as its binary is compatible with
Oracle Linux.

• Upgrade the Oracle Enterprise Linux version to a newer version to uptake a
quarterly CPU.

• Upgrade the JDK version to a newer JDK version to uptake a quarterly CPU.

• Upgrade the Fusion Middleware version to a newer version. For example, you
upgrade the Fusion Middleware version to a newer version when you initiate the
upgrade to pick up new PSU or when Oracle recommends a new update.

• Change the set of patches applied on WebLogic Server, Coherence, Fusion
Middleware, and OPatch to stay aligned with evolving OSM recommendations.

• Change the OSM artifacts to newer artifacts to uptake a new OSM patch.

• Choose a different userid and groupid for oracle:oracle user:group that the
image specifies. The default is 1000:1000.

The breakdown of each section in the dependency manifest file is as follows:

Chapter 3
Prerequisites for Creating OSM Images

3-2

https://edelivery.oracle.com
https://www.oracle.com/downloads/
https://support.oracle.com/

Note:

The schemaVersion and date parameters are maintained by Oracle. Do not
modify these parameters.

Version numbers provided here are only examples. The manifest file used specifies
the actual versions currently recommended.

• OSM Cloud Native Infrastructure Image

While not required by OSM cloud native to create or manage OSM instances, this
infrastructure image is a necessary building block of the final OSM container image.

Specify the details of the Linux base image for OSM.
 # Refer to the OSM documentation for certification statement on supported
 # types and versions. This information is coded into the OSM image as a
 # LABEL, for tracking purposes.
 linux:
 vendor: Oracle
 # uncomment below two lines when selecting linux 7
 # version: 7.9
 # image: container-registry.oracle.com/os/oraclelinux:7-slim
 # comment below two lines when selecting linux 7
 version: 8.8
 image: container-registry.oracle.com/os/oraclelinux:8-slim

OSM cloud native supports Linux 8 while continuing support of Linux 7. You can
uncomment and modify the specification to choose which Linux version can be used as
base image for OSM. The linux parameter specifies the base Linux image to be used as
the base docker image. The version is the two-digit version from /etc/redhat-release.

The vendor and version details are specified and used for:

– Validation when an image is built.

– Querying at run-time. To troubleshoot issues, Oracle support requires you to provide
these details in the manifest file used to build the image.

userGroup:
 username: oracle
 userid: 1000
 groupname: oracle
 groupid: 1000

The userGroup parameter specifies the default userId and groupId for oracle.

jdk:
 vendor: Oracle
 version: 8u391
 path: $CN_BUILDER_STAGING/java/jdk-8u391-linux-x64.tar.gz

Chapter 3
Configuring the OSM Cloud Native Images

3-3

The jdk parameter specifies the JDK vendor, version, and the staging path.

fmw:
 version: 12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/install/
fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip

The fmw parameter specifies the Fusion Middleware version and staging path.

oPatch:
 description: Weblogic Opatch
 patchNumber: 28186730
 patchId: 28186730_13.9.4.2.14
 path: $CN_BUILDER_STAGING/fmw/patch/
p28186730_1394214_Generic.zip

The oPatch parameter specifies the Oracle Patch tool and staging path.

fmwPatch:
 - description: PSU for WLS (OCT 2023 CPU)
 patchNumber: 35893811
 patchId: 35893811_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p35893811_122140_Generic.zip
 - description: PSU Coherence 12.2.1.4.19 (OCT 2023 CPU)
 patchNumber: 35778804
 patchId: 35778804_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p35778804_122140_Generic.zip
 - description: ADF BUNDLE PATCH (OCT 2023 CPU)
 patchNumber: 35735469
 patchId: 35735469_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p35735469_122140_Generic.zip
 - description: FIX FOR CVE-2021-42575 IN ADF BUNDLE PATCH (OCT
2023 CPU)
 patchNumber: 34809489
 patchId: 34809489_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p34809489_122140_Generic.zip
 - description: ADR FOR WLS (OCT 2023 CPU)
 patchNumber: 35476067
 patchId: 35476067_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p35476067_122140_Linux-
x86-64.zip
 - description: OPSS FOR WLS (OCT 2022 CPU)
 patchNumber: 33950717
 patchId: 33950717_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p33950717_122140_Generic.zip
 - description: FMW PLATFORM 12.2.1.4.0 SPU FOR WLS (APR 2022
CPU)
 patchNumber: 33093748

Chapter 3
Configuring the OSM Cloud Native Images

3-4

 patchId: 33093748_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p33093748_122140_Generic.zip
 - description: FMW THIRD PARTY BUNDLE PATCH (OCT 2023 CPU)
 patchNumber: 35882299
 patchId: 35882299_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p35882299_122140_Generic.zip
 - description: FMW Control SPU (OCT 2022 CPU)
 patchNumber: 34542329
 patchId: 34542329_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p34542329_122140_Generic.zip
 - description: FMW JDBC (MERGE PATCH FOR APR 2022 CPU AND 31372984)
 patchNumber: 33791062
 patchId: 33791062_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p33791062_122140_Generic.zip
 - description: Oracle Web Services Manager (OWSM) Bundle Patches (OCT
2023 CPU)
 patchNumber: 35868571
 patchId: 35868571_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p35868571_122140_Generic.zip
 - description: RDA Release for FMW 12.2.1.4.0 (OCT 2023 CPU)
 patchNumber: 35671137
 patchId: 35671137_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p35671137_122140_Generic.zip
 - description: FMW COMPATIBILITY PATCH FOR JDK8 (APR 2022 CPU)
 patchNumber: 34065178
 patchId: 34065178_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p34065178_122140_Generic.zip
 - description: WEBCENTER CORE BUNDLE PATCH (OCT 2023 CPU)
 patchNumber: 35751917
 patchId: 35751917_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p35751917_122140_Generic.zip
 - description: Oracle Data Integrator (ODIMP) BUNDLE PATCH (OCT 2023
CPU)
 patchNumber: 35861909
 patchId: 35861909_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p35861909_122140_Generic.zip
 - description: DMS Metric table uses UUID for Keys
 patchNumber: 28334768
 patchId: 28334768_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p28334768_122140_Generic.zip
 - description: STUCK THREAD AT
ORACLE.AS.JMX.FRAMEWORK.STANDARDMBEANS.SPI.ORACLESTANDARDEMITTER
 patchNumber: 27184424
 patchId: 27184424_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p27184424_122140_Generic.zip
 - description: user-group association bug fix
 patchNumber: 30319071
 patchId: 30319071_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p30319071_122140_Generic.zip
 - description: Export JMS for javax.jms.objectmessage
 patchNumber: 31169032
 patchId: 31169032_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/p31169032_122140_Generic.zip
 - description: JMS Orphan destination routing

Chapter 3
Configuring the OSM Cloud Native Images

3-5

 patchNumber: 31569708
 patchId: 31569708_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p31569708_122140_Generic.zip
 - description: 3 JDBC STORE IN FUSION APPLICATIONS POD EDGF-
TEST HAVE NO OWNER
 patchNumber: 32262098
 patchId: 32262098_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p32262098_122140_Generic.zip
 - description: ADB Wallet Dir Connection String Support
 patchNumber: 31676526
 patchId: 31676526_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p31676526_122140_Generic.zip
 - description: RCU Creation with RAC DB shows incorrect port
warning
 patchNumber: 30540494
 patchId: 30540494_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p30540494_122140_Generic.zip
 - description: SQL issued by RCU can be changed for efficiency
 patchNumber: 30754186
 patchId: 30754186_12.2.1.4.0
 path: $CN_BUILDER_STAGING/fmw/patch/
p30754186_122140_Generic.zip

The fmwPatch parameter specifies additional patches and their staging paths.

• OSM Cloud Native Image

Note:

Do not modify these parameters. These parameters are maintained by
Oracle.

osmCnImage:
 name: osm-cn-base
 tag: 7.5.0
 wdt:
 version: 3.2.3
 path: $CN_BUILDER_STAGING/cnsdk/tools/weblogic-deploy.zip
 modelfiles: $CN_BUILDER_STAGING/cnsdk/osm-model/osm-domain-config/
osm-base-domain.yaml,$CN_BUILDER_STAGING/cnsdk/osm-model/osm-domain-
config/properties/docker-build/domain.properties
 application: $CN_BUILDER_STAGING/cnsdk/osm-model/osm-app-
archive.zip
 uxwarapplication: $CN_BUILDER_STAGING/cnsdk/osm-model/osm-fallout-
app-archive.zip
 dockerExtension: $CN_BUILDER_STAGING/cnsdk/osm-model/
additionalBuildCommands.txt

Chapter 3
Configuring the OSM Cloud Native Images

3-6

The osmCnImage section specifies details about the OSM artifacts required to build the
OSM base image. These include the oms.ear, cartridge management WS ear file, default
cartridge par file, job control cartridge par file, WDT and base model files.

• OSM Cloud Native DB Installer Image

osmCnDbInstallerImage:
 name: osm-cn-db-installer
 tag: 7.5.0

The osmCnDbInstallerImage parameter specifies the DB Installer image name and
version. This includes the transformed OSM DB model and Semele jar file.

oracleInstantClient:
 version: 19.21.0.0.0
 basic:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient19.21-
basic-19.21.0.0.0-1.x86_64.rpm
 sqlplus:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient19.21-
sqlplus-19.21.0.0.0-1.x86_64.rpm
 tools:
 path: $CN_BUILDER_STAGING/instant-client/oracle-instantclient19.21-
tools-19.21.0.0.0-1.x86_64.rpm

The oracleInstantClient parameter specifies details about the Oracle Instant Client
required by the DB installer.

osmMsInfraStructure:
 jdk:
 vendor: Oracle
 version: 17.0.9
 path: $CN_BUILDER_STAGING/java/jdk-17.0.9_linux-x64_bin.tar.gz

The osmMsInfraStructure parameter specifies details about the Microservice JDK
version.

osmGwImage:
 name: osm-gateway
 tag: 7.5.0
rtuxMsImage:
 name: osm-runtime-ux-server
 tag: 7.5.0

The osmGwImage and rtuxMsImage parameters specify details about the OSM Gateway
and RTUX microservices respectively.

Creating OSM Cloud Native Images
To create the OSM image, the image builder does the following:

Chapter 3
Creating OSM Cloud Native Images

3-7

• Starts with a base-level operating system image (for example, oraclelinux:7-
slim).

• Creates user and group (for example, oracle:oracle).

• Updates the image with the necessary packages for installing Fusion Middleware.

• Installs Java, Fusion Middleware and applies patches.

• Installs the OSM application base on the WDT model.

To create the OSM DB Installer image, the image builder does the following:

• Starts with a base-level operating system image (for example, oraclelinux:7-
slim).

• Creates a user and a group (for example, oracle:oracle)

• Updates the image with the necessary packages for installing Fusion Middleware.

• Installs Java, Fusion Middleware and applies the required patches.

• Installs SQL Plus and SQL Loader and the supporting libraries.

• Installs the OSM DB Installer.

You can specify any Linux image as the base, as long as its binary is compatible with
Oracle Linux and conforms to the compatibility matrix. See OSM Compatibility Matrix
for details about the supported software.

The following packages must be installed onto the given base image, or be already
present:

• gzip

• tar

• unzip

In addition to OSM and OSM DB installer images, OSM cloud native now enables you
to create OSM Gateway and RTUX microservices images as well.

Creating the OSM and OSM DB Installer Images

To create the OSM and OSM DB Installer images:

1. Create the workspace directory:

mkdir workspace

2. Obtain and untar the OSM image builder file: osm-image-builder.tar.gz to the
workspace directory:

tar -xf ./osm-image-builder.tar.gz --directory workspace

3. (Optional) Download and copy the version of Oracle Instant Client in the manifest
you are using to workspace/osm-image-builder/staging/instant-client directory
and update the version and the file names.

Chapter 3
Creating OSM Cloud Native Images

3-8

Note:

Oracle Instant Client packages are included in the OSM Image Builder and can
be used as-is without additional downloads. Also, follow your organization's
standard for $http_proxy.

curl -x $http_proxy --output osm-image-builder/staging/instant-client/
oracle-instantclient19.21-basic-19.21.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/1921000/
oracle-instantclient19.21-basic-19.21.0.0.0-1.x86_64.rpm

curl -x $http_proxy --output osm-image-builder/staging/instant-client/
oracle-instantclient19.21-sqlplus-19.21.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/1920000/
oracle-instantclient19.21-sqlplus-19.21.0.0.0-1.x86_64.rpm

curl -x $http_proxy --output osm-image-builder/staging/instant-client/
oracle-instantclient19.21-tools-19.21.0.0.0-1.x86_64.rpm
https://download.oracle.com/otn_software/linux/instantclient/1920000/
oracle-instantclient19.21-tools-19.21.0.0.0-1.x86_64.rpm

4. Download JDK to workspace.

• Determine the JDK versions specified in the manifest - there will be JDK 8 and JDK
17.

• Download each JDK version tar.gz into ./workspace/osm-image-builder/staging/
java.

• Amend the manifest for each JDK section to include the correct path and filename if
they differ.

#Example
cp jdk-8u251-linux-x64.tar.gz ./workspace/osm-image-builder/staging/java/
jdk-8u251-linux-x64.tar.gz

Microservices require JDK 17. Specify JDK 17 in the manifest under each microservice
section.

Note:

You can modify the manifest by substituting the default tags with tags that have
relevance to your specific work. Specifying tags is not required, but it is
recommended.

Information about the OSM m-s image
osmMsInfraStructure:
 jdk:
 vendor: Oracle
 version: 17.0.7
 path: $CN_BUILDER_STAGING/java/jdk-17.0.7_linux-x64_bin.tar.gz

Chapter 3
Creating OSM Cloud Native Images

3-9

Information about the OSM Gateway image
osmGwImage:
 name: osm-gateway
 tag: 7.5.0-unpatched

Information about the OSM rtux m-s image
rtuxMsImage:
 name: osm-runtime-ux-server
 tag: 7.5.0-unpatched

5. From Oracle Software Delivery Cloud: https://edelivery.oracle.com, download
Fusion Middleware Infrastructure installer and copy it to the workspace/osm-
image-builder/staging/fmw/install directory. The Fusion Middleware
Infrastructure installer version to be download is described in the dependency
manifest file under the fmw section.

cp fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip ./workspace/osm-
image-builder/staging/fmw/install/
fmw_12.2.1.4.0_infrastructure_Disk1_1of1.zip

6. Download all the listed patches to the workspace/osm-image-builder/
staging/fmw/patch directory. The list of required patches is in the dependency
manifest file in the oPatch and fmwPatch sections.

Note:

This step is not required if osm_cn_ci_manifest_unpatched.yaml is
the manifest used.

You can download the patches using any of the following options:

• (Recommended) Manually search for and download each OPatch/FMW
patches from Oracle Support to the current working directory and then copy to
the staging directory.

cp pxxxxxx_xxxxx_Generic.zip ./workspace/osm-image-builder/
staging/fmw/patch

• Provide your My Oracle Support account credentials when invoking the build-
osm-images.sh script, and let the builder download the patches
automatically:

Chapter 3
Creating OSM Cloud Native Images

3-10

Note:

Some patches may not be retrievable in this manner. If the image build
process fails with errors about a missing patch, use the recommended
option.

./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c osm -u MOS_username -p MOS_password

7. Run build-osm-images.sh and pass the dependency manifest file, staging path and the
images to be created.

export DMANIFEST=./workspace/osm-image-builder/bin/
osm_cn_ci_manifest_unpatched.yaml
export STAGING=$(pwd)/workspace/osm-image-builder/staging

• Select the images to create using the -c command-line argument. If you are
specifying more than one image to create, provide a comma-separated list.
Valid values are:

– osm: OSM image.

– dbinstaller: OSM DB Installer image

– gateway: OSM Gateway microservice image

– rtuxms: OSM Runtime microservice image

• To build all images, for example:

./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c osm,dbinstaller,gateway,rtuxms

These steps can be included into your CI pipeline as long as the required components are
already downloaded to the staging area.

Additional Considerations When Using the Unpatched Manifest File

When an OSM image is created by the image builder with the
osm_cn_ci_manifest_unpatched.yaml file, the resulting image does not contain the Fusion
Middleware patches that are required for proper OSM cloud native functioning. It is intended
to be used only for evaluation purposes. One workaround is to manually establish the
association between OSM users and groups.

OSM users and groups are not associated after the start up of the admin server, which
results in OSM EJB failing to deploy to the managed server. You should manually associate
users and the group before starting up the managed server.

To associate OSM users with a group when using the unpatched manifest file:

1. Create a new instance with only the admin server running. In the instance specification,
change the value for clusterSize manually. This change would ultimately be performed
by an automated CI/CD pipeline.

vi $SPEC_PATH/project-instance.yaml

Chapter 3
Creating OSM Cloud Native Images

3-11

Change the cluster size to 0
clusterSize: 0

Create the OSM instance.

2. Run the config-security.sh script passing the domain namespace and domain
UID.

$OSM_CNTK/scripts/config-security.sh project project-instance

3. Start the managed servers.

• In the instance specification, set clusterSize to the desired number of
managed servers.

vi $SPEC_PATH/project-instance.yaml
Change the cluster size to the desired number
clusterSize: 8

• Upgrade the OSM instance.

The associations are reset every time the Admin Server pod terminates or restarts.
This can happen when the instance is deleted, or on an unexpected event (such as an
hardware issue), or as a side-effect of an instance upgrade that involves a rolling
restart. Regardless of the scenario that led to Admin Server pod being recreated, the
associations must be set up afresh.

To recreate the user and group association:

1. Stop all the managed servers by setting the cluster size to 0 in the instance
specification and upgrade the instance.

2. Run the config-security.sh script as described in step 2 in the above procedure.

3. Start the managed servers as described in step 3 in the above procedure.

Post-build Image Management

The OSM cloud native image builder creates images with names and tags based on
the settings in the manifest file. By default, this results in the following images:

• osm-cn-base: 7.5.0
• osm-cn-db-installer: 7.5.0
• osm-gateway: 7.5.0
• osm-runtime-ux-server: 7.5.0
Once images are built in a CI pipeline, the pipeline uniquely tags the images and
pushes them to an internal Docker repository. An uptake process can then be triggered
for the new images:

• Sanity Test

• Development Test (for explicit retesting of scenarios that triggered the rebuild, if
any)

• System Test

• Integration Test

• Pre-Production Test

Chapter 3
Creating OSM Cloud Native Images

3-12

• Production

Chapter 3
Creating OSM Cloud Native Images

3-13

4
Creating a Basic OSM Cloud Native Instance

This chapter describes how to create a basic OSM cloud native instance in your cloud
environment using the operational scripts and the base OSM configuration provided in the
OSM cloud native toolkit. You can create an OSM instance quickly in order to become familiar
with the process, explore the configuration, and structure your own project. This procedure is
intended to validate that you are able to create a basic OSM instance in your environment.
For information on creating your own project with custom configuration, see "Creating Your
Own OSM Cloud Native Instance".

Before you can create an OSM instance, you must do the following:

• Download and extract the OSM cloud native toolkit archive file

• Install the WKO and Traefik container images. These tasks are required to be performed
for each cluster that has shared resources.

Installing the OSM Cloud Native Artifacts and the Toolkit
Build container images for the following using the OSM cloud native Image Builder:

• OSM core application

• OSM database installer

You must create a private Docker repository for these images, ensuring that all nodes in the
cluster have access to the repository. See "About Container Image Management" for more
details.

Download the OSM cloud native toolkit archive and do the following:

• On Oracle Linux: Where Kubernetes is hosted on Oracle Linux, download and extract
the tar archive to each host that has connectivity to the Kubernetes cluster.

• On OKE: For an environment where Kubernetes is running in OKE, extract the contents
of the tar archive on each OKE client host. The OKE client host is the bastion host/s that
is set up to communicate with the OKE cluster.

Set the variable for the installation directory by running the following command, where
osm_cntk_path is the installation directory of the OSM cloud native toolkit:

$ export OSM_CNTK=osm_cntk_path

Using Oracle Autonomous Database Serverless
OSM cloud native provides experimental capability to use Oracle Autonomous Database
Serverless (the transaction-based variant of ADB-S) on a shared infrastructure.

However, this functionality has the following limitations:

• This capability is made available only for exploration and investigation purposes. It must
not be used for production or similar environments.

4-1

• Online order-based purging is not supported.

• Order purge (online and partition-based) is not supported.

• Performance under high order volume is not quantified.

Both OSM schema and RCU schema can be installed on Autonomous Database.

Note:

If you choose to use Autonomous Database, instead of Standard DB (PDB),
then both RCU and OSM schemas will be created on the same Autonomous
Database.

For more information about Autonomous Database, see the documentation at: https://
docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/index.html.

Using Wallet-based Connection
OSM uses wallet-based connection associated with Database Resident Connection
Pooling (DRCP), which is a connection pooling mechanism in Oracle Database that
allows you to manage database connections efficiently.

For information about using wallet-based connection in Oracle Autonomous Database,
see ADB-S documentation at: https://docs.oracle.com/en/cloud/paas/autonomous-
database/serverless/adbsb/getting-started.html.

While downloading the wallet, provide a password that needs to be provided while
creating secrets as well. Ensure that you remember the password used at the time of
downloading the wallet.

Note:

Do not change the contents of the wallet.

Unzip the wallet and copy it to your local filesystem, which will be used while creating
secrets.

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes
Secrets that the scripts and Helm charts in the toolkit consume. Managing secrets is
out of the scope of the toolkit and must be implemented while adhering to your
organization's corporate policies. Additionally, OSM cloud native does not establish
password policies although Autonomous Database Serverless does.

Note:

As a pre-requisite to using the toolkit for either installing the OSM database
or creating an OSM instance, you must create OSM database secrets and
RCU DB secrets.

The toolkit provides sample scripts for this purpose. However, they are not pipeline-
friendly. Use the scripts for creating an instance manually and quickly, but not for any

Chapter 4
Using Oracle Autonomous Database Serverless

4-2

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/index.html
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/getting-started.html#GUID-E68B32BE-6571-4214-8E12-A85491716995
https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/adbsb/getting-started.html#GUID-E68B32BE-6571-4214-8E12-A85491716995

automated process for creating instances. The scripts also illustrate both the naming of the
secret and the layout of the data within the secret that OSM cloud native requires. You must
create secrets prior to running the install-osmdb.sh or create-instance.sh scripts.

At the time of creating secrets, you are prompted to answer a question related to OSM
schema followed by questions related to wallet. The following is a sample:

Are you using Autonomous Database Serverless (Experimental OSM feature)?
(select number from menu)
1) Yes
2) No

After you select 1, questions related to the ADB-S wallet are prompted.

Updating the Instance Specification
In the instance specification, modify the database parameters as follows:

• Set db.type to "ADB".

• For defaultTablespace, specify the default tablespace name. For Oracle ADB-S, the
default is "temp".

Note:

Refer to ADB-S documentation and ensure the passwords used conform to the
specified requirements.

db:
 type: "ADB" # Acceptable values are STANDARD and ADB
 ## datasourcesPrimary section is applicable only for STANDARD DB. For ADB,
values will be used from Autonomous Database Serverless secrets+configMap.
 datasourcesPrimary:
 port: 1521
 # If not using RAC, provide the DB server hostname/IP address
 # If using RAC, comment out "#host:"
 # host: dbserver-ip
 #
 # If using RAC, provide list of SCAN hostname/IP addresses
 # If not using RAC, comment out "#scans:"
 #scans:
 # - scan1-ip
 # - scan2-ip
 #
 # If using RAC, provide either a list of VIP hostname/IP addresses
 # or a list of INSTANCE_NAMES
 # If not using RAC, comment these out "#vips:" and "#instances:"
 #
 #vips:
 # - vip1-ip
 # - vip2-ip
 # --- OR ---
 #instances:
 # - instance-1

Chapter 4
Using Oracle Autonomous Database Serverless

4-3

 # - instance-2

 # Default log level. Valid value
 #
 ## The levels in descending order are:
 ## SEVERE (highest value)
 ## WARNING
 ## INFO
 ## CONFIG
 ## FINE
 ## FINER
 ## FINEST (lowest value)
 ##
 logLevel: "WARNING"
 #
 # The remaining parameters must match the values used when the PDB
was
 # created. Failure to match will result in dbInstaller errors
 #
 # The default tablespace name of OSM schema
 defaultTablespace: "temp"
 # The temporary tablespace name of OSM schema
 tempTablespace: "TEMP"
 # The time zone offset in seconds
 timezoneOffsetSeconds: "-28800"
 # The model data tablespace name of OSM schema
 modelDataTablespace: "temp"
 # The model index tablespace name of OSM schema
 modelIndexTablespace: "temp"
 # The order data tablespace name of OSM schema
 orderDataTablespace: "temp"
 # The order index tablespace name of OSM schema
 orderIndexTablespace: "temp"

Run the following command:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance create osmdb,rcudb

You will be prompted with questions related to OSM schema followed by questions
related to the wallet:

Do you have pre-existing ADB-S wallet secrets conforming to OSM CNTK ?
(select number from menu)
1) No
2) Yes
#? 1

Provide Autonomous Database Serverless credentials for 'dev-quick' ...
Supplied values must align with rules dictated by component that owns
the password policy
ADB-S Admin Username: ADB-S admin_username
ADB-S Admin Password: ADB-s password
ADB-S unzipped wallet location: /file/location/to/unzipped/wallet

Chapter 4
Using Oracle Autonomous Database Serverless

4-4

ADB-S wallet password: Wallet_password
ADB-S tns_alias: alias_in_wallet

TNS_Alias refers to the aliases mentioned in the tnsnames.ora wallet.

After creating secrets, you will be able to see the following secrets and configMap:

• secret/project-instance-db-wallet created

• secret/project-instance-db-secret created

• configmap/project-instance-db-config created

Installing WebLogic Kubernetes Operator (WKO) and Ingress
Controller

In a shared environment, multiple developers may create OSM instances in the same
Kubernetes cluster, using a shared WebLogic Kubernetes Operator.

For each Kubernetes cluster in your environment, you download and install the following:

• WebLogic Kubernetes Operator (WKO) container

• Ingress Controller

Note:

These installations must be coordinated on large teams so that they occur in a
controlled manner.

Before installing the WKO and the Ingress Controller, do the following tasks:

• Remove the instances of the WKO and Ingress Controller that you installed to validate
your cloud environment.

• Ensure that you have cleaned up the environment. See "Validating Your Cloud
Environment" for instructions on cleaning up.

• Ensure that there are no WebLogic Server Operator artifacts in the environment.

Installing the WebLogic Kubernetes Operator
For information about installation packages and installation instructions, visit the WebLogic
Kubernetes Operator (WKO) documentation at: https://oracle.github.io/weblogic-kubernetes-
operator/managing-operators/installation/#install-the-operator.

For information about the recommended WKO version, see the OSM Compatibility Matrix.

For example, if the recommended WKO version is 4.1.2:

• For details about WKO 4.1.2, see the WKO documentation at: https://github.com/oracle/
weblogic-kubernetes-operator/releases/tag/v4.1.2.

• Choose a namespace for the operator and set the WLSKO_NS environment variable to the
Kubernetes namespace in which WKO will be deployed.

Chapter 4
Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller

4-5

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://github.com/oracle/weblogic-kubernetes-operator/releases/tag/v4.1.2
https://github.com/oracle/weblogic-kubernetes-operator/releases/tag/v4.1.2

• Use --version=4.1.2 during the installation.

• Set the label to the same as namespace using --set
"domainNamespaceLabelSelector=namespace=enabled". Do not use the default
label "weblogic-enabled" because it is not advised to have multiple operators
installed with the same label.

After the successful installation of WKO, validate that the operator is installed, by
running the following command:

kubectl get pods -n $WLSKO_NS

Note:

Prior to version 3.1.0, the operator supported specifying the namespaces
that it manages only through a list. From release 4.0.0 onwards, WKO
supports a list of namespaces, a label selector, or a regular expression
matching the namespace names. OSM cloud native supports the label
selector method.

If you are upgrading from OSM Cloud Native release 7.4.1 and an older version of the
WebLogic Kubernetes Operator, see the "Maintaining the OSM Cloud Native
Environment" for special considerations.

Installing the Ingress Controller
You can use any Ingress Controller that conforms to the standard Kubernetes ingress
API and that supports annotations needed by OSM. Oracle does not certify individual
Ingress controllers to confirm this generic compatibility. Refer to "Working with Ingress,
Ingress Controller, and External Load Balancer" for more details on annotations and
generic Ingress configurations.

You can find examples in GtitHub at: "https://github.com/kubernetes/ingress-nginx".

Weblogic Kubernetes Operator describes the installation and the usage of the NGINX
Ingress controller. Refer to "Install and Configure NGINX" for more information.

Installing the Traefik Ingress Controller as Alternate (Deprecated)
To leverage the OSM cloud native samples that integrate with Traefik, the Kubernetes
environment must have the Traefik ingress controller installed and configured.

Note:

While OSM cloud native supports the use of Traefik as Ingress Controller, it
is recommended to use an Ingress Controller that supports the generic
Kubernetes ingress API as described in "Installing the Ingress Controller".

If you are working in an environment where the Kubernetes cluster is shared, confirm
whether Traefik has already been installed and configured for OSM cloud native. If

Chapter 4
Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller

4-6

https://github.com/kubernetes/ingress-nginx
https://github.com/oracle/weblogic-kubernetes-operator/blob/release/4.1/kubernetes/samples/charts/nginx/README.md

Traefik is already installed and configured, set your TRAEFIK_NS environment variable to the
appropriate namespace.

The instance of Traefik that you installed to validate your cloud environment must be
removed as it does not leverage the OSM cloud native samples. Ensure that you have
removed this installation in addition to purging the Helm release. Check that any roles and
rolebindings created by Traefik are removed. There could be a clusterrole and
clusterrolebinding called "traefik-operator". There could also be a role and rolebinding
called "traefik-operator" in the $TRAEFIK_NS namespace. Delete all of these before you set
up Traefik.

For details about the supported versions of Traefik, see OSM Compatibility Matrix.

To download and install the Traefik container image:

1. Ensure that the following tasks are completed:

• Your Kubernetes environment is configured to pull images from Docker Hub.

• The Helm repository is updated successfully as per the Helm section in this chapter.

2. Run the following command to create a namespace ensuring that it does not already
exist:

Note:

You might want to add the traefik namespace to the environment setup
like .bashrc.

kubectl get namespaces
export TRAEFIK_NS=traefik
kubectl create namespace $TRAEFIK_NS

3. Run the following commands to install the OSM add-ons helm charts
using $OSM_CNTK/samples/charts/traefik/traefik-osm-addons in the samples:

$ helm install traefik-osm-addons \
 $OSM_CNTK/samples/charts/traefik/traefik-osm-addons \
 --namespace $TRAEFIK_NS \
 --set "configMap.namespace=$TRAEFIK_NS"

4. Run the following commands to install Traefik using the $OSM_CNTK/samples/charts/
traefik/values.yaml file in the samples:

Note:

Set providers.kubernetesCRD.namespaces,
providers.kubernetesIngress.namespaces and the chart version specifically
using command-line.

helm repo add traefik https://helm.traefik.io/traefik
helm install traefik-operator traefik/traefik \
 --namespace $TRAEFIK_NS \

Chapter 4
Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller

4-7

 --version traefik_chart_version \
 --values $OSM_CNTK/samples/charts/traefik/values.yaml \
 --set "providers.kubernetesCRD.namespaces={$TRAEFIK_NS}" \
 --set "providers.kubernetesIngress.namespaces={$TRAEFIK_NS}"

By default, the image is pulled from DockerHub. If you want to use the default image,
you need access to DockerHub. However, if you have mirrored or cached the image in
a local repository, you can use that instead by editing the values.yaml file. If the
Traefik image is being pulled from a repository that does not allow anonymous access,
the user must create a secret to pull the image and must specify it by uncommenting
and filling in the following section in the $OSM_CNTK/samples/traefik/values.yaml
file.

deployment:
 imagePullSecrets:
 - name: imagepull_secret

After the installation, Traefik monitors the namespaces listed in its
providers.kubernetesIngress.namespaces and
providers.kubernetesCRD.namespaces fields for Ingress objects. The scripts in
the toolkit manage this namespace list as part of creating and tearing down OSM
cloud native projects. See the example in "About Load Balancing and Ingress
Controller".

When the values.yaml Traefik sample in the OSM cloud native toolkit is used as is,
Traefik is exposed to the network outside of the Kubernetes cluster through port
30305. To use a different port, edit the YAML file before installing Traefik. Traefik
metrics are also available for Prometheus to scrape from the standard annotations.

Traefik function can be viewed using the Traefik dashboard. Create the Traefik
dashboard by running the instructions provided in the $OSM_CNTK/samples/charts/
traefik/traefik-dashboard.yaml file. To access this dashboard, the URL is: http://
traefik.osm.org. This is if you use the values.yaml file provided with the OSM cloud
native toolkit; it is possible to change the hostname as well as the port to your desired
values.

Creating a Basic OSM Instance
This section describes how to create a basic OSM instance.

Setting Environment Variables
OSM cloud native relies on access to certain environment variables to run seamlessly.
Ensure the following variables are set in your environment:

• Path to your private specification repository

• Traefik namespace

To set the environment variables:

1. Create a directory that serves as your specification repository, by running the
following command, where spec_repo_path is the path to your private specification
repository:

Chapter 4
Creating a Basic OSM Instance

4-8

Note:

The scripts in the toolkit support multiple directories being supplied to the -s
parameter in a colon separated list (path/one:path/two:path/three). For
simplicity, the toolkit works with a single directory.

$ export SPEC_PATH=spec_repo_path/quickstart

2. Set the TRAEFIK_NS variable for Traefik namespace.

Registering the Namespace
After you set the environment variables, register the namespace.

If you are working with 'wlsko' as the targetNamespace, then the register-namespace.sh
script offers an additional -l option, allowing you to include the label selector used during the
installation of the operator.

If you did not add a label selector when you installed the operator, by default, the label
weblogic-enabled=true is added to your $WLSKO_NS namespace so that the operator can
monitor it.

If you used a label selector when installing the operator, ensure that you include the same
label using the -l option as follows.

To register the namespace for wlsko, run the following command:

#If you have defined labelselector while installing operator. Example:
wko412=enabled
$OSM_CNTK/scripts/register-namespace.sh -p project -t targets -l label-
Selector
#For example, $OSM_CNTK/scripts/register-namespace.sh -p sr -t wlsko -l
wko412=enabled

#If LabelSelector is not used while installing WKO.
$OSM_CNTK/scripts/register-namespace.sh -p sr -t targets
#For example, $OSM_CNTK/scripts/register-namespace.sh -p sr -t wlsko

To register the namespace for traefik, run the following command:

$OSM_CNTK/scripts/register-namespace.sh -p project -t targets
For example, $OSM_CNTK/scripts/register-namespace.sh -p sr -t traefik

Note:

wlsko and traefik are the names of the targets for registration of namespace
registration. The script uses WLSKO_NS and TRAEFIK_NS to locate these targets.
Do not provide the "traefik" target if you are not using Traefik.

Chapter 4
Creating a Basic OSM Instance

4-9

Creating Secrets
You must store sensitive data and credential information in the form of Kubernetes
Secrets that the scripts and Helm charts in the toolkit consume. Managing secrets is
out of the scope of the toolkit and must be implemented while adhering to your
organization's corporate policies. Additionally, OSM cloud native does not establish
password policies.

Note:

The passwords and other input data such as RCU schema prefix length that
you provide must adhere to the policies specified by the appropriate
component.

As a pre-requisite to using the toolkit for either installing the OSM database or creating
an OSM instance, you must create secrets for access to the following. For more
information on creating secrets, see "Reference of Secrets Created by the Scripts."

• OSM database

• OSM system users

• RCU DB

• OPSS

• Operator artifacts for the instance

• WebLogic Server Admin credentials used when creating the domain

• OIDC credentials

The toolkit provides sample scripts for this purpose. However, they are not pipeline-
friendly. The scripts should be used for creating an instance manually and quickly, but
not for any automated process for creating instances. The scripts also illustrate both
the naming of the secret and the layout of the data within the secret that OSM cloud
native requires. You must create secrets prior to running the install-osmdb.sh or
create-instance.sh scripts.

Run the following script to create the required secrets:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p sr -i quick \
 create \
 osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE,oidc

where:

• osmdb specifies the connectivity details and the credentials for connecting to the
OSM PDB (OSM schema). This is consumed by the OSM DB installer and OSM
runtime.

Chapter 4
Creating a Basic OSM Instance

4-10

Note:

The osmdb secrets contain PDB sysdba user, osm main schema user, osm rule
engine schema user, and osm report schema user. The names of these must
be unique.

• osmldap is the credential for OSM system admin and internal users. The script prompts
for passwords for the following users.

– OSM admin user (username is omsadmin)

– Design Studio admin user (username is sceadmin)

– OSM internal user (username is oms-internal)

– OSM automation user (username is oms-automation)

– OSM Gateway user (username is osm-tmf-internal)

• rcudb specifies the connectivity details and the credentials for connecting to the OSM
PDB (RCU schema). This is consumed by the OSM database installer and OSM and
Fusion MiddleWare runtime.

• wlsadmin is the credential for the intended user that will be created with administrative
access to the WebLogic domain.

• opssWP is the password for encrypting and decrypting the ewallet contents.

• wlsRTE is the password used to encrypt the operator artifacts for this instance. The
merged domain model and the domain ZIP are available in the operator config map and
are encoded using this password.

• oidc OpenId Connect is a service that authenticates users and provides access for
various REST APIs exposed by microservices. For more details about configuring an
authentication provider using OpenID Connect, see"Configuring OpenID Connect for
OSM Microservices."

The merged domain model and the domain ZIP are available in the operator config map and
are encoded using this password.

Verify that the following secrets are created:

sr-quick-database-credentials
sr-quick-embedded-ldap-credentials
sr-quick-weblogic-credentials
sr-quick-rcudb-credentials
sr-quick-opss-wallet-password-secret
sr-quick-runtime-encryption-secret
sr-quick-oidc-credentials

Additionally, the secret opssWF is created by the installation process and does not follow the
same guidelines. It is therefore not a pre-requisite for creating a new instance. In scenarios
where a database is being re-used for a different OSM instance, then this becomes a pre-
requisite secret. For more details, see "Reusing the Database State."

Chapter 4
Creating a Basic OSM Instance

4-11

Configuring OpenID Connect for OSM Microservices
This section provides information about configuring OpenID Connect (OIDC) for OSM
microservices.

Prerequisites

Create a unified authentication service that supports the standard OIDC protocol such
as Keycloak.

Securing REST APIs

OSM microservices such as OSM Gateway are integrated with OIDC. OIDC is an
authentication protocol that enhances security and simplifies user identity
management in applications. It is an extension of OAuth 2.0, which is primarily focused
on authorization.

Note:

IDP Identity Provider(IDP): An Identity Provider (IDP) is a system or service
that authenticates and provides identity information about users to other
applications, services, or systems. It plays a crucial role in identity and
access management (IAM). The primary function of an IDP is to verify a
user's identity and provide authentication to various relying parties
(applications or services) without the need for the user to authenticate
separately with each of them. Example of IDPs: Keycloak, IDCS(Oracle
Identity Cloud Service)

Note:

OIDC OpenID Connect (OIDC): OpenID Connect (OIDC) is an identity layer
built on top of the OAuth 2.0 protocol. It is designed to enable secure and
standardized authentication and user information sharing between clients
(OSM cloud native) and IDPs. OIDC provides a framework for identity
verification, user authentication, and obtaining user profile information.

OSM Gateway authenticates external requests to OSM REST APIs (for TMF and for
Fallout Exception Management) to ensure service security. To do this, it is configured
as the relying party for an external OpenID provider, which has to be set up as an
authentication provider implementing OpenID Connect. It connects to the
authentication system based on the OIDC protocol and provides unified authentication
for connecting to internal services. To configure OSM Gateway microservice as the
relying party for a third-party OpenID provider, set up an authentication provider that
implements OpenID Connect. With this configuration, OSM Gateway REST APIs are
accessible from the OpenID provider and authorize users to access protected data.

Creating OSM Secret for OIDC

OSM cloud native uses a secret for the administrator to provide the required OIDC
information to secure its REST APIs. This secret can be created using the manage-
instance-credentia.sh script from the OSM cloud native toolkit, with the oidc option.
Here are the parameters that the script requests in order to create the secret:

Chapter 4
Creating a Basic OSM Instance

4-12

Table 4-1 OIDC Parameters

OIDC Parameters Description

audience Intended audience for the ID token.

Auth URL This is the URL where the client initiates the authentication process. You are
redirected to this URL to log in and grant permissions to the client
application.

client_id Identifier for the client application.

client_secret Secret key shared between the client and OIDC server.

scope Defines the level of access requested for user data.

Token URL This is the URL where the client exchanges the authorization code for an
access token and ID token. This step typically occurs after you have
successfully authenticated and granted permissions.

Note:

Refer to your OpenID Connect authentication provider's documentation for details
on these parameters.

Fundamentally, OpenId Connect defines two tokens:

• IDToken: The ID Token carries information about the authenticated user. This
informations is often used for user authentication and identity verification.

• AccessToken: This is a short-lived token generated by OIDC provider which is sent to
OSM Gateway to gain access to resources defined in the token.

Note:

In case of troubleshooting authentication issues using the OIDC token, make sure
that the 'aud' listed in the OIDC token has the desired client_id added.

Note:

OIDC details are required for accessing OSM TMF REST endpoints and Fallout
Exception REST endpoints. Human users accessing OSM UIs like Task Web client,
Order Management UI, Order Operations and Fallout Order Management UI would
still be users from External LDAP.

Keycloak as an example IDP

Keycloak is a widely used open-source identity and access management (IAM) system that
can act as an IDP, supporting OIDC among other authentication and authorization protocols.
It provides a complete solution for user authentication and user management. For more
information on Keycloak, see Keycloak documentation at: https://www.keycloak.org/.

IDP Certificate Management

Chapter 4
Creating a Basic OSM Instance

4-13

https://www.keycloak.org/

If the OSM Gateway or RTUX microservice cannot establish an SSL connection to the
IDP due to the certificate being unknown, you can introduce the IDP's certificate into
the OSM Gateway and RTUX microservies while building microservice images.

To introduce the IDP's certificate:

1. Identify the JDK version used in the osmMsInfraStructure.jdk section from the
manifest file used for building OSM cloud native images. You woud have obtained
this JDK file as part of creating images.

2. Add the certificate to this JDK's truststore and rebuild the OSM Gateway image,
and the RTUX image. Refer to the example below for more details.

Note:

The example below assumes JDK 17.0.9, but use the JDK as per your
manifest file: cd $CN_BUILDER_STAGING/java

cd $CN_BUILDER_STAGING/java

#untar the java tar file
tar –xvzf jdk-17.0.9_linux-x64_bin.tar.gz

navigate to the bin folder
cd jdk-17.0.9/bin

#import the certificate to java keystore
keytool -import -trustcacerts -keystore jdk-17.0.9/lib/security/
cacerts -alias <ALIAS_NAME> -file /path/to/idpcert.pem
#Run this command to add multiple certificates if any (Ex: OIDC)
#Example: keytool -import -trustcacerts -keystore $JAVA_HOME/lib/
security/cacerts -alias foo -file idpcert.pem

#tar the java folder again
tar czf jdk-17.0.9_linux-x64_bin.tar.gz jdk-17.0.9

#build the image again using OSM image builder tool
#To create OSM Gateway image, use "-c gateway" as shown:
./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c gateway

#To create rtux m-s image, use "-c rtuxms" as shown:
./workspace/osm-image-builder/bin/build-osm-images.sh -f $DMANIFEST -
s $STAGING -c rtuxms

(Optional) Verify the Certificate in the Keystore:

cd $CN_BUILDER_STAGING/java/jdk-17.0.9/bin
keytool -list -keystore $CN_BUILDER_STAGING/java/jdk-17.0.9/lib/
security/cacerts -alias <ALIAS_NAME>

Chapter 4
Creating a Basic OSM Instance

4-14

Assembling the Specifications
To assemble the specifications:

1. Copy the instance specification to your $SPEC_PATH and rename:

cp $OSM_CNTK/samples/instance.yaml $SPEC_PATH/sr-quick.yaml

2. Copy the project specification to your $SPEC_PATH and rename:

cp $OSM_CNTK/samples/project.yaml $SPEC_PATH/sr.yaml

You edit these files as per the instructions described in the sections that follow.

Installing the OSM and RCU Schemas
This procedure configures an empty PDB. Depending on the database strategy for your
team, you may have already performed this procedure as described in "Planning Your Cloud
Native Environment". Before continuing, confirm whether the PDB being used for creating the
OSM instance has been cloned from a master PDB that includes the schema installation. If
the PDB already has the schema installed, skip this procedure and proceed to the Creating
OSM Users and Groups topic.

After the PDB is created, it is configured with the OSM schema, the RCU schema, and the
cluster leasing table.

Note:

Before installing the OSM and RCU schemas, stop or interrupt the automatic
optimizer statistics collection maintenance task. For more details, see the New
OSM Database Optimizer Statistics Management knowledge article (Doc ID
1925539.1) on My Oracle Support.

To install the OSM and RCU schemas:

Note:

YAML formatting is case-sensitive. While the next step uses vi editor for editing, if
you are not familiar with editing YAML files, use a YAML editor to ensure that the
you do not make any syntax errors while editing. Follow the indentation guidelines
for YAML, as incorrect spacing can lead to errors.

1. Edit the project specification file and update the DB installer image to point to the location
of your image as shown below:

Chapter 4
Creating a Basic OSM Instance

4-15

Note:

Before changing the default values provided in the specification file,
confirm that they align with the values used during PDB creation. For
example, the default tablespace name should match the value used
when PDB is created.

dbinstaller:
 image: DB_installer_image_in_your_repo:<tag>

2. If your environment requires a password to download the container images from
your repository, create a Kubernetes secret with the Docker pull credentials. See
the "Kubernetes documentation" for details. Reference the secret name in the
project specification.

The image pull access credentials for the "docker login" into
Docker repository, as a Kubernetes secret.
Uncomment and set if required.
imagePullSecret: ""

3. Set the partition size to the actual tablespace size that was created. The default
value for production sizing is 20000000 (20 million) and for development is
2000000 (2 million). These may need to be overridden for this instance. See the
OSM System Administrator's Guide for guidelines on partition and tablespace
sizing. If required, update defaultPartitionSize in the development shape
in $OSM_CNTK/charts/osm/shapes/dev.yaml. The defaultPartitionSize
parameter also impacts how defaultSubPartitionCount is calculated.
Calculate OSM_SUBPARTITION_COUNT from OSM_PARTITION_SIZE.

Table 4-2 Calculating Sub-partitions

defaultPartitionSize Calculated Sub-partitions

< = 2M 16

> 2M and < = 10M 32

> 10M 64

4. Run the following script to start the OSM DB installer, which instantiates a
Kubernetes Pod resource. The pod resource lives until the DB installation
operation completes.

#(OSM Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c
1
 ## once finished
(RCU Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 7

You can invoke the script with -h to see the available options.

5. Check the console to see if the DB installer is installed successfully.

Chapter 4
Creating a Basic OSM Instance

4-16

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

6. If the installation failed, run the following command to review the error message in the
log:

kubectl logs -n sr sr-quick-dbinstaller-osm-dbinstaller

7. Clean up the failed pod by running the following command:

helm uninstall sr-quick-dbinstaller -n sr

8. Go back to step 4 and run the script again to install the OSM DB installer.

The following table lists the basic database parameters that are handled by the DB Installer:

Table 4-3 Database Parameters Handled by the DB Installer

Parameter Value

cursor_sharing FORCE

parallel_degree_policy AUTO

deferred_segment_creation By default, set to True. The DB Installer
specification can override this to FALSE for
production environments.

open_cursors 2000

optimizer_mode ALL_ROWS

_optimizer_invalidation_period 600

OSM DB Installer Activities
The OSM DB Installer performs the following activities during OSM schema creation:

• Automatic Optimizer Statistics Collection Maintenance Task: The OSM DB Installer
disables this task during the creation of OSM schema. This avoids race conditions when
copying partition statistics as part of the OSM schema installation. This maintenance task
is re-enabled after the partition statistics are copied. This is handled as part of the OSM
schema installation.

• Statistics gathering schedule: The OSM DB Installer modifies the default statistics
gathering schedule so that the weekend schedule is the same as the weekday schedule.
By default, weekday maintenance windows start at 10 PM and are 4 hours long. The
Saturday and Sunday maintenance windows are 20 hours long and start at 6 AM; this
impacts order processing performance during peak weekend hours.

See the following topics in Oracle Database Administrator's Guide for more details:

– Predefined Maintenance Windows

– Configuring Automated Maintenance Tasks

Configuring the Project Specification
This section provides instructions for creating a project that is configured to support the
processing of the SimpleRabbits sample cartridge that is provided with the toolkit. This
sample cartridge validates that OSM processes orders successfully. The project specification
is a Helm override file that contains values that are scoped to a project. The values specified
in the specification are shared by all the instances of a project, unless they are overridden in
an instance specification. Review the content about Helm chart layering in "Overview of the
OSM Cloud Native Deployment."

Chapter 4
Creating a Basic OSM Instance

4-17

The toolkit provides a sample project specification by the name sr that you can use
with minor adjustments.

To configure the project specification:

1. Edit the project specification to provide the image in your repository (name and
tag) by running the following command:

OSM CN Cluster Image
image: "osm"

OSM Gateway Image
osm-gateway:
 image: "osm-gateway"

OSM Runtime UX Server Image
osmRuntimeUXServer:
 image: "osm-runtime-ux-server"

2. The test cartridge requires JMS Queue configuration, which is provided with the
toolkit. Copy the JMS Queue configuration from the location shown below into the
instance specification.

vi $OSM_CNTK/samples/simpleRabbits/project_fragment.yaml

 ** Copy the queue content
 vi $SPEC_PATH/sr.yaml
 * find the existing placeholder for the queues and paste the
content

The following text is an example of JMS Queue configuration:

jms distributed queues
uniformDistributedQueues:
 - name: new_jms_queue_1
 jndiName: oracle.communication.ordermanagement.ppt.loopbackA
 jmsTemplate: defaultJmsTemplate

first line is LEFT algined with no leading spaces. each
subsequent indent is 2 spaces from the last

3. If your environment requires a password to download the container images from
your repository, create a Kubernetes secret with the Docker pull credentials. See
the "Kubernetes documentation" for details. Reference the secret name in the
project specification.

The image pull access credentials for the "docker login" into
Docker repository, as a Kubernetes secret.
uncomment and set if required.
#imagePullSecret: ""

Chapter 4
Creating a Basic OSM Instance

4-18

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

4. For your DNS resolution mechanism, change the default load balancer domain name as
needed:

loadBalancerDomainName: "osm.org"

Tuning the Project Specification
This section provides instructions for tuning the project specification. The values specified in
the specification are shared by all the instances of a project, unless they are overridden in an
instance specification.

Do the following to tune the project specification:

• To configure the maximum number of bytes allowed in messages that are received over
all WebLogic protocols, set the following parameter:

wlsMaxMsgSize: value_in_bytes

For OSM cloud native, the default value is 300000000 bytes, which is much higher than
the default value of 10000000 bytes in WebLogic. The low default value in WebLogic can
cause errors when this limit is reached.

• To configure the tablespace name for OSM model and order tables and indexes, see the
following parameters:

db:
 modelDataTablespace: string
 modelIndexTablespace: string
 orderDataTablespace: string
 orderIndexTablespace: string

For each parameter, the default value is OSM.

• To configure the partition size for OSM order tables, see the following parameter:

defaultPartitionSize: integer

The default is 2,000,000 (2 million). Production shapes define a larger value of
20,000,000 (20 million), which is a better choice when combined with online purging.

• To configure the sub-partition count for partitioned OSM order tables, see the following
parameter:

defaultSubPartitionCount: integer

The default value is undefined. Typical values are 16, 32 and 64. Leave this parameter
undefined to allow the OSM cloud native database installer to choose a value appropriate
for the partition size. For example, for a large 20 million partition, the installer will choose
a value of 64 so as to minimize database contention.

Chapter 4
Creating a Basic OSM Instance

4-19

• To configure whether database segment creation should be deferred, see the
following parameter:

deferredSegmentCreation: "TRUE" or "FALSE"

The default value is TRUE. To minimize database contention, this should be set to
FALSE for production systems.

• To configure OSM and infrastructure data source connection pool parameters, see
the parameters under the jdbc element. For example, the maximum database
connection pool capacity for the OSM application data sources and for the
infrastructure data sources (which support JMS and tlog JDBC stores) can be set
with:

jdbc:
 app:
 maxCapacity: integer
 infra:
 maxCapacity: integer

For more details on connection pool parameters, see Oracle Fusion Middleware
Administration Console Online Help for Oracle WebLogic Server 12.2.1.4.0. Also
refer to the production and development shapes for the full list of supported
parameters and default values.

• To configure the message buffer cache size for individual JMS servers, see the
following parameter:

jmsMsgBufferSize: value_in_bytes

The default value is approximately one-third of the maximum JVM heap size, or a
maximum of 512 megabytes (536,870,912 bytes). For production environments,
the recommended value is 1 giga byte (1,073,741,824 bytes) to reduce the
possibility that WebLogic will start paging JMS message bodies to disk once the
buffer is full.

• To configure whether database optimizer statistics should be loaded when creating
OSM order table partitions, see the following parameter:

loadPartitionStatistics: false

The default value is false. This should be set to true for production systems.

• To configure logging options, see the following parameter:

logging_options: string

Refer to the production and development shapes for more details and the default
values. The following is an example:

logging_options: " -Dweblogic.log.FileMinSize=5000 -
Dweblogic.log.FileCount=10 -Dweblogic.log.RotateLogOnStartup=false "

Chapter 4
Creating a Basic OSM Instance

4-20

• To configure JVM parameters for the admin server or for managed servers, see the
following parameter:

user_mem_args: string

Refer to the production and development shapes for sample values. The following is an
example from the prodlarge shape:

managedServers:
 shape:
 user_mem_args: "-XX:+UseG1GC -XX:G1HeapRegionSize=16m -
XX:+ClassUnloadingWithConcurrentMark -XX:+UseStringDeduplication -
XX:SurvivorRatio=3 -XX:CodeCacheMinimumFreeSpace=16m -
XX:ReservedCodeCacheSize=512m -verbose:gc -XX:+PrintGCDetails -
XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -
XX:+PrintTenuringDistribution -XX:+PrintAdaptiveSizePolicy -Xloggc:/u01/
oracle/user_projects/domains/domain/gc.log -XX:+DisableExplicitGC -
XX:+ParallelRefProcEnabled -XX:+AlwaysPreTouch -Xms64g -Xmx64g -Xmn22g -
XX:InitiatingHeapOccupancyPercent=50 -XX:ParallelGCThreads=13 "

For more details, see the OSM Memory Tuning Guidelines (Doc ID: 2028249.1)
knowledge article on My Oracle Support.

Configuring the Instance Specification
The instance specification is a Helm override file that contains values that are specific to a
single instance. These values feed into the WDT model developed for the OSM WebLogic
domain.

To configure the instance specification:

1. Edit the sr-quick.yaml file to specify the database details:

db:
 # Enable this if using ADB
 type: "STANDARD"
 datasourcesPrimary:
 port: 1521
 # If not using RAC, provide the DB server hostname/IP address
 # If using RAC, comment out "#host:"
 # host: dbserver-ip
 #
 # If using RAC, provide the list of SCAN hostname/IP addresses
 # If not using RAC, comment out "#scans:"
 #scans:
 # - scan1-ip
 # - scan2-ip
 #
 # If using RAC, provide either a list of VIP hostname/IP addresses
 # or a list of INSTANCE_NAMES
 # If not using RAC, comment out "#vips:" and "#instances:"
 #
 #vips:
 # - vip1-ip

Chapter 4
Creating a Basic OSM Instance

4-21

https://support.oracle.com/portal/

 # - vip2-ip
 # --- OR ---
 #instances:
 # - instance-1
 # - instance-2

2. Assuming that oci-lb-service-traefik is the service created as part of the
Oracle Cloud Infrastructure Load Balancer setup, run the following command to
find the IP address of the Oracle Cloud Infrastructure LBaaS:

kubectl get svc -n traefik oci-lb-service-traefik --
output=jsonpath="{..status.loadBalancer.ingress[0].ip}"

3. Because an external load balancer is not required to be configured for the basic
OSM instance, change the value of loadBalancerPort to the default Traefik
NodePort of 30305 if you are not using Oracle Cloud Infrastructure LBaaS:

loadBalancerPort: 30305

If you use Oracle Cloud Infrastructure LBaaS, or any other external load balancer,
set loadBalancerPort to 80, and uncomment and update the value for
externalLoadBalancerIP appropriately:

loadBalancerPort: load_balancer_port
#externalLoadBalancerIP: IP_address_of_the_external_load_balancer

Creating an Ingress
An ingress establishes connectivity to the OSM instances.

To create an Ingress, run the following command:

$OSM_CNTK/scripts/create-ingress.sh -p sr -i quick -s $SPEC_PATH
Project Namespace : sr
Instance Fullname : sr-quick
LB_HOST : quick.sr.osm.org
Ingress Controller: GENERIC
External LB IP : 192.0.0.8

NAME: sr-quick-ingress
LAST DEPLOYED: Wed Jul 1 10:20:27 2020
NAMESPACE: sr
STATUS: deployed
REVISION: 1
TEST SUITE: None

Ingress created successfully...

Creating an OSM Instance
This procedure describes how to create an OSM instance in your environment using
the scripts that are provided with the toolkit.

Chapter 4
Creating a Basic OSM Instance

4-22

To create an OSM instance:

1. Run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

The create-instance.sh script uses the Helm chart located in the charts/osm directory
to create and deploy the domain custom resource and the domain config map for your
instance. If the scripts fails, see the Troubleshooting Issues section at the end of this
topic, before you make additional attempts.

The instance creation process creates the opssWF secret, which is required for access to
the RCU DB. It is possible to handle the wallet manually if needed. To do so, pass -w to
the create-instance.sh script, which creates the wallet file at a location you choose. You
can then use this wallet file to create a secret by using the manage instance credentials
script.

2. Validate the important input details such as Image name and tag, specification files used
(Values Applied), hostname, and port for ingress routing:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Calling helm lint
==> Linting ./scripts/../charts/osm
[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed
Project Namespace : sr
Instance Fullname : sr-quick
LB_HOST : quick.sr.osm.org
LB_PORT : 30305
Image : osm:7.4.1.200504-0655-b1735.a0f9526f
Shape : dev
Values Applied : -f ./scripts/../charts/osm/values.yaml -f ./
scripts/../charts/osm/shapes/dev.yaml -f /home/oracle/SmokeTest/repo/
sr.yaml -f /home/oracle/SmokeTest/repo/sr-quick.yaml
Output wallet : n/a

After the script finishes executing, the log shows the following:

NAME READY STATUS RESTARTS AGE
sr-quick-admin 1/1 Running 0 2m12s
sr-quick-ms1 0/1 ContainerCreating 0 1s

Provide opss wallet File for 'sr-quick' ...
For example : '/path-to-osm-cntk/sr-quick.ewallet'
opss wallet File:
secret/sr-quick-opss-walletfile-secret created

Instance 'sr/sr-quick' admin server is now running.
Creation of instance 'sr/sr-quick' has completed successfully.

The create-instance.sh script also provides some useful commands and configuration to
inspect the instance and access it for use.

Chapter 4
Creating a Basic OSM Instance

4-23

3. If you query the status of the pods, the READY state of the managed servers may
display 0/1 for several minutes while the OSM application is starting.
When the READY state shows 1/1, your OSM instance is up and running. You can
then validate the instance by deploying a sample cartridge and submitting orders.

The base hostname required to access this instance using HTTP is
quick.sr.osm.org. See "Planning and Validating Your Cloud Environment" for
details about hostname resolution.

The create-instance script prints out the following valuable information that you can
use while working with your OSM domain:

• The T3 URL: http://t3.quick.sr.osm.org This is required for external
client applications such as JMS and WLST.

• The URL for access to the WebLogic UI, which is provided through the ingress
controller at host:http://admin.quick.sr.osm.org:30305/console.

• The URL for access to the OSM UIs, which is provided through the ingress
controller that requires the host to be specified as: http://
quick.sr.osm.org:30305/OrderManagement/Login.jsp.

Validating the OSM Instance
After creating an instance, you can validate it by checking the domain configuration
and the client UIs.

Run the following command to display the domain configuration details of the OSM
instance that you have created:

kubectl describe domain sr-quick -n sr

The command displays the domain configuration information.

To verify the client UIs:

• Log into the WebLogic console using the URL specified in the output of the
create-instance script: http://admin.quick.sr.osm.org:30305/console

You can use the console to verify the configuration that has been applied and to
see that the OSM application is in a good state.

• Log into the OSM Task Web client user interface with the OSM administrator login
credentials created as part of "Creating Secrets" using the URL (http://
quick.sr.osm.org:30305/OrderManagement/Login.jsp) specified in the output of the
create-instance script.

Note:

After an OSM instance is created, it may take a few minutes for the OSM
user interface to become active.

Chapter 4
Creating a Basic OSM Instance

4-24

Scaling the OSM Application Cluster
Now that your OSM instance is up and running, you can explore the ability to dynamically
scale the application cluster.

To scale the OSM application cluster, edit the configuration:

1. In the instance specification, change the value for clusterSize manually. This change
would ultimately be performed by an automated CI/CD pipeline.

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to a value not larger than 18

 #cluster size
clusterSize: 2

Note:

You can watch the Kubernetes pods in your namespace shrink or grow in real-
time. To watch the pods shrink or grow, in a separate terminal window, run the
following command:

kubectl get pods -n sr --watch

2. Upgrade the deployed Helm release:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -s $SPEC_PATH

This pushes the new configuration to the deployed Helm release so the operator can take
the necessary steps.

The WebLogic operator monitors changes to clusterSize and results in the operator
spinning up or tearing down managed servers to align with the requested cluster size.

Deploying the Sample Cartridge
By deploying the sample cartridge that is provided with the toolkit, you can validate order
processing in the OSM instance that you created.

Before deploying the cartridge, you must bring down the running domain. You can do this by
scaling the cluster size down to 0.

To deploy the sample cartridge:

1. Scale down the cluster:

a. Reduce the cluster size in the configuration:

vi $SPEC_PATH/sr-quick.yaml

Chapter 4
Creating a Basic OSM Instance

4-25

Change the cluster size to 0

#cluster size
clusterSize: 0

b. Push the configuration to the runtime environment:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -
s $SPEC_PATH

The operator terminates the managed server.

2. Deploy the SimpleRabbits sample cartridge by running the following command:

./scripts/manage-cartridges.sh \
 -p sr -i quick -s $SPEC_PATH
 -f $OSM_CNTK/samples/simpleRabbits/SimpleRabbits.par -c parDeploy

3. Scale up the cluster:

a. Increase the cluster size in the configuration:

vi $SPEC_PATH/sr-quick.yaml

Change the cluster size to 1

#cluster size
clusterSize: 1

b. Push the configuration to the runtime environment:

$OSM_CNTK/scripts/upgrade-instance.sh -p sr -i quick -
s $SPEC_PATH

The operator terminates the managed server.

Submitting Orders
The OSM cloud native toolkit provides a sample order that you can submit to validate
order processing in OSM. The sample order is available at: $OSM_CNTK/samples/
simpleRabbits/sample.xml.

To submit OSM orders over HTTP, use an external client such as SoapUI. The
endpoint is the same as the URL used to verify the OSM Task Web client.

When using SoapUI, a Soap Envelope element needs to wrap
CreateOrderBySpecification that is provided in $OSM_CNTK/samples/
simpleRabbits/sample.xml

To submit OSM orders over JMS, use an external client such as Hermes JMS. The
endpoint must be as follows:

jms://OSM_1::queue_oracle/communications/ordermanagement/
WebServiceQueue::queue_oracle/communications/ordermangement/
SoapUIResponseQueue

Chapter 4
Creating a Basic OSM Instance

4-26

The connection factory's providerURL must be as follows:

http://t3.quick.sr.osm.org:30305

Deleting and Recreating Your OSM Instance
Deleting Your OSM Instance

To delete your OSM instance, run the following command:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

Re-creating Your OSM Instance

When you delete an OSM instance, the database state for that instance still remains
unaffected. You can re-create an OSM instance with the same project and the instance
names, pointing to the same database.

Note:

Ensure that you use the same specifications that you used for creating the instance
and that the following secrets have not been deleted:

• osmdb

• osmldap

• rcudb

• opssWF

• opssWP

• wlsRTE

To re-create an OSM instance, run the following command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Note:

After re-creating an instance, client applications such as SoapUI and HermesJMS
may need to be restarted to avoid using expired cache information.

Cleaning Up the Environment
To clean up the environment:

1. Delete the instance:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

Chapter 4
Creating a Basic OSM Instance

4-27

2. Delete the ingress:

$OSM_CNTK/scripts/delete-ingress.sh -p sr -i quick

3. Delete the namespace, which in turn deletes the Kubernetes namespace and the
secrets:

$OSM_CNTK/scripts/unregister-namespace.sh -p sr -d -t targets

Note:

wlsko and traefik are the names of the targets for registration of the
namespace. The script uses WLSKO_NS and TRAEFIK_NS to find
these targets. Do not provide the "traefik" target if you are not using
Traefik. If the Traefik version you are using is different from the version
you specified at the time of this release, modify the Traefik chart version
in the unregister-namespace.sh script.

4. If you wish to unregister a namespace without deleting the namespace and
secrets, do one of the following:

• If you have not added domainNamespaceLabelSelector, run the following
command for the operator to stop monitoring your namespace:

$OSM_CNTK/scripts/unregister-namespace.sh -p project -t wlsko
For example, $OSM_CNTK/scripts/unregister-namespace.sh -p sr -
t wlsko

• If you have specified a value for domainNamespaceLabelSelector (for
example, wko412=enabled) during the installation of the operator, run the
following command for unregistering the namespace:

$OSM_CNTK/scripts/unregister-namespace.sh -p project -t wlsko
For example, $OSM_CNTK/scripts/unregister-namespace.sh -p sr -
t wlsko -l wko412

5. Drop the PDB.

Troubleshooting Issues with the Scripts
This section provides information about troubleshooting some issues that you may
come across when running the scripts.

If you experience issues when running the scripts, do the following:

• Check the operator logs to find out the details about the issue:

kubectl get pods -n $WLSKO_NS
get the operator pod name to be used in the next command
kubectl logs -n $WLSKO_NS operator_pod

Chapter 4
Creating a Basic OSM Instance

4-28

• Check the "Status" section of the domain to see if there is useful information:

kubectl describe domain -n sr sr-quick

"Timeout" Issue

In the logs, you may sometimes see the word "timeout" when the create-instance script fails.
When you run the create-instance script, it may take a long time to pull the image, if you are
doing it for the first time. In such a scenario, the script may fail and display the text "timeout"
in the log.

To resolve this issue, try increasing the podStartupDeadlineSeconds parameter. The
podStartupDeadlineSeconds parameter is a configurable parameter exposed in the
instance specification that can be increased if required. Start with a very high timeout value
and then monitor the average time it takes, because it depends on the speed with which the
images are downloaded and how busy your cluster is. Once you have a good idea of the
average time, you can reduce the timeout value accordingly to something that considers both
the average time and some buffer.

Modify the timeout value to start introspector pod. Mainly
when using against slow DB or pulling image first time.
podStartupDeadlineSeconds: 800

After adjusting the parameter, clean up the failed instance and re-create the instance.

Cleanup Failed Instance

When a create-instance script fails, you must clean up the instance before making another
attempt at instance creation.

Note:

Do not retry running the create-instance script or the upgrade-instance script
immediately to fix any errors, as they would return errors. The upgrade-instance
script may work but re-running it does not complete the operation.

To clean up the failed instance:

1. Delete the instance:

$OSM_CNTK/scripts/delete-instance.sh -p sr -i quick

2. Delete and recreate the RCU schema:

$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c 5

Recreating an Instance

If you face issues when creating an instance, do not try to re-run the create-instance.sh
script as this will fail. Instead, perform the cleanup activities and then run the following
command:

$OSM_CNTK/scripts/create-instance.sh -p sr -i quick -s $SPEC_PATH

Chapter 4
Creating a Basic OSM Instance

4-29

Next Steps
A basic OSM cloud native instance should now be running in your environment. This
process exposed you to some of the base functionality and concepts that are new to
OSM cloud native. You can continue in your sandbox environment learning about more
OSM cloud native capabilities by following the learning path.

If, however, your first priority is to understand details on infrastructure setup and
structuring of OSM instances for your organization, then you should follow the
infrastructure path.

To follow the infrastructure path, proceed to "Planning Infrastructure".

To follow the learning path, proceed to "Creating Your Own OSM Cloud Native
Instance".

Chapter 4
Next Steps

4-30

5
Planning Infrastructure

In "Creating a Basic OSM Cloud Native Instance", you learned how to create a basic OSM
instance in your cloud native environment. This chapter provides details about setting up
infrastructure and structuring OSM instances for your organization. However, if you want to
continue in your sandbox environment learning about more OSM cloud native capabilities,
then proceed to "Creating Your Own OSM Cloud Native Instance".

See the following topics:

• Sizing Considerations

• Managing Configuration as Code

• Setting Up Automation

• Securing Operations in Kubernetes

Sizing Considerations
The hardware utilization for an OSM cloud native deployment is approximately the same as
that of an OSM traditional deployment.

Consider the following when sizing for your cloud native deployment:

• For OSM cloud native, ensure that the database is sized to account for the WLS
Persistent Store workload residing in the database. For details, see the "Persistent Store
Configuration & Operational Considerations for JMS, SAF & WebLogic tlogs in OSM (Doc
ID 2469767.1)" knowledge article on My Oracle Support.

• Oracle recommends sizing using a given production shape as a building block, adjusting
the OSM cluster size to meet target order volumes.

• In addition to planning hardware for a production instance, Oracle recommends planning
for a Disaster Recovery size and key non-production instances to support functional,
integration and performance tests The Disaster Recovery instance can be created
against an Active Data Guard Standby database when needed and terminated when no
longer needed to improve hardware utilization.

• Non-production instances can likewise be created when needed, either against new or
existing database instances.

Contact Oracle Support for further assistance with sizing.

Managing Configuration as Code
Managing Configuration as Code involves the following tasks:

• Creating Source Control Repository

• Managing OSM instances

• Deciding on the Scope

• Deployment Considerations

5-1

https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html
https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html
https://support.oracle.com/knowledge/More%20Applications%20and%20Technologies/2469767_1.html

• Creating an Instance Using the Repository

Creating Source Control Repository
Managing Configuration as Code (CAC) is a central tenet of using OSM cloud native.
You must create a source control repository to store all configuration that is necessary
to re-create an OSM instance (or PDB) if it is lost. This does not include the toolkit
scripts.

You must also set up a Docker repository for the OSM and OSM DB Installer images,
as well as any custom versions of the OSM image for your use cases. For example,
custom images are required to deploy a custom application .ear file. For more details
on custom images, see "Extending the WebLogic Server Deploy Tooling (WDT)
Model".

Managing OSM Instances
To extract the full benefits of OSM cloud native, it is imperative that you consider the
management of the OSM instances before making potential configuration changes.
The sections that follow describe how to structure your repositories to group project
level artifacts, while allowing for other artifacts to be re-used (if needed) by the multiple
OSM instances within a project.

Example Scenario

This section describes a scenario to help illustrate the concepts.

Let us assume that in an organization, OSM is used for two business purposes each of
which is handled by two separate teams. The first team uses OSM to orchestrate wire
line (triple play) orders for residential customers, and a second team uses OSM to
process mobile orders for business customers.

Deciding on the Scope
You must first decide on the scope of the project including how many instances are
required. Choose meaningful names for your project and instance.

The organization in our example will have two projects named resiwireline and
bizwireless. We can assume that each project team has a predefined "pre-production"
instance for final validation or production changes, a geo-redundant production
instance for disaster recovery, a final User Acceptance Testing (UAT) instance for
business testing, a few small Quality Assurance (QA) systems and many small
development instances.

The directory structure for your configuration repository should reflect the hierarchical
relationship of the project/instance relationship as well as isolating different projects
from each other.

About the Repository Directory Structure
The project directory includes the project specification as well as configuration that is
common to all instances, whereas instance specifications reside in a specific instance
directory.

• Each project requires its own project specifications (YAML files).

Chapter 5
Managing Configuration as Code

5-2

• Optional artifacts such as the list of users and credentials used by the cartridges are also
located under the top level project directory.

• All artifacts under the project are shared across the instances. Instance directories
contain the instance specification.

Note:

While cartridge par files are shown to reside in this repository, you may consider
using a separate repository for cartridges as described in "Working with
Cartridges".

The following illustration shows the structure and hierarchy of the project directory with an
example.

Figure 5-1 Project Directory Structure

Chapter 5
Managing Configuration as Code

5-3

Deployment Considerations
As the scenario shows, there will be many bits of configuration that may mix and
match in different ways to produce a specific OSM instance. While all of these
instances are pre-defined in the source control repository, they need not be deployed
all the time.

Consider the following:

• For each project, one or more production instances may be deployed.

• It would be reasonable for pre-production to be deployed only when needed while
first cloning the production DB.

• Likewise, the performance instance could also be deployed only when needed. Its
PDB could be cloned from a specially generated PDB with synthetic test data,
providing a consistent starting point.

• Likewise, the UAT instance could be deployed when needed, starting from
similarly saved UAT PDB.

• The GR instance application would not be pre-deployed, but its database would be
created in a DR site and synchronized from production via Active Data Guard.

Setting the Repository Path During Instance Creation
To offer flexibility in how the repository directory structure develops, the create-
instance script takes as input, the path to the specification files.

The -s specPath parameter is mandatory in create-instance.sh and can point to
several directories at once (directories are separated by a colon).

specPath would contain all the directories that contain specification files used for
creating an instance:

• repo/resiwireline

• repo/resiwireline:repo/resiwireline/instances/qa. (This will include all
specification files at the resiwireline project level, as well as the specification files
in the qa instance directory.)

Additionally, a separate parameter is used to point to the directory where custom
extensions are found.

The -m customExtPath parameter is an optional parameter that can be passed into
the create-instance.sh script.

customExtPath would point to all the directories where custom template files reside
for the instance being created: fileRepo/resiwireline/extensions

Setting Up Automation
This section describes the complete sequence of activities for setting up an OSM
environment with the aim of grouping repeatable steps into high-level categories. You
should start to plan the steps that you can automate to some degree. This section
does not include details on the changes that must be made to the specification files,
which is described in "Creating a Basic OSM Instance".

Chapter 5
Setting Up Automation

5-4

Note:

These steps exclude any one-time setup activities. For details on one-time setup
activities, see the tasks you must do before creating an OSM instance in "Creating
a Basic OSM Cloud Native Instance".

Where pre-requisite secrets are required, the toolkit provides sample scripts for this activity.
However, the scripts are not pipeline-friendly. Use the scripts for manually standing up an
instance quickly and not for any automated process for creating instances. These scripts are
also important because they illustrate both the naming of the secret and the layout of the data
within the secret that OSM cloud native requires. You must replace references to toolkit
scripts for creating secrets with your own mechanism in your DevOps process.

Configuring Code for Creating an OSM Instance

To configure code for creating an instance, you assemble the configuration at the project and
the instance levels. While some of these activities could be automated, much of the work is
manual in nature.

1. Assemble the configuration.
To assemble the configuration at the project level:

Note:

These steps should be performed once per project and then re-used for each
instance.

a. Copy $OSM_CNTK/samples/project.yaml to your file repository and rename to
align with your project naming decisions made earlier (for example, project.yaml).

b. Assemble the optional configuration files as needed. These files include custom WDT
fragments, custom shapes, cartridge user files, and par files for deployment.

To assemble the configuration at the instance level, copy $OSM_CNTK/samples/
instance.yaml to your file repository and rename to align with your project naming
decisions made earlier (for example, project-instance.yaml).

2. Create pre-requisite secrets for OSM DB access, RCU DB access, OSM system users,
oidc, OPSS, Introspector and the WLS Admin credentials used when creating the
domain.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance \
 create \
 osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE,oidc

Note:

Passwords and other secret input must adhere to the rules specified of the
corresponding component.

Chapter 5
Setting Up Automation

5-5

3. Create custom secrets as required by your OSM solution cartridges.

$OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh -p
project -i instance \
 -c create \
 -f user information file

** $OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh -h
for help

4. Create other custom secrets as required by optional configuration.

5. Populate the embedded LDAP with all the cartridge users (only those from
prefix/map name osm) under the cartridgeUsers section in the project.yaml
file. During the creation of the OSM server instance, for all the users listed, an
account is created in embedded LDAP with the same username and password as
the Kubernetes secret:

cartridgeUsers:
 - osm
 - osmoe
 - osmde
 - osmfallout
 - osmoelf
 - osmlfaop
 - osmlf
 - tomadmin

After the configuration and the input are available, the remaining activities are focused
on Continuous Delivery, which can be automated.

1. Register a namespace per project:

$OSM_CNTK/scripts/register-namespace.sh -p project -t namespaces
For example, $OSM_CNTK/scripts/register-namespace.sh -p sr -t
wlsko,traefik
where the namespaces are separated by a comma without spaces

Note:

wlsko and traefik are examples of namespaces. Do not provide
details about Traefik if you are not using it.

2. Create one OSM PDB per instance:

• If the master OSM PDB exists in the CDB, clone the PDB. In this scenario, a
master PDB is created by cloning a seed PDB, deploying the OSM/RCU
schema, and then optionally deploying cartridges. This master is only valid for
a specific OSM schema version.

• If the master CDB does not have the schema provisioned, do the following:

Chapter 5
Setting Up Automation

5-6

a. Clone the seed PDB and then run the DB installer to create OSM and the RCU
schema:

$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c
1 (OSM Schema)
$OSM_CNTK/scripts/install-osmdb.sh -p sr -i quick -s $SPEC_PATH -c
7 (RCU Schema)

b. Deploy the cartridges:

./scripts/manage-cartridges.sh -p project_name -i instance_name -
s $SPEC_PATH
 -f par_file -c parDeploy

• If you want to use a PDB from another instance in order to reuse the OSM data, do
the following:

a. Clone the existing PDB.

b. Drop the existing RCU:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -
s $SPEC_PATH -c 8

c. Recreate the RCU:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -
s $SPEC_PATH -c 7

Alternatively, the RCU schema can be re-used. This use case has additional CaC
changes as discussed in the Re-using PDB topic.

3. Create the Ingress:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

4. Create the instance.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s $SPEC_PATH

Deleting an Ingress

To delete an ingress, run the following command:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

Deleting an Instance

This section describes the sequence of activities for deleting and cleaning up various aspects
of the OSM environment.

To delete the application instance:

1. Run the following command:

$OSM_CNTK/scripts/delete-instance.sh -p project -i instance

Chapter 5
Setting Up Automation

5-7

2. Remove the instance content manually from the LDAP server using your LDAP
Admin client. Specify ou=project-instance.

To clean up the PDB, drop it.

To clean up the configuration as code:

1. Delete the OSM instance and the database instance specification files.

2. Delete the secrets:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance \
 delete \
 osmldap,osmdb,rcudb,wlsadmin,opssWP,wlsRTE

3. Delete any additional custom secrets using kubectl.

Trying to streamline the processes and identifying when to omit certain activities and
where other activities must be repeated can be challenging. For instance, dropping the
OSM RCU schema is independent of deleting an instance, which happens through
different script invocations. While the life-cycle of the OSM instance and the PDB
should be aligned, there are also use cases where the business data in a PDB
(cartridges or orders) is required for re-use by a different OSM instance. For details on
specific use cases, see "Reusing the Database State".

Securing Operations in Kubernetes Cluster
This section describes how to secure the operations of OSM cloud native users in a
Kubernetes cluster. A well organized deployment of OSM cloud native ensures that
individual users have specific privileges that are limited to the requirements for their
approved actions. The Kubernetes objects concerned are service accounts and RBAC
objects.

All OSM cloud native users fall into the following three categories:

• Infrastructure Administrator

• Project Administrator

• OSM User

Infrastructure Administrator

Infrastructure Administrators perform the following operations:

• Install WebLogic Kubernetes Operator in its own namespace

• Create a project for OSM cloud native and configure it

• After creating a new project, run the register-namespace.sh script provided with
the OSM cloud native toolkit

• Before deleting an OSM cloud native project, run the unregister-namespace.sh
script

• Delete an OSM cloud native project

• Manage the lifecycle of WebLogic Kubernetes Operator (restarting, upgrading, and
so on)

Project Administrator

Chapter 5
Securing Operations in Kubernetes Cluster

5-8

Project Administrators can perform all the tasks related to an instance level OSM cloud native
deployment within a given project. This includes creating, updating, and deleting secrets,
OSM cloud native instances, OSM cloud native DB Installer, and so on. A project
administrator can work on one specific project. However, a given human user may be
assigned Project Administrator privileges on more than one project.

OSM User

This class of users corresponds to the users described in the context of traditionally deployed
OSM. These users can log into the user interfaces (UI) of OSM and can call the OSM APIs.
These users are not Kubernetes users and have no privileges outside that granted to them
within the OSM application. For details about user management, see the "OSM Cloud Native
System Administrator's Guide" and "Setting Up Authentication" in this guide.

About Service Accounts

Installing the WebLogic Kubernetes Operator requires the presence of a service account that
is set up appropriately. The install-operator.sh script requires a service account called
wlsko-ns-sa in the wlsko-ns namespace. For example, if the namespace where WKO is to be
installed is called wlsko, then the expected service account is wlsko-sa. If a service account
is found with the correct name, the script uses it. Otherwise, the script creates a service
account by that name. The WKO pods need to be installed by the Infrastructure Administrator
with cluster-admin privileges, but at runtime, they use this service account and its associated
privileges as described in the WKO documentation.

The pods that comprise each OSM cloud native instance (including the transient OSM DB
Installer pod and the transient WKO Introspector pod) within a given project namespace use
the "default" service account in that namespace. This is created at the time of namespace
creation, but can be modified by the Infrastructure Administrator later.

RBAC Requirements

The RBAC requirements for the WebLogic Kubernetes Operator are documented in its user
guide. The privileges of the Infrastructure Administrator have to include these. In addition, the
Infrastructure Administrator must be able to create and delete namespaces, operate on the
WebLogic Kubernetes Operator's namespace and also on the Traefik namespace (if Traefik
is used as the ingress controller). Depending on the specifics of your Kubernetes cluster and
RBAC environment, this may require cluster-admin privileges.

The Project Administrator's RBAC can be much more limited. For a start, it would be limited
to only that project's namespace. Further, it would be limited to the set of actions and objects
that the instance-related scripts manipulate when run by the Project Administrator. This set of
actions and objects is documented in the OSM cloud native toolkit sample located in the
samples/rbac directory.

Structuring Permissions Using the RBAC Sample Files

There are many ways to structure permissions within a Kubernetes cluster. There are
clustering applications and platforms that add their own management and control of these
permissions. Given this, the OSM cloud native toolkit provides a set of RBAC files as a
sample. You will have to translate this sample into a configuration that is appropriate for your
environment. These samples are in samples/rbac directory within the toolkit.

The key files are project-admin-role.yaml and project-admin-rolebinding.yaml. These
files govern the basic RBAC for a Project Administrator.

Do the following with these files:

Chapter 5
Securing Operations in Kubernetes Cluster

5-9

1. Make a copy of both these files for each particular project, renaming them with the
project/namespace name in place of "project". For example, for a project called
"biz", these files would be biz-admin-role.yaml and biz-admin-rolebinding.yaml.

2. Edit both the files, replacing all occurrences of project with the actual project/
namespace name.

For the project-admin-rolebinding.yaml file, replace the contents of the
"subjects" section with the list of users who will act as Project Administrators for
this particular project.

Alternatively, replace the contents with reference to a group that contains all users
who will act as Project Administrators for this project.

3. Once both files are ready, they can be activated in the Kubernetes cluster by the
cluster administrator using kubectl apply -f filename.

It is strongly recommended that these files be version controlled as they form part
of the overall OSM cloud native configuration.

The Project Administrator role specification contains the pods/exec resource. This is
required for only one specific scenario - using the OSM DB Installer to deploy a
cartridge from the local file system (where the install-osmdb.sh script is being run).
This particular resource can be removed, forcing cartridge deployment to only happen
from a repository. It is highly recommended to remove this resource for production
environments. The resource may be retained for development environment, as it
eases the code-build-deploy-test cycle for OSM cartridge development.

In addition to the main Project Administrator role and its binding, the samples contain
two additional and optional role-rolebinding sets:

• project-admin-addon-role.yaml and project-admin-addon-rolebinding.yaml:
This role is per project and is an optional adjunct to the main Project Administrator
role. It contains authorization for resources and actions in the project namespace
that are not required by the toolkit, but might be of some use to the Project
Administrator for debugging purposes.

• wko-read-role.yaml and wko-read-rolebinding.yaml: This role is available in the
WebLogic Kubernetes Operator's namespace, and is an optional add-on to the
Project Administrator's capabilities. It lets the user list the WKO pods and view
their logs, which can be useful to debug issues related to instance startup and
upgrade failures. This is suitable only for sandbox or development environments. It
is strongly recommended that, even in these environments, WKO logs be exposed
via a logs toolchain. The WebLogic Kubernetes Operator's Helm chart comes with
the capability to interface with an ELK stack. For details, see WebLogic
Kubernetes Operator documentation at: https://oracle.github.io/weblogic-
kubernetes-operator/.

Chapter 5
Securing Operations in Kubernetes Cluster

5-10

https://oracle.github.io/weblogic-kubernetes-operator/
https://oracle.github.io/weblogic-kubernetes-operator/

6
Creating Your Own OSM Cloud Native
Instance

This chapter provides information on creating your own OSM instance. While the "Creating a
Basic OSM Cloud Native Instance" chapter provides instructions for creating a basic OSM
instance that is capable of processing orders for the SimpleRabbits sample cartridge that is
provided with the OSM cloud native toolkit, this chapter provides information on how you can
create an OSM instance that is tailored to the business requirements of your organization.
However, if you want to first understand details on infrastructure setup and structuring of
OSM instances for your organization, then see "Planning Infrastructure".

Before proceeding with creating your own OSM instance, you can look at the alternate and
optional configuration options described in "Exploring Configuration Options".

When you created a basic instance, you used the operational scripts and the base
configuration provided with the toolkit.

Creating your own instance involves various activities spanning both instance management
and instance configuration and includes some of the following tasks:

• Configuring OSM Runtime Parameters

• Preparing Cartridges

• Extending the WDT Model

• Working with Kubernetes Secrets

• Adding JMS Queues and Topics

• Generating Error Queues for Custom Queues and Topics

• Creating a JMS template

• Deploying Cartridges

• Provisioning Cartridge User Accounts

Configuring OSM Runtime Parameters
You can control various OSM runtime parameters using the oms-config.xml file. See
"Configuring OSM with oms-config.xml" in OSM Cloud Native System Administrator's Guide
for details.

This configuration is managed differently in OSM cloud native. While all the parameters
described in the OSM Cloud Native System Administrator's Guide are still valid, the method
of specifying them is different for a cloud native deployment.

Each of the three specification file tiers - shape, project, and instance - has a section called
omsConfig. For example, the project specification has the following section:

omsConfig:
 project:

6-1

com.mslv.oms.handler.cluster.ClusteredHandlerFactory.HighActivityOrder.
CollectionCycle.Enabled: true
 oracle.communications.ordermanagement.cache.UserPerferenceCache:
near

Some parameters have been laid out for you in the pre-configured shape specification
files and in the sample project and instance specification files. When you wish to
change the value of a parameter to a different one from the documented default value,
you must add that parameter and its custom value to an appropriate specification file.

For values that depend on (or contribute to) the footprint of the OSM Managed Server,
the shape specification would be best. For values that are common across instances
for a given project, the project specification would be best. Values that vary for each
instance would be appropriate in the instance specification.

Any parameter specified in the instance specification overrides the same parameter
specified in the project or shape specification. Any parameter specified in the project
specification overrides the same parameter in the shape specification.

Any parameter that is not present in all three specification files (shape, project,
instance) automatically has its default value as documented in OSM Cloud Native
System Administrator's Guide.

Note:

All pre-defined shape specifications have the omsConfig parameters
flagged as do NOT delete. These must not be edited and must be copied
as-is to custom shapes. See "Working with Shapes" for details about custom
shapes.

Configuring Schema Validation
OSM Gateway handles incoming and outgoing JSON payload transformation. When a
JSON payload contains data that is not registered with OSM, OSM Gateway can either
fail validation or silently prune the extra data from the transformation, depending on
the settings in the project specification.

Schema dictating the incoming payloads for TMF REST endpoints, are registered via
the Hosted Order Specification in TMF cartridges (622 or 641).

This validation is applicable to incoming order payloads only when hosting a TMF
cartridge (622 and 641). This validation is also applicable to incoming and outgoing
payloads for Freeform or TMF cartridges that use a System Interaction to
communicate with external systems.

If incoming or outgoing JSON payloads contain extensions that are
not registered with OSM, use these parameters to specify whether the
payload should be failed (STRICT) or the unrecognized extensions
simply pruned (PRUNE). Default is STRICT.
#validation:
unregisteredSchema:
incoming: STRICT
outgoing: STRICT

Chapter 6
Configuring Schema Validation

6-2

Configuring Target Systems for Events and System Interactions
TMF cartridges define an Event Target System name, to identify the recipient of event
notifications about the TMF resource.

Freeform cartridges and TMF cartridges that use System Interaction specifications would
define a target system name to identify the external system involved in a REST interaction.

In both cases, a logical target system name is provided inside the cartridge. The configuration
necessary for OSM to resolve these names at runtime is provided in the CNTK specification
files.

Configuring the Project Specification

Whether it is an event target system or a system interaction target system, the cartridge
configuration always reflects a logical system name and it is not tied to a specific server
instance. Each one must be defined in the project specification.

Define targetSystem info, provide name of the targetSystem like
reverseProxy.
requiredTargetSystems: [] # This empty declaration should be removed if
adding items here.
#requiredTargetSystems:
- name: BillingSystem
description: "Oracle BRM for TMF622 COM cartridge"
- name: ShippingSystem
description: "Unified shipping portal"

Configuring the Instance Specification

The logical system name is decoupled from the actual connection details so that cartridge
deployment is not impacted by a specific environment. Each logical system name will be
resolved against a set of connection details and applicable security scheme, at runtime. To
enable this resolution, the connection information must be provided in the CNTK instance
specification.

If we take an example where a cartridge and its project specification have a reference to a
"BillingSystem" target system. By providing the actual connection details in the instance
specification, the same cartridge can be deployed without any change into multiple
environments - development instance 1 and 2, QA instance 1, and test instance xyz.

Define targetSystem info, provide server details and security info
targetSystems: {} # This empty declaration should be removed if adding items
here.
#targetSystems:
 #systems:
 #targetSystem_Name:
 #url: target_system_url
 #protocol: protocol
 #description: description
 #securityScheme: securitySchemeName
 # To override default fault tolerance parameters, uncomment this
section and provide values
 #fault-tolerance:

Chapter 6
Configuring Target Systems for Events and System Interactions

6-3

 #retry:
 # The maximum number of retry attempts by pod when emitting
a message failed
 # When value is absent, pod will retry 2147483647
(Integer.MAX_VALUE) times.
 #maxRetries: 2147483647
 # The delay between the retry attempts
 #delay: 5000
 # The delay unit eg MILLIS
 #delayUnit: MILLIS
 # Instructs pod on which error code has to retry
 #onErrorCodes:
 # - 500
 # - 503
 # - 409
 # - 429
 #concurrency:
 # The maximum number of concurrent connections that can be
made to this target system from the OSM Gateway
 # across the OSM cluster (default : 50)
 #maxValue: 50

 # Define security scheme for target systems enabled with security
 # For each security scheme defined kubernetes secret should be
created using
 # ${CNTK_HOME}/scripts/manage-target-system-credentials.sh script.
 #securitySchemes:
 #- name: <SecuritySchemeName-1>
 # type: "userPassword"
 # authorizationUrl: <authorization URL>
 # sessionId:
 # type: <"cookie" or "header">
 # name: <Cookie-name or Header-name that carries sessionID>
 #- name: <SecuritySchemeName-2>
 # type: "OAuth2"
 # authorizationUrl: <authorization URL>
 # tokenUrl: <token URL>
 # scopes:
 # - name: scope1
 # description: "Scope 1 Description" #optional
 # - name: scope2
 # description: "Scope 2 Description" #optional

Configuring OSM Gateway Readiness
You can control different aspects of OSM Gateway behavior by editing the instance
specification. Additionally, tuning parameters for OSM Gateway are available in the
shape specifications.

OSM Gateway establishes a connection with the OSM managed server and waits for it
to transition into the "ready" state. However, if the managed server fails to become
ready within the specified timeout duration, the gateway declares it as "not ready" and

Chapter 6
Configuring OSM Gateway Readiness

6-4

proceeds to initiate Kubernetes cleanup and retry procedures. This parameter is enabled by
default.

OSM Gateway
osm-gateway: {} # This empty declaration should be removed if adding items
here.
#osm-gateway:
 # When enabled, in order to start, OSM Gateway app waits until the timeout
is elapsed for OSM-CN to be up.
 #waitForOSMReadinessBeforeStart:
 #enabled : true
 # Based on the ISO-8601 duration format PnDTnHnMn.nS.
 # For additional information, refer https://docs.oracle.com/javase/8/
docs/api/java/time/Duration.html
 #timeout: "PT300S"

..............

Configuring the Order Operations User Interface
Use the instance specification to configure how and when various details are displayed in the
Order Operations user interface.

The following block shows the instance specification where you configure settings for the
data displayed in the Order Operations user interface:

osmRuntimeUX: {} # This empty declaration should be removed if adding items
here.
#osmRuntimeUX:
 #alertThresholds:
 # The percentage of orders that must succeed in a given time interval
otherwise an alert is displayed to the user.
 # Order Success Rate = OrdersCompletedCount / (OrdersCompletedCount +
OrdersFailedCount) * 100
 #minOrderSuccess: "98"
 # The maximum number of orders that can be submitted in an hour before
an alert is displayed to the user.
 #maxHourlySubmittedOrder: "5000"
 #configuration:
 # An ISO 8601 duration period string that represents the oldest
fromDatetime supported by the operations backend and UX.
 # The default value "P6M" indicates the oldest fromDate allowed by the
API and the UX is 6 months ago.
 #minFromDateTimePeriod: "P6M"
 # The maximum percentage of orders that can fail otherwise above KPI
badge is displayed to the user on Order Operations KPI dashboard.
 # Order Failure Rate = (OrdersFailedCount + OrdersRejectedCount) /
TotalOrdersCount * 100
 #maxOrderFailure: "2"
 # The number seconds between automatic dashboard refresh in the
Operations UX
 #refreshTimeInterval: 180
 # The number seconds for which landing page or iframe applications

Chapter 6
Configuring the Order Operations User Interface

6-5

timeout when left idle
 # This should always be less than default OSM core session timeout
value of 1500s.
 #sessionTimeOut: 1400
 # The number of retries UX applications will perform on errors
reaching server APIs
 #onErrorMaxRetryCount: 3
 # The number of seconds UX applications will wait between such
retries
 #onErrorRetryIntervalSecs : 30

Configuring the Alerts Displayed in the Order Operations Dashboard

You can control different aspects of the Order Operations user interface behavior by
editing the instance specification. Additionally, tuning parameters for the Order
Operations user interface are available in the shape specifications.

The Operations Dashboard displays a bell icon, which upon clicking opens the Alerts
panel. The Alerts panel displays alerts when a threshold set on the orders is reached.

An alert is triggered and displayed when the percentage of orders drops below the
number of orders that must succeed in a given time interval.

Order Success Rate = OrdersCompletedCount / (OrdersCompletedCount +
OrdersFailedCount) * 100

To configure the alerts displayed in the Operations Dashboard, you configure the
following parameters in the instance specification:

• alertThresholds.minOrderSuccess: The order completion success threshold that
must be met by every order group. Otherwise, an alert is triggered and displayed.
The default value is 98.

• alertThresholds.maxHourlySubmittedOrder: The number of orders that can be
submitted in an hour before an alert is shown. The default value is 5000.

The following block shows the instance specification where you configure parameters
for alerts:

osmRuntimeUX
osmRuntimeUX: {} # This empty declaration should be removed if adding
items here.
#osmRuntimeUX:
 #alertThresholds:
 # The percentage of orders that must succeed in a given time
interval otherwise an alert is displayed to the user.
 # Order Success Rate = OrdersCompletedCount /
(OrdersCompletedCount + OrdersFailedCount) * 100
 #minOrderSuccess: "98"
 # The maximum number of orders that can be submitted in an hour
before an alert is displayed to the user.
 #maxHourlySubmittedOrder: "5000"

..........

Chapter 6
Configuring the Order Operations User Interface

6-6

Configuring Session Timeout

When logged into the application, if a user leaves the user interface idle in a tab, a pop-up
window appears after 80% of the configured session timeout duration is reached. The pop-up
window indicates how much time the user has before the session times out. If the user clicks
OK or refreshes the page, the timer is reset.

However, if the user does not take any action, they will be logged out after the remaining time
is run out. If the user opens the application in two separate browser windows or tabs, and one
of them is kept idle, a pop-up window appears on the one that is left idle after 80% of the
configured session timeout duration is reached. If the user does not click the OK button, or
refreshes the page on the idle browser window, when the time runs out, the user will be
logged out of the application on both the windows.

To configure session timeout, set the configuration.sessionTimeOut parameter in the
instance specification. This parameter defines the number of seconds after which the landing
page or an application will timeout when left idle. By default, this is set to 1400 seconds.

The following block shows the instance specification where you configure session timeout:

osmRuntimeUX
osmRuntimeUX: {} # This empty declaration should be removed if adding items
here.
#osmRuntimeUX:

.....

 # The number seconds for which landing page or iframe applications
timeout when left idle
 # This should always be less than default OSM core session timeout value
of 1500s.
 #sessionTimeOut: 1400

Preparing Cartridges
Existing OSM cartridges that run on a traditional OSM deployment can still be used with OSM
cloud native, but you prepare and deploy those cartridges differently. Instead of using multiple
interfaces to persist the WebLogic domain configuration (WebLogic Admin console and
WLST), the configuration is added into the files that feed into the instance creation
mechanism. With OSM cloud native, you use the WebLogic Admin Console only for validation
purposes.

Before proceeding, you must determine which OSM solution cartridge you want to use to
validate your OSM cloud native environment. For simplicity, use a setup where any
communication with OSM is restricted to an application running in the same instance of the
WebLogic domain.

Identify the following requirements for your cartridge:

• The list of JMS queues and topics that the cartridge needs.

• The list of credentials stored in the OSM Credential Store.

• Users that the cartridge requires.

Chapter 6
Preparing Cartridges

6-7

• Applications that need to be deployed to the WebLogic server. This can include
system emulators for stubbing out communication to external peer systems.

About OSM Cloud Native Cartridges and Design Studio

Existing cartridges do not always need to be rebuilt for use with OSM cloud native. As
long as they were built with an OSM 7.4.0.x SDK, using the Design Studio target OSM
version of 7.4.0, their existing par files can be deployed.

If cartridges have to be built afresh or re-built, use the OSM SDK packaged with OSM
7.4.1 release, and set the Design Studio target OSM version as 7.4.0. In general, use
the Design Studio target OSM version that is closest to the actual OSM version but not
newer than it.

About Domain Configuration Restrictions

Some restrictions on the domain configuration are necessary to keep the process
simple for creating and validating your basic OSM cloud native instance. As you build
confidence in the tooling and the extension mechanisms, you can remove the
restrictions and include additional configuration in your specifications to support
advanced features.

Ensure that you restrict the domain configuration to the following:

• Instance with no SAF setup.

• Re-directing logs (to live outside the pods) will not be configured at this time.

Changing the Default Values

The project and the instance specification templates in the toolkit contain the values
used in the out-of-the-box domain configuration. These files are intended for editing,
as the required information such as the PDB host needs updating and the flags
controlling the optional features such as NFS need to be turned on or off, and the
default values such as Java options and cluster size can be changed. If you find that
the existing values need to be updated for your OSM instance, update the values in
your specification files.

Change the default values as per the following guidelines:

• NFS: As per the restrictions, leave nfs disabled in the instance specification

• Shape: The provided configuration uses tuning parameters that are appropriate for
a development environment. This is done through the use of a shape specification
that is specified in the instance specification.

Creating an instance with the default shape is recommended. For details on how you
can provide a custom shape if necessary, see "Working with Shapes".

Adding New WDT Metadata

The OSM cloud native toolkit provides the base WDT metadata in $OSM_CNTK/
charts/osm/templates. As the OSM application requires this WDT metadata for the
proper functioning, this must not be edited. Instead, the toolkit provides a mechanism
whereby new pieces of WDT metadata can be included in the final description of the
domain.

See "Extending the WebLogic Server Deploy Tooling (WDT) Model" for complete
details on the general process for providing custom WDT. The steps described must
be repeated for a variety of WDT use cases.

You must specify the JMS Queues required for your new using the WDT metadata.

Chapter 6
Preparing Cartridges

6-8

There are two options for providing the required configuration for JMS Queues:

• Re-using the OSM JMS Resources as described in "Adding JMS Queues and Topics".
This is the suggested mechanism for your first attempt at configuring your customized
OSM instance.

• Creating custom JMS Resources as described in "Adding a JMS System Resource".

Handling of sensitive data from within the WDT metadata fragment is supported as described
in the "Accessing Kubernetes Secrets from WDT Metadata".

Other Customizations

To support a custom OSM solution cartridge, not all changes are done using the WDT
metadata. Depending on the processing needs of your OSM solution cartridge, there are
other changes that are likely required:

This topic describes how to use the following methods for supporting a custom solution
cartridge:

• Credential Store

• Custom Application EAR

• Cartridge Users

Credential Store

For traditional installations, if a solution cartridge has automation plugins that needed to
retrieve external system credentials, it did so by storing those credentials in the WebLogic
Credential Store.

In OSM cloud native, if your cartridge uses the credential store framework of OSM, then you
must provision cartridge user accounts. See "Provisioning Cartridge User Accounts" for
details.

Custom Application Ear

If there are additional applications that need to be deployed to WebLogic to support the
processing of your OSM solution cartridge, see "Deploying Entities to an OSM WebLogic
Domain".

This method requires both WDT metadata as well as the custom OSM images. Supplemental
scripts and WDT fragments are provided as samples in the $OSM_CNTK/samples/
customExtensions

Cartridge Users

Cartridges may also define users who need access to OSM APIs. These user credentials
need to be available in the right locations as described in "Provisioning Cartridge User
Accounts". These credentials must then be made available through the configuration to OSM.

Working with Kubernetes Secrets
Secrets are Kubernetes objects that you must create in the cluster through a separate
process that adheres to your corporate policies around managing secure data. Secrets are
then made available to OSM cloud native by declaring them in your configuration.

When the OSM cloud native sample scripts are not used for creating secrets, the secrets you
create must align to what is expected by OSM. The sample scripts contain guidelines for
creating secrets.

Chapter 6
Working with Kubernetes Secrets

6-9

The following diagram illustrates the role of Kubernetes Secrets in an OSM cloud
environment:

Figure 6-1 Kubernetes Secrets in OSM Cloud Environment

There are three classifications of secrets, as shown in the above illustration:

• Mandatory (Pre-requisite) Secrets

• Optional Secrets

• Custom Secrets

About Mandatory Secrets
Mandatory secrets must be created prior to running the cartridge management scripts
or the instance creation script.

The toolkit provides the sample script: $OSM_CNTK/scripts/manage-instance-
credentials.sh to create the secrets for you. Refer to the script code to see the
naming and internal structure required for each of these secrets.

See the following topics for more details about Kubernetes Secrets:

• Creating Secrets

• Management of Secrets

About Optional Secrets
Optional secrets are dictated by enabling the out-of-the-box configuration. There is
some functionality that is pre-configured in OSM cloud native and can be enabled or
disabled in the specification files. When the functionality is enabled, these secrets
must be created in the cluster before an OSM instance is created.

Chapter 6
Working with Kubernetes Secrets

6-10

• If you use OpenLDAP for authentication, OSM cloud native relies on the following secret
to have been created:

project-instance-openldap-credentials

The toolkit provides a sample script to create these secrets for you ($OSM_CNTK/
samples/credentials/manage-osm-ldap-credentials.sh by passing in "-o secret").

• With Credential Store, the secrets hold credentials for external systems that the
automation plug-ins access. These secrets are a pre-requisite to running cartridges that
rely on this mechanism and must adhere to a naming convention. See "Provisioning
Cartridge User Accounts" for more details.

• When SAF is configured, SAF secrets are used. SAF secrets are similar to custom
secrets and are declared in a specialized area within the instance specification that feeds
into the SAF-specific WDT.

safConnectionConfig:
 - name: external_system_identifier
 t3Url: t3_url
 secretName: secret_t3_user_pass

About Custom Secrets
OSM cloud native provides a mechanism where WDT metadata can access sensitive data
through a custom secret that is created in the cluster and then declared in the configuration.
See "Accessing Kubernetes Secrets from WDT Metadata" to familiarize yourself with this
process.

This class of secrets are required only if you need secrets for this mechanism.

To use custom secrets with WDT metadata:

Note:

As an example, this procedure uses a WDT snippet for authentication.

1. Add secret usage in the WDT metadata fragment:

Host: '@@SECRET:authentication-credentials:host@@'
Port: '@@SECRET:authentication-credentials:port@@'
ControlFlag: SUFFICIENT
Principal: '@@SECRET:authentication-credentials:principal@@'
CredentialEncrypted: '@@SECRET:authentication-credentials:credential@@'

2. Add the secret to the project specification.

#Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true

Chapter 6
Working with Kubernetes Secrets

6-11

 secretNames:
 - authentication-credentials

3. Create the secret in the cluster, by using any one of the following methods:

• Using OSM cloud native toolkit scripts

• Using a Template

• Using the Command-line Interface

In the example metadata shown in step 1, the secret must capture host, port,
principal, and credential.

See "Mechanism for Creating Custom Secrets" for details about the methods.

Accommodating the Scope of Secrets
The WDT metadata fragments are defined at the project level as the project typically
owns the solution definition. Accommodating this is a simple task. However, the
scenario becomes complicated when you consider that there may be project level
configuration that needs to allow for instance level control over the secret contents.

To walk through this, we will use authentication as an example and introduce a COM
project that includes three instances: development, test, and production. The
production environment has a dedicated authentication system, but the development
and test instances use a shared authentication server.

To accommodate this scenario, the following changes must be made to each of the
basic steps:

1. Define a naming strategy for the secrets that introduce scoping. For instance,
secrets that need instance level control could prepend the instance name. In the
example, this results in the following secret names:

• COM-dev-authentication-credentials
• COM-test-authentication-credentials
• COM-prod-authentication-credentials

2. Include the secret in the WDT fragment. In order for this scenario to work, a
generic way is required to declare the "scope" or instance portion of the secret
name. To do this, use the built-in Helm values:

.Values.name - references the full instance name (project-instance)

.Values.namespace - references the project name (project)

If the fragment needs to support instance-level control, derive the instance name
portion of the secret name.

Host: '@@SECRET:{{ .Values.name }}-authentication-
credentials:host@@'
Port: '@@SECRET:{{ .Values.name }}-authentication-
credentials:port@@'
ControlFlag: SUFFICIENT
Principal: '@@SECRET:{{ .Values.name }}-authentication-
credentials:principal@@'

Chapter 6
Working with Kubernetes Secrets

6-12

CredentialEncrypted: '@@SECRET:{{ .Values.name }}-authentication-
credentials:credential@@'

3. Add the secret to the instance specification. The secret name must be provided in the
instance specification as opposed to the project specification.

Dev Instance Spec

 #Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-dev-authentication-credentials

 ## Test Instance spec

 #Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-test-authentication-credentials

 ## Prod Instance Spec

#Custom secrets
Multiple secret names can be provided
customSecrets:
 enabled: true
 secretNames:
 - COM-prod-authentication-credentials

4. Create the secret in the cluster by following any one of the methods described in the
Mechanism for Creating Custom Secrets topic. In our example, the secret would need
to capture host, port, principal and credential. Each instance would need a secret
created, but the values provided depend on which authentication system is being used.

Dev secret creation

 kubectl create secret generic COM-dev-authentication-credentials \
-n COM \
--from-literal=principal=<value1> \
--from-literal=credential=<value2> \
--from-literal=host=<value3> \
--from-literal=port=<value4>

 # Test secret creation

kubectl create secret generic COM-test-authentication-credentials \
-n COM \
--from-literal=principal=<value1> \
--from-literal=credential=<value2> \
--from-literal=host=<value3> \
--from-literal=port=<value4>

Chapter 6
Working with Kubernetes Secrets

6-13

 ##Production secret creation

 kubectl create secret generic COM-prod-authentication-credentials \
-n COM \
--from-literal=principal=<prodvalue1> \
--from-literal=credential=<prodvalue2> \
--from-literal=host=<prodvalue3> \
--from-literal=port=<prodvalue4>

The following diagram illustrates the secret landscape in this example:

Figure 6-2 Landscape of Secrets

Mechanism for Creating Custom Secrets
You can create custom secrets in any of the following ways:

• Using Scripts

• Using a Template

• Using the Command-line Interface

Using Scripts to Create Secrets

Functionality such as OpenLDAP, NFS, and Credential Store that can be enabled or
disabled in OSM cloud native relies on pre-requisite secrets to be created. In such
cases, the toolkit provides sample scripts that can create the secrets for you. While
these scripts are useful for configuring instances quickly in development situations, it is
important to remember that they are sample scripts, and not pipeline friendly. These
scripts are also essential because when the secret is mandated by OSM cloud native,
both the secret name and the secret data are available in the sample script that
populates it.

Chapter 6
Working with Kubernetes Secrets

6-14

As an example, the secrets used by the Credential Store mechanism must follow a specific
naming convention:

projectName-instanceName-osmcn-cred-mapName

Using a Template

To create custom secrets using a template:

1. Save the secret details into a template file.

apiVersion: v2
kind: Secret
metadata:
 labels:
 weblogic.resourceVersion: domain-v2
 weblogic.domainUID: project-instance
 weblogic.domainName: project-instance
 namespace: project
 name: secretName
type: Opaque
stringData:
password_key: value1
user_key: value2

2. Run the following command to create the secret:

kubectl apply -f templateFile

Using the Command-line Interface

You can also specify the secret name and the details directly on the command-line interface:

kubectl create secret generic secretName \
-n project \
--from-literal=password_key=value1 \
--from-literal=user_key=value2

Adding JMS Queues and Topics
JMS queues and topics are unique because the base JMS resources (JMS server and JMS
subdeployments) already exist in the domain as the OSM core application requires them. You
can add custom queues and topics to the OSM JMS resources by specifying the appropriate
content in the project specification file.

To add queues or topics, uncomment the sample in your specification file, providing the
values necessary to align with your requirements.

Consider the following points:

• The only mandatory values are 'name' and 'jndiName'.

• Text in angular brackets do not have a default value. You must supply an actual value per
your requirements.

Chapter 6
Adding JMS Queues and Topics

6-15

• The remaining parameters are set to their default values if omitted. When a
different value is supplied in the specification file, it is used as an override to the
default value.

Note:

There should only be one list of uniformDistributedQueues and one list
of uniformDistributedTopics in the specification. When copying the
content from the samples, ensure that you do not replicate these sections
more than once.

To add JMS distributed queues:

jms distributed queues
uniformDistributedQueues:
 - name: custom-queue-name
 jndiName: custom-queue-jndi
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'
 timeToDeliver: '-1'

To add JMS distributed topics:

jms distributed topics
uniformDistributedTopics:
 - name: custom-topic-name
 jndiName: custom-topic-jndi
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'
 timeToDeliver: '-1'

Generating Error Queues for Custom Queues and Topics
You can generate error queues for all custom queues and topics automatically.

Chapter 6
Generating Error Queues for Custom Queues and Topics

6-16

To generate error queues automatically, configure the following parameters in the
project.yaml file:

errorQueue:
 autoGenerate: false
 expirationPolicy: "Redirect"
 redeliveryLimit: 15

By default, the autoGenerate parameter is set to false. To generate error queues for all JMS
queues automatically, set this parameter to true.

When autoGenerate is set to true, all custom queues and topics will have their own error
queues.

The following sample shows the error queue generated for a custom queue:

'jms_queue_name_ERROR':
 ResetDeliveryCountOnForward: false
 SubDeploymentName: osm_jms_server
 JNDIName: error/ jms_queue_jndiName
 IncompleteWorkExpirationTime: -1
 LoadBalancingPolicy: 'Round-Robin'
 ForwardDelay: -1
 Template: osmErrorJmsTemplate

Note:

• All error queues have _ERROR as the suffix.

• For internal queues and topics in OSM, generation of error queues is always
enabled. Each queue and topic has its own _ERROR queue. Messages that
cannot be delivered are redirected accordingly.

• Disable this feature for O2A 2.1.2.1.0 cartridges used in an OSM cloud native
environment. The O2A build generates its own project specification fragment,
which must be used instead.

Creating a JMS Template
A JMS template provides an efficient means of defining multiple destinations with similar
attribute settings.

You can add one or more JMS templates if required in addition to the one provided. To create
additional JMS templates, copy the customJmsTemplate definition and rename it:

JMS Template (optional). Uncomment to define "customJmsTemplate"
Alternatively use the built-in template "customJmsTemplate"
#jmsTemplate:
customJmsTemplate:
DeliveryFailureParams:
RedeliveryLimit: 10
ExpirationPolicy: Discard

Chapter 6
Creating a JMS Template

6-17

DeliveryParamsOverrides:
RedeliveryDelay: 1000
TimeToLive: -1
Priority: -1
TimeToDeliver: -1

To use a JMS template for a queue or topic definition, you can specify the template
name, as well as the unique JNDI name:

jms distributed queues. Uncomment to define one or more JMS queues
under a
single element uniformDistributedQueues.
uniformDistributedQueues: {} # This empty declaration should be
removed if adding items here.
#uniformDistributedQueues:
- name: jms_queue_name
jndiName: jms_queue_jndiName
jmsTemplate: customJmsTemplate

jms distributed topic. Uncomment to define one or more JMS Topics
under a
single element uniformDistributedTopics.
uniformDistributedTopics: {} # This empty declaration should be
removed if adding items here.
#uniformDistributedTopics:
- name: jms_topic_name
jndiName: jms_topic_jndiName
jmsTemplate: customJmsTemplate

If the queues and topics need to be created under custom JMS resources, then the
OSM cloud native WDT extension mechanism should be employed as described in
"Adding a JMS System Resource".

Provisioning Cartridge User Accounts
This section describes how to use the sample scripts to create credential store secrets
and provide the instance configuration so that OSM cloud native can access the
credentials.

The sample scripts also provide the ability to populate the OpenLDAP server so that
OSM can authenticate any cartridge users. In this way, provisioning a cartridge user
account uses the same mechanism regardless of the end location for the credentials.

This section covers the following topics:

• Creating Credential Store Secret

• Declaring the Secret

• Configuring LDAP Systems

You manage the following types of users, based on the host system:

• Users "hosted" by this OSM instance: These are non-human user accounts that
systems use to login from outside OSM (via a User Interface, OSM XML API or

Chapter 6
Provisioning Cartridge User Accounts

6-18

OSM Web Service API) or are logged in internally (as a Run As user for an automation
plugin).

These users:

– Require LDAP entries with mappings to OSM groups.

– Use the osm mapname, with _sysgen_ keyname.

– Must be added to the project specification "cartridgeUsers" list.

• Users "hosted" by external systems: The external systems could be UIM, ASAP or
another instance of OSM. These users are used by cartridge automation while interacting
with external systems to authenticate themselves to the external system.

These users:

– Require Kubernetes secret entries. OSM group mapping is not required.

– Use the mapname and keyname the cartridge developer has decided upon in the
code.

– Must be added to the project specification "externalCredStore.secrets.mapNames"
list.

It is possible for the same credentials to be required in two ways - as a non-human cartridge
user and as an access credential for an "external" system. An example would be an instance
that hosts both SOM and TOM cartridges. The TOM cartridge may require a non-human user
called "tom", while the SOM cartridge needs an access credential to send the TOM order. For
flexibility, the instances that send the TOM order would not assume co-location and would
fetch access credentials for the user "tom". When the same credentials need to exist for both
categories, that user ID must be duplicated - once for each category, as per the syntax of that
category. Ensure that the passwords are in sync, as OSM cloud native views these as
independent entries.

Creating Credential Store Secret

In a traditional deployment, OSM uses the Fusion Middleware Credential Store framework
and provides tooling for creating and populating the credential store through the XMLIE's
"credStoreAdmin" operation. OSM cloud native uses Kubernetes Secrets as the credential
store and the OSM cloud native toolkit provides sample scripts that create credential store
secrets and populate them with the required credentials.

Note:

If you use custom code that relies on the OPSS Keystore Service, you need to
make changes for OSM cloud native as that mechanism is no longer supported. For
details, see "Differences Between OSM Cloud Native and OSM Traditional
Deployments".

A text file is used to describe the details required to provision the user accounts properly.
Each user is captured in one line and has the following format:

map_name:key_name:username:credential-system[:osm-groups]

$OSM_CNTK/samples/credentials/osm_users.txt is used to define OSM human users for
external LDAP but can be used as a template for other user credentials that need to be
created.

Chapter 6
Provisioning Cartridge User Accounts

6-19

Copy this file to your private specification repository under the instance specific
directory and rename it to something meaningful. For example, rename the file as
repo/cartridge_user_text_file.txt.

The mapName parameter is a mandatory parameter. If <credential-system> contains
"secret", then this value is used as the prefix of the secret name to be created.

Note:

If only LDAP is required, use "osm" for the secret prefix. This value is not
used anywhere, but enables the sample to extract the remaining data
properly.

The choice of map name and key name affects which OSM automation framework API
can be used to retrieve the value within the automation plugin:

• Use "osm" as map name and _sysgen_ as key name. The credential record is
accessed with the context:getOsmCredentialPassword API.

• Any other map name and key name needs access with the
context:getCredentialAsXML or context:getCredential APIs.
Refer to the OSM SDK for more details.

The credential-system parameter is a mandatory parameter and must be at least one
of the following values:

• ldap: Creates the OSM human user against the external LDAP server.

Note:

The cartridge automation user account should be created in embedded
LDAP by specifying the list of usernames in cartridgeUsers in
projectName.yaml. Do not create them in external LDAP.

• secret: Creates the human user or automation user against the Kubernetes
Secret.

Note:

Use a comma to separate the values if creation in both the systems is
required.

The osm-groups parameter represents a list of OSM groups to associate the user to
either the embedded or external LDAP server.

The valid values for the osm-groups parameter are:

• OMS_client

• OMS_designer

• OMS_user_assigner

• OMS_workgroup_manager

Chapter 6
Provisioning Cartridge User Accounts

6-20

• OMS_xml_api

• OMS_ws_api

• OMS_ws_diag

• OMS_log_manager

• OMS_cache_manager

• Cartridge_Management_WebService

• OSM_automation

• osmEntityClientGroup

• osmRestApiGroup

Refer to OSM System Administrator's Guide for details about OSM user group mapping.

The following text shows a sample user information text file:

osm:_sysgen_:osmlf:ldap,secret:OMS_xml_api,OSM_automation,OMS_ws_api
uim:uim:uim:secret
tom:osm:tomadmin:secret

In the above example:

• The first line creates a user "osmlf" against external LDAP and associates that user with
the groups listed. It also creates a Kubernetes secret entry for this user in the "osm"
credential secret. The entry contains a username, password, and the group associations.
Use the context:getOsmCredentialPassword API to retrieve the password. Add "osmlf"
to the project specification's "cartridgeUsers" list.

• The second line creates a Kubernetes secret entry for the user "uim" with the access key
name "uim". The entry contains a username and a password. Use the
context:getCredential API or the context:getCredentialAsXML API to retrieve both
username and password from map "uim" with key "uim". Add "uim" to the project
specification's "externalCredStore.secrets.mapNames" list.

• The third line creates a Kubernetes secret entry for the user "tomadmin" with the access
key name "osm". The entry contains a username and a password. Use the
context:getCredential API or the context:getCredentialAsXML API to retrieve both
username and password from map "tom" with key "osm". Add "tom" to the project
specification's "externalCredStore.secrets.mapNames" list.

The secrets that the manage-cartridge-credentials.sh script creates are named project-
instance-osmcn-cred-mapName as per the naming conventions required by OSM. For
each unique mapName that you provide, the script creates one secret. This means if five
user entries exist for "uim", each entry will be available in a single secret named project-
instance-osmcn-cred-uim. The script prompts for passwords interactively.

To create the credential store secret:

1. Run the following script:

$OSM_CNTK/samples/credentials/manage-cartridge-credentials.sh \
-p project \
-i instance \
-c create \
-f fileRepo/customSolution_users.txt

Chapter 6
Provisioning Cartridge User Accounts

6-21

You will see the following output
secret/project-instance-osmcn-cred-uim created

2. Validate that the secrets are created:

kubectl get secret -n project

NAME
project-instance-osmcn-cred-uim

Creating Cartridge User Accounts in Embedded LDAP

To create accounts for cartridge users in embedded LDAP, under the
cartridgeUsers section in project.yaml, add all the cartridge users (only those from
the prefix/map name osm). During the creation of the OSM server instance, for all the
cartridge users listed, an account is created in embedded LDAP with the same
username and password and groups as the Kubernetes secret.

cartridgeUsers:
 - osm
 - osmoe
 - osmde
 - osmfallout
 - osmoelf
 - osmlfaop
 - osmlf
 - tomadmin

Declaring the Secret

After the secret is created, declare the secret used by the credential store mechanism
by editing your project specification. In the project specification, specify only
mapName. The prefix project-instance-osmcn-cred is derived during the instance
creation.

To declare the secrets, edit the project specification:

#External Credentials Store
externalCredStore:
 secrets:
 mapNames:
 -mapName

The OSM cloud native configuration provides a start-up parameter that allows the
OSM core application to determine whether the credentials are held in a WebLogic
Credential Store (for traditional deployments) or in a Kubernetes Secret Credential
Store (for cloud native) so that the configuration is set for you. Cartridges that rely on
accessing these credentials are now enabled for execution.

Configuring Other LDAP Systems

The manage-cartridge-credentials.sh script supports the OpenLDAP system. To
provide support for a different LDAP provider, you must modify the script. Also, the

Chapter 6
Provisioning Cartridge User Accounts

6-22

corresponding LDAP client or the API must be installed on the system where the script is run.

You must modify the following functions within this script:

• create_ldap_account. This function creates the user account in the LDAP system
and associates the user to the specified groups.

• update_ldap_account. This function updates the user password.

• delete_ldap_account. This function deletes the user from the LDAP system and
disassociates this user from the specified group.

• verify_ldap_account. This function verifies that the specified user exists in the LDAP
server.

For details on developing the functions, see the developer's guide of the target LDAP server
that you want to use.

Working with Cartridges
This section describes how you build, deploy, and undeploy OSM cartridges in a cloud native
environment.

OSM cartridges are built using either Design Studio or build scripts, which are the methods
used for building cartridges in traditional environments. There are multiple ways to deploy
cartridges, but they all result in cartridge information extracted from the par files and stored in
various OSM metadata tables in the OSM DB.

The following diagram illustrates cartridge deployment paths.

Figure 6-3 Cartridge Deployment Paths

Cartridge Deployment Tool in OSM Cloud Native
To deploy cartridge par files, OSM cloud native employs a mechanism using the OSM cloud
native toolkit's manage-cartridges.sh script.

Use the following commands with the manage-cartridges.sh script:

Chapter 6
Working with Cartridges

6-23

• -p projectName: Mandatory. Name of the project.

• -i instanceName: Mandatory. Name of the instance.

• -s specPath: Mandatory. The location of the specification files. A colon(:) delimited
list of directories.

• -m customExtPath: Use this to specify the path of custom extension files. Takes a
colon(:) delimited list of directories. If the path provided is empty with the custom
flag enabled as true in the specifications, then the script is stopped.

• -o : Enables online cartridge deployment.

• -c commandName: Mandatory. Use the following command names:

– parDeploy: Use this to deploy a cartridge par file from your local file system.
Use this for development environments only.

– sync: Use this to synchronize cartridges using the project specification and
remote file repository. Use this for all controlled environments.

• -f parPath: Mandatory if parDeploy is used. This specifies the path of the cartridge
par file that you want to deploy.

• -q: Optional. Disables verbose progress indicators.

The manage-cartridges.sh script spins up a pod to perform the requested
deployment activities.

Single or One-off Cartridge Deployment
To deploy a single cartridge par file, use the parDeploy command to the manage-
cartridges.sh script along with the -fparPath parameter. The script must be run such
that it has access to the specified cartridge par file as well as the kubectl cp privileges
on the pod that is spun up in the project namespace.

Specification-driven Cartridge Deployment
For more control and traceability in the OSM cartridge loadout, use the sync
command to the manage-cartridges.sh script. You must first describe the desired list
of cartridges in your project specification. The sync command performs the required
deploy, redeploy and fast-undeploy changes to modify the in-database set of
cartridges to match the list given in the specification. This command also sets the
default cartridge as per the specification.

The list in the project specification must depict the desired or target state.

Note:

In the actions listed below, "cartridge" refers to "cartridge+version".

• If a cartridge is listed as deployed in the specification, but is not deployed in the
database: it is deployed.

• If a cartridge is listed as deployed in the specification and the same version exists
in the database, the two cartridge’s contents are compared; if there is a difference,
the new par file is redeployed.

Chapter 6
Working with Cartridges

6-24

• If a cartridge is listed in the specification with a default setting that does not match with
what is in the database, the default setting in the database is updated to match the
specification; no change is done to this setting if they already match.

• If a cartridge is listed as fastundeployed in the specification and it exists as active in the
database, it is fast-undeployed in the database. If the cartridge is already fast-undeployed
in the database, nothing is done. If the cartridge does not exist in the database, nothing is
done.

The OSM cloud native toolkit ignores the default flag encoded in the cartridge par file when
the sync command is used - it enforces the list as specified in the project specification. For
each cartridge, the sync validation ensures that exactly one version is tagged as default.

Each entry in the list of cartridges describes a specific cartridge using the name of the
cartridge, its version, the intended deployment state and the intended default state. In
addition, it specifies a URL that can be used to download the cartridge par file into the
cartridge management pod. Alternatively, it can specify a container image that carries the
cartridge par. The URL would be pointing to a remote file repository that may require
authentication or other parameters. The cartridge entry’s param fields can be used to provide
parameters (in the form of "curl" command line parameters) as well as a secret that carries
the username and password information.

Refer to the "Cartridge par Sources" section for details on the different options possible.

cartridges:
 - name: name of the cartridge - Mandatory, (must match the cartridge name in the par
file)

 url: URL of the location where to download the cartridge par file - Provide the
URL or the image details.

 secret: Kubernetes secret in the project namespace - Optional. Required only if
remote URL server requires authentication.

 image: image built with par file- Provide either the image or the URL, but not
both.

 imagePullSecret: The secret required to pull the image built for cartridge
deployment via image.

 params: Commandline parameters will be passed to curl - Optional. User can provide
additional parameters such as proxy settings for curl.

 version: cartridge version, Example 1.0.0.0.0 - Mandatory. Cartridge version must
match the cartridge version in the par file.

 default: true|false - Mandatory. Specify if this cartridge as the default
cartridge.

 deploymentState: deployed|fastundeployed - Mandatory. Indicate the desired target
state of the cartridge.

Use the manage-cartridges.sh script from the CNTK with the command option -c of
parDeploy

Offline Cartridge Deployment Using the OSM Cloud Native Toolkit
This deployment mode supports deployment of new cartridges, deployment of new versions
of existing cartridges, and redeployment of existing cartridge versions with changes.

Chapter 6
Working with Cartridges

6-25

For offline cartridge deployment, all managed servers in your environment must be
shut down. The script stops running if there are managed servers up and running.

When using the toolkit for deploying cartridges in offline mode, the running instance of
OSM must be shut down first by scaling down the cluster size to 0:

vi spec_Path/project-instance.yaml
Change the cluster size to 0
#cluster size
clusterSize: 0
$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s spec_Path

Run the manage-cartridges.sh script with the desired command – parDeploy or
sync.

Edit the instance spec to restore the original number for the cluster size and run the
same upgrade-instance.sh command as before to bring up all the managed servers.

Online Cartridge Deployment Using the OSM Cloud Native Toolkit
This deployment mode only supports deployment of new cartridges and deployment of
new versions of existing cartridges.

Deploying cartridges in an OSM cloud native environment provides the following key
benefits:

• You can deploy the cartridges without needing to isolate OSM from order
processing at the JMS/HTTP level.

• You can describe the cartridges for an environment in a declarative fashion.

In online mode, you can deploy cartridges to your OSM cloud native running instance
with zero down time. During the deployment process, OSM CN remains reachable by
external HTTP clients and JMS/SAF endpoints – this means OSM will continue to
accept orders and will continue to work on existing orders.

You use the manage-cartridges.sh script with the -o option to enable online
deployment of cartridges. After deploying the cartridges, the script performs a rolling
restart of all the managed servers in your environment. This restart loads the new
cartridge+version into memory and when all managed servers have the changes
loaded, OSM switches to using the new cartridge+version in sync across all managed
servers.

Note:

When deploying cartridges in online mode, the running instance of OSM
must continue to run and the required cluster size is at least 2.

Run the manage-cartridges.sh command with the additional -o command-line option
to deploy cartridges in online mode, with either parDeploy or sync

Consider the following when deploying cartridges in online mode:

• If no managed servers are running, a warning is shown that no managed server is
up and running and that the deployment mode is switching to offline deployment.
The script continues with offline deployment.

Chapter 6
Working with Cartridges

6-26

• If only one managed server is running, then the script fails to perform the deployment.

Deploying Cartridges Using Design Studio
You can deploy cartridges directly from Design Studio using the Eclipse user interface or
headless Design Studio. However, use Design Studio for deploying cartridges in scenarios
where there is a lot of churn in the build, deploy and test cycle, but not for production
environments. If used in conjunction with the OSM cloud native cartridge management
mechanism, then the deployed cartridges become out of sync with what is listed in the source
controlled specification file. For this reason, deploying cartridges using Design Studio is not
recommended for environments where the specification file is considered the single source of
truth for the set of deployed cartridges.

In order to incorporate Design Studio into the larger OSM cloud native ecosystem, you need
to have previously taken care of the mapping of the hostname to the Kubernetes cluster or
the load balancer as described in "Planning and Validating Your Cloud Environment".

After confirming that this has been done, do the following in Design Studio:

• Ensure that the connection URL of the Design Studio environment project matches your
OSM cloud native environment. This is likely: http://
instance.project.osm.org:30305/cartridge/wsapi. The suffix osm.org is configurable.

• In the Design Studio workspace, depending on your network setup, you may need to set
the Proxy bypass field in the Network Connection Preferences to:
instance.project.osm.org .

Listing Deployed Cartridges Using the OSM Cloud Native Toolkit
This command provides a report on all the cartridges present in the OSM cloud native
instance. The report contains the cartridge name, cartridge version, cartridge ID, whether it is
the default version or not, number of orders still open for it and number of orders completed
by it.

To invoke it, run the following command:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s spec_Path -
c list

The output includes fast-undeployed cartridges.

Cartridge par Sources
This topic outlines the sources from where you can deploy the Cartridge par files. For OSM,
Cartridge par files can be deployed from the following sources:

• Local Files

• Remote File Repository

• Container Images

Local Files
Use this method for only development environments. You can use the parDeploy command
with the manage-cartridges.sh script to deploy a cartridge par file from your system.

Chapter 6
Working with Cartridges

6-27

Remote File Repository
Using a remote file repository is more preferable than local files. However, choose
between this option and the container images as per your convenience. Use this
method with the sync command with the manage-cartridges.sh script.

There are two approaches to using the Remote File Repository – Secured and
Unsecured. The Unsecured approach could be suitable for test environments. You can
also disable host verification. However, it is recommended that you do not opt for this
as it can be a security risk.

Details of the cartridge, its version and the remote repository must be specified in the
project specification as entries in the “cartridges” list. See the comments against this
element in the sample specification file for full details:

cartridges:
 - name: cartridge-name
 version: cartridge-version
 default: true-or-false
 deploymentState: deployed-or-fastundeployed
 url: url-to-cartridge-par-file-in-remote-repository
 secret: name-of-kubernetes-secret-holding-login-credentials-if-secured-
remote-repository
 params: any-parameters-that-must-be-passed-to-curl-to-connect-to-above-url

secret is only required if the remote repository is secured. The Kubernetes secret
must be in the same project namespace and must contain two fields, username and
password, with the appropriate values.

params is optional and depends solely on the networking and nature of the remote
repository.

Container Images
Having a repository for cartridges is not always feasible or sustainable. However, there
is one kind of repository that is already a mandatory requirement for OSM cloud native
(and in general, for any work on Kubernetes). It is the container image repository.
Allowing OSM to pull cartridges as images from such an image repository allows for
reuse of existing infrastructure and security.

Use this method with the sync command with the manage-cartridges.sh script.
Details of the cartridge, its version and the image location must be specified in the
project specification as entries in the cartridges list (see the comments against this
element in the sample specification file for full details):

cartridges:
 - name: cartridge-name
 version: cartridge-version
 default: true-or-false
 deploymentState: deployed-or-fastundeployed
 image: image-name-and-tag
 imagepullsecret: credentials-for-image-repository

imagepullsecret is only required if the image repository demands authenticated
access. It is the standard Kubernetes image pull secret.

Building Cartridge Images

Chapter 6
Working with Cartridges

6-28

OSM Cloud Native Image Builder provides a sample utility to create a container image for a
cartridge par file for use in deployment activities. See osm-image-builder/samples/
cartridgeAsImage.

#Script that builds docker image using the par that is provided in -f
parameter
./buildCartridgeImage.sh -n <Cartridge_Name> -v <Cartridge_Version> -f /
path/to/par/file

Example:
./buildCartridgeImage.sh -n SimpleRabbits -v 1.7.0.1.0 -f /home/user/
Cartridge/SimpleRabbits.par

This creates an image with tag name as <Cartridge_Name>:<Cartridge_Version> in
lowercase. For the example above, the tag would be simplerabbits:1.7.0.1.0.

Note:

Cartridge_Name and Cartridge_Version must match what is encoded within the
par file.

Selecting Deployment Style and Cartridge Source
This topic outlines the deployment styles and methods you can use to deploy cartridge par
files. We can consider there to be two categories of environments where cartridges need to
be managed:

• Open Environments

• Controlled Environments

Deploying Cartridges in Open Environments
Open environments are mostly development and some test environments. To deploy
cartridges to a running instance of OSM cloud native in an open environment, you can use
any of the following combinations:

• Design Studio deploy (during active cartridge development activity).

• Online or offline pardeploy using local file.

• Online or offline sync deploy using remote file repository or container images.

Deploying Cartridges in Controlled Environments
To install cartridges in controlled environments such as UAT, pre-production, and production,
use only the declarative approach. Such environments require careful control of content as
well as strong auditing of changes. Using the sync approach with an online or offline
deployment using manage-cartridges.sh will ensure fitment to pipelines and strong
validation and traceability. Choose remote file repositories or container image repositories to
serve the cartridge par files in a secure, versioned and auditable way. Use Design Studio’s
headless build to automate building the par file itself from source as a precursor to putting it
into the desired secured location.

Chapter 6
Working with Cartridges

6-29

7
Extending the WebLogic Server Deploy
Tooling (WDT) Model

While the OSM cloud native toolkit provides a domain model that is sufficient to support the
operation of the OSM application, there are a few aspects that you can customize to meet
your business requirements. This chapter provides the general mechanism that OSM cloud
native provides for how custom WebLogic Server Deploy Tooling (WDT) metadata can be
used.

The following sections enable you to familiarize yourself with the basic extension mechanism.
For details on using the sample scripts to add custom WDT metadata, see "Using the Sample
Scripts to Extend the WDT Model".

About the Custom WDT Extension Mechanism
The OSM cloud native toolkit exposes an extension mechanism to extend the base WDT
domain configuration. For better management practices, you must specify different WDT
model fragments in multiple .tpl files that can be included in instances as necessary.

All extensions must be located in your source control repository in a directory referred to as
customExtPath, which is provided during instance creation. This does not need to be the
same location as specPath that contains the specification files. See the illustration about the
directory structure in "Managing Configuration as Code".

Using the WDT Model Tools
This section describes the WDT model tools that you can use when extending the WDT
model.

The WDT model tools are available at: https://github.com/oracle/weblogic-deploy-tooling. The
documentation available on GitHub describes various tools, which are included in the OSM
cloud native toolkit.

For a developer trying to modify or extend the WDT model for a custom OSM instance, the
following tools are the most useful:

• WDT Discover Domain

• WDT Validate Model

WDT Discover Domain Tool
One way to generate the desired custom model is to manually create a WLS domain (using
legacy installers, wlst scripts, console UI changes, and so on) that contains all the constructs
that are required and is known to work, in terms of the custom use case. The WDT Discover
Domain tool can be pointed at this WLS domain to generate a set of model files. These can
be scanned and pruned to get the portions that are of custom interest. They can further be
parameterized using WDT's properties files or using Helm values.

7-1

https://github.com/oracle/weblogic-deploy-tooling

If WDT properties are used to parameterize, ensure that you add that properties file to
the extension point in the custom implementation.

If Helm values are used to parameterize, ensure that you add these values to the
appropriate location - project/instance/shape yamls.

To discover a domain, run the following commands on the prepared WLS admin server
or standalone server:

ensure ORACLE_HOME is properly set
cd $ORACLE_HOME
mkdir wdt && cd wdt
wget https://github.com/oracle/weblogic-deploy-tooling/releases/
download/weblogic-deploy-tooling-1.6.0/weblogic-deploy.zip
Replace 1.6.0 with the actual WDT version as per OSM documentation
unzip weblogic-deploy.zip
cd weblogic-deploy/bin
./discoverDomain.sh -oracle_home $ORACLE_HOME \
 -domain_home domain-home \
 -archive_file archive \
 -model_file model \
 -domain_type domain-type \
 -admin_user admin-user \
 -admin_url t3-admin-url

where:

• archive and model are the directory+name of the files that the discovery tool
creates. The model file is of primary importance in this situation.

• domain-type is JRF for OSM applications

The command extracts the model from the running WLS instance. Alternatively, if it is
sufficient to extract the model from the domain configuration files, the admin_user
and admin_url parameters can be left out.

WDT Validate Model Tool
This tool is useful in the following scenarios:

• When there is a need to see what attributes and sub-fields are available for a
model element

• When there is a need to see if a model fragment is valid

Trying to test a newly written or even a modified model file by incorporating it into an
instance creation is cumbersome and often an inefficient way to test your changes.
You need to check the Introspector logs to see the details of any errors.

With the Validate Model tool, it is easier to validate the model file, especially if you are
building the model iteratively.

Common WDT Extension Mechanism
This section describes the extension mechanism that is generic and common to all
methods of extending WDT metadata.

Chapter 7
Common WDT Extension Mechanism

7-2

Enabling the Extension Mechanism

To enable the extension mechanism:

1. Copy $OSM_CNTK/samples/_custom-domain-model.tpl to your source control
repository customExtPath. This file is a single location where other template files, which
store specific WDT metadata fragments, can be included for an OSM instance. This sets
up the WDT fragments for re-use across a project, while allowing conditional inclusion
based on instance level values in the specification files.

2. Enable the extension mechanism by setting the custom flag to true in the project
specification and including _custom-domain-model.tpl:

custom:
 enabled: true
 #wdtFiles: {}
 wdtFiles:
 - _custom-domain-model.tpl

The basic extension mechanism is now enabled.

For each WDT fragment that is destined for inclusion, perform the following additional steps:

• Provide the WDT fragment

• (Optional) Parameterize the WDT Fragment

• Load the WDT Fragment

• List the .tpl files

• Debug the changes in the Helm chart

Providing the WDT Fragment

Naming convention dictates that the template files start with an underscore _. For example,
_custom-extension-support.tpl.

You can copy any one of the WDT fragments provided in the samples, or you can create your
own. If you provide your own WDT fragment, then you will need to reverse engineer the
required metadata using the WDT tooling. For these samples, see "Using the WDT Model
Tools".

If you create your own .tpl file, ensure that the WDT fragment is enclosed in a define block
as follows:

{{- define "osm-domain.custom-extension-support" -}}
custom model fragment goes here
{{- end }}

(Optional) Parameterizing the WDT Fragment

Instead of hard coding the values into the WDT, you can parameterize the content so that
specific values can be driven from the Helm chart. Determine which values fall into this
category and then apply the following changes:

To parameterize the WDT fragment:

Chapter 7
Common WDT Extension Mechanism

7-3

1. Update the WDT to use a parameter as illustrated in the following example:

Host: 'external.provider.hostname'

becomes....

Host: '{{ .Values.custom.extension.host }}'

2. Add values to the application instance in either the project specification or the
instance specification found in the source control at spec_Path.

custom:
 enabled: true
 <extension>:
 host: provide_explicit_value_here

The custom area of the specification file is where you can add as much content as
needed for your extension use cases. Oracle recommends that you keep the yaml
structure as flat as possible.

Loading the WDT Fragment

The sample _custom-domain-model.tpl already has conditional inclusions for
some of the samples provided in the toolkit. JMS, JDBC, and custom application
archives can be enabled by providing the appropriate flag in the instance specification
and including the specific .tpl file in the project specification. For the samples, you do
this task as described in "Using the Sample Scripts to Extend the WDT Model".

Load the model fragment into extension_Directory/_custom-domain-model.tpl as
follows:

{{- define "osm-domain.custom-domain-model" -}}
{{- $root := . }}
custom-<extension>-support.<index>.yaml: |+
 {{- include "osm-domain.custom-extension-support" $root | nindent 2 }}
{{- end }}

Note:

See the yaml naming convention that is specified by wdt - filename.yaml.
The index used determines the loading order when there are multiple yaml
files. Indexes below 70 are reserved for internal Oracle use.

The WDT may only need to be used conditionally. It is important to be able to exclude
the fragment based on the values provided in the project specification. In this case,
_custom-domain-model.tpl should include the condition that needs to be met for
the WDT to be included.

Chapter 7
Common WDT Extension Mechanism

7-4

Note:

Including the WDT in extension_Directory, which makes it available during instance
creation, but not used does not pose any problems for Helm.

{{- define "osm-domain.custom-domain-model" -}}
{{- $root := . }}
{{- if .Values.custom.<extension>.enabled }}
custom-extension-support.index.yaml: |+
 {{- include "osm-domain.custom-extension-support" $root | nindent 2 }}
{{- end }}
{{- end }}

Listing the TPL Files in the Project

For each WDT fragment that is created in a .tpl file, it needs to be listed in the project
specification.

custom:
 enabled: true
 #wdtFiles: {}
 wdtFiles:
 - _custom-domain-model.tpl
 - new_wdt.tpl

Debugging Helm Chart Changes

When making changes to existing yaml files or creating new WDT fragments, it is useful to
test the changes before attempting to create an instance.

You can use the following scripts provided with the toolkit to debug Helm chart changes:

• $OSM_CNTK/scripts/lint-osm-instance-chart.sh

• $OSM_CNTK/scripts/create-instance-dry-run.sh

You can now create an OSM instance.

Using the Sample Scripts to Extend the WDT Model
This section provides instructions for extending the WDT model by using the sample scripts
that are provided with the toolkit. You add custom WDT metadata to create your own OSM
instances.

The toolkit includes sample scripts for the following:

• Adding a JDBC Datasource

• Adding a JMS System Resource

• Deploying a Custom Application ear to an OSM WebLogic domain

• Extending the WDT Metadata for an External Authenticator

The general and common extension process described in "Common WDT Extension
Mechanism" must be repeated for each of the use cases described in this section.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-5

Adding a JDBC Datasource
The WDT fragment describing a JDBCSystemResource is provided in the $CNTK/
samples/customExtension/_custom-jdbc-support.tpl sample file.

To incorporate this fragment into your OSM instance:

1. Enable the extension mechanism by setting the custom flag to true and add the
custom-domain-model to the list of included wdtFiles in the project specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

2. Provide the WDT fragment by copying $CNTK/samples/customExtensions/
_custom-jdbc-support.tpl to the customExtPath in your source control repository.

3. Parameterize the WDT fragment. The fragment has already been parameterized
and uses values specified in the shape file. You must update the remaining values
enclosed in angular brackets. By default, this WDT reads the JDBC values from
the shape that is provided during instance creation.

Note:

Kubernetes Secrets can also be used to provide sensitive data such as
username and password. See "Accessing Kubernetes Secrets from
WDT Metadata" for details.

resources:
 JDBCSystemResource:
 '<custom-connection-pool>':
 JdbcResource:
 JDBCDriverParams:
 URL: 'jdbc:oracle:thin:@<database_host>:<database_port>/<database-
service>'
 PasswordEncrypted: '<password>'
 #PasswordEncrypted: '@@SECRET:my_secret_name:my_db_password@@'
 Properties:
 user:
 Value: '<user>'
 #Value: '@@SECRET:my_secret_name:my_db_user@@'
 oracle.net.CONNECT_TIMEOUT:
 Value: {{ default "10000" .Values.jdbc.oracleNetConnectTimeout }}
 oracle.jdbc.ReadTimeout:
 Value: {{ default "3660000" .Values.jdbc.oracleJdbcReadTimeout }}
 JDBCConnectionPoolParams:
 InitialCapacity: {{ default "0" .Values.jdbc.initialCapacity }}
 MaxCapacity: {{ default "15" .Values.jdbc.maxCapacity }}
 MinCapacity: {{ default "0" .Values.jdbc.minCapacity }}
 ShrinkFrequencySeconds: {{ default
"900" .Values.jdbc.shrinkFrequencySeconds }}

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-6

 TestFrequencySeconds: {{ default
"300" .Values.jdbc.testFrequencySeconds }}
 TestConnectionsOnReserve: {{ default
"true" .Values.jdbc.testConnectionsOnReserve }}
 SecondsToTrustAnIdlePoolConnection: {{ default
"10" .Values.jdbc.secondsToTrustAnIdlePoolConnection }}
 StatementCacheSize: {{ default "30" .Values.jdbc.statementCacheSize }}
 ConnectionCreationRetryFrequencySeconds: {{ default
"30" .Values.jdbc.connectionCreationRetryFrequencySeconds }}
 IgnoreInUseConnectionsEnabled: {{ default
"true" .Values.jdbc.ignoreInUseConnectionsEnabled }}
 InactiveConnectionTimeoutSeconds: {{ default
"0" .Values.jdbc.inactiveConnectionTimeoutSeconds }}
 StatementCacheType: '{{ default "LRU" .Values.jdbc.statementCacheType }}'
 CountOfTestFailuresTillFlush: {{ default
"5" .Values.jdbc.countOfTestFailuresTillFlush }}
 CountOfRefreshFailuresTillDisable: {{ default
"5" .Values.jdbc.countOfRefreshFailuresTillDisable }}
 RemoveInfectedConnections: {{ default
"false" .Values.jdbc.removeInfectedConnections }}
 ConnectionReserveTimeoutSeconds: {{ default
"10" .Values.jdbc.connectionReserveTimeoutSeconds }}
 StatementTimeout: {{ default "3630" .Values.jdbc.statementTimeout }}

4. The fragment is already configured for conditional loading based on the presence of the
jdbc flag in the project specification. Set the jdbc flag to true.

custom:
 enabled: true
 jdbc: true

5. Add the JDBC .tpl file to the project specification:

custom:
 enabled: true
 jdbc: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-jdbc-support.tpl

You can now create the OSM instance.

Adding a JMS System Resource
The WDT fragment describing a JMS System Resource is provided in the $CNTK/samples/
customExtension/_custom-jms-support.tpl sample file.

To incorporate this fragment into your OSM instance:

1. Enable the extension mechanism by setting the custom flag to true and add the
custom-domain-model to the list of included wdtFiles in the project specification:

custom:
 enabled: true

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-7

 wdtFiles:
 - _custom-domain-model.tpl

2. Provide the WDT fragment by copying $CNTK/samples/customExtensions/
_custom-jms-support.tpl to the customExtPath in your source control repository.
While this sample shows WDT for a JMS Queue and JMS Topic, any other JMS
entity can be supplied instead. See "Using the WDT Model Tools" for details on
establishing the correct WDT.

3. Parameterize the WDT fragment. The fragment has not been parameterized. The
text enclosed in angular brackets must be replaced with specific values.
Alternatively, update the WDT to parameterize content and provide actual values
in the project specification.

4. The fragment is already configured for conditional loading based on the presence
of the jms flag in the project specification. See the $CNTK/charts/osm/
templates/_custom-domain-model.tpl template. Set the jms flag to true.

custom:
 enabled: true
 jms: true

5. Add the jms tpl file to the project specification:

custom:
 enabled: true
 jms: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-jms-support.tpl

You can now create the OSM instance.

Deploying Entities to an OSM WebLogic Domain
You can deploy any WebLogic Server deployable entity, such as an application EAR or
WAR to an OSM WebLogic domain.

To deploy an entity to an OSM WebLogic Domain:

1. Package the entity, for example, the application ear into an archive file and place it
inside the container image used for creating OSM instances.

Note:

The WebLogic domain tooling expects application binaries to be
available at the correct path within the archive. A script is provided for
your convenience that packages the application into the correct path.

cp application.ear samples/customExtensions
cd samples/customExtensions
./make-custom-archive.sh archive_file_name.zip application.ear

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-8

2. Build a new container image:

cd samples/customExtensions
docker build -t "image_name:tag" --build-arg base_image=osm_base_image --
build-arg archive=archive_file_name.zip .

3. Upload the generated image to your private Docker repository.

4. Add the domain configuration.
In addition to copying the archive file into the base image, you must supply custom
configuration, which can be passed in by any one of following two mechanisms:

• Inside the container image.
This mechanism keeps the ear file together with the domain configuration in one
location. This is best suited to applications that can be considered standard or fixed
for all variants of a domain that are required (test, development, and production).

Advantage: You do not need to add the custom domain configuration every time you
create a domain.

Disadvantage: If you want to change the configuration, it requires a change to the
base image. In domains that are already up, an image change triggers a full restart of
the domain.

To add the domain configuration using this mechanism:

a. Save your fragment in a YAML file that includes an index 70 or above. For
example, custom-application-extension.70.yaml.

b. Edit Dockerfile to copy the YAML file to the u01/wdt/models directory along with
the archive.

• Using the extension mechanism.
This approach allows for per instance control over the application. This is best suited
to situations where the application configuration needs to be dictated by the specific
domain instance (for example, test vs. production).

Advantage: Keeps all "variable" (per instance) configuration in one place at domain
creation.

Disadvantage: Domain creation for every instance that uses the application must
remember to add the configuration.

To use the extension mechanism:

a. Enable the extension mechanism by setting the custom flag to true and add the
custom-domain-model to the list of included wdtFiles in the project
specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

b. Provide the WDT fragment by copying $CNTK/samples/customExtensions/
_custom-application-support.tpl to the customExtPath in your source control
repository.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-9

c. Parameterize the WDT fragment. The fragment has already been
parameterized.

appDeployments:
 Application:
 {{- .Values.custom.application_name }}:
 SourcePath: 'wlsdeploy/
applications/{{- .Values.custom.binary_name }}.ear'
 ModuleType: ear
 StagingMode: nostage
 PlanStagingMode: nostage
 Target: '@@PROP:CLUSTER_NAME@@'

d. Provide the values in the instance specification:

custom:
 enabled: true
 application: true
 #additional values here
 application_name: myApplication
 binary_name: myApp

e. Add the application flag and set it to true. The fragment is already
configured for conditional loading based on the presence of the
application flag in the project specification. See $CNTK/charts/osm/
templates/_custom-domain-model.tpl in the toolkit.

custom:
 enabled: true
 application: true

f. Add the application tpl file to the project specification:

custom:
 enabled: true
 application: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-application-support.tpl

You can now create the OSM instance.

Extending the WDT Metadata for an External Authenticator
The OSM cloud native toolkit provides out-of-the-box configuration for a WebLogic
domain using OpenLDAP as the authenticator. Using a different provider (even a
different LDAP provider) requires different WDT metadata, which is a significant
undertaking. The configuration required to support an alternate WLS provider would
need to be investigated and developed independently using an existing WebLogic
domain. Oracle's WDT Discover Domain Tool can analyze an existing domain and
generate the corresponding WDT model. The WDT model fragment can then be used
to configure the OSM domain using the toolkit extension mechanism.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-10

See Fusion MiddleWare documentation for information on configuring a WebLogic domain
with alternative authentication providers:

• Configuring WebLogic to use LDAP

• Configuring Active Directory (AD) as an Authentication Provider in WebLogic

After the WDT is determined, it is provided during the creation process in the same way as
other WDT metadata fragments. This section describes the process for setting up external
authentication for OSM cloud native.

To set up external authentication:

1. Disable OpenLDAP by editing the project specification in customExPath:

authentication:
 openldap:
 enabled: false

2. Copy $OSM_CNTK/samples/_custom-domain-model.tpl to your source control
repository at customExtPath.

3. Enable the extension mechanism by setting the custom flag to true in the project
specification and including the _custom-domain-model.tpl

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl

4. Determine and provide the WDT model fragment for the security provider in the
WebLogic domain. Once you know the WDT fragment that needs to be supplied, save it
into a file in your source control repository at the customExtPath (_custom-provider-
support.tpl).

{{- define "osm.custom-provider-support" -}}
topology:
 SecurityConfiguration:
 Realm:
 myrealm:
 AuthenticationProvider:
 '!DefaultAuthenticator':
 '!DefaultIdentityAsserter':
 YouLDAPProviderStartHere:
 <specific details here>

 DefaultAuthenticator:
 DefaultAuthenticator:
 ControlFlag: SUFFICIENT
 UseRetrievedUserNameAsPrincipal: true
 DefaultIdentityAsserter:
 DefaultIdentityAsserter:
{{- end }}

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-11

https://docs.oracle.com/en/middleware/enterprise-data-quality/12.2.1.3/secure/configuring-weblogic-use-ldap.html#GUID-2E31FC0B-6934-441E-AA4B-3F57A70ABA68
https://docs.oracle.com/cd/E82085_01/141/rib_implementation_guide/appendixA.htm#sthref138

Note:

You can review the fragment for an OpenLDAP provider that is included
in the toolkit: $OSM_CNTK/charts/osm/templates/_osm-openldap-
support.tpl

The security configuration WDT should respect sensitive data by using secrets.
See "Accessing Kubernetes Secrets from WDT Metadata" for details on how to
access secret data from within your WDT fragment.

5. (Optional) Update any parameters that should not be hard coded in the WDT
fragment. Add these values to the project specification under the "custom" section.

6. Load the model fragment by editing your custom_extension_path/ _custom-
domain-model.tpl file:

{{- define "osm.custom-domain-model" -}}
{{- $root := . }}
custom-provider-support.index.yaml: |+
 {{- include "osm.custom-provider-support" $root | nindent 2 }}
{{- end }}

If you would like conditional inclusion of the
fragment...something like this instead

{{- define "osm.custom-domain-model" -}}
{{- $root := . }}
{{- if .Values.custom.provider.flag}}
custom-provider-support.index.yaml: |+
 {{- include "osm.custom-<provider>-support" $root | nindent 2 }}
{{- end }}
{{- end }}

Note:

Remember the yaml naming convention that is specified by wdt -
filename.yaml. The index used determines the loading order when there
are multiple yaml files. Indexes below 70 are reserved for internal Oracle
use.

7. Add the tpl file that has the authentication provider WDT into the project
specification:

custom:
 enabled: true
 wdtFiles:
 - _custom-domain-model.tpl
 - _custom-provider-support.tpl

You can now create an OSM instance.

Chapter 7
Using the Sample Scripts to Extend the WDT Model

7-12

Accessing Kubernetes Secrets from WDT Metadata
The process of handling sensitive data inside a WDT fragment involves the following:

• Creating Kubernetes secrets

• Declaring the secrets in the specification file

• Referencing the secrets from the WDT fragment

To access Kubernetes secrets from WDT metadata:

1. Create the secret.
Secrets must be created in the correct Kubernetes namespace. The namespace is
already created when registering the namespace and aligns to your project name.

To create the secret using the command line, run the following command:

$kubectl -n project_Name create secret generic secret_Name \
 --from-literal=key1=$value \
 --from-literal=key2=$value

2. Add the secret in the custom section of the instance specification in your source
repository:

Custom secrets
replace the empty secret names with one or more secrets
instance:
 customSecrets:
 enabled: true
 secretNames:
 - mysecret1
 - mysecret2

Once you have created and declared your custom secrets, they can be referenced from
elsewhere in the WDT model.

3. Access the secret from inside a WDT fragment:

Field1: '@@SECRET:secret_name:key1@@'
Field2: '@@SECRET:secret_name:key2@@'

where secret_name represents the secret name and key represents one of the keys in
the secret.

Troubleshooting WDT Issues
This section provides details about some procedures that you may have to run in order to
resolve issues with WDT.

Starting and Terminating a WDT Pod

The OSM image includes the WDT tools that are often needed to debug or discover a WDT
fragment. You can start a temporary pod that provides access to these tools. Before starting

Chapter 7
Accessing Kubernetes Secrets from WDT Metadata

7-13

the pod, download the container image of the OSM base image to ensure that the
download time does not exceed the duration of the Kubernetes pod creation timeout.

kubectl run wdt --generator=run-pod/v1 \
 --image OSM_base_image -- sleep infinity

When the pod is no longer needed, you can delete it:

kubectl delete pod wdt

Validating a Model YAML File

To validate a model YAML file:

1. Copy a model yaml into your temporary pod:

kubectl cp model_file wdt:/tmp/model_file

2. Run the following command and wait for the prompt:

kubectl exec -ti wdt /bin/bash

3. Validate the model file you copied:

cd /u01/wdt/weblogic-deploy/bin
./validateModel.sh -oracle_home $ORACLE_HOME -model_file /tmp/
model_file

4. When you are done validating, exit the pod:

exit

The line numbers returned by the validateModel script are exclusive of the comment
lines. Either strip the comments first or do the calculation to get the "real" line number
in the file.

This process can be iterated by first reviewing the WDT errors and warnings, fixing the
YAML file, and then re-running the above procedure. Repeat this as required.

Note:

Model files can contain fragments of models, but each model element must
have its full parentage, starting from section. For example, following is the
sample if the fragment is the model element JmsResource:

resources:
 JMSSystemResource:
 JmsResource:
 model-fragment-to-validate

Chapter 7
Troubleshooting WDT Issues

7-14

Displaying Valid Attributes and Child Attributes of a WDT Model

To display the attributes of a WDT model, run the following commands:

kubectl exec -ti wdt /bin/bash
wait for prompt
cd /u01/wdt/weblogic-deploy/bin
./validateModel.sh -oracle_home $ORACLE_HOME \
 -print-usage path
exit

The path here is the WDT path to the model element of interest. For example, to see all the
attributes and child attributes for SAFImportedDestinations, the path is resources:/
JMSSystemResource/JmsResource/SAFImportedDestinations.

A common way to construct the path is to look for the element in a discovered model file and
determine its yaml path. Another way is to start off with a path of section:, where section
is one of "domainInfo", "topology", "resources" or "appDeployments". By iteratively
discovering the child attributes, the final path can be built-up.

To shorten this search process, add the -recursive flag to the validateModel.sh script
command line. Care should be taken as the output can be quite large at the higher levels.

Chapter 7
Troubleshooting WDT Issues

7-15

8
Exploring Configuration Options

The OSM cloud native toolkit gives you options to set up your configuration based on your
requirements. This chapter describes the configurations you can explore, allowing you to
decide how best to configure your OSM cloud native environment to suit your needs.

You can choose configuration options for the following:

• Setting Up Authentication

• Working with Shapes

• Injecting Custom Configuration Files

• Choosing Worker Nodes for Running OSM Cloud Native

• Working with Ingress, Ingress Controller, and External Load Balancer

• Using an Alternate Ingress Controller

• Reusing the Database State

• Setting Up Persistent Storage

• Setting Up Database Optimizer Statistics

• Leveraging Oracle WebLogic Server Active GridLink

• Managing Logs

• Managing OSM Cloud Native Metrics

The sections that follow provide instructions for working with these configuration options.

Setting Up Authentication
By default, OSM uses the WebLogic embedded LDAP as the authentication provider and all
OSM system users are created in embedded LDAP during instance creation. For human
users, you may set up an optional authentication for the users who access OSM through user
interfaces. See "Planning and Validating Your Cloud Environment" for information on the
components that are required for setting up your cloud environment. The OSM cloud native
toolkit provides samples that you use to integrate components such as OpenLDAP, WebLogic
Kubernetes Operator (WKO), and Traefik. This section describes the tasks you must do for
configuring optional authentication for OSM cloud native human users.

Perform the following tasks using the samples provided with the OSM cloud native toolkit:

• Install and configure OpenLDAP. This is required to be done once for your organization.

• Install OpenLDAP clients. This is required to be performed on each host that installs and
runs the toolkit scripts and when a Kubernetes cluster is shared by multiple hosts.

• In the OpenLDAP server, create the root node for each OSM instance

Installing and Configuring OpenLDAP

OpenLDAP enables your organization to handle authentication for all instances of OSM. You
install and configure OpenLDAP once for your organization.

8-1

To install and configure OpenLDAP:

1. Run the following command, which installs OpenLDAP:

$ sudo -s yum -y install "openldap" "migrationtools"

2. Specify a password by running the following command:

$ sudo -s slappasswd
New password:
Re-enter new password:

3. Configure OpenLDAP by running the following commands:

$ sudo -s
$ cd /etc/openldap/slapd.d/cn=config
$ vi olcDatabase\=\{2\}hdb.ldif

4. Update the values for the following parameters:

Note:

Ignore the warning about editing the file manually.

• olcSuffix: dc=osmcn-ldap,dc=com
• olcRootDN: cn=Manager,dc=osmcn-ldap,dc=com
• olcRootPW:ssha

where ssha is the SSHA that is generated

5. Update the dc values for the olcAccess parameter as follows:

olcAccess: {0}to * by
dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=external, cn=auth"
read by dn.base="cn=Manager,dc=osmcn-ldap,dc=com" read by * none

6. Test the configuration by running the following command:
sudo -s slaptest -u
Ignore the checksum warnings in the output and ensure that you get a success
message at the end.

7. Run the following commands, which restart and enable LDAP:

sudo -s systemctl restart slapd
sudo -s systemctl enable slapd
sudo -s cp -rf /usr/share/openldap-servers/
DB_CONFIG.example /var/lib/ldap/DB_CONFIG
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/cosine.ldif
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/nis.ldif
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/openldap/schema/
inetorgperson.ldif

Chapter 8
Setting Up Authentication

8-2

8. Create a root node named domain, which will be the top parent for all OSM instances.

9. Run the following command to create a new file named base.ldif:

sudo -s vi /root/base.ldif

10. Add the following entries to the base.ldif file:

dn: ou=Domains,dc=osmcn-ldap,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Domains

11. Run the following commands to update the values in the base.ldif file:

ldapadd -x -W -D "cn=Manager,dc=osmcn-ldap,dc=com" -f /root/base.ldif
ldapsearch -x cn=Manager -b dc=osmcn-ldap,dc=com

12. Open the LDAP port 389 on all Kubernetes nodes in the cluster.

Installing OpenLDAP Clients

In environments where the Kubernetes cluster is shared by multiple hosts, you must install
the OpenLDAP clients on each host. You use the scripts in the toolkit to populate the LDAP
server with users and groups.

On the host on which you want to create a basic OSM instance, run the following command,
which installs the OpenLDAP clients:

sudo -s yum -y install openldap-clients

Creating the Root Node

You must create the root node for each OSM instance before additional OSM non-automation
user and OSM group can be created.

The toolkit provides a sample script ($OSM_CNTK/samples/credentials/manage-osm-
ldap-credentials.sh) that you can use to create the root node in the LDAP tree for the OSM
instance.

Run the $OSM_CNTK/samples/credentials/manage-osm-ldap-credentials.sh script by
passing in -o account.

Working with Shapes
The OSM cloud native toolkit provides the following pre-configured shapes:

• charts/osm/shapes/dev.yaml. This can be used for development, QA and user
acceptance testing (UAT) instances.

• charts/osm/shapes/devsmall.yaml. This can be used to reduce CPU requirements for
small development instances.

• charts/osm/shapes/prod.yaml. This can be used for production, pre-production, and
disaster recovery (DR) instances.

Chapter 8
Working with Shapes

8-3

• charts/osm/shapes/prodlarge.yaml. This can be used for production, pre-
production and disaster recovery (DR) instances that require more memory for
OSM cartridges and order caches.

• charts/osm/shapes/prodsmall.yaml. This can be used to reduce CPU
requirements for production, pre-production and disaster recovery (DR) instances.
For example, it can be used to deploy a small production cluster with two
managed servers when the order rate does not justify two managed servers
configured with a prod or prodlarge shape. For production instances, Oracle
recommends two or more managed servers. This provides increased resiliency to
a single point of failure and can allow order processing to continue while failed
managed servers are being recovered.

You can create custom shapes using the pre-configured shapes. See "Creating
Custom Shapes" for details.

The pre-defined shapes come in standard sizes, which enable you to plan your
Kubernetes cluster resource requirement.

The following table lists the sizing requirements of the shapes for a managed server:

Table 8-1 Sizing Requirements of Shapes for a Managed Server

Shape Kube Request Kube Limit JVM Heap (GB)

prodlarge 80 GB RAM, 15 CPU 80 GB RAM, 15 CPU 64

prod 48 GB RAM, 15 CPU 48 GB RAM, 15 CPU 31

prodsmall 48 GB RAM, 7.5 CPU 48 GB RAM, 7.5 CPU 31

dev 8 GB RAM, 2 CPU 8 GB RAM 5

devsmall 8 GB RAM, 0.5 CPU 8 GB RAM 5

The following table lists the sizing requirements of the shapes for an admin server:

Table 8-2 Sizing Requirements of Shapes for an Admin Server

Shape Kube Request Kube Limit JVM Heap (GB)

prodlarge 8 GB RAM, 2 CPU 8 GB RAM 4

prod 8 GB RAM, 2 CPU 8 GB RAM 4

prodsmall 8 GB RAM, 2 CPU 8 GB RAM 4

dev 3 GB RAM, 1 CPU 4 GB RAM 1

devsmall 3 GB RAM, 0.5 CPU 4 GB RAM 1

These values are encoded in the specifications and are automatically part of the
individual pod configuration. The Kubernetes schedulers evaluate the Kube request
settings to find space for each pod in the worker nodes of the Kubernetes cluster.

To plan the cluster capacity requirement, consider the following:

• Number of development instances required to be running in parallel: D

• Number of managed servers expected across all the development instances: Md
(Md will be equal to D if all the development instances are 1 MS instances)

• Number of production (and production-like) instances required to be running in
parallel: P

• Number of managed servers expected across all production instances: Mp

Chapter 8
Working with Shapes

8-4

• Assume use of "dev" and "prod" shapes

• CPU requirement (CPUs) = D * 1 + Md * 2 + P * 2 + Mp * 15

• Memory requirement (GB) = D * 4 + Md * 8 + P * 8 + Mp * 48

Note:

The production managed servers take their memory and CPU in large chunks.
Kube scheduler requires the capacity of each pod to be satisfied within a particular
worker node and does not schedule the pod if that capacity is fragmented across
the worker nodes.

The shapes are pre-tuned for generic development and production environments. You can
create an OSM instance with either of these shapes, by specifying the preferred one in the
instance specification.

Name of the shape. The OSM cloud native shapes are devsmall, dev,
prodsmall, prod, and prodlarge.
Alternatively, custom shape name can be specified (as the filename without
the extension)

Creating Custom Shapes
You create custom shapes by copying the provided shapes and then specifying the desired
tuning parameters. Do not edit the values in the shapes provided with the toolkit.

In addition to processor and memory sizing parameters, a custom shape can be used to tune:

• The number of threads allocated to OSM work managers

• OSM connection pool parameters

• Order cache sizes and inactivity timeouts

For more details on the recommend approach to tune these parameters, see the section
about "OSM Pre-Production Testing and Tuning" in OSM Installation Guide.

To create a custom shape:

1. Copy one of the pre-configured shapes and save it to your source repository.

2. Rename the shape and update the tuning parameters as required.

3. In the instance specification, specify the name of the shape you copied and renamed:

shape: custom

4. Create the domain, ensuring that the location of your custom shape is included in the
colon-separated list of directories passed with -s.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s spec_Path

Chapter 8
Working with Shapes

8-5

Note:

While copying a pre-configured shape or editing your custom shape, ensure
that you preserve any configuration that has comments indicating that it must
not be deleted.

Injecting Custom Configuration Files
Sometimes, a solution cartridge may require access to a file on disk. A common
example is for reading of property files or mapping rules.

A solution may also need to provide configuration files for reference via parameters in
the oms-config.xml file for OSM use (for example, for operational order jeopardies
and OACC runtime configuration).

To inject custom configuration files:

1. Make a copy of the OSM_CNTK/samples/customExtensions/custom-file-
support.yaml file.

2. Edit it so that it contains the contents of the files. See the comments in the file for
specific instructions.

3. Save it (retaining its name) into the directory where you save all extension files.
Say extension_directory. See "Extending the WebLogic Server Deploy Tooling
(WDT) Model" for details.

4. Edit your project specification to reference the desired files in the customFiles
element:

#customFiles:
- mountPath: /some/path/1
configMapSuffix: "path1"
- mountPath: /some/other/path/2
configMapSuffix: "path2"

When you run create-instance.sh or upgrade-instance.sh, provide the
extension_directory in the "-m" command-line argument. In your oms-config.xml file
or in your cartridge code, you can refer to these custom files as mountPath/filename,
where mountPath comes from your project specification and filename comes from your
custom-file-support.yaml contents. For example, if your custom-file-support.yaml
file contains a file called properties.txt and you have a mount path of /mycompany/
mysolution/config, then you can refer to this file in your cartridge or in the oms-
config.xml file as /mycompany/mysolution/config/properties.txt.

While working with custom configuration files, consider the following usage guidelines:

• The files created are read-only for OSM and for the cartridge code.

• The mountPath parameter provided in the project specification should point to a
new directory location. If the location is an existing location, all of its existing
content will occlude with the files you are injecting.

• Do not provide the same mountPath more than once in a project specification.

Chapter 8
Injecting Custom Configuration Files

8-6

• The custom-file-support.yaml file in your extension_directory is part of your
configuration-as-code, and must be version controlled as with other extensions and
specifications.

To modify the contents of a custom file, update your custom-file-support.yaml file in your
extension_directory and invoke upgrade-instance.sh. Changes to the contents of the
existing files are immediately visible to the OSM pods. However, you may need to perform
additional actions in order for these changes to take effect. For example, if you changed a
property value in your custom file, that will only be read the next time your cartridge runs the
appropriate logic.

If you wish to add files for a running OSM cloud native instance, update your custom-file-
support.yaml file as described above and invoke upgrade-instance.sh. While this same
procedure can work when you need to remove custom files for a running OSM instance, it is
strongly recommended that you do this as described in the following procedure to avoid "file
not found" type of errors:

1. Update the instance specification to set the size to 0 and then run upgrade-instance.sh.

2. Update the instance specification to set the size to the initial value and remove the file
from your custom-file-support.yaml file.

3. Update the customFiles parameter in your project specification and run upgrade-
instance.sh.

Choosing Worker Nodes for Running OSM Cloud Native
By default, OSM cloud native has its pods scheduled on all worker nodes in the Kubernetes
cluster in which it is installed. However, in some situations, you may want to choose a subset
of nodes where pods are scheduled.

For example, these situations include:

• Licensing restrictions: Coherence could be limited to be deployed on specific shapes.
Also, there could be a limit on the number of CPUs where Coherence is deployed.

• Non license restrictions: Limitation on the deployment of OSM on specific worker nodes
per each team for reasons such as capacity management, chargeback, budgetary
reasons, and so on.

To choose a subset of nodes where pods are scheduled, you can use the configuration in the
project specification yaml file.

If OSM cloud native instances must be targeted to a subset of worker nodes
in the
Kubernetes cluster, tag those nodes with a label name and value, and choose
that label+value here.
key : any node label key
values : list of values to choose the node.
If any of the values is found for the above label key, then that
node is included in the pod scheduling algorithm.
#
This can be overriden in instance specification if required.
osmWLSTargetNodes, if defined, restricts all OSM cloud native WebLogic
pods and DB
Installer pods to worker nodes that match the label conditions and for
these
pods, will take precedence over osmcnTargetNodes.

Chapter 8
Choosing Worker Nodes for Running OSM Cloud Native

8-7

osmWLSTargetNodes: {} # This empty declaration should be removed if
adding items here.
#osmWLSTargetNodes:
nodeLabel:
example.com/licensed-for-coherence is just an indicative
example; any label and its values can be used for choosing nodes.
key: example.com/licensed-for-coherence
values:
- true

osmcnTargetNodes, if defined, restricts all OSM cloud native pods to
worker nodes
that match the label conditions. This value will be ignored for OSM
cloud native
WebLogic pods and DB Installer pods if osmWLSTargetNodes is also
specified.
osmcnTargetNodes: {} # This empty declaration should be removed if
adding items here.
#osmcnTargetNodes:
nodeLabel:
example.com/use-for-osm is just an indicative example; any
label and its values can be used for choosing nodes.
key: oracle.com/use-for-osm
values:
- true

Consider the following when you update the configuration:

• There is no restriction on node label key. Any valid node label can be used.

• There can be multiple valid values for a key.

• You can override this configuration in the instance specification yaml file, if
required.

Working with Ingress, Ingress Controller, and External Load
Balancer

A Kubernetes ingress is responsible for establishing access to back-end services.
However, creating an ingress is not sufficient. An Ingress controller allows for the
configurable exposure of back-end services to clients outside the Kubernetes cluster,
via edge objects like NodePort services, Load Balancers, and so on. In OSM cloud
native, an ingress controller can be selected and configured in the project
specification.

OSM cloud native supports annotation-based "generic ingress" creation, which means
the use of the standard Kubernetes Ingress API (as opposed to a proprietary ingress
Custom Resource Definition), as verified by Kubernetes Conformance tests. The
benefit of this is that it works for any Kubernetes certified ingress controller, provided
that the ingress controller offers annotations (which are generally proprietary to the
ingress controller) required for proper functioning of OSM.

Annotations applied to an Ingress resource allow you to use advanced features (like
connection timeout, URL rewrite, retry, additional headers, redirects, sticky cookie
services, and so on) and to fine-tune behavior for that Ingress resource. Different

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

8-8

Ingress controllers support different annotations. For information about different Ingress
controllers, see Kubernetes documentation at: https://kubernetes.io/docs/concepts/services-
networking/ingress-controllers/ Review this documentation for your Ingress controller to
confirm which annotations are supported.

Any Ingress Controller, which conforms to the standard Kubernetes ingress API and supports
annotations needed by OSM should work, although Oracle does not certify individual Ingress
controllers to confirm this "generic" compatibility.

See the documentation about Ingress NGINX Controller at: https://github.com/kubernetes/
ingress-nginx/blob/main/README.md#readme

Also, make sure Ingress has annotation to handle large body size of client request, like large
order payloads (during regular processing) or large cartridge par files (while deploying from
Design Studio). For example, nginx.ingress.kubernetes.io/proxy-body-size: "50m
The configurations required in your project specification are as follows:

valid values are TRAEFIK, GENERIC, OTHER
ingressController: "GENERIC"

When ingressController is set to GENERIC, the actual ingress controller
might require some annotations to be added to the Kubernetes
Ingress object. Place annotations that are must-have for such a
controller and/or common to all instances here. Instance specific
annotations can be placed in the instance spec file.
ingress:
 # This annotation is required for nginx ingress controller.
 annotations:
 kubernetes.io/ingress.class: nginx
 nginx.ingress.kubernetes.io/proxy-body-size: "50m"
 nginx.ingress.kubernetes.io/affinity: 'cookie'
 nginx.ingress.kubernetes.io/session-cookie-name: 'sticky'
 nginx.ingress.kubernetes.io/affinity-mode: 'persistent'
 osmgw:
 # This annotation is required for nginx ingress controller for osm gateway.
 annotations:
 nginx.ingress.kubernetes.io/use-regex: "true"
 nginx.ingress.kubernetes.io/rewrite-target: /$1
 rtux:
 # This annotation is required for nginx ingress controller for rtux.
 annotations:
 nginx.ingress.kubernetes.io/use-regex: "true"
 nginx.ingress.kubernetes.io/rewrite-target: /orchestration-
operations/$1

The nginx controller works by creating an operator in its own "nginx" (or other specified)
namespace, and exposing this as a service outside of the Kubernetes cluster (NodePort,
LoadBalancer, and so on). In order to accommodate all types of ingress controllers and
exposure options, the instance.yaml file requires inboundGateway.host and
inboundGateway.port to be specified.

Chapter 8
Working with Ingress, Ingress Controller, and External Load Balancer

8-9

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme
https://github.com/kubernetes/ingress-nginx/blob/main/README.md#readme

Populate the values in the instance.yaml before invoking the create-instance.sh
command to create an instance:

inboundGateway:
 # FQDN (recommended) or IP address of the actual ingress point/
loadbalancer
 host:
 # uncomment and provide if different from default http/https ports
 port:

To create an ingress, run the following:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -
s $SPEC_PATH

To delete an ingress, run the following:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

Using Traefik Ingress Controller
Oracle recommends leveraging standard Kubernetes ingress API, with any Ingress
Controller that supports annotations for the configurations described here.

Configure the project specification as follows:

valid values are TRAEFIK, GENERIC, OTHER
ingressController: "TRAEFIK"

Using an Alternate Ingress Controller
By default, OSM cloud native supports standard Kubernetes ingress API and provides
sample files for integration. If your desired ingress controller does not support one or
more configurations via annotations on generic ingress, or you wish to use your
ingress controller's CRD instead, you can choose "OTHER".

By choosing this option, OSM cloud native does not create or manage any ingress
required for accessing the OSM cloud native services. However, you may choose to
create your own ingress objects based on the service and port details mentioned in the
tables that follow. The toolkit uses an ingress Helm chart ($OSM_CNTK/samples/
charts/ingress-per-domain/templates/generic-ingress.yaml) and scripts for
creating the ingress objects. These samples can be used as a reference to make
copies and customize as necessary.

The host-based rules and the corresponding back-end Kubernetes service mapping
are provided using the clusterName definition, which is the name of the cluster in
lowercase. Replace any hyphens with underscores. The default, unless overridden, is
c1.

The following table lists the service name and service ports for Ingress rules. All
services require ingress session stickiness to be turned on so that once authenticated,
all subsequent requests reach the same endpoint. All these services can be
addressed within the Kubernetes cluster using the standard Kubernetes DNS for
services.

Chapter 8
Using an Alternate Ingress Controller

8-10

Table 8-3 Service Name and Service Ports for Host-based Ingress Rules

Rule (host) Service Name Service
Port

Purpose

instance.project.loadBalancerDo
mainName

project-instance-cluster-
clusterName

8001 For access to OSM through UI,
XMLAPI, Web Services, and so
on.

t3.instance.project.loadBalancer
DomainName

project-instance-cluster-
clusterName

30303 OSM T3 Channel access for
WLST, JMS, and SAF clients.

admin.instance.project.loadBalan
cerDomainName

project-instance-admin 7001 For access to OSM WebLogic
Admin Console UI.

The path-based rules and the corresponding back-end Kubernetes service mapping are
provided using the following definitions. All these services can be addressed within the
Kubernetes cluster using the standard Kubernetes DNS for services.

The following table lists the service name and service ports for Ingress rules:

Table 8-4 Service Name and Service Ports for Path-based Ingress Rules

Rule (path) rewrite-target Service Name Service Port Purpose

/orchestration/
project/instance/tmf-
api/(.*)

/$1 project-instance-
osm-gateway

8080 For access to OSM
TMF REST APIs.

/orchestration/
project/instance/
fallout/(.*)

/$1 project-instance-
osm-gateway

8080 For access to OSM
Fallout Exception
REST APIs.

/orchestration/
project/instance/
orchestration-
operations/(.*)

/orchestration-
operations/$1

project-instance-
osm-runtime-ux-
server

8080 For user interface
access to instance
data.

Ingresses need to be created for each of the above rules per the following guidelines:

• Before running create-instance.sh, ingress must be created.

• After running delete-instance.sh, ingress must be deleted.

You can develop your own code to handle your ingress controller or copy the sample
ingress-per-domain chart and add additional template files for your ingress controller
with a new value for the type.

• The reference sample for creation is: $OSM_CNTK/scripts/config-ingress.sh

• The reference sample for deletion is: $OSM_CNTK/scripts/delete-ingress.sh

Reusing the Database State
When an OSM instance is deleted, the state of the database remains unaffected, which
makes it available for re-use. This is common in the following scenarios:

• When an instance is deleted and the same instance is re-created using the same project
and the instance names, the database state is unaffected. For example, consider a
performance instance that does not need to be up and running all the time, consuming
resources. When it is no longer actively being used, its specification files and PDB can be

Chapter 8
Reusing the Database State

8-11

saved and the instance can be deleted. When it is needed again, the instance can
be rebuilt using the saved specifications and the saved PDB. Another common
scenario is when developers delete and re-create the same instance multiple
times while configuration is being developed and tested.

• When a new instance is created to point to the data of another instance with a new
project and instance names, the database state is unaffected. A developer, who
might want to create a development instance with the data from a test instance in
order to investigate a reported issue, is likely to use their own instance
specification and the OSM data from PDB of the test instance.

Additionally, consider the following components when re-using the database state:

• The OSM DB (schema and data)

• The RCU DB (schema and data)

Recreating an Instance
You can re-create an OSM instance with the same project and instance names,
pointing to the same database. In this case, both the OSM DB and the RCU DB are re-
used, making the sequence of events for instance re-creation relatively
straightforward.

To recreate an instance, the following pre-requisites must be available from the original
instance and made available to the re-creation process:

• PDB

• The project and instance specification files

Reusing the OSM Schema

To reuse the OSM DB, the secret for the PDB must still exist:

project-instance-database-credentials

project-instance-database-credentials.
This is the osmdb credential in the manage-instance-credentials.sh script.

Reusing the RCU

To reuse the RCU, the following secrets for the RCU DB must still exist:

• project-instance-rcudb-credentials. This is the rcudb credential.

• project-instance-opss-wallet-password-secret. This is the opssWP
credential.

• project-instance-opss-walletfile-secret. This is the opssWF credential.

If the opssWP and opssWF secrets no longer exist and cannot be re-created from
offline data, then drop the RCU schema and re-create it using the OSM DB Installer.

Create the instance as you would normally do:

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s
spec_Path

Chapter 8
Reusing the Database State

8-12

Creating a New Instance
If the original instance does not need to be retained, then the original PDB can be re-used
directly by a new instance. If however, the instance needs to be retained, then you must
create a clone of the PDB of the original instance. This section describes using a newly
cloned PDB for the new instance.

If possible, ensure that the images specified in the project specification (project.yaml) match
the images in the specification files of the original instance.

Reusing the OSM Schema

To reuse the OSM DB, the following secret for the PDB must be created using the new
project and instance names. This is the osmdb credential in manage-instance-
credentials.sh and points to your cloned PDB:

project-instance-database-credentials

If your new instance must reference a newer OSM DB installer image in its specification files
than the original instance, it is recommended to invoke an in-place upgrade of OSM schema
before creating the new instance.

To upgrade or check the OSM schema:

Upgrade the OSM schema to match new instance's specification files
Do nothing if schema already matches
$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s spec_path -c 1

You can choose a strategy for the RCU DB from one of the following options:

• Create a new RCU

• Reuse RCU

Creating a New RCU

If you only wish to retain the OSM schema data (cartridges and orders), then you can create
a new RCU schema.

The following steps provide a consolidated view of RCU creation described in "Managing
Configuration as Code".

To create a new RCU, create the following secrets:

• project-instance-rcudb-credentials. This is the rcudb credential and describes the
new RCU schema you want in the clone.

• project-instance-opss-wallet-password-secret. This is the opssWP credential
unique to your new instance

After these credentials are in place, prepare the cloned PDB:

Create a fresh RCU DB schema while preserving OSM schema data
$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s spec_path -c 7

With this approach, the RCU schema from the original instance is still available in the cloned
PDB, but is not used by the new instance.

Chapter 8
Reusing the Database State

8-13

Reusing the RCU

Using the manage-instance-credentials.sh script, create the following secret using
your new project and instance names:

project-instance-rcudb-credentials

The secret should describe the old RCU schema, but with new PDB details.

• Reusing RCU Schema Prefix

Over time, if PDBs are cloned multiple times, it may be desirable to avoid the
proliferation of defunct RCU schemas by re-using the schema prefix and re-
initializing the data. There is no OSM metadata or order data stored in the RCU
DB so the data can be safely re-initialized.

project-instance-opss-wallet-password-secret. This is the opssWP
credential unique to your new instance.

To re-install the RCU, invoke DB Installer:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s
spec_path -c 5

• Reusing RCU Schema and Data

In order to reuse the full RCU DB from another instance, the original opssWF and
opssWP must be copied to the new environment and renamed following the
convention: project-instance-opss-wallet-password-secret and project-instance-
opss-walletfile-secret.

This directs Fusion MiddleWare OPSS to access the data using the secrets.

Create the instance as you would normally do:

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s
spec_path

Setting Up Persistent Storage
OSM cloud native can be configured to use a Kubernetes Persistent Volume to store
data that needs to be retained even after a pod is terminated. This data includes
application logs, JFR recordings and DB Installer logs, but does not include any sort of
OSM state data. When an instance is re-created, the same persistent volume need not
be available. When persistent storage is enabled in the instance specification, these
data files, which are written inside a pod are re-directed to the persistent volume.

Data from all instances in a project may be persisted, but each instance does not need
a unique location for logging. Data is written to a project-instance folder, so multiple
instances can share the same end location without destroying data from other
instances.

The final location for this data should be one that is directly visible to the users of OSM
cloud native. The development instances may simply direct data to a shared file
system for analysis and debugging by cartridge developers. Whereas, formal test and
production instances may need the data to be scraped by a logging toolchain such as
EFK, that can then process the data and make it available in various forms. The

Chapter 8
Setting Up Persistent Storage

8-14

recommendation therefore is to create a PV-PVC pair for each class of destination within a
project. In this example, one for developers to access and one that feeds into a toolchain.

A PV-PVC pair would be created for each of these "destinations", that multiple instances can
then share. A single PVC can be used by multiple OSM domains. The management of the PV
and PVC lifecycles is beyond the scope of OSM cloud native.

The OSM cloud native infrastructure administrator is responsible for creating and deleting
PVs or for setting up dynamic volume provisioning.

The OSM cloud native project administrator is responsible for creating and deleting PVCs as
per the standard documentation in a manner such that they consume the pre-created PVs or
trigger the dynamic volume provisioning. The specific technology supporting the PV is also
beyond the scope of OSM cloud native. However, samples for PV supported by NFS are
provided.

Creating a PV-PVC Pair

The technology supporting the Kubernetes PV-PVC is not dictated by OSM cloud native.
Samples have been provided for NFS and can either be used as is, or as a reference for
other implementations.

To create a PV-PVC pair supported by NFS:

1. Edit the sample PV and PVC yaml files and update entries with enclosing brackets

Note:

PVCs need to be ReadWriteMany.

vi $OSM_CNTK/samples/nfs/pv.yaml
 vi $OSM_CNTK/samples/nfs/pvc.yaml

2. Create the Kubernetes PV and PVC.

kubectl create -f $OSM_CNTK/samples/nfs/pv.yaml
kubectl create -f $OSM_CNTK/samples/nfs/pvc.yaml

Enable storage in the instance specification and specify the name of the PVC created:

The storage volume must specify the PVC to be used for persistent storage.
storageVolume:
 enabled: true
 pvc: storage-pvc

After the instance is created, you should see the following directories in your PV mount point,
if you have enabled logs:

[oracle@localhost project-instance]$ dir
db-installer logs performance

Chapter 8
Setting Up Persistent Storage

8-15

Setting Up Database Optimizer Statistics
As part of the setup of a highly performant database for OSM, it is necessary to set up
database optimizer statistics. OSM DB Installer can be used to set up the database
partition statistics, which ensures a consistent source of statistics for new partitions so
that the database generates optimal execution plans for queries in those partitions.

About the Default Partition Statistics

The OSM DB Installer comes with a set of default partition statistics. These statistics
come from an OSM system running a large number of orders (over 400,000) for a
cartridge of reasonable complexity. These partition statistics are usable as-is for
production.

Setting Up Database Partition Statistics

To use the provided default partition statistics, no additional input, in terms of
specification files, secrets or other runtime aspects, is required for the OSM cloud
native DB Installer.

The OSM cloud native DB Installer is invoked during the OSM instance creation, to
either create or update the OSM schema. The installer is configured to automatically
populate the default partition statistics (to all partitions) for a newly created OSM
schema when the "prod", "prodsmall", or "prodlarge" (Production) shape is declared in
the instance specification. The statistics.loadPartitionStatistics field within these
shape files is set to true to enable the loading.

If you want to load partition statistics for a non-production shape, or if you want to
reload statistics due to a DB or schema upgrade, use the command with 11 to load the
statistics to all existing partitions in the OSM schema:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -
s $SPEC_PATH -c 11

If you create new partitions, to import the default partition statistics to these new
partitions, run the following command on the DB Installer.

Note:

The partition name is specified in -b parameter with a comma delimited list of
partition names.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -
s $SPEC_PATH -b
the_newly_created_partition_1,the_newly_created_partition_2 -c 11

Chapter 8
Setting Up Database Optimizer Statistics

8-16

If you create new partitions, and want to copy or load the partition statistics data from an
existing partition to these new partitions, run the following command on the DB Installer.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -s $SPEC_PATH -a
existing_partition_name -b
the_newly_created_partition_1,the_newly_created_partition_2 -c 11

Leveraging Oracle WebLogic Server Active GridLink
If you are using a RAC database for your OSM cloud native instance, by default, OSM uses
WebLogic Multi-DataSource (MDS) configurations to connect to the database.

If you are licensed to use Oracle WebLogic Server Active GridLink (AGL) separately from
your OSM license (consult any additional WebLogic licenses you possess that may apply),
you can configure OSM cloud native to use AGL configurations where possible. This will
better distribute load across RAC nodes.

To enable the use of AGL, find the "db:" section in your instance specification YAML file and
add the "aglLincensed" line as shown below and then create or upgrade your instance as
usual:

db:
 aglLicensed: true

Managing Logs
OSM cloud native generates traditional textual logs. By default, these log files are generated
in the managed server pod, but can be re-directed to a Persistent Volume Claim (PVC)
supported by the underlying technology that you choose. See "Setting Up Persistent Storage"
for details.

By default, logging is enabled. When persistent storage is enabled, logs are automatically re-
directed to the Persistent Volume.

The storage volume must specify the PVC to be used for persistent storage.
If enabled, the log, metric and JFR data will be directed here.
storageVolume:
 enabled: true
 pvc: storage-pvc

• The OSM application logs can be found at: pv-directory/project-instance/logs

• The OSM DB Installer logs can be found at: pv_directory/project-instance/db-installer

• The OSM Gateway logs can be found at: pv_directory/project-instance/osm-gateway

• The OSM Runtime UX logs can be found at: pv_directory/project-instance/osm-runtime-
ux-server

The following applies to OSM Gateway logs:

• Each log file gets rolled over daily and will be retained for 30 days.

• The size of each log file is limited to 10 MB.

Chapter 8
Leveraging Oracle WebLogic Server Active GridLink

8-17

Configuring Fluentd Logging

OSM logs can be processed via Fluentd using the following mechanisms:

• The WebLogic pods (admin server and managed server) and DB Installer pods log
to Fluentd via a sidecar. For the pods covered by a sidecar, you configure Fluentd
using Helm charts.

• The microservice pods (OSM Gateway and RTUX) write to container logs. Fluentd
has to be configured externally to process these logs.

Configuring Fluentd Logging for OSM Core Pods

OSM supports integration of Fluentd as a sidecar container to read the log entries from
WebLogic pods and DB Installer pods. Fluentd can be integrated with ElasticSearch or
other equivalent upstream component and Kibana or other equivalent visualization
component.

OSM cloud native provides samples and configuration for the combination of Fluentd,
ElasticSearch, and Kibana. Using a log processing stack such as Elastic Stack
(ElasticSearch, Fluentd, and Kibana) in OSM cluster can make it much easier to
collect, store, and analyze log data from all the Weblogic pods and OSM DB installer
pods in the OSM cluster, making it more manageable and more accessible for different
users. You can use the fields defined in Fluentd as filters in Kibana to filter and search
for particular log events.

To enable Fluentd with built-in log parsing configuration:

1. In the instance.yaml file, enable fluentdLogging.

fluentdLogging:
 enabled: true
image: fluent/fluentd-kubernetes-daemonset:v1.14.5-debian-
elasticsearch7-1.1 # default if none specified
imagePullPolicy: IfNotPresent

Note:

You can use any Fluentd image that is mandated by your organization or
else use the Fluentd image from Docker Hub or an equivalent.

2. Get the IP address and port details of ElasticSearch or other equivalent upstream
component for Fluentd.

3. Create a secret for Fluentd credentials:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p sr -i quick
create fluentd

Provide ElasticSearch credentials for 'sr-quick' ...
ElasticSearch host: host_IP_address
ElasticSearch Port: port

ElasticSearch Username: username

Chapter 8
Managing Logs

8-18

ElasticSearch Password: password

secret/sr-quick-fluentd-credentials configured

4. Create or upgrade the OSM instance. Use the Kibana user interface or other equivalent
visualization tool to view the resulting logs.
By default, OSM populates some default fields, which you can use to filter the log
messages in a visualization tool such as Kibana.

The following table lists some fields for filtering logs.

Table 8-5 Fields for Filtering Logs

Field Description Example

tag Retrieves the log events related
to a particular log file. The value
should be in the following
pattern:

{{ProjectName}}-
{{InstanceName}}_{{LogF
ileName}}

DB Installer logs →
sr-
quick_dbInstaller.log
Weblogic introspector
logs → sr-
quick_introspector_scri
pt.out
Weblogic server logs →
 Adminserver → sr-
quick_admin.log,

 sr-
quick_admin.out,

 sr-
quick_admin_nodemanager
.log,

 sr-
quick_admin_nodemanager
.out
 MS1 → sr-
quick_ms1.log,
 sr-
quick_ms1.out,
 sr-
quick_ms1_nodemanager.l
og,
 sr-
quick_ms1_nodemanager.o
ut

Chapter 8
Managing Logs

8-19

Table 8-5 (Cont.) Fields for Filtering Logs

Field Description Example

-index Retrieves the log messages
related to a particular instance.
The value should be in the
following pattern:

{{ProjectName}}-
{{InstanceName}}

sr-quick

servername Retrieves the log messages
related to a particular server.
The value should be in the
following pattern:

{{ProjectName}}-
{{InstanceName}}_{{Serv
erName}}

sr-quick-admin, sr-quick-
ms1

level Retrieves the log messages of
specific log level. The value
should be in the following
pattern:

 Info/Warning/Debug/
Error ...

 Info/Warning/Debug/
Error ...

logger Retrieves the log messages
generated by a class. The value
should be the logger name. For
example, if you want to see the
status of automation plugins,
enter
oracle.communications.ord
ermanagement.automation.p
lugin.AutomationPluginMan
ager

oracle.communications.ord
ermanagement.automation.p
lugin.AutomationPluginMan
ager

Configuring Fluentd Logging for Microservices

For the microservice pods, you must configure Fluentd externally to process the logs.
The Fluentd configuration to interpret OSM logs is provided in the cloud native tolkit's
samples/fluentd/fluentd.conf sample file. Refer to Fluentd documentation for
information about setting up Fluentd and importing this configuration into it.

All logs of OSM microservices logs are written to stdout/stderr and then appear in
container logs. You can parse the OSM microservices logs using the tool of your
choice. You can use Fluentd deployed as a daemonset within your Kubernetes cluster.
To interpret the OSM microservices logs, utilize the log format provided.

Chapter 8
Managing Logs

8-20

All OSM microservices logs are written in the following format:

%date{yyyy-MM-dd HH:mm:ss.SSS} [%t] [%-5level] [%logger] - %msg%n

The log messages start with a date in the yyyy-mm-dd hh:mm:ss.sss format. This is followed
by the thread id and severity, after which, the logger and the log message can be seen. Parse
all OSM microservices logs using this pattern.

For parsing OSM microservices logs, use Fluentd deployed as a daemonset within your
Kubernetes cluster.

The following is an example of the OSM Gateway microservice log:

2023-07-14 14:13:02.842 [pool-3-thread-32] [INFO]
[oracle.comms.ordermanagement.noa.cloudevent.HttpNOAEventProcessor] -
path:productOrderingManagement/v4.0.0.1.0/listener/
productOrderStateChangeEvent\n

The following is an example of the RTUX microservice log:

2023-07-14 14:13:02.842 [pool-3-thread-32] [INFO]
[oracle.comms.ordermanagement.noa.cloudevent.HttpNOAEventProcessor] -
path:productOrderingManagement/v4.0.0.1.0/listener/
productOrderStateChangeEvent\n

Note:

Ensure that all OSM microservices logs originating in the same Kubernetes cluster
are either in JSON or Text format. Do not generate them in both the formats.

Obfuscating Sensitive Data in Logs

You can mask sensitive data (personal information) that is logged to files, the terminal (stdout
and stderr), or sent to a log monitor. Sensitive data includes details such as names of
persons, addresses, and account numbers.

The masking of sensitive data applies only to the DEBUG log level. Cartridge developers are
not expected to expose potentially sensitive data unless they do it via DEBUG logs. OSM
itself does not expose potentially sensitive data except in DEBUG logs. OSM masks such
exposed sensitive data only in DEBUG logs.

To leverage OSM's capability to mask sensitive data in logs:

• Cartridge developers have to provide a draft of the Personal Information (PI) regex
configuration required to identify sensitive data, as part of the cartridge development
process.

• Testers have to monitor log outputs and adjust the PI regex configuration as required to
ensure all sensitive information is masked.

• Administrators have to ensure the tested PI regex configuration is added to the instance
specification when creating or upgrading an OSM cloud native instance.

Chapter 8
Managing Logs

8-21

Prerequisite Configuration

OSM cloud native turns on its log masking capability if the instance has the following
effective values in its instance specification:

...
log:
 # handlerLevel filters the logs lower than its level.
 # Here log level TRACE takes a numeric value between 1(highest
severity) and 32(lowest severity) e.g. TRACE:1
 handlerLevel: "TRACE:1"
 # This is to optionally control logging level for specific classes.
Uncomment to add the entries.
 # 'class' will have full ClassName e.g.
com.mslv.oms.poller.EventPoller
 # 'level' should have same possible values as above e.g. TRACE:1
 # Give class as "root" to set level for all classes.
 #loggers:
 # - class:
 # level:
 loggers:
 - class: "root"
 level: "TRACE:1"
...

The OSM cloud native loggers.level property TRACE is equivalent to DEBUG.

The OSM Gateway and RTUX microservices turn on their log masking capability if the
instance has the following effective values in the instance specification:

...
osm-gateway:
 log:
 level: FINE
osmRuntimeUX:
 log:
 level: FINE
...

The osm-gateway and osmRuntimeUX log.level properties determine the logging level
of the logs and must be set to FINE to enable log masking. FINE is equivalent to
DEBUG.

Configuring Log Masking

Sensitive data is identified and masked based on Java regular expression (regex)
patterns defined in the instance specification as a list of entries under
"logMaskingCustomRegexes". Each entry describes one item of PI data and how to
recognize it using a regex. Any entries provided here are added to predefined entries.
To see the full list of predefined entries for your version of the toolkit, review the
contents of the charts/osm/templates/osm-gdpr-regex-json.yaml file in the toolkit.
Predefined entries include patterns for email addresses and for phone numbers
contained in an element called "phoneNumber".

Chapter 8
Managing Logs

8-22

Once PI data is identified in a log message using one of these regexes, the masking is done
by substituting the sensitive data with a string of 4 stars "****".

Custom Regex Patterns

Depending on the logs emitted by the cartridge code, additional regex patterns can be
configured to mask PI data that may become exposed. This is done by adding entries to the
"logMaskingCustomRegexes" element in the instance specification:

...
logMaskingCustomRegexes:
 - description: "account number"
 type: partial
 regex: "\"(?i)accountNumber\"\\s*:\\s*\"(.*?)\""
 - description: "ssn"
 type: exact
 regex: "\\d{3}-\\d{2}-\\d{4}"
 ...

where:

• description is a human readable description of the field targeted by this regex entry.

• type is the type of the regex pattern. Possible values are either partial or exact.

• regex is the Java regex pattern for the value to be recognized

Note that the regex patterns should be a valid string as per Java standards described at:
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html or similar source.

Partial Regex Patterns

Partial regexes provide a pattern that matches only some part of the target field's values.
These regex patterns are applied to XML and JSON documents or fragments in log
messages. The regex pattern should begin with the field name in it and encompass the rest
of the value, using wildcards as necessary. If this regex matches an XML or JSON line in a
log message, the value part of the matching field is masked.

For example, to mask the account number contained in a JSON field called
"accountNumber".

The following block shows the partial regex pattern in the instance specification:

...
logMaskingCustomRegexes:
 - description: "account number"
 type: partial
 regex: "\"(?i)accountNumber\"\\s*:\\s*\"(.*?)\""
 ...

The following block shows a sample log message as generated by the cartridge:

...
"ownerAccount": {
 "accountNumber": "1234321",
 "id": "0CX-1XYHGQ",
 "@type": "AccountRef",

Chapter 8
Managing Logs

8-23

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

 }
...

The following block shows a sample output log message:

...
"ownerAccount": {
 "accountNumber": "****",
 "id": "0CX-1XYHGQ",
 "@type": "AccountRef",
 }
...

Exact Regex Patterns

Exact regex patterns provide a complete match mechanism to identify the PI data to
mask. OSM looks through all log messages (not just XML and JSON portions) for such
regex matches.

Everything in the log message that matches an exact regex pattern will be masked.
Field names or other situating strings cannot be part of an exact regex pattern as
otherwise, they too will get masked.

For example, given the below exact regex pattern, OSM will look for any string
composed of digits in the format xxx-xx-xxxx in any log message. If found, that string is
masked. To illustrate the scope of application of exact regex patterns, in the example
below, even though the intention was to mask US Social Security Numbers, the
masking feature will apply suppression to any string or sub-string that has digits in the
format xxx-xx-xxxx.

The following block shows the Exact regex pattern in the instance specification:

...
logMaskingCustomRegexes:
 - description: "US Social Security Number"
 type: exact
 regex: "\\d{3}-\\d{2}-\\d{4}"
...

The following block shows a sample log as generated by a cartridge:

...
"US Social Security Number": "232-45-3434",
"orderReference": "987-87-8765"
...

The following block shows a sample output log message:

...
"US Social Security Number": "****",
"orderReference": "****"
...

Chapter 8
Managing Logs

8-24

Configuring Logging and Log Rotation

OSM cloud native provides a way to configure Oracle Diagnostic Logging (ODL) logging level
to debug logs in an efficient manner.

This configuration is defined via the instance specification as follows:

The valid log levels in descending order are:
INCIDENT_ERROR (highest value)
ERROR
WARNING
NOTIFICATION
TRACE (lowest value)
Each log level also takes a numeric value between 1(highest severity) and
32(lowest severity) e.g. ERROR:1
log: [] # This empty declaration should be removed if adding items here.
#log:
handlerLevel filters the logs lower than its level.
Set the handlerLevel lower or equal to class level.
handlerLevel: ""
This is to optionally control logging level for specific classes.
Uncomment to add the entries.
'class' will have full ClassName e.g. com.mslv.oms.poller.EventPoller
'level' will have same possible values as above e.g. ERROR:1
Give class as "root" to set level for all classes.
loggers:
- class:
level:

Valid ODL Log Levels

For ODM log levels, refer to the "About Log Severity Levels" section in OSM Cloud Native
System Administrator's Guide. Each message type can also take a numeric value between 1
(highest severity) and 32 (lowest severity) that you can use to further restrict log output (for
example ERROR:1).

When you specify a level, ODL returns all log messages of that type, as well as the
messages that have a higher severity. For example, if you set the level to WARNING, ODL
also returns log messages of type INCIDENT_ERROR and ERROR.

Configure ODL Handlers Logging Level

To configure Logging level for the ODL handlers (odl-handler, console-handler and wls-
domain), set log.handlerLevel with appropriate value (for example, ERROR:1). An empty
value would have the default setting (WARNING) for the handlers.

Configure Logging Level for Specific Class

To enable logging for a specific class or package, log.loggers[] can also be configured as
follows. It can have multiple entries for different classes.

The log level for class should be of equal or higher level compared to log handlerLevel.
Logs of lower level than the handlerLevel do not appear in the logs.

Chapter 8
Managing Logs

8-25

To set log level for all the classes, provide class as "root". The class specific logger
level overrides the root log level for that class.

log:
 handlerLevel: ""
 loggers:
 - class: "root"
 level: "NOTIFICATION:1"
 - class: "com.mslv.oms.poller.EventPoller"
 level: "ERROR:1"

Log Files Rotation

OSM pods use ephemeral storage to store log files, GC logs, and JFR data. All of
these have to be managed so that worker nodes do not fail because they run out of
ephemeral/container storage. For all the logs, GC logs, and JFR data, OSM cloud
native provides log rotation and retention mechanisms to put an upper limit on the
space they take. These are defined via specifications as described in the following
table:

Table 8-6 Log Files Rotation in Specification Files

Data Specification Example Log Location: PVC
Enabled

Log Location: PVC
Disabled

OSM logs Shape specification

weblogic.log.Fi
leMinSize

weblogic.log.Fi
leCount

Dev shape has file
count 7 and size
500k

Admin server: /
logMount/$
{DOMAIN_ID}/logs/
admin.log
Managed server: /
logMount/$
{DOMAIN_ID}/logs/
ms1.log

Admin server: /u01/
oracle/
user_projects/
domains/domain/
servers/admin/logs/
admin.log
Managed
server: /u01/oracle//
user_projects/
domains/domain/
servers/ms1/logs/
ms1.log

GC logs Shape specification

NumberOfGCLogFi
les

GCLogFileSize

Dev shape has file
count 7 and size
500k

Admin server: /
logMount/$
(DOMAIN_UID)/
logs/admin-gc-
%t.log
Managed server:/
logMount/$
(DOMAIN_UID)/
logs /gc-$
(SERVER_NAME)-
%t.log

Admin server: /u01/
oracle/
user_projects/
domains/domain/
gc-$
(SERVER_NAME)-
%t.log
Managed
server: /u01/oracle/
user_projects/
domains/domain/
gc-$
(SERVER_NAME)-
%t.log

Chapter 8
Managing Logs

8-26

Table 8-6 (Cont.) Log Files Rotation in Specification Files

Data Specification Example Log Location: PVC
Enabled

Log Location: PVC
Disabled

JFR data Instance specification

jfr:
 enabled:
 max_age:
 max_size:

Default maximum
age is 4 hours, and
the maximum size is
100 MB

/logMount/$
(DOMAIN_UID)/
performance/$
(SERVER_NAME)

/logMount/$
(DOMAIN_UID)/
performance/$
(SERVER_NAME)/

Managing OSM Cloud Native Metrics
All managed server pods running OSM cloud native carry annotations added by WebLogic
Operator and an additional annotation by OSM cloud native.

osmcn.metricspath: /OrderManagement/metrics
osmcn.metricsport: 8001
prometheus.io/scrape: true

Configuring Prometheus for OSM Cloud Native Metrics
Configure the scrape job in Prometheus as follows:

Note:

During the installation, the OSM installer creates a user who is authorized to view
OSM and Weblogic server metrics.

additionalScrapeConfigs:
- job_name: 'osmcn'
 # HTTP basic authentication information
 basic_auth:
 username: oms-metrics
 password: password
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
['__meta_kubernetes_pod_annotationpresent_osmcn_metricspath']
 action: 'keep'
 regex: 'true'
 - source_labels: [__meta_kubernetes_pod_annotation_osmcn_metricspath]
 action: replace
 target_label: __metrics_path__
 regex: (.+)

Chapter 8
Managing OSM Cloud Native Metrics

8-27

 - source_labels:
['__meta_kubernetes_pod_annotation_prometheus_io_scrape']
 action: 'drop'
 regex: 'false'
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_osmcn_metricsport]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace

Note:

OSM cloud native has been tested with Prometheus and Grafana installed
and configured using the Helm chart prometheus-community/kube-
prometheus-stack available at: https://prometheus-community.github.io/
helm-charts.

Viewing OSM Cloud Native Metrics Without Using Prometheus
The OSM cloud native metrics can also be viewed at:

http://instance.project.domain_Name:LoadBalancer_Port/OrderManagement/
metrics

By default, domain_Name is set to osm.org and can be modified in project.yaml.
This only provides metrics of the managed server that is serving the request. It does
not provide consolidated metrics for the entire cluster. Only Prometheus Query and
Grafana dashboards can provide consolidated metrics.

Viewing OSM Cloud Native Metrics in Grafana
OSM cloud native metrics scraped by Prometheus can be made available for further
processing and visualization. The OSM cloud native toolkit comes with sample
Grafana dashboards to get you started with visualizations.

Import the dashboard JSON files from $OSM_CNTK/samples/grafana into your
Grafana environment.

The sample dashboards are:

• OSM by Instance: Provides a view of OSM cloud native metrics for one or more
instances in the selected project namespace.

Chapter 8
Managing OSM Cloud Native Metrics

8-28

https://prometheus-community.github.io/helm-charts
https://prometheus-community.github.io/helm-charts

• OSM by Server: Provides a view of OSM cloud native metrics for one or more managed
servers for a given instance in the selected project namespace.

• OSM by Order Type: Provides a view of OSM cloud native metrics for one or more order
types for a given cartridge version in the selected instance and project namespace.

• OSM and Weblogic by Server: Provides a view of OSM cloud native metrics and
WebLogic Monitoring Exporter metrics for one or more managed servers for a given
instance in the selected project namespace.

Exposed OSM Order Metrics
The following OSM metrics are exposed via Prometheus APIs.

Note:

• All metrics are per managed server. Prometheus Query Language can be used
to combine or aggregate metrics across all managed servers.

• All metric values are short-lived and indicate the number of orders (or tasks) in
a particular state since the managed server was last restarted.

• When a managed server restarts, all the metrics are reset to 0. These metrics
do not refer to the exact values, which can be queried via OSM APIs such as
Web Services and XML API.

Order Metrics

The following table lists order metrics exposed via Prometheus APIs.

Table 8-7 Order Metrics Exposed via Prometheus APIs

Name Type Help Text Notes

osm_orders_created Counter Counter for the number of orders in the
Created state.

N/A

osm_orders_completed Counter Counter for the number of orders in the
Completed state.

N/A

osm_orders_failed Counter Counter for the number of orders in the
Failed state.

N/A

osm_orders_cancelled Counter Counter for the number of orders in the
Canceled state.

N/A

osm_orders_aborted Counter Counter for the number of orders in the
Aborted state.

N/A

osm_orders_in_progress Gauge Gauge for the number of orders
currently in the In Progress state.

N/A

osm_order_items Histogram Histogram that tracks the number of
order items in an order with buckets for
0, 10, 25, 50, 100, 250, 1000, and
5000 order items.

N/A

osm_orders_amending Gauge Gauge for the number of orders
currently in the Amending state.

N/A

Chapter 8
Managing OSM Cloud Native Metrics

8-29

Table 8-7 (Cont.) Order Metrics Exposed via Prometheus APIs

Name Type Help Text Notes

osm_short_lived_orders Histogram Histogram that tracks the duration of
all orders in seconds with buckets for 1
second, 3 seconds, 5 seconds, 10
seconds, 1 minute, 3 minutes, 5
minutes, and 15 minutes.

Enables focus on short-lived orders.

Buckets for 1 second, 3
seconds, 5 seconds, 10
seconds, 1 minute, 3
minutes, 5 minutes, and 15
minutes.

osm_medium_lived_orders Histogram Histogram that tracks the duration of
all orders in minutes with buckets for 5
minutes, 15 minutes, 1 hour, 12 hours,
1 day, 3 days, 1 week, and 2 weeks.

Enables focus on medium-lived orders.

Buckets for 5 minutes, 15
minutes, 1 hour, 12 hours,
1 day, 3 days, 7 days, and
14 days.

osm_long_lived_orders Histogram Histogram that tracks the duration of
all orders in days with buckets for 1
week, 2 weeks, 1 month, 2 months, 3
months, 6 months, 1 year and 2 years.
Enables focus on long-lived orders.

Buckets for 7 days, 14
days, 30 days, 60 days, 90
days, 180 days, 365 days,
and 730 days.

osm_order_cache_entries_
total

Gauge Gauge for the number of entries in the
cache of type order, orchestration,
historical order, closed order, and redo
order.

N/A

osm_order_cache_max_en
tries_total

Gauge Gauge for the maximum number of
entries in the cache of type
order,orchestration, historical order,
closed order, and redo order

N/A

Labels For All Order Metrics

The following table lists labels for all order metrics.

Table 8-8 Labels for All Order Metrics

Label Name Sample Value Notes Source of the Label

cartridge_name
_version

SimpleRabbits_1.7.0.
1.0

Combined Cartridge Name and
Version

OSM Metric Label Name/Value

order_type SimpleRabbitsOrder OSM Order Type OSM Metric Label Name/Value

server_name ms1 Name of the Managed Server OSM Metric Label Name/Value

instance 10.244.0.198:8081 Indicates the Pod IP and Pod port from
which this metric is being scraped.

Prometheus Kubernetes SD

job omscn Job name in Prometheus configuration
which scraped this metric.

Prometheus Kubernetes SD

namespace quick Project Namespace Prometheus Kubernetes SD

pod_name quick-sr-ms1 Name of the Managed Server Pod Prometheus Kubernetes SD

weblogic_cluste
rName

c1 OSM Cloud Native WebLogic Cluster
Name

WebLogic Operator Pod Label

weblogic_cluste
rRestartVersion

v1 OSM Cloud Native WebLogic Operator
Cluster Restart Version

WebLogic Operator Pod Label

weblogic_creat
edByOperator

true WebLogic Operator Pod Label to
identify operator created pods

WebLogic Operator Pod Label

Chapter 8
Managing OSM Cloud Native Metrics

8-30

Table 8-8 (Cont.) Labels for All Order Metrics

Label Name Sample Value Notes Source of the Label

weblogic_doma
inName

domain WebLogic Operator pod label WebLogic Operator pod label

weblogic_doma
inRestartVersio
n

v1 OSM Cloud Native WebLogic Operator
Domain Restart Version

WebLogic Operator Pod Label

weblogic_doma
inUID

quick-sr OSM Cloud Native WebLogic Operator
Domain UID

WebLogic Operator Pod Label

weblogic_mode
lInImageDomai
nZipHash

md5.3d1b561138f3a
e3238d67a023771cf
45.md5

Image md5 hash WebLogic Operator Pod Label

weblogic_serve
rName

ms1 WebLogic Operator Pod Label for
Name of the Managed Server

WebLogic Operator Pod Label

Task Metrics

The following metrics are captured for Manual or Automated Task Types only. All other Task
Types are currently not being captured.

Table 8-9 Task Metrics Captured for Manual or Automated Task Types Only

Name Type Help Text

osm_tasks_created Counter Counter for the number of Tasks
Created

osm_tasks_completed Counter Counter for the number of Tasks
Completed

Labels for all Task Metrics

A task metric has all the labels that an order metric has. In addition, a task metric has two
more labels.

Table 8-10 Labels for All Task Metrics

Label Sample Value Notes Source of Label

task_name RabbitRunTask Task Name OSM Metric Label Name/
Value

task_type A A for Automated

M for Manual

OSM Metric Label Name/
Value

Managing Microservices Metrics
By default, the OSM Gateway pod and the RTUX pod expose metrics to Prometheus (or any
other compliant tool) scrape. This is controlled by the instance specification as shown below.

Prometheus monitoring is enabled by default.
prometheus:
enabled: true

Chapter 8
Managing OSM Cloud Native Metrics

8-31

To disable this behavior, set prometheus.enabled to false.

The metrics API exposed by OSM Gateway and RTUX is secured using OAUTH2
credential as provided during the installation of the OSM Gateway and RTUX
microservices via secret project-instance-oidc-credential.

Configuring the Scrape Job in Prometheus
The endpoint for the OSM Gateway and RTUX microservices metrics is secured using
OAUTH2 credential. Hence, it is required to configure scrape jobs for the pods with the
same OAUTH2 credential.

Configure the Scrape job in Prometheus as follows:

Note:

Use Prometheus chart version v14.1.2.0+.

additionalScrapeConfigs:
 - job_name: osmgateway
 oauth2:
 client_id: client-id
 client_secret: client-secret
 scopes:
 - scope
 token_url: OIDC_token_URL
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
 - __meta_kubernetes_pod_annotation_prometheus_io_scrape
 action: keep
 regex: true
 - source_labels:
 - __meta_kubernetes_pod_label_app
 action: keep
 regex: (^.+osm-gateway$)
 - source_labels:
 - __meta_kubernetes_pod_container_port_number
 action: keep
 regex: (8080)
 - source_labels:
 - __meta_kubernetes_pod_annotation_prometheus_io_path
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels:
 - __address__
 - __meta_kubernetes_pod_annotation_prometheus_io_port
 action: replace
 regex: '([^:]+)(?::\d+)?;(\d+)'
 replacement: '$1:$2'
 target_label: __address__
 - action: labelmap

Chapter 8
Managing OSM Cloud Native Metrics

8-32

 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels:
 - __meta_kubernetes_namespace
 action: replace
 target_label: kubernetes_namespace
 - source_labels:
 - __meta_kubernetes_pod_name
 action: replace
 target_label: kubernetes_pod_name

Viewing Microservices Metrics
To view the OSM Gateway and RTUX microservices metrics:

1. Find the internal IP address of the microservice pod by running the following command:

kubectl get pod pod-name -n namespace -o yaml

2. Log in to any of the worker nodes of the Kubernetes cluster and curl to http://pod_ip/
metrics using oath2 token.

For more details, see Kubernetes documentation at: https://kubernetes.io/docs/tutorials/
services/connect-applications-service/#exposing-pods-to-the-cluster.

Exposed OSM Gateway Metrics
The following table lists the OSM Gateway microservice metrics that are exposed via
Prometheus APIs.

Table 8-11 Exposed OSM Gateway Microservice Metrics

Metric Name Type Label Name Description

application_osmgw_outgoi
ng_messsages_pending

Gauge targetSystem, cn_project,
cn_instance, pod_name

The messages are
registered with the OSM
Gateway microservice and
they are in "Pending" state.

application_osmgw_incomi
ng_messsages_total

Counter cn_project, cn_instance,
pod_name and status.

"status" has the following
values:
• successful
• failed

Total number of incoming
calls.

application_osmgw_outgoi
ng_messsages_processed
_total

Counter targetSystem, cn_project,
cn_instance, pod_name
and status

"status" has the following
values:
• successful.message.w

ithout.retry
• successful.message.w

ith.retry
• expired.message.with.

retry
• expired.message.with

out.retry

The number of retry
attempts. It can be filtered
based on a tag.

Standard Helidon Metrics

Chapter 8
Managing OSM Cloud Native Metrics

8-33

https://kubernetes.io/docs/tutorials/services/connect-applications-service/#exposing-pods-to-the-cluster
https://kubernetes.io/docs/tutorials/services/connect-applications-service/#exposing-pods-to-the-cluster

Helidon provides the standard Helidon application and vendor metrics for OSM
Gateway and RTUX microservices.

The response for the metrics endpoint contains the standard Helidon application and
vendor metrics. The following sample shows some of the metrics in the response:

TYPE base_classloader_loadedClasses_count gauge
HELP base_classloader_loadedClasses_count Displays the number of
classes that are currently loaded in the Java virtual machine.
base_classloader_loadedClasses_count 9667
TYPE base_classloader_loadedClasses_total counter
HELP base_classloader_loadedClasses_total Displays the total number
of classes that have been loaded since the Java virtual machine has
started execution.
base_classloader_loadedClasses_total 9672
TYPE base_classloader_unloadedClasses_total counter
HELP base_classloader_unloadedClasses_total Displays the total
number of classes unloaded since the Java virtual machine has started
execution.
base_classloader_unloadedClasses_total 5
TYPE base_cpu_availableProcessors gauge
HELP base_cpu_availableProcessors Displays the number of processors
available to the Java virtual machine. This value may change during a
particular invocation of the virtual machine.
base_cpu_availableProcessors 1
TYPE base_cpu_systemLoadAverage gauge
HELP base_cpu_systemLoadAverage Displays the system load average for
the last minute. The system load average is the sum of the number of
runnable entities queued to the available processors and the number of
runnable entities running on the available processors averaged over a
period of time. The way in which the load average is calculated is
operating system specific but is typically a damped timedependent
average. If the load average is not available, a negative value is
displayed. This attribute is designed to provide a hint about the
system load and may be queried frequently. The load average may be
unavailable on some platforms where it is expensive to implement this
method.
base_cpu_systemLoadAverage 0.92
TYPE base_gc_time_seconds gauge
HELP base_gc_time_seconds Displays the approximate accumulated
collection elapsed time in milliseconds. This attribute displays -1 if
the collection elapsed time is undefined for this collector. The Java
virtual machine implementation may use a high resolution timer to
measure the elapsed time. This attribute may display the same value
even if the collection count has been incremented if the collection
elapsed time is very short.
base_gc_time_seconds{name="Copy"} 0.009
base_gc_time_seconds{name="MarkSweepCompact"} 0.212
TYPE base_gc_total counter
HELP base_gc_total Displays the total number of collections that
have occurred. This attribute lists -1 if the collection count is
undefined for this collector.
base_gc_total{name="Copy"} 1
base_gc_total{name="MarkSweepCompact"} 2

Chapter 8
Managing OSM Cloud Native Metrics

8-34

For more details about metrics and about Helidon monitoring, see the following:

• Helidon MP Metrics Guide in the Helidon MP documentation at: https://helidon.io/
docs/v3/#/mp/metrics/metrics

• MicroProfile Metrics specification on the GitHub web site: https://github.com/eclipse/
microprofile-metrics/releases/3.0

Managing WebLogic Monitoring Exporter (WME) Metrics
OSM cloud native deployment provides an integrated Prometheus-compatible exporter of
metrics from all WebLogic Server pods using WebLogic Monitoring Exporter (WME). WME
runs as a sidecar container within each of the WebLogic Server pods (admin server and
managed servers). This section describes a sample integration for OSM pods that run
WebLogic Server.

OSM cloud native also provides a Grafana sample dashboard that can be used to visualize
OSM and WebLogic metrics from a Prometheus data source. See OSM Compatibility Matrix
for the supported versions of WME.

Note:

If you have configured WME as a custom sidecar in 7.4.1 and wish to upgrade to
this release, remove your custom sidecar configuration and perform the tasks
described in this section. If you wish to retain your custom WME sidecar, while this
is not recommended, you may do so provided you disable the integrated WME. The
integrated WME is enabled by default.

The following topics describe a sample integration:

• Enabling WebLogic Monitoring Exporter (WME)

• Configuring the Prometheus Scrape Job for WME Metrics

• Viewing WebLogic Monitoring Exporter Metrics in Grafana

Enabling WebLogic Monitoring Exporter (WME)
To enable WebLogic Monitoring Exporter:

1. In the instance specification, set weblogicMonitoringExporter to true.

Set to true if weblogic monitoring exporter is required
weblogicMonitoringExporter:
 enabled: true #or false to disable

By default, this parameter is set to true, which creates a sidecar container for WME using
the default image for the version of WebLogic Operator in use.

2. (Optional) Specify the WebLogic Operator image yourself by providing the image name
and imagePullPolicy in the project specification:

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

8-35

https://helidon.io/docs/v3/#/mp/metrics/metrics
https://helidon.io/docs/v3/#/mp/metrics/metrics
https://github.com/eclipse/microprofile-metrics/releases/3.0
https://github.com/eclipse/microprofile-metrics/releases/3.0

Note:

If you do not provide an image name, the default image pulled is
ghcr.io/oracle/weblogic-monitoring:exporter:tag, where tag
depends on the version of WebLogic Operator monitoring this project
namespace and is selected by the Operator automatically.

WebLogic Monitoring Exporter
wme:
 image: URL_for_weblogic-monitoring-exporter
 imagePullPolicy: policy

For imagePullPolicy, specify any one of the following values:

• IfNotPresent
• Always
• Never
The following snippet shows an example:

WebLogic Monitoring Exporter
wme:
 image: ghcr.io/oracle/weblogic-monitoring-exporter:2.0.5
 imagePullPolicy: IfNotPresent

3. Create or upgrade your instance as usual, using create-instance.sh or upgrade-
instance.sh respectively.

Configuring the Prometheus Scrape Job for WME Metrics
Configure the scrape job in Prometheus as follows in the
scrapeJobConfiguration.yaml file:

Note:

In the basic_auth section, specify the WebLogic username and password.

- job_name: 'basewls'
 kubernetes_sd_configs:
 - role: pod
 relabel_configs:
 - source_labels:
['__meta_kubernetes_pod_annotation_prometheus_io_scrape']
 action: 'keep'
 regex: 'true'
 - source_labels:
[__meta_kubernetes_pod_label_weblogic_createdByOperator]
 action: 'keep'
 regex: 'true'

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

8-36

 - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
 action: replace
 target_label: __metrics_path__
 regex: (.+)
 - source_labels: [__address__,
__meta_kubernetes_pod_annotation_prometheus_io_port]
 action: replace
 regex: ([^:]+)(?::\d+)?;(\d+)
 replacement: $1:$2
 target_label: __address__
 - action: labelmap
 regex: __meta_kubernetes_pod_label_(.+)
 - source_labels: [__meta_kubernetes_pod_name]
 action: replace
 target_label: pod_name
 - source_labels: [__meta_kubernetes_namespace]
 action: replace
 target_label: namespace
 basic_auth:
 username: weblogic_username
 password: weblogic_password

Viewing WebLogic Monitoring Exporter Metrics in Grafana
WebLogic Monitoring Exporter metrics scraped by Prometheus can be made available for
further processing and visualization. The OSM cloud native toolkit comes with sample
Grafana dashboards to get you started with visualizations. The OSM and WebLogic by
Server sample dashboard provides a combined view of OSM cloud native and WebLogic
Monitoring Exporter metrics for one or more managed servers for a given instance in the
selected project namespace.

Import the dashboard JSON file from $OSM_CNTK/samples/grafana into your Grafana
environment, selecting Prometheus as the data source.

Chapter 8
Managing WebLogic Monitoring Exporter (WME) Metrics

8-37

9
Integrating OSM

Typical usage of OSM involves the OSM application coordinating activities across multiple
peer systems. Several systems interact with OSM for various purposes. This chapter
examines the considerations involved in integrating OSM cloud native instances into a larger
solution ecosystem.

This section describes the following topics and tasks:

• Connectivity with traditional OSM instances

• Connectivity with OSM cloud native instances

• Configuring SAF

• Applying the WebLogic patch for external systems

• Configuring SAF for External Systems

• Setting up Secure Communication with SSL/TLS

Connectivity With Traditional OSM Instances
OSM interacts with external systems that fall broadly in the following categories:

• Human user interaction

• Upstream systems that inject orders and check status

• Peer systems and downstream systems that receive requests and provide updates

Human User Interaction

Human users interact with OSM using the following user interfaces:

• Task Web Client

• Order Management Web Client

These user interfaces connect to OSM through HTTP and HTTPS. Some deployments
involve custom user interfaces built for specific purposes. These too interact with OSM using
the Web Services API (WSAPI) or XML API (XMLAPI), with requests and responses
transmitted over HTTP and HTTPS.

Order Submission and Status Check

Order capture systems, CRM systems, and middleware applications such as Application
Integration Architecture (AIA) submit orders into OSM. They can sign up for order updates
through the event/milestone framework. This interaction can theoretically happen through
Web Services API,XML API calls over HTTP/HTTPS. However, for reasons of scalability,
resilience and load management, the strong recommendation is to conduct this interaction
over JMS. This typically involves SAF as well, to avoid foreign JMS injection. JMS, whether
native or with SAF, runs over the T3 protocol.

OSM itself can be the upstream system here. For instance, consider an OSM instance
functioning as Central Order Management (COM). This would need to send orders to another

9-1

OSM instance functioning as Service Order Management (SOM) and receive updates
from it. This too would be via JMS with SAF, running over T3.

There are additional use cases where monitoring systems (or similarly tasked
components) can query OSM. These typically take the form of searches for orders that
fit some business criteria, and reporting back status and perhaps some additional
operationally significant information. OSM is optimized to process orders and therefore
processes such requests at some impact. However, many deployments still opt for
such interactions. These typically happen as WSAPI or XMLAPI calls over HTTP/
HTTPS.

Connectivity with Peer Systems

As OSM processes orders, the logic encoded in the cartridges drives requests to other
systems, such as those for billing or inventory or work-force management. These
requests can be one-way messages but are much more likely to follow a "request -
response" pattern, where the remote system sends one or more responses back to
OSM. These responses can arrive immediately or at a later (perhaps much later) time.
The communication model OSM recommends for this is JMS (with SAF), which runs
over T3.

Technical Connectivity

Over the three categories of interaction, we can distill the following connectivity types:

• OSM APIs invoked via HTTP/HTTPS

• OSM APIs invoked via JMS and SAF

• OSM conversing via JMS and SAF

OSM initiates HTTP/HTTPS messages if explicitly coded to do so in cartridges. This is
an anti-pattern for OSM cartridge development as it causes high impact to the
throughput capability of OSM. Normally, OSM responds to incoming requests over
HTTP/HTTPS (API call responses).

With JMS messages, OSM can be both the originator of a "request-response"
transaction or the recipient of one. To support this, OSM can host SAF agents that
provide the ability to send JMS messages to remote systems, and OSM can host
queues that are targeted by SAF agents on those remote systems.

Security Requirements

OSM Cloud Native supports HTTP and T3. In addition, SAF configuration from one
WebLogic domain to another domain very often requires additional security
arrangements, including the availability of credentials to authenticate such a
connection.

Connectivity With OSM Cloud Native
Functionally, the interaction requirements of OSM do not change when OSM is run in a
cloud native environment. All of the categories of interaction that are applicable for
connectivity with traditional OSM instances are applicable and must be supported for
OSM cloud native.

Chapter 9
Connectivity With OSM Cloud Native

9-2

Connectivity Between the Building Blocks
The following diagram illustrates the connectivity between the building blocks in an OSM
cloud native environment using an example:

Figure 9-1 Connectivity Between Building Blocks in OSM Cloud Native Environment

Invoking the OSM cloud native Helm chart creates a new OSM instance. In the above
illustration, the name of the instance is "dev2" in the project "mobilecom". The instance
consists of the WebLogic cluster that has one Admin Server and three Managed Servers and
a Kubernetes Cluster Service.

The Cluster Service contains endpoints for both HTTP and T3 traffic. The instance creation
script creates the OSM cloud native Ingress object. The Ingress object has metadata to
trigger the Traefik ingress controller as a sample. Traefik responds by creating new front-ends
with the configured "hostnames" for the cluster (dev2.mobilecom.osm.org and
t3.dev2.mobilecom.osm.org in the illustration) and the admin server
(admin.dev2.mobilecom.osm.org) and links them up to new back-end constructs. Each
back-end routes to each member of the Cluster Service (MS1, MS2, and MS3 in the
example) or to the Admin Server. The dev2.mobilecom.osm.org front-end is linked to the
back-end pointing to the HTTP endpoint of each managed server, while the
t3.dev2.mobilecom.osm.org front-end links to the back-end pointing to the T3 endpoint of
each managed server.

The prior installation of Traefik has already exposed Traefik itself via a selected port number
(30305 in the example) on each worker node.

Chapter 9
Connectivity With OSM Cloud Native

9-3

Inbound HTTP Connectivity
An OSM instance is exposed outside of the Kubernetes cluster for HTTP access via
an Ingress Controller and potentially a Load Balancer.

Because the Traefik port (30305) is common to all OSM cloud native instances in the
cluster, Traefik must be able to distinguish between the incoming messages headed
for different instances. It does this by differentiating on the basis of the "hostname"
mentioned in the HTTP messages. This means that a client (User Client B in the
illustration) must believe it is talking to the "host" dev2.mobilecom.osm.org when it
sends HTTP messages to port 30305 on the access IP. This might be the Master node
IP, or IP address of one of the worker nodes, depending on your cluster setup. The
"DNS Resolver" provides this mapping.

In this mode of communication, there are concerns around resiliency and load
distribution. For example, If the DNS Resolver always points to the IP address of
Worker Node 1 when asked to resolve dev2.mobilecom.osm.org, then that Worker
node ends up taking all the inbound traffic for the instance. If the DNS Resolver is
configured to respond to any *.mobilecom.osm.org requests with that IP, then that
worker node ends up taking all the inbound traffic for all the instances. Since this latter
configuration in the DNS Resolver is desired, to minimize per-instance touches, the
setup creates a bottleneck on Worker node 1. If Worker node 1 were to fail, the DNS
Resolver would have to be updated to point *.mobilecom.osm.org to Worker node 2.
This leads to an interruption of access and requires intervention. The recommended
pattern to avoid these concerns is for the DNS Resolver to be populated with all the
applicable IP addresses as resolution targets (in our example, it would be populated
with the IPs of both Worker node 1 and node 2), and have the Resolver return a
random selection from that list.

An alternate mode of communication is to introduce a load balancer configured to
balance incoming traffic to the Traefik ports on all the worker nodes. The DNS
Resolver is still required, and the entry for *.mobilecom.osm.org points to the load
balancer. Your load balancer documentation describes how to achieve resiliency and
load management. With this setup, a user (User Client A in our example) sends a
message to dev2.mobilecom.osm.org, which actually resolves to the load balancer -
for instance, http://dev2.mobilecom.osm.org:8080/OrderManagement/Login.jsp.
Here, 8080 is the public port of the load balancer. The load balancer sends this to
Traefik, which routes the message, based on the "hostname" targeted by the message
to the HTTP channel of the OSM cloud native instance.

By adding the hostname resolution such that admin.dev2.mobilecom.osm.org also
resolves to the Kubernetes cluster access IP (or Load Balancer IP), User Client B can
access the WebLogic console via http://admin.dev2.mobilecom.osm.org/console
and the credentials specified while setting up the "wlsadmin" secret for this instance.

Chapter 9
Connectivity With OSM Cloud Native

9-4

Note:

Access to the WebLogic Admin console is provided for review and debugging use
only. Do not use the console to change the system state or configuration. These are
maintained independently in the WebLogic Operator, based on the specifications
provided when the instance was created or last updated by the OSM cloud native
toolkit. As a result, any such manual changes (whether using the console or using
WLST or other such mechanisms) are liable to be overwritten without notice by the
Operator. The only way to change state or configuration is through the tools and
scripts provided in the toolkit.

Inbound JMS Connectivity
JMS messages use the T3 protocol. Since Ingress Controllers and Load Balancers do not
understand T3 for routing purposes, OSM cloud native requires all incoming JMS traffic to be
"T3 over HTTP". Hence, the messages are still HTTP, but contain a T3 message as payload.
OSM cloud native requires the clients to target the "t3 hostname" of the instance -
t3.dev2.mobilecom.osm.org, in the example. This "t3 hostname" should behave identically
as the regular "hostname" in terms of the DNS Resolver and the Load Balancer. Traefik
however not only identifies the instance this message is meant for (dev2.mobilecom) but also
that it targets the T3 channel of instance.

The "T3 over HTTP" requirement applies for all inbound JMS messages - whether generated
by direct or foreign JMS API calls or generated by SAF. The procedure in SAF QuickStart
explains the setup required by the message producer or SAF agent to achieve this
encapsulation. If SAF is used, the fact that T3 is riding over HTTP does not affect the
semantics of JMS. All the features such as reliable delivery, priority, and TTL, continue to be
respected by the system. See "Applying the WebLogic Patch for External Systems".

An OSM instance can be configured for secure access, which includes exposing the T3
endpoint outside the Kubernetes cluster for HTTPS access. See "Configuring Secure
Incoming Access with SSL" for details on enabling SSL.

Inbound JMS Connectivity Within the Same Kubernetes Cluster
For all inbound JMS connectivity, use the T3 hostname: t3.dev2.mobilecom.osm.org.
This URL applies to clients outside of the Kubernetes cluster in which OSM cloud native is
deployed. This requires configuring Ingress Controller and DNS Resolver to access the URL.

However, there can be situations where OSM cloud native needs to be accessed from within
the same Kubernetes cluster where it is deployed. For example, an upstream application
sending orders or a downstream application sending status updates could be deployed in the
same Kubernetes cluster. It could also be another OSM cloud native instance deployed in the
same Kubernetes cluster either sending or receiving Create Order requests. For such
requirements, there is no need for the request to be routed via an Ingress Controller or a load
balancer and resolved via a DNS Resolver.

OSM cloud native exposes a T3 channel exclusively for such connections and can be
accessed via t3://project-instance-cluster-c1.project.svc.cluster.local:31313.

This saves the various network hops typically involved in routing a request from an external
client to OSM cloud native deployed in a Kubernetes cluster.

Chapter 9
Connectivity With OSM Cloud Native

9-5

The following diagram illustrates inbound JMS connectivity within the same
Kubernetes cluster using an example.

For the example, the URL is t3://mobilecom-dev2-cluster-
c1.mobilecom.svc.cluster.local:31313.

Note:

The protocol is T3 as there is no need for wrapping in HTTP. Note that the
port is different.

Figure 9-2 Inbound JMS Connectivity in a Kubernetes Cluster

If SSL is enabled for domains, communication between the domains within the
Kubernetes cluster is not secured because the ingress is not involved. See "Setting Up
Secure Communication with SSL" for further details.

Outbound HTTP Connectivity
No specific action is required to ensure the HTTP messages from OSM cloud native
instance reach out of the Kubernetes Cluster.

When a domain inside a Kubernetes cluster sends REST API or Web Service requests
over HTTP to a domain that is outside the cluster that is enabled with SSL, then you
should set up some required configuration. For instructions, see "Configuring Access
to External SSL-Enabled Systems".

Chapter 9
Connectivity With OSM Cloud Native

9-6

Outbound JMS Connectivity
JMS messages originating from the OSM cloud native instance such as requests to peer
systems from cartridge automation plug-ins or event notifications to upstream system from
notification plug-ins, always end up on local queues. The OSM cloud native Helm chart
allows for the specification of SAF connections to remote systems in order to get these
messages to their destinations. The project specification contains all the SAF connections
that must exist for the cartridge(s) to do their job. The instance specification provides a
specific endpoint for each of these SAF connections. This allows for a canonical expression
of the SAF connectivity requirements, which are uniquely fulfilled by each instance by
pointing to the appropriate upstream, downstream, peer systems or emulators, and so on.

When a domain inside a Kubernetes cluster sends JMS messages to a domain that is outside
the cluster that is SSL-enabled, then see "Configuring Access to External SSL-Enabled
Systems" for instructions on setting up some required configuration.

Configuring SAF
OSM cloud native requires SAF for the OSM cartridge automation functionality to send
messages to external systems through JMS. The SAF configuration in OSM cloud native has
two distinct aspects - the project and the instance. At the project level, the project
specification can be used to define all the SAF connections that any OSM cloud native
instance must make. This list is governed by the cartridges that constitute the project. At the
instance level, each of these SAF connections must be given a specific remote endpoint.

Configuring the Project Specification

The project specification lists out all the SAF connections that are required for the set of
solution cartridges that the project requires in order to function. These are listed under the
safDestinationConfig element of the project specification.

The following sample shows a basic SAF specification that describes the need to interact via
SAF with external-system-identifier. It specifies that the project is interested in
accessing two queues on that remote system: remote-queue-1 and remote-queue-2.
On that system, these queues can be addressed using the JNDI prefix prefix-1. Further,
remote-queue-1 is also mapped locally as local-queue-1. Whether this is necessary or
not depends on the addressing system coded into the OSM cartridge's external sender
automation plugins. OSM cloud native supports both local names and remote names for SAF
destinations.

safDestinationConfig:
 - name: external_system_identifier
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 localJndi: local_queue_1
 - queue:
 remoteJndi: remote_queue_2

If the queues of an external system are spread across more than one JNDI prefix, the
jndiPrefix element can be repeated as many times as necessary. In this example,

Chapter 9
Configuring SAF

9-7

prefix_1 applies to remote_queue_1 and remote_queue_2, while prefix_2
applies to remote_queue_3.

The following sample shows SAF project specification with multiple JNDIs:

safDestinationConfig:
 - name: external_system_identifier
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 localJndi: local_queue_1
 - queue:
 remoteJndi: remote_queue_2
 - jndiPrefix: prefix_2
 queues:
 - queue:
 remoteJndi: remote_queue_3

It is possible for an external system to not use a JNDI prefix, which is configured by
leaving the value empty for jndiPrefix. However, at most, one of the jndiPrefix
entries in a destinations list can be empty, as the jndiPrefixes in this list have to be
unique. If there are more than one external system that the project's solution cartridges
interact with via SAF, these can be named and listed as follows:

safDestinationConfig:
 - name: external_system_identifier_1
 destinations:
 - jndiPrefix: prefix_1
 queues:
 - queue:
 remoteJndi: remote_queue_1
 - name: external_system_identifier_2
 destinations:
 - jndiPrefix: prefix_2
 queues:
 - queue:
 remoteJndi: remote_queue_2

Note:

Using the provided configuration, OSM cloud native automatically computes
names for some entities required for completing the SAF setup. You may find
such entities when you log into WebLogic Administration Console for
troubleshooting purposes and are not to be confused.

Configuring the Instance Specification

The project specification lays out the connectivity requirements of the solution
cartridges in the project. However, each instance needs to provide its own set of
endpoints to satisfy those connections. For example, the project specification may

Chapter 9
Configuring SAF

9-8

require connectivity to a remote UIM system to send inventory related commands via JMS
and SAF. It is the instance specification that directs this requirement to a specific UIM
installation valid for use with this instance. Another instance of the same project might target
a different UIM installation or an emulator.

The instance specification contains the T3 URL of the external system along with the name of
a Kubernetes secret that provides the credentials required to interact with that system. The
T3 URL can be specified using any of the standard mechanisms supported by WebLogic. The
Kubernetes secret must contain the fields username and password, carrying credentials that
have permission to inject JMS messages into the remote system.

safConnectionConfig:
 - name: external_system_identifier
 t3Url: t3_url
 secretName: secret_t3_user_password

Here, the external_system_identifier needs to match the
external_system_identifier specified in the project specification. The instance
specification must have an entry for each of the external_system_identifier entries
listed in the project specification.

If the external system is an OSM cloud native instance deployed in the same Kubernetes
cluster, use the T3 URL as described in "Inbound JMS Connectivity Within the Same
Kubernetes Cluster".

If SSL is enabled for the external system, use the T3 URL as described in "Configuring
Access to External SSL-Enabled Systems".

Configuring Domain Trust

For details about global trust, see Oracle Fusion Middleware WebLogic Server
documentation.

Because the shared password provides access to all domains that participate in the trust,
strict password management is critical. Trust should be enabled when SAF is configured as it
is needed for inter-domain communication using distributed destinations. In a Kubernetes
cluster where the pods are transient, it is possible that a SAF sender will not know where it
can forward messages unless domain trust is configured.

If trust is not configured when using SAF, you may experience unstable SAF behavior when
your environment has pods that are growing, shrinking, or restarting.

To enable domain trust, in your instance specification file, for domainTrust, change the
default value to true:

domainTrust:
 enabled: true

If you are enabling domain trust, then you must create a Kubernetes secret (exactly as
specified) to store the shared trust password by running the following command:

Chapter 9
Configuring SAF

9-9

Note:

This step is not required if you are not enabling domain trust in the instance
specification.

kubectl create secret generic -n project project-instance-global-trust-
credentials --from-literal=password=password

The same password must be used in all domains that connect to this one through SAF.

Usage in OSM Cartridge Automation

The OSM cartridge automation external sender plugins are unaffected by the switch to
OSM cloud native. The plugins continue to address their destinations as before, using
JNDI prefix and remote queue name, or JNDI prefix and local queue name. The
project specification must reflect what the cartridge developer has actually coded into
the automation plug-in in Design Studio.

Inbound SAF Requirements

The OSM cloud native Helm charts create all the entities required for inbound SAF to
be processed as T3 over HTTP. No additional configuration is required in the OSM
cloud native specification files. However, if the OSM cartridge automation receiver
plugins are set up to read from local JNDI prefix and queue name, these must be
added to the project specification as standard solution queues under
uniformDistributedQueues (not as safConnectionConfig).

Applying the WebLogic Patch for External Systems
When an external system is configured with a SAF sender towards OSM cloud native,
using HTTP tunneling, a patch is required to ensure the SAF sender can connect to
the OSM cloud native instance. This is regardless of whether the connection resolves
to an ingress controller or to a load balancer. Each such external system that
communicates with OSM through SAF must have the WebLogic patch 30656708
installed and configured, by adding -Dweblogic.rjvm.allowUnknownHost=true
to the WebLogic startup parameters.

For environments where it is not possible to apply and configure this patch, a
workaround is available. On each host running a Managed Server of the external
system, add the following entries to the /etc/hosts file:

0.0.0.0 project-instance-ms1
0.0.0.0 project-instance-ms2
0.0.0.0 project-instance-ms3
0.0.0.0 project-instance-ms4
0.0.0.0 project-instance-ms5
0.0.0.0 project-instance-ms6
0.0.0.0 project-instance-ms7
0.0.0.0 project-instance-ms8
0.0.0.0 project-instance-ms9
0.0.0.0 project-instance-ms10
0.0.0.0 project-instance-ms11
0.0.0.0 project-instance-ms12

Chapter 9
Applying the WebLogic Patch for External Systems

9-10

0.0.0.0 project-instance-ms13
0.0.0.0 project-instance-ms14
0.0.0.0 project-instance-ms15
0.0.0.0 project-instance-ms16
0.0.0.0 project-instance-ms17
0.0.0.0 project-instance-ms18

You should add these entries for all the OSM cloud native instances that the external system
interacts with. Set the IP address to 0.0.0.0. All the eight managed servers possible in the
OSM cloud native instance must be listed regardless of how many are actually configured in
the instance specification.

Configuring SAF On External Systems
To create SAF and JMS configuration on your external systems to communicate with the
OSM cloud native instance, use the configuration samples provided as part of the SAF
sample as your guide.

It is important to retain the "Per-JVM" and "Exactly-Once" flags as provided in the sample.

All connection factories must have the "Per-JVM" flag, as must SAF foreign destinations.

Each external queue that is configured to use SAF must have its QoS set to "Exactly-Once".

Enabling Domain Trust

To enable domain trust, in your domain configuration, under Advanced, edit the Credential
and ConfirmCredential fields with the same password you used to create the global trust
secret in OSM cloud native.

Setting Up Secure Communication with SSL
When OSM cloud native is involved in secure communication with other systems, either as
the server or as the client, you should additionally configure SSL/TLS. The configuration may
involve the WebLogic domain, the ingress controller or the URL of remote endpoints, but it
always involves participating in an SSL handshake with the other system. The procedures for
setting up SSL use self-signed certificates for demonstration purposes. However, replace the
steps as necessary to use signed certificates.

If an OSM cloud native domain is in the role of the client and the server, where secure
communications are coming in as well as going out, then both of the following procedures
need to be performed:

• Configuring Secure Incoming Access with SSL

• Configuring Access to External SSL-enabled Systems

Configuring Secure Incoming Access with SSL
This section demonstrates how to secure incoming access to OSM cloud native. In this
scenario, SSL termination happens at the ingress. The traffic coming in from external clients
must use one of the HTTPS endpoints. When SSL terminates at the ingress, it also means
that communication within the cluster, such as SAF between the OSM cloud native instances,
is not secured.

Chapter 9
Configuring SAF On External Systems

9-11

The OSM cloud native toolkit provides the sample configuration for standard
Kubernetes Ingress. If you use Voyager or other Ingress, you can look at
the $OSM_CNTK/samples/charts/ingress-per-domain/templates/generic-
ingress.yaml file to see what configuration is applied.

Generating SSL Certificates for Incoming Access
The following illustration shows when certificates are generated.

Figure 9-3 Generating SSL Certificates

When OSM cloud native dictates secure communication, then it is responsible for
generating the SSL certificates. These must be provided to the appropriate client.
When an OSM cloud native instance in a different Kubernetes cluster acts as the
external client (Domain Z in the illustration), it loads the T3 certificate from Domain A
as described in "Configuring Access to External SSL-Enabled Systems".

TLS Secrets

If you have SSL turned on for incoming connections (by setting ssl.incoming to true
in the specification files), then you must create wlstls and gatewaytls secrets to
provide the required certificate information. This information is provided to the ingress
controller securely.

This secret carries the application or ingress TLS credentials for OSM.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance create wlstls

You get the following three options after you run the above command:

• WLSStore: This is for creating secret for Ingress when SSL is enabled.

• WLSIngress: This is for creating secret for truststore when OSM needs to interact
with JMS and SAF securely to external system and needs that system's
certificates.

• Both: This is for WLSIngress and WLSStore.

Chapter 9
Setting Up Secure Communication with SSL

9-12

Setting Up OSM Cloud Native for Incoming Access
The Ingress controller routes unique hostnames to different backend services. You can see
this if you look at the Ingress controller YAML file (obtained by running kubectl get ingress -
n project ingress_name -o yaml):

For more information on the Service name details, refer to "Using an Alternate Ingress
Controller."

To set up OSM cloud native for incoming access:

1. Generate key pairs for each hostname corresponding to an endpoint that OSM cloud
native exposes to the outside world:

Create TLS Secret For Ingress
Create a directory to save your keys and certificates. This is for
sample only. Proper management policies should be used to store private
keys.

mkdir $SPEC_PATH/ssl

Generate key and certificates
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $SPEC_PATH/ssl/osm.key -out $SPEC_PATH/ssl/osm.crt -subj "/
CN=instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $SPEC_PATH/ssl/admin.key -out $SPEC_PATH/ssl/admin.crt -subj "/
CN=admin.instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $SPEC_PATH/ssl/t3.key -out $SPEC_PATH/ssl/t3.crt -subj "/
CN=t3.instance.project.osm.org"
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -
keyout $SPEC_PATH/ssl/osm-gateway.key -out $SPEC_PATH/ssl/osm-gateway.crt
-subj "/CN=instance.project.osm.org"

Create secrets to hold each of the certificates.
Run the manage-instance-credentials.sh to create the TLS secrets.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance
create gatewaytls,wlstls
Provide Gateway Ingress TLS Credentials for 'project-instance' ...

Ingress TLS Certificate Path: /home/path/gateway.crt
Ingress TLS Key file Path : /home/path/gateway.key

Please select the option to provide TLS Credentials for 'project-
instance' ...
1) WLSStore
2) WLSIngress
3) BOTH
#? 2

Provide WLS Ingress Keys and Certificates for 'project-instance' ...

Do you wish to use one common certificate for Admin Server, Managed

Chapter 9
Setting Up Secure Communication with SSL

9-13

Server and T3
(select number from menu)
1) Yes
2) No
#? 1
Certificate File Path: /home/path/osm.crt
Key File Path : /home/path/osm.key

secret/project-instance-app-tls-cert configured
secret/project-instance-osm-tls-cert configured
secret/project-instance-admin-tls-cert configured
secret/project-instance-t3-tls-cert configured

2. Edit the instance specification and set incoming to true and provide Ingress
specific annotations:

Note:

By default, OSM cloud native supports TERMINATE-AT-INGRESS
termination strategy. Make sure that you remove any incoming WL-
Proxy-SSL and WL-Proxy-Client-IP headers. Also, set X-Forwarded-
Proto: https and WL-Proxy-SSL: true WebLogic HTTP headers, to
notify WebLogic that SSL terminated at Ingress and that the request
came in over SSL. Refer to Oracle Cloud Infrastructure Documentation
for more details.

The instance specification contains NGINX annotations as an example. The
Ingress resource eliminates the WL-Proxy-Client-IP and WL-Proxy-SSL client
headers and adds theX-Forwarded-Proto: https and WL-Proxy-SSL: true input
headers.

For any other Ingress controller, identify the corresponding annotations to achieve
the same behavior described here:

SSL Configuration
ssl:
 incoming: true
 ingress:
 # These annotations are required if project spec
ingressController is "GENERIC" and SSL enabled.
 # Different Ingress controller can have implementation specific
annotations and can be added here.
 # Provided annotations below for nginx and openshift.
 # These annotations are required if project spec
ingressController is "GENERIC"
 # and the actual ingress controller is nginx with wls custom
request headers.
 annotations:
 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-
SSL";
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";

Chapter 9
Setting Up Secure Communication with SSL

9-14

https://docs.oracle.com/en-us/iaas/Content/Balance/Reference/httpheaders.htm

 nginx.ingress.kubernetes.io/ingress.allow-http: "false"

3. After running create-ingress.sh, you can validate the configuration by describing the
Ingress controller for your instance. You should see each of the certificates you
generated, terminating one of the hostnames:

$kubectl get ingress -n project

#Once you have the name of your ingress, run the following command:

kubectl describe ingress -n project ingress

TLS:
 project-instance-osm-tls-cert terminates instance.project.osm.org
 project-instance-t3-tls-cert terminates t3.instance.project.osm.org
 project-instance-admin-tls-cert terminates
admin.instance.project.osm.org
 project-instance-app-tls-cert terminates

4. Create your instance as usual.

Configuring Incoming HTTP and JMS Connectivity for External Clients
This section describes how to configure incoming HTTP and JMS connectivity for external
clients.

Note:

Remember to have your DNS resolution set up on any remote hosts that will
connect to the OSM cloud native instance.

Incoming HTTPS Connectivity

External Web clients that are connecting to OSM cloud native must be configured to accept
the certificates from OSM cloud native. They will then connect using the HTTPS endpoint and
port 30443.

Incoming JMS Connectivity

For external servers that are connected to OSM cloud native through SAF, the certificate for
the t3 endpoint needs to be copied to the host where the external domain is running.

If your external WebLogic configuration uses "CustomIdentityAndJavaSTandardTrust", then
you can follow these instructions exactly to upload the certificate to the Java Standard Trust.
If, however, you are using a CustomTrust, then you must upload the certificate into the
custom trust keystore.

The keytool is found in the bin directory of your jdk installation. The alias should uniquely
describe the environment where this certificate is from.

./keytool -importcert -v -trustcacerts -alias alias -file /path-to-copied-t3-
certificate/t3.crt -keystore /path-to-jdk/jdk1.8.0_202/jre/lib/security/
cacerts -storepass default_password

Chapter 9
Setting Up Secure Communication with SSL

9-15

For example
./keytool -importcert -v -trustcacerts -alias osmcn -file /scratch/
t3.crt -keystore /jdk1.8.0_202/jre/lib/security/cacerts -storepass
default_password

Update the SAF remote endpoint (on the external OSM instance) to use HTTPS and
30443 port (still t3 hostname).

From the SAF sample provided with the toolkit, the external system would configure
the following remote endpoint URL:

https://t3.dev.example.osm.org:30443/
oracle.communications.ordermanagement.SimpleResponseQueue

Configuring Access to External SSL-Enabled Systems
In order for OSM cloud native to participate successfully in a handshake with an
external server for SAF connectivity, the SSL certificates from the external domain
must be made available to the OSM cloud native setup. See "Enabling SSL on an
External WebLogic Domain" for details about how you could do this for an on-premise
WebLogic domain. If you have an external system that is already configured for SSL
and working properly, you can skip this procedure and proceed to "Setting Up OSM
Cloud Native for Outgoing Access".

Loading Certificates for Outgoing Access
In outgoing SSL, the certificates come from the external domain, whether on-premise
or in another Kubernetes cluster. These certificates are then loaded into the OSM
cloud native trust.

The following illustration shows information about loading certificates into OSM cloud
native setup.

Chapter 9
Setting Up Secure Communication with SSL

9-16

Figure 9-4 SSL Certificates for Outgoing Connectivity

Enabling SSL on an External WebLogic Domain
These instructions are specific to enabling SSL on a WebLogic domain that is external to the
Kubernetes cluster where OSM cloud native is running.

To enable SSL on an external WebLogic domain:

1. Create the certificates. Perform the following steps on the Linux host that has the on-
premise WebLogic domain:

a. Use the Java keytool to generate public and private keys for the server. When the
tool asks for your username, use the FQDN for your server.

jdk_path/bin/keytool -genkeypair -keyalg RSA -keysize 1024 -alias
alias -keystore keystore file -keypass private key password -
storepass keystore password -validity 360

b. Export the public key. This certificate will then be used in the OSM cloud native
setup.

jdk_path/bin/keytool -exportcert -rfc -alias alias -storepass
password -keystore keystore -file certificate

2. Configure WebLogic server for SSL. Follow steps 3 to 17 (skip step 7) in the OSM -
Encrypting Database Tablespaces and WebLogic Protocols (Doc ID 2399723.1) KM note
on My Oracle Support.

Chapter 9
Setting Up Secure Communication with SSL

9-17

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2399723.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2399723.1

3. Validate that SSL is configured properly on this server by importing the certificate
to a trust store. For this example, the Java trust store is used.

jdk_path/bin/keytool -importcert -trustcacerts -alias alias -file
certificate -keystore path-to-jdk/jdk1.8.0_202/jre/lib/security/
cacerts -storepass default_password

4. Verify that t3s over the specified port is working by connecting using WLST.
Navigate to the directory where the WLST scripts are located.

Set the environment variables. Some shells don't set the
variables correctly so be sure to check that they are set afterward
path-to-FMW/Oracle/Middleware/Oracle_Home/oracle_common/common/bin/
setWlsEnv.sh

ensure CLASSPATH and PATH are set
echo $CLASSPATH

java -
Dweblogic.security.JavaStandardTrustKeyStorePassPhrase=default_passw
ord weblogic.WLST

once wlst starts, connect using t3s
wls:offline> connect('admin_user','admin_password','t3s://
server:7002')

If successful you will see the prompt
wls:>domain_name/serverConfig>

#when finished disconnect
disconnect()

Setting Up OSM Cloud Native for Outgoing Access
To set up OSM cloud native for outgoing access:

1. Set up custom trust using the following steps:

a. Load the certificate from your remote server into a trust store and make it
available to the OSM cloud native instance.
Use the Java keytool to create a jks file (truststore) that holds the certificate
from your SSL server:

keytool -importcert -v -alias alias -file /path-to/
certificate.cer -keystore /path-to/truststore.jks -storepass
password

Note:

Repeat this step to add as many trusted certificates as required.

Chapter 9
Setting Up Secure Communication with SSL

9-18

b. Create a Kubernetes secret to hold the truststore file and the passphrase. The secret
name should match the truststore name.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance create wlstls

Please select the option to provide TLS Credentials for 'project-
instance' ...
1) WLSStore
2) WLSIngress
3) BOTH
#? 1
Provide WLS Store for 'project-instance' ...

WLS Truststore File Path: /trusstore.jks

WLS Truststore Passphrase:
WLS keystore File Path: /keystore.jks

WLS keystore Passphrase:

c. Edit the instance specification, setting the trust name.

SSL trust and identity
ssl:
 trust:
 name: trust_secret_name # The name of the secret holding the
remote server truststore contents and passphrase
 identity:
 useDemoIdentity: true

leave remaining fields commented out

When custom trust is enabled, the useDemoIdentity field can be left to true for
development instances. This configures the WebLogic server to use the demo identity
that is shipped with WebLogic. For production instances, follow the additional steps for
custom identity in the next step.

2. (Optional) Set up custom identity using the following steps:

a. Create the keystore:

keytool -genkeypair -keyalg RSA -keysize 1024 -alias <alias> -
keystore identity.jks -keypass private_key_password -storepass
keystore_password -validity 360

b. Create the secret:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance create wlstls

Please select the option to provide TLS Credentials for 'project-
instance' ...
1) WLSStore
2) WLSIngress

Chapter 9
Setting Up Secure Communication with SSL

9-19

3) BOTH
#? 1
Provide WLS Store for 'project-instance' ...

WLS Truststore File Path: /trusstore.jks

WLS Truststore Passphrase:
WLS keystore File Path: /keystore.jks

WLS keystore Passphrase:

c. Edit the specification file:

identity:
 useDemoIdentity: false
 name: alias # only valid when useDemoIdentity is false.
Secret name that contains the identity store file.
 alias: secretName # only valid when useDemoIdentity is false.

3. Configure SAF by updating the SAF connection configuration in the OSM cloud
native instance specification file to reflect t3s and the SSL port:

safConnectionConfig:
 - name: simple
 t3Url: t3s://remote_server:7002
 secretName: simplesecret

4. Create the OSM cloud native instance as usual.

Adding Additional Certificates to an Existing Trust
You can add additional certificates to an existing trust while an OSM cloud native
instance is up and running.

To add additional certificates to an existing trust:

1. Set up OSM cloud native for outgoing access. See "Configuring Access to
External SSL-Enabled Systems" for instructions.

2. Copy the certificates from your remote server and load them into the existing
truststore.jks file you had created:

keytool -importcert -v -alias alias -file /path-to/certificate.cer -
keystore /path-to/truststore.jks -storepass password

3. Re-create your Kubernetes secret using the same name as you did previously:

manually
kubectl create secret generic trust_secret_name -n project --from-
file=truststore.jks --from-literal=passphrase=password

verify
k get secret -n project trust_secret_name -o yaml

Chapter 9
Setting Up Secure Communication with SSL

9-20

4. Upgrade the instance to force WebLogic Operator to re-evaluate:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s $SPEC_PATH

Debugging SSL
To debug SSL, do the following:

• Verify Hostname

• Enable SSL logging

Verifying Hostname

When the keystore is generated for the on-premise server, if FQDN is not specified, then you
may have to disable hostname verification. This is not secure and should only be done in
development environments.

To do so, add the following Java option to the managed server in the project specification:

managedServers:

 project:
 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-Dweblogic.security.SSL.ignoreHostnameVerification=true"

Enabling SSL Logging

When trying to establish the handshake between servers, it is important to enable SSL
specific logging.

Add the following Java options to your managed server in the project specification. This
should be done for your external server as well.

managedServers:

 project:
 #JAVA_OPTIONS for all managed servers at project level
 java_options: "-Dweblogic.StdoutDebugEnabled=true -Dssl.debug=true -
Dweblogic.security.SSL.verbose=true -Dweblogic.debug.DebugSecuritySSL=true -
Djavax.net.debug=ssl"

Chapter 9
Setting Up Secure Communication with SSL

9-21

10
Running the SAF Sample for OSM Cloud
Native

It is highly recommended that you explore OSM cloud native support of SAF using a
predefined set of configurations and instructions. This activity not only serves to quickly
identify issues with your cloud environment but also enables you to familiarize yourself with
setting up the connectivity for your own projects, which are likely to be more complex than the
SAF sample this section describes.

This chapter describes how to run the SAF sample for OSM cloud native.

The SAF sample for OSM cloud native consists of the following components:

• SimpleProvisioningCartridge sample cartridge available as a par file, ready to be
deployed using the OSM cloud native DB Installer. This cartridge implements a flow that
consists of sending a JMS message to a remote system and receiving a JMS message in
response. The order then ends.

• Configuration fragments for a project and an instance. These can be added to your
project and instance specifications and contain all the SAF connection specifications as
well as endpoint identification.

• A simple emulator that is available as a JAR file, along with instructions and configuration
samples. This emulator can be set up on a WebLogic system outside the Kubernetes
cluster and functions as a "remote system" in the SAF communication. The emulator
simply echos the message given to it.

The SAF sample can be run as a separate project and instance, derived from the samples in
the OSM cloud native toolkit. Alternatively, it can be added on to the specifications of a basic
OSM instance. A project can consist of multiple cartridges. If you add the specifications to a
basic OSM instance, the project consists of SimpleRabbits and
SimpleProvisioningCartridge; instances of this project can consume both types of orders.

For the SAF sample, you need the following:

• A Linux host capable of running WebLogic Server 12.2.1.4 outside of the Kubernetes
cluster.

• Traffic should be routable between the Kubernetes cluster and this host.

• If you are not using a centralized DNS resolution server, edit the /etc/hosts file of the
Linux host to add resolution for your OSM cloud native instance. For example, use
kubernetes access IP address quick.sr.osm.org t3.quick.sr.osm.org
admin.quick.sr.osm.org.

For further details, see "Planning and Validating Your Cloud Environment".

Running the SAF sample involves the following tasks:

• Preparing the WebLogic system to run the emulator

• Deploying the emulator on the WebLogic system

• Deploying the SimpleProvisioning sample cartridge

10-1

• Preparing the OSM instance

• Validating the SAF endpoints

• Submitting OSM orders

Preparing the WebLogic System to Run the Emulator
Install WebLogic 12.2.1.4 on the Linux host. The specific patchset does not matter as
long as it contains the patch referenced in "Applying the WebLogic Patch for External
Systems".

To prepare the WebLogic system to run the emulator:

1. Start WebLogic server and create a domain accepting all the default settings. Do
not enable JRF or any other Fusion MiddleWare capabilities for this sample. Name
the domain simple.

2. Stop the WebLogic server and find the domain home for simple.

3. Edit the domain-home/config/config.xml file and delete the line: admin-server-
nameAdminServer/admin-server-name.

4. Locate and open the samples/saf-sample/emulated-weblogic-resources/
config/config_fragment.xml configuration fragment XML file in the OSM cloud
native toolkit.

5. Copy the contents under the domain element and append them to the end of the
domain element in the domain-home/config/config.xml file just before </
domain>.
This creates a persistent store for JMS as well as a JMS server and a SAF agent.
The SAF agent is used in sending emulator responses back to the OSM cloud
native instance.

6. Copy the samples/saf-sample/emulated-weblogic-resources/config/jms folder
in the toolkit to <domain-home>/config. This creates a folder jms under the
target config directory with the specific JMS configuration. This also creates JMS
queues and SAF entities.

7. Configure the SAF system to connect to your OSM cloud native instance. The
instance does not need to be up at this point, but you should have decided on a
project name, instance name, and the WebLogic username and password. If you
want to reuse the basic OSM instance, you should already have these ready.
Edit the domain_home/config/jms/simple_osm_jms_module-jms.xml file and
update the fields underlined in the following fragment. The password is entered as
plain text and gets auto-encrypted during WLS startup:

 <saf-login-context>
 <loginURL>osm_cn_t3_url</loginURL>
 <username>osm_weblogic_username</username>
 <password-encrypted>osm_weblogic_password</password-
encrypted>
 </saf-login-context>

osm_cn_t3_url is:

• If Oracle Cloud Infrastructure Load Balancer is not used: http://
t3.instance.project.osm.org:30305

Chapter 10
Preparing the WebLogic System to Run the Emulator

10-2

• If Oracle Cloud Infrastructure Load Balancer is used: http://
t3.instance.project.osm.org:80

8. Start WebLogic. At this point, if you see errors from SAF/JMS about your OSM cloud
native instance, you can ignore them. These errors go away once the OSM cloud native
instance is up and configured for the SAF sample.

Deploying the Emulator on the WebLogic System
To deploy the emulator on the WebLogic system:

1. Find the samples/saf-sample/emulator-mdb/emulator-mdb-1.0.0.jar emulator MDB jar
file in the OSM cloud native toolkit.

2. Open the WebLogic Console for the simple domain.

3. In Deployments, upload the emulator MDB jar file.

4. Complete the deployment using the defaults and ensure that the MDB file is shown with
State "Active" and Health "OK".

Deploying the SimpleProvisioning Sample Cartridge
The SimpleProvisioning sample cartridge contains the following:

• process_1 process

• A manual creation task

• An automation task with the following:

– qQuerySender XQuery Sender

– Receiver XQuery Automator

To deploy the SimpleProvisioning cartridge:

1. Identify a PDB for use with the SAF sample.
This must be ready to host an OSM cloud native instance with RCU DB schema and
OSM DB schema in place. You can use a fresh PDB and run the OSM cloud native DB
Installer, or reuse or clone the PDB from the basic OSM cloud native instance. If you
reuse the PDB in the basic OSM cloud native instance, you must use the basic OSM
cloud native project and instance specification files in subsequent steps and delete the
basic OSM cloud native instance.

2. Deploy the SimpleProvisioning cartridge using the script in the toolkit:

./scripts/manage-cartridges.sh -p project_name -i instance_name -
s $SPEC_PATH -f $OSM_CNTK/samples/saf-sample/cartridge-resources/
cartridge-par/SimpleProvisioning.par -c parDeploy

Preparing the OSM Cloud Native Instance
To prepare the OSM cloud native instance for the SAF sample:

1. Obtain a starter project specification. This can be the samples/project.yaml sample in
the toolkit or you can reuse the project specification created for the basic OSM cloud
native instance.

Chapter 10
Deploying the Emulator on the WebLogic System

10-3

a. Configure a UDQ (SimpleResponseQueue) to receive the response from an
external WebLogic domain by replacing the following line:

uniformDistributedQueues: {}

with the following:

uniformDistributedQueues:
 - name: SimpleResponseQueue
 jndiName:
oracle.communications.ordermanagement.SimpleResponseQueue
 resetDeliveryCountOnForward: false
 deliveryFailureParams:
 expirationPolicy: Discard
 redeliveryLimit: 10
 deliveryParamsOverrides:
 timeToLive: -1
 priority: -1
 redeliveryDelay: 1000
 deliveryMode: 'No-Delivery'

If uniformDistributedQueues already exists in your project.yaml file, do
not create a new element. Instead, append the item SimpleResponseQueue
from the above snippet to the end of the existing list of items for
uniformDistributedQueues.

b. Configure the SAF Queue (RequestQueue) by replacing the following line:

safDestinationConfig: {}

with the following:

safDestinationConfig:
 - name: simple
 destinations:
 - jndiPrefix: simple.
 queues:
 - queue:
 localJndi: RequestQueue
 remoteJndi: RequestQueue

The cartridge deployed for this sample uses this SAF queue to send
messages to the external WebLogic domain.
If safDestinationConfig already exists in your project.yaml file, do not
create a new element. Instead, append the item simple from above to the
end of the existing list of items for safDestinationConfig.

2. Obtain a starter instance specification. This can be the samples/instance.yaml
sample in the toolkit or you can reuse the instance specification created for your
basic OSM instance.

Chapter 10
Preparing the OSM Cloud Native Instance

10-4

a. If you start with the instance.yaml sample, you must use your experience with
creating a basic OSM cloud native instance to set up the DB server, NFS for logs
(optional), authentication, and so on.

b. Configure the connection to the external OSM WebLogic domain by replacing the
following line:

safConnectionConfig: {}

with the following:

safConnectionConfig:
 - name: simple
 t3Url: t3://{simple_weblogic_hostname}:{simple_weblogic_port}
 secretName: simplesecret

Replace the value of {simple_weblogic_hostname} and
{simple_weblogic_port} with the hostname and port where simple WebLogic
domain is installed. If safConnectionConfig already exists in your project-
instance.yaml, do not create a new element. Instead, append the item simple from
the above to the end of the existing list of items for safConnectionConfig.

3. Create a secret to contain the credentials for the simple WebLogic domain by running
the following command. Name the secret as simpleSecret as specified in the above
steps for the SAF connection and Replace the username and password with the values
for the simple WebLogic domain.

kubectl -n project create secret generic simplesecret --from-
literal=username='simple_domain_weblogic_username' --from-
literal=password='simple_domain_weblogic_password'

4. Bring up the OSM cloud native instance. If you are not reusing the basic OSM instance,
you will have to first create all the required secrets.

5. If you used a clone of the PDB of the basic OSM cloud native instance, you must
replicate the opssWF and opssWP secrets from your basic OSM instance and set
rcu.db.preexisting to true in your instance specification file. Failing to do this results in
your new instance not being able to process the cloned PDB.

6. Once the OSM cloud native instance is up, do the following:

a. Log in to the OSM Orchestration UI.

b. Go to Administer Workgroups.

c. Choose the OSM user you will be using to inject orders and add this user to the
"SimpleProvisioningRole" workgroup.

This allows your chosen user to create orders in the SimpleProvisioning cartridge.
Both SAF endpoints, one on simple and one in this OSM cloud native instance should
now be active. You can confirm this by validating the setup.

Validating the SAF Endpoints
To validate the SAF endpoints:

1. On the simple WebLogic domain, log in to the WebLogic console and do the following:

Chapter 10
Validating the SAF Endpoints

10-5

a. Navigate to Remote Endpoints. You should see a remote endpoint called
simple_osm_saf_agent with the URL pointing to your OSM cloud native
instance.

b. Navigate to Deployments. You should see the emulator MDB shown with
State "Active" and Health "OK".

2. On the OSM cloud native instance, log in to the WebLogic console and navigate to
Remote Endpoints. You should see the following remote endpoints pointing to the
simple WebLogic domain:

osm_simple_jms_module!osm_saf_destinations_simple.!<saf_queuex|
saf_topicx>@osm_saf_agent@ms1

Submitting Orders
You can submit orders with HTTP and T3 over HTTP.

Submitting Orders with HTTP
To submit orders with HTTP:

1. Submit orders using the OSM Task Web Client or SoapUI:

a. If you wish to use SoapUI, find the sample order payload for the
SimpleProvisioning cartridge in the toolkit at samples/saf-sample/
cartridge-resources/CreateOrderBySpec.xml.

b. In the OSM Task Web client, create a new order of type SimpleProvisioning.

2. In the order data, find the "data" element and replace MsgText with a unique
value.

3. Submit the order.

4. Examine the order in OSM Task Web Client of the OSM cloud native instance. It is
very likely that the order completes very quickly and therefore does not appear in
the Worklist. Use Query to look for completed orders and find the order. The
completed order should show the response from the emulator.

If there are any issues with connectivity, the order does not complete successfully.
Examine the message count on the queues in both OSM cloud native and in the
simple WebLogic domain to see where the sequence was disrupted.

Submitting Orders with T3 over HTTP
To submit orders with T3 over HTTP, install SoapUI and HermesJMS and set them up
to connect to your cloud native environment. SoapUI uses plain HTTP to submit
orders. By using SoapUI with HermesJMS, orders can also be submitted as JMS
messages using T3 over HTTP.

Consider the following when setting up SoapUI and HermesJMS:

Chapter 10
Submitting Orders

10-6

• Java 8: If you use Java 8, you must find your Hermes installation location and the
hermes.sh file within that location in the bin directory. Edit this file to replace the existing
invocation of JAVACMD with the following:

"$JAVACMD" -
Dorg.xml.sax.parser=com.sun.org.apache.xerces.internal.parsers.SAXParser
-
Djavax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.intern
al.jaxp.DocumentBuilderFactoryImpl
-
Djavax.xml.parsers.SAXParserFactory=com.sun.org.apache.xerces.internal.jax
p.SAXParserFactoryImpl
-XX:NewSize=512m -Xmx2048m $HERMES_OPTS -
Dlog4j.configuration=file:$HERMES_HOME/bin/log4j.props
-Dhermes.home=$HERMES_HOME -Dhermes=$HERMES_CFG -Dhermes.libs=$HERMES_LIB
-classpath
$LOCALCLASSPATH hermes.browser.HermesBrowser

• WebLogic Libraries: When you create a session in HermesJMS preferences, create a
Classpath Group that includes the WebLogic jar files weblogic.jar, wlclient.jar
and wlthint3client.jar. These jar files are found in the standard WebLogic
installation. Provide the full path to each jar file in the HermesJMS preferences.

• Connection Properties: When you set up a Connection Factory in your HermesJMS
Session, add the following properties to it to point to your OSM cloud native instance:

Table 10-1 Connection Properties for HermesJMS Session

Property Value

providerURL http://t3.instance.project.osm.org:access-port
access-port is the Traefik (ingress controller)
NodePort or the Load Balancer port.

binding oracle/communications/ordermanagement/osm/
ExternalClientConnectionFactory

initialContextFactory weblogic.jndi.WLInitialContextFactory

securityPrincipal osm-user-name

securityCredentials password-for-osm-user-name

With these in place, you should now be able to discover the JMS queues and topics from
your OSM cloud native instance

• Target JMS Queue: Add a JMS endpoint using the Session created. Specify the "Send/
Publish Destination" as oracle/communications/ordermanagement/
WebServiceQueue. If you wish to see the responses, specify the "Receive/Subscribe
Destination" as oracle/communications/ordermanagement/
SoapUIResponseQueue. You need to have first specified this response queue as an
additional queue in your project specification.
HermesJMS submits the order requests into the OSM cloud native WebServiceQueue
distributed queue and optionally shows you responses in the SoapUIResponseQueue
distributed queue.

• SoapUI Test Case: When you create a test case with the sample order payload, do the
following:

Chapter 10
Submitting Orders

10-7

– Choose Basic authentication and specify the osm-user-name and password-
for-osm-user-name as earlier.

– If you use responses, set the JMSReplyTo JMS Property to oracle/
communications/ordermanagement/SoapUIResponseQueue

– Add "JMS Headers" properties with name-value as:

_wls_mimehdrContent_Type : text/xml; charset="utf-8"
URI : /osm/wsapi

This setup can now submit orders into the OSM cloud native instance as JMS
messages. The SoapUI project and configuration can be saved to serve as a
template for future reuse.

Chapter 10
Submitting Orders

10-8

11
Maintaining the OSM Cloud Native
Environment

This chapter describes the tasks you perform in order to apply a change or upgrade a
component in your OSM cloud native environment.

Before You Upgrade
Before you upgrade your OSM cloud native environment, you must compare the new
samples with the current samples in your cloud native toolkit and migrate any customizations
you have made. These include the following:

• Custom shape specifications: Review the shape specifications in the toolkit and identify
any changes required to your custom shape files.

• Project specification: Compare the sample project specification of the new toolkit with the
sample from the current one and migrate your customizations to the new specification.

• Instance specification: Compare the sample instance specification of the new toolkit with
the sample from the current one and migrate your customizations to the new
specification.

• Model extensions and custom files.

Also, see the OSM patch readme for the latest patch and OSM Release Notes for additional
information related to changes in the cloud native toolkit.

About Upgrade Paths and Procedures
Creating a detailed upgrade plan can be a complex process. It is useful to start by mapping
your use case to an upgrade path. These upgrade paths identify a set of sequenced activities
that align to a CD stage. Once you know the activity sequence, you can then look for the
detailed steps involved in each to come up with the comprehensive set of steps to be
performed.

Upgrade paths consist of activities that fall into the following two main categories:

• Operational Procedures

• Component Upgrade Procedures

Operational Procedures

There are many different operational procedures and all of these affect the operating state of
OSM. OSM cloud native provides the mechanism to change the operational state as
described in "Running Operational Procedures".

The flowcharts in this chapter use the following image to depict an operational procedure:

11-1

Component Upgrade Procedures

These are the actual set of steps to perform a component upgrade and can be one of
the following types:

• OSM Cloud Native Procedures: OSM cloud native owns the component and
therefore the upgrade procedure for that component. OSM cloud native provides
the mechanism to perform the upgrade via the scripts that are bundled with the
OSM cloud native toolkit.
An example of this is a change to a value in an OSM cloud native specification file
(shape, project, and instance).

The flowcharts in this chapter use the following image to depict an OSM cloud
native owned procedure.

• External Procedures: These procedures are for components that are part of the
OSM cloud native operating environment, but are out of the control of OSM cloud
native. OSM cloud native does not determine how to apply the upgrade, but
provides recommendations on the operational state of OSM accompanying the
upgrade.
An example would be updating the operating system on a worker node.

The flowcharts in this chapter use the following image to depict an external
upgrade procedure.

• Miscellaneous upgrade procedures: There are some procedures that require
special handling and are not captured in any of the upgrade paths. These are
described in "Miscellaneous Upgrade Procedures".

Rolling Restart
Occasionally, you may need to restart OSM managed servers in a rolling fashion, one
at a time. This does not result in downtime, but only reduced capacity for a limited
period. A rolling restart can be triggered by invoking the restart-instance.sh script.
This script can restart the whole instance in a rolling fashion, or only the admin server
or all the managed servers in a rolling fashion. Some operations may automatically
trigger rolling restart. These include online cartridge deployment and certain changes
(image updates, tuning parameter changes, and so on) pushed via the upgrade-
instance.sh script.

Identifying Your Upgrade Path
In order to prepare your detailed plan for an upgrade, you need to be able to map your
upgrade use case to an upgrade path. Some common use cases are detailed in the

Chapter 11
Rolling Restart

11-2

following charts. If your use case is not listed, see "Upgrade Path Flow Chart", which guides
you through the decision making process to prepare a specific upgrade path.

Table 11-1 Common Upgrade Paths

Upgrade Type Component Upgrade Path Requires Changing
Image?

Cartridge
Management

Deploy new cartridge version Online change, online cartridge
deployment

OR

Offline change, offline cartridge
deployment

No

Cartridge
Management

Redeploy a cartridge against an
existing cartridge version

Offline change, offline cartridge
deployment

No

Cartridge
Management

Fast undeploy cartridge version Offline change, offline cartridge
deployment

OR

Online change, online cartridge
deployment

No

Cartridge
Management

Purge cartridge version Online Change, external
procedure, Manual restart

No

Configuration
and Tuning

OSM cluster size (scaling up or
down)

Online change, application
upgrade

Not applicable

Configuration
and Tuning

Java parameters (memory, GC,
and so on)

Online change, application
upgrade

Not applicable

Configuration
and Tuning

WebLogic domain configuration
(WDT such as JMS Queue
configuration)

Online change, application
upgrade

No

Configuration
and Tuning

OSM configuration parameters
(traditionally, oms-config.xml)

Online change, application
upgrade

No

Database
Storage
Management

Create partition and clone
database statistics

Offline Change, PDB upgrade No

Database
Storage
Management

Online row-based order purge Online Change, external
procedure

No

Database
Storage
Management

Purge partition Online Change, external
procedure

No

Security
parameters

New, renamed or deleted secrets
passed to cartridges

Online change, application
upgrade

No

Security
parameters

Secrets value (For example,
changing password)

Online change, external
procedure, Manual restart

No

Software
Upgrade and
Patching

OSM release or patch upgrade
with Database change

Offline change, PDB upgrade Yes

Software
Upgrade and
Patching

Fusion MiddleWare upgrade Online change, application
upgrade (some exceptions
needing offline change)

Yes

Software
Upgrade and
Patching

OSM patch upgrade without
Database change

Online Change, application
upgrade (some exceptions
needing offline change)

Yes

Chapter 11
Identifying Your Upgrade Path

11-3

Table 11-1 (Cont.) Common Upgrade Paths

Upgrade Type Component Upgrade Path Requires Changing
Image?

Software
Upgrade and
Patching

Fusion MiddleWare overlay
patches (for example, PSU or
one-off patch)

Online Change, application
upgrade (some exceptions
needing offline change)

Yes

Software
Upgrade and
Patching

Java upgrade Online Change, application
upgrade

Yes

Software
Upgrade and
Patching

Linux Online Change, application
upgrade

Yes

Software
Upgrade and
Patching

Custom code or third-party tool
(custom image)

Online Change, application
upgrade (some exceptions
needing offline change)

Yes

Software
Upgrade and
Patching

OSM cloud native toolkit The release dictates the
constraints.

Not applicable

Shared
infrastructure

Operating system or hardware
on worker node

Online change, external
procedure

No

Shared
infrastructure

Docker Online change, external
procedure

No

Shared
infrastructure

WebLogic Operator minor
upgrade (backward compatible)

Online change, external
procedure

No

Shared
infrastructure

WebLogic Operator major
upgrade (non-backward
compatible)

Online change, external
procedure

No

Once you understand the activities in your upgrade path, you can begin to map out the
sequence of activities that you need to perform.

Offline Change Upgrade Paths
Offline changes are defined as those requiring OSM to be shutdown before the change
can be applied.

All offline upgrades must start with a Scale Down procedure and end with a Scale Up
procedure. You can find the explicit steps to perform these activities in Running
Operational Procedures.

Once the cluster has been scaled down, you will need to perform either an external
procedure (referencing documentation for the component) or follow an OSM cloud
native owned procedure. See "OSM Cloud Native Upgrade Procedures" for details.

Chapter 11
Identifying Your Upgrade Path

11-4

Figure 11-1 Offline Change Upgrade Paths

As an example, if your use case is to re-deploy an existing cartridge version, then the
upgrade path would be "Offline change, offline cartridge deployment", the second flow in the
above flow chart. The actual steps involve the following:

• Scale Down

– Edit the instance specification file to set cluster size to 0.

– Run upgrade-instance.sh.

• Offline cartridge deployment

– Edit the project specification file to change the cartridge version.

– Run manage-cartridges.sh with option sync.

• Scale Up

– Edit the instance specification file to return cluster size to original (1-18).

– Run upgrade-instance.sh.

Online Change Upgrade Paths
Online changes are changes for which OSM can remain running while the component
upgrade is performed. There is, therefore, no operational procedure at the start of the flow,
but some paths include a rolling restart after the upgrade procedure is performed.

The component upgrade will either be an external procedure (referencing documentation for
the component) or follow an OSM cloud native owned procedure described in "OSM Cloud
Native Upgrade Procedures".

If explicit post-upgrade operational activities are required, you can find details in "Running
Operational Procedures".

The following flowchart illustrates online change upgrade paths:

Chapter 11
Identifying Your Upgrade Path

11-5

Figure 11-2 Online Change Upgrade Paths

Exceptions
The following require shutdown:

• Some OSM patches

• Some Oracle Fusion MiddleWare overlay patches

• Some custom code or 3rd party

• Oracle Fusion MiddleWare version upgrades

Unsupported Tasks
Adding, modifying, and deleting users or groups from embedded LDAP are not
supported through an upgrade procedure.

To make changes to users and groups, the instance must be deleted and re-created.

OSM Cloud Native Upgrade Procedures
The OSM cloud native owned upgrade procedures are:

• PDB upgrade

• OSM application upgrade

• Online cartridge deployment

Chapter 11
OSM Cloud Native Upgrade Procedures

11-6

• Offline cartridge deployment

Change or upgrade procedures that are dictated by OSM cloud native are applied using the
scripts and the configuration provided in the toolkit.

PDB Upgrade Procedure
Changes impacting the PDB can be found in any of the specification files - project, instance
or shape.

Examples include updating the OSM DB Installer image.

To perform a PDB upgrade procedure:

1. Make the necessary modifications in your specification files.

2. Invoke $OSM_CNTK/scripts/install-osmdb.sh with the command appropriate for your
use case.
To see a list of options, invoke with -h.

OSM Application Upgrade
Changes impacting the OSM application can be found in any of the specification files -
project, instance or shape.

Examples include changing an existing value, changing the OSM image or supplying
something new such as a secret or a new WDT extension.

To perform OSM application upgrade:

1. Make the necessary modifications in your specification files.

2. Invoke $OSM_CNTK/scripts/upgrade-instance.sh to push out the changes you just
made to the running instance. This also triggers introspection for upgrade paths where
introspection is required.

3. In upgrade paths where a manual restart is required, restart the instance. See "Restarting
the Instance" for details.

Offline Cartridge Deployment
Offline deployment mode supports deployment of new cartridges, deployment of new
versions of existing cartridges, fast undeploy and re-deployment of existing cartridge versions
with changes.

Changes impacting the cartridges can be found in the project specification file.

In order to perform an offline deployment, you must not have managed servers running.

To perform an offline cartridge deployment:

1. Scale down your managed server count. See “Scaling Down the Cluster” for more details.

2. Deploy the cartridges:

• Make the necessary modifications in your project specification.

Chapter 11
OSM Cloud Native Upgrade Procedures

11-7

• Run the following command:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path –c sync

3. Scale up your managed server count. See “Scaling Up the Cluster” for more
details.

Online Cartridge Deployment
Online deployment mode supports deployment of new cartridges, deployment of new
versions of existing cartridges and fast undeploy. It does not support re-deployment of
existing cartridges.

The changes impacting the cartridges can be found in the project specification file.

In order to perform an online deployment, you must have a minimum of two managed
servers running.

To perform an online cartridge deployment:

1. If necessary, scale up your managed server count (2 or more). See “Scaling Up
the Cluster” for more details.

2. Deploy the cartridges:

• Make the necessary modifications in your project specification.

• Invoke the following script:

$OSM_CNTK/scripts/manage-cartridges.sh -p project -i instance -s
spec_Path -c sync -o

Note:

If the changes to the cartridges in the project specification include more than
one kind of update (new cartridge, new version, existing version, undeploy),
if it includes redeploy of existing versions, then you must use offline cartridge
deployment. Alternatively, if possible, break up the operational activity into
two parts: one set of changes that satisfy the online deployment and then
following that, a second set with all the cartridge redeployment changes to be
done offline.

Upgrades to Infrastructure
From the point of view of OSM instances, upgrades to the cloud infrastructure fall into
two categories: rolling upgrades and one-time upgrades.

Note:

All infrastructure upgrades must continue to meet the supported types and
versions listed in the OSM documentation's certification statement.

Chapter 11
Upgrades to Infrastructure

11-8

Rolling upgrades are where, with proper high-availability planning (like anti-affinity rules), the
instance as a whole remains available as parts of it undergo temporary outages. Examples of
this are Kubernetes worker node OS upgrades, Kubernetes version upgrades and Docker
version upgrades.

One-time upgrades affect a given instance all at once. The instance as a whole suffers either
an operational outage or a control outage. Examples of this are WebLogic Operator upgrade
and perhaps Ingress Controller upgrade.

Kubernetes and Docker Infrastructure Upgrades

Follow the standard Kubernetes and Docker practices to upgrade these components. The
impact at any point should be limited to one node - master (Kubernetes and OS) or worker
(Kubernetes, OS, and Docker). If a worker node is going to be upgraded, drain and cordon
the node first. This will result in all pods moving away to other worker nodes. This assumes
your cluster has the capacity for this - you may have to temporarily add a worker node or two.
For OSM instances, any pods on the cordoned worker will suffer an outage until they come
up on other workers. However, their messages and orders are redistributed to surviving
managed server pods and processing continues at a reduced capacity until the affected pods
relocate and initialize. As each worker undergoes this process in turn, pods continue to
terminate and start up elsewhere, but as long as the instance has pods in both affected and
unaffected nodes, it will continue to process orders.

WebLogic Kubernetes Operator Upgrade

To upgrade the WebLogic Kubernetes Operator, you have the following options:

• Operator Upgrade: For a standard upgrade process, follow the WKO documentation at:
https://oracle.github.io/weblogic-toolkit-ui/navigate/kubernetes/k8s-wko/#install-operator.
Ensure that the target version is compatible with the current version within your
Kubernetes cluster.
Advantages with this option are:

– No additional Kubernetes resources are required.

– No need to re-register namespaces.

Disadvantages with this option are:

– Cannot test with a canary namespace.

– More challenging to roll back to the previous version if needed.

• Phased Cutover Approach: To install new WKO, create a new namespace with a fresh
label selector. Transition the OSM namespaces by removing the old label and adding the
new label to each respective namespace. After all namespaces have successfully
transitioned and are stable, proceed to uninstall the old WKO.
Advantages with this option are:

– Ability to test with a canary namespace before full deployment.

– Allows for a phased cutover, accommodating program timelines.

– Easy backout option by reverting the label change on OSM namespaces.

Disadvantages with this option are:

– Requires modification of all OSM namespaces to use the new WKO.

– Additional Kubernetes resources are in use until the old WKO is uninstalled.

For more information on upgrading the operator, refer to the WKO upgrade documentation at:
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/conversion-
webhook/.

Chapter 11
Upgrades to Infrastructure

11-9

https://oracle.github.io/weblogic-toolkit-ui/navigate/kubernetes/k8s-wko/#install-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/conversion-webhook/
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/conversion-webhook/

Ingress Controller Upgrade

Follow the documentation of your chosen Ingress Controller to perform an upgrade.
Depending on the Ingress Controller used and its deployment in your Kubernetes
environment, the OSM instances it serves may see a wide set of impacts, ranging from
no impact at all (if the Ingress Controller supports a clustered approach and can be
upgraded that way) to a complete outage.

To take the sample of Traefik that OSM cloud native toolkit uses as an Ingress
Controller illustration:

An approach identical to that of WebLogic Operator upgrade can be followed for
Traefik upgrade. The new Traefik can be installed into a new namespace, and one-by-
one, projects can be unregistered from the old Traefik and registered with the new
Traefik.

export TRAEFIK_NS=old-namespace $OSM_CNTK/scripts/unregister-namespace
-p project -t traefik
export TRAEFIK_NS=new-namespace $OSM_CNTK/scripts/register-namespace -
p project -t traefik

During this transition, there will be an outage in terms of the outside world interacting
with OSM. Any data that flows through the ingress will be blocked until the new Traefik
takes over. This includes GUI traffic, order injection, API queries, and SAF responses
from external systems. This outage will affect all the instances in the project being
transitioned.

Miscellaneous Upgrade Procedures
This section describes miscellaneous upgrade scenarios.

Network File System (NFS)

If an instance is created successfully, but a change to the NFS configuration is
required, then the change cannot be made to a running OSM instance. In this case,
the procedure is as follows:

1. Perform a fast delete. See "Running Operational Procedures" for details.

2. Update the nfs details in the instance specification.

3. Start the instance.

Running Operational Procedures
This section describes the tasks you perform on the OSM server in response to a
planned upgrade to the OSM cloud native environment. You must consider if the
change in the environment fundamentally affects OSM processing to the extent that
OSM should not run when the upgrade is applied or OSM can run during the upgrade
but must be restarted to properly process the change.

The operational procedures are performed using the OSM cloud native specification
files and scripts.

The operational procedures you perform for upgrading your cloud environment are:

• Trigger introspection

Chapter 11
Miscellaneous Upgrade Procedures

11-10

• Scaling down the cluster

• Scaling up the cluster

• Restarting the cluster

• Fast delete

– Shutting down the cluster

– Starting up the cluster

Triggering Introspection
When any of the specification files have changed, invoke the upgrade-instance.sh script to
trigger the operator's introspector to examine the change and apply it to the running instance.

Scaling Down the Cluster
The scaling down procedure described here is only in the context of the upgrade flow
diagram. Hence, scaling down is down to 0 managed servers. A generalized scaling can
change the cluster size down to a value between 0 and 18 (both inclusive) in any desired
increment or decrement.

To scale down the cluster, edit the instance specification and change the clusterSize
parameter to 0. This terminates all the managed server pods, but leaves the admin server up
and running.

Note:

If you scale down the cluster size to 1, the OSM Gateway microservice will
experience downtime.

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s $SPEC_PATH

Scaling Up the Cluster
The scaling up procedure described here is only in the context of the upgrade flow diagram.
Hence, scaling up is up to the initial cluster size. A generalized scaling can change the cluster
size up to a value between 0 and 18 (both inclusive) in any desired increment or decrement.

To scale up the cluster, edit the instance specification and change the value of the
clusterSize parameter to its original value to return the cluster to its previous operational
state.

Apply the change to the running Helm release by running the upgrade script:

$OSM_CNTK/scripts/upgrade-instance.sh -p project -i instance -s $SPEC_PATH

Chapter 11
Running Operational Procedures

11-11

Restarting the Instance
The OSM cloud native toolkit provides a script (restart-instance.sh) that you can use
to perform different flavors of restarts on a running instance of OSM cloud native.

Following is the usage of the restart-instance.sh script

restart-instance.sh parameters
 -p projectName : mandatory
 -i instanceName : mandatory
 -s specPath : mandatory; locations of specification files
 -m customExtPath : optional; locations of custom extension files
 -r restartType : mandatory; what kind of restart is requested
 # specPath and customExtPath take a colon(:) delimited list of
directories
 # restartType can take the following values:
 * full: Restarts the whole instance (rolling restart)
 * admin: Restarts the WebLogic Admin Server only
 * ms: Restarts all the Managed Servers (rolling restart)

 # or just -h for help

For example, to restart a complete cluster, run the following command:

$OSM_CNTK/scripts/restart-instance.sh -p project -i instance -
s $SPEC_PATH -r full

Note:

If changes are made in secrets while a microservice is up and running, run
the restart-instance.sh script for that microservice for the changes to take
effect. For example, if secrets specific to OSM Gateway are changed, run the
following command:

$OSM_CNTK/scripts/restart-instance.sh -p project -i instance -
s $SPEC_PATH -r osmgw

Fast Delete
When the entire domain, including the admin server, needs to be taken offline, then the
full shutdown and full startup procedures follow. This can be used to perform a "fast
delete" or "dehydration" of the domain, instead of a full delete-instance operation
where you may have to be concerned about the secrets and other pre-requisites being
deleted. To quickly restore the domain, simply perform the startup procedure.

Shutting Down the Cluster

Chapter 11
Running Operational Procedures

11-12

To shut down the cluster, edit the instance specification and add or modify the value of the
clusterSize parameter to 0. This terminates all the pods including microservices and
managed servers.

clusterSize: 0

Apply the changes to the running instance using upgrade-instance.sh

Starting Up the Cluster

To start up the cluster, edit the instance specification and modify the value of the
clusterSize parameter to 1 or more value depending on no of managed servers needed to
be configured . This starts up all the pods including microservices and managed server pods.
A generalized scaling can change the cluster size up to a value between 0 and 18 (both
inclusive) in any desired increment or decrement.

clusterSize: <1 to 18>
#Example:
clusterSize: 1

Apply the changes to the running instance using upgrade-instance.sh

Upgrade Path Flow Chart
When comparing and contrasting the different flows, identifying common steps or
divergences, it can be useful to have a combined view of the flowcharts along with the main
decision points. This can be useful when trying to automate parts of the process.

The first decision to make is whether OSM can be running when you apply the change.
Typically, OSM needs to be shutdown for PDB impacting scenarios and the exceptions listed
in the "Exceptions" section.

The following flowchart illustrates the flow for offline upgrades and various scenarios.

Chapter 11
Upgrade Path Flow Chart

11-13

Figure 11-3 Upgrade Path Flow for Offline Changes

The following flowchart illustrates the flow for online upgrades and various scenarios.

Chapter 11
Upgrade Path Flow Chart

11-14

Figure 11-4 Upgrade Path Flow for Online Changes

Chapter 11
Upgrade Path Flow Chart

11-15

12
Upgrading your OSM Cloud Native
Deployment

This chapter provides instructions for upgrading OSM cloud native deployment release 7.4.1
to OSM cloud native 7.5.

Overview of the Upgrade Steps
This sections outlines the upgrade steps:

• Download the OSM 7.5.0 CNTK version.

• Install or upgrade WebLogic Kubernetes Operator (WKO). See "Installing WebLogic
Kubernetes Operator".

• Decide on the Ingress Controller. See "Ingress Controller".

• Build the OSM, DB Installer, OSMGW, and RTUX images, using the same OSM cloud
native version as the toolkit. See "Creating OSM Cloud Native Images" for building the
images.

• Updating the specification files. See "Updating Specification Files".

• Upgrading to OSM cloud native 7.5.0. See "Upgrading to OSM Cloud Native 7.5.0".

Installing WebLogic Kubernetes Operator
This section provides information about installing WebLogic Kubernetes Operator.

WKO Monitoring Mechanism
Once WKO is installed in a Kubernetes cluster, it needs to know which namespaces will have
OSM instances. Of interest are two mechanisms:

• List: WKO is given an explicit list of namespaces. This is done by upgrading the WKO
helm chart to put in a new value for the list (one that takes the existing value and either
adds a new namespace or removes one of the namespaces). This mechanism is
supported in WKO 3.x and 4.x and is the mechanism in OSM 7.4.1 CNTK as well (upto
7.4.1.0.13). With this, the user needs RBAC access to the WKO namespace, which is
likely administratively problematic in a large shared environment.

• Label: When WKO is installed, it is given a label to look for in namespaces. Any
namespace in the cluster that has that label is monitored. Adding or removing that label
from a namespace has the effect of adding or removing that namespace from WKO's
monitoring. This mechanism is supported in WKO 4.x. With this, the user needs RBAC
access only to the OSM project namespace and not to WKO namespace.

For OSM cloud native, the recommendation is to use the Label mechanism for WKO 4.x and
especially for WKO 4.0.8 and newer.

12-1

Operator Installation
Before staring with the procedure in ths section, refer to OSM Compatibility Matrix for
release 7.5.0 for the list of supported WKO versions. It is mandatory to have WKO
installed with label-based monitoring mechanism for OSM 7.5.0.

If your existing WebLogic Kubernetes Operator satisfies the OSM 7.5.0 version
requirements and uses the label-based monitoring mechanism, no action is required.
Skip to the "Ingress Controller" section.

If you need to upgrade, it is recommended to install the new WKO into a new
namespace. As individual namespaces are deregistered from old WKO and registered
to new WKO, eventually, the old WKO will no longer be managing any namespaces. It
can then be safely uninstalled.

• Refer to Weblogic Kubernetes Operator documentation for operator installation at:
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/

• During installation, it is strongly recommended to choose a specific label that this
version of WKO must look for, rather than relying on the default label. Relying on
the default label causes problems when multiple WKOs need to be installed for
any reason (such as during a phased WKO upgrade).

• To provide the custom label, use the domainNamespaceLabelSelector parameter
as shown below.

• It is recommended that the custom label you select is descriptive and unique to
this WKO. In the example below, this is achieved by specifying the full WKO
version.

Eg: For installing WKO version 4.1.2 with a custom label
wlsko412=enabled, use below after configuring the right helm repo
$ helm install $WLSKO_NS \
 weblogic-operator/weblogic-operator \
 --namespace $WLSKO_NS \
 --version 4.1.2 \
 --set "domainNamespaceLabelSelector=wlsko412\=enabled"

Unregistering and Registering the Namespace with Weblogic Operator
Using your older CNTK, unregister your namespace forcefully with operator using
"unregister-namespace.sh" script

Set required variables with earlier CN values (before upgrade)
$ export OSM_CNTK=<osm_7.4.1_cntk>
$ export WLSKO_NS=<operator_namespace_before_upgrade>
$ export WLSKO_HOME=<path_for_operator_home>
$ $OSM_CNTK/scripts/unregister-namespace.sh -p $PROJECT -t wlsko -f

Install/upgrade your operator by following weblogic operator documentation.

Chapter 12
Installing WebLogic Kubernetes Operator

12-2

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/

Register OSM namespace with recent weblogic operator using "register-namespace.sh"
script.

Set required variables with OSM CN 7.5.0 values
$ export OSM_CNTK=<osm_7.5.0_cntk>
$ export WLSKO_NS=<operator_namespace_before_upgrade>
$ $OSM_CNTK/scripts/register-namespace.sh -p $PROJECT -t wlsko -l <custom-
label>

Ingress Controller
OSM cloud native supports any annotations based ingress controller.

If you were using Traefik ingress controller earlier, you can continue to use it. However,
support for Traefik is deprecated in favour of ingress controllers that support the generic
Kubernetes ingress API. See "Working with Ingress, Ingress Controller, and External Load
Balancer" for more details. If you wish to transition to such an Ingress Controller, it is
recommended to remove the existing Traefik ingress objects (delete-ingress.sh) and
unregister the namespace from Traefik (unregister-namespace.sh -t traefik) before
beginning the upgrade process. As part of upgrading, add the required annotations for the
Ingress object to your 7.5 specification files, ensure Ingress objects in the namespace will be
monitored by the replacement Ingress Controller and create the new Ingress (create-
ingress.sh with the 7.5 toolkit.

Updating Specification Files
This section focuses on the delta in the specification files between OSM 7.4.1 and OSM 7.5.0
releases.

It is strongly recommended that you begin by copying over the sample specification files from
the OSM 7.5.0 CNTK. You can then re-make the customizations from your current
specification files one by one.

Updating the Project Specification
This section describes the sections that you update in the project specification:

• OSM cloud native 7.5.0 adds new capabilities (such as OSMGW and RTUX
microservices) for which there are corresponding sections in the project and instance
specification files. See to "Creating OSM Cloud Native Images" for details.

• The default value for Ingress Controller has been set to GENERIC. If you wish to retain
Traefik, change this to TRAEFIK.

• If you use GENERIC ingress controller, the required annotations need to be added to the
"ingress" section. In the project specification file, ingress.annotations lists the required
annotations if you are using Nginx ingress controller. Adjust the annotations based on the
ingress controller that you use.

• In OSM 7.4.1 cloud native, there is a separate step to deploy WME WAR file to the
instance as a custom archive. In 7.5.0 cloud native, WebLogic Monitoring Exporter can
be enabled and disabled by changing the value of enabled in the instance.yaml. By
default, it is set to true, which creates a sidecar container for WME using the default
image for the version of WebLogic Operator in use. If you want to use a different image

Chapter 12
Ingress Controller

12-3

than the one that WKO uses, you have a provision to do that by updating WME in
the project specification file.

• There are new capabilities added for deploying cartridges. OSM cloud native
cartridge deployment supports container image built with par file. Either the url or
the Image field should be populated for a particular cartridge but not both. See
"Cartridge par Sources" for more details.

• Update the requiredTargetSystems section if your cartridge needs to integrate
with external systems using REST API.

• Defining osmWLSTargetNodes restricts all OSM cloud native WebLogic pods and
DB Installer pods to worker nodes, that match the label conditions and for these
pods and it will take precedence over osmcnTargetNodes.

• The remaining sections for which there are no changes from OSM cloud native
7.4.1 need to be copied as-is to 7.5.0 based on your usage of the respective
functionality in OSM cloud native 7.5.0.

Updating the Instance Specification
This section describes the sections that you update in the instance specification:

• If you are planning to use log masking functionality, uncomment and use the
logMaskingCustomRegexes section.

• OSM 7.5.0 supports fine graining the log level for OSM core using the instance
specification file. Uncomment and use the log section for overriding the default log
level.

• WebLogic Monitoring Exporter can be enabled and disabled by changing the value
of weblogicMonitoringExporter.enabled in the instance.yaml file. By
default, this is set to true.

• OSM 7.5.0 introduces support for FluentD as a sidecar container for reading the
logs from OSM Servers and DB Installer. Enable the fluentdLogging section
for making use of this functionality. See "Configuring Fluentd Logging" for more
details.

• The storage volume must specify "pvc" to be used for persistent storage or as
"emptydir" to share with a custom sidecar which is enabled via "sidecar.enabled"
in instance specification file.

storageVolume:
 enabled: true
 type: pvc # Acceptable values are pvc and emptydir
 volumeName: storage-volume
 pvc: storage-pvc # Specify this only in case type is pvc

• If you want to enable a sidecar other than FluentD, make use of the section
sidecar.enabled.

• For enabling SSL using generic Ingress, add the annotations required for OSM.
The ssl.ingress.annotations section in the instance specification file lists
the sample annotations required for OSM if you are using Nginx ingress controller.
Add the annotations based on the ingress controller that you choose.

• In the 7.4.1 cloud native, instance.yaml file contains the loadBalancerPort
section. In OSM 7.5.0 cloud native, it is renamed to inboundGateway. As part of

Chapter 12
Updating Specification Files

12-4

the inboundGateway section, provide the host and port details of the actual ingress point
or the loadbalancer.

• OSM cloud native 7.5.0 introduces support for Host Aliases with which you can achieve
hostname resolution inside the pods. Refer to the hostAliases element and its
comments in the instance specification for more details.

• Update the osm-gateway and osmRuntimeUX sections as per "Configuring Target
Systems for Events and System Interactions".

• If you have defined targetSystems in the project specification file, provide the details
of the respective target system in the instance specification file.

• Copy the remaining sections for which there are no changes from OSM cloud native 7.4.1
as-is to 7.5.0 based on your usage of the respective functionality in OSM cloud native
7.5.0.

Updating Shape Specification
If you have a custom shape specification, identify the standard shape on which your custom
shape is based. Make a copy of this standard shape from the OSM 7.5.0 CNTK and make
your customization one-by-one to it.

Upgrading to OSM Cloud Native 7.5.0
Oracle recommends that upgrade the existing OSM 7.4.1 cloud native application to 7.5.0
cloud native using the same project namespace and the instance name.

Prerequisites for the Upgrade
Check OSM Compatibility Matrix for details about the required and supported versions of the
pre-requisite software, before proceeding with the upgrade.

Note:

Perform the following steps using the existing 7.4.1 Cloud Native toolkit
specification files.

Delete the Instance

To delete an instance, run the following:

$OSM_CNTK/scripts/delete-instance.sh -p project -i instance

Delete the Ingress

To delete an ingress, run the following:

$OSM_CNTK/scripts/delete-ingress.sh -p project -i instance

Chapter 12
Upgrading to OSM Cloud Native 7.5.0

12-5

If you are switching from Traefik as part of this upgrade, to stop Traefik from
monitoring this namespace, run the following:

$OSM_CNTK/scripts/unregister-namespace.sh -t traefik -p project

Preparation Steps for the Upgrade
This section lists preparatory steps for the upgrade:

• Take a backup of the working OSM 7.4.1 project and instance specification files or
rely on your source code management system to maintain versioning.

• Take the OSM 7.4.1 DB schema backup before the upgrade.

• Take a backup of the following secrets and also if there are any custom OSM
secrets created for 7.4.1 cloud native before the upgrade.

<project>-<instance>-database-credentials
<project>-<instance>-embedded-ldap-credentials
<project>-<instance>-weblogic-credentials
<project>-<instance>-rcudb-credentials
<project>-<instance>-opss-wallet-password-secret
<project>-<instance>-runtime-encryption-secret
<project>-<instance>-openldap-credentials
<project>-<instance>-osmcn-cred-<user> (If you have this secret
created. Ignore, if the secret do not exist.)
<project>-<instance>-saf-<remote-system> (If you have this secret
created. Ignore, if the secret do not exist.)

• Run the following command on each secret which would copy the output to the
secret.yaml file. Maintain a separate file for each secret.

kubectl get secret -n project secretName -o yaml > secret.yaml

• Set the $OSM_CNTK environment variable to point to the 7.5.0 cloud native
toolkit.

• Copy the specification files updated in your earlier steps to your $SPEC_PATH
location and rename them to match the same as existing 7.4.1 cloud native
specification files (to match the existing project name and the instance name).

• (Optional) If you use a newer version of WKO, install the newer version WKO in a
new namespace and register the project namespace with it.

• (Optional) If you replace Traefik with another ingress controller, install the new
ingress controller.

Updating the Secrets

Note:

Starting with the below steps, you will use the OSM 7.5.0 cloud native toolkit
and specification files.

Chapter 12
Upgrading to OSM Cloud Native 7.5.0

12-6

Update Existing Secrets
As a pre-requisite to using the toolkit for upgrading the OSM 7.4.1 cloud native environment,
you must update the below secrets for access to the following:

• OSM database

• RCU DB

• OSM system users

Secrets can be updated using manage-instance-credentials as below:

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance
update osmdb,rcudb,osmldap

In OSM 7.5.0 cloud native, when osmldap is chosen, the script prompts the password for a
new user "osm-gateway-internal", which is used to access the OSM Gateway microservices.

Creating New Secrets

Creating OIDC Secret for OSMGW and RTUX Microservices

You must create the OSMGW and RTUX secrets to access OSM Gateway and RTUX
microservices which are secured with OIDC (OpenID connect) by default.

Run the following script to create the required secrets for access to OSM Gateway services.
Make sure you have the required credentials available before running this script.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance
create oidc

where oidc specifies the details of the OIDC IDP that will be used to authenticate access to
the gateway API.

This command creates secret project-instance-oidc-credentials.

Creating TLS Secrets

If you have SSL turned on for incoming connections (by setting ssl.incoming to true in the
specification files), then you must create wlstls and gatewaytls secrets as below to provide
the required certificate information. This information is provided securely to the ingress
controller.

This secret carries the application or ingress TLS credentials for OSM.

Chapter 12
Upgrading to OSM Cloud Native 7.5.0

12-7

Note:

If you have the secrets project-instance-osm-tls-cert, project-
instance-admin-tls-cert and project-instance-t3-tls-cert already
created as part of 7.4.1, skip this step and proceed to gatewaytls secret
creation.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance create wlstls

This carries the application and ingress TLS credentials for microservices.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance create gatewaytls

Creating FluentD Credentials

If FluentD is enabled as a sidecar, then create the credentials for its connection to
Elastic Search server.

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i
instance create fluentd

Creating Target Systems Credentials

If security schemes for the target systems are enabled, then create secrets for each
target system seperately.

$OSM_CNTK/scripts/manage-target-system-credentials.sh -p project -i
instance -n securitySchemeName -t authenticationType create

Upgrading the OSM DB Schema
Make sure you have the updated specification files for OSM 7.5.0 in
your $SPEC_PATH.

Run the following command to upgrade the existing OSM schema:

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -
s $SPEC_PATH -c 1

Back-out procedure

Perform this procedure if the DB Schema upgrade does not work as expected. Use the
7.5.0 cloud native toolkit and specification files for this procedure.

To perform back-out procedure:

Chapter 12
Upgrading to OSM Cloud Native 7.5.0

12-8

1. Drop the OSM Schema using DB installer code 8.

$OSM_CNTK/scripts/install-osmdb.sh -p project -i instance -c 8

2. Delete all the secrets that were created while updating the secrets (including fluentd,
gatewaytls, target systems).

$OSM_CNTK/scripts/manage-instance-credentials.sh -p project -i instance
delete oidc,osmdb,rcudb,wlsadmin,osmldap,opssWP,wlsRTE,fluentd,gatewaytls

$OSM_CNTK/scripts/manage-target-system-credentials.sh -p project -i
instance -n security_scheme_name delete (optional)

3. Restore the OSM 7.4.1 schema backup that was taken during the "Preparation Steps for
the Upgrade" task.

4. Copy the 7.4.1 cloud native backup specification files to $SPEC_PATH location and set
the $OSM_CNTK variable to point to the 7.4.1 CNTK.

5. Import all the secrets from the backup files taken before the upgrade. Run the following
command using each secret file to import the secret.

kubectl apply -f secret.yaml

6. Create the instance.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s $SPEC_PATH

7. Create the ingress.

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

OSM Application Upgrade
Make sure you have the updated specification files for OSM 7.5.0 in your $SPEC_PATH.

Run $OSM_CNTK/scripts/create-instance.sh to create an instance with OSM 7.5.0 cloud
native artifacts.

$OSM_CNTK/scripts/create-instance.sh -p project -i instance -s $SPEC_PATH

Once the create-instance.sh script execution is completed, admin and managed server pods
will be in the running state.

Create the ingress.

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s $SPEC_PATH

Back-out procedure (in case OSM application upgrade didn't work as expected):

With 7.5.0 cloud native toolkit and specification files, follow below steps:

Chapter 12
Upgrading to OSM Cloud Native 7.5.0

12-9

1. Delete the OSM cloud native instance.

$OSM_CNTK/scripts/delete-instance.sh -p project -i instance

2. Perform the DB backout procedure as described above.

Chapter 12
Upgrading to OSM Cloud Native 7.5.0

12-10

13
Moving to OSM Cloud Native from a
Traditional Deployment

You can move to an OSM cloud native deployment from your existing OSM traditional
deployment. This chapter describes tasks that are necessary for moving from a traditional
OSM deployment to an OSM cloud native deployment.

Supported Releases
You can move to OSM cloud native from all supported traditional OSM releases. In addition,
you can move to OSM cloud native within the same release, starting with OSM release
7.4.1.0.1.

Performing Pre-move and Post-move Tasks
Some OSM releases require running some tasks before and after moving to OSM cloud
native. These tasks are described in the documentation of the target version of the OSM
cloud native release. As mentioned in the documentation, before and after moving to OSM
cloud native, perform these tasks.

Some of the patch readme files describe potential error conditions and workarounds listed in
the Known Issues with Workaround section. Monitor and apply these too if required. An
example of this (documented in the 7.3.5.1.x Patch Readmes) is the error condition where
OM_DB_STATS_PKG remains in an invalid state. If you encounter this issue, apply the
appropriate workaround to grant the required permissions and rebuild the package.

About the Move Process
The move to OSM cloud native involves offline preparation as well as maintenance outage.
This section outlines the general process as well as the details of the steps involved in the
move to OSM cloud native. However, there are various places where choices have to be
made. It is recommended that a specific procedure be put together after taking into account
these choices in your deployment context.

The OSM cloud native application layer runs on different hardware locations (within a
Kubernetes cluster) than the OSM traditional application layer.

The process of moving to OSM cloud native involves the following sets of activities:

• Pre-move development activities, which include the following tasks:

– Building OSM cloud native images (cloud native task)

– Creating project specification OSM cloud native (cloud native and solution task)

– Creating instance specification OSM cloud native (cloud native and solution task)

– Rebuilding cartridges using Design Studio and OSM SDK (solution task)

– Creating an OSM cloud native instance for testing (cloud native task)

13-1

– Validating your solution cartridges (solution task)

– Deleting the test OSM cloud native instance (cloud native task)

– Finalizing your specifications (cloud native and solution task)

• Data synchronization activities, which include the following tasks:

– Preparing a new database server (database task)

– Synchronizing the current database server (database task)

• Tasks for moving to OSM cloud native, which include the following:

– Quiescing the OSM traditional instance (solution task)

– Exporting JMS messages (WebLogic Server administration task)

– Backing up the database (database task)

– Upgrading the database (database task)

– Upgrading the OSM schema and cartridges (database task)

– Creating an OSM cloud native instance (cloud native task)

– Importing JMS messages (WebLogic Server administration task)

– Performing a smoke test (solution task)

– Switching all upstream systems (solution task)

The following diagram illustrates these activities.

Note:

In the diagram, the short form of "OSM CN" stands for "OSM cloud native".

Chapter 13
About the Move Process

13-2

Figure 13-1 Move to OSM Cloud Native Process

Pre-move Development Activities
In preparation to move your traditional OSM instance into an OSM cloud native environment,
you must do the following activities:

1. Build OSM cloud native images. This task includes creating the OSM Docker image and
the DB Installer Docker image by using the OSM cloud native download packages. See
"Creating OSM Cloud Native Images" for details.

2. Analyze your solution and create a project specification for your OSM cloud native
instance. This specification includes details of JMS queues and topics, as well as SAF
connections. See "Configuring the Project Specification" for details. If your solution
requires model extensions or custom files, create the additional YAML files for those as
well.

3. Create an instance specification for your OSM cloud native instance. Preferably, create a
test instance, pointing to a test PDB. You can later change this specification to point to
the migrated database. Similarly, any SAF endpoint details should be pointing to the test
components or emulators. When creating the specification, choose your cloud native
production shape - prodsmall, prod, prodlarge. Alternatively, create a custom production
shape by copying and modifying one of these. See "Creating Custom Shapes" for details
about custom shapes.

4. If your OSM cartridges were built against an OSM deployment that is older than 7.3.5,
use Design Studio to rebuild them with the OSM SDK of the target release. Select the
Design Studio version based on its compatibility matrix.

Chapter 13
Pre-move Development Activities

13-3

5. Create an OSM cloud native test instance and test your specifications. To do this,
create your cartridge users document and follow the process (create instance
secrets, install the RCU schema, install the OSM schema, deploy your cartridges,
bring up OSM, create ingress, and run test orders) to bring up the OSM cloud
native instance as described in "Creating a Basic OSM Instance".

6. Validate the solution.

7. Shut down your test instance and remove the associated secrets, PDB, and
ingress.

8. Finalize your specifications for the move by picking up any changes from your test
activity and re-create instance secrets to use the migrated database. Change the
instance specification to:

a. Point to the migrated database location once it is known.

b. Switch SAF endpoints to the actual components, instead of emulators.

c. Arrange for the same number of managed servers in your OSM cloud native
instance.

OSM cloud native requires the use of standard sizing for managed servers.
This is represented as a set of "shapes". As a result, it is possible that your
OSM cloud native instance needs a different number of managed servers to
handle your workload as compared to your OSM traditional instance. For the
purpose of this migration activity, it is recommended to start with the same
number of managed servers, perform the import and smoke tests, and then
scale (scale-up or scale-down) the OSM cloud native instance to the desired
size.

If it is not possible to arrange for the same number of managed servers in your
OSM cloud native instance as there are in your OSM traditional instance, it is
recommended that you get as close as you can. You can then import the JMS
messages from the leftover managed servers into one of the OSM cloud
native managed servers. For example, consider an OSM traditional instance
with four managed servers (ms1, ms2, ms3, and ms4). The analysis may
show that you only need two managed servers (cn-ms1 and cn-ms2) of prod
shape in your OSM cloud native instance. You can import all JMS messages
from ms1 into cn-ms1, and from ms2 into cn-ms2. And then, import the
remaining messages from ms3 to cn-ms1 and from ms4 to cn-ms2. Try to
spread the load as evenly as possible.

Moving to an OSM Cloud Native Deployment
Moving to an OSM cloud native deployment from an OSM traditional deployment
requires performing the following tasks:

1. Quiesce the OSM traditional instance. See "Quiescing the Traditional Instance of
OSM".

2. Export JMS messages. See "Exporting and Importing JMS Messages".

3. Take a back up and upgrade the database. See "Upgrading the Database".

4. Upgrade the OSM schema and cartridges. See "Upgrading the OSM Schema and
Cartridges".

5. Create the OSM cloud native instance. See "Creating Your Own OSM Cloud
Native Instance".

Chapter 13
Moving to an OSM Cloud Native Deployment

13-4

6. Import JMS messages. See "Importing JMS Messages".

7. Perform a smoke test. See "Performing a Smoke Test". Once the OSM cloud native
instance passes smoke test and is optionally resized to the desired target value, shut
down the OSM traditional instance fully.

8. Switch all upstream systems to the OSM cloud native instance. See "Switching
Integration with Upstream Systems".

Quiescing the Traditional Instance of OSM
At the start of the maintenance window, the OSM traditional instance must be quiesced. This
involves stopping database jobs, stopping all upstream and peer systems from sending
messages (for example, http/s, JMS, and SAF) to OSM, and ensuring all human users are
logged out. It also involves pausing the JMS queues so that no messages get queued or
dequeued. The result is that OSM is up and running, but completely idle.

Exporting and Importing JMS Messages
Irrespective of the persistence mechanism you use (file-based or JDBC) in your OSM
traditional instance, you must still export and import outstanding messages as described in
this section. If file-based persistence is used, this procedure accomplishes a switch to JDBC-
based persistence. On the other hand, if JDBC-based persistence is already in use, this
procedure brings the setup (in WebLogic and in the database) in line with OSM cloud native
requirements.

Overall, this procedure consists of exporting the JMS messages to disk, switching over to the
OSM cloud native instance, and importing the JMS messages from disk. Due to the
configuration in the OSM cloud native instance, the imported messages will get populated
into the appropriate database tables of the OSM cloud native instance rather than their
original location. The time taken for the export and import depends on the number of
messages that are in the persistent store to begin with.

You can migrate the JMS messages in any of the following ways:

• Migrating JMS Messages By Using the Cloud Native Toolkit

• Migrating JMS Messages By Using the WebLogic Administration Console

Migrating JMS Messages By Using the Cloud Native Toolkit
This section describes the steps for migrating JMS messages by running the scripts provided
with the OSM cloud native toolkit.

Note:

This procedure is applicable if you are moving from OSM traditional releases
7.3.x.x.x and 7.4.x.x.x. to OSM cloud native release 7.4.1.0.8 and later.

The scripts you run and the steps you perform are different for the options (Option A and
Option B) illustrated in Figure 12-1 Move to OSM Cloud Native Process and your choice.

See the following topics for the details:

• Prerequisites for Running the Migration Scripts

Chapter 13
Moving to an OSM Cloud Native Deployment

13-5

• Using a New Database Server for the Cloud Native Instance (Option A)

• Upgrading the Database Server for the OSM Traditional Environment and Using it
for the Cloud Native Instance (Option B)

Prerequisites for Running the Migration Scripts

Before performing the steps for the option you have chosen, do the following:

• Update the $OSM_CNTK/samples/migration/config.sh file, provided with the
toolkit, with details about the OSM traditional and cloud native environments.

• Ensure that all In progress orders are completed to the extent possible. This
minimizes the impact on the systems.

• Grant sufficient RBAC permissions, equivalent to an Admin role, for the user who
is running the scripts on the cloud native instance (bastion host or equivalent).

• In WebLogic Administration Console, in the settings for the admin server of the
OSM traditional deployment, on the General subtab of the Protocols tab, select
Enable Tunneling. This enables communication to the server for exporting JMS
messages.

• Ensure that the database snapshot of the cloud native system is taken.
Alternatively, the cloud native database can be rebuilt if there is no prior data to
preserve. This would be useful in case of a failure when importing the messages.

• Verify the specification files to ensure that all user-defined queues (both JMS and
SAF) on the traditional OSM instance are present on the cloud native instance.
The queue destinations do not have to match.

Using a New Database Server for the Cloud Native Instance (Option A)

If you choose to use a new database server for the cloud native instance, do the
following:

1. Ensure that the instances of both traditional and cloud native deployments are up
and running.

2. Ensure that the required HTTP and HTTPS ports are enabled in the firewall for
connecting to the traditional system from the cloud native instance.

3. Run the following script from the bastion host or an equivalent to migrate the JMS
messages:

$OSM_CNTK/samples/migration/migrate-jms-messages.sh command

The script contains commands that can perform full migration or individual
operations such as exporting, importing, validating, and resuming queues.

Run $OSM_CNTK/samples/migration/migrate-jms-messages.sh -h for details
about the commands to use with the script.

Upgrading the Database Server for the OSM Traditional Environment and Using it for the
Cloud Native Instance (Option B)

Chapter 13
Moving to an OSM Cloud Native Deployment

13-6

If you choose to upgrade the database server of your traditional deployment and use it for the
cloud native instance, do the following:

1. Ensure that the admin server and the managed servers of the OSM traditional
deployment are up and running.

2. Copy the following scripts to a server on which Oracle Fusion Middleware is installed:

• $OSM_CNTK/samples/migration/export-jms-messages.sh

• $OSM_CNTK/samples/migration/config.sh

3. Update the config.sh file with details about the OSM traditional environment.

4. Run the following script, which exports the JMS messages from the traditional OSM
environment:

$OSM_CNTK/samples/migration/export-jms-messages.sh command

Run $OSM_CNTK/samples/migration/export-jms-messages.sh -h for details about the
commands to use with the script.

5. If the messages are exported successfully and you want to proceed with the migration,
shut down the OSM traditional deployment servers. If there are issues with the export,
run the script again.

6. Ensure the server of the OSM cloud native deployment is up and running.

7. After the script finishes exporting the JMS messages, copy the migration scripts
from $OSM_CNTK/samples/migration and the output files from the OSM traditional system
to the admin server pod of the OSM cloud native instance manually.

8. Update the path to the exported files in the $OSM_CNTK/samples/migration/config.sh
file.

9. Stop the database jobs.

10. On the OSM cloud native admin server pod, run the following script, which imports the
JMS messages into the OSM cloud native deployment:

$OSM_CNTK/samples/migration/import-jms-messages.sh command

Run $OSM_CNTK/samples/migration/import-jms-messages.sh -h for details about the
commands to use with the script.

11. If the messages are imported into the OSM cloud native instance without errors and you
want to transition to the cloud native deployment, resume the queues on the OSM cloud
native instance and start the database jobs back up.
Resume the queues on the cloud native instance using the appropriate options with the
migrate-jms-messages.sh script or the import-jms-messages.sh script.

If the import fails or if you find any errors while running the script, do the following:

a. Make sure that copies of the exported files exist outside of the OSM cloud native
admin pod.

b. Shut down the OSM cloud native instance.

c. Restore the OSM cloud native database from backup. Alternatively, if there is no prior
data, use the install-osmdb.sh script in the cloud native toolkit to delete the OSM
and RCU database schemas and recreate them.

Chapter 13
Moving to an OSM Cloud Native Deployment

13-7

d. Start the OSM cloud native servers.

e. Copy the exported files to the admin server pod.

f. Run the $OSM_CNTK/samples/migration/import-jms-messages.sh script
using the appropriate commands.

Migrating JMS Messages By Using the WebLogic Administration Console
This section describes the steps for migrating JMS Messages by using the WebLogic
Administration Console.

Perform the following tasks to migrate JMS messages:

• Exporting JMS Messages

• Importing JMS Messages

Exporting JMS Messages
Before exporting JMS messages, validate that your OSM traditional instance has the
WebLogic patch 31169032 (or its equivalent for your WebLogic version) installed. This
patch is required to properly export OSM JMS messages. If it is not installed, follow
the standard WebLogic patch procedures to procure and install the patch.

To export JMS messages:

1. Login to the WebLogic Console and navigate to the list of OSM queues.

2. For each queue, open its Monitoring tab to get the list of current destinations for
the queue. The Monitoring tab shows as many destinations as the number of
managed servers.

3. Select each destination and click Show Messages. If there are any messages
pending in this destination of this queue, click the Export button to export all the
messages to a file. Use the queue name and destination in the filename for ease
of tracing.
Future-dated orders result in pending messages in
OrchestrationDependencyQueue.

4. If you have defined other JMS Modules as part of your solution, repeat steps 2 and
3 for each of those modules.

Importing JMS Messages
Before importing JMS messages, ensure that your OSM cloud native instance is up
and running, but quiesced (queues paused and database jobs stopped). It is
recommended that your OSM cloud native instance has the same number of managed
servers as your OSM traditional instance.

To import JMS messages:

1. Transfer all the exported files into the Admin Server pod using the kubectl cp
command.

2. Log in to the WebLogic Console and navigate to JMS Modules where the OSM
queues are listed.

3. For each queue for which you have an export file, open its Monitoring tab.

Chapter 13
Moving to an OSM Cloud Native Deployment

13-8

4. For each destination on this queue for which you have an export file, find the same
destination in the list

5. Select the destination and click Show Messages. Click Import to specify the filename
and import the messages.

6. If your export contains files that came from a custom JMS module in your OSM traditional
instance, you should still see those queues in osm_jms_module in your OSM cloud native
instance. If you do not, check that your project specification is up to date.

Upgrading the Database
To upgrade the database, you perform the following tasks:

• Upgrading the Database Server

• Preparing the Required Database Entities for OSM Cloud Native

Upgrading the Database Server
You may need to upgrade the database server itself to the version supported by the OSM
cloud native release you are moving to. To identify the required version of the database
server and to determine if you need a database server upgrade, see OSM Compatibility
Matrix.

If you do need a database server upgrade, choose one of the following options:

• Option A: Create an additional database server: Create a second database server of
the target database version (with required patches), seeded with an RMAN backup of the
OSM traditional database. Enable Oracle Active DataGuard to continuously synchronize
data from the OSM traditional database to this new database. Use this new database for
the OSM cloud native instance. For further details, see Mixed Oracle Version support with
Data Guard Redo Transport Services (Doc ID 785347.1) knowledge article on My Oracle
Support. The exact mechanisms to be used are subject to circumstances such as
resource availability, size of data, timing, and so on but the goal is to have a second
database server running the target database version but always containing the data from
the OSM traditional database.
This option has the following advantages:

– Allows switching from a standalone database to a Container DB and Pluggable DB
model that is required for OSM cloud native, without impacting other users of the
existing database.

– Reduces the duration of a service outage since you can avoid having to backup the
database and upgrade it as part of the maintenance window.

– Preserves the OSM traditional database unchanged reducing the risk and cost
associated with reverting to OSM traditional instance, if that becomes necessary.

• Option B: Retain the existing DB server: You can retain the existing database server,
upgrading it in-place to the target database version and patches.

If you choose option A, the upgrade process must pause after the export of JMS messages,
and ensure the Active DataGuard sync is complete (if there are pending redo logs). Then,
before proceeding, the sync must be turned off and the new database must be brought online
fully.

Chapter 13
Moving to an OSM Cloud Native Deployment

13-9

Preparing the Required Database Entities for OSM Cloud Native
To meet the OSM cloud native pre-requisites, you will have to create an RCU schema
in the database using the DB Installer, with command 7.

To ensure a clean start for OSM cloud native managed servers, delete the leftover LLR
tables. When OSM cloud native managed servers start, these tables are recreated
with the required data automatically.

To delete the LLR tables:

1. Connect to the database using the OSM cloud native user credentials

2. Get the list of tables to delete:

select 'drop table '||tname||' cascade constraints PURGE;' from tab
where tname like ('WL_LLR_%');

3. For the tables listed, run the commands for dropping a table.

Upgrading the OSM Schema and Cartridges
To upgrade the OSM schema and cartridges, do the following:

• Migrate the OSM schema: To migrate the schema of your OSM traditional
instance into a schema that is compatible with OSM cloud native, run the OSM
cloud native DB Installer with command 12.

• Upgrade the OSM Schema to the target version: If you are running a version of
OSM traditional instance that is older than the target OSM cloud native version,
use the OSM cloud native DB Installer with command 1 to upgrade the OSM
schema to the correct version.

• Rebuild solution cartridges: Depending on the version of your current OSM
traditional deployment, you may have to rebuild your solution cartridges using the
latest release of Design Studio and the target OSM SDK. This is a preparatory
step, and the new cartridge lineup would be reflected in the project specification
that is also created as part of the preparatory step. All cartridges built targeting
OSM versions prior to release version 7.3.5 require rebuilding. This rebuild is the
same requirement that exists for OSM traditional deployments as well.

Switching Integration with Upstream Systems
After you shut down the OSM traditional instance fully, do the following:

• Ensure that the OSM cloud native instance has its JMS and SAF objects
unpaused and its DB jobs restarted.

• Configure the upstream and peer systems to resume sending messages. See
"Integrating OSM" for more details.

Reverting to Your OSM Traditional Deployment
During the move to OSM cloud native, if there is a need to revert to your OSM
traditional deployment, the exact sequence of steps that you need to perform depend
on the options you have chosen while moving to OSM cloud native.

Chapter 13
Reverting to Your OSM Traditional Deployment

13-10

In general, the OSM traditional deployment application layer should be undisturbed through
the upgrade process. If Option A was followed for upgrading the database, the OSM
traditional instance can simply be started up again, still pointing to its database.

If however, Option B was followed for upgrading the database, the following steps are
required before the OSM traditional instance can be spun up:

• Revert the database server version to the earlier version (if a database server upgrade
was performed as part of the switch to OSM cloud native)

• Restore the database contents from the backup taken as part of Option B for upgrading
the database.

Cleaning Up
Once the OSM cloud native instance is deemed operational, you can release the resources
used for the OSM traditional application layer.

If Option A was adopted for the database, then you can delete the database used for OSM
traditional instance and release its resources as well. If Option B was followed and your OSM
traditional instance was using JDBC persistent stores, the tables corresponding to these are
now defunct and you can delete these as well.

Chapter 13
Cleaning Up

13-11

14
Debugging and Troubleshooting

This chapter provides information about debugging and troubleshooting issues that you may
face while setting up OSM cloud native environment and creating OSM cloud native
instances.

This chapter describes information about the following:

• Setting Up Java Flight Recorder (JFR)

• Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

• Common Error Scenarios

• Known Issues

Setting Up Java Flight Recorder (JFR)
The Java Flight Recorder (JFR) is a tool that collects diagnostic data about running Java
applications. OSM cloud native leverages JFR. See Java Platform, Standard Edition Java
Flight Recorder Runtime Guide for details about JFR.

You can change the JFR settings provided with the toolkit by updating the appropriate values
in the instance specification.

To analyze the output produced by the JFR, use Java Mission Control. See Java Platform,
Standard Edition Java Mission Control User's Guide for details about Java Mission Control.

JFR is turned on by default in all managed servers. You can disable this feature by setting the
enabled flag to false.

You can customize how much data is maintained, by changing the max_age parameter in the
instance specification:

Java Flight Recorder (JFR) Settings
jfr:
 enabled: true
 max_age: 4h

Data that is generated by the JFR is saved in the container in /logMount/project-instance/
performance/$server_name.

Persisting JFR Data

JFR data can be persisted outside of the container by re-directing it to persistent storage
through the use of a PV-PVC. See "Setting Up Persistent Storage" for details.

Once the storage has been set up, enable storageVolume and set the PVC name. Once
enabled, JFR data is re-directed automatically.

The storage volume must specify the PVC to be used for persistent storage.

14-1

storageVolume:
 enabled: true
 pvc: storage-pvc

Troubleshooting Issues with Traefik, OSM UI, and WebLogic
Administration Console

This section describes how to troubleshoot issues with access to the OSM UI clients,
WLST, and WebLogic Administration Console.

It is assumed that Traefik is the Ingress controller being used and the domain name
suffix is osm.org. You can modify the instructions to suit any other domain name
suffix that you may have chosen.

The following table lists the URLs for accessing the OSM UI clients and the WebLogic
Administration Console, when the Oracle Cloud Infrastructure load balancer is used
and not used:

Table 14-1 URLs for Accessing OSM Clients

Client If Not Using Oracle Cloud
Infrastructure Load Balancer

If Using Oracle Cloud
Infrastructure Load Balancer

OSM Task Web Client http://
instance.project.osm.org:30305/
OrderManagement

http://
instance.project.osm.org:80/
OrderManagement

WLST http://
t3.instance.project.osm.org:3030
5

http://
t3.instance.project.osm.org:80

WebLogic Admin
Console

http://
admin.instance.project.osm.org:
30305/console

http://
admin.instance.project.osm.org:
80/console

Error: Http 503 Service Unavailable (for OSM UI Clients)

This error occurs if the managed servers are not running.

To resolve this issue:

1. Check the status of the managed servers and ensure that at least one managed
server is up and running:

kubectl -n project get pods

2. Log into WebLogic Admin Console and navigate to the Deployments section and
check if the State column for oms shows Active. The value in the Targets column
indicates the name of the cluster.
If the application is not Active, check the managed server logs and see if there are
any errors. For example, it is likely that the OSM DB Connection pool could not be
created. The following could be the reasons for this:

• DB connectivity could not be established due to reasons such as password
expired, account locked, and so on.

• DB Schema heath check policy failed.

Chapter 14
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

14-2

There could be other reasons for the application not becoming Active.

Resolution: To resolve this issue, address the errors that prevent the application from
becoming Active. Depending on the nature of the corrective action you take, you may
have to perform the following procedures as required:

• Upgrade the instance, by running upgrade-instance.sh

• Upgrade the domain, by running upgrade-domain.sh

• Delete and create a new instance, by running delete-instance.sh followed by
create-instance.sh

Security Warning in Mozilla Firefox

If you use Mozilla Firefox to connect to an OSM cloud native instance via HTTP, your
connection may fail with a security warning. You may notice that the URL you entered
automatically change to https://. This can happen even if HTTPS is disabled for the OSM
instance. If HTTPS is enabled, it only happens if you are using a self-signed (or otherwise
untrusted) certificate.

If you wish to continue with the connection to the OSM instance using HTTP, in the
configuration settings for your Firefox browser (URL: "about:config"), set the
network.stricttransportsecurity.preloadlist parameter to FALSE.

Error: Http 404 Page not found

This is the most common problem that you may encounter.

To resolve this issue:

1. Check the Domain Name System (DNS) configuration.

Note:

These steps apply for local DNS resolution via the hosts file. For any other
DNS resolution, such as corporate DNS, follow the corresponding steps.

The hosts configuration file is located at:

• On Windows: C:\Windows\System32\drivers\etc\hosts

• On Linux: /etc/hosts

Check if the following entry exists in the hosts configuration file of the client machine from
where you are trying to connect to OSM:

• Local installation of Kubernetes without Oracle Cloud Infrastructure load balancer:

Kubernetes_Cluster_Master_IP instance.project.osm.org
t3.instance.project.osm.org admin.instance.project.osm.org

• If Oracle Cloud Infrastructure load balancer is used:

Load_balancer_IP instance.project.osm.org
t3.instance.project.osm.org admin.instance.project.osm.org

Resolve the DNS configuration.

Chapter 14
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

14-3

2. Check the browser settings and ensure that *.osm.org is added to the No proxy
list, if your proxy cannot route to it.

3. Check if the Traefik pod is running and install or update the Traefik Helm chart:

kubectl -n traefik get pod
NAME READY STATUS RESTARTS AGE
traefik-operator-657b5b6d59-njxwg 1/1 Running 0
128m

4. Check if Traefik service is running:

kubectl -n traefik get svc
NAME TYPE CLUSTER-IP EXTERNAL-
IP PORT(S) AGE
oci-lb-service-traefik LoadBalancer 192.0.2.1
203.0.113.25 80:31115/TCP 20d <---- Is
expected in OCI environment only --
traefik-operator NodePort 192.0.2.25
<none> 443:30443/TCP,80:30305/TCP 141m
traefik-operator-dashboard ClusterIP 203.0.113.1
<none> 80/TCP 141m

If the Traefik service is not running, install or update the Traefik Helm chart.

5. Check if Ingress is configured, by running the following command:

kubectl -n project get ing
NAME
HOSTS
 ADDRESS PORTS AGE
project-instance-traefik
instance.project.osm.org,t3.instance.project.osm.org,admin.instance.
project.osm.org 80 89m

If Ingress is not running, install Ingress by running the following commands:

$OSM_CNTK/scripts/create-ingress.sh -p project -i instance -s
specPath

6. Check if the Traefik back-end systems are registered, by using one of the following
options:

• Run the following commands to check if your project namespace is being
monitored by Traefik. Absence of your project namespace means that your
managed server back-end systems are not registered with Traefik.

$ cd $OSM_CNTK
$ source scripts/common-utils.sh
$ find_namespace_list 'namespaces' traefik traefik-operator
"traefik","project_1", "project_2"

Chapter 14
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

14-4

• Check the Traefik Dashboard and add the following DNS entry in your hosts
configuration file:

Kubernetes_Access_IP traefik.osm.org

Add the same entry regardless of whether you are using Oracle Cloud Infrastructure
load balancer or not. Navigate to: http://traefik.osm.org:30305/
dashboard/ and check the back-end systems that are registered. If you cannot find
your project namespace, install or upgrade the Traefik Helm chart. See "Installing the
Traefik Ingress Controller as Alternate (Deprecated)".

Reloading Instance Backend Systems

If your instance's ingress is present, yet Traefik does not recognize the URLs of your
instance, try to unregister and register your project namespace again. You can do this by
using the unregister-namespace.sh and register-namespace.sh scripts in the toolkit.

Note:

Unregistering a project namespace will stop access to any existing instances in that
namespace that were working prior to the unregistration.

Debugging Traefik Access Logs

To increase the log level and debug Traefik access logs:

1. Run the following command:

$ helm upgrade traefik-operator traefik/traefik --version 9.11.0 --
namespace traefik --reuse-values --set logs.access.enabled=true

A new instance of the Traefik pod is created automatically.

2. Look for the pod that is created most recently:

$ kubectl get po -n traefik
NAME READY STATUS RESTARTS AGE
traefik-operator-pod_name 1/1 Running 0 0 5s

$ kubectl -n traefik logs -f traefik-operator-pod_name

3. Enabling access logs generates large amounts of information in the logs. After debugging
is complete, disable access logging by running the following command:

$ helm upgrade traefik-operator traefik/traefik --version 9.11.0 --
namespace traefik --reuse-values --set logs.access.enabled=false

Cleaning Up Traefik

Chapter 14
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

14-5

Note:

Clean up is not usually required. It should be performed as a desperate
measure only. Before cleaning up, make a note of the monitoring project
namespaces. Once Traefik is re-installed, run $OSM_CNTK/scripts/
register-namespace.sh for each of the previously monitored project
namespaces.

Warning: Uninstalling Traefik in this manner will interrupt access to all OSM
instances in the monitored project namespaces.

To clean up the Traefik Helm chart, run the following command:

helm uninstall traefik-operator -n traefik

Cleaning up of Traefik does not impact actively running OSM instances. However, they
cannot be accessed during that time. Once the Traefik chart is re-installed with all the
monitored namespaces and registered as Traefik back-end systems successfully,
OSM instances can be accessed again.

Setting up Logs

As described earlier in this guide, OSM and WebLogic logs can be stored in the
individual pods or in a location provided via a Kubernetes Persistent Volume. The PV
approach is strongly recommended, both to allow for proper preservation of logs (as
pods are ephemeral) and to avoid straining the in-pod storage in Kubernetes.

Within the pod, if PV is not configured, logs are available at: /u01/oracle/
user_projects/domains/domain/servers/ms1/logs and /u01/oracle/user_projects/
domains/domain. If PV is configured, logs are available at /logMount/project-
instance/logs.

Note:

Replace ms1 with the appropriate managed server or with "admin".

When a PV is configured, logs are available at the following path starting from the root
of the PV storage:

project-instance/logs.

The following logs are available in the location (within the pod or in PV) based on the
specification:

• admin.log - Main log file of the admin server

• admin.out - stdout from admin server

• admin_nodemanager.log: Main log from nodemanager on admin server

• admin_nodemanager.out: stdout from nodemanager on admin server

• admin_access.log: Log of http/s access to admin server

• ms1.log - Main log file of the ms1 managed server

Chapter 14
Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console

14-6

• ms1.out - stdout from ms1 managed server

• ms1_nodemanager.log: Main log from nodemanager on ms1 managed server

• ms1_nodemanager.out: stdout from nodemanager on ms1 managed server

• ms1_access.log: Log of http/s access to ms1 managed server

All logs in the above list for "ms1" are repeated for each running managed server, with the
logs being named for their originating managed server in each case.

In addition to these logs:

• Each JMS Server configured will have its log file with the name server_msn-
jms_messages.log (for example: osm_jms_server_ms2-jms_messages.log).

• Each SAF agent configured will have its log file with the name server_msn-
jms_messages.log (for example: osm_saf_agent_ms1-jms_messages.log).

OSM Cloud Native and Oracle Enterprise Manager

OSM cloud native instances contain a deployment of the Oracle Enterprise Manager
application, reachable at the admin server URL with the path "/em". However, the use of
Enterprise Manager in this Kubernetes context is not supported. Do not use the Enterprise
Manager to monitor OSM. Use standard Kubernetes pod-based monitoring and OSM cloud
native logs and metrics to monitor OSM.

Recovering an OSM Cloud Native Database Schema
When the OSM DB Installer fails during an installation, it exits with an error message. You
must then find and resolve the issue that caused the failure. You can re-run the DB Installer
after the issue (for example, space issue or permissions issue) is rectified. You do not have to
rollback the DB.

Note:

Remember to uninstall the failed DB Installer helm chart before rerunning it. Contact
Oracle Support for further assistance.

It is recommended that you always run the DB Installer with the logs directed to a Persistent
Volume so that you can examine the log for errors. The log file is located at: filestore/project-
instance/db-installer/{yyyy-mm-dd}-osm-db-installer.log.

In addition, to identify the operation that failed, you can look in the filestore/project-instance/
db-installer/InstallPlan-OMS-CORE.csv CSV file. This file shows the progress of the DB
Installer.

When you install the Oracle Database schema for the first time and if the database schema
installation fails, do the following:

1. Delete the new schema or use a new schema user name for the subsequent installation.

2. Restart the installation of the database schema from the beginning.

To recover a schema upgrade failure, do the following:

1. Find the issue that caused the upgrade failure. See "Finding the Issue that Caused the
OSM Cloud Native Database Schema Upgrade Failure" for details.

Chapter 14
Recovering an OSM Cloud Native Database Schema

14-7

2. Fix the issue. Use the information in the log or error messages to fix the issue
before you restart the upgrade process. For information about troubleshooting log
or error messages, see OSM Cloud Native System Administrator's Guide.

3. Restart the schema upgrade procedure from the point of failure. See "Restarting
the OSM Database Schema Upgrade from the Point of Failure" for details.

Finding the Issue that Caused the OSM Cloud Native Database
Schema Upgrade Failure

There are several files where you can look to find information about the issue. By
default, these files are generated in the managed server pod, but can be re-directed to
a Persistent Volume Claim (PVC) supported by the underlying technology that you
choose. See "Setting Up Persistent Storage" for details.

To access these files after the DB installer pod is deleted, re-direct all logs to the PVC.

See the following files for details about the issue:

• The database installation plan action spreadsheet file: This file contains a
summary of all the installation actions that are part of this OSM database schema
installation or upgrade. The actions are listed in the order that they are performed.
The spreadsheet includes actions that have not yet been completed. To find the
action that caused the failure, check the following files and review the Status
column:

– filestore/project-instance/db-installer/InstallPlan-OMS-CORE.csv

– filestore/project-instance/db-installer/InstallPlan-OMS_CLOUD-CORE.csv

The failed action is the first action with a status that is FAILED. The
error_message column of that row contains the reason for the failure.

• The database installation log file: This file provides a more detailed description of
all the installation actions that have been run for this installation. The issue that
caused the failure is located in the filestore/project-instance/db-installer/{yyyy-
mm-dd}-osm-db-installer.log file. The failed action, which is the last action that
was performed, is typically listed at the end of log file.

The following database tables also contain information about the database installation:

• semele$plan_actions: This contains the same information as the database plan
action spreadsheet. Compare this table to the spreadsheet in cases of a database
connection failure.

• semele$plan: This contains a summary of the installation that has been
performed on this OSM database schema.

Restarting the OSM Database Schema Upgrade from the Point of
Failure

In most cases, restarting the OSM database schema upgrade consists of pointing the
installer to the schema that was partially upgraded, and then re-running the installer.

Chapter 14
Recovering an OSM Cloud Native Database Schema

14-8

Note:

This task requires a user with DBA role.

Consider the following when preparing to restart an upgrade:

• Most migration actions are part of a single transaction, which is rolled back in the event of
a failure. However, some migration actions involve multiple transactions. In this case, it is
possible that some changes were committed.

• Most migration actions are repeatable, which means that they can safely be re-run even if
they were committed. However, if a failed action is not repeatable and it committed some
changes, either reverse all the changes that were committed and set the status to
FAILED, or complete the remaining changes and set the status to COMPLETE.

To restart the upgrade after a failure:

1. Determine which action has failed and the reason for the failure.

2. If the status of the failed action is STARTED, check the database to see whether the
action is completed or still running. If it is still running, either end the session or wait for
the action to finish.

Note:

The transaction might not finish immediately after the connection is lost,
depending on how fast the database detects that the connection is lost and how
long it takes to roll back.

3. Fix the issue that caused the failure.

Note:

If the failure is caused by a software issue, contact Oracle Support. With the
help of Oracle Support, determine whether the failed action modified the
schema and whether you must undo any of those changes. If you decide to
undo any changes, leave the action status set to FAILED or set it to NOT
STARTED. When you retry the upgrade, the installer starts from this action. If
you manually complete the action, set the status to COMPLETE, so that the
installer starts with the next action. Do not leave the status set to STARTED
because the next attempt to upgrade will not be successful.

4. Restart the upgrade by running the installer.
The installer restarts the upgrade from the point of failure.

Resolving Improper JMS Assignment
While running OSM cloud native with more than one managed server, sometimes, the
incoming orders and the resulting workload may not get distributed evenly across all
managed servers.

Chapter 14
Resolving Improper JMS Assignment

14-9

While there are multiple causes for improper distribution (including the use of an
incorrect JMS connection factory to inject order creation messages), one possible
cause is the improper assignment of JMS servers to managed servers. For even
distribution of workload, each managed server that is running must host its
corresponding JMS server.

The following figure shows an example of improper JMS assignment.

Figure 14-1 Example of Improper JMS Assignment

In the figure, osm_jms_server@ms7 is incorrectly running on ms6 even though its
native host ms7 is running. It can be normal for more than one JMS server to be
running on a managed server as long as the additional JMS servers do not have a
native managed server that is online.

Workaround

As a workaround, terminate the Kubernetes pod for the managed server that has been
left underutilized. In the above example, the pod for ms7 should be terminated. The
WebLogic Operator recreates the managed server pod, and that should trigger the
migration of osm_jms_server@ms7 back to ms7.

Resolution

To resolve this issue, tune the time setting for InitialBootDelaySeconds and
PartialClusterStabilityDelaySeconds. See the WebLoigic Server documentation for
more details.

To tune the time setting:

1. Add the following Clustering fragment to the instance specification:

Clustering:
 InitialBootDelaySeconds: 10
 PartialClusterStabilityDelaySeconds: 30

2. Increase the value for the following parameters from the base WDT model:

• InitialBootDelaySeconds. The default value in base WDT is 2.

• PartialClusterStabilityDelaySeconds. The default value in base WDT is 5.

Chapter 14
Resolving Improper JMS Assignment

14-10

Note:

The default values for these parameters in WebLogic Server are 60 and 240
respectively. The actual values required depend on the environmental factors and
must be arrived at by tuning. Higher values can result in slower placement of JMS
servers. While this is not a factor during OSM startup, it will mean more time could
be taken when a managed server shuts down before its JMS server migrates and
comes up on a surviving managed server. Orders with messages pending delivery
in that JMS server will be impacted by this, but the rest of the system is unaffected.

Common Problems and Solutions
This section describes some common problems that you may experience because you have
run a script or a command erroneously or you have not properly followed the recommended
procedures and guidelines regarding setting up your cloud environment, components, tools,
and services in your environment. This section provides possible solutions for such problems.

Domain Introspection Pod Does Not Start

There may be a case where introspector doesn't start. This could mean that the operator is
not monitoring your namespace or your namespace is not tagged to the correct label which
the operator is monitoring.

For more information about operator monitoring, see: https://oracle.github.io/weblogic-
kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-
operator-to-monitor-a-namespace

Domain Introspection Pod Status

While the introspection is running, you can check the status of the introspection pod by
running the following command:

kubectl get pods -n namespace

healthy status looks like this

NAME READY STATUS RESTARTS AGE
project-instance-introspect-domain-job-hzh9t 1/1 Running 0
3s

The READY field is showing 1/1, which indicates that the pod status is healthy.

If there is an issue accessing the image specified in the instance specification, then it shows
the following:

NAME READY STATUS
RESTARTS AGE
project-instance-introspect-domain-job-r2d6j 0/1 ErrImagePull
0 5s

OR

NAME READY STATUS
RESTARTS AGE

Chapter 14
Common Problems and Solutions

14-11

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace

project-instance-introspect-domain-job-r2d6j 0/1
ImagePullBackOff 0 45s

This shows that the introspection pod status is not healthy. If the image can be pulled,
it is possible that it took a long time to pull the image.

To resolve this issue, verify that the image name and the tag and that it is accessible
from the repository by the pod.

You can also try the following:

• Increase the value of podStartupDeadlineSeconds in the instance
specification.
Start with a very high timeout value and then monitor the average time it takes,
because it depends on the speed with which the images are downloaded and how
busy your cluster is. Once you have a good idea of the average time, you can
reduce the timeout values accordingly to a value that includes the average time
and some buffer.

• Pull the container image manually on all Kubernetes nodes where the OSM cloud
native pods can be started up.

Domain Introspection Errors Out

Some times, the domain introspector pod runs, but ends with an error.

To resolve this issue, run the following command and look for the causes:

kubectl logs introspector_pod -n project

The following are the possible causes for this issue:

• RCU Schema is pre-existing: If the logs shows the following, then RCU schema
could be pre-existing:

WLSDPLY-12409: createDomain failed to create the domain: Failed to
write domain to /u01/oracle/user_projects/domains/domain:
wlst.writeDomain(/u01/oracle/user_projects/domains/domain) failed :
Error writing domain:
64254: Error occurred in "OPSS Processing" phase execution
64254: Encountered error:
oracle.security.opss.tools.lifecycle.LifecycleException: Error
during configuring DB security store. Exception
oracle.security.opss.tools.lifecycle.LifecycleException: The schema
FMW1_OPSS is already in use for security store(s). Please create a
new schema..
64254: Check log for more detail.

This could happen because the database was reused or cloned from an OSM
cloud native instance. If this is so, and you wish to reuse the RCU schema as well,
provide the required secrets. For details, see "Reusing the Database State".
If you do not have the secrets required to reuse the RCU instance, you must use
the OSM cloud native DB Installer to create a new RCU schema in the DB. Use
this new schema in your rcudb secret. If you have login details for the old RCU
users in your rcudb secret, you can use the OSM cloud native DB Installer to

Chapter 14
Common Problems and Solutions

14-12

delete and re-create the RCU schema in place. Either of these options gives you a clean
slate for your next attempt.

Finally, it is possible that this was a clean RCU schema but the introspector ran into an
issue after RCU data population but before it could generate the wallet secret (opssWF).
If this is the case, debug the introspector failure and then use the OSM cloud native DB
Installer to delete and re-create the RCU schema in place before the next attempt.

• Fusion MiddleWare cannot access the RCU: If the introspector logs show the following
error, then it means that Fusion MiddleWare could not access the schema inside the RCU
DB.

WLSDPLY-12409: createDomain failed to create the domain: Failed to get
FMW infrastructure database defaults from the service table: Failed to
get the database defaults: Got exception when auto configuring the schema
component(s) with data obtained from shadow table:
Failed to build JDBC Connection object:

Typically, this happens when wrong values are entered while creating secrets for this
deployment. Less often, the cause is a corrupted RCU DB or an invalid one. Re-create
your secrets, verifying the credentials and drop and re-create the RCU DB.

Recovery After Introspection Error

If the introspection fails during instance creation, once you have gathered the required
information and have a solution, delete the instance and then re-run the instance creation
script with the fixed specification, model extension, or other environmental failure cause.

If the introspection fails while upgrading a running instance, then do the following:

1. Make the change to fix the introspection failure. Trigger an instance upgrade. If this
results in successful introspection, the recovery process stops here.

2. If the instance upgrade in step 1 fails to trigger a fresh introspection, then do the
following:

a. Rollback to the last good Helm release by first running the helm history -n project
project-instance command to identify the version in the output that matches the
running instance (that is, before the upgrade that led to introspection failure). The
timestamp on each version helps you identify the version. Once you know the "good"
version, rollback to that version by running: helm rollback -n project project-
instance version. Monitor the pods in the instance to ensure only the Admin server
and the appropriate number of Managed Server pods are running.

b. Upgrade the instance with the fixed specification.

Instance Deletion Errors with Timeout

You use the delete-instance.sh script to delete an instance that is no longer required. The
script attempts to do this in a graceful manner and is configured to wait up to 10 minutes for
any running pods to shut down. If the pods remain after this time, the script times out and
exits with an error after showing the details of the leftover pods.

The leftover pods can be OSM pods (Admin Server, Managed Server) or the DBInstaller pod.

For the leftover OSM pods, see the WKO logs to identify why cleanup has not run. Delete the
pods manually if necessary, using the kubectl delete commands.

For the leftover DBInstaller pod, this happens only if install-osmdb.sh is interrupted or if it
failed in its last run. This should have been identified and handled at that time itself. However,

Chapter 14
Common Problems and Solutions

14-13

to complete the cleanup, run helm ls -n project to find the failed DBInstaller
release, and then invoke helm uninstall -n project release. Monitor the pods in
the project namespace until the DBInstaller pod disappears.

OSM Cloud Native Toolkit Instance Create and Update Scripts Timeout; Pods
Show Readiness "0/1"

If your create-instance.sh or upgrade-instance.sh scripts timeout, and you see that
the desired managed server pods are present, but one or more of them show "0/1" in
the "READY" column, this could be because OSM hit a fatal problem while starting up.
The following could be the causes for this issue:

• A mismatch in the OSM schema found and the expected version: If this is the
case, the OSM managed server log shows the following issue:

Error: The OSM application is not compatible with the schema code
detected in the OSM database.
Expected version[7.4.0.0.68], found version[7.4.0.0.70]
This likely means that a recent installation or upgrade was not
successful.
Please check your install/upgrade error log and take steps to
ensure the schema is at the correct version.

To resolve this issue, check the container image used for the DB installer and the
OSM domain instances. They should match.

• OSM internal users are missing: This can happen if there are issues with the
configuration of the external authentication provider and the standard OSM users
(for example, oms-internal) and the group association is not loaded. The
managed server log shows something like the following:

<Error> <Deployer> <BEA-149205> <Failed to initialize the
application "oms" due to error
weblogic.management.DeploymentException: The
ApplicationLifecycleListener "com.mslv.oms.j2ee.LifecycleListener"
of application "oms"
has a run-as user configured with the principal name "oms-internal"
but a principal of that name
could not be found. Ensure that a user with that name exists.

To resolve this issue, review your external authentication system to validate users
and groups. Review your configuration to ensure that the instance is configured for
the correct external authenticator.

OSM Cloud Native Pods Do Not Distribute Evenly Across Worker Nodes

In some occasions, OSM cloud native pods do not distribute evenly across the worker
nodes.

To resolve this issue, prime all the worker nodes with the image using the OSM cloud
native sample utility script:

$ $OSM_CNTK/samples/image-primer.sh -p project image-name:image-tag

Chapter 14
Common Problems and Solutions

14-14

This should be done only once for a given image name+tag combination, regardless of
which project uses that image or how many instances are created with it.

This script is offered as a sample and may need to be customized for your environment. If
you are using an image from a repository that requires pull credentials, edit the image-
primer.sh script to uncomment these lines and add your pull secret:

#imagePullSecrets:
 #- name: secret-name

If you are planning to target OSM cloud native to specific worker nodes, edit the sample to
ensure only those nodes are selected (typically by using a specific label value) as per
standard Kubernetes configuration. See the Kubernetes documentation for DaemonSet
objects.

User Workgroup Association Lost

During cartridge deployment, if users are not present in LDAP or if LDAP is not accessible,
the user workgroup associations could get deleted.

To resolve this issue, restore the connectivity to LDAP and the users. You may need to redo
the workgroup associations.

Changing the WebLogic Kubernetes Operator Log Level

Some situations may require analysis of the WKO logs. These logs can be certain kinds of
introspection failures or unexpected behavior from the operator. The default log level for the
Operator is INFO.

For information about changing the log level for debugging, see the documentation at: https://
oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/
#operator-and-conversion-webhook-logging-level.

Deleting and Re-creating the WLS Operator

You may need to delete a WLS operator and re-create it. You do this when you want to use a
new version of the operator where upgrade is not possible, or when the installation is
corrupted.

When the controlling operator is removed, the existing OSM cloud native instances continue
to function. However, they cannot process any updates (when you run upgrade-instance.sh)
or respond to the Kubernetes events such as the termination of a pod.

To avoid common mistakes during the installation of WKO, refer to the WKO troubleshooting
information at: https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/
common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace.

To uninstall WKO, follow the steps in WKO documentation at: https://oracle.github.io/
weblogic-kubernetes-operator/managing-operators/installation/#uninstall-the-operator.

Re-register your namespaces using the register-namespace.sh and unregister-
namespace.sh scripts in the cloud native toolkit.

You can install the operator by following the instructions in WKO documentation at: https://
oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-
operator. Then, register all the projects again, one by one. See "Registering the Namespace"
for details.

Lost or Missing opssWF and opssWP Contents

Chapter 14
Common Problems and Solutions

14-15

https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/troubleshooting/#operator-and-conversion-webhook-logging-level
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/common-mistakes/#forgetting-to-configure-the-operator-to-monitor-a-namespace
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#uninstall-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#uninstall-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator
https://oracle.github.io/weblogic-kubernetes-operator/managing-operators/installation/#install-the-operator

For an OSM instance to successfully connect to a previously initialized set of DB
schemas, it needs to have the opssWF (OPSS Wallet File) and opssWP (OPSS
Wallet-file Password) secrets in place. The $OSM_CNTK/scripts/manage-instance-
credentials.sh script can be used to set these up if they are not already present.

If these secrets or their contents are lost, you can delete and recreate the RCU
schemas (using $OSM_CNTK/scripts/install-osmdb.sh with command code 5). This
deletes data (such as some user preferences and so on) stored in the RCU schemas.
On the other hand, if there is a WebLogic domain currently running against that DB (or
its clone), the "exportEncryptionKey" offline WLST command can be run to dump out
the "ewallet.p12" file. This command also takes a new encryption password. For
details about WLST Command Reference for Infrastructure Security, see Oracle
Fusion MiddleWare documentation. The contents of the resulting ewallet.p12 file can
be used to recreate the opssWF secret, and the encryption password can be used to
recreate the opssWP secret. This method is also suitable when a DB (or the clone of a
DB) from a traditional OSM installation needs to be brought into OSM cloud native.

Clock Skew or Delay

When submitting JMS message over the Web Service queue, you might see the
following in the SOAP response:

Security token failed to validate.
weblogic.xml.crypto.wss.SecurityTokenValidateResult@5f1aec15[status:
false][msg UNT Error:Message older than allowed MessageAge]
Oracle recommends synchronizing the time across all machines that are involved in
communication. See "Synchronizing Time Across Servers" for more details. Implement
Network Time Protocol (NTP) across the hosts involved, including the Kubernetes
cluster hosts.

It is also possible to temporarily fix this through configuration by adding the following
properties to java_options in the project specification for each managed
server.managedServers: project:

#JAVA_OPTIONS for all managed servers at project level java_options:
-Dweblogic.wsee.security.clock.skew=72000000
-Dweblogic.wsee.security.delay.max=72000000

Known Issues
This section describes known issues that you may come across, their causes, and the
resolutions.

Email Plugin
The OSM Email plugin is currently not supported. Users who require this capability can
create their own plugin for this purpose.

SituationalConfig NullPointerException

In the managed server logs, you might notice a stacktrace that indicates a
NullPointerException in situational config.

This exception can be safely ignored.

Connectivity Issues During Cluster Re-size

Chapter 14
Known Issues

14-16

When the cluster size changes, whether from the termination and re-creation of a pod,
through an explicit upgrade to the cluster size, or due to a rolling restart, transient errors are
logged as the system adjusts.

These transient errors can usually be ignored and stop after the cluster has stabilized with
the correct number of Managed Servers in the Ready state.

If the error messages were to persist after a Ready state is achieved, then looking for
secondary symptoms of a real problem would be appropriate. Such connectivity errors could
result in orders that were inexplicably stuck or were otherwise processing abnormally.

While not an exhaustive list, some examples of these transient errors you may see in a
managed server log are:

• An MDB is unable to connect to a JMS destination. The specific MDB and JMS
destination can vary, such as:

– <The Message-Driven EJB OSMInternalEventsMDB is unable to connect to
the JMS destination mslv/oms/oms1/internal/jms/events.

– <The Message-Driven EJB DeployCartridgeMDB is unable to connect to
the JMS destination mslv/provisioning/internal/ejb/
deployCartridgeQueue.

• Failed to Initialize JNDI context. Connection refused; No available router to destination.
This type of error is seen in an instance where SAF is configured.

• Failed to process events for event type[AutomationEvents].

• Consumer destination was closed.

Upgrade Instance failed with spec.persistentvolumesource: Forbidden: is immutable
after creation.

You may come across the following error when you run the commands for upgrading the
OSM Helm chart:

Error: UPGRADE FAILED: cannot patch "<project>-<instance>-nfs-pv" with kind
PersistentVolume: PersistentVolume "<project>-<instance>-nfs-pv" is invalid:
spec.persistentvolumesource:
Forbidden: is immutable after creation
Error in upgrading osm helm chart

Once created, the Persistent Volume Claim cannot be changed.

To resolve this issue:

1. Disable NFS by setting the nfs.enabled parameter to false and run the upgrade-
instance script. This removes the PV from the instance.

2. Enable it again by changing nfs.enabled: to true with the new values of NFS and
then run upgrade-instance.

JMS Servers for Managed Servers are Reassigned to Remaining Managed Servers

When scaling down, the JMS servers for managed servers that do not exist are getting
reassigned to remaining managed servers.

Chapter 14
Known Issues

14-17

For example, for a SimpleResponseQueue when there is only 1 managed server
running, you can notice something like the following in the logs:

Jun 15, 2020 11:01:32,821 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestination
Listener> <BEA-000000> <
All local JMS destinations: ms1
JNDI
 JMS Server WLS Server Migratable Target Local Member
Type Partition

----- ------------------ ---------- ----------------- --------
----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms1
ms1 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponse
Queue osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that osm_jms_server@ms1 is targeting ms1.

When scaled to 2 Managed Servers, the log shows the following:

<Jun 15, 2020 11:02:20,461 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestination
Listener> <BEA-000000> <
All local JMS destinations: ms1
JNDI
 JMS Server WLS Server Migratable Target Local Member
Type Partition

----- ------------------ ---------- ----------------- --------
----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms1
ms1 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponse
Queue osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@mslv/oms/oms1/internal/jms/
events osm_jms_server@ms2
ms2 true MEMBER_TYPE_CLUSTERED_DYNAMIC
DOMAIN
osm_jms_server@ms2@oracle.communications.ordermanagement.SimpleResponse
Queue osm_jms_server@ms2 ms2 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that osm_jms_server@ms1 is targeting ms1 and osm_jms_server@ms2 is
targeting ms2.

Chapter 14
Known Issues

14-18

After scaling back to 1 managed server, the log shows the following:

<Jun 15, 2020 11:02:20,461 AM UTC> <Info>
<oracle.communications.ordermanagement.automation.plugin.JMSDestinationListen
er> <BEA-000000> <
All local JMS destinations: ms1
JNDI
JMS Server WLS Server Migratable Target Local Member
Type Partition
--
------------------ ---------- ----------------- --------
----------------------------- ---------
osm_jms_server@ms1@mslv/oms/oms1/internal/jms/events
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms1@oracle.communications.ordermanagement.SimpleResponseQueue
osm_jms_server@ms1 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@mslv/oms/oms1/internal/jms/events
osm_jms_server@ms2 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
osm_jms_server@ms2@oracle.communications.ordermanagement.SimpleResponseQueue
osm_jms_server@ms2 ms1 true
MEMBER_TYPE_CLUSTERED_DYNAMIC DOMAIN
>

Notice that the JMS Server osm_jms_server@ms2 is not deleted and is targeting ms1.

This is completely expected behavior. This is a WebLogic feature and not to be mistaken for
any inconsistency in the functionality.

Chapter 14
Known Issues

14-19

A
Differences Between OSM Cloud Native and
OSM Traditional Deployments

If you are moving from a traditional deployment of OSM to a cloud native deployment, this
section describes the differences between OSM cloud native and OSM traditional.

• Embedded LDAP

You no longer need to create human users using the embedded LDAP capabilities of
WebLogic Server.

By default, OSM uses the WebLogic embedded LDAP as the authentication provider and
all OSM system users are created in embedded LDAP during the creation of the
instance. The OSM cloud native toolkit provides a sample configuration that uses
OpenLDAP to demonstrate how to integrate with external LDAP server for human users.

A sample script for populating users to OpenLDAP can be found at: $OSM_CNTK/
samples/credentials/manage-cartridge-credentials.sh. See "Provisioning Cartridge
User Accounts" for more details.

• Credential Store for Automation Code

The existing Fusion MiddleWare Credential Store framework has been replaced with
Kubernetes Secrets in OSM cloud native. See "Provisioning Cartridge User Accounts" for
more details on configuration differences. However, the automation plugin code in your
cartridges that accesses this information using the automation framework APIs continues
to receive the credentials transparently.

• Credential Store for Custom Code

If you use custom code that relies on the OPSS Keystore Service, then port the code.
This mechanism is no longer supported. The recommended replacement is Kubernetes
Secrets. Kubernetes Secrets can be specified as custom secrets in OSM cloud native
and are mounted into the instance's pods for your code to use and access.

• XMLIE Operations

The following operations are still available using XMLIE. However, these should not be
used in OSM cloud native. See the following table that describes the replacement
mechanism for using these operations.

Table A-1 Replacement Mechanisms for XMLIE Operations

Operation Replacement Mechanism

credStoreAdmin Sample script in $OSM_CNTK/samples/credentials/manage-cartridge-
credentials.sh. Use the secret option in the user text file. See
"Provisioning Cartridge User Accounts" for more details.

userAdmin Sample script in $OSM_CNTK/samples/credentials/manage-cartridge-
credentials.sh. Use the ldap option in the user text file. See "Provisioning
Cartridge User Accounts" for more details.

A-1

Table A-1 (Cont.) Replacement Mechanisms for XMLIE Operations

Operation Replacement Mechanism

import OSM DB Installer. Additionally, this operation relies on a pre-built par file,
instead of an XML model file. It can use a local file or pull it from a remote
repository. See "Working with Cartridges" for more details.

fastUndeploy OSM DB Installer. See "Working with Cartridges" for more details.

• WebLogic Domain Configuration

In a traditional deployment of OSM, the WebLogic domain configuration is done
using WLST or the WebLogic Admin Console. In OSM cloud native, domain
configuration is done by providing WDT metadata in the instance creation process.
See "Extending the WebLogic Server Deploy Tooling (WDT) Model" for details.

Do not perform WebLogic administrative activities such as changing the
configuration, shutting down and restarting the server directly on the WebLogic
Server cluster of the OSM cloud native instance. The same applies to the activities
done using WebLogic Server Admin Console, WLST invocation, or any
mechanism, other than those supplied by the specification files for updating and
upgrading the OSM cloud native instance.

• Incoming SAF and Outgoing SAF

For incoming SAF agents, the originator must use T3 over HTTP tunneling.

Outgoing SAF mechanism has not changed.

• OSM Solution Cartridges

Your OSM cartridges work normally in OSM cloud native.

For cartridges that might access a custom property file, this can be done by
injecting custom files into the specifications. See "Injecting Custom Configuration
Files" for details. An alternative is to use a database table instead. This has the
advantage of becoming part of backups and replication automatically.

Using custom tables or datasources needs to be declared by providing the
necessary WDT extensions. See "Extending the WebLogic Server Deploy Tooling
(WDT) Model" for details.

• OSM Workgroups: OSM Workgroups, including user and workgroup associations,
are still managed through the orchestration UI.

• OSM User Interfaces: All OSM user interfaces are still available with both OSM
traditional and OSM cloud native deployments. The UIs can be accessed using the
default hostname: instance.project.osm.org and port 30305, which is the default
but configurable and the path that is necessary for the specific UI. For example, to
access the Order Management UI, use:

http://instance.project.osm.org:30305/OrderManagement/Login.jsp

• OSM API: Accessing OSM through the traditional APIs such as the Web Services
API, the REST API, and the XML API has not changed.

• Order Partitioning Realm Configuration: Runtime configuration of order
partitioning realms is not supported. In traditional OSM deployments, this is
specified in the oms-config.xml file as a set of files against the
oracle.communications.ordermanagement.OrderPartitioningRealmConfigFile
URLs parameter.

Appendix A

A-2

• OSM Runtime Parameters: Some OSM runtime parameters can be controlled using the
oms-config.xml file. This configuration is still available in OSM cloud native, but is
managed differently. See "Configuring OSM Runtime Parameters" for more details.

– Operational Order Jeopardies: Configuration to support operational order
jeopardies is specified in the oms-config.xml file as a set of files against the
oracle.communications.ordermanagement.order.OperationalOverrideFileURLs
parameter. These configuration files are custom files and must be injected properly.
See "Injecting Custom Configuration Files" for details.

– OACC Runtime Configuration: This is specified in the oms-config.xml file as a set
of files against the AutomationConcurrencyModels parameter. These configuration
files are custom files and must be injected properly. See "Injecting Custom
Configuration Files" for details.

Appendix A

A-3

B
Reference of Secrets Created by the Scripts

The secrets created by the OSM cloud native toolkit scripts follow the naming pattern of
<project>-<instance>-<suffix>, where the "suffix" differentiates between the secrets.

The following table lists the secrets, describes their purpose, and provides other details.

Secret Name Purpose Must
Have?

Creation Details

<project>-<instance>-
database-credentials

Credentials and connection
details for OSM DB
schemas.

Yes manage-instance-
credentials osmdb

DB Credentials
Secret

<project>-<instance>-
rcudb-credentials

Credentials and connection
details for FMW RCU DB
schemas.

Yes manage-instance-
credentials rcudb

RCU DB
Credentials
Secret

<project>-<instance>-
weblogic-credentials

WebLogic admin
credential.

Yes manage-instance-
credentials
wlsadmin

WebLogic
Credentials
Secret

<project>-<instance>-
runtime-encryption-secret

Password used to secure
instance metadata in
Kubernetes.

Yes manage-instance-
credentials wlsRTE

WebLogic
Runtime
Encryption
Secret

<project>-<instance>-
opss-wallet-password-
secret

Password used to encrypt
the FMW wallet.

Yes manage-instance-
credentials opssWP

FMW Wallet
Encryption
Secret

<project>-<instance>-
opss-walletfile-secret

Secure storage of FMW
wallet.

No • Automatically during
create-instance

• Manually using
manage-
instance-
credentials
opssWF

FMW Secure
Wallet Secret

<project>-<instance>-
embedded-ldap-credentials

Passwords for OSM's
internal users.

Yes manage-instance-
credentials
osmldap

OSM Internal
User
Passwords
Secret

<project>-<instance>-oidc-
credentials

Credentials and connection
details for the OIDC IdP in
order to secure TMF and
Fallout Exception REST
APIs.

Yes manage-instance-
credentials oidc

OSM OIDC
Credentials
Secret

<project>-<instance>-
fluentd-credentials

Credentials and connection
details to the ElasticSearch
service.

No • Required if
fluentdLogging.
enabled is true

• manage-
instance-
credentials
fluentd

OSM Fluentd
Credentials
Secret

B-1

Secret Name Purpose Must
Have?

Creation Details

<project>-<instance>-app-
tls-cert

Certificate and key to
access OSM TMF REST
APIs, Fallout Exception
APIs and UX backend
APIs.

No • Required if
ssl.incoming is
true

• manage-
instance-
credentials
gatewaytls

Certificate and
Key to Access
the Gateway
HTTPS
Endpoint

<project>-<instance>-osm-
tls-cert

Certificate and key to
access the OSM HTTPS
endpoint.

No • Required if
ssl.incoming is
true

• manage-
instance-
credentials
wlstls (with option
WLSIngress or Both)

Certificate and
Key to Access
the OSM
HTTPS
Endpoint

<project>-<instance>-
admin-tls-cert

Certificate and key to
access the OSM WebLogic
Admin Console HTTPS
endpoint.

No • Required if
ssl.incoming is
true

• manage-
instance-
credentials
wlstls (with option
WLSIngress or Both)

Certificate and
Key to Access
the OSM
WebLogic
Admin Console
HTTPS
Endpoint

<project>-<instance>-t3-
tls-cert

Certificate and key to
access the OSM t3 over
HTTPS endpoint.

No • Required if
ssl.incoming is true
in the specification

• manage-
instance-
credentials
wlstls (with option
WLSIngress or Both)

Certificateandk
eytoaccessthe
OSMt3overHTT
PS

<project>-<instance>-
trustore

Providing OSM with trusted
CAs for secure outbound
JMS/SAF

No • Required if
ssl.trust is
populated in the
specification

• manage-instance-
credentials
wlstls (with option
WLSStore or Both)

Trusted CA
Injection

<project>-<instance>-
keystore

Providing OSM with private
keys for secure outbound
JMS/SAF

No • Required if
ssl.identity.name
is populated in the
specification

• manage-instance-
credentials
wlstls (with option
WLSStore or Both)

Secure Identity

Appendix B

B-2

Secret Name Purpose Must
Have?

Creation Details

<project>-<instance>-db-
wallet

Secure storage of details to
connect to the ADB
database.

No • Required if adb is
used for the OSM
instance

• manage-
instance-
credentials
osmdb

ADB Wallet
Secret

<project>-<instance>-db-
secret

ADB administrator
password.

No • Required if adb is
used for the OSM
instance

• manage-
instance-
credentials
osmdb

ADB Admin
Secret

<project>-<instance>-
osmcn-cred-<user>

Credentials for custom
users defined by the
cartridge Credentials
required by the cartridge
accessed from the map
named "osm"

No • Required if
cartridgeUsers
is specified, or if
cartridge code uses
getOsmCredentia
lPassword

• manage-
cartridge-
credentials with
– cartridgeUsers:

"osm:_sysgen
_:<username>
:secret:<gro
up-list>"

– getOsmCredential
Password:
"osm:_sysgen
_:<username>
:secret"

Cartridge
Defined
Custom User
Credentials

<project>-<instance>-
openldap-credentials

Information required for
OSM to use an external
LDAP for human user
credentials

No • Required if
authentication.
openldap.enable
d is true

• manage-osm-
ldap-
credentials -c
create -o
secret

External LDAP
Information

<project>-<instance>-saf-
<remote-system>

Credentials to establish
SAF connectivity to
<remote-system>

No • Required if secret is
named in
safConnectionCo
nfig.secretName

• Create manually

SAF
Credentials

Appendix B

B-3

Secret Name Purpose Must
Have?

Creation Details

<repository-access-secret> Credentials to access a
repository

No • Required if secret is
named in
cartridges.
[].secret or
partitionStatis
tic.secret

• Create manually

Generic
Credentials

<project>-<instance>-
<securityScheme>

Secrets for establishing
connections to target
systems that are defined in
the security scheme.

No • Required for each
targetSystems.sec
uritySchemes.
[].name

• manage-target-
system-
credentials.sh

Security
Scheme
Credentials

DB Credentials Secret
Credentials and connection details for OSM DB schemas.

<project>-<instance>-database-credentials

db_connection_string: <db-host-or-ip>:<db-port>/<db-service-name>
db_password: <osmschema-user-password>
db_reports_password: <reportsschema-user-password>
db_reports_user: <reportsschema-user-name>
db_rule_password: <ruleschema-user-password>
db_rule_user: <ruleschema-user-name>
db_service_name: <db-service-name>
db_user: <osmschema-user-name>
dba_password: <dbadmin-password>
dba_user: <dbadmin-user-name>
is_adb: <Y/N> -- Y for yes, N for No.

RCU DB Credentials Secret
Credentials and connection details for FMW RCU DB schemas.

<project>-<instance>-rcudb-credentials

is_adb: <Y/N> -- Y for yes, N for No.
rcu_admin_password: <dbadmin-password>
rcu_admin_user: <dbadmin-user-name>
rcu_db_conn_string: <db-host-or-ip>:<db-port>/<db-service-name>
rcu_prefix: <unique-prefix-for-this-instance>
rcu_schema_password: <password-for-all-rcu-schemas>

Appendix B
DB Credentials Secret

B-4

WebLogic Credentials Secret
WebLogic admin credential.

<project>-<instance>-weblogic-credentials

password: <weblogic-admin-password>
username: <weblogic-admin-username>

WebLogic Runtime Encryption Secret
Password used to secure instance metadata in Kubernetes.

<project>-<instance>-runtime-encryption-secret

password: <runtime-encryption-password>

FMW Wallet Encryption Secret
Password used to secure instance metadata in Kubernetes.

<project>-<instance>-opss-wallet-password-secret

walletPassword: <wallet-encryption-password>

FMW Secure Wallet Secret
Secure storage of FMW wallet.

<project>-<instance>-opss-walletfile-secret

walletFile: <encrypted-wallet>

OSM Internal User Passwords Secret
Passwords for OSM's internal users.

<project>-<instance>-embedded-ldap-credentials

automation_password: <password for oms-automation user>
gateway_internal_password: <password for gateway internal user>
gateway_internal_user: <username for gateway internal user>
internal_password: <password for oms-internal user>
metrics_password: <password for metrics user>
omsadmin_password: <password for omsadmin user>
sceadmin_password: <password for sceadmin user>

Appendix B
WebLogic Credentials Secret

B-5

OSM OIDC Credentials Secret
Credentials and connection details for the OIDC IdP in order to secure TMF and
Fallout Exception REST APIs.

<project>-<instance>-oidc-credentials

app-oidc-audience: <the oidc audience>
app-oidc-base-url: <the oidc base url>
app-oidc-client-id: <the oidc client id>
app-oidc-client-secret: <the oidc client secret>
client-oidc-access-token-url: <the token access url>
client-oidc-scope: <the scope>

OSM Fluentd Credentials Secret
Credentials and connection details to the ElasticSearch service.

<project>-<instance>-fluentd-credentials

elasticsearchhost: <host name of the elastic search server>
elasticsearchpassword: <password to access the elastic search service>
elasticsearchport: <port id of the elastic search service>
elasticsearchuser: <user name to access the elastic search service>

Certificate and Key to Access the Gateway HTTPS Endpoint
Certificate and key to access OSM TMF REST APIs, Fallout Exception APIs and UX
backend APIs.

<project>-<instance>-app-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Certificate and Key to Access the OSM HTTPS Endpoint
Certificate and key to access the OSM HTTPS endpoint.

<project>-<instance>-osm-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Certificate and Key to Access the OSM WebLogic Admin
Console HTTPS Endpoint

Certificate and key to access the OSM WebLogic Admin Console HTTPS endpoint.

Appendix B
OSM OIDC Credentials Secret

B-6

<project>-<instance>-admin-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Certificate and Key to Access the OSM t3 over HTTPS
Certificate and key to access the OSM t3 over HTTPS.

<project>-<instance>-t3-tls-cert

tls.crt: <TLS access certificate>
tls.key: <TLS access key>

Trusted CA Injection
CA trust for secure outbound JMS/SAF connections.

<project>-<instance>-truststore

<cert-name>.crt: <concatenated-CA-certs>
passphrase: <truststore access password>

Secure Identity
Private key to define identity for secure outbound JMS/SAF connections.

<project>-<instance>-identitystore

<key-name>.key: <private key>
passphrase: <keystore access password>

ADB Wallet Secret
Secure storage of details to connect to the ADB database.

<project>-<instance>-db-wallet

wallet-password: <adb wallet password>
ojdbc.properties: <ojdbc.properties>
tnsnames.ora: <tnsnames.ora>
sqlnet.ora: <sqlnet.ora>
cwallet.sso: <cwallet.sso>
ewallet.p12: <ewallet.p12>
keystore.jks: <keystore.jks>
truststore.jks: <truststore.jks>

Appendix B
Certificate and Key to Access the OSM t3 over HTTPS

B-7

ADB Admin Secret
ADB administrator password.

<project>-<instance>-db-secret

admin-password: <Adb administrator password>

Cartridge Defined Custom User Credentials
This example is for a custom user named "osmprime" defined by the cartridge. These
three lines will repeat for each custom user, with "osmprime" being replaced by each
user in turn.

<project>-<instance>-osmcn-cred-<user>

osmUser_osmprime_groups: <comma-separated list of OSM groups for this
user>
osmUser_osmprime_name: <osmprime>
osmUser_osmprime_password: <password for osmprime>

This example is for a cartridge that invokes getOsmCredentialPassword with user
"osmsom". These two lines will repeat for each user invoked by the cartridge using
getOsmCredentialPassword.

osmUser_osmsom_name: <osmsom>
osmUser_osmsom_password: <password for osmsom>

External LDAP Information
Credentials and connection details for the RCU DB connection.

<project>-<instance>-openldap-credentials

openldap_credential: <password to access external LDAP>
openldap_groupBaseDn: <base DN on external LDAP to use to look for
groups>
openldap_host: <hostname or ip of LDAP server>
openldap_port: <port of LDAP server>
openldap_principal: <LDAP principal to use>
openldap_userBaseDn: <base DN on external LDAP to use to look for
users>

SAF Credentials
Each SAF credential secret contains exactly one set of credentials.

Appendix B
ADB Admin Secret

B-8

SAF Credentials

username: <SAF destination weblogic user name>
password: <password for above user>

Generic Credentials
Each credential secret contains exactly one set of credentials.

Generic Credentials

username: <user name>
password: <password for above user>

Security Scheme Credentials
Secrets for establishing connections to target systems that are defined in the security
scheme. It supports two types of authentication: OAuth2 and Username/Password.

• OAuth2: uses OIDC for authentication

<project>-<instance>-<securitySchemeName> (OAuth2)

clientId: <client id>
secret: <secret>

• Username/Password: uses username and password for authentication

<project>-<instance>-<securitySchemeName> (userPassword)

password: <password>
user: <user>

Appendix B
Generic Credentials

B-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview of the OSM Cloud Native Deployment
	About the OSM Cloud Native Deployment
	OSM Cloud Native Architecture
	About the WebLogic Domain
	About Kubernetes Custom Resource Definitions (CRD) and Domain Configuration Config Map
	About Oracle WebLogic Server Deploy Tooling (WDT)
	About Projects and Instances
	About Specification Layers
	About Helm Overrides

	About the OSM Cloud Native Toolkit

	2 Planning and Validating Your Cloud Environment
	Required Components for OSM Cloud Native
	Planning Your Cloud Native Environment
	Setting Up Your Kubernetes Cluster
	Synchronizing Time Across Servers
	Provisioning Oracle Multitenant Container Database (CDB)
	Provisioning an Empty PDB
	Provisioning a Seed OSM PDB

	About Container Image Management
	Installing Helm
	Setting Up Oracle WebLogic Server Kubernetes Operator
	About Load Balancing and Ingress Controller
	Using Traefik as the Ingress Controller

	Using Domain Name System (DNS)
	Configuring Kubernetes Persistent Volumes
	About NFS-based Persistence
	About Authentication
	Management of Secrets
	Using Kubernetes Monitoring Toolchain
	About Application Logs and Metrics Toolchain
	Role of Continuous Integration (CI) Pipelines
	Role of Continuous Delivery (CD) Pipelines

	Planning Your Container Engine for Kubernetes (OKE) Cloud Environment
	Compute Disk Space Requirements
	Connectivity Requirements
	Using Load Balancer as a Service (LBaaS)
	About Using Oracle Cloud Infrastructure Domain Name System (DNS) Zones
	Using Persistent Volumes and File Storage Service (FSS)
	Leveraging Oracle Cloud Infrastructure Services

	Validating Your Cloud Environment
	Performing a Smoke Test
	Validating Common Building Blocks in the Kubernetes Cluster
	Running Oracle WebLogic Kubernetes Operator Quickstart

	3 Creating OSM Cloud Native Images
	Downloading the OSM Cloud Native Image Builder
	Prerequisites for Creating OSM Images
	Configuring the OSM Cloud Native Images
	Creating OSM Cloud Native Images

	4 Creating a Basic OSM Cloud Native Instance
	Installing the OSM Cloud Native Artifacts and the Toolkit
	Using Oracle Autonomous Database Serverless
	Installing WebLogic Kubernetes Operator (WKO) and Ingress Controller
	Installing the WebLogic Kubernetes Operator
	Installing the Ingress Controller
	Installing the Traefik Ingress Controller as Alternate (Deprecated)

	Creating a Basic OSM Instance
	Setting Environment Variables
	Registering the Namespace
	Creating Secrets
	Configuring OpenID Connect for OSM Microservices
	Assembling the Specifications
	Installing the OSM and RCU Schemas
	Configuring the Project Specification
	Tuning the Project Specification

	Configuring the Instance Specification
	Creating an Ingress
	Creating an OSM Instance
	Validating the OSM Instance
	Scaling the OSM Application Cluster
	Deploying the Sample Cartridge
	Submitting Orders
	Deleting and Recreating Your OSM Instance
	Cleaning Up the Environment
	Troubleshooting Issues with the Scripts

	Next Steps

	5 Planning Infrastructure
	Sizing Considerations
	Managing Configuration as Code
	Creating Source Control Repository
	Managing OSM Instances
	Deciding on the Scope
	About the Repository Directory Structure
	Deployment Considerations
	Setting the Repository Path During Instance Creation

	Setting Up Automation
	Securing Operations in Kubernetes Cluster

	6 Creating Your Own OSM Cloud Native Instance
	Configuring OSM Runtime Parameters
	Configuring Schema Validation
	Configuring Target Systems for Events and System Interactions
	Configuring OSM Gateway Readiness
	Configuring the Order Operations User Interface
	Configuring the Alerts Displayed in the Order Operations Dashboard
	Configuring Session Timeout

	Preparing Cartridges
	Working with Kubernetes Secrets
	About Mandatory Secrets
	About Optional Secrets
	About Custom Secrets
	Accommodating the Scope of Secrets

	Mechanism for Creating Custom Secrets

	Adding JMS Queues and Topics
	Generating Error Queues for Custom Queues and Topics
	Creating a JMS Template
	Provisioning Cartridge User Accounts
	Working with Cartridges
	Cartridge Deployment Tool in OSM Cloud Native
	Single or One-off Cartridge Deployment
	Specification-driven Cartridge Deployment
	Offline Cartridge Deployment Using the OSM Cloud Native Toolkit
	Online Cartridge Deployment Using the OSM Cloud Native Toolkit

	Deploying Cartridges Using Design Studio
	Listing Deployed Cartridges Using the OSM Cloud Native Toolkit
	Cartridge par Sources
	Local Files
	Remote File Repository
	Container Images

	Selecting Deployment Style and Cartridge Source
	Deploying Cartridges in Open Environments
	Deploying Cartridges in Controlled Environments

	7 Extending the WebLogic Server Deploy Tooling (WDT) Model
	About the Custom WDT Extension Mechanism
	Using the WDT Model Tools
	WDT Discover Domain Tool
	WDT Validate Model Tool

	Common WDT Extension Mechanism
	Using the Sample Scripts to Extend the WDT Model
	Adding a JDBC Datasource
	Adding a JMS System Resource
	Deploying Entities to an OSM WebLogic Domain
	Extending the WDT Metadata for an External Authenticator

	Accessing Kubernetes Secrets from WDT Metadata
	Troubleshooting WDT Issues

	8 Exploring Configuration Options
	Setting Up Authentication
	Working with Shapes
	Creating Custom Shapes

	Injecting Custom Configuration Files
	Choosing Worker Nodes for Running OSM Cloud Native
	Working with Ingress, Ingress Controller, and External Load Balancer
	Using an Alternate Ingress Controller
	Reusing the Database State
	Recreating an Instance
	Creating a New Instance

	Setting Up Persistent Storage
	Setting Up Database Optimizer Statistics
	Leveraging Oracle WebLogic Server Active GridLink
	Managing Logs
	Configuring Fluentd Logging
	Obfuscating Sensitive Data in Logs
	Configuring Logging and Log Rotation

	Managing OSM Cloud Native Metrics
	Configuring Prometheus for OSM Cloud Native Metrics
	Viewing OSM Cloud Native Metrics Without Using Prometheus
	Viewing OSM Cloud Native Metrics in Grafana
	Exposed OSM Order Metrics
	Managing Microservices Metrics

	Managing WebLogic Monitoring Exporter (WME) Metrics
	Enabling WebLogic Monitoring Exporter (WME)
	Configuring the Prometheus Scrape Job for WME Metrics
	Viewing WebLogic Monitoring Exporter Metrics in Grafana

	9 Integrating OSM
	Connectivity With Traditional OSM Instances
	Connectivity With OSM Cloud Native
	Connectivity Between the Building Blocks
	Inbound HTTP Connectivity
	Inbound JMS Connectivity
	Inbound JMS Connectivity Within the Same Kubernetes Cluster
	Outbound HTTP Connectivity
	Outbound JMS Connectivity

	Configuring SAF
	Applying the WebLogic Patch for External Systems
	Configuring SAF On External Systems
	Setting Up Secure Communication with SSL
	Configuring Secure Incoming Access with SSL
	Generating SSL Certificates for Incoming Access
	Setting Up OSM Cloud Native for Incoming Access
	Configuring Incoming HTTP and JMS Connectivity for External Clients

	Configuring Access to External SSL-Enabled Systems
	Loading Certificates for Outgoing Access
	Enabling SSL on an External WebLogic Domain
	Setting Up OSM Cloud Native for Outgoing Access

	Adding Additional Certificates to an Existing Trust
	Debugging SSL

	10 Running the SAF Sample for OSM Cloud Native
	Preparing the WebLogic System to Run the Emulator
	Deploying the Emulator on the WebLogic System
	Deploying the SimpleProvisioning Sample Cartridge
	Preparing the OSM Cloud Native Instance
	Validating the SAF Endpoints
	Submitting Orders
	Submitting Orders with HTTP
	Submitting Orders with T3 over HTTP

	11 Maintaining the OSM Cloud Native Environment
	Before You Upgrade
	About Upgrade Paths and Procedures
	Rolling Restart
	Identifying Your Upgrade Path
	Offline Change Upgrade Paths
	Online Change Upgrade Paths
	Exceptions
	Unsupported Tasks

	OSM Cloud Native Upgrade Procedures
	PDB Upgrade Procedure
	OSM Application Upgrade
	Offline Cartridge Deployment
	Online Cartridge Deployment

	Upgrades to Infrastructure
	Miscellaneous Upgrade Procedures
	Running Operational Procedures
	Triggering Introspection
	Scaling Down the Cluster
	Scaling Up the Cluster
	Restarting the Instance
	Fast Delete

	Upgrade Path Flow Chart

	12 Upgrading your OSM Cloud Native Deployment
	Overview of the Upgrade Steps
	Installing WebLogic Kubernetes Operator
	WKO Monitoring Mechanism
	Operator Installation
	Unregistering and Registering the Namespace with Weblogic Operator

	Ingress Controller
	Updating Specification Files
	Updating the Project Specification
	Updating the Instance Specification
	Updating Shape Specification

	Upgrading to OSM Cloud Native 7.5.0
	Prerequisites for the Upgrade
	Preparation Steps for the Upgrade
	Updating the Secrets
	Update Existing Secrets
	Creating New Secrets

	Upgrading the OSM DB Schema
	OSM Application Upgrade

	13 Moving to OSM Cloud Native from a Traditional Deployment
	Supported Releases
	Performing Pre-move and Post-move Tasks
	About the Move Process
	Pre-move Development Activities
	Moving to an OSM Cloud Native Deployment
	Quiescing the Traditional Instance of OSM
	Exporting and Importing JMS Messages
	Migrating JMS Messages By Using the Cloud Native Toolkit
	Prerequisites for Running the Migration Scripts
	Using a New Database Server for the Cloud Native Instance (Option A)
	Upgrading the Database Server for the OSM Traditional Environment and Using it for the Cloud Native Instance (Option B)

	Migrating JMS Messages By Using the WebLogic Administration Console
	Exporting JMS Messages
	Importing JMS Messages

	Upgrading the Database
	Upgrading the Database Server
	Preparing the Required Database Entities for OSM Cloud Native

	Upgrading the OSM Schema and Cartridges
	Switching Integration with Upstream Systems

	Reverting to Your OSM Traditional Deployment
	Cleaning Up

	14 Debugging and Troubleshooting
	Setting Up Java Flight Recorder (JFR)
	Troubleshooting Issues with Traefik, OSM UI, and WebLogic Administration Console
	Recovering an OSM Cloud Native Database Schema
	Finding the Issue that Caused the OSM Cloud Native Database Schema Upgrade Failure
	Restarting the OSM Database Schema Upgrade from the Point of Failure

	Resolving Improper JMS Assignment
	Common Problems and Solutions
	Known Issues

	A Differences Between OSM Cloud Native and OSM Traditional Deployments
	B Reference of Secrets Created by the Scripts
	DB Credentials Secret
	RCU DB Credentials Secret
	WebLogic Credentials Secret
	WebLogic Runtime Encryption Secret
	FMW Wallet Encryption Secret
	FMW Secure Wallet Secret
	OSM Internal User Passwords Secret
	OSM OIDC Credentials Secret
	OSM Fluentd Credentials Secret
	Certificate and Key to Access the Gateway HTTPS Endpoint
	Certificate and Key to Access the OSM HTTPS Endpoint
	Certificate and Key to Access the OSM WebLogic Admin Console HTTPS Endpoint
	Certificate and Key to Access the OSM t3 over HTTPS
	Trusted CA Injection
	Secure Identity
	ADB Wallet Secret
	ADB Admin Secret
	Cartridge Defined Custom User Credentials
	External LDAP Information
	SAF Credentials
	Generic Credentials
	Security Scheme Credentials

