

[1] Oracle® Communications Services Gatekeeper
Communication Service Reference Guide

Release 7.0

E96491-01

July 2018

Oracle Communications Services Gatekeeper Communication Service Reference Guide, Release 7.0

E96491-01

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Related Documents .. xvii

1 Understanding Communication Services

About the Software Architecture .. 1-1
Communication Services .. 1-1
Container Services.. 1-2
Communication Service Deployment Model ... 1-4

2 Understanding the Communication Service Architecture

Understanding How Communication Services Work... 2-1
Typical Application-Initiated Traffic Flow... 2-2
Typical Network-Triggered Traffic Flow .. 2-3
Common Features... 2-4

3 Services Gatekeeper OAuth 2.0 Authorization and Resource Servers

Using OAuth 2.0 with Services Gatekeeper.. 3-1

4 Application Subscription Management

Overview of the Application Subscription Management Service.. 4-1
Application Interfaces ... 4-1
Support for OAuth Authentication .. 4-1
Events and Statistics .. 4-2

Event Data Records.. 4-2
Managing Application Subscription Management ... 4-2

Properties for Application Subscription Management... 4-3
Configuration Workflow for Application Subscription Management....................................... 4-3

Deploying Application Subscription Management Packages.. 4-4
Creating an Application Subscription Management plug-in Instance 4-4
Editing Application Subscription Management Attributes.. 4-5
Loading Application Subscription Configuration Files .. 4-5
Loading Trusted Applications .. 4-8

iv

Cleaning Up Pending Requests and Expired Subscriptions... 4-8
Retrieving Application Subscription Configuration Files .. 4-9
Retrieving Application Subscription Lists .. 4-9
Configure Application OAuth Scope... 4-9
Connecting to an SMSC .. 4-10

Handling Traffic from Applications without Subscriptions... 4-11

5 Parlay X 2.1 Multimedia Messaging/MM7

Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service 5-1
Processing Application-initiated Requests... 5-2

Send Receipts... 5-2
Delivery Receipts ... 5-2

Processing Network-triggered Requests .. 5-2
Retrieving Offline MMS Messages .. 5-4

Polling Functionality ... 5-6
Short Code Translation.. 5-6

Application Interfaces ... 5-6
Events and Statistics .. 5-6

Event Data Records.. 5-7
Charging Data Records ... 5-7
Statistics ... 5-7
Alarms.. 5-7

Tunneled Parameters for Parlay X 2.1 MM7 Rel 6.8.0 ... 5-7
ChargedParty.. 5-7
ChargedPartyCD.. 5-8
timeStamp ... 5-8
expiryDate ... 5-8
allowAdaptation... 5-8
DeliveryCondition ... 5-8
UAProf ... 5-9
StatusText .. 5-9

Managing Parlay X 2.1 Multimedia Messaging/MM7 .. 5-9
Properties for Parlay X 2.1 Multimedia Messaging/MM7 .. 5-9
Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/MM7 5-10
Provisioning Parlay X 2.1 MultiMedia Messaging/MM7 Communication Service 5-11

6 Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP

Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP Communication
Service... 6-1

Processing Application-Initiated Requests... 6-2
Send Requests.. 6-2
Send Receipts... 6-2
Delivery Receipts ... 6-3
Retry Requests ... 6-3

Processing Network-Triggered Requests ... 6-4
Retrieving Offline Messages.. 6-5

Application Interfaces ... 6-5

v

Events and Statistics .. 6-5
Event Data Records ... 6-5
Charging Data Records .. 6-6
Alarms.. 6-6

Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP 6-6
Properties for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP......................... 6-6
Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP.......
6-7
Provisioning Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP . 6-8

7 Parlay X 2.1 Short Messaging/SMPP

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service 7-1
Split and Submit Messaging ... 7-2
Processing Application-Initiated Requests... 7-2

Send Receipts... 7-2
Delivery Receipts ... 7-2

Processing Network-Triggered Requests ... 7-3
Connection Handling and Provisioning... 7-4
Multiple Connections and Multiple Plug-in Instances... 7-5
Windowing ... 7-5
Segments.. 7-6
Short Code Translation.. 7-6
Load Balancing, High Availability, and Failover .. 7-6
Character Set Encoding ... 7-7

Standard and Extended GSM Alphabets... 7-7
Other Alphabets .. 7-7
Overriding the DefaultDataCoding Attribute .. 7-8

Application Interfaces ... 7-8
Events and Statistics .. 7-9

Event Data ... 7-9
Charging Data Records ... 7-9
Statistics ... 7-9
Alarms... 7-10

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP ... 7-10
submit_date.. 7-10
done_date ... 7-10
sms.protocol.id .. 7-11
source_port... 7-11
destination_port .. 7-11
data_coding.. 7-12
esm_class .. 7-12
sms.service.type... 7-12
sms.replace.if.present ... 7-13
com.bea.wlcp.wlng.plugin.sms.OriginatingAddressType ... 7-13
com.bea.wlcp.wlng.plugin.sms.DestinationAddressType.n .. 7-13
com.bea.wlcp.wlng.plugin.sms.RequestDeliveryReportFlag... 7-14
com.bea.wlcp.wlng.plugin.sms.DataCoding .. 7-14

vi

com.bea.wlcp.wlng.plugin.sms.Priority .. 7-14
originating_address .. 7-15
smpp_billing_id... 7-15
dest_addr_subunit .. 7-16
dest_bearer_type ... 7-16
service_type.. 7-17
ussd_service_operation .. 7-17
its_session_info.. 7-18
smpp_optional_int_tlv_param_tags... 7-18
smpp_optional_int_tlv_param_values .. 7-19
smpp_optional_octet_tlv_param_tags ... 7-19
smpp_optional_octet_tlv_param_values... 7-20
com.bea.wlcp.wlng.plugin.sms.smpp.schedule_delivery_time .. 7-20
sms.validity.period ... 7-21

Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP..
7-21

Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary
SMS/SMPP 7-22
Configuration Workflow for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services
Binary SMS/SMPP 7-22
Management Operations in the SMPP Server Service... 7-23

8 Parlay X 3.0 Device Capabilities/LDAPv3

Overview of the Parlay X 3.0 Device Capabilities/LDAPv3 Communication Service................ 8-1
Application Interfaces ... 8-1
Events and Statistics .. 8-2

Event Data Records.. 8-2
Charging Data Records ... 8-2
Statistics ... 8-2

Managing Parlay X 3.0 Device Capabilities/LDAPv3 .. 8-2
Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in ... 8-2
Configuration Workflow for Device Capabilities/LDAPv3 Plug-in.. 8-3
Creating an LDAP-to-XML Mapping File .. 8-4

Reference: Attributes and Operations for Device Capabilities/LDAPv3...................................... 8-6
Attribute: AuthDN... 8-7
Attribute: AuthPassword ... 8-7
Attribute: BaseDN.. 8-7
Attribute: ConnTimeout.. 8-7
Attribute: DeviceIdAttributeName ... 8-8
Attribute: DeviceNameAttributeName .. 8-8
Attribute: DeviceProfileURLAttributeName ... 8-8
Attribute: Host.. 8-8
Attribute: LDAPConnectionStatus .. 8-8
Attribute: MaxConnections .. 8-9
Attribute: MinConnections ... 8-9
Attribute: Port ... 8-9
Attribute: recoverTimerInterval... 8-9

vii

Attribute: Schema.. 8-10
Operation: apply ... 8-10
Operation: updateSchemaURL ... 8-10

9 Parlay X 3.0 Payment/Diameter

Overview of the Parlay X 3.0 Payment Communication Service .. 9-1
Amount Charging .. 9-1
Volume Based Charging ... 9-2
Processing Direct Queries/Application-initiated Requests... 9-2
Processing Notifications/Network-triggered Requests ... 9-2
Validating Reservation Requests ... 9-2

Application Interfaces ... 9-3
Changing the List of Diameter AVPs for Your Implementation .. 9-3

About the AVP Template Files... 9-4
Adding New AVPs for Diameter Payment in Template Files... 9-4
Adding Diameter AVPs to a Template File During Runtime.. 9-5

Forwarding AVPs as Xparams from the Charging Server to the Application.............................. 9-6
Events and Statistics .. 9-6

Event Data Records.. 9-6
Statistics ... 9-7

Tunneled Parameters for Parlay X 3.0 Payment / Diameter ... 9-8
session-id ... 9-8

Managing Parlay X 3.0 Payment /Diameter... 9-8
Properties for Parlay X 3.0 Payment/Diameter... 9-8
Configuration Workflow for Parlay X 3.0 Payment/Diameter... 9-9
Provisioning Workflow for Parlay X 3.0 Payment/Diameter .. 9-10

10 Parlay X 3.0 Address List Management Interface

Overview of the Parlay X 3.0 Address List Management Interface ... 10-1
Address List Management Architecture.. 10-1
Group URI Format .. 10-2
Managing Groups ... 10-2
Controlling Group Access.. 10-2
Managing and Querying Group Members.. 10-2
Managing and Querying Group Attributes .. 10-2
Managing and Querying Group Member Attributes .. 10-3

Application Interfaces .. 10-3
Events and Statistics ... 10-3

Event Data Records... 10-3
Alarms... 10-4

Managing Parlay X 3.0 Address List Management Architecture ... 10-4
Properties for Parlay X 3.0 Address List Management Architecture 10-4
Configuration Workflow for Parlay X 3.0 Address List Management Architecture 10-5

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture
10-5

Attribute: GroupNameMaxLength... 10-6

viii

Attribute: GroupSize... 10-6
Operation: createGroup.. 10-6
Operation: queryGroups .. 10-6
Operation: deleteGroup ... 10-7
Operation: setAccess... 10-7
Operation: queryAccess ... 10-7
Operation: addMember.. 10-8
Operation: addMembers .. 10-8
Operation: queryMembers... 10-8
Operation: deleteMember .. 10-9
Operation: deleteMembers .. 10-9
Operation: addGroupAttribute... 10-9
Operation: queryGroupAttribute ... 10-10
Operation: deleteGroupAttribute ... 10-10
Operation: addGroupMemberAttribute.. 10-10
Operation: queryGroupMemberAttributes... 10-11
Operation: deleteGroupMemberAttribute .. 10-11
Operation: addMemberAttribute.. 10-11
Operation: queryMemberAttributes .. 10-12
Operation: deleteMemberAttribute.. 10-12

11 Parlay X 4.0 Application-Driven Quality of Service/Diameter

Overview of the Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter
Communication Service ... 11-1

How it Works... 11-2
Adding SOAP-Based QoS Support to an Application... 11-3
Managing Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter 11-3

Properties for Parlay X 4.0 Application-Driven QoS/Diameter .. 11-3
Configuration Workflow for Parlay X 4.0 Application-Driven QoS/Diameter 11-4

Events and Statistics ... 11-5
Event Data Records... 11-5
Charging Data Records .. 11-5

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service
(QoS)/Diameter ... 11-5

Attribute: DestinationHost ... 11-6
Attribute: DestinationPort ... 11-6
Attribute: DestinationRealm.. 11-6
Attribute: OriginHost ... 11-6
Attribute: OriginPort .. 11-7
Attribute: OriginRealm .. 11-7
Attribute: Connected .. 11-7
Attribute: RecordHistory ... 11-7
Operation: connect .. 11-7
Operation: disconnect... 11-8
Operation: loadQoSRequestTemplate.. 11-8
Operation: retrieveQoSRequestTemplate.. 11-8
Operation: listQoSRequestTemplateMatchRule... 11-9

ix

Operation: deleteQoSRequestTemplate... 11-9

12 REST Services

Overview of REST Services .. 12-1

13 OneAPI Multimedia Messaging/MM7

About the OneAPI Multimedia Messaging Interface .. 13-1
REST Service Descriptions Available at Run-time ... 13-1

Sending MMS Messages.. 13-2
Query Delivery Status of MMS Message ... 13-5
Subscribe to MMS Delivery Notification .. 13-8
Stop Subscription to Delivery Notifications ... 13-12
Retrieve Messages Sent to Web Application ... 13-14

Retrieving Full Messages ... 13-16
Subscribe to Notifications of Messages Sent to Application ... 13-19
Stop Subscription to Application Message Notifications ... 13-23

14 OneAPI Payment/Diameter

About the Payment Interface .. 14-1
REST Service Descriptions Available at Run-time ... 14-1

Charge Amount.. 14-2
Query Transaction Status .. 14-5
List Transactions for Application User ... 14-7
Refund Amount ... 14-10
Reserve Amount .. 14-13
Charge Reservation ... 14-18
Release Reservation .. 14-21
Resource States .. 14-24
Payment Exceptions .. 14-25

15 OneAPI Short Messaging/SMPP

About the OneAPI Short Messaging Interface.. 15-1
REST Service Descriptions Available at Run-time ... 15-1

Sending SMS Messages ... 15-2
Query Delivery Status of SMS Message... 15-5
Subscribe to SMS Delivery Notification .. 15-8
Stop Subscription to Delivery Notifications ... 15-12
Retrieve Messages Sent to Web Application ... 15-14
Subscribe to Notifications of Messages Sent to Application ... 15-17
Stop Subscription to Application Message Notifications ... 15-20

16 OneAPI Terminal Location/MLP

About the Terminal Location Interface .. 16-1
REST Service Descriptions Available at Run-time ... 16-1

Query Mobile Terminal Location .. 16-2

x

17 Extended Web Services Binary SMS/SMPP

Overview of the EWS Binary SMS/SMPP .. 17-1
Send Receipts ... 17-2
Delivery Receipts... 17-2
Connection Handling and Provisioning.. 17-2

Application Interfaces .. 17-3
Events and Statistics ... 17-3

Event Data .. 17-3
Charging Data Records .. 17-3
Statistics .. 17-3
Alarms... 17-4

Managing EWS Binary SMS/SMPP... 17-4

18 Extended Web Services Quality of Service /Diameter

Understanding the EWS Quality of Service/Diameter Communication Service 18-1
Using Degraded Mode ... 18-2
An Example End to End QoS Solution... 18-2

Application Interfaces .. 18-2
Events and Statistics ... 18-3

Event Data Records... 18-3
Alarms... 18-3

Specifications for the EWS Quality of Service/Diameter Communication Service 18-4
Managing the EWS Quality of Service/Diameter Communication Service 18-4

General Configuration Workflow... 18-4
Configuring Coherence to Use Degraded Mode.. 18-5
Managing Extended Web Services Quality of Service Templates ... 18-8

Load a QoS Template .. 18-8
Retrieve an Existing QoS Template ... 18-9
List Match Rules for a QoS Template.. 18-9
Delete a QoS Template .. 18-9

Reference: Attributes and Operations for EWS Quality of Service/ Diameter 18-10
Attribute: DestinationHost .. 18-10
Attribute: DestinationPort ... 18-10
Attribute: DestinationRealm.. 18-10
Attribute: OriginHost ... 18-11
Attribute: OriginPort .. 18-11
Attribute: OriginRealm .. 18-11
Attribute: Connected .. 18-11
Operation: connect .. 18-11
Operation: disconnect... 18-12
Operation: loadQoSRequestTemplate.. 18-12
Operation: retrieveQoSRequestTemplate.. 18-12
Operation: listQoSRequestTemplateMatchRule... 18-13
Operation: deleteQoSRequestTemplate... 18-13

xi

19 Extended Web Services Subscriber Profile/LDAPv3

Overview of the EWS Subscriber Profile/LDAPv3 Communication Service 19-1
Application Interfaces .. 19-1
Events and Statistics ... 19-2

Event Data Records... 19-2
Charging Data Records .. 19-2
Statistics .. 19-2
Alarms... 19-2

Managing EWS Subscriber Profile/LDAPv3 .. 19-2
Properties for EWS Subscriber Profile/LDAPv3.. 19-3
LDAP Server Schema.. 19-3
Configuration Workflow for EWS Subscriber Profile/LDAPv3.. 19-6
Management Operations for EWS Subscriber Profile/LDAPv3.. 19-7
Provisioning for EWS Subscriber Profile/LDAPv3 ... 19-7

20 Extended Web Services WAP Push/PAP

Overview of the EWS WAP Push/PAP Communication Service... 20-1
Push Access Protocol (PAP) 2.0 .. 20-2

Application Interfaces .. 20-2
Events and Statistics ... 20-3

Charging Data Records .. 20-3
Event Data Records... 20-3
Statistics .. 20-3
Alarms... 20-3

Managing the EWS WAP Push/PAP Communication Service... 20-3
Properties for EWS WAP Push/PAP ... 20-3
WAP User Address Scheme .. 20-4
Configuration Workflow for EWS WAP Push/PAP ... 20-5

21 Native MM7

Overview of the Native MM7 Communication Service .. 21-1
Status Reports .. 21-1

Delivery Reports .. 21-2
Read-Reply Report... 21-2

Network-triggered Multimedia Messages .. 21-2
Application Interfaces .. 21-2
Events and Statistics ... 21-2

Event Data Records... 21-2
Charging Data Records .. 21-3
Statistics .. 21-3
Alarms... 21-3

Managing Native MM7 .. 21-3
Properties for Native MM7.. 21-3
Configuration Workflow for Native MM7 .. 21-4
Provisioning Workflow for Native MM7 .. 21-5

xii

22 Native SMPP

Overview of the Native SMPP Communication Service ... 22-1
SMPP Server Service... 22-1
Connection Handling and Provisioning ... 22-2

About Creating and Resetting Connections... 22-2
About Session Handling ... 22-3

Creating an Interceptor With a Custom Error Code.. 22-4
Authentication ... 22-5
Connection Pooling... 22-5

Server Connection Pools ... 22-5
Client Connection Pools.. 22-6

Timeouts ... 22-6
SMPP Server Service Timers .. 22-6
Plug-in Instance Timers .. 22-7

Windowing... 22-7
Connection-Based Routing .. 22-8

Enable Connection-Based Routing.. 22-8
Limitations .. 22-8

Short Code Translation... 22-8
USSD Support.. 22-9

its_session_info... 22-9
service_type .. 22-9
ussd_service_operation... 22-10

Billing Identification ... 22-10
smpp_billing_id ... 22-10

Load Balancing, High Availability and Fail-Over.. 22-11
Application Interfaces .. 22-12
Events and Statistics ... 22-13

Event Data Records... 22-13
Charging Data Records .. 22-14
Statistics .. 22-14
Alarms... 22-15

Managing Native SMPP... 22-15
Properties for SMPP Server Service .. 22-15
Properties for Native SMPP Plug-in.. 22-15
Configuration Workflow for Native SMPP Communication Service 22-16
Provisioning Workflow for Native SMPP Communication Service ... 22-17
Context Attributes for Native SMPP Server .. 22-17

Attribute: native_smpp_mo_destAddressHasAppMapping ... 22-17
Attribute: native_smpp_mo_hasActiveReceiver.. 22-17

System Properties for SMPP Server Service .. 22-17
System Property: oracle.ocsg.protocol.smpp.serverservice.max_threads............................ 22-18
System Property: oracle.ocsg.protocol.smpp.serverservice.min_threads 22-18
System Property: wlng.legacy.smpp.PDUManipulationAllowed... 22-18
System Property: wlng.smpp.max_payload_size .. 22-18

Reference: Attributes and Operations for SMPP Server Service ... 22-18
Attribute: ConnectionBasedRouting .. 22-19

xiii

Attribute: EnquireLinkMaxFailureTimes .. 22-19
Attribute: EnquireLinkTimerValue ... 22-20
Attribute: InactivityTimerValue .. 22-20
Attribute: InitiationTimerValue ... 22-20
Attribute: LooseBinding... 22-20
Attribute: OfflineMO .. 22-21
Attribute: rejectMOMessagesWithNoAppReceiverConnection .. 22-21
Attribute: RequestTimerValue .. 22-22
Attribute: ServerAddress ... 22-22
Attribute: ServerPort... 22-22
Attribute: skipAddressrangeCheckInBindRequest ... 22-22
Attribute: SmscSystemId ... 22-23
Operation: addApplicationSpecificSettings .. 22-23
Operation: closeClientConnection.. 22-24
Operation: closeServerConnection ... 22-25
Operation: closeServerPort .. 22-25
Operation: deleteApplicationSpecificSettings .. 22-25
Operation: listApplicationSpecificSettings.. 22-26
Operation: listClientConnections.. 22-26
Operation: listClusterServerConnectionsForMOJumping.. 22-26
Operation: listPluginInstances .. 22-26
Operation: listServerConnections... 22-26
Operation: listServerPorts.. 22-26
Operation: resetClientConnection .. 22-27
Operation: resetServerPort .. 22-27
Operation: updateAllServerPorts ... 22-27

Reference: Attributes and Operations for Native SMPP Plug-in .. 22-28
Attribute: BindType .. 22-28
Attribute: DeliverSmRespCommandStatus .. 22-29
Attribute: EnableDeleteAfterCancel... 22-29
Attribute: EnableDeleteAfterNotify ... 22-30
Attribute: EnableDeleteAfterQuery ... 22-30
Attribute: EnquireLinkTimerValue .. 22-30
Attribute: EsmeAddressRange.. 22-30
Attribute: EsmeNpi... 22-30
Attribute: EsmePassword ... 22-31
Attribute: EsmeSystemId ... 22-31
Attribute: EsmeSystemType .. 22-31
Attribute: EsmeTon... 22-32
Attribute: LocalAddress ... 22-32
Attribute: LocalPort .. 22-32
Attribute: MessageIdInHexFormat... 22-33
Attribute: NumberReceiverConnections ... 22-33
Attribute: NumberTransceiverConnections.. 22-33
Attribute: NumberTransmitterConnections ... 22-33
Attribute: RequestTimerValue .. 22-34
Attribute: RetryTimesBeforeGiveUp.. 22-34

xiv

Attribute: RetryTimesBeforeReconnect ... 22-34
Attribute: SmscAddress ... 22-34
Attribute: SmppVersion ... 22-35
Attribute: SmscPort .. 22-35
Attribute: WindowingMaxQueueSize ... 22-35
Attribute: WindowingMaxWaitTime... 22-35
Attribute: WindowingSize ... 22-36

23 Native UCP

Overview of the Native UCP Communication Service.. 23-1
Connection and Credential Handling.. 23-2

Credentials .. 23-2
Multiple Connections .. 23-3
Connection Pooling ... 23-4

Windowing and Transaction Numbers .. 23-4
Behavior When the Window is Exceeded .. 23-4
Behavior When TRNs Are Not Released.. 23-4

Authentication ... 23-5
Availability and Retry .. 23-5

Application-Initiated traffic.. 23-5
Network-Initiated traffic... 23-5
Client-Side Retry Handling .. 23-6

Heartbeat Support... 23-6
Server-Side Heartbeat Support .. 23-6
Client-Side Heartbeat Support... 23-7

Storage Provider.. 23-7
Application Interfaces .. 23-7
Events and Statistics ... 23-7

Event Data Records... 23-7
About UCP_trn/UCP_mappedTrn... 23-8
About UCP_oadc ... 23-9

Charging Data Records .. 23-9
Statistics .. 23-9
Alarms... 23-9

Managing Native UCP.. 23-9
Properties for Native UCP Protocol Server Service .. 23-10
Properties for Native UCP Managed Plug-in... 23-10
Properties for Native UCP Plug-in Instance .. 23-10
Configuration Workflow for Native UCP Communication Service ... 23-11
Provisioning Workflow for Native UCP Communication Service.. 23-12
Reconfiguring Native UCP Listen Ports ... 23-13
Reference: Attributes and Operations for Native UCP Protocol Server Service 23-13

Attribute: MaxReconnectAttempts... 23-14
Attribute: TimeBetweenReconnectAttempts .. 23-14
Attribute: UCPProtocol (read-only) ... 23-14
Operation: closeClientSideConnection .. 23-15
Operation: closeServerSideConnection.. 23-15

xv

Operation: dumpClientSideConnectionsInfo ... 23-16
Operation: dumpOngoingClientConnectionsRetryInfo.. 23-16
Operation: dumpServerSideConnectionsInfo... 23-16
Operation: listUCPServersString .. 23-16
Operation: restartPorts ... 23-16
Operation: stopOngoingClientConnectionRetry.. 23-17

A Events, Alarms, and Charging

Events... A-1
Event handling in the Access Tier .. A-1
Event handling in the Network Tier .. A-1

Alarms.. A-3
Management integration.. A-4

OSS ... A-4
SNMP... A-4

Charging Data Records .. A-4

xvi

xvii

Preface

This book is a detailed reference for the communications services used in Oracle
Communications Services Gatekeeper.

Audience
This document is for system administrators who implement communication services
on Services Gatekeeper.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Communications
Services Gatekeeper documentation set:

■ Oracle Communications Services Gatekeeper Alarms Handling Guide

■ Oracle Communications Services Gatekeeper Application Developer's Guide

■ Oracle Communications Services Gatekeeper Concepts

■ Oracle Communications Services Gatekeeper Portal Developer's Guide

■ Oracle Communications Services Gatekeeper Extension Developer's Guide

■ Oracle Communications Services Gatekeeper Platform Test Environment User's Guide

■ Oracle Communications Services Gatekeeper Statement of Compliance

■ Oracle Communications Services Gatekeeper System Administrator's Guide

xviii

1

Understanding Communication Services 1-1

1Understanding Communication Services

This chapter explains the Oracle Communications Services Gatekeeper software
architecture for running communication services on networks that require traditional
telephony protocol.

About the Software Architecture
Services Gatekeeper is built on the Oracle WebLogic Server 12c product, is closely
aligned with JEE standards, and tightly integrated with Oracle Communications
Converged Application Server (Converged Application Server). Services Gatekeeper
communication services provide access to network capabilities such as messaging,
audio call, call control, terminal location, terminal status, presence information, and
device capabilities. You can easily extend these communication services or create new
ones by using the Platform Development Studio. Services Gatekeeper provides a
secure container for running communication services.

Communication Services
When used with traditional telephony networks, all traffic in Services Gatekeeper is
processed through communication services. As shown in Figure 1–1, each
communication service consists of:

■ A service facade layer that includes an application-facing interface used to
communicate with the application, a security layer for authentication, and the
XML Serialization to convert the data into a form that can be readily transported.

■ A service enabler layer that includes a processing layer and a protocol translation
layer. Transactions begin in the processing layer, where requests are validated
according to service level agreements (SLAs) and are then routed to a protocol
translation layer, which communicates with the underlying network element.

For details on administering and deploying communication services see Services
Gatekeeper System Administrator's Guide.

For details on the service plug-ins available for you to use in custom communication
services see Services Gatekeeper Application Developer's Guide.

For information on creating your own custom communication services see Services
Gatekeeper Extension Developer's Guide.

Container Services

1-2 Services Gatekeeper Communication Service Reference Guide

Figure 1–1 Communication Service Components

Container Services
When used with traditional telephony networks, Services Gatekeeper provides a
container in which communication services are run. The container leverages the
standard container services that Oracle WebLogic Server provides, and adds services
specific to communication services and Services Gatekeeper generally. Container
services include:

■ Budget

Manages cross-cluster bandwidth allocation, and supports geographically
redundant installations. In the context of quota and rate SLAs, it also maintains
historical data on usage patterns.

■ Event Data Record (EDR)

Broadcasts events and manages their translation into charging data and alarms, as
necessary.

■ Storage

Provides access to data storage using distributed caching and the database.

■ Core

Performs initial setup tasks.

■ Event Channel

Broadcasts events among modules and servers in the cluster.

■ Configuration

Stores mostly read-only data, such as configuration information.

■ Statistics

Generates system statistics.

Container Services

Understanding Communication Services 1-3

■ Geographic Redundancy

Provides support for geographically redundant installations.

■ Plug-in Manager

Manages the service enabler processing layer.

■ SNMP

Provides SNMP service for alarms.

■ Account

Manages SLAs and sessions.

Figure 1–2 and Figure 1–3 show the interactions between the Parlay X 2.1 Short
Messaging/SMPP communication service and selected container services as traffic
flows through the service enabler layer of the communication service. Figure 1–2
shows this interaction for application-initiated traffic and Figure 1–3 shows this
interaction for network-triggered traffic.

Figure 1–2 Interaction with Container Services for Typical Application-Initiated Traffic

Communication Service Deployment Model

1-4 Services Gatekeeper Communication Service Reference Guide

Figure 1–3 Interaction with Container Services for Typical Network-Triggered Traffic

Communication Service Deployment Model
When used with traditional telephony networks, communication services are typically
deployed in two clustered tiers, an Access Tier and a Network Tier, typically separated
by a firewall. In a single physical site installation, this corresponds to a single
WebLogic Server administration domain. Each communication service is deployed in
its own EAR file, one per tier.

Some EAR files may contain either multiple application-facing interfaces (such as the
Parlay X 2.1 Short Messaging and Binary SMS/SMPP communication services) or
multiple network plug-ins that support the same basic service capability.

A communication service can be installed or removed without impacting other
communication services. If no interfaces are changed, existing communication services
can be upgraded while traffic is running. This process is called a hitless upgrade and
tracks traffic so that in-flight requests can be completed before the older version of the
communication service is undeployed. Communication services may be deployed
selectively, as needed.

2

Understanding the Communication Service Architecture 2-1

2Understanding the Communication Service
Architecture

This chapter is a high level introduction to Oracle Communications Services
Gatekeeper communication services. For more detailed information on
communication service components, see “Understanding Communication Service
Components” in Services Gatekeeper Extension Developer's Guide.

Understanding How Communication Services Work
A communication service consists of a service type, such as Multimedia Messaging,
Terminal Location, and so on, an application-facing interface (also called a "north"
interface), and a network-facing interface (also called "south" interface).

Communication services are separated into two functional layers: the service facade
and the service enabler. The service facade contains the application-facing interfaces
and manages interactions with applications. The service enabler contains the
mechanisms necessary for communicating with the underlying network nodes.

Application-initiated requests (also called mobile terminated, or MT requests) enter
through the service facade. A facade comprises a set of application-facing interfaces of
a particular type. Services Gatekeeper supplies facades for traditional SOAP Web
Services interfaces, RESTful interfaces, OneAPI RESTful interfaces, and native
telephony interfaces. There is also a facade specifically designed to work with the
Oracle Service Bus, for SOA-style installations.

After the requests have been processed by the service facade, they are sent to the
service enabler by using Remote Method Invocation (RMI). The service enabler layer
manages service authorization and policy enforcement, charging, and traffic throttling
and shaping. The enabler translates the request into a form appropriate for the
underlying network node.

Although the operator may choose instead to run in a sessionless mode, by default
Services Gatekeeper requires that applications (except those using native telephony
interfaces) acquire a WebLogic session before sending request traffic. Applications do
this using the Session Manager interface appropriate for their facade type. The Session
Manager returns a session ID, which the application adds to the header of all its
requests. Services Gatekeeper can use the session ID to keep track of all the traffic that
an application sends for the duration of the session. Sessions allow correlation among
sequences of operations. They are not used for authentication

Network-triggered (also called mobile originated, or MO) traffic enables applications
to receive data from the telecom network. To do so, the application must first send a
request to Services Gatekeeper, or have the operator perform the equivalent task using
operations, administration, and management (OAM) operations, to register a

Typical Application-Initiated Traffic Flow

2-2 Services Gatekeeper Communication Service Reference Guide

description of the types of data it is interested in such as delivery notifications,
incoming messages, and any criteria that the data must be meet to be acceptable. For
example, an application might specify that it is only interested in receiving incoming
SMS messages that are addressed to the 12345 short code and that begin with the
string blue.

Typical Application-Initiated Traffic Flow
The following steps describe the application-initiated traffic flow. Steps 1-3 are
optional.

1. An application establishes an HTTP session using the WebLogic Session
Management Web Service in the facade layer. For details on creating a session see
“Using Sessions and Session Persistence” in Fusion Middleware Developing Web
Applications, Servlets, and JSPs, for WebLogic Server.

2. A session is established, and the session ID is returned to the application. After the
application has been established, it may access multiple communication services
across the cluster transparently.

3. The session is valid until the application terminates it or an operator-established
time period has elapsed.

4. A request for a particular operation, usually transported over Secure Sockets Layer
(SSL), enters at the application-facing interface in the facade layer, either directly
from the application, or, if the particular installation uses an Oracle Service Bus,
from the Oracle Service Bus. The application-facing interface is implemented as a
SOAP-based Web Service or a RESTful Web Service. Requests using the RESTful
requests are authenticated with HTTP basic or OAuth 2.0 authentication using a
user name and password. SOAP-based Web Service requests are authenticated
using WebLogic Server WS-Security, which supports plain text or digest
passwords, X.509 certificates, or SAML tokens.

All requests are authenticated in this manner, whether the application uses the
session mode.

In addition, SOAP-based requests may be further secured through encryption
using the W3C’s standard XML encryption and through digital signatures using
the W3C XML digital signature standard. The particular security requirements of
the installation are specified in the WS-Policy section of the operator-published
WSDL file.

For information about W3C’s standard XML encryption, see

http://www.w3.org/TR/xmlenc-core/

For information about W3C XML digital signature standard, see

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

It is possible to use the appropriate standard Parlay X 2.1 or 3.0 WSDL to create
SOAP-based requests, but the developer would then be required to ascertain the
appropriate security type from the operator and insert the information manually.

5. The request is serialized and passed on to the service enabler over RMI.

From this point on, requests that enter the communication service using the SOAP
Service Facade and those using the RESTful Service Facade use the same service
enablers. SLA construction, CDRs, EDRs, alarms, and so forth are same for the
SOAP-based requests as they are for the RESTful requests of the same type.

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/

Typical Network-Triggered Traffic Flow

Understanding the Communication Service Architecture 2-3

The entrance point for the service enabler marks the beginning of the
application-initiated transaction.

6. The request is sent to the Plug-in Manager.

7. The Plug-in Manager invokes the Interceptor Stack to evaluate the request. The
Interceptor Stack is a flexible set of chained evaluation steps that:

■ Validates the request

■ Enforces a range of policy decisions based on SLAs and possibly additional
rules

■ Performs any necessary data manipulation

■ Routes the request to an appropriate protocol translation module (a network
plug-in): Routing can be done on a wide variety of parameters.

If a request fails because of an unavailable module, an interceptor retries the
request using one of the remaining eligible modules.

8. The request is sent to the network plug-in to be translated into the protocol
suitable for the underlying network node. All state information required by the
underlying network node is stored within the network plug-in.

9. The request is passed to the network.

10. When the network node acknowledges the request, charging data about the
completed request is recorded.

11. The transaction commits.

Typical Network-Triggered Traffic Flow
To receive network-triggered traffic, an application must indicate to Services
Gatekeeper that it is interested in receiving traffic from the network. It does this by
registering for (or subscribing to) notifications, either by sending a request to Services
Gatekeeper or by having the operator set up the notification using OAM operations.

For example, the application could send Services Gatekeeper a request to begin
receiving SMS messages from the network, indicating that it is only interested in
messages that are sent to the address 12345 and that begin with the string blue.
SOAP-based requests indicate the URL of the Web Service that the application has
implemented to receive these notifications back from Services Gatekeeper. RESTful
requests indicate the channel to which the notifications should be published.

The registration for notifications is stored in the appropriate network plug-in, which in
most cases passes it on to the underlying network node. In certain cases the Services
Gatekeeper operator must do this manually. When a matching SMS message reaches
the plug-in from the network, the plug-in sends the message to the Plug-in Manager,
which invokes the Interceptor Stack for evaluation. Then, using RMI, the final
interceptor passes the notification, along with the appropriate location from the
registration, to the facade layer, which sends it on either to the application, the
channel, or to the Oracle Service Bus.

Installations that include multiple facade layers (for example, both RESTful and SOA)
can be set up to use the same service enabler layer. Special configuration is required in
such installations to route network-triggered traffic to the appropriate facade layer. See
the discussion on "Managing and Configuring the Tier Routing Manager" in Services
Gatekeeper System Administrator's Guide for more information.

Common Features

2-4 Services Gatekeeper Communication Service Reference Guide

Common Features
The following functionality is common to all communication services:

■ Service level agreements related to policy enforcement

■ Service level agreements related to network protection

■ Traffic security

■ Events, alarms, and charging

■ Statistics and transaction units

For information about service level agreements, see Services Gatekeeper Accounts and
SLAs Guide.

For information about traffic security for SOAP-based interfaces to the communication
services, see Overview of Exception Handling Using SOAP Faults and other
SOAP-related chapters in Oracle WebLogic Server Understanding Security for WebLogic
Server.

RESTFul Web Services to the communications services use either HTTP basic or
OAuth 2.0 authentication with a user name and password. SSL is required. For
information about basic HTTP authentication, see HTTP Authentication: Basic and
Digest Access Authentication at:

http://www.ietf.org/rfc/rfc2617.txt

OAuth 2.0 is a draft open source Web authorization protocol developed by the Internet
Engineering Task Force (IETF). For detailed specifications and more information see
the IETF web site:

http://tools.ietf.org/wg/oauth/

For information about Services Gatekeeper support for OAuth 2.0 authentication, see
"Services Gatekeeper OAuth 2.0 Authorization and Resource Servers".

For general information about events, alarms, and charging, see "Events, Alarms, and
Charging".

For information about statistics, see the "Statistics" sections in the individual chapters
in this guide.

3

Services Gatekeeper OAuth 2.0 Authorization and Resource Servers 3-1

3Services Gatekeeper OAuth 2.0 Authorization
and Resource Servers

This chapter provides an overview of the OAuth 2.0 specification and explains where
to find information on how to use it with Oracle Communications Services Gatekeeper
communication services to protect third-party resources.

Using OAuth 2.0 with Services Gatekeeper
Services Gatekeeper provides OAuth 2.0 Authorization and Token endpoints allowing
third-party applications secure access to subscriber resources (communications
services). For example, your subscribers may want to share photos on an online
auction Web site, but not expose their own security credentials to do so. In cases like
this, you configure OAuth 2.0 to allow them access.

Authorized applications possessing valid tokens can interact with Services Gatekeeper
communication services to perform various functions, including sending messages,
charging and terminal location queries. For more information on the Authorization
and Token endpoints, see the discussion about OAuth endpoints in the Services
Gatekeeper OAuth Guide.

OAuth 2.0 modules are deployed by default during installation. A basic
Authentication server is also provided in Services Gatekeeper for use with OAuth 2.0.

For complete details on how to use OAuth 2.0 to secure resources, see Services
Gatekeeper OAuth Guide.

Using OAuth 2.0 with Services Gatekeeper

3-2 Services Gatekeeper Communication Service Reference Guide

4

Application Subscription Management 4-1

4Application Subscription Management

This chapter describes and explains how to use Application Subscription Management
with communication services in Oracle Communications Services Gatekeeper.

Overview of the Application Subscription Management Service
Services Gatekeeper supports Open Mobile Alliance (OMA) General Service
Subscription Management (GSSM) functionality including subscription management,
subscription profile access and subscription validation with Application Subscription
Management.

Application Subscription Management includes both a communication service and a
RESTful interface for managing and querying service subscription status. Application
Subscription Management grants or restricts application access to a subscriber’s
communication service(s) depending on subscription status. Subscription
management operations are atomic.

For information on the Open Mobile Alliance GSSM specification see the OMA web
site:

http://technical.openmobilealliance.org/Technical/technical-information/re
lease-program/current-releases

Application Interfaces
Services Gatekeeper provides a RESTful interface for Application Subscription
Management in addition to the Mbean interface accessible from the Administration
Console or Platform Test Environment (PTE).

For more information on using the RESTful interface, see “Adding RESTful
Application Subscription Management Support” in Services Gatekeeper Application
Developer's Guide.

Support for OAuth Authentication
Services Gatekeeper supports OAuth authentication in Application Subscription
Management. Services Gatekeeper generates and stores an OAuth token for
subscription requests using OAuth. Subsequent application access requests for
subscriber services usage require a valid OAuth accessToken. The Services Gatekeeper
OAuth Interceptor uses the provided accessToken to confirm a subscriber’s identity
before permitting subscriber services usage.

See "Configure Application OAuth Scope" for information on enabling OAuth
accessTokens in Application Subscription Management.

http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases

Events and Statistics

4-2 Services Gatekeeper Communication Service Reference Guide

For information about Services Gatekeeper OAuth support, see Services Gatekeeper
OAuth Guide.

Events and Statistics
The Application Subscription Management communication service generates event
data records (EDRs) to assist system administrators and developers in monitoring the
service.

Event Data Records
Table 4–1 lists the EDRs generated by Application Subscription Management
operations.

Managing Application Subscription Management
This section describes the properties and workflow for setting up the Application
Subscription Management plug-in instance.

The Application Subscription Management plug-in supports loading an XML
configuration file that includes subscription management settings for managed

Table 4–1 Application Subscription Management Class EDRs

EDR ID Description

409001 An application created a subscription using createSubscription.

409002 An application deleted a subscription using deleteSubscription.

409003 An application confirmed a subscription using confirmSubscription.

409004 A subscriber list of application subscriptions was generated using
listSubscriptionsBySubscriberAddress.

409005 An application subscription list was generated using
listSubscriptionsByApplicationName.

409006 An application subscription was retrieved using getSubscriptionById.

409007 An application subscription response was sent.

409008 An application subscription request was created using
createSubscription from SMPP.

409009 An application subscription was suspended.

409010 An application subscription was unsuspended.

409101 createSubscription was called in the Access Tier.

409102 deleteSubscription was called in the Access Tier.

409103 confirmSubscription was called in the Access Tier.

409104 listSubscriptionsBySubscriberAddress was called in the Access Tier.

409105 listSubscriptionsByApplicationName was called in the Access Tier.

409106 getSubscriptionById was called in the Access Tier.

409107 notifySubscription callback in the Access Tier.

409110 suspend was called in the Access Tier.

409111 unsuspend was called in the Access Tier.

Managing Application Subscription Management

Application Subscription Management 4-3

applications. Additional operations are provided for retrieving configuration, listing
subscriptions and connecting to a short message service center (SMSC).

Properties for Application Subscription Management
Table 4–2 lists the technical specifications for the communication service.

Configuration Workflow for Application Subscription Management
The Services Gatekeeper installation includes two optional packages used with
Application Subscription Management. By default, these packages are not installed.
You must install and deploy the following packages before configuring Application
Subscription Management:

■ wlng_at_app_subscription_rest.ear

■ wlng_nt_app_subscription.ear

You must create and configure a plug-in instance after installing the packages. The
following lists the steps for configuring the plug-in:

1. Deploy the Application Subscription Management plug-in ear packages. See
"Deploying Application Subscription Management Packages" for more
information.

2. Create an Application Subscription Management plug-in instance. See "Creating
an Application Subscription Management plug-in Instance" for more information.

3. Configure the Application Subscription Management plug-in attributes. See
"Editing Application Subscription Management Attributes" for more information.

4. Load and retrieve application subscription configurations. See "Loading
Application Subscription Configuration Files" and "Retrieving Application
Subscription Configuration Files" for more information.

Table 4–2 Properties for Application Subscription Management

Property Description

Managed object in
Administration Console

To access the managed object, select Domain Structure, then OCSG, server_name,
Communication Services, and Plugin_app_subscription in that order.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt _app_subscription

InstanceName=Plugin_app_subscription

Type=oracle.ocsg.plug-in.subscription.management.SubscriptionPluginMbean

Documentation: See the “All Classes” section of Services Gatekeeper OAM Java API
Reference.

Network protocol
plug-in service ID

Plugin_app_subscription

Network protocol
plug-in instance ID

The ID is assigned when the plug-in instance is created. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide.

Service type AppSubscription

Interfaces with the
network nodes using

SMPP Esme System Type and Version

Deployment artifacts wlng_nt_app_subscription.ear and wlng_at_app_subscription_rest.ear

Managing Application Subscription Management

4-4 Services Gatekeeper Communication Service Reference Guide

5. Load a list of trusted applications. See "Loading Trusted Applications" for more
information.

6. Retrieve application subscription lists. See "Retrieving Application Subscription
Lists" for more information.

7. Configure application OAuth scope if necessary. See "Configure Application
OAuth Scope" for more information.

8. Connect to an SMSC. See "Connecting to an SMSC" for more information.

Deploying Application Subscription Management Packages
To deploy the necessary packages:

1. Log into the Administration Console.

2. Click Deployments under Domain Structure.

3. If needed, enter the path to the applications directory in Path.

The default location for the applications directory is Oracle_home/ocsg_release_
level/applications.

4. Click Install.

5. Select wlng_at_app_subscription_rest.ear.

6. Click Next.

7. Select Install this deployment as an application.

8. Click Next.

9. Select any optional settings that are needed in your environment. For more
information on deployment settings, see the overview of deployment types in
Services Gatekeeper System Administrator's Guide.

10. Click Next.

11. Review your deployment choices and click Finish.

12. Repeat steps 1 through 11 for the wlng_nt_app_subscription.ear application file.

Creating an Application Subscription Management plug-in Instance
You must create one or more instances of the Application Subscription Management
plug-in to manage subscription requests. Create an instance of the Application
Subscription Management plug-in as follows:

1. Log into the Administration Console.

2. Expand OCSG in the Domain Structure pane.

3. click the name of the administration or managed server you want to create the
Application Subscription Management plug-in instance on.

4. Expand the Container Services node in the Oracle Communications Services
Gatekeeper pane.

5. Select PluginManager.

6. Click the Operations tab.

7. In the Select An wlngOption pull down menu, select createPluginInstance.

8. Enter Plugin_app_subscription in the PluginServiceId field.

9. Enter a unique name in the PluginInstanceId field.

Managing Application Subscription Management

Application Subscription Management 4-5

10. Click Invoke.

11. Add a route to the ASM plug-in using the pluginManager Mbean.

The Platform Test Environment MBean interface can also be used to create and
manage Application Subscription Management plugins. For information on using the
Platform Test Environment, see Services Gatekeeper Platform Test Environment User's
Guide.

Editing Application Subscription Management Attributes
Each instance of the Application Subscription Management plug-in can be configured
with its own attributes.

For example, you can configure an instance of the plug-in for each type of SMSC used
in your environment. To do so, set field values and use the methods from the
Administration Console SubscriptionPluginMBean or a Java application. For
information on the methods and fields of the MBean, see the "All Classes" section of
Services Gatekeeper OAM Java API Reference.

To configure the Application Subscription Management plug-in attributes:

1. Log into the Administration Console.

2. Expand the OCSG node in Domain Structure.

3. Select the administration or managed server where you created the Application
Subscription Management plug-in.

4. Expand Communication Services in Oracle Communications Services
Gatekeeper.

5. Select the Application Subscription Management plug-in instance to configure.

6. Click Attributes.

7. Select the checkboxes of the attributes you wish to change.

8. Enter the new values for the attribute(s).

9. Click Update Attributes.

Loading Application Subscription Configuration Files
Create and manage subscription configurations for application services using the
loadAppSubscriptionsXml method of SubscriptionPluginMBean. For more
information on the fields and methods of this MBean, see the "All Classes" section of
Services Gatekeeper OAM Java API Reference.

Table 4–3 lists the configuration file elements available for use with
loadAppSubscriptionsXml the operation configuration file.

Table 4–3 Subscription Management Configuration File Elements

Element Name Unique Description Required

serviceNumber Y The target telephone number if subscribed by SMS. The
number can be a service provider number, or an application
number.When using a service provider number, multiple
application registrations share the same number, but must
use different subscription short message text.

Y

appInstanceId Y The application’s instance ID. Y

applicationName Y The application’s name. Y

Managing Application Subscription Management

4-6 Services Gatekeeper Communication Service Reference Guide

Example 4–1 shows a sample subscription management XML configuration file used
to load application subscription data into Services Gatekeeper.

Example 4–1 Sample Subscription Management XML Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<subscriptions xmlns="http://oracle/ocsg/appSubscription/types"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!-- SP code -->
 <subscription serviceNumber="tel:1234">
 <application appInstanceId="domain_user" applicationName="Oracle News"
 endpoint="http://www.oracle.com" expirePeriod="36000000"
subscriptionChannel="ALL">
 <metaInfo key="key1" value="value1"/>
 <metaInfo key="key2" value="value2"/>
 <subscribeInfo text="Subscribe 123" notification="You have subscribed Oracle
News successfully"/>
 <unsubscribeInfo text="Un-Subscribe 123" notification="You have unsubscribed
Oracle News successfully"/>
 <suspendInfo text="Suspend 123" notification="You have suspended Oracle
News successfully"/>
 <unsuspendInfo text="Un-Suspend 123" notification="You have unsuspended
Oracle News successfully"/>
 <resourceId>createoutboundMessage</resourceId>
 </application>

endpoint N The application’s endpoint where Services Gatekeeper sends
subscription notifications.

Y

reqLimit N The maximum request time limit. N

expirePeriod N The number of seconds a subscription is valid. Y

subscriptionChannel N The subscription channel. Supported values are ALL, WEB_
RESTFUL or SMS.

N

metaInfo.key N The new added EDR attribute key. N

metaInfo.value N The new added EDR attribute value. N

subscribeInfo.text N A regular expression describing accepted SMS subscribe
request format.

Y

subscribeInfo.notification N The notification SMS text after subscription confirmation. N

unsubscribeInfo.text N A regular expression describing accepted SMS unsubscribe
request format.

Y

unsubscribeInfo.notification N The notification SMS text after unsubscription confirmation. N

suspendInfo.text N A regular expression describing accepted SMS suspendInfo
request format.

Y

suspendInfo.notification N The notification SMS text after a subscription suspension. N

unsespendInfo.text N A regular expression describing accepted SMS
unsuspendInfo request format.

Y

unsuspendInfo.notification N The notification SMS text after a subscription unsuspension. N

resourceId N The value mapped to the OAuth scopeId. N

Table 4–3 (Cont.) Subscription Management Configuration File Elements

Element Name Unique Description Required

Managing Application Subscription Management

Application Subscription Management 4-7

 <application appInstanceId="domain_user_1" applicationName="Oracle Jokes"
 endpoint="http://www.oracle.com" expirePeriod="36000000"
subscriptionChannel="WEB_RESTFUL">
 <subscribeInfo text="Subscribe 456" notification="You have subscribed Oracle
Jokes successfully"/>
 <unsubscribeInfo text="Un-Subscribe 456" notification="You have unsubscribed
Oracle Jokes successfully"/>
 <suspendInfo text="Suspend 456" notification="You have suspended Oracle
Jokes successfully"/>
 <unsuspendInfo text="Un-Suspend 456" notification="You have unsuspended
Oracle Jokes successfully"/>
 <resourceId>createoutboundMessage</resourceId>
 </application>
 </subscription>

 <!--App code-->
 <subscription serviceNumber="tel:5678">
 <application appInstanceId="domain_user_2" applicationName="Google Weather"
 endpoint="http://www.google.com" expirePeriod="36000000"
subscriptionChannel="SMS">
 <subscribeInfo text="Subscribe" notification="You have subscribed Google
Weather successfully"/>
 <unsubscribeInfo text="Un-Subscribe" notification="You have unsubscribed
Google Weather successfully"/>
 <suspendInfo text="Suspend" notification="You have suspended Oracle
Jokes successfully"/>
 <unsuspendInfo text="Un-Suspend" notification="You have unsuspended
Oracle Jokes successfully"/>
 <resourceId>createoutboundMessage</resourceId>
 </application>
 </subscription>

</subscriptions>

Load the new or update an existing application subscription configuration using the
following procedure:

1. Log into the Administration Console.

2. Expand OCSG under Domain Structure.

3. Click the name of the administration or managed server you want to create the
application subscription configuration on.

4. Expand Communication Services.

5. Select the Application Subscription Management plug-in instance to configure.

6. Click Operations.

7. In the Select An Operation pull down menu select loadAppSubscriptionsXml.

8. Copy and paste your XML configuration file contents in the xml field.

9. Click Invoke.

For more information on the fields and methods of the SubscriptionPluginMBean
MBean, see the “All Classes” section of Services Gatekeeper OAM Java API Reference.

Managing Application Subscription Management

4-8 Services Gatekeeper Communication Service Reference Guide

Loading Trusted Applications
Enter a comma-separated list of trusted applications to the
TrustedApplicationInstances attribute. The list takes effect when you restart the
domain servers. An application can not create a subscription for itself.

Trusted applications are applications that you allow to perform these operations using
only basic authorization:

■ createSubscription

■ deleteSubscriptionById

■ suspendSubscription

■ unsuspendSubscription

Applications not on the trusted list must provide OAuth tokens to invoke these
operations.

1. Log into the Administration Console.

2. In the Change Center, click Lock & Edit.

3. Expand OCSG under Domain Structure.

4. Click the name of the administration or managed server from where you want to
retrieve the subscription configuration.

5. Expand Communication Services.

6. Select an Application Subscription Management plug-in instance.

7. Click Attributes

8. Check the box next to the TrustedApplicationsInstances field.

9. Enter a comma-separated list of trusted applications.

10. Click Update Attributes.

11. In the Change Center, click Release Configuration.

Cleaning Up Pending Requests and Expired Subscriptions
You use the ExpiryPeriod attribute to SubscriptionPluginMBean to specify how often
Services Gatekeeper searches for and cleans up pending requests for subscriptions.
The expiration time is also checked each time an operation tries to retrieve it. This also
prevents an expired subscription from being used.

You set a value for ExpiryPeriod in minutes, which specifies how often Services
Gatekeeper searches for:

■ Application request for subscriptions a pending state (waiting to be created or
deleted). If the time limit in the appendingexpiry column has been exceeded, the
request is removed.

■ Whether the expiry timer has expired. This timer applies to the subscription
regardless of state.

If either the appendinexpiry or expiry time limits are exceeded, Services Gatekeeper
removes the request.

1. Log into the Administration Console.

2. In the Change Center, click Lock & Edit.

3. Expand OCSG under Domain Structure.

Managing Application Subscription Management

Application Subscription Management 4-9

4. Click the name of the administration or managed server from where you want to
retrieve the subscription configuration.

5. Expand Communication Services.

6. Select an Application Subscription Management plug-in instance.

7. Click Attributes.

8. Check the box next to the ExpiryPeriod field.

9. Enter a timer value in minutes.

10. Click Update Attributes.

11. In the Change Center, click Release Configuration.

Retrieving Application Subscription Configuration Files
Retrieve the current application subscription configuration in a plug-in instance using
the following procedure:

1. Log into the Administration Console.

2. Expand OCSG under Domain Structure.

3. Click the name of the administration or managed server from where you want to
retrieve the subscription configuration.

4. Expand Communication Services.

5. Select the Application Subscription Management plug-in instance you want to
retrieve the subscription configuration from.

6. Click Operations.

7. In the Select An Operation pull down menu select
retrieveAppSubscriptionsXml.

8. Click Invoke.

Retrieving Application Subscription Lists
Retrieve a list of application subscriptions in Services Gatekeeper using the following
procedure:

1. Log into the Administration Console.

2. Expand OCSG under Domain Structure.

3. Click the name of the administration or managed server from where you want to
retrieve the subscription list.

4. Expand Communication Services.

5. Select the Application Subscription Management plug-in instance you want to
retrieve the subscription list from.

6. Click Operations.

7. In the Select An Option pull down menu, select retrieveAppSubscriptionsList.

8. Click Invoke.

Configure Application OAuth Scope
You must configure application scope when using OAuth authentication with
Application Subscription Management.

Managing Application Subscription Management

4-10 Services Gatekeeper Communication Service Reference Guide

Configure the application’s resourceId as an OAuth scopeId in Services Gatekeeper
using the loadAppSubscriptionResourceXml method in the OAuthResourceMbean.
For more information on the fields and methods of this MBean, see the "All Classes"
section of Services Gatekeeper OAM Java API Reference.

To configure application OAuth scope:

1. Log into the Administration Console.

2. Expand OCSG under Domain Structure.

3. Click the name of the administration or managed server where the OAuth
container service is hosted.

4. Expand Container Services.

5. Expand OAuthService.

6. Select OAuthResourceMBean.

7. Click Operations.

8. In the Select an Option pull down menu, select
loadAppSubscriptionResourceXml.

9. Enter the XML string as shown in Example 4–2. Set the resource id to the same
value used when loading the application subscription configuration. See "Loading
Application Subscription Configuration Files" for more information. Set the
interfaceName, methodName and tokenExpirePeriod as required.

Example 4–2 loadAppSubscriptionResourceXml Sample XML Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<resources xmlns="http://oracle/ocsg/oauth2/management/xml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- amountTransaction -->
 <resource id="OneAPIMMS" name="mms"
 interfaceName="oracle.ocsg.parlayrest.plugin.MmsPlugin" methodName="sendMessage"
 tokenExpirePeriod="3600">
 </resource>
</resources>

Connecting to an SMSC
Application Subscription Management plug-in instances must connect to an SMSC to
accept and confirm subscription requests by SMS. Connect each plug-in instance to its
SMSC using the following procedure:

1. Log into the Administration Console.

2. Expand OCSG under Domain Structure.

3. Click the name of the administration or managed server where the Application
Subscription Management plug-in to connect to an SMSC is hosted.

4. Expand Communication Services.

5. Select the Application Subscription Management plug-in instance you want to
connect to an SMSC. The plug-in Attributes tab contains the SMSC connection
information. See "Editing Application Subscription Management Attributes" for
more information on configuring SMSC connection attributes.

6. Click Operations.

7. In the Select An Operation pull down menu select connect.

Managing Application Subscription Management

Application Subscription Management 4-11

8. Click Invoke.

9. Click Attributes and check the ActiveStatus value. A true value indicates
successful connection to the configured SMSC.

Handling Traffic from Applications without Subscriptions
Application Subscription Management checks for a valid subscription before allowing
an application to use a subscriber communication service. However, some applications
may not use subscriptions to manage message delivery. For example, a service
provider may use an application in Services Gatekeeper to send a subscriber a text
message about an emergency or pending service outage.

Services Gatekeeper only validates subscription status for applications configured in
the Application Subscription Management XML file. Messages originating from
applications not configured in the XML file bypass subscription validation and are
sent through the normal delivery pathway. See "Loading Application Subscription
Configuration Files" for information on the Application Subscription Management
configuration file.

For a description of the attributes and operations of the SubscriptionPluginMBean
MBean, see the “All Classes” section of Services Gatekeeper OAM Java API Reference.

Managing Application Subscription Management

4-12 Services Gatekeeper Communication Service Reference Guide

5

Parlay X 2.1 Multimedia Messaging/MM7 5-1

5Parlay X 2.1 Multimedia Messaging/MM7

This chapter describes the Oracle Communications Services Gatekeeper Parlay X 2.1
Multimedia Messaging/MM7 communication service in detail.

Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication
Service

The Parlay X 2.1 Multimedia Messaging/MM7 communication service exposes the
Parlay X 2.1 Multimedia Messaging set of application interfaces.

The communication service acts as a Value Added Service (VAS) application
connecting to an MMS relay server using the MM7 protocol.

For the exact version of the standards that the Parlay X 2.1 Multimedia
Messaging/MM7communication service supports for the application-facing interfaces
and the network protocols, see Services Gatekeeper Statement of Compliance.

Using a Multimedia Messaging communication service, an application can:

■ Send multimedia messages to one or many destination addresses. The payload in
these multimedia messages can be any type that can be specified using MIME,
including multipart messages.

■ Sign up to be notified that delivery receipts for sent multimedia messages have
been received from the network.

■ Receive delivery receipts on sent multimedia messages that have arrived from the
network.

■ Explicitly query Services Gatekeeper for delivery receipts on sent multimedia
messages.

■ Sign up to be notified if specified multimedia messages for the application have
been received from the network.

■ Receive notifications that specified multimedia messages for the application have
arrived from the network. These notifications do not include the message payload,
but they do provide a message ID.

■ Explicitly poll Services Gatekeeper for multimedia messages sent to the
application that have arrived from the network and been stored in Services
Gatekeeper.

Requests can flow in two directions. They can be application-initiated or
network-triggered,

Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service

5-2 Services Gatekeeper Communication Service Reference Guide

Processing Application-initiated Requests
After an application has sent a multimedia message to one or more destination
addresses, two different types of response can be returned:

■ Send Receipts

■ Delivery Receipts

Send Receipts
Send receipts are acknowledgements that the network node has received the
multimedia message from the application by means of Services Gatekeeper. Although
a single multimedia message may be sent to multiple destination addresses, normally
only one send receipt is returned to the application. The receipt is returned
synchronously in the response message to the sendMessage operation.

Delivery Receipts
Delivery receipts contain the delivery status of the multimedia message. They report
whether the multimedia message has actually been delivered to the mobile terminal by
the network. There is one delivery receipt per destination address, with one of three
possible outcomes:

■ Successful.

■ Unsuccessful: The multimedia message could not be delivered before it expired.

■ Unsupported: Delivery notification for this address is not supported. This can
occur if the originating network supports delivery receipts but is unable to acquire
the appropriate information for one or more destination addresses. This status is
reported for each address for which this is the case.

Because actual delivery of the multimedia message may take several hours, or even
days (if, for example, the mobile terminal is turned off at the time the multimedia
message is sent), delivery receipts are returned asynchronously. Applications can
either choose to have delivery receipts delivered to them automatically by supplying
Services Gatekeeper with a callback interface or they can chose to poll Services
Gatekeeper.

If the application supplies a callback interface, there are two possible outcomes:

■ Services Gatekeeper sends the delivery receipt and the application receives and
acknowledges it.

■ Services Gatekeeper sends the delivery receipt but the application does not
acknowledge reception. In this case, Services Gatekeeper stores the delivery
receipt in temporary in-memory storage. The application can poll Services
Gatekeeper for these receipts. Each stored delivery receipt is time stamped and,
after a configurable time period, is removed.

If the application chooses not to supply a callback interface, Services Gatekeeper stores
the delivery receipt in temporary in-memory storage. The application can poll Services
Gatekeeper for these receipts. Each stored delivery receipt is time stamped and, after a
configurable time period, removed.

Processing Network-triggered Requests
Two types of traffic destined for an application can arrive at Services Gatekeeper from
the network:

Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service

Parlay X 2.1 Multimedia Messaging/MM7 5-3

■ Delivery receipts for application-initiated sent multimedia messages. See
“Delivery Receipts” for more information.

■ Mobile-originated multimedia messages destined for the application

For an application to receive multimedia messages from the network, it must indicate
its interest in these messages by registering for online notification in Services
Gatekeeper. A notification is defined by a service activation number, which is the
destination address of the multimedia message. The service activation number may be
translated by some mechanism, such as short codes, in the telecom network. Use the
StartMessageNotification method of the MessagingManagementMBean to register
for online notification of network-triggered MMS messages from the Administration
console. See the "All Classes" section of Services Gatekeeper OAM Java API Reference for
details on the MessagingManagementMBean.

An application can also use the following operations to register for online
notifications:

■ ParlayX 2.1 StartMessageNotification. See the 3GPP TS 29.199-05 Parlay X Web
Services Part 5: Multimedia Messaging specification

■ REST Start Message Notification. See Services Gatekeeper Application Developer's
Guide.

■ OneAPI Subscribe to MMS Delivery Notification. See Services Gatekeeper
Application Developer's Guide.

An application can also register to receive multimedia messages offline. Services
Gatekeeper stores the messages and delivers them when the application requests
them. Use the enableReceiveMms method of MessagingManagementMBean to
provision offline notification of network-triggered MMS messages.

Additional criteria can be tied to the service activation number, such as the start of the
first plain/text part in the multimedia message payload or the subject of the
multimedia message. For the message to be accepted by Services Gatekeeper, both the
service activation number and any additional criteria must match the notification.

Mobile-originated messages to applications are routed based on the criteria that are
specified when the notifications are created. The behavior for matching criteria is as
follows:

■ If the subject of the message is not null, the subject is used for criteria matching the
specified criteria.

■ If the subject of the message is null, the first word of first text attachment is used
for matching the criteria.

■ If the criteria is not null, messages with no subject and no text attachment are not
delivered to the application.

■ If the criteria is null, all messages are considered a match and delivered to the
application.

Each registered notification must be unique, and notification attempts with
overlapping criteria are rejected. The application can either retrieve received
multimedia messages from Services Gatekeeper or include a callback interface when
setting up the original notification.

Following are the possible scenarios for receipt and handling of multimedia messages.

1. The application has registered for online notification. Services Gatekeeper sends
the message to the application, and the application receives the message and
acknowledges receiving it.

Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service

5-4 Services Gatekeeper Communication Service Reference Guide

If the MMS message is pure text, the text is included in the notification sent to the
application.

If the MMS message is not pure text, the notification sent to the application
includes a reference to the multimedia attachments. The application uses that
reference to retrieve the attachments.

2. The application has registered for online notification. Services Gatekeeper sends
the multimedia message to the application, but the application does not
acknowledge receiving it.

Offline notification has been provisioned.

Services Gatekeeper stores the multimedia message. The application retrieves the
message as described in "Retrieving Offline MMS Messages".

3. The application has registered for online notification. Offline notification has not
been provisioned.

Services Gatekeeper sends the multimedia message to the application, but the
application does not acknowledge receiving it. Services Gatekeeper returns an
error to the network. It is the responsibility of the network to handle any further
processing of the multimedia message.

4. The application has not registered for online notification. Offline notification has
been provisioned. Services Gatekeeper stores the multimedia message.

The application retrieves the message as described in "Retrieving Offline MMS
Messages".

5. The application has not registered an online subscription, and offline notification
has not been provisioned.

Services Gatekeeper returns an error to the network. It is the responsibility of the
network to handle any further processing of the multimedia message.

Retrieving Offline MMS Messages
A ParlayX application fetches newly-arrived MMS messages with the
getReceivedMessages operation. The response from this method is an array of
MessageReference objects, one for each newly-arrived MMS message.

If an MMS message is pure text, the text message is included in the MessageReference
object. If an MMS message is not pure text, the MessageReference object includes the
reference to the multimedia attachments. The application then uses the reference to
retrieve the attachment using the getMessage operation. See the 3GPP TS 29.199-05
Parlay X Web Services Part 5: Multimedia Messaging specification for a description of this
operation.

The process is similar for REST applications. For information about getting MMS
messages from a REST application, see the descriptions of the Get Received Messages
and Get Message operations in the multimedia messaging chapter of Services
Gatekeeper Application Developer's Guide.

For information about getting MMS messages from a OneAPI application, see the
description about "Retrieve Messages Sent to Web Application".

Table 5–1 shows the MessageReference structure defined by the 3GPP TS 29.199-05
Parlay X Web Services Part 5: Multimedia Messaging specification. Elements related to
this discussion are shown in boldface in Table 5–1.

Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service

Parlay X 2.1 Multimedia Messaging/MM7 5-5

Example 5–1 shows the message and messageIdentifer in the REST Notification Data
Object.

Example 5–1 REST Notification Data Object

{"notifyMessageReception": {
 "correlator": "String",
 "message": {
 "messageServiceActivationNumber": "String",
 "priority": "Default|Low|Normal|High",
 "senderAddress": "URI",
 "dateTime": "Calendar",
 "message": "String" --> if message is pure text it can be found here
 "messageIdentifier": "String", --> if not pure text the reference is found
here
 "subject": "String"
 }
}}

Each stored multimedia message is time stamped and, after a configurable time
period, removed.

The OneAPI response to a request for the full MMS message including attachments is
a multipart/form-data response in which the JSON message text and metadata are
separated from the multimedia attachments by a separator that has the form

====12345====

The resourceURL in the response is the link to the message. The application uses this
value to retrieve the entire message, including the attachments. Example 5–2 shows
the structure of a response.

Table 5–1 ParlayX Message Reference Structure

Element name Element type Optional Description

messageIdentifie
r

xsd:string Yes If present, contains a reference to a
message stored in the ParlayX gateway. If
the message is pure text, this parameter is
not present.

messageService

ActivationNumber

xsd:string No Number associated with the invoked
Message service, i.e. the destination
address used by the terminal to send the
message.

senderAddress xsd:anyURI No Indicates message sender address.

subject xsd:string Yes If present, indicates the subject of the
received message. This parameter will
not be used for SMS services.

priority MessagePriority No The priority of the message: default is
Normal.

message xsd:string Yes If present, then the messageIdentifier is
not present and this parameter contains
the whole message. The type of the
message is always pure ASCII text in this
case. The message will not be stored in
the Parlay X gateway.

dateTime xsd:dateTime Yes Time when message was received by
operator

Application Interfaces

5-6 Services Gatekeeper Communication Service Reference Guide

Example 5–2 OneAPI Response Body for Retrieving Full MMS messages

"inboundMessage": [
{ "dateTime": "dateTime",
"destinationAddress": "String",
"messageId": "String", --> server-geenerated message identifier
"inboundMMSMessage": "String", --> subject of the message
"resourceURL": "URL", --> link to the full message and attachments
"senderAddress": "String"},

====Content Divider====

Attachment(s)

Polling Functionality
The polling capability for retrieving offline notifications must be provisioned in
advance.

To configure the polling capability:

■ Set the RequestDeliveryReportFlag attribute to non-zero. See this attribute of the
M for information about valid values.

■ Use the enableReceiveMms operation to allow applications to poll for
mobile-originated messages. See the description of the enableReceiveMms
method of MessagingManagementMBean in Services Gatekeeper OAM Java API
Reference for more information.

Short Code Translation
Messaging-capable networks use short codes and message prefixes to help route traffic
and to make access to certain features easier for the end user. Instead of having to use
the entire address, users can enter a short code that is mapped to the full address in the
network. The Parlay X 2.1 Multimedia Messaging/MM7 communication service
supports short codes and message prefixes, which allow the same short code to be
mapped to multiple addresses based on the prefix to the enclosed message.

Application Interfaces
The SOAP-based interface for the Parlay X 2.1 MultiMedia Messaging/MM7
communication service are described in the discussion of Parlay X 2.1 Part 5:
Multimedia Messaging in Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion of
Multimedia Messaging in Services Gatekeeper Application Developer's Guide.

The RESTful Service Multimedia Messaging interfaces provide RESTful access to the
same functionality as the SOAP-based interfaces. The internal representations are
identical, and for the purposes of creating service level agreements (SLAs), reading
(charging data records) CDRs, and so on, they are the same.

Events and Statistics
The Parlay X 2.1 Multimedia Messaging/MM7 communication service generates event
data records (EDRs), CDRs, alarms, and statistics to assist system administrators and
developers in monitoring the service.

See "Events, Alarms, and Charging" for general information.

Tunneled Parameters for Parlay X 2.1 MM7 Rel 6.8.0

Parlay X 2.1 Multimedia Messaging/MM7 5-7

Event Data Records
Table 5–2 lists the IDs of the EDRs created by the Parlay X 2.1 Multimedia
Messaging/MM7 communication service.

Charging Data Records
Multimedia Messaging/MM7-specific CDRs are generated under the following
conditions:

■ After Services Gatekeeper successfully sends a sendMessage request to the
network.

■ After Services Gatekeeper successfully receives and processes a delivery report
sent from the network.

■ After Services Gatekeeper successfully receives and processes a mobile-originated
message sent from the network.

Statistics
Table 5–3 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Tunneled Parameters for Parlay X 2.1 MM7 Rel 6.8.0
This section lists, by parameter key, the parameters that can be tunneled or defined in
the <requestContext> element of an SLA.

ChargedParty

Description
Specifies the party to be charged for a multimedia message submitted by the
Value-Added Service Provider (VASP).

Table 5–2 EDRs Generated by Parlay X 2.1 Multimedia Messaging/MM7

EDR ID Description

8100 A (mobile-originated) MO message has arrived from the network.

8101 An MO delivery receipt has arrived from the network.

8102 The application has requested that a notification be started.

8103 The application has requested that a notification be stopped.

8104 The application has polled for a list of received messages.

8106 The application has polled for actual messages, returned as
attachments.

Table 5–3 Methods and Transaction Types for Parlay X 2.1 Multimedia Messaging/MM7

Method Transaction Type

sendMessage TRANSACTION_TYPE_MESSAGING_MMS_SEND

deliver TRANSACTION_TYPE_MESSAGING_MMS_RECEIVE

Tunneled Parameters for Parlay X 2.1 MM7 Rel 6.8.0

5-8 Services Gatekeeper Communication Service Reference Guide

If defined, the ChargedParty xparameter is forwarded in the SOAP header in the
north-bound interface.

Validated by the plug-in.

Format
String

Value
Valid values: Sender, Recipient, Both, Neither

ChargedPartyCD

Description
Specifies the address of the third party expected to pay for the multimedia message.

If defined, the ChargedPartyID xparameter is forwarded in the SOAP header in the
north-bound interface.

Format
String

timeStamp

Description
Specifies date and time that the multimedia message was submitted.

Format
Date/Time

expiryDate

Description
Specifies the desired time for the expiration of the multimedia message.

Format
Date/Time

allowAdaptation

Description
Specifies if VASP allows adaptation of the content.

Set to true to allow adaptation, false to prohibit it.

Format
Boolean

DeliveryCondition

Description
In the event of a single Delivery Condition, if the condition is met, the multimedia
message is delivered to the recipient MMS User Agent. Otherwise the message is
discarded.

Managing Parlay X 2.1 Multimedia Messaging/MM7

Parlay X 2.1 Multimedia Messaging/MM7 5-9

Validated by the plug-in.

Format
Positive Integer

UAProf

Description
Specifies the UserAgent Name or URL to the UAProfile (resource description
framework) RDF.

Used for transferring user agent capabilities from R/S to value-added service provider
(VASP).

If not null, this parameter is forwarded to the application.

Format
String

StatusText

Description
Human-readable description of the numerical code that indicates the general type of
an error.

If not null, this parameter is forwarded to the application.

Format
String

Managing Parlay X 2.1 Multimedia Messaging/MM7
This section describes the properties and workflow for Parlay X 2.1 Multimedia
Messaging/MM7 plug-in instances.

Properties for Parlay X 2.1 Multimedia Messaging/MM7
Table 5–4 lists the technical specifications for the communication service.

Table 5–4 Properties for Multimedia Messaging/MM7

Property Description

Managed object in
Administration Console

To access the object, select domain_name, then OCSG, server_
name, Communication Services, and then the plug-in_instance_id,
in that order.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id
assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.multimediamessaging.mm7.
management.MessagingManagementMBean

Documentation: For information on
MessagingManagementMBean, see the “All Classes” section of
Services Gatekeeper OAM Java API Reference.

Managing Parlay X 2.1 Multimedia Messaging/MM7

5-10 Services Gatekeeper Communication Service Reference Guide

Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/MM7
Following is an outline for configuring the plug-in using the Administration Console
or an MBean browser.

1. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID listed in "Properties for Parlay X
2.1 Multimedia Messaging/MM7".

2. Select the MBean for the plug-in instance. The MBean display name is the same as
the plug-in instance ID given when the plug-in instance was created.

3. Configure the behavior of the plug-in instance using the following attributes in
MessagingManagementMBean:

■ HTTPBasicAuthentication

Network protocol
plug-in service ID

Plugin_px21_multimedia_messaging_mm7

Network protocol
plug-in instance ID

The ID is assigned when the plug-in instance is created. See the
discussion on configuring and managing the plug-in manager in
Services Gatekeeper System Administrator's Guide.

Supported Address
Scheme

tel, mailto, short

Application-facing
interfaces

com.bea.wlcp.wlng.px21.plugin.MessageNotificationManagerP
lugin

com.bea.wlcp.wlng.px21.plugin.ReceiveMessagePlugin

com.bea.wlcp.wlng.px21.plugin.SendMessagePlugin

com.bea.wlcp.wlng.px21.callback.MessageNotificationCallbac
k

Service type MultimediaMessaging

Exposes to the service
communication layer a
Java representation of:

Parlay X 3.0 Part 5: Multimedia Messaging

Interfaces with the
network nodes using:

MM7

Deployment artifact:

NT EAR

wlng_nt_multimedia_
messaging_px21.ear

plugin_px21_multimedia_messaging_mm7.jar, px21_
multimedia_messaging_service.jar, multimedia_messaging_
mm7_rel5mm712.war, and multimedia_messaging_mm7_
rel5mm715.war

Deployment artifact:

AT EAR: Normal

wlng_at_multimedia_
messaging_px21.ear

px21_multimedia_messaging_callback.jar, px21_multimedia_
messaging.war, and rest_multimedia_messaging.war

Deployment artifact:

AT EAR: SOAP Only

wlng_at_multimedia_
messaging_px21_
soap.ear

px21_multimedia_messaging_callback.jar and px21_
multimedia_messaging.war

Table 5–4 (Cont.) Properties for Multimedia Messaging/MM7

Property Description

Managing Parlay X 2.1 Multimedia Messaging/MM7

Parlay X 2.1 Multimedia Messaging/MM7 5-11

If you are using HTTP basic authentication, also define:

– HTTPBasicAuthenticationUsername

– HTTPBasicAuthenticationPassword

■ DefaultPriority

■ MM7Version

■ Mm7relayserverAddress

■ VaspId

■ VasId

■ RequestDeliveryReportFlag

■ XSDVersion

For more information on the fields and methods of
MessagingManagementMBean, see the "All Classes" section of Services Gatekeeper
OAM Java API Reference.

4. Specify heartbeat behavior. See the discussion about configuring heartbeats in
Services Gatekeeper System Administrator's Guide.

5. Set up the routing rules to the plug-in instance. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in instance ID and address schemes listed in
"Properties for Parlay X 2.1 Multimedia Messaging/MM7".

6. Provide the administrator of the MM7 server with the URL to which the MM7
server should deliver mobile originated messages and delivery reports. The
default URL is:

http://IP_Address_of_NT_server:port/context-root/plug-in_instance_ID
If you are using the REL-5-MM7-1-2 XSD, the default context-root is mmm-mm7.

If you are using the REL-5-MM7-1-5 XSD, the default context-root is
mmm-mm7-rel5mm7-1-5.

If you are using the REL-6-MM7-1-4 XSDm the default context-root is
mmm-mm7-rel6mm7-1-4.

7. If required, create and load a node SLA. For details see the discussion about
defining global node and service provider group node SLAs and managing SLAs
in Services Gatekeeper Accounts and SLAs Guide.

8. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Provisioning Parlay X 2.1 MultiMedia Messaging/MM7 Communication Service
To provision the Parlay X 2.1 MultiMedia Messaging/MM7 communication service, do
the following:

■ Enable mobile-oriented messages to be stored in Services Gatekeeper for polling
by applications, by using the enableReceiveMms method of
MessagingManagementMBean.

■ Set up for notifications about mobile-originated messages on behalf of an
application, by using the startMessageNotification method of
MessagingManagementMBean.

Managing Parlay X 2.1 Multimedia Messaging/MM7

5-12 Services Gatekeeper Communication Service Reference Guide

■ Manage offline notifications, by using the following methods of
MM7NotificationMBean:

– listOfflineNotificationInfo

– getOfflineNotificationInfo

– removeOfflineNotificationInfo

■ Manage offline notifications, by using the following methods of
MM7NotificationMBean:

– listOnlineNotificationInfo

– getOnlineNotificationInfo

– removeOnlineNotificationInfo

For a description of the attributes and operations of the
MessagingManagementMBean and MM7NotificationMBean MBeans, see the "All
Classes" section of Services Gatekeeper OAM Java API Reference.

6

Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP 6-1

6Parlay X 2.1 Multimedia Messaging/SMTP,
POP3, and IMAP

This chapter describes the Oracle Communications Services Gatekeeper Parlay X 2.1
Multimedia Messaging/SMTP, POP3, and IMAP protocols.

Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and
IMAP Communication Service

The Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP communication
service exposes the Parlay X 2.1 Multimedia Messaging set of application interfaces.

The communication service acts as a Value Added Service (VAS) application
connecting to an email server using the SMTP, POP3, and IMAP protocols. It provides
the capability of applying policy such as throttling and black listing to manage and
regulate the flow of email.

For the exact version of the standards that the Parlay X 2.1 Multimedia
Messaging/SMTP, POP3, and IMAP communication service supports for the
application-facing interfaces and the network protocols, see the Services Gatekeeper
Statement of Compliance.

Using this communication service, an application can:

■ Send email messages to one or more destination addresses. The attachments in
these email messages can be of any type that can be specified using MIME.

■ Sign up to be notified that delivery receipts for sent email messages have been
delivered to the email server.

■ Receive delivery receipts on sent or retrying email messages.

■ Explicitly query Services Gatekeeper for delivery receipts on sent email messages.

■ Sign up to be notified when specified email messages for the application have
been received from the email server.

■ Receive notifications that specified email messages for the application have been
received from the email server. These notifications provide a message ID, but do
not include the message payload.

■ Explicitly poll Services Gatekeeper for email messages sent to the application that
have arrived from the email server and been stored in Services Gatekeeper.

Requests can flow in two directions. They can be application-initiated or
network-triggered.

Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP Communication Service

6-2 Services Gatekeeper Communication Service Reference Guide

Processing Application-Initiated Requests
Application-initiated requests can be:

■ Send Requests

■ Send Receipts

■ Delivery Receipts

■ Retry Requests

Send Requests
When an application sends a request using Parlay X 2.1 Multimedia Messaging
protocol to Services Gatekeeper, if the sender address and destination addresses start
with the schema email:, Services Gatekeeper transforms the request to an email and
uses SMTP protocol to send the request to an email server.

■ Routing mechanism

For this communication service, each plug-in instance connects to an email server
by SMTP. Routing should be based on sender address but not destination address.
In PluginManager MBean, when adding a route for the email plug-in instance, the
value should use ^.* to match all addresses, for example, ^.*@oracle.com$. This
means that the plug-in instance connects to oracle email server and all the requests
with a sender address that matches the regular expression should be routed to this
plug-in instance.

■ SMTP connections management

Each email plug-in instance creates an SMTP connection pool. The connections in
the pool connect to SMTP server separately. Each connection can be in IDLE,
BUSY, or DISCONNECT status and should send heartbeat to maintain itself. If
disconnected, it should reconnect to SMTP server. When a plug-in instance
receives a new request, it should select a connection in IDLE status from the pool,
and set it to BUSY status. If the connection fails, enlarge the pool until it reaches
the maximum connection number. If it still fails, the plug-in instance sends the
request to the retry manager.

■ Email subject, body and attachments

When transforming the Parlay X 2.1 Multimedia Messaging request to an email
message, set subject in email with the subject value in the original request. For
email body and attachments, since there are only attachments in the original
request, add an X-Parameter ContentInFirstAttachment to indicate whether there
is an email body or not. If this X-Parameter is set to true, or is absent, then the first
attachment contains the email body and other attachments are handled as regular
attachments. If this X-Parameter is set to false, then all attachments are handled as
regular attachments and the email body is blank.

■ Multiple destination addresses

For a request with multiple destination addresses, since Services Gatekeeper
cannot use the common routing mechanism as mentioned above, the plug-in
instance should be responsible for splitting single email into multiple email
messages and sending it to each address.

Send Receipts
For this communication service, send receipts are acknowledgements that Services
Gatekeeper has received the request from the application by means. The result values
in the send receipts are UUIDs (universally unique identifiers) created by Services

Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP Communication Service

Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP 6-3

Gatekeeper used to correlate subsequent delivery receipts at a later time. Although a
single email message may be sent to multiple destination addresses, only one send
receipt is returned to the application. The receipt is returned synchronously in the
response message to the sendMessage operation.

Delivery Receipts
Delivery receipts contain the final delivery status of the email message. They report
whether the email message has actually been delivered to the delivery recipient by the
network. There is one delivery receipt per destination address, with one of four
possible outcomes:

■ DeliveryUncertain (the initial status)

■ DeliveredToNetwork

■ MessageWaiting (retry status)

■ DeliveryImpossible (message could not be delivered since the retry limit was
exceeded)

Applications can either choose to have delivery receipts delivered to them
automatically by supplying Services Gatekeeper with a callback interface or they can
choose to poll Services Gatekeeper.

When Services Gatekeeper receives a request from an application, it creates an UUID
and returns that UUID in the send receipts to application. It stores the delivery receipt
for each destination address with initial status in temporary in-memory storage with
the UUID and callback interface (if any).

After Services Gatekeeper sends an email successfully or fails to do so, it updates the
delivery receipt in the in-memory store, if a callback interface exists, and sends the
delivery receipt to notify the application.

If the application does not supply a callback interface, the application can poll Services
Gatekeeper with the UUID for these stored delivery receipts.

DeliveredToNetwork and DeliveryImpossible are final delivery statuses. The stored
delivery receipt should be removed if the status for all the destination addresses
belonging to one UUID is a final status and are delivered to application callback
interface or have been polled by application.

Each stored delivery receipt is time stamped. After a configurable time period, the
stored delivery receipt is removed.

Retry Requests
When Services Gatekeeper sends an email which temporarily fails for any reason (such
as no connection), it stores the request in storage, updates the status to
MessageWaiting for this request, and sends a delivery receipt to the application (if a
callback interface was provided).

After a configurable time interval, Services Gatekeeper retrieves the failed request
from the store and attempts to resend the request. The number of retry attempts are
also configurable.

If retry attempt for the send request succeeds, Services Gatekeeper updates the status
to DeliveredToNetwork for this request and sends a delivery receipt.

If the number of retry attempts are exhausted and the send request has not succeeded,
Services Gatekeeper updates the status to DeliveryImpossible for this request and
creates a delivery receipt indicating the failure.

Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP Communication Service

6-4 Services Gatekeeper Communication Service Reference Guide

Processing Network-Triggered Requests
For an application to receive email messages from the network, it must indicate its
interest in these messages by registering for online notification in Services Gatekeeper.
A notification is defined by a service activation number, which is the destination
address of the email. An application can use the following operations to register for
online notification:

■ ParlayX 2.1 StartMessageNotification. See the Parlay X Web Services Part 5:
Multimedia Messaging specification listed in Services Gatekeeper Statement of
Compliance.

■ Use the startMessageNotification operation of EmailManagementMBean to
register for online notification from the Administration console.

An application can also register to receive email messages offline. Services Gatekeeper
stores the messages and delivers them when the application requests them. Use the
enableReceiveEmail operation of EmailManagementMBean from the Administration
console to provision offline notification of network-triggered email messages. See the
"All Classes" section of Services Gatekeeper OAM Java API Reference for details on
EmailManagementMBean.

Extensions to ParlayX 2.1 interface include:

■ X-Parameter Password to indicate the credential of the email service activation
number. The value should be encrypted by AES (Advanced Encryption Standard)
or 3DES (Triple Data Encryption Standard) algorithm.

■ X-Parameter SizeLimit to indicate the maximum total size (in kilobyte) of an email
message attachment accepted by Services Gatekeeper.

■ Each registered notification must be unique, and notification attempts with
overlapping service activation number are rejected.

When Services Gatekeeper receives an online/offline notification request, it starts a
POP3 or IMAP process according to the configuration. When using POP3, Services
Gatekeeper uses the polling mechanism and retrieves email messages from email
server using a configurable interval. When using IMAP, Services Gatekeeper attempts
to utilize IDLE mechanism (whereby when new email messages arrive it is notified by
the email server and retrieves the email). If the email server does not support the IDLE
mechanism, then Services Gatekeeper falls back to the polling solution.

When using POP3 or IMAP3 protocols, Services Gatekeeper handles email messages it
receives in the following ways:

■ The application has registered for online notification. Services Gatekeeper sends
the message to the application, and the application receives the message and
acknowledges receiving it.

If the email only has pure text body without attachments, the text is included in
the notification sent to the application.

If the email message is not pure text, the notification sent to the application
includes a reference to the attachments stored in storage. The application uses that
reference to retrieve the attachments.

■ Offline notification has been provisioned. Services Gatekeeper stores the email.
The application retrieves the message as described in "Retrieving Offline
Messages".

Events and Statistics

Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP 6-5

Retrieving Offline Messages
A ParlayX application fetches newly-arrived email messages with the
getReceivedMessages operation. The response from this method is an array of
MessageReference objects, one for each newly-arrived email message.

If an email message is pure text, the text message is included in the MessageReference
object. If an email message is not pure text, the MessageReference object includes the
reference to the attachments. The application then uses the reference to retrieve the
attachment using the getMessage operation. See the Parlay X Web Services Part 5:
Multimedia Messaging specification listed in theServices Gatekeeper Statement of
Compliance for descriptions of this operation.

Application Interfaces
For information about the SOAP-based interface for the Parlay X 2.1 MultiMedia
Messaging/MM7 communication service, see the discussion about Parlay X 2.1 Part 5:
Multimedia Messaging in Services Gatekeeper Application Developer's Guide.

For information about the RESTful interface, see the discussion about the multimedia
messaging interface in Services Gatekeeper Application Developer's Guide.

The RESTful Service interfaces provide RESTful access to the same functionality as the
SOAP-based interfaces. The internal representations are identical, and for the purposes
of creating service level agreements (SLAs), reading charging data records (CDR), and
so on, they are the same.

This communication service uses a plug-in which enables applications to send email
using Simple Mail Transfer Protocol (SMTP) and receive email using Post Office
Protocol (POP) version 3 and Internet Message Access Protocol (IMAP).

See Services Gatekeeper Statement of Compliance for details on the SMTP, POP and IMAP
interfaces supported.

Events and Statistics
The Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP communication
service generates event data records (EDRs), CDRs, and alarms to assist system
administrators and developers in monitoring the service.

See "Events, Alarms, and Charging" for general information.

Event Data Records
Table 6–1 lists the IDs of the EDRs created by the Parlay X 2.1 MultiMedia
Messaging/SMTP, POP3, and IMAP communication service. It does not include EDRs
created when exceptions are thrown.

Table 6–1 EDRs Generated by Email Communication Service

EDR ID Method Called

8107 SendMessage

8108 getMessageDeliveryStatus

8102 startMessageNotification

8103 stopMessageNotification

8104 getReceivedMessages

Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

6-6 Services Gatekeeper Communication Service Reference Guide

Charging Data Records
MultiMedia Messaging/SMTP, POP3, and IMAP CDRs are generated under the
following conditions:

■ When an email has been sent from Services Gatekeeper to the email server

■ When an email received from the email server.

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
This section describes the properties and workflow for Parlay X 2.1 Multimedia
Messaging/SMTP, POP3, and IMAP plug-in instances.

Properties for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
Table 6–2 lists the technical specifications for the communication service.

8106 getMessage

8110 notifyMessageDeliveryReceipt

8111 notifyMessageReception

8120 submit email to email server

8121 delivery receipt for email

8122 receive email from email server

Table 6–2 Properties for MultiMedia Messaging/SMTP, POP3, and IMAP

Property Description

Managed object in
Administration Console

sendMessagedomain_name > OCSG > server_name >
Communication Services > plug-in_instance_id

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id
assigned when the plug-in instance is created

Type=oracle.ocsg.plugin.multimediamessaging.email.manage
ment.EmailManagementMBean

Network protocol plug-in
service ID

Plugin_px21_multimedia_messaging_email

Network protocol plug-in
instance ID

The ID is assigned when the plug-in instance is created. See the
description for SGADM456

Supported Address Scheme email

Table 6–1 (Cont.) EDRs Generated by Email Communication Service

EDR ID Method Called

Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP 6-7

Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
Use the following procedure to configure the plug-in instance using the
Administration Console or an MBean browser:

1. Create one or more instances of the plug-in service. See the section on configuring
and managing the plug-in manager in Services Gatekeeper System Administrator's
Guide.

Use the plug-in service ID listed in "Properties for Parlay X 2.1 MultiMedia
Messaging/SMTP, POP3, and IMAP".

2. Select the MBean for the plug-in instance. The MBean display name is the same as
the plug-in instance ID given when the plug-in instance was created.

3. Configure the behavior of the plug-in instance using attributes related to the
SMTP/POP3/IMAP protocols according to email server information.

4. Set up the routing rules to the plug-in instance.

See the section on configuring and managing the plug-in manager in Services
Gatekeeper System Administrator's Guide.

Use the plug-in instance ID and address schemes listed in "Properties for Parlay X
2.1 MultiMedia Messaging/SMTP, POP3, and IMAP".

5. If required, create and load a node SLA. For details see the discussion on defining
global node and service provider group node SLAs and managing SLAs in Services
Gatekeeper Accounts and SLAs Guide.

6. Provision the service provider accounts and application accounts.

Application-facing
interfaces

com.bea.wlcp.wlng.px21.plugin.MessageNotificationManager
Plugin

com.bea.wlcp.wlng.px21.plugin.ReceiveMessagePlugin

com.bea.wlcp.wlng.px21.plugin.SendMessagePlugin

com.bea.wlcp.wlng.px21.callback.MessageNotificationCallbac
k

Service type MultimediaMessaging-ParlayRestMms

Exposes to the service
communication layer a java
representation of:

Parlay X 2.1 Part 5: Multimedia Messaging

Protocols used for
interfaces with the network
nodes

SMTP, POP3, and SMTP

Deployment artifact:

NT.EAR

wlng_nt_multimedia_
messaging_px21.ear

Plugin_px21_multimedia_messaging_mm7.jar

Plugin_px21_multimedia_messaging_email.jar

px21_multimedia_messaging_service.jar

multimedia_messaging_mm7_rel5mm712.war

multimedia_messaging_mm7_rel5mm715.war

Deployment artifact:

AT EAR: Normal

wlng_at_multimedia_
messaging_px21.ear

px21_multimedia_messaging_callback.jar

px21_multimedia_messaging.war

rest_multimedia_messaging.war

Table 6–2 (Cont.) Properties for MultiMedia Messaging/SMTP, POP3, and IMAP

Property Description

Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

6-8 Services Gatekeeper Communication Service Reference Guide

Provisioning Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
You can provision the Parlay X 2.1 MultiMedia Messaging communication service for
the supported protocols (SMTP, POP3, or IMAP) in the following way:

1. Configure the connections to the email server for the required protocol.

Use the attributes of EmailManagementMBean appropriate for the protocol.

2. Enable the connection for SMPTP and IMAP3 protocols, by calling the appropriate
method of EmailManagementMBean. For the POP3 protocol, the configuration
takes effect immediately. It does not require such explicit connection activation.

3. Enable mobile-oriented messages to be stored in Services Gatekeeper for polling
by applications, by using the enableReceiveEmail method of
EmailManagementMBean.

4. Manage offline notifications by using the following methods of
EmailManagementMBean:

■ listOfflineNotificationInfo

■ getOfflineNotificationInfo

■ removeOfflineNotificationInfo

5. Manage online notifications by using the following methods of
EmailManagementMBean:

■ listOnlineNotificationInfo

■ getOnlineNotificationInfo

■ removeOnlineNotificationInfo

For a description of the fields and methods of the EmailManagementMBean MBean,
see the "All Classes" section of Services Gatekeeper OAM Java API Reference.

Tip: To monitor the status of each connection in the connection pool
use, call the appropriate method of the MBean (listSMTPConnection,
listPOP3Process, or listImap3Process).

7

Parlay X 2.1 Short Messaging/SMPP 7-1

7Parlay X 2.1 Short Messaging/SMPP

This chapter describes the Oracle Communications Services Gatekeeper Parlay X 2.1
Short Messaging/Short Message Peer to Peer (SMPP) communication service in detail.

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication
Service

The Parlay X 2.1 Short Messaging/SMPP communication service exposes the Parlay X
2.1 Short Messaging set of application interfaces.

The communication service acts as an External Short Message Entity (ESME) that
connects to a Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the Parlay X 2.1 Short Messaging/SMPP
communication service supports for the application-facing interfaces and the network
protocols, see Services Gatekeeper Statement of Compliance.

Services Gatekeeper provides support for the billing identification identifier, smpp_
billing_id, defined in the SMPP Specification, through the use of a tunneled
parameter. It also supports the ussd_service_operation, which was added as an
optional parameter to the DELIVER_SM operation as a tunneled parameter in the
SMPP Specification. See "smpp_billing_id" and "ussd_service_operation" for
information about these parameters.

Using a Short Messaging communication service, an application can:

■ Send short messages to one or many destination addresses. The payload in these
short messages can be text, logos, or ringtones. With Split and Submit messaging,
short messages addressed to many recipients can be split into multiple
individually-addressed messages.

Logos must be in either Smart Messaging or Enhanced Messaging Service (EMS)
format. The image is not scaled. Ringtones must be in either Smart Messaging or
EMS (iMelody) format.

■ Request to be notified that delivery receipts for sent short messages have been
received from the network.

■ Receive delivery receipts on sent short messages that have arrived from the
network.

■ Explicitly query Services Gatekeeper for delivery receipts on sent short messages.

■ Subscribe to be notified if specified short messages for the application have been
received from the network.

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service

7-2 Services Gatekeeper Communication Service Reference Guide

■ Receive notifications that specified short messages for the application have arrived
from the network. These notifications include the short message payload.

■ Explicitly poll Services Gatekeeper for short messages sent to the application that
have arrived from the network and been stored in Services Gatekeeper.

Requests can flow in two directions: from the application to the network (called
application-initiated or mobile-terminated) and from the network to the application
(called network-triggered or mobile-originated). Both of these scenarios are covered in
the following sections.

Split and Submit Messaging
Bulk SMS messages addressed to multiple recipients can be split into a number of
individually addressed SMS messages with Split and Submit Messaging regardless of
the capabilities of the SMSC.

Split and Submit Messaging:

■ Works with SMSCs that do not support the SUBMIT_MULTI PDU

■ Supports sending to more than 254 addresses (the limit of SUBMIT_MULTI)

■ Frees applications from splitting messages, improving their performance.

Delivery receipts are returned on a per-message basis, one for each individual
recipient.

Processing Application-Initiated Requests
After an application has sent a short message to one or more destination addresses,
two different types of responses can be returned:

■ Send Receipts

■ Delivery Receipts

Send Receipts
Send receipts are acknowledgements that the network node has received the short
message from the application by means of Services Gatekeeper. Although a single
short message may be sent to multiple destination addresses, Services Gatekeeper
normally returns only one send receipt to the application. The receipt is returned
synchronously in the response message to the sendSms operation.

Delivery Receipts
Delivery receipts contain the delivery status of the short message; that is, whether the
short message has actually been delivered by the network to the mobile terminal.
There is one delivery receipt per destination address, with one of three possible
outcomes:

■ Successful: In the case of concatenated short messages, this is returned only when
all the parts have been successfully delivered.

■ Unsuccessful: The short message could not be delivered before it expired.

■ Unsupported: Delivery notification for this address is not supported. This can
occur if the originating network supports delivery receipts but is unable to acquire
the appropriate information for one or more destination addresses. This status is
reported for each address for which this is the case.

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service

Parlay X 2.1 Short Messaging/SMPP 7-3

Because actual delivery of the short message may take several hours, or even days (if,
for example, the mobile terminal is turned off at the time the short message is sent),
delivery receipts are returned asynchronously. Applications can choose either to have
delivery receipts delivered to them automatically by supplying Services Gatekeeper
with a callback interface or they can poll Services Gatekeeper.

If the application supplies a callback interface, there are two possible outcomes:

■ Services Gatekeeper sends the delivery receipt and the application receives and
acknowledges it.

■ Services Gatekeeper sends the delivery receipt but the application does not
acknowledge reception. In this case, Services Gatekeeper stores the delivery
receipt. The application can poll Services Gatekeeper for these receipts. Each
stored delivery receipt is time stamped and, after a configurable time period, is
removed.

If the application chooses not to supply a callback interface, Services Gatekeeper stores
the delivery receipt. The application can poll Services Gatekeeper for these receipts.
Each stored delivery receipt is time stamped and, after a configurable time period, is
removed.

To correlate a sent message with a delivery receipt from the network node, Services
Gatekeeper stores the information about the message for a period of time. This
information has a life span. If the delivery receipt does not arrive prior to the
expiration of the message, a cancel request for the message is sent to the SMSC.

Processing Network-Triggered Requests
Two types of traffic destined for an application can arrive at Services Gatekeeper from
the network. They are:

■ Delivery receipts for application-initiated sent short messages

■ Mobile-originated short messages destined for the application

For an application to receive online notification of short messages from the network, it
must indicate its interest in these messages by registering for online notification in
Services Gatekeeper. A notification is defined by a service activation number, which is
the destination address to which the mobile sender directs the short message. This is
usually a short code. Use the startSmsNotification method to SmsMBean to register
for online notification of network-triggered SMS messages from the Administration
console. An application can also use the following operations to register for online
notifications:

■ ParlayX 2.1 StartSmsNotification; see Parlay X 2.1 Web Services Part 4: Short
Messaging specification

■ REST Start Sms Notification; see Services Gatekeeper Application Developer's Guide.

■ OneAPI Subscribe to SMS Delivery Notification; see Services Gatekeeper
Application Developer's Guide.

An application can also be registered to receive short messages offline. Services
Gatekeeper stores the messages and delivers them when the application requests
them. Use the enableRecieveSms method to SmsMBean to provision offline
notification of network-triggered SMS messages.

Additional criteria can be tied to the service activation number, such as the first word
of the text in the short message payload. For Services Gatekeeper to accept a message,
both the service activation number and the additional criteria must match the details
in the notification. Each registered notification must be unique, and notification

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service

7-4 Services Gatekeeper Communication Service Reference Guide

attempts with overlapping criteria are rejected. The application can either request
received short messages from Services Gatekeeper or include a callback interface when
setting up the original notification.

Following are the possible scenarios for receipt and handling of short messages.

1. The application has registered for online notification. Services Gatekeeper sends
the short message to the application, and the application receives and
acknowledges it.

In this case Services Gatekeeper acknowledges receiving the short message to the
network

2. The application has registered for online notification. Services Gatekeeper sends
the short message to the application, but the application does not acknowledge
receiving it.

Offline notification has been provisioned and a registration identifier has been
established, so Services Gatekeeper stores the short message and acknowledges
receiving the short message to the network.

3. The application has registered for online notification. Services Gatekeeper sends
the short message to the application, but the application does not acknowledge
receiving it.

Offline notification has not been provisioned. Services Gatekeeper returns an error
to the network. It is the responsibility of the network to handle any further
processing of the short message

4. The application has not registered for online notification.

Offline notification has been provisioned. Services Gatekeeper stores the short
message and acknowledges receiving the short message to the network.

5. The application has not registered for online notification.

Offline notification has not been provisioned. Services Gatekeeper acknowledges
receiving the short message to the network with an error. It is the responsibility of
the network to handle any further processing of the short message.

Each stored short message is time stamped and, after a configurable time period,
removed from storage.

A SOAP application retrieves stored messages with the getReceivedSms operation;
see the Parlay X 2.1 Web Services Part 4: Short Messaging specification for more
information about this operation. A REST application retrieves them with the Get
Received Sms operation; see the Services Gatekeeper Application Developer's Guide for
information about this operation.

Connection Handling and Provisioning
The Parlay X 2.1 Short Messaging/SMPP communication service uses the Services
Gatekeeper SMPP Server Service to establish and manage southbound (client)
connections between Services Gatekeeper and SMSCs. The SMPP Server Service is
deployed as an Oracle WebLogic Server service.

See "System Properties for SMPP Server Service" and "Reference: Attributes and
Operations for SMPP Server Service" for information about configuring connections
between the Services Gatekeeper SMPP server service and an SMSC.

A client connection is created when this plug-in successfully binds with an SMSC. A
successful rebind changes the connection ID.

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service

Parlay X 2.1 Short Messaging/SMPP 7-5

When a client connection is successfully established, the connection is verified
periodically by using ENQUIRE_LINK requests (heartbeats). If the ENQUIRE_LINK
requests fail a configurable number of times, Services Gatekeeper attempts to
reconnect with the SMSC. If the reconnect attempts fail a configurable number of
times, the client connection is closed and removed.

The plug-in instance MBean provides the following configurable timers for
southbound connections between Services Gatekeeper and SMSCs:

■ Connection timer: This timer sets the heartbeat interval that Services Gatekeeper
uses to request the connection status on the client connection. If the ENQUIRE_
LINK requests fail, Services Gatekeeper closes the connection and attempts to
reconnect. See the EnquireLinkTimerValue field to SmsMBean for more
information.

■ Transaction timer: This timer establishes the interval between an SMPP request to
the SMSC and the corresponding SMPP response. If the interval is reached,
Services Gatekeeper does not resend the request. In this case, Services Gatekeeper
removes the transaction information and discards the PDU response. See the
RequestTimerValue field to SmsMBean for more information.

Multiple Connections and Multiple Plug-in Instances
A Parlay X 2.1 Short Messaging/SMPP plug-in can bind to an SMSC as an ESME
transmitter/receiver or transceiver. If more than one account in the SMSC is used,
create one plug-in instance for each account. If more than one SMSC is used, create a
plug-in instance for each account in each of the SMSCs.

If plug-in instances have the same bind type, they can share a connection to the SMSC.
If they have different bind types, each must have its own client connection.

Each plug-in instance executes on all network tier servers. Shared storage is used, so
network-triggered messages and delivery notifications can be accepted by all network
tier servers and match them with all application subscriptions, thus creating a
configuration with high availability.

Windowing
To maximize throughput, the Parlay X 2.1 Short Messaging/SMPP communication
service supports windowing on the network-facing interfaces. Windowing provides a
way to specify the amount of data that can be transmitted without receiving an
acknowledgment.

Windowing for requests to the SMSC is configured in the plug-in.

The windowSize attribute sets the number of unacknowledged requests that can be
sent simultaneously.

A request moves from the windowing queue to the window. From the window it is
submitted for processing. A submitted request remains in the window until its
response is received. When the response is received, the request is released and
another request can be moved from the windowing queue to the window.

If any one of these windowing parameters is set to a value less than zero, windowing
is turned off. If all of these three parameters are greater than zero, windowing is
turned on.

For descriptions of these attributes to SmsMbean see the “All Classes” section of
Services Gatekeeper OAM Java API Reference:

■ windowSize

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service

7-6 Services Gatekeeper Communication Service Reference Guide

■ windowWaitTimeout

If the windowing request queue is full or the timer has expired, the request is not sent
and an error code is returned to the plug-in instance.

Segments
If an SMS message is larger than the maximum payload size, the message content is
concatenated into segments before it is delivered to the application.

The maximum payload size defaults to the standard set by the Parlay X 2.1 Short
Messaging specification. You can set the maximum payload size using the
wlng.smpp.max_payload_size system property on the command line when starting
Services Gatekeeper.

For configuration attributes regarding segments, to SmsMbean see the "All Classes"”
section of Services Gatekeeper OAM Java API Reference:

■ ReceiveSegmentsWaitTime

■ ReceiveSmsIgnoreMissingSegments

Short Code Translation
Messaging-capable networks use short codes and message prefixes to help route traffic
and to make access to certain features easier for the end user. Instead of having to use
the entire address, users can enter a short code that is mapped to the full address in the
network. The Parlay X 2.1 Short Messaging/ SMPP communication service supports
short codes and message prefixes, which allow the same short code to be mapped to
different applications based on the prefix to the enclosed message.

Load Balancing, High Availability, and Failover
To optimize system utilization, applications should load-balance application-triggered
requests among all application tier servers.

When there are multiple connections to the SMSC within a single plug-in instance, the
SMPP Server Service selects one of the connections to the SMSC.

A prerequisite for high-availability for the Parlay X 2.1 Short Messaging/SMPP
communication service is redundant network tier servers, redundant network
interface cards in each network tier server, and a redundant set of SMPP servers to
connect to. High availability between Services Gatekeeper and the network is achieved
by using at least two different plug-in instances per network tier server and having the
plug-in instances connect to different SMPP servers.

High availability behavior is as follows:

■ The SMPP server runs in every network node. If one network node is unavailable,
mobile-terminated requests are automatically routed to a healthy node. Related
delivery reports are routed from the healthy network node that handled the
request to the application.

■ If the application tier is unavailable, mobile-originated messages are routed to a
healthy application tier node.

■ In a Services Gatekeeper cluster, if the server becomes unavailable after sending a
SUBMIT_SM request to and receiving the SUBMIT_SM_RESP from the SMSC,
the SMSC routes the subsequent delivery receipt to another server. This other
server retrieves the message information from cluster-level storage and processes
it.

Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service

Parlay X 2.1 Short Messaging/SMPP 7-7

■ In a Services Gatekeeper cluster, if a server becomes unavailable after sending a
SUBMIT_SM request to and receiving the SUBMIT_SM_RESP from an
application, the application routes the subsequent cancel, query, or replace request
to another server. This other server retrieves the message information from
cluster-level storage and processes it.

Character Set Encoding
The SMPP protocol expects the sender name value in ASCII characters. The use of
non-ASCII characters can cause the request to become garbled or even to be removed
at the SMSC.

The maximum size of an SMS message is 140 bytes, regardless of the type of data
coding used. If the content exceeds 140 bytes, Service Gatekeeper sends it as multiple
SMS messages.

Standard and Extended GSM Alphabets
The standard GSM 03.38 alphabet uses 7 bits per character, allowing for 128 different
characters with hexadecimal values 0x00 to 0x7F.

If all the characters in an SMS message are from the standard GSM alphabet, it is
possible to send 160 of these 7-bit encoded characters in one SMS message of 140
bytes. This is because 140 bytes equals 1120 bits and if each character uses 7-bits, 160
(1120/7) characters fit into the message.

See the DefaultDataCoding field to SmsMBean for the default alphabet settings and
payload size that Oracle recommends.

There is also an extended GSM alphabet that defines an additional 10 characters along
with the original 128. These characters are sent as two 7-bit encoded characters,
starting with the 7-bit encoded escape character (0x1B) from the standard alphabet. For
example, if a message contains the character { from the extended alphabet, this
character is encoded as 1B 28 where 1B is the escape character and 28 is the { extended
character.

Each extended character requires two 7-bit encoded characters (escape character +
extended character). Therefore, an SMS message containing a combination of
characters from the standard GSM alphabet and characters from the extended GSM
alphabet will hold fewer than 160 characters. The exact number depends on the
particular mix of standard and extended characters.

For a list of the characters defined in the GSM standard and extended alphabets see
the GSM web site:

http://www.csoft.co.uk/sms/character_sets/gsm.htm

To indicate that only SMS messages in which all the characters are from the standard
or extended GSM alphabet, the DefaultDataCoding attribute should be set to 0. This is
the default. setting. If the DefaultDataCoding attribute is set to 0 and the SMS
message contains characters that are not in the standard or extended GSM alphabets,
Services Gatekeeper rejects the message and throws an exception. If your SMSC sends
8-bit SMSs, set the DefaultDataCoding attribute to 1, which allows a maximum of 140
characters in an SMS.

Other Alphabets
It is possible to send characters that are not in the standard or extended GSM
alphabets if the DefaultDataCoding attribute is configured appropriately.

Application Interfaces

7-8 Services Gatekeeper Communication Service Reference Guide

In addition to the standard and extended GSM alphabets (called the “SMSC Default
Alphabet” in the SMPP v3.4 specification), two other common character sets are the
IA5/ASCII character set and the UCS2 character set.

In the IA5/ASCII alphabet, the characters are 8-bit encoded, in other words one byte
per character, so it is possible to send 140 of these 8-bit encoded characters in one SMS
message that uses this coding scheme. If you are using the IA5/ASCII alphabet, set the
DefaultDataCoding attribute for the plug-in to 1.

Characters in the UCS2 alphabet are 16-bit encoded, requiring two bytes per character,
so it is possible to send only 70 of these characters in a single SMS message. If you are
using the UCS2 alphabet, set the DefaultDataCoding attribute for the plug-in to 8.

For a complete list of supported character set values, see the “data_coding” section in
the SMPP v3.4 specification.

Overriding the DefaultDataCoding Attribute
You can override the DefaultDataCoding attribute in requests using an xparameter or
an SLA setting. This makes it possible, for example, to use the standard 7-bit GMS
alphabet as the default but to send specific SMS messages using a different character
set.

Use the data_coding xparameter for parameter tunneling in the header of the request
or the com.bea.wlcp.wlng.plugin.sms.DataCoding parameter for defining the coding
scheme in the <requestContext> element of an SLA.

For example, although the DefaultDataCoding parameter may be set to 0 for a plug-in
instance, the following SOAP header sets the data coding scheme for its SMS message
to 8, stipulating that the UCS2 character set should be used for encoding the SMS
message in this particular request:

<soapenv: Header>
. . .
 <xparams>
 <param key="data_coding" value="8" />
 <xparams>
. . .
</soapenv:Header>

In the next example, the <requestContext> element in an SLA sets the data coding
scheme to 1, stipulating that the IA5/ASCII character set should be used for encoding
SMS messages initiated by the application associated with this particular SLA:

<requestContext>
 <contextAttribute>
 <attributeName>ccom.bea.wlcp.wlng.plugin.sms.DataCoding</attributeName>
 <attributeValue>1</attributeValue>
 </contextAttribute>
</requestContext>

Application Interfaces
For information about the SOAP-based interface for the Parlay X 2.1 Short
Messaging/SMPP communication service, see the discussion of Parlay X 2.1 Part 4:
Short Messaging interface in Services Gatekeeper Application Developer's Guide.

The RESTful Service Short Messaging interfaces provide RESTful access to the same
functionality as the SOAP-based interfaces. The internal representations are identical,
and for the purposes of creating service level agreements (SLAs), reading charging

Events and Statistics

Parlay X 2.1 Short Messaging/SMPP 7-9

data records (CDRs), and so on, they are the same. For information about the RESTful
Short Messaging interface, see the discussion about the short messaging interface in
Services Gatekeeper Application Developer's Guide.

Events and Statistics
The Parlay X 2.1 Short Messaging/SMPP communication service generates event data
records (EDRs), CDRs, alarms, and statistics to assist system administrators and
developers in monitoring the service.

See "Events, Alarms, and Charging" for more information.

Event Data
Table 7–1 lists the IDs of the EDRs created by the Parlay X 2.1 Short Messaging/SMPP
communication service. This list does not include EDRs created when exceptions are
thrown.

See "Events and Statistics""Events and Statistics"for the list of EDRs generated by the
SMPP Server Service.

Charging Data Records
Short Messaging/SMPP-specific generates CDRs under the following conditions:

■ After Services Gatekeeper has successfully received and processed an
application-originated message, and successfully sent all segments of the message
to the network.

■ After Services Gatekeeper receives and processes a delivery report sent from the
network.

■ After Services Gatekeeper successfully receives and processes a mobile-originated
message sent from the network.

Statistics
Table 7–2 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

Table 7–1 EDRs Generated by Parlay X 2.1 Short Messaging/SMPP

EDR ID Method Called

6000 notifySmsDeliveryReceipt

6001 notifiySmsReception

7000 sendSms

7001 sendSmsLogo

7002 sendSmsRingtone

7003 startSmsNotification

7004 stopSmsNotification

7011 getSmsDeliveryStatus

7012 getReceivedSms

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

7-10 Services Gatekeeper Communication Service Reference Guide

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP
This section lists the parameters that can be tunneled or defined in the
<requestContext> element of an SLA.

The dest_bearer_type, service_type, ussd_service_operation, its_session_info
parameters are used to support unstructured supplementary service data (USSD).

submit_date
You can include submit_date as xparam in delivery report notifications sent from
Services Gatekeeper to application listeners. You must set the ForwardXParams
MBeam attribute to true in order to include submit_date.

You can only include "submit date" when the delivery report from SMSC has the
informational content inserted into the short_message parameter of the DeliverSm
PDU as shown in the SMPP specification v 3.4, appendix B.

In ParlayX SOAP callbacks, the xparam is set in the SOAP header, for example:

<xparams xmlns="http://schemas.xmlsoap.org/soap/envelope/"
env:mustUnderstand="0">
 <param xmlns="" key="submit date" value="1411251321"/>
 <param xmlns="" key="originating_address" value="12345">
 </xparams>

For SMS OneAPI callbacks it is set in HTTP header, for example:

 X-Plugin-Param-Keys: submit_date,originating_address
 X-Plugin-Param-Values: 1411251324,12345

done_date

Description
This parameter returns the date and time a message was delivered to a terminal for
OneAPI facade communication. Your implementation must support the SMPP v 3.3
style communication that makes this information available. Also xparams must be
configured by setting the Services Gatekeeper SmsMBean attribute ForwardXParams
to true.

This example shows an SMS OneAPI callback set in the HTTP header:

X-Plugin-Param-Keys: done_date,originating_address
X-Plugin-Param-Values: 1411251324,12345

Table 7–2 Methods and Transaction Types for Parlay X 2.1 Short Messaging/SMPP

Method Transaction Type

sendSms TRANSACTION_TYPE_MESSAGING_SEND

sendSmsLogo TRANSACTION_TYPE_MESSAGING_SEND

sendSmsRingtone TRANSACTION_TYPE_MESSAGING_SEND

receivedMobileOriginatedSMS TRANSACTION_TYPE_MESSAGING_RECEIVE

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

Parlay X 2.1 Short Messaging/SMPP 7-11

This example shows a SOAP callback with the xparam set in the header:

<xparams xmlns="http://schemas.xmlsoap.org/soap/envelope/"
env:mustUnderstand="0">
 <param xmlns="" key="done_date" value="1411251321"/>
 <param xmlns="" key="originating_address" value="12345">
</xparams>

Format
String

sms.protocol.id

Description
This parameter defines the mandatory SMPP protocol_id parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting
overrides a tunneled parameter.

This parameter key name can be configured in the wlng.sms.protocol.id system
property. The default is sms.protocol.id.

Format
Integer

Value
Value range is 0–65535.

source_port

Description
This parameter defines the optional SMPP source_port parameter.

It is valid for application-initiated requests.

It is valid for network-triggered requests if the forwarding parameter is enabled. See
the ForwardXParams field to SmsMBean for more information.

This parameter can be set using parameter tunneling.

Format
Integer

Value
Value range is 0–65535.

destination_port

Description
This parameter defines the optional SMPP destination_port parameter.

It is valid for application-initiated requests.

It is valid for network-triggered requests if the forwarding parameter is enabled. See
the ForwardXParams field to SmsMBean for more information.

This parameter can be set using parameter tunneling.

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

7-12 Services Gatekeeper Communication Service Reference Guide

Format
Integer

Value
Value range is 0–65535.

data_coding

Description
This parameter defines the mandatory SMPP data_coding parameter.

Overrides the DefaultDataCoding configuration attribute. See the
DefaultDataCoding field in SmsMBean for more information.

It is valid for application-initiated requests.

It is valid for network-triggered requests if the forwarding parameter is enabled. See
the ForwardXParams field in SmsMBean for more information.

This parameter can be set using parameter tunneling.

Format
Signed Decimal

Value
Value range is -128 – +127. Some values are restricted. See the SMPP specification for
details.

esm_class

Description
This parameter defines the mandatory SMPP esm_class parameter.

It is valid for application-initiated requests only.

This parameter can be set using parameter tunneling.

Format
Signed Decimal

Value
Value range is -128 – +127. Some values are restricted. See the SMPP specification for
details.

sms.service.type

Description
This parameter defines the mandatory SMPP service_type parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting
overrides a tunneled parameter.

This parameter name can be configured in the wlng.sms.service.type system property.
The default is sms.service.type.

Format
String enumeration

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

Parlay X 2.1 Short Messaging/SMPP 7-13

Value
Valid values are CMT, CPT, VMN, VMA, WAP, USSD, and an empty string (""). See
the SMPP specification for details.

sms.replace.if.present

Description
This parameter defines the mandatory SMPP replace_if_present_flag parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting
overrides a tunneled parameter.

This parameter key name can be configured in the wlng.sms.replace.if.present system
property. The default is sms.replace.if.present.

Format
Integer

Value
Value values are 0 and 1. See the SMPP specification for details.

com.bea.wlcp.wlng.plugin.sms.OriginatingAddressType

Description
This parameter defines a mapping ID.

The ID is used for looking up an SMPP ESME Type Of Number (TON) and an SMPP
ESME Numbering Plan Indicator (NPI). The TON and NPI are configured using OAM.

This parameter is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting
overrides a tunneled parameter.

Format
String

com.bea.wlcp.wlng.plugin.sms.DestinationAddressType.n

Description
This parameter defines a mapping ID.

The ID is used for looking up an SMPP ESME Type Of Number (TON) and an SMPP
ESME Numbering Plan Indicator (NPI). The TON and NPI are configured using
Oracle Access Manager (OAM).

The n is the number of the destination address. Valid values are 0 to one less than the
number of destination addresses. An example of this parameter name would be:

com.bea.wlcp.wlng.plugin.sms.DestinationAddressType.2

This parameter is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting
overrides a tunneled parameter.

Format
String

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

7-14 Services Gatekeeper Communication Service Reference Guide

com.bea.wlcp.wlng.plugin.sms.RequestDeliveryReportFlag

Description
This parameter defines the mandatory SMPP registered_delivery parameter.

It specifies whether delivery reports are requested for application-initiated requests.

It is valid for application-initiated requests only.

This parameter can be set using SLAs or parameter tunneling. An SLA setting
overrides a tunneled parameter.

Format
Boolean

Value
■ 0 - Delivery receipt is never requested (was the old false option).

■ 1 - Delivery receipt is always requested (was the old true option).

■ 2 - Delivery receipt is requested if the application requests a delivery report. It
either provides a callback URL when sending the message, or by having
subscribed for delivery report notifications (new option).

com.bea.wlcp.wlng.plugin.sms.DataCoding

Description
This parameter defines the mandatory SMPP data_coding parameter.

The plug-in uses it for encoding the message string.

It is valid for application-initiated requests only.

This parameter can be set using SLAs.

Format
Integer

Value
Value range is 0–255. Some values are restricted. See the SMPP specification for details.

com.bea.wlcp.wlng.plugin.sms.Priority

Description
This parameter defines the mandatory SMPP priority_flag parameter.

It is valid for application-initiated requests only.

This parameter can be set using SLAs.

Format
String

Value
Valid values are:

■ HIGH; Sets priority_flag to 3.

■ LOW; Sets priority_flag to 0.

■ DEFAULT; Sets priority_flag to 0.

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

Parlay X 2.1 Short Messaging/SMPP 7-15

■ UNDEFINED; Sets priority_flag to 0.

originating_address

Description
This parameter defines the originating address of the SMS in the delivery receipt.

When this parameter is used, the SmsMBean's Boolean forwardXParam attribute must
be set to true to make the parameter appear in the SOAP header. By default,
forwardXParam is false. See the ForwardXParams field to SmsMBean for more
information.

This parameter can be set using parameter tunneling.

Format
String

smpp_billing_id

Description
This parameter defines the billing information according to the format in the SMPP
Specification 5.1, section 4.8.4.3 titled "billing_identification".

The parameter works with SMPP 5.1 SMSCs, but with not with SMPP 3.4 SMSCs.

The parameter is intended for use with Parlay X 2.1 SMPP.

Format
Hexadecimal String

Table 7–3 describes the format.

If the value is not sent as a hexadecimal string, it is ignored and a warning is logged.

Here is sample code for encoding the string.

private String getHexEncodedString(String normalString) {
 byte[] bHexStr = normalString.getBytes();
 String retVal = "";
..String sOctet = null;
 for (int i = 0; i < bHexStr.length; i++) {
 sOctet = Integer.toHexString((int) (bHexStr[i] & 0xFF));
 if (sOctet.length() == 1) {
 sOctet = "0" + sOctet;
 }

Table 7–3 Format for smpp_bliing_id Value

Field
Size
(octets) Type Description

parameter tag 2 Integer 0x060B

length 2 Integer Length of value part in octets

value 1 - 1024 Octet
String

Bits 7......0

0XXXXXXX (Reserved)1XXXXXXX (Vendor
Specific)

The first octet represents the Billing Format
tag and indicates the format of the billing
information contained in the remaining octets.

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

7-16 Services Gatekeeper Communication Service Reference Guide

 retVal = retVal.concat(sOctet);
 }
 return retVal.toUpperCase(); }

dest_addr_subunit

Description
This parameter defines the dest_addr_subunit field in the following SMPP operations:

■ SUBMIT_SM

■ SUBMIT_MULTI

■ DATA_SM

It can be set using parameter tunneling.

Format
Signed Decimal

The decimal value is automatically converted to a hexadecimal string before it is
passed to the SMPP dest_addr_subunit field.

Value
Value range is -128 – +127.

Example
<xparams> <param key="dest_addr_subunit" value="1"/> </xparams>

dest_bearer_type

Description
This parameter is used to request the desired bearer for delivery of the message to the
destination address.

If the receiving system (the SMSC) does not support the indicated bearer type, it may
return a response PDU reporting a failure.

For the formal definition of the parameter and section 4.7.1 for its specification as an
optional parameter for the DATA_SM operation, see section 5.3.2.5 of the Short
Message Peer to Peer Protocol Specification v3.4 at:

http://docs.nimta.com/SMPP_v3_4_Issue1_2.pdf

This parameter can be set using parameter tunneling.

Format
Unsigned Byte [0–255]

Value
Valid values are:

■ 0x00 = Unknown

■ 0x01 = SMS

■ 0x02 = Circuit Switched Data (CSD)

■ 0x03 = Packet Data

■ 0x04 = USSD

■ 0x05 = CDPD

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

Parlay X 2.1 Short Messaging/SMPP 7-17

■ 0x06 = DataTAC

■ 0x07 = FLEX/ReFLEX

■ 0x08 = Cell Broadcast (cellcast)

■ 9 to 255 Reserved

service_type

Description
This parameter indicates the SMS application service associated with the message.
Allows the ESME to use enhanced messaging services such as replace_if_present and
to control the teleservice used on the air interface (for example, ANSI-136/TDMA and
IS-95/CDMA).

It is used to support tunneling USSD (3G TS 23.090 version 3.0.0) messages through
the SMPP protocol.

For the formal definition of the parameter and the appropriate subsections of section 4
for its specification as a mandatory parameter for SUBMIT_SM, SUBMIT_MULTI,
DELIVER_SM, DATA_SM, and CANCEL_SM, see section 5.2.11 of the Short Message
Peer to Peer Protocol Specification v3.4 at

http://docs.nimta.com/SMPP_v3_4_Issue1_2.pdf.

This parameter can be set using parameter tunneling.

Format
Octet string

Value
The predefined generic service type value for USSD is USSD.

ussd_service_operation

Description
This parameter defines the USSD service operation that is required when SMPP is
used as an interface to a (GSM) USSD system.

It is used to support tunneling USSD (3G TS 23.090 version 3.0.0) messages through
the SMPP protocol.

It is used as an optional parameter to the SMPP SUBMIT_SM operation.

This parameter is defined in section 5.3.2.44 of the Short Message Peer to Peer Protocol
Specification v3.4.

It was added to the DELIVER_SM operation in the SMPP 5.1 specification. See Short
Message Peer to Peer Protocol Specification Version 5.1.

This parameter can be set using parameter tunneling.

Format
Unsigned byte [0–255]

Value
Valid values are:

■ 0 = PSSD indication

■ 1 = PSSR indication

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

7-18 Services Gatekeeper Communication Service Reference Guide

■ 2 = USSR request

■ 3 = USSN request

■ 4 to 15 Reserved

■ 16 = PSSD response

■ 17 = PSSR response

■ 18 = USSR confirm

■ 19 = USSN confirm

■ 20 to 31 Reserved

■ 32 to 255 Reserved for vendor-specific USSD operations

its_session_info

Description
This is a required parameter for the CDMA Interactive Teleservice as defined by the
Korean PCS carriers [KORITS]. Contains control information for the interactive session
between an MS and an ESME.

See section 5.3.2.43 of the Short Message Peer to Peer Protocol Specification v3.4 for the
formal definition of the parameter and the appropriate subsections of section 4 for its
specification as an optional parameter for SUBMIT_SM, DELIVER_SM, and DATA_
SM.

This parameter is also supported for native SMPP.

This parameter can be set using parameter tunneling.

Format
Unsigned Short (2 bytes) [0–65535] as an octet string

Following is a description of the octet string.

Bits 7...............0

SSSS SSSS (octet 1)

NNNN NNNE (octet 2)

Octet 1 contains the session number (0–255) encoded in binary. The session number
remains constant for each session.

Octet 2 encodes the sequence number of the dialog unit (as assigned by the ESME)
within the session in bits [7. . . 1].

Bit 0 of octet 2 is the End of Session Indicator, indicating that the message is the end of
the conversation session. Valid values for the End of Session Indicator are:

■ 0 = End of Session Indicator inactive

■ 1 = End of Session Indicator active

smpp_optional_int_tlv_param_tags

Description
An application or interceptor uses this parameter to pass integer data to a plug-in in
TagLengthValue (TLV) data units. A TLV data unit consists of a tag/value pair. This

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

Parlay X 2.1 Short Messaging/SMPP 7-19

parameter passes a list of comma-separated items that are the tag parts of the data
units.

See "smpp_optional_octet_tlv_param_tags" for sending data that is not of type integer.

The smpp_optional_int_tlv_param_tags list must have the same number of entries as
its corresponding smpp_optional_int_tlv_param_values list. See "smpp_optional_int_
tlv_param_values".

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The
value of length field is always "0x00, 0x04", because integer data is always encoded in
4 bytes.

An example of code to tunnel TLV integer data is:

injectXParam(TLV_OPTIONAL_INT_PARAM_TAGS, "5121,5124");
injectXParam(TLV_OPTIONAL_INT_PARAM_VALUES, "999,1234");

This parameter can be set using parameter tunneling.

Format
The tag identifiers must be in decimal format. For example, set a tag with the
hexadecimal value 0x1401 as 5121.

smpp_optional_int_tlv_param_values

Description
An application or interceptor uses this parameter to pass integer data to a plug-in in
TagLengthValue (TLV) data units. A TLV data unit consists of a tag/value pair. This
parameter passes a list of comma-separated items that are the value parts of the data
units.

See "smpp_optional_octet_tlv_param_values" for sending data that is not of type
integer.

The smpp_optional_int_tlv_param_values list must have the same number of entries
as its corresponding smpp_optional_int_tlv_param_tags list. See "smpp_optional_int_
tlv_param_tags".

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The
value of length field is always "0x00, 0x04", because integer data is always encoded in
4 bytes.

An example of code that tunnels TLV integer data is:

injectXParam(TLV_OPTIONAL_INT_PARAM_TAGS, "5121,5124");
injectXParam(TLV_OPTIONAL_INT_PARAM_VALUES, "999,1234");

This parameter can be set using parameter tunneling.

smpp_optional_octet_tlv_param_tags

Description
An application or interceptor uses this general-purpose parameter to pass any type of
data to a plug-in in TagLengthValue (TLV) data units. A TLV data unit consists of a
tag/value pair. This parameter passes a list of comma-separated items that are the tag
parts of the data units.

See "smpp_optional_int_tlv_param_tags" for sending integer data.

Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

7-20 Services Gatekeeper Communication Service Reference Guide

The smpp_optional_octet_tlv_param_tags list must have the same number of entries
as its corresponding smpp_optional_octet_tlv_param_values list. See "smpp_
optional_octet_tlv_param_values".

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The
value of length field is the size of the actual data in the value field in the
corresponding smpp_optional_octet_tlv_param_values parameter.

An example of code that tunnels TLV octet data is:

injectXParam(TLV_OPTIONAL_OCTET_PARAM_TAGS, "5121,5124", rctx);
injectXParam(TLV_OPTIONAL_OCTET_PARAM_VALUES, "03e7,04d2", rctx);
private void injectXParam(String name, String value, RequestContext rctx){
 rctx.putXParam(name, value);

This parameter can be set using parameter tunneling.

Format
The tag identifiers must be in decimal format. For example, set a tag with the
hexadecimal value 0x1401 as 5121.

smpp_optional_octet_tlv_param_values

Description
An application or interceptor uses this general-purpose parameter to pass any type of
data to a plug-in in TagLengthValue (TLV) data units. A TLV data unit consists of a
tag/value pair. This parameter passes a list of comma-separated items that are the
value parts of the data units.

See "smpp_optional_int_tlv_param_values" for sending integer data.

The smpp_optional_octet_tlv_param_values list must have the same number of
entries as its corresponding smpp_optional_octet_tlv_param_tags list. See "smpp_
optional_octet_tlv_param_tags".

Within a TLV data unit, the sizes of the tag and length fields are each 2 bytes. The
value of length field is the size of the actual data in the value field.

An example of code that tunnels TLV octet data is:

injectXParam(TLV_OPTIONAL_OCTET_PARAM_TAGS, "5121,5124", rctx);
injectXParam(TLV_OPTIONAL_OCTET_PARAM_VALUES, "03e7,04d2", rctx);
private void injectXParam(String name, String value, RequestContext rctx){
 rctx.putXParam(name, value);

This parameter can be set using parameter tunneling.

Format
The tag identifiers must be in decimal format. For example, set a tag with the
hexadecimal value 0x1401 as 5121.

com.bea.wlcp.wlng.plugin.sms.smpp.schedule_delivery_time

Description
This parameter specifies the scheduled time at which the message delivery should be
first attempted. It defines either the absolute date and time or relative time from the
current SMSC time at which delivery of this message will be attempted by the SMSC.

The PDU parameter is schedule_delivery_time.

Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

Parlay X 2.1 Short Messaging/SMPP 7-21

Format
ASCII string specified as YYMMDDhhmmsstnnp where:

■ YY: last two digits of the year, from 00 to 99.

■ MM: month from 1 to 12.

■ DD: day from 01 to 31.

■ hh: hour from 00 to 23.

■ ss: second from 00 to 59.

■ t: tenths of a second from 0 to 9.

■ nn: time differential in 15 minute increments between the local time (as expressed
in the first 13 octets) and Universal Time Coordinated (UTC) from 00 to 48.

■ p +: local time is in 15 minute increments advanced in relation to UTC.

■ p -: local time is in 15 minute increments retarded in relation to UTC.

■ p R: local time is relative to the current SMSC time.

sms.validity.period

Description
The validity_period parameter indicates the SMSC expiration time, after which the
message should be discarded if not delivered to the destination. It can be defined in
absolute time format or relative time format.

The PDU parameter is validity_period.

Format
ASCII string specified as YYMMDDhhmmsstnnp where:

■ YY: last two digits of the year, from 00 to 99.

■ MM: month from 1 to 12.

■ DD: day from 01 to 31.

■ hh: hour from 00 to 23.

■ ss: second from 00 to 59.

■ t: tenths of a second from 0 to 9.

■ nn: time differential in 15 minute increments between the local time (as expressed
in the first 13 octets) and Universal Time Coordinated (UTC) from 00 to 48.

■ p +: local time is in 15 minute increments advanced in relation to UTC.

■ p -: local time is in 15 minute increments retarded in relation to UTC.

■ p R: local time is relative to the current SMSC time.

Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web
Services Binary SMS/SMPP

This section describes the properties and workflow for setting up Parlay X 2.1 Short
Messaging/SMPP and Extended Web Services Binary SMS/SMPP network protocol
plug-in instances. These plug-in instances share the same configuration options.

Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

7-22 Services Gatekeeper Communication Service Reference Guide

The Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary
SMS/SMPP communication services rely on an SMPP Server Service for connecting to
the Small Message Service Center (SMSC).

The SMPP Server Service is also used by the Native SMPP Communication Service.
See "Native SMPP" for information on managing client connections using SMPP Server
Service.Configuration facilities for the SMPP Server Service are described in detail in
the following sections of "Native SMPP":

■ Properties for SMPP Server Service

■ Reference: Attributes and Operations for SMPP Server Service

Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary
SMS/SMPP

Table 7–4 lists the technical specifications for the communication service.

Configuration Workflow for Parlay X 2.1 Short Messaging/SMPP and Extended Web
Services Binary SMS/SMPP

Following is an outline for configuring the plug-in using the Administration Console
or an MBean browser.

Table 7–4 Properties for Parlay X 2.1 Short Messaging/SMPP and EWS Binary
SMS/SMPP

Property Description

Managed object in
Administration Console

To manage the object, select domain_name, then OCSG, then
server_name. then Communication Services, then plugin_
instance_id in that order.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id
assigned when the plug-in instance is created

Type=oracle.ocsg.sms.smpp.management.SmsMBean

Documentation: See the “All Classes” section of Services
Gatekeeper OAM Java API Reference

Network protocol
plug-in service ID

Plugin_px21_short_messaging_smpp

Network protocol
plug-in instance ID

The ID is assigned when the plug-in instance is created. See
"Managing and Configuring the Plug-in Manager" in Services
Gatekeeper System Administrator's Guide.

Supported Address
Scheme

tel

Service type Sms

Exposes to the service
communication layer a
Java representation of:

Parlay X 2.1 Short Messaging/SMPP:

■ Parlay X 2.1 Part 4: Short Messaging

Extended Web Services Binary SMS/SMPP:

■ Extended Web Services Binary SMS

Interfaces with the
network nodes using:

SMPP 3.4

Deployment artifacts wlng_nt_sms_px21.ear and wlng_at_sms_px21.ear

Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

Parlay X 2.1 Short Messaging/SMPP 7-23

1. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID as listed in the "Properties for
Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary
SMS/SMPP" section.

2. Using the Administration Console or an MBean browser, select the MBean for the
plug-in instance. The MBean display name is the same as the plug-in instance ID
given when the plug-in instance was created.

3. Configure the behavior of the plug-in instance. Seethe description about
SmsMBean in the "All Classes" section of the Services Gatekeeper Java API Reference
for the list of fields and methods.

4. If desired, configure the supportBulkRequest attribute to manage Split and
Submit Messaging. See the discussion on attribute: supportBulkRequest in
Services Gatekeeper System Administrator's Guide.

5. If the plug-in uses short code mappings, configure the Short Code Mapper. See the
discussion on managing and configuring shortcode mappings in Services
Gatekeeper System Administrator's Guide.

6. Set up the routing rules to the plug-in instance. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in instance ID and address schemes listed in
the "Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web
Services Binary SMS/SMPP" section.

7. If required, create and load a node SLA. For details see "Defining Global Node and
Service Provider Group Node SLAs and Managing SLAs in Services Gatekeeper
Portal Developer's Guide.

8. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Management Operations in the SMPP Server Service
The Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary
SMS/SMPP communication services use the SMPP Server Service to establish and
manage client connections with the SMSC.

The SMPP Server Service establishes a client connection to the SMSC when the plug-in
instance is activated or when the administrator resets the client connection by using
the resetClientConnection SMPP Server Service operation.

The following Server Service methods to the SMPPServiceMBean, described in
"Native SMPP" manage client connections:

■ closeClientConnection

■ listClientConnections

■ listPluginInstances

■ resetClientConnection

For a description of the attributes and operations of the SmsMBean and
SMPPServiceMBean, see the "All Classes" section of Services Gatekeeper OAM Java API
Reference.

Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP

7-24 Services Gatekeeper Communication Service Reference Guide

8

Parlay X 3.0 Device Capabilities/LDAPv3 8-1

8Parlay X 3.0 Device Capabilities/LDAPv3

This chapter describes the Oracle Communications Services Gatekeeper Parlay X 3.0
Device Capabilities/Lightweight Directory Access Protocol version 3 (LDAPv3)
communication service in detail.

Overview of the Parlay X 3.0 Device Capabilities/LDAPv3 Communication
Service

The Device Capabilities/LDAPv3 communication service exposes the Parlay X 3.0
Device Capabilities and Configuration set of application interfaces.

The communication service acts as an LDAP client to a directory service, connecting to
the directory service using the LDAPv3.

For the exact version of the standards that the Device Capabilities/LDAPv3
communication service supports for the application-facing interfaces and the network
protocols, see Services Gatekeeper Statement of Compliance.

The Parlay X 3.0 Device Capabilities/LDAPv3 communication service sends requests
to any LDAPv3-compliant directory server with a device’s address (usually a phone
number), and in return receives one of the following device identifiers:

■ The device’s unique device ID, device or model name, and a link to the User
Agent Profile XML file.

■ The device’s equipment identifier (for example, its IMEI)

Application Interfaces
For information about the SOAP-based interface for the Parlay X 3.0 Device
Capabilities communication service, see the discussion about Parlay X 3.0 Part 18
Device capabilities in Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion about
RESTful device capabilities in Services Gatekeeper Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same
functionality as the SOAP-based interfaces. The internal representations are identical,
and for the purposes of creating service level agreements (SLAs) and reading charging
data records (CDRs), and so on, they are the same.

Events and Statistics

8-2 Services Gatekeeper Communication Service Reference Guide

Events and Statistics
The Parlay X 3.0 Device Capabilities/LDAPv3 communication service generates event
data records (EDRs), alarms, and statistics to assist system administrators and
developers in monitoring the service.

See "Events, Alarms, and Charging" for more information.

Event Data Records
Table 8–1 lists the IDs of the EDRs created by the Device Capabilities/LDAPv3
communication service. This list does not include EDRs created when exceptions are
thrown.

Charging Data Records
The Device Capabilities/LDAPv3 communication service does not generate any CDRs
by default.

Statistics
Table 8–2 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

Managing Parlay X 3.0 Device Capabilities/LDAPv3
This section describes the properties and workflow for the Parlay X 3.0 Device
Capabilities/LDAPv3 plug-in instance.

It also includes a description of how to create an LDAP-to-XML mapping file.

Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in
Table 8–3 lists the technical specifications for the communication service.

Table 8–1 EDRs Generated by Parlay X 3.0 Device Capabilities/LDAPv3

EDR ID Method Called

403001 getCapabilities

403002 getDeviceId

Table 8–2 Methods and Transaction Types for Parlay X 3.0 Device Capabilities/LDAPv3

Method Transaction Type

getCapabilities TRANSACTION_TYPE_OTHER

getDeviceId TRANSACTION_TYPE_OTHER

Table 8–3 Properties for Parlay X 3.0 Device Capabilities/LDAPv3

Property Description

Managed object in
Administration Console

To access the object, select domain_name, then OCSG, then server_
name, then Communication Services, then plug-in_instance_id, in
that order.

Managing Parlay X 3.0 Device Capabilities/LDAPv3

Parlay X 3.0 Device Capabilities/LDAPv3 8-3

Configuration Workflow for Device Capabilities/LDAPv3 Plug-in
Following is an outline for configuring the plug-in using the Administration Console
or an MBean browser.

1. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID as listed in the "Properties for
Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in" section.

2. Using the Administration Console or an MBean browser, select the MBean for the
plug-in instance. The MBean display name is the same as the plug-in instance ID
given when the plug-in instance was created.

3. Define the characteristics of the LDAP server to connect to using these attributes:

MBean Domain=oracle.ocsg.plugin.dc.ldap.management

Name=wlng_nt_device_capabilities_px30

InstanceName=Device_cap

Type=oracle.ocsg.plugin.dc.ldap.management.DeviceCapabilities
LdapMBean

Network protocol
plug-in service ID

Plugin_px30_decvice_capabilities_ldap

Network protocol
plug-in instance ID

The ID is assigned when the plug-in instance is created. See the
discussion about configuring and managing the plug-in manager
in Services Gatekeeper System Administrator's Guide.

Supported Address
Formats

tel, id, imsi, ipv4/ipv6

Application-facing
interface

com.bea.wlcp.wlng.px30.plugin.DeviceCapabilitiesPlugin

Service type DeviceCapabilities

Exposes to the service
communication layer a
Java representation of:

Device Capabilities/LDAP

Interfaces with the
network nodes using:

LDAP

Deployment artifact

NT EAR

wlng_nt_device_
capabilities_px30.ear

px30_device_capabilities.jar and Plugin_px30_device_
capabilities_ldap.jar.

Deployment artifact

AT EAR: SOAP Only
wlng_at_device_
capabilities_px30_
soap.ear

Ipx30_device_capabilities.war

Deployment artifact

AT EAR:

wlng_at_device_
capabilities_px30.ear

px30_device_capabilities.jar and Plugin_px30_device_
capabilities_ldap.jar

Table 8–3 (Cont.) Properties for Parlay X 3.0 Device Capabilities/LDAPv3

Property Description

Managing Parlay X 3.0 Device Capabilities/LDAPv3

8-4 Services Gatekeeper Communication Service Reference Guide

■ Attribute: Port

■ Attribute: BaseDN

■ Attribute: AuthDN

■ Attribute: AuthPassword

4. Using "Attribute: Schema", define the XML schema.

See "Creating an LDAP-to-XML Mapping File" for a description of the schema and
"Configuration Workflow for Device Capabilities/LDAPv3 Plug-in" for a
description of the mappings.

5. Define the connection pool characteristics for the connection:

■ Attribute: MinConnections

■ Attribute: MaxConnections

■ Attribute: ConnTimeout

6. Set up the routing rules to the plug-in instance. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in instance ID and address schemes listed in
the "Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in" section.

7. If required, create and load a node SLA. For details see the discussion about
defining global node and service provider group node SLAs and managing SLAs
in Services Gatekeeper Accounts and SLAs Guide.

8. Provision the service provider and application accounts. For information, see
Services Gatekeeper Portal Developer's Guide.

Creating an LDAP-to-XML Mapping File
You can create multiple Device Capabilities/LDAPv3 plug-in instances, each with a
different LDAP configuration. Each plug-in instance could point to a different LDAP
tree or even a different LDAP server.

Each Device Capabilities/LDAPv3 plug-in instance routes requests to an LDAP stack
(LDAPJDK 4.1). The LDAP library (physical connection) is specified using the
instanceId field. The LDAP stack is included as a library in the network tier EAR
package.

The LDAP library must have the device capabilities (Name, agentProfileRef, and
deviceId (IMEI)) stored as attributes in a single LDAP entry indexed by address. You
can redirect a plug-in to a different LDAPv3 library by specifying a new Distinguished
Name (DN) and schema as long as the device capabilities are all available from a
single LDAP entry.

An XSD schema that you create maps the URI format (for example, tel: or imsi:) to an
associated query string; this file does not affect the LDAP database.

You need to map the Device Capabilities communication service SOAP request data to
an LDAP query string that matches the subscriber information in your LDAP
directory. You do this by defining an XML file to map the data and an XSD schema to
validate the XML.

Example 8–1 shows a sample LDAP query XSD schema for the sample XML data
shown in Example 8–2. This XML file maps the tel:1234 address to
msisdn=1234,domainName=msisdnD. The resulting LDAP query for this example is:

(&(msisdn=1234)(objectClass=*))

Managing Parlay X 3.0 Device Capabilities/LDAPv3

Parlay X 3.0 Device Capabilities/LDAPv3 8-5

in

domainName=msisdnD,%Base DN%.

The Base DN is configured using Attribute: BaseDN.

Example 8–1 LDAP Query XSD

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="LdapConfig">
<xs:complexType>
<xs:sequence>
<xs:element name="Keys" type="KeySet" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="LdapObject" type="LdapObject" minOccurs="1"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="KeyObject">
<xs:sequence>
<xs:element name="uriScheme" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="addressKeyName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="objectKeyName" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="objectKeyValue" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="optional"/>
</xs:complexType>

<xs:complexType name="KeySet">
<xs:sequence>
<xs:element name="Key" type="KeyObject" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="LdapObject">
<xs:sequence>
<xs:element name="ObjectKeySet" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="keyName" type="xs:string" use="required"/>
<xs:attribute name="keyValue" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

Example 8–2 shows sample XML data that matches the LDAP query XSD file in
Example 8–1.

Example 8–2 Sample XML Data

<?xml version="1.0" encoding="UTF-8"?>
<LdapConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation='sp_config.xsd'>
 <Keys id="sample">
 <Key>
 <uriScheme>tel</uriScheme>
 <addressKeyName>msisdn</addressKeyName>
 <objectKeyName>domainName</objectKeyName>
 <objectKeyValue>msisdnD</objectKeyValue>
 </Key>

Reference: Attributes and Operations for Device Capabilities/LDAPv3

8-6 Services Gatekeeper Communication Service Reference Guide

 </Keys>
 </LdapConfig>

You need to create your own LDAP query XSD file to map your LDAP SOAP request
elements to your LDAP database elements. The LDAP query XSD file must define the
following objects based on their elements, listed in Table 8–4:

■ LdapObject: A KeySet holder.

■ KeySet: A collection of KeyObjects. Sets of keys are used because there may be
several ways to reach a certain node in the tree. One LDAP plug-in instance can be
configured with several KeySets and can provide the link between the search key
in the Extended Web Services interface and the LDAP tree.

■ KeyObject: An entry point to the LDAP tree that provides the link between the
search key in the Extended Web Services interface and the LDAP tree.

Reference: Attributes and Operations for Device Capabilities/LDAPv3
This section describes the attributes and operations for configuration and
maintenance:

■ Attribute: AuthDN

■ Attribute: AuthPassword

■ Attribute: BaseDN

Table 8–4 LDAP Server Schema

Object Element Description

LdapObject ObjectKeySet Defines the KeySet through which it can be
reached. Refers to the ID attribute of a
defined KeySet.

LdapObject id The identity of the LdapObject. Can be
referenced from other LdapObjects through
the ParentObjectId field.

LdapObject keyName The name of the key through which the
LdapObject can be reached.

LdapObject keyValue The value of the key through which the
LdapObject can be reached.

KeyObject uriScheme Defines the URI scheme of the address for
which this key applies.

KeyObject addressKeyName Defines the key name with which the
address value is associated.

KeyObject objectKeyName Provides the possibility of defining the
addressing key of a possible tree node
above the node that is reached by the
address key (that is, like the domain object
in the 3DS directory information tree).

KeyObject objectKeyValue See objectKeyName. Defines the value of
the key.

KeyObject id The identity of the key. Used only for
descriptive purposes.

KeySet Key All keys in the KeySet

KeySet id The identity of the KeySet. Used when
associating an LdapObject with a KeySet.

Reference: Attributes and Operations for Device Capabilities/LDAPv3

Parlay X 3.0 Device Capabilities/LDAPv3 8-7

■ Attribute: ConnTimeout

■ Attribute: DeviceIdAttributeName

■ Attribute: DeviceNameAttributeName

■ Attribute: DeviceProfileURLAttributeName

■ Attribute: Host

■ Attribute: LDAPConnectionStatus

■ Attribute: MaxConnections

■ Attribute: MinConnections

■ Attribute: Port

■ Attribute: Schema

■ Operation: apply

■ Operation: updateSchemaURL

Attribute: AuthDN
Scope: Cluster

Format: String

Specifies a Distinguished Name (DN) in the LDAP server.

Use "Operation: apply" to make changes to this attribute take effect.

Example:

cn=admin,o=acompany,c=uk

Attribute: AuthPassword
Scope: Cluster

Format: String

Specifies the password associated with theAttribute: AuthDN.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: BaseDN
Scope: Cluster

Format: String

Specifies the base Distinguished Name (DN) for the LDAP database in use.

Use "Operation: apply" to make changes to this attribute take effect.

Example:

o=acompany,c=uk

Attribute: ConnTimeout
Scope: Cluster

Unit: Seconds

Format: Integer

Reference: Attributes and Operations for Device Capabilities/LDAPv3

8-8 Services Gatekeeper Communication Service Reference Guide

Specifies the maximum time to wait for an LDAP connection to be established. If the
related timer expires, a retry is performed. See "Attribute: recoverTimerInterval" for
more information.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: DeviceIdAttributeName
Scope: Cluster

Format: String

Specifies the DeviceId of the target LDAP entry.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: DeviceNameAttributeName
Scope: Cluster

Format: String

Specifies the DeviceName of the target LDAP entry.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: DeviceProfileURLAttributeName
Scope: Cluster

Format: String

Specifies the DeviceProfileURL of the target LDAP entry.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: Host
Scope: Cluster

Format: String

Specifies the host name or IP address of the LDAP server to connect to.

Use "Operation: apply" to make changes to this attribute take effect.

Examples:

myldapserver.mycompany.org
192.168.0.14

Attribute: LDAPConnectionStatus
Read-only.

Scope: Local

Unit: Not applicable

Values: active, update_pending, or deactive. Table 8–5 describes each of these values
and their implications.

Format: String

Reference: Attributes and Operations for Device Capabilities/LDAPv3

Parlay X 3.0 Device Capabilities/LDAPv3 8-9

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: MaxConnections
Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the maximum number of connections in the LDAP connection pool.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: MinConnections
Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the minimum number of connections to establish using connections from the
LDAP connection pool.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: Port
Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the port number of the LDAP server to connect to.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: recoverTimerInterval
Scope: Cluster

Format: Integer

Unit: Seconds

Table 8–5 LDAP Server Connection Status

Status Description

active The connection is active. The plug-in instance accepts requests.

update_pending The connection is temporarily unavailable due to an update of
the configuration settings. The plug-in instance does not accept
requests.

deactive The connection is inactive. The plug-in instance does not accept
requests.

Reasons for this entering this state include:

■ Missing or incorrect configuration

■ LDAP server is unreachable

■ Internal errors

Reference: Attributes and Operations for Device Capabilities/LDAPv3

8-10 Services Gatekeeper Communication Service Reference Guide

Default Value: 300

Specifies the time to wait before performing an LDAP connection retry after an LDAP
connection error. Should be at least twice the time defined in the ConnTimeout
attribute. See "Attribute: ConnTimeout" for more information.

Use "Operation: apply" to make changes to this attribute take effect.

Attribute: Schema
Scope: Cluster

Unit: Not applicable

Format: String

The LDAP schema to use.

Use "Operation: apply" to make changes to this attribute take effect.

Operation: apply
Scope: Cluster

Applies attribute changes.

Signature:

apply()

Operation: updateSchemaURL
Scope: Cluster

Format: String

Updates the schema URL to use when performing lookups in the LDAP database.

During the update, the LDAP connection is temporarily unavailable and the
connection status is update_pending. See Table 8–5 for more information.

Signature:

pdateSchemaURL(SchemaURL:String)

Table 8–6 explains that the schemaURL parameter is the LDAP database schema URL
to use.

Table 8–6 updateSchemaURL Parameters

Parameter Description

SchemaURL The LDAP database schema URL.

Examples:

Windows: file:///d:/ldap/schema.xml

UNIX: file://ldap/schema.xml

9

Parlay X 3.0 Payment/Diameter 9-1

9Parlay X 3.0 Payment/Diameter

This chapter describes the Oracle Communications Services Gatekeeper Parlay X 3.0
Payment/Diameter communication service in detail.

Overview of the Parlay X 3.0 Payment Communication Service
The Parlay X 3.0 Payment/Diameter communication service exposes the Parlay X 3.0
Payment set of application interfaces.

The communication service acts as a credit control client to a credit control server
using the Diameter protocol.

For the exact version of the standards that the Parlay X 3.0 Payment/Diameter
communication service supports for the application-facing interfaces and the network
protocols, see Services Gatekeeper Statement of Compliance.

Using a Payment communication service, an application can:

■ Charge and refund accounts directly.

■ Operate on reservations, which includes:

– Make reservations.

– Charge reservations.

– Release reservations.

■ Charge multiple accounts concurrently.

This communication service uses templates that you use to change the list of Diameter
AVPs that Services Gatekeeper sends to a Diameter server. See "Changing the List of
Diameter AVPs for Your Implementation" for details on creating templates.

All charging is done on accounts. Accounts can be charged using units of charge
(specified as a given currency or a charging code) or by volume of (specified by time or
data). See "Amount Charging" and "Volume Based Charging" for details.

Amount Charging
A reservation expires after a given time. An expiration mechanism provided by the
Storage Service is used. If the store entry expires, the reservation is cancelled.

Some Diameter servers, for example Oracle Billing and Revenue Management,
mandate that a refund operation be correlated with a previous charge operation. The
Payment interface does not provide any correlation between charge operations and
refund operations. The session-id tunneled parameter has been added in order to
correlate these requests. When an application calls chargeAmount, the tunneled

Overview of the Parlay X 3.0 Payment Communication Service

9-2 Services Gatekeeper Communication Service Reference Guide

parameter session-id is returned in the SOAP header. An application should use this
session-id in subsequent refundAmount requests to correlate the two requests. If the
application does not provided the tunneled parameter, it is the responsibility of the
Diameter server to either accept or deny the request. If the request is denied, the
application receives a ServiceException. See "session-id" for more information.

Volume Based Charging
Volume-based charging is similar to amount charging. However volume base charging
maps to these Diameter AVPs instead of CC-Money:

■ CC-Time (in seconds)

■ CC-Total-Octets (in bytes)

■ CC-Input-Octets (in bytes)

■ CC-Output-Octets (in bytes)

■ CC-Service-Specific-Units

These AVPs all accept either bytes or seconds (as integers) as input. If your AVPs use
something different, you also need to convert the data.

The rating parameters to use are unit, contract, service, or operation and they all map
to the Service-Parameter-Info AVP.

Diameter servers frequently require a specific list of AVPs, or custom AVPs to process
correctly, so you will probably have to modify the list of AVPs that Services
Gatekeeper sends. You do this using a template file. See "Changing the List of
Diameter AVPs for Your Implementation" for instructions.

Credit-control clients may need to request the price (or an estimate) of the service
event in advance, and these clients should be able to handle situations where this
amount may not be known.

Clients requesting cost information must:

■ Set the CC-Request-Type AVP to EVENT_REQUEST

■ Include a Requested-Action AVP set to PRICE_ENQUIRY, and

■ Include the requested service event information in the Service-Identifier AVP in
the CCR message

Processing Direct Queries/Application-initiated Requests
If an application makes a request to interact directly with an account, Services
Gatekeeper sends the request to the network node capable of handling the request.
The request does not return until the targeted account has been updated.

Processing Notifications/Network-triggered Requests
There are no notifications or other network-triggered requests for this communications
service.

Validating Reservation Requests
The communication service supports the Granted-Service-Unit Diameter AVP that
Services Gatekeeper sends to the network.

Changing the List of Diameter AVPs for Your Implementation

Parlay X 3.0 Payment/Diameter 9-3

This support enables the plug-in to validate whether the number of units granted is
equal to the number of reserved units requested.

After the Credit Control Answer (CCA) has been received, the plug-in checks the CCA
for the Granted-Service-Unit AVP. If this AVP exists, the plug-in compares the number
of granted units to the number of reserved units that were requested in the RSU of the
Credit Control Request (CCR).

If the Granted-Service-Unit AVP does not exist, the plug-in assumes that the full
reservation was granted.

If the Granted-Service-Unit value is less than the number of requested units, the
plug-in performs the following actions:

■ Raises the RESERVATION_NOT_GRANTED_ERROR exception (error
id="000005") to notify the client that the reservation failed.

■ Releases the reservation by sending a termination Credit Control Request (CCR).
This CCR may or may not contain the Used-Service-Unit (USU) field, depending
on whether the client has called chargeReservation since the last reservation.

Application Interfaces
For information about the SOAP-based interface for the Parlay X 3.0 Payment
communication service, see the discussion of Parlay X 3.0 Interfaces in Services
Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion about
RESTful payment interface in Services Gatekeeper Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same
functionality as the SOAP-based interfaces. The internal representations are identical,
and for the purposes of creating service level agreements (SLAs) and reading charging
data records (CDRs), and so on, they are the same.

Changing the List of Diameter AVPs for Your Implementation
Diameter servers vary quite a bit in their messaging requirements. You probably need
to change the list of AVPs that Services Gatekeeper sends to a Diameter server to make
it acceptable to that server.

You have these options for adding AVPs to your implementation:

■ By adding new AVP definitions to AVP template files that you create, than loading
the template files into Services Gatekeeper. This is the best method for major
changes to your AVP list, and is probably most appropriate for the changes you
make for the initial configuration of Services Gatekeeper. You must stop and
restart Gatekeeper to make the changes take effect. See "About the AVP Template
Files" for information on creating template files, and "Adding New AVPs for
Diameter Payment in Template Files" for details on loading new AVPs into
Services Gatekeeper.

■ By adding new AVP definitions to the default AVP template file. You add AVPs to
the default template file and restart Services Gatekeeper. This is probably the best
method for initial testing of Services Gatekeeper. You only alter one file, but you
still need to restart Services Gatekeeper. Follow the instructions in "Adding New
AVPs for Diameter Payment in Template Files" but instead of creating template
files just make changes to defaultavptemplate.xml file provided.

Changing the List of Diameter AVPs for Your Implementation

9-4 Services Gatekeeper Communication Service Reference Guide

■ By using JMX operations to add new AVP definitions during runtime. This allows
you to make changes to existing AVP template files without interrupting traffic or
having to stop and restart Services Gatekeeper. This is most appropriate for
changes to a running implementation. See "Adding Diameter AVPs to a Template
File During Runtime" for details.

Changes to template files also require XSD changes.

About the AVP Template Files
You can create separate templates for each of these operations:

■ com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. chargeVolume

■ com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. chargeSplitVolume

■ com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. getAmount

■ com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin. refundVolume

■ com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin. getAmount

■ com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin. reserveVolume

■ com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin.
reserveAdditionalVolume

■ com.bea.wlcp.wlng.px30.plugin.ReserveVolumeChargingPlugin.
releaseReservation

Each template can have three separate variations, one each for each of the time or octet
data format, and a third if you use a custom data format. For example, the
chargeVolume operation can have these templates:

■ com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin.chargeVolumeTime

■ com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin.chargeVolumeTime

■ com.bea.wlcp.wlng.px30.plugin.VolumeChargingPlugin.chargeVolumeCustom

Adding New AVPs for Diameter Payment in Template Files
If your implementation requires multiple template files, follow the steps in this section
to add them.

You must know the name, code number, and data type of each AVP to add before
starting this procedure.

To add new AVPs to your Services Gatekeeper implementation:

1. Navigate to OCSB_home\ocsg_6.0\applications.

2. Unpackage the Plugin_px30_payment_diameter.ear file.

3. Unpackage the Plugin_px30_payment_diameter.jar file.

4. Navigate to the /xml directory you just unpacked.

5. Add an avpAttributeDefinitions element for each new AVP to the
avp-attribute.xml file.

Tip: For testing or for minor AVP additions you can simply edit and
use the example template file (defaultavptemplate.xml) instead of
creating new template files.

Changing the List of Diameter AVPs for Your Implementation

Parlay X 3.0 Payment/Diameter 9-5

6. Make a copy of the defaultavptemplate.xml template file to work on. See "About
the AVP Template Files" for details on what to name template files.

7. Create a new avpTemplate element in your new template file for each new AVP.

8. Repeat step 6 and 7 for each template file you are creating.

9. Navigate to the xsd directory (../xsd).

10. Add an element for each new AVP to the diameterAvp.xsd file.

An example XSD file paymentConfig.xsd is provided.

11. Update the Plugin_px30_payment_diameter.jar file to save your changes.

12. Update the wlng_nt_payment_px30.ear file to make your changes take effect.

13. Restart Services Gatekeeper.

Adding Diameter AVPs to a Template File During Runtime
The instructions in this section allow you to add AVPs to existing template files. Before
you follow the instructions in this section you must decide on a template file to
change. See "About the AVP Template Files" for details on the template files.

To add AVPs without interrupting traffic or having to restart Services Gatekeeper
using JMX operations:

1. Navigate to OCSB_home\ocsg_6.0\applications.

2. Unpackage the Plugin_px30_payment_diameter.ear file.

3. Unpackage the Plugin_px30_payment_diameter.jar file.

4. Navigate to the /xml directory you just unpacked.

5. Add your AVP changes to the defaultavpTemplate.xml file.

6. Open Service Gatekeeper in the Platform Test Environment (PTE) or anther MBean
browser.

7. Navigate to navigate to wlng, then AccountService then
ServiceLevelAgreementMBean, then to the setupCustomSlaXSDDefinition
operation.

8. In the SlaType: field enter payment_diameter_avp.

9. In the FileContent: field select the Load the contents of a file icon.

Select the xml/paymentConfig.xsd file to add.

10. Click Record to make your changes take effect.

11. Navigate to wlng, AccountService, then ServiceLevelAgreementMBean.

12. Select one of these operations:

■ loadGlobalSlaByType

■ loadServiceProviderGroupSlaByType

■ loadApplicationGroupSlaByType

13. In the SlaType: field enter payment_diameter_avp.

14. In the FileContent: field, enter defaultavptemplate.xml.

15. Click Record to make your changes take effect.

Forwarding AVPs as Xparams from the Charging Server to the Application

9-6 Services Gatekeeper Communication Service Reference Guide

Forwarding AVPs as Xparams from the Charging Server to the Application
You use the IncludeXParamAVPListInResponse to the PaymentMBean to forward
AVPs from your charging server to an application in a response message. The AVPs
are forwarded as Xparams.

If this attribute is set to TRUE, the AVP-list in the response message from the charging
server to the application is forwarded as an xparam. The xparam key name is AVP_
LIST and the list of key value pairs is encoded into an XML string. For example:

<Avp-List>
 <Session-Id Flags="64">192.168.1.22;1417686781;1</Session-Id>
 <Origin-Host Flags="64">127.0.0.1</Origin-Host>
 <Origin-Realm Flags="64">destination.com</Origin-Realm>
 <Result-Code Flags="64">2001</Result-Code>
 <CC-Request-Type Flags="64">4</CC-Request-Type>
 <CC-Request-Number Flags="64">0</CC-Request-Number>
 </Avp-List>

See PaymentMBean in the “All Classes” section of OAM Java API Reference for
details.

Events and Statistics
The Parlay X 3.0 Payment/Diameter communication service generates event data
records (EDRs), charging data records (CDRs), alarms, and statistics to assist system
administrators and developers in monitoring the service.

See "Events, Alarms, and Charging" for more information.

Event Data Records
Table 9–1 lists EDR IDs created by the Payment/Diameter communication service.

Table 9–1 EDRs Generated by Parlay X 3.0 Payment/Diameter

EDR ID Interface Method Called

15001 com.bea.wlcp.wlng.plugin.payment.diameter.nort
h.AmountChargingPluginNorth

chargeAmount

15002 com.bea.wlcp.wlng.plugin.payment.diameter.nort
h.AmountChargingPluginNorth

refundAmount

15003 com.bea.wlcp.wlng.plugin.payment.diameter.nort
h.AmountChargingPluginNorth

chargeSplitAmount

15004 com.bea.wlcp.wlng.plugin.payment.diameter.nort
h.ReserveAmountChargingPluginNorth

reserveAmount

15005 com.bea.wlcp.wlng.plugin.payment.diameter.nort
h.ReserveAmountChargingPluginNorth

reserveAdditionalAmou
nt

15006 com.bea.wlcp.wlng.plugin.payment.diameter.nort
h.ReserveAmountChargingPluginNorth

chargeReservation

15007 com.bea.wlcp.wlng.plugin.payment.diameter.nort
h.ReserveAmountChargingPluginNorth

releaseReservation

15013 oracle.ocsg.plugin.payment.north.VolumeChargin
gPluginNorth

chargeVolume

15014 oracle.ocsg.plugin.payment.north.VolumeChargin
gPluginNorth

chargeSplitVolume

Events and Statistics

Parlay X 3.0 Payment/Diameter 9-7

Statistics
Table 9–2 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counter.

15015 oracle.ocsg.plugin.payment.north.VolumeChargin
gPluginNorth

getAmount

15016 oracle.ocsg.plugin.payment.north.VolumeChargin
gPluginNorth

refundVolume

15017 oracle.ocsg.plugin.payment.north.ReserveVolume
ChargingPluginNorth

getAmount

15018 oracle.ocsg.plugin.payment.north.ReserveVolume
ChargingPluginNorth

reserveVolume

15019 oracle.ocsg.plugin.payment.north.ReserveVolume
ChargingPluginNorth

reserveAdditionalVolum
e

15020 oracle.ocsg.plugin.payment.north.ReserveVolume
ChargingPluginNorth

chargeReservation

15021 oracle.ocsg.plugin.payment.north.ReserveVolume
ChargingPluginNorth

releaseReservation

Table 9–2 Methods and Transaction Types for Parlay X 3.0 Payment/Diameter

Method Interface Transaction type

chargeAmount com.bea.wlcp.wlng.px30.plugin
.AmountChargingPlugin

TRANSACTION_TYPE_
CHARGING_DIRECT

chargeSplitAmount com.bea.wlcp.wlng.px30.plugin
.AmountChargingPlugin

TRANSACTION_TYPE_
CHARGING_DIRECT

refundAmount com.bea.wlcp.wlng.px30.plugin
.AmountChargingPlugin

TRANSACTION_TYPE_
CHARGING_DIRECT

reserveAmount com.bea.wlcp.wlng.px30.plugin
.ReserveAmountChargingPlugi
n

TRANSACTION_TYPE_
CHARGING_RESERVED

reserveAdditionalAmo
unt

com.bea.wlcp.wlng.px30.plugin
.ReserveAmountChargingPlugi
n

TRANSACTION_TYPE_
CHARGING_RESERVED

chargeReservation com.bea.wlcp.wlng.px30.plugin.
ReserveAmountChargingPlugin

TRANSACTION_TYPE_
CHARGING_RESERVED

chargeVolume com.bea.wlcp.wlng.px30.plugin
.VolumeChargingPlugin

TRANSACTION_TYPE_
CHARGING_DIRECT

chargeSplitVolume com.bea.wlcp.wlng.px30.plugin
.VolumeChargingPlugin

TRANSACTION_TYPE_
CHARGING_DIRECT

refundVolume com.bea.wlcp.wlng.px30.plugin
.VolumeChargingPlugin

TRANSACTION_TYPE_
CHARGING_DIRECT

reserveVolume com.bea.wlcp.wlng.px30.plugin
.ReserveVolumeChargingPlugi
n

TRANSACTION_TYPE_
CHARGING_RESERVED_
STRING

reserveAdditionalVolu
me

com.bea.wlcp.wlng.px30.plugin
.ReserveVolumeChargingPlugi
n

TRANSACTION_TYPE_
CHARGING_RESERVED_
STRING

Table 9–1 (Cont.) EDRs Generated by Parlay X 3.0 Payment/Diameter

EDR ID Interface Method Called

Tunneled Parameters for Parlay X 3.0 Payment / Diameter

9-8 Services Gatekeeper Communication Service Reference Guide

Tunneled Parameters for Parlay X 3.0 Payment / Diameter
This section lists the parameters that can be tunneled.

session-id

Description
Correlates a refundAmount operation with a chargeAmount operation.

Some billing systems, including Oracle Billing and Revenue Management, allow
refund operations only on previously charged amounts. Parlay X does not have the
ability to correlate charge and refund operations. This parameter provides that
functionality.

The key and the value are available in the return message from a chargeAmount
operation. It is the responsibility of the application to provide the key and the value in
subsequent refundAmount operations to correlate the two.

If no session-id is provided in the request to the Diameter node, the Diameter node can
either accept or deny the request. If the node denies the request, a ServiceException is
sent back to the application.

Format
String

Example
This is an example in a SOAP header:

<xparams> <param key=" session-id value="12233187769"/> </xparams>

Managing Parlay X 3.0 Payment /Diameter
This section describes the properties and workflow for the Parlay X 3.0
Payment/Diameter plug-in instance.

Properties for Parlay X 3.0 Payment/Diameter
Table 9–3 lists the technical specifications for the communication service.

chargeReservation com.bea.wlcp.wlng.px30.plugin
.ReserveVolumeChargingPlugi
n

TRANSACTION_TYPE_
CHARGING_RESERVED_
STRING

Table 9–3 Properties for Parlay X 3.0 Payment/Diameter

Property Description

Managed object in
Administration Console

To access the object, select domain_name, then OCSG, then server_
name, then Communication Services, then plugin_instance_id, in
that order.

Table 9–2 (Cont.) Methods and Transaction Types for Parlay X 3.0 Payment/Diameter

Method Interface Transaction type

Managing Parlay X 3.0 Payment /Diameter

Parlay X 3.0 Payment/Diameter 9-9

Configuration Workflow for Parlay X 3.0 Payment/Diameter
Following is an outline for configuring the plug-in using the Administration Console
or an MBean browser.

1. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID as listed in the "Properties for
Parlay X 3.0 Payment/Diameter" section.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned
when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.payment.diameter.manageme
nt.PaymentMBean

Documentation: See the "All Classes" section of Services Gatekeeper
OAM Java API Reference

Network protocol
plug-in service ID

Plugin_px30_payment_diameter

Network protocol
plug-in instance ID

The ID is assigned when the plug-in instance is created. See
"Managing and Configuring the Plug-in Manager" in Services
Gatekeeper System Administrator's Guide.

Supported Address
Scheme

tel

Application-facing
interfaces

com.bea.wlcp.wlng.px30.plugin.AmountChargingPlugin

com.bea.wlcp.wlng.px30.plugin.ReserveAmountChargingPlugi
n

Service type Payment

Exposes to the service
communication layer a
Java representation of:

Parlay X 3.0 Part 6: Payment

Interfaces with the
network nodes using:

Diameter

RFC3588 and RFC 4006

Deployment artifact

NT EAR

wlng_nt_payment_
px30.ear

Plugin_px30_payment_diameter.jar and px30_payment_
service.jar

Deployment artifact

AT EAR: Normal

wlng_at_payment_
px30.ear

rest_payment.war and px30_payment.war

Deployment artifact

AT EAR: SOAP Only

wlng_at_payment_
px30_soap.ear

px30_payment.war

Table 9–3 (Cont.) Properties for Parlay X 3.0 Payment/Diameter

Property Description

Managing Parlay X 3.0 Payment /Diameter

9-10 Services Gatekeeper Communication Service Reference Guide

2. Add any additional or custom AVPs that your Diameter server requires. See
"Changing the List of Diameter AVPs for Your Implementation" for instructions.

3. Using the Administration Console or an MBean browser, select the MBean for the
plug-in instance. The MBean display name is the same as the plug-in instance ID
given when the plug-in instance was created.

4. Configure the behavior of the plug-in instance using the PaymentMBean fields

5. Use the PaymentMBean connect() method to connect to the Diameter server.

6. Set up the routing rules to the plug-in instance. See the discussions about
configuring and managing the plug-in manager in “Configuring and Managing
Communication Service Traffic” inServices Gatekeeper System Administrator's Guide.
Use the plug-in instance ID and address schemes listed in the "Properties for
Parlay X 3.0 Payment/Diameter" section.

7. If required, create and load a node SLA. For details see the discussion on defining
global node and service provider group node SLAs and managing SLAs in Services
Gatekeeper Accounts and SLAs Guide.

8. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Provisioning Workflow for Parlay X 3.0 Payment/Diameter
The Parlay X 3.0 Payment/Diameter plug-in instance can be explicitly connected to the
Diameter server. It does not connect to the server by default. The service has a
connection status that will be preserved after service redeployment and server restart.

Use the connect and disconnect operations to PaymentMBean.

Use the SplitChargeEnabled field to PaymentMBean after any changes to the
configuration attributes. Changes does not take affect until this operation is invoked.

For a description of the attributes and operations of the PaymentMbean MBean, see
the "All Classes" section of Services Gatekeeper OAM Java API Reference.

10

Parlay X 3.0 Address List Management Interface 10-1

10Parlay X 3.0 Address List Management
Interface

This chapter describes the Oracle Communications Services Gatekeeper Parlay X 3.0
Address List Management interface in detail.

Overview of the Parlay X 3.0 Address List Management Interface
Use the Services Gatekeeper Address List Management plug-in interface to create and
manage groups of resource owners and to associate them with group Uniform
Resource Identifiers (URIs). Group URIs can be used to authenticate requests on behalf
of group members.

The Address List Management plug-in is exposed northbound through SOAP or REST
using the using the Parlay X 3.0 Part 13 Address List Management interface. It allows
applications to create, read, update, and delete group URIs, and to manage group URI
membership. The plug-in also exposes an internal API which allows other
communication services to identify and expand group URIs using the Parlay X 3.0
SOAP interface. Group URIs can be used in place of individual URIs by the both
OneAPI and ParlayX MMS, SMS and Terminal Location communication services.

Group URIs are required by the SMS, MMS, and Location APIs that require
authorization from multiple resource owners. For example, a parent, who is the
primary subscriber in a family plan, would like to track family members using a
location-based application which makes use of the Address List Management plug-in.
The parent authorizes location tracking on behalf of family members. The application
creates a group owner which issues an authorization grant on behalf of the resource
owner members that are part of the group URI. It passes multiple resource owner
addresses to the getGroupLocation method of the Location API to retrieve location
information.

Address List Management Architecture
Address List Management interface SOAP requests are received at the Services
Gatekeeper Access tier and passed to the Network tier. They are translated into EJB
requests and passed to the Address List plug-in. The plug-in uses store services to
access the Services Gatekeeper database when handling requests.

The Address List Management interface is grouped into the following functions:

■ GroupManagement

■ Group

■ Member

Overview of the Parlay X 3.0 Address List Management Interface

10-2 Services Gatekeeper Communication Service Reference Guide

Group URI Format
Group URIs are consistent with the style defined in RFC 2396 and are in the following
format:

scheme:dept1234@mydivision.mycompany.myserviceprovider.com

Here are some examples:

sip:salesteam@sales.acme.anytelco.com

mailto:fieldservice@somecity.anytelco.com

group:mailroom@mybuilding.acme.anytelco.com

Managing Groups
Create, query and delete address list groups using the following GroupManagement
API calls:

■ Operation: createGroup

■ Operation: queryGroups

■ "Operation: deleteGroup"

Controlling Group Access
Set and query group access attributes, which assign group management permissions to
group members, using the following GroupManagement API calls:

■ Operation: setAccess

■ Operation: queryAccess

Managing and Querying Group Members
Manage group members using the following Group API calls:

■ Operation: addMember

■ Operation: addMembers

■ Operation: queryMembers

■ Operation: deleteMember

■ Operation: queryMembers

Manage individual group member attributes using the following Member API calls:

■ Operation: addMemberAttribute

■ Operation: queryMemberAttributes

■ Operation: deleteMemberAttribute

Managing and Querying Group Attributes
Group attributes apply to the address list group itself. Add, query, and delete group
attributes using the following Group API calls:

■ Operation: addGroupAttribute

■ Operation: queryGroupAttribute

■ Operation: deleteGroupAttribute

Events and Statistics

Parlay X 3.0 Address List Management Interface 10-3

Managing and Querying Group Member Attributes
Group member attributes apply to individual members of a group. Add, query, and
delete group member attributes using the following Group API calls:

■ Operation: addGroupMemberAttribute

■ Operation: queryGroupMemberAttributes

■ Operation: deleteGroupMemberAttribute

Application Interfaces
For information about the SOAP-based interface for the Parlay X 3.0 Address List
Management communication service, see the discussion about Parlay X 3.0 Part 13:
Address List Management in Services Gatekeeper Application Developer's Guide.

Events and Statistics
The Parlay X 3.0 Address List Management Architecture generates event data records
(EDRs), charging data records (CDRs), alarms, and statistics to assist system
administrators and developers in monitoring the service.

See "Events, Alarms, and Charging" for more information.

Event Data Records
Table 10–1 lists IDs of the EDRs created by the Parlay X 3.0 Address List Management
Architecture. This does not include EDRs created when exceptions are thrown.

Table 10–1 EDRs Generated by Parlay X 3.0 Address List Management Architecture

EDR ID Method Called

28001 createGroup

28002 deleteGroup

28003 queryGroups

28004 setAccess

28005 queryAccess

28006 addGroupAttribute

28007 addGroupMemberAttribute

28008 addMember

28009 addMembers

28010 deleteGroupAttribute

28011 deleteGroupMemberAttribute

28012 deleteMember

28013 deleteMembers

28014 queryGroupAttributes

28015 queryGroupMemberAttributes

28016 queryMembers

28017 addMemberAttribute

Managing Parlay X 3.0 Address List Management Architecture

10-4 Services Gatekeeper Communication Service Reference Guide

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing Parlay X 3.0 Address List Management Architecture
This section describes properties and workflows for the Parlay X 3.0Address List
Management Architecture plug-in instance.

Properties for Parlay X 3.0 Address List Management Architecture
Table 10–2 lists the technical specifications for the communication service.

28018 deleteMemberAttribute

28019 queryMemberAttributes

Table 10–2 Properties for Parlay X 3.0 Address List Management Architecture

Property Description

Managed object in
Administration Console

To access the object, select domain_name, then OCSG, server_
name, Communication Services, then Plugin_px30_address_
list#6.0, in that order.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=Plugin_px30_address_list

Type=oracle.ocsg.plugin.al.px30.management.GroupMBeanIm
pl

Network protocol
plug-in service ID

Plugin_px30_address_list

Network protocol
plug-in instance ID

Plugin_px30_address_list

Supported Address
Scheme

tel

Application-facing
interface

com.bea.wlcp.wlng.px30.plugin.ThirdPartyCallPlugin

Service type AddressList

Exposes to the service
communication layer a
Java representation of:

Parlay X 3.0 Part 13: Address List

Interfaces with the
network nodes using:

Open Service Access (OSA); Application Programming Interface
(API); Part 4: Call Control SCF; Subpart 7: MultiParty Call Control
Service

Deployment artifacts Plugin_px30_address_list.jar packaged in wlng_at_address_
list_px30.ear

Plugin_px30_address_list.jar packaged in wlng_nt_address_
list_px30.ear

Table 10–1 (Cont.) EDRs Generated by Parlay X 3.0 Address List Management

EDR ID Method Called

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

Parlay X 3.0 Address List Management Interface 10-5

This plug-in service does not support multiple instantiation using the Plug-in
Manager. There is a one-to-one mapping between the plug-in service and the plug-in
instance. The plug-in instance is created when the plug-in service is started.

Configuration Workflow for Parlay X 3.0 Address List Management Architecture
The following procedure provides an outline to configure the Address List
Management plug-in using the Administration Console or an MBean browser.

1. Select the MBean detailed in "Properties for Parlay X 3.0 Address List
Management Architecture".

2. Configure the plug-in instance attributes:

■ Attribute: GroupNameMaxLength

■ Attribute: GroupSize

3. Set up the routing rules to the plug-in instance. See the discussion about configuring
and managing the plug-in manager in Services Gatekeeper System Administrator's
Guide. Use the plug-in instance ID and address schemes detailed in the "Properties
for Parlay X 3.0 Address List Management Architecture" section.

4. If required, create and load a node SLA. For details see the discussion on defining
global node and service provider group node SLAs and managing SLAs in Services
Gatekeeper Accounts and SLAs Guide.

5. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Reference: Attributes and Operations for Parlay X 3.0 Address List
Management Architecture

This section describes the attributes and operations for configuration and
maintenance:

■ Attribute: GroupNameMaxLength

■ Attribute: GroupSize

■ Operation: createGroup

■ Operation: queryGroups

■ Operation: deleteGroup

■ Operation: setAccess

■ Operation: queryAccess

■ Operation: addMember

■ Operation: addMembers

■ Operation: queryMembers

■ Operation: deleteMember

■ Operation: deleteMembers

■ Operation: addGroupAttribute

■ Operation: queryGroupAttribute

■ Operation: deleteGroupAttribute

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

10-6 Services Gatekeeper Communication Service Reference Guide

■ Operation: addGroupMemberAttribute

■ Operation: queryGroupMemberAttributes

■ Operation: deleteGroupMemberAttribute

■ Operation: addMemberAttribute

■ Operation: queryMemberAttributes

■ Operation: deleteMemberAttribute

Attribute: GroupNameMaxLength
Scope: Cluster

Unit: Not applicable

Format: Integer

Indicates the maximum length of an address list group name.

Valid values are 0–255. The default value is 100.

Attribute: GroupSize
Scope: Cluster

Unit: Not applicable

Format: Integer

Indicates the maximum number of members in an address list group.

Valid values are 0–65535. The default value is 50.

Operation: createGroup
Scope: Cluster

Creates an Address List Management group.

Signature:

createGroup(name: String, domain: String)

Operation: queryGroups
Scope: Cluster

Queries an Address List Management group to return details about a particular group
attribute, which is specified by attributeName.

Signature:

queryGroups(group: String, member: String, attributeName, String)

Table 10–3 createGroup Parameters

Parameter Description

name Name of the Address List Management group to create.

domain Domain the group should be created under.

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

Parlay X 3.0 Address List Management Interface 10-7

Operation: deleteGroup
Scope: Cluster

Deletes the specified Address List Management group.

Signature:

deleteGroup(group: String)

Operation: setAccess
Scope: Cluster

Sets access permissions for a member of an Address List Management group. The
access permissions control which group management functions the specified member
is allowed to perform on the specified group.

Signature:

setAccess(group: String, requester: String, addPermission: Boolean,
adminPermission: Boolean, deletePermission: Boolean, queryPermissions: Boolean)

Operation: queryAccess
Scope: Cluster

Queries the access permissions set for the group member passed in the requester
parameter.

Return:

Table 10–4 queryGroups Parameters

Parameter Description

group Name of the Address List Management group.

member Member of the Address List Management group.

attributeName Attribute for which details will be returned.

Table 10–5 deleteGroup Parameters

Parameter Description

group Name of the Address List Management group to be deleted.

Table 10–6 setAccess Parameters

Parameter Description

group Name of the Address List Management group.

requester Member of the Address List Management group for which you
want to set permissions.

addPermission If true, sets the permission for the requester to be able to add
members to the group.

adminPermission If true, sets the permission for the requester to be able to modify
the access permissions of members to the group.

deletePermission If true, sets the permission for the requester to be able to delete
members from the group.

queryPermission If true, sets the permission for the requester to be able to query the
group and member attributes.

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

10-8 Services Gatekeeper Communication Service Reference Guide

Returns the list of access permissions for the group member passed in the requester
parameter.

Signature:

Function(correlator: String)

Operation: addMember
Scope: Cluster

Adds a single member to an Address List Management group.

Signature:

addMember(group: String, member: String)

Operation: addMembers
Scope: Cluster

Adds multiple members to an Address List Management group.

Signature:

addMember(group: String, member1: String, [member2: String,...memberN: String])

Operation: queryMembers
Scope: Cluster

Queries an Address List Management group to obtain a list of its members.

Signature:

queryMembers(group: String)

Table 10–7 queryAccess Parameters

Parameter Description

group Name of the Address List Management group.

requester Member of the Address List Management group.

Table 10–8 addMember Parameters

Parameter Description

group Name of the Address List Management group to which to add the
member.

member Member to add to the group.

Table 10–9 addMembers Parameters

Parameter Description

group Name of the Address List Management group to which to add the
members.

member[1...unbounded] Member(s) to add to the group.

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

Parlay X 3.0 Address List Management Interface 10-9

Operation: deleteMember
Scope: Cluster

Deletes a single member from an Address List Management group.

Signature:

deleteMember(group: String, member: String)

Operation: deleteMembers
Scope: Cluster

Deletes multiple members from an Address List Management group.

Signature:

addMember(group: String, member1: String, [member2: String, memberN: String])

Operation: addGroupAttribute
Scope: Cluster

Adds an attribute to an Address List Management group.

Signature:

addGroupAttribute(group: String, name: String, type: String, value: String,
status: Enum)

Table 10–10 queryMembers Parameters

Parameter Description

group Name of the Address List Management group from which to
retrieve a list of members.

Table 10–11 deleteMember Parameters

Parameter Description

group Name of the Address List Management group from which to delete
the member.

member Member to delete from the group.

Table 10–12 deleteMembers Parameters

Parameter Description

group Name of the Address List Management group from which to delete
member

members[1...unbounded
]

Member(s) to remove from the group.

Table 10–13 addGroupAttribute Parameters

Parameter Description

group Name of the Address List Management group.

name Name of the attribute to be added.

type Data type of the attribute to be added.

value Value of the attribute.

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

10-10 Services Gatekeeper Communication Service Reference Guide

Operation: queryGroupAttribute
Scope: Cluster

Queries an Address List Management group for the value associated with the passed
attribute name. The attribute’s value and status are returned.

Signature:

queryGroupAttribute(group: String,attributeName: String))

Operation: deleteGroupAttribute
Scope: Cluster

Deletes an attribute from an Address List Management group.

Signature:

deleteGroupAttribute(group: String, attributeName: String))

Operation: addGroupMemberAttribute
Scope: Cluster

Adds an attribute to a member of a particular Address List Management group.

Signature:

addGroupMemberAttribute(group: String, member: String, name: String, type: String,
value: String, status: Enum)

status Attribute status: Valid, Unknown, or Denied.

Table 10–14 queryGroupAttribute Parameters

Parameter Description

group Name of the Address List Management group.

attributeName Name of the attribute to be queried.

Table 10–15 deleteGroupAttribute Parameters

Parameter Description

group Name of the Address List Management group.

attributeName Name of the attribute to be deleted.

Table 10–16 addGroupMemberAttribute Parameters

Parameter Description

group Name of the Address List Management group.

member Name of the member to which the attribute is to be added.

name Name of the attribute to be added.

type Data type of the attribute to be added.

value Value of the attribute.

status Attribute status: Valid, Unknown, or Denied.

Table 10–13 (Cont.) addGroupAttribute Parameters

Parameter Description

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

Parlay X 3.0 Address List Management Interface 10-11

Operation: queryGroupMemberAttributes
Scope: Cluster

Queries a member of an Address List Management group for list of attributes attached
to the member. To retrieve the value of a particular attribute, use
queryMemberAttribute.

Signature:

queryGroupMemberAttributes(group: String, member: String))

Operation: deleteGroupMemberAttribute
Scope: Cluster

Deletes an attribute from a member of a particular Address List Management group.

Signature:

deleteGroupMemberAttribute(group: String, member: String, attributeName: String))

Operation: addMemberAttribute
Scope: Cluster

Adds an attribute to a member outside of the context of a particular Address List
Management group.

Signature:

addMemberAttribute(group: String, member: String, name: String, type: String,
value: String, status: Enum)

Table 10–17 queryGroupMemberAttributes Parameters

Parameter Description

group Name of the Address List Management group.

member Name of the member from which to retrieve attributes.

Table 10–18 deleteGroupMemberAttribute Parameters

Parameter Description

group Name of the Address List Management group.

member Name of the member from which to delete an attribute.

attributeName Name of the attribute to be deleted.

Table 10–19 addMemberAttribute Parameters

Parameter Description

member Name of the member to which the attribute is to be added.

name Name of the attribute to be added.

type Data type of the attribute to be added.

value Value of the attribute.

status Attribute status: Valid, Unknown, or Denied.

Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture

10-12 Services Gatekeeper Communication Service Reference Guide

Operation: queryMemberAttributes
Scope: Cluster

Queries a list of attributes for a member and retrieves their values.

Signature:

queryMemberAttributes(member: String, attributeName1: String, [attributeName2:
String, attributeNameN: String]))

Operation: deleteMemberAttribute
Scope: Cluster

Deletes an attribute from a member.

Signature:

deleteMemberAttribute(member: String, attributeName: String))

Table 10–20 queryMemberAttributes Parameters

Parameter Description

member Name of the member from which to retrieve attributes.

attributeNames[1...unbo
unded]

Names of the attributes to be retrieved.

Table 10–21 deleteMemberAttribute Parameters

Parameter Description

member Name of the member from which to delete an attribute.

attributeName Name of the attribute to be deleted.

11

Parlay X 4.0 Application-Driven Quality of Service/Diameter 11-1

11Parlay X 4.0 Application-Driven Quality of
Service/Diameter

This chapter describes the Oracle Communications Services Gatekeeper Parlay X 4.0
Application-Driven Quality of Service (QoS)/Diameter communication service, used
by SOAP-based applications to request QoS changes to subscriber connections. See
Services Gatekeeper Application Developer's Guide for information about the SOAP
interface.

See "Extended Web Services Quality of Service /Diameter" for information on the
REST-based QoS communication service.

Overview of the Parlay X 4.0 Application-Driven Quality of Service
(QoS)/Diameter Communication Service

This communication service enables applications to dynamically change the quality of
service available to subscriber network connections. It does this by requesting that
predefined QoS feature profiles be applied to the connection.

The Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter
communication service provides SOAP-based applications with the ability to request
QoS level changes for a subscriber connection. This communication service exposes
the Parlay X 4.0 set of interfaces for application-driven QoS (Part 17). It uses the
standard SOAP interfaces to communicate with web applications, and translates the
SOAP traffic to Diameter Rx messages to communicate with a Policy and Charging
Rules Function (PCRF).

This communication service enables an application to control QoS, however, applying
QoS policy and applying quality changes to a subscriber connection require a separate
PCRF working in conjunction with a Policy and Charging Enforcement Function
(PCEF), which are provided by various third parties.

This communication service acts as a client to a Diameter server by using the Diameter
protocol.

Using this communication service, an application can:

■ Apply a QoS feature profile

■ Modify an existing QoS feature profile

■ Remove an existing QoS feature profile

■ Retrieve the status for a subscriber’s QoS feature profile

■ Register and unregister for QoS-related events

■ Query for the QoS feature profile change history

Overview of the Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter Communication Service

11-2 Services Gatekeeper Communication Service Reference Guide

■ Notify the application of how certain events impacted QoS feature profiles that
were active on the subscriber connection when the events occurred

■ Delete the QoS feature profile

This communication service does not however, support the concept of default QoS
feature profiles listed in the specification, because the Diameter Rx specification does
not share this concept. Instead, use your PCRF/PCEF product tools to set default QoS
feature profiles for subscribers, and then use this communication service to change, or
request information about the QoS feature profile.

This document refers to the QoS feature profiles that this communication service
manages as temporary QoS feature profiles to distinguish them from the default QoS
feature profiles that you have already created and applied.

For additional information about adding QoS support to an application, see the
discussion about adding SOAP-based quality of service support, and supported SOAP
Parlay X 4.0 facades in Services Gatekeeper Application Developer's Guide.

See "Parlay X 4.0 Application-Driven Quality of Service/Diameter" in Services
Gatekeeper Statement of Compliance for the exact version of the standards this
communication service supports, and the list of supported Diameter Rx AVPs.

How it Works
Figure 11–1 shows the interaction between Services Gatekeeper and your other
network nodes when this communication service is used.

Figure 11–1 Example Application-Driven QoS Implementation

In Figure 11–1:

1. A subscriber’s mobile device is registered with the Gateway GPRS Support Node
(GGSN) or the PCEF.

2. The GGSN or PCEF requests a default QoS plan from the PCRF.

3. Once the QoS plan is returned from the PCRF, the GGSN or PCEF executes that
plan and connects the subscriber’s device to the Internet.

4. A subscriber application sends a RESTful request to Services Gatekeeper for a
change in QoS.

5. Services Gatekeeper sends the QoS request to the PCRF using the Rx specification.

6. The PCRF pushes the new QoS plan to the PCEF using the Gx specification, and
the PCEF executes that plan.

7. The PCRF interfaces with BRM or another billing management system to charge
the subscriber appropriately.

Managing Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

Parlay X 4.0 Application-Driven Quality of Service/Diameter 11-3

Adding SOAP-Based QoS Support to an Application
See the discussion about adding SOAP-based quality of service support in Services
Gatekeeper Application Developer's Guide.

Managing Parlay X 4.0 Application-Driven Quality of Service
(QoS)/Diameter

This section describes the properties and workflow for setting up the Parlay X 4.0
Application-Driven Quality of Service (QoS)/Diameter plug-in instance.

Your network connections and performance requirements determine how you set up
this communication service. Multiple Parlay X 4.0 Application-Driven Quality of
Service (QoS)/Diameter communication service implementations generally connect to
a smaller number of PCRFs.

This communication service is usable with high-availability implementations.
However if the PCRF-Services Gatekeeper connection is broken on a high-availability
implementation, the application session is torn down and no further requests are
processed. The application must open a new session if further communication with the
PCRF is required.

The plug-in instance is not automatically created when the plug-in service is started,
you must create is using the Plug-in Manager.

Properties for Parlay X 4.0 Application-Driven QoS/Diameter
Table 11–1 lists the technical specifications for this communication service.

Table 11–1 Properties for Parlay X 4.0 Application-Driven QoS/Diameter

Property Description

Managed object in
Administration Console

To access the object, select domain_name, then OCSG, then
server_name, then Communication Services, then plug-in_
instance_id, in that order.

MBean interfaces Domain=oracle.ocsg
Name=wlng_ntInstance
Name=Plugin_qos_diameter
Type=oracle.ocsg.plugin.qos.diameter.management.QoSMBea
n

Network protocol plug-in
service ID

Plugin_qos_diameter

Supported address scheme tel, email, ipv4, ipv6, sip, and private

Application-facing
interfaces

com.bea.wlcp.wlng.px40.plugin.ApplicationQoSPlugin

com.bea.wlcp.wlng.px40.plugin.ApplicationQoSNotification
ManagerPlugIn

com.bea.wlcp.wlng.px40.callback.ApplicationQoSNotification
Callback

Service type Application-Driven QoS

Exposes to the service
communication layer a Java
representation of

SOAP

Interfaces with the network
nodes using:

Diameter Rx

Managing Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

11-4 Services Gatekeeper Communication Service Reference Guide

Configuration Workflow for Parlay X 4.0 Application-Driven QoS/Diameter
The following is an outline for configuring this plug-in using the Administration
console or an MBean browser. These instructions assume that you have already
created the SLAs to manage services.

1. Select wlng, then PluginManager, and then createPluginInstance.

2. Set the following parameters:

■ Set PluginServiceId to Plugin_qos_diameter.

■ Set PluginInstanceId to Plugin_qos_diametern where n is an integer that is
not already in use by an existing QoS plug-in instance.

3. Select wlng then PluginManager then addRoute.

4. Set the following parameters:

■ Set PluginInstanceId to the ID you configured in step 2.

■ Set an appropriate value for AddressExpression depending upon your
Services Gatekeeper configuration.

5. Select the MBean wlng_nt_qos#version. Where version is the Services Gatekeeper
version.

6. Select the plug-in instance you created in step 2. Expand QoSMBean and
configure the plug-in instance attributes:

■ Attribute: DestinationHost

■ Attribute: DestinationPort

■ Attribute: DestinationRealm

■ Attribute: OriginHost

■ Attribute: OriginPort

■ Attribute: OriginRealm

■ Attribute: Connected

■ Attribute: RecordHistory

7. Ensure that your PCRF is listening on the destination port configured for this
plug-in the DestinationPort attribute.

Deployment artifacts: NT
EAR

wlng_nt_qos.ear

Plugin_qos_diameter.jar px40_qos_service.jar

Deployment artifacts: AT
EAR:

wlng_at_qos_px40.ear

px40_qos.war px40_qos_callback.jar

Note: DestinationHost and DestinationPort should be the correct
values for your PCRF.

Table 11–1 (Cont.) Properties for Parlay X 4.0 Application-Driven QoS/Diameter

Property Description

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

Parlay X 4.0 Application-Driven Quality of Service/Diameter 11-5

8. Use "Operation: loadQoSRequestTemplate" to load a QoS template for this
communication service to use.

Events and Statistics
The Parlay X 4.0 Application-Driven QoS/Diameter communication service generates
event data records (EDRs), charging data records (CDRs), alarms, and statistics to
assist system administrators and developers in monitoring the service.

See "Event Data Records" for the list of EDRs and "Events, Alarms, and Charging" for
general information.

Event Data Records
Table 11–2 lists the IDs of the EDRs created by the Parlay X 4.0 Application-Driven
QoS communication service. This does not include EDRs created when exceptions are
thrown.

Charging Data Records
This communication service does not generate any CDRs.

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven
Quality of Service (QoS)/Diameter

This section describes the attributes and operations for configuration and
maintenance:

■ Attribute: DestinationHost

■ Attribute: DestinationPort

■ Attribute: DestinationRealm

Table 11–2 EDRs Generated by Parlay X 4.0 Application-Driven QoS

EDR ID Operation Called

91851 applyQoSFeatureResponse, applyQoSFeature

91852 getQoSStatusResponse, getQoSStatu

91853 modifyQoSFeatureResponse, modifyQoSFeature

91854 removeQoSFeatureResponse, removeQoSFeature

91855 getQoSHistoryResponse, getQoSHistory

91856 startQoSNotificationResponse, startQoSNotification

91857 stopQoSNotificationResponse, stopQoSNotification

91808 sendInitAAR

91809 RxAAA, sendModifyAAR

91810 RxSTA, sendSTR

91811 handleRxRAR

91862 notifyQoSEventResponse, notifyQoSEvent

91863 QoSRequestReached

91864 QoSNotificationReached

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

11-6 Services Gatekeeper Communication Service Reference Guide

■ Attribute: OriginHost

■ Attribute: OriginPort

■ Attribute: OriginRealm

■ Attribute: Connected

■ Attribute: RecordHistory

■ Operation: connect

■ Operation: disconnect

■ Operation: loadQoSRequestTemplate

■ Operation: retrieveQoSRequestTemplate

■ Operation: listQoSRequestTemplateMatchRule

■ Operation: deleteQoSRequestTemplate

Attribute: DestinationHost
Scope: Cluster

Unit: Not applicable

Format: String

The host name of the PCRF Diameter server.

Valid values are either a host name or a regular expression matching a host name. The
default value is host.destination.com.

Attribute: DestinationPort
Scope: Cluster

Unit: Not applicable

Format: Integer

Port number of the PCRF Diameter server.

Valid values are 0–65535. The default value is 3588.

Attribute: DestinationRealm
Scope: Cluster

Unit: Not applicable

Format: String

Diameter destination realm used for requests.

Valid values are either a realm or a regular expression matching a realm. The default
value is destination.com.

Attribute: OriginHost
Scope: Local

Unit: Not applicable

Format: String

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

Parlay X 4.0 Application-Driven Quality of Service/Diameter 11-7

Host name of the machine running this communication service.

Valid values are either a host name or a regular expression matching a host name. The
default value is host.origin.com.

Attribute: OriginPort
Scope: Local

Unit: Not applicable

Format: Integer

Port number of the machine running this communication service.

Valid values are 0–65535. A value of 0 indicates a random port and should be used
when upgrading the plug-in. The default value is 0.

Attribute: OriginRealm
Scope: Cluster

Unit: Not applicable

Format: String

The Diameter originating realm used for requests.

Valid values are either a realm or a regular expression matching a realm. The default
value is origin.com.

Attribute: Connected
Scope: Local

Unit: Not applicable

Format: Boolean

Checks the connection status. Confirms that the "Operation: connect" operation was
successful.

Valid values are true or false. The default value false.

Attribute: RecordHistory
Scope: Cluster

Unit: Not applicable

Format: Boolean

Indicates whether to record a transaction history for this communication service. A
value of true records the history; the default value is false.

Operation: connect
Scope: Local

Connects this communication service to the PCRF Diameter server. If the plug-in is
already connected to a Diameter server, it disconnects that server, and then reconnects
using the specified parameters. The destination host, port, and realm, and origin host
and port attributes must be set before using this operation.

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

11-8 Services Gatekeeper Communication Service Reference Guide

Use "Attribute: Connected" to confirm that this operation was successful.

This operation does not use any storage.

Signature:

connect()

Operation: disconnect
Scope: Local

Disconnects this communication service from the Diameter server. If the plug-in is not
currently connected to a Diameter server, this operation takes no action.

This operation does not use any storage.

Signature:

disconnect()

This operation has no parameters.

Operation: loadQoSRequestTemplate
Scope: Cluster

This operation loads instructions into a QoS feature profile (template).

Use the Name parameter to select a feature profile to load. Name takes take a QoS
feature profile identifier as an argument.

Use the Content parameter to specify the XML-based QoS information to add to a
feature profile. This operation takes a feature template formatted according to the XSD
found in the xsd subdirectory in the plugin_qos_diameter.jar file, which itself is
contained within the wlng_nt_qos.ear archive located in the Middleware_Home/ocsg_
6.0/applications directory.

Signature:

loadQoSRequestTemplate (Name: string, Content: XML)

Operation: retrieveQoSRequestTemplate
Scope: Local

This operation retrieves a QoS feature profile (template) associated with a particular
QoS feature profile identifier, or the names of subscribers.

Use the Name parameter to select a feature profile to load. Name takes take a QoS
feature profile identifier as an argument.

Signature:

retrieveQoSRequestTemplate (Name: string)

Table 11–3 loadQoSRequestTemplate Parameters

Parameter Description

Name A QoS feature profile identifier. Identifies the QoS template that
is associated with that feature.

Content Specifies the QoS feature profile content to apply. XML

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

Parlay X 4.0 Application-Driven Quality of Service/Diameter 11-9

Operation: listQoSRequestTemplateMatchRule
Scope: Local

This operations returns a list of subscribers with a specific QoS feature profile
(template).

Use the Name parameter to select a feature profile to load. Name takes take a QoS
feature profile identifier as an argument.

Signature:

listQoSRequestTemplateMatchRule (Name: string)

Operation: deleteQoSRequestTemplate
Scope: Cluster

This operation deletes a QoS feature profile (template) for a subscriber, or set of
subscribers.

The Name parameter specifies a the QoS feature profile and it take a QoS feature
profile identifier as an argument.

Signature:

deleteQoSRequestTemplate (Name: string)

Table 11–4 retrieveQoSRequestTemplate Parameters

Parameter Description

Name A QoS feature profile identifier. Identifies the QoS template that
is associated with that QoS feature profile.

Table 11–5 listQoSRequestTemplateMatchRule Parameters

Parameter Description

Name A QoS feature profile identifier. Identifies the QoS template that
is associated with that QoS feature profile.

Table 11–6 deleteQoSRequestTemplate Parameters

Parameter Descripton

Name A QoS feature identifier. Identifies the QoS template that is
associated with that feature.

Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter

11-10 Services Gatekeeper Communication Service Reference Guide

12

REST Services 12-1

12REST Services

This chapter describes how Oracle Communications Services Gatekeeper can be used
with existing RESTFul Application Services.

Overview of REST Services
Service providers may have existing third-party or proprietary applications or
platforms that communicate using REST web services. Services Gatekeeper
functionality can be integrated with existing applications that support REST interfaces
by creating a RESTFul communication service.

Services Gatekeeper supports two types of RESTFul communication services. A
REST2REST service exposes an existing REST API allowing communication between
RESTFul interfaces. A REST Exposure or empty service is an application bound,
network-facing service used when RESTFul requests are sent to a custom network
implementation for translation and processing.

Services Gatekeeper mediates traffic between users and existing REST infrastructure
allowing the application of service level agreements, policy enforcement, security,
alarms and statistics for more control over communication services.

For more information on using REST services, see "Using the OneAPI RESTful
Services" in Services Gatekeeper Application Developer's Guide, and these chapters in this
book:

■ OneAPI Multimedia Messaging/MM7

■ OneAPI Payment/Diameter

■ OneAPI Short Messaging/SMPP

■ OneAPI Terminal Location/MLP

You can also use the Platform Development Wizard to generate REST2REST and REST
Exposure Communication Services. For more information, see "Creating Extensions
with Platform Development Wizard" in Services Gatekeeper Extension Developer's Guide.

Overview of REST Services

12-2 Services Gatekeeper Communication Service Reference Guide

13

OneAPI Multimedia Messaging/MM7 13-1

13OneAPI Multimedia Messaging/MM7

This chapter describes the Oracle Communications Services Gatekeeper OneAPI
Multimedia Messaging/MM7 communication service in detail.

About the OneAPI Multimedia Messaging Interface
Applications use the RESTful OneAPI MMS interface to send multimedia messages
(MMS messages), to retrieve MMS messages and delivery status reports, and to start
and stop notifications.

When the request body for an MMS operation contains a request for a delivery receipt,
the application provides a notifyURL correlator for the message being sent and
includes an endpoint address for returning the delivery notification.

The Services Gatekeeper OneAPI MMS interface complies with Open Mobile Alliance
(OMA) specifications. See the discussion about OneAPI multimedia messaging
compliance in Services Gatekeeper Statement of Compliance for a reference to the
supported specification and RESTful bindings schema.

See "Using the OneAPI RESTful Interface" in Services Gatekeeper Application Developer's
Guide for general information on creating applications using the OneAPI RESTful
interface.

The information provided in this document is based on the OneAPI specification and
is provided here for convenience.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations are located in:

http://host:port/oneapi/1/messaging/application.wadl

Where host and port are the host name and port of the machine on which the Services
Services Gatekeeper Application Developer's GuideGatekeeper Access Tier (AT) is
installed.

Sending MMS Messages

13-2 Services Gatekeeper Communication Service Reference Guide

Sending MMS Messages

To send an MMS message, provide the OneAPI-formatted URI of the addresses which
must receive the message in the request body. If the sender requires a delivery receipt,
specify the required parameters for the receipt.

If the Send MMS operation is successful, the response will contain the request
identifier in the response body for this operation).

If the application requires a receipt for delivery of the message, the application can
provide the notifyURL in the message body, to which notifications are to be sent.

13Authorization
Basic or OAuth 2.0

13HTTP Method
POST

13URI
http://host:port/oneapi/1/messaging/outbound/senderAddress/requests

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ The senderAddress is the subscriber for which the message is being sent.

13Request Header
The MIME-type for the Content-Type header field is multipart/form-data.

13Request Body
The request body for the OneAPI Send MMS operation accepts the following
parameters:

■ address: String. At least one address is the (optionally) URL-escaped enduser ID;
in this case the MSISDN including the ’tel:’ protocol identifier and the country
code optionally preceded by ‘+’. For example, tel:+15415550100.

■ message: String. Must be URL-escaped as per RFC 1738.

■ senderAddress: String. The address to whom a responding MMS may be sent.

senderName: String. The URL-escaped name of the sender to appear on the
terminal. This is the address to whom a responding MMS may be sent.

■ clientCorrelator: String. Optional. Uniquely identifies this create MMS request. If
there is a communication failure during the request, using the same client
correlator when retrying the request allows the operator to avoid sending the same
MMS twice.

■ notifyURL: anyURL. The URL-escaped URL to which you want a notification of
delivery sent. The format of this notification is shown in Example 13–1.

Sending MMS Messages

OneAPI Multimedia Messaging/MM7 13-3

callbackData: String. will be passed back in this notification, so you can use it to
identify the message the receipt relates to, or any other useful data, such as a
function name.

13Response Header
The Location header field contains the URI:

http://host:port/oneapi/1/messaging/outbound/senderAddress/requests/requestID

where requestID is the string identifier returned in the response body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. For more information, see "Errors and Exceptions" in the
discussion about One API Multimedia messaging in Services Gatekeeper Application
Developer's Guide.

13Response Body
The body of the response contains the request identifier as the string value for the
resourceReference attribute. It is the request identifier returned in the Location header
field of the response message. The application uses this request identifier to retrieve
the delivery status for the sent message.

The response body for this operation is represented by the following JSON structure,
where the value part of the name/value pair indicates its data type:

{"resourceReference": {"resourceURL": "URL"}}

13Examples
Example 13–1 shows a sample of a OneAPI Send MMS request.

Example 13–1 OneAPI Send MMS Request

POST http://example.com/oneapi/1/messaging/outbound/tel%3A%2B5550102/requests
HTTP/1.1
Content-Length: 12345
Content-Type: multipart/form-data;
 boundary="===============123456==";

MIME-Version: 1.0
Host: www.example.com
Date: Thu, 04 Jun 2009 02:51:59 GMT

--===============123456==
Content-Disposition: form-data; name=”root-fields”
Content-Type: application/x-www-form-urlencoded;
address=tel%3A%2B15415550100&
address=tel%3A%2B15415550101&
senderAddress=tel:%2B5550102&
&senderName=ExampleCompany
Subject=My%20message&
notifyURL=http://example-application.com/notifications/DeliveryInfoNotification/54
311
&callbackData=
&clientCorrelator=123456
--===============123456==
Content-Disposition: form-data; name=”attachments”; filename=”picture.jpg”
Content-Type: image/gif

Sending MMS Messages

13-4 Services Gatekeeper Communication Service Reference Guide

GIF89a...binary image data...
--===============123456==

Example 13–2 shows a sample of a OneAPI Send MMS response.

Example 13–2 OneAPI Send MMS Response

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/oneapi/1/messaging/outbound/
tel%3A%2B5550102/requests/abc123
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"resourceReference": {"resourceURL": " http://example.com/1/messaging/outbound/
tel%3A%2B5550102/requests/abc123"}}

Query Delivery Status of MMS Message

OneAPI Multimedia Messaging/MM7 13-5

Query Delivery Status of MMS Message

The Query Delivery Status operation retrieves the delivery status of a message that
was previously sent using the system-generated requestID returned when the
message was created.

If the Query Delivery Status is successful, the response body contains the delivery
status for each of the addresses contained in the original send MMS request.

13Authorization
Basic or OAuth 2.0

13HTTP Method
GET

13URI
http://host:port/oneapi/1/messaging/outbound/senderAddress/requests/requestID/deli
veryInfos

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ senderAddress is the address to which a responding message may be sent.

■ requestID is the identifier returned in the result object of the corresponding Send
operation.

13Request Body
There is no request body.

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. For more information, see "Errors and
Exceptions" in the discussion about Using the OneAPI RESTful Interfaces.

13Response Body
The response body contains an array of structures as the value for deliveryInfo. Each
element in the array contains values for the following parameters.

■ address: String. The telephone number to which the initial message was sent.

■ deliveryStatus: Enumeration value. Table 13–1 lists the possible statuses:

Table 13–1 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to the network. For
concatenated messages, returned only when all
the MMS-parts have been successfully delivered
to the network.

Query Delivery Status of MMS Message

13-6 Services Gatekeeper Communication Service Reference Guide

■ resourceURL: A reference to the response.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"deliveryInfoNotification": {
 "deliveryInfo": [
 { "address": "String",
 "deliveryStatus": "String"},
 { "address": "String",
 "deliveryStatus": "String"}],
 "resourceURL": "
http://example.com/oneapi/1/messaging/outbound/senderAddress/requests/requestID/de
liveryInfos"
}}

13Examples
Example 13–3 shows a sample of a OneAPI Query Delivery Status request.

Example 13–3 OneAPI Query Delivery Status Request

GET
http://example.com/oneapi/1/messaging/outbound/tel%3A%2B5550100/requests/abc123/de
liveryInfos HTTP/1.1
Accept: application/json
Host: example.com:80

Example 13–4 shows a sample of a OneAPI Query Delivery Status response.

Example 13–4 OneAPI Query Delivery Status Response

HTTP/1.1 200 OK
Content-Type: application/json
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"deliveryInfoNotification": {
 "deliveryInfo": [
 {
 "address": "tel:15415550101",
 "deliveryStatus": "MessageWaiting"
 },
 {
 "address": "tel:15415550102",

DeliveryUncertain Delivery status unknown, for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

DeliveredToTerminal Successful delivery to the terminal. For
concatenated messages, returned only when all
the MMS-parts have been successfully delivered
to the terminal.

MessageWaiting The message is still queued for delivery. This is a
temporary state, pending transition to one of the
preceding states.

Table 13–1 (Cont.) Enumeration Values for Delivery Status

Value Description

Query Delivery Status of MMS Message

OneAPI Multimedia Messaging/MM7 13-7

 "deliveryStatus": "MessageWaiting"
 }
],
 "resourceURL": "
http://example.com/oneapi/1/messaging/outbound/tel%3A%2B5550100/requests/abc123/de
liveryInfos"
}}

Subscribe to MMS Delivery Notification

13-8 Services Gatekeeper Communication Service Reference Guide

Subscribe to MMS Delivery Notification

The Subscribe to MMS Delivery Notification operation creates a subscription to
delivery notifications for an application.

To set up an MMS notification, provide a notifyURL for the delivery of the
notifications. The request body contains the correlator for the notification, the
notifyURL to which the call direction notifications must be sent and, optionally, the
callbackData (a string to identify the notification).

If the subscription request is successful:

■ The response header contains the URI of the publish/subscribe server.

■ A data object associated with the result of the multimedia message operation is
sent to the notifyURL address specified in the request body. This data object
contains the appropriate notification (that the message was received or a delivery
receipt for the call).

In addition, the delivery report notification sent to the application contains the
callback data that the application provided when it sent the message.

13Authorization
Basic or OAuth 2.0

13HTTP Method
POST

13URI
http://host:port/oneapi/1/messaging/outbound/senderAddress/subscriptions

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ senderAddress is the address to whom a responding MMS may be sent.

13Request Header
The MIME-type for the Content-Type header field is
application/x-www-form-urlencoded or application/json.

13Request Body
The request body for the subscription operation accepts the following parameters:

■ notifyURL: URL. This will be used by the server to POST the notifications to you,
so include the URL of your own listener application.

■ clientCorrelator: String. Optional. Uniquely identifies this create subscription
request. If there is a communication failure during the request, using the same
client correlator when retrying the request allows the operator to avoid creating a
duplicate subscription.

Subscribe to MMS Delivery Notification

OneAPI Multimedia Messaging/MM7 13-9

■ callbackData: String. Optional. A function name or other data that you would like
included when the POST is received. This value is returned with the notification
message.

13Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/oneapi/1/messaging/outbound/subscriptions/subscriptionID

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper AT is installed.

■ subscriptionID is the reference to the created subscription.

If the request fails, the Status-Line header field contains the status code and the reason
for the failure. For more information, see "Errors and Exceptions" in Using the OneAPI
RESTful Interfaces.

13Response Body
The response body contains a confirmation deliveryReceiptSubscription JSON data
structure consisting of the parameters supplied in the subscription request.

{"deliveryReceiptSubscription": {
 "callbackReference": {
 "callbackData": "String",
 "notifyURL": " www.yourURL.here ",
 },
 "resourceURL": " URL "}}

A resourceURL is included as a reference to the response.

13Notification Data Object for MMS Delivery Receipt Sent to notifyURL
After a OneAPI MMS subscription is made, Services Gatekeeper delivers a message
receipt notification to the notifyURL specified in the subscription request.

This nested JSON object contains the following as the value of the attribute name
deliveryInfoNotification:

■ deliveryInfo: Array. Contains the following two parameters:

– address: String. The message recipient’s subscriber ID.

– deliveryStatus: Enumeration value. Table 13–2 lists the possible statuses:

Table 13–2 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to the network. For
concatenated messages, returned only when all
the MMS-parts have been successfully delivered
to the network.

DeliveryUncertain Delivery status unknown; for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

Subscribe to MMS Delivery Notification

13-10 Services Gatekeeper Communication Service Reference Guide

■ link: Refers to the message URL (that was returned when the message was
originally created).

The notification data object delivered to the notifyURL address is represented by the
following JSON data structure, where the value part of each name/value pair indicates
its data type:

{"deliveryInfoNotification": {
 "deliveryInfo": [
 { "address": "String"
 "deliveryStatus": "String"},
],
 "link": {
 "href": "URL",
 "rel": "String"
 },
 "resourceURL":"URL"
 }}

13Examples
Example 13–5 shows a sample of a OneAPI Subscribe to MMS Delivery Notifications
request.

Example 13–5 OneAPI Subscribe to MMS Delivery Notifications Request

POST http://example.com/oneapi/1/messaging/outbound/tel%3A%2B5550100/subscriptions
HTTP/1.1
Accept: application/json
Content-Type: application/json; charset=UTF-8
Host: example.com:80

{"deliveryReceiptSubscription": {
 "callbackReference": {
 "callbackData": " 12345()",
 "notifyURL": "http://www.oracle.com"
 }
}}

Example 13–6 shows a sample of a OneAPI Subscribe to MMS Delivery Notifications
response.

Example 13–6 OneAPI Subscribe to MMS Delivery Notifications Response

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/oneapi/1/messaging/outbound/subscriptions/sub789
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"deliveryReceiptSubscription": {
 "callbackReference": {
 "callbackData": "doSomething()",

DeliveredToTerminal Successful delivery to the terminal. For
concatenated messages, returned only when all
the MMS-parts have been successfully delivered
to the terminal.

Table 13–2 (Cont.) Enumeration Values for Delivery Status

Value Description

Subscribe to MMS Delivery Notification

OneAPI Multimedia Messaging/MM7 13-11

 "notifyURL": " www.oracle.com "
 },
 "resourceURL": "
http://example.com/oneapi/1/messaging/outbound/subscriptions/sub789"}}

Example 13–7 shows a sample of a OneAPI MMS Delivery Notification Message.

Example 13–7 OneAPI MMS Delivery Notification Message

{"deliveryInfoNotification": {
 "deliveryInfo": [
 { "address": "tel:15415550101",
 "deliveryStatus": "DeliveredToTerminal"},
 { "address": "tel:15415550102",
 "deliveryStatus": "DeliveredToTerminal"}
],
 "link": {
 "href":
"http://example.com/oneapi/1/messaging/outbound/tel%3A%2B5550100/requests/{request
Id}",
 "rel": "OutboundMessageRequest"
 },
 "resourceURL":
http://example.com/oneapi/1/messaging/outbound/tel%3A%2B5550100/requests/req123/De
liveryInfos
 }

Stop Subscription to Delivery Notifications

13-12 Services Gatekeeper Communication Service Reference Guide

Stop Subscription to Delivery Notifications

The Stop Subscription to Delivery Notification operation terminates a previously set
up MMS notification for the application.

To stop a previously set up MMS notification, provide the correlator for the
notification passed earlier in the Subscribe to MMS Delivery Notification request.

There is no request or response body for the Stop Subscription to Delivery Notification
operation. If the request fails, the body of the error response contains the identifier for
the notification and the type of exception.

13Authorization
Basic or OAuth 2.0

13HTTP Method
DELETE

13URI
http://host:port/oneapi/1/messaging/outbound/subscriptions/subscriptionID

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ subscriptionID is the reference to the created subscription.

13Request Body
There is no request body.

13Response Header
Standard header fields. If the request fails, the Status-Line header field contains the
status code and the reason for the failure. For more information, see "Errors and
Exceptions" in Using the OneAPI RESTful Interfaces.

13Response Body
There is no response body.

13Examples
Example 13–8 shows a sample of a OneAPI Stop Subscription to Delivery Notification
request.

Example 13–8 OneAPI Stop Subscription to Deliver Notification Request

DELETE http://example.com/oneapi/1/messaging/outbound/subscriptions/sub789
HTTP/1.1
Accept: application/json
Host: example.com:80

Stop Subscription to Delivery Notifications

OneAPI Multimedia Messaging/MM7 13-13

Example 13–9 shows a sample of a OneAPI Stop Subscription to Delivery Notification
response.

Example 13–9 OneAPI Stop Subscription to Deliver Notification Response

HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

Retrieve Messages Sent to Web Application

13-14 Services Gatekeeper Communication Service Reference Guide

Retrieve Messages Sent to Web Application

The OneAPI Retrieve Messages Sent to Web Application operation polls Services
Gatekeeper for the MMS messages that have been received from the network for an
application.

The request header for the Retrieve Messages Sent to Web application operation
contains the registration identifier necessary to retrieve the MMS messages intended
for the application. This registration value should have been set up with the off-line
provisioning step that enables the application to receive notification that MMS
messages were received.

There is no request body.

If the Retrieve Messages Sent to Web Application operation is successful, the response
body contains the message, the URI of the sender, the MMS service activation number,
and the date and time when the message was sent.

13Authorization
Basic or OAuth 2.0

13HTTP Method
GET

13URI
http://host:port/oneapi/1/messaging/inbound/registrations/registrationID/messages?
maxBatchSize=?

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ registrationId is the value previously set up to enable the application to receive
notification that MMS messages have been received, according to specified criteria.

■ matchBatchSize specifies the maximum number of messages to retrieve in the
request batch.

13Request Header
The MIME-type for the Content-Type header field is
application/x-www-form-urlencoded or application/json.

13Request Body
There is no request body.

13Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. For more information, see "Errors and
Exceptions" in Using the OneAPI RESTful Interfaces.

Retrieve Messages Sent to Web Application

OneAPI Multimedia Messaging/MM7 13-15

13Response Body
The response body is an inboundMessageList containing an array of structures as the
value for inboundMessage. The response body also contains the following
parameters:

■ inboundMessage: Array. Contains the following parameters:

– dateTime: dateTime. The date and time when the message was received.

– destinationAddress: String. The registration ID of the application.

– messageID: String. A server generated message identifier.

– inboundMMSMessage: String. Contains the subject of the message, which
may determine whether you want to retrieve the entire MMS message.

– resourceURL: URL. Link to the message.

– senderAddress: String. The MSISDN of the sender.

■ numberOfMessagesInThisBatch: Integer. The total number of messages in the
batch.

■ resourceURL: URL Self-referring resource URL.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

"inboundMessage": [
 "dateTime": "dateTime",
 "destinationAddress": "String",
 "messageId": "String",
 "inboundMMSMessage": "String",
 "resourceURL": "URL",
 "senderAddress": "String"},
]

Retrieving Full Messages

13-16 Services Gatekeeper Communication Service Reference Guide

Retrieving Full Messages

If an application needs to retrieve an entire MMS message, a separate GET operation is
required. Use the following operation to retrieve a full message, specifying the
messageID from the inboundMessageList.

13URI
http://host:port/oneapi/1/messaging/inbound/registrations/registrationID/messages/
messageID?resFormat=JSON

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ registrationId is the value previously set up to enable the application to receive
notification that MMSs have been received, according to specified criteria.

■ messageID specifies the MMS from the inboundMessageList to be retrieved.

13Request Header
The resFormat=JSON portion of the URI ensures that the response content-type is
JSON.

13Request Body
There is no request body.

13Response Header
Standard header fields. If the request fails, the Status-Line header field contains the
status code and the reason for the failure. For more information, see "Errors and
Exceptions" in Using the OneAPI RESTful Interfaces.

13Response Body
The response body is an inboundMessageList containing an array of structures as the
value for inboundMessage. The response body also contains the following
parameters:

■ inboundMessage: Array. Contains the following parameters:

– dateTime: dateTime. The date and time when the message was received.

– destinationAddress: String. The registration ID of the application.

– messageID: String. A server generated message identifier.

– inboundMMSMessage: String. Contains the subject of the message, which
may determine whether you want to retrieve the entire MMS message.

– resourceURL: URL. Link to the message.

– senderAddress: String. The MSISDN of the sender.

■ numberOfMessagesInThisBatch: Integer. The total number of messages in the
batch.

■ resourceURL: URL Self-referring resource URL.

Retrieve Messages Sent to Web Application

OneAPI Multimedia Messaging/MM7 13-17

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

"inboundMessage": [
 { "dateTime": "dateTime",
 "destinationAddress": "String",
 "messageId": "String",
 "inboundMMSMessage": "String",
 "resourceURL": "URL",
 "senderAddress": "String"},

====Content Divider====

One or more attachments

13Examples
Example 13–10 shows a sample of a OneAPI Retrieve Messages request.

Example 13–10 OneAPI Retrieve Messages Request

GET
http://example.com/oneapi/1/messaging/inbound/registrations/3456/messages?maxBatch
Size=2 HTTP/1.1
Host: example.com:80
Accept: application/json

Example 13–11 shows a sample of a OneAPI Retrieve Messages response.

Example 13–11 OneAPI Retrieve Messages Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"inboundMessageList": {
 "inboundMessage": [
 { "dateTime": "2010-11-19T12:00:00",
 "destinationAddress": "6789",
 "inboundMMSMessage": {"subject": "Rock Festival 2010"},
 "messageId": "msg1",
 "resourceURL":
"http://example.com/oneapi/1/messaging/inbound/registrations/3456/messages/msg1",
 "senderAddress": "tel:+5550100" },
 { "dateTime": "2010-11-19T12:15:00",
 "destinationAddress": "6789",
 "inboundMMSMessage": {"subject": "London Marathon"},
 "messageId": "msg2”,
 "resourceURL": "
http://example.com/oneapi/1/messaging/inbound/registrations/sub789/messages/msg2",
 "senderAddress": "tel:+5550101"
 }
],
 "numberOfMessagesInThisBatch": "2",
 "resourceURL": "
http://example.com/1/messaging/inbound/registrations/3456/messages?maxBatchSize=2
",
 "totalNumberOfPendingMessages": "20"
}

Retrieving Full Messages

13-18 Services Gatekeeper Communication Service Reference Guide

Example 13–12 shows a sample of a OneAPI Retrieve Full Message request.

Example 13–12 OneAPI Retrieve Full Message Request

GET
http://example.com/oneapi/1/messaging/inbound/registrations/3456/messages/msg1?res
Format=JSON HTTP/1.1
Host: example.com:80

Example 13–13 shows a sample of a OneAPI Retrieve Full Messages response.

Example 13–13 OneAPI Retrieve Full Message Response

HTTP/1.1 200 OK
Content-Type: multipart/form-data; boundary=”=====12345====”
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

====12345====
Content-Disposition=multipart/form-data; name=”root-fields”
Content-Type=application/json
Content-Length: nnnn
{"inboundMessage": {
 "dateTime": "2010-11-19T12:00:00",
 "destinationAddress": "6789",
 "messageId": "msg1",
 "inboundMMSMessage": {"subject": Rock Festival 2010"},
 "resourceURL": "
http://example.com/oneapi/1/messaging/inbound/registrations/3456/messages/msg1",
 "senderAddress": " tel:+5550100"
}}

====12345====

Content-Disposition: form-data; name=”attachments”
Content-Type: multipart/mixed; boundary=”====aaabbb”
====aaabbb
Content-Disposition:attachments;filename=”textBody.txt”;
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8 bit

Look at the attached picture
====aaabbb
Content-Disposition:attachments;filename=”image1.gif”;
Content-Type: image/gif
MIME-Version: 1.0
Content-ID: <99334422@example.com>

GIF89a...binary image data...
====12345====

Subscribe to Notifications of Messages Sent to Application

OneAPI Multimedia Messaging/MM7 13-19

Subscribe to Notifications of Messages Sent to Application

The Subscribe to Notifications Sent to Application operation creates a subscription to
delivery notifications for when an application receives a message.

To set up an application notification, provide the destinationAddress which triggers
notifications and a notifyURL for the delivery of the notifications. The
destinationAddress is the MSISDN, or code set up in Services Gatekeeper, to which
subscribers may send an MMS to your application.

If the subscription request is successful:

■ The response header contains the URI of the publish/subscribe server.

■ The response body contains a resourceURL indicating the URI of the newly
created subscription.

13Authorization
Basic or OAuth 2.0

13HTTP Method
POST

13URI
http://host:port/oneapi/1/messaging/inbound/subscriptions

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

13Request Header
The MIME-type for the Content-Type header field is application/json or
application/x-www-form-urlencoded.

13Request Body
The request body for the subscription operation accepts the following parameters:

■ destinationAddress: String. The MSISDN, or code agreed upon by the operator, to
which people may send an MMS to your application.

■ notifyURL: URL. This is used by the server to POST the notifications to you, so
include the URL of your own listener application.

■ criteria: String. Optional. Case-insensitive text to match against the first word of
the message, ignoring any leading whitespace. This allows you to reuse a short
code among various applications, each of which can register its own subscription
with different criteria.

■ notificationFormat: Content Type. Optional. The content type that notifications
will be sent; for OneAPI, only JSON is supported.

■ clientCorrelator: String. Optional. Uniquely identifies this create subscription
request. If there is a communication failure during the request, using the same

Subscribe to Notifications of Messages Sent to Application

13-20 Services Gatekeeper Communication Service Reference Guide

client correlator when retrying the request allows the operator to avoid creating a
duplicate subscription.

■ callbackData: String. Optional. A function name or other data that you would like
included when the POST is received.

13Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/oneapi/1/messaging/inbound/subscriptions/subscriptionID

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ subscriptionID is the reference to the created subscription.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. For more information, see "Errors and Exceptions" in Using the
OneAPI RESTful Interfaces.

13Response Body
The response body contains a confirmation resourceReference JSON data structure
consisting of the parameters supplied in the subscription request.

{"resourceReference": {"resourceURL": "URL"}}

The resourceURL indicates the URI of the newly created subscription.

13Notification Data Object for Application Notification Message Sent to notifyURL
After a OneAPI Application Notification subscription is made, Services Gatekeeper
will deliver a message receipt notification to the specified notifyURL in the
subscription request for every MMS received. If callbackData was provided in the
subscription request, the notification contains this information.

This nested JSON object contains the following parameters as the value of the attribute
name inboundMMSMessageNotification:

■ callbackData: String. The correlator used to identify the notification.

■ inboundMessage: Array. Contains the following parameters:

– destinationAddress: String. The number or shortcode for the application.

– messageID: String. A server-generated message identifier.

– inboundMMSMessage: String. Message subject or text.

– link: URL. The URL of the subscription that received this message.

– resourceURL: URL. Link to the message.

– senderAddress: String. The MSISDN of the sender.

The notification data object delivered to the notifyURL address is represented by the
following JSON data structure, where the value part of each name/value pair indicates
its data type:

{"inboundMessageNotification": {
 "callbackData": "String",
 "inboundMMSMessage": {

Subscribe to Notifications of Messages Sent to Application

OneAPI Multimedia Messaging/MM7 13-21

 "destinationAddress": "String",
 "messageId": "String",
 "inboundMMSMessage": "String",
 "link": {
 "href": "String",
 "rel": "String",
 "resourceURL": "String",
 "senderAddress": "String"
 }
}}}

13Examples
Example 13–14 shows a sample of a OneAPI Subscribe to Notifications of Messages
Sent to Applications request.

Example 13–14 OneAPI Subscribe to Notifications of Messages Sent to Applications
Request

POST http://example.com/oneapi/1/messaging/inbound/subscriptions HTTP/1.1
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Accept: application/json

destinationAddress=3456&
notifyURL=http://www.yoururl.here/notifications/DeliveryInfoNotification&
criteria=Vote&
notificationFormat=JSON&
callbackData=doSomething()&
clientCorrelator=12345

Example 13–15 shows a sample of a OneAPI Subscribe to Notifications of Messages
Sent to Applications response.

Example 13–15 OneAPI Subscribe to Notifications of Messages Sent to Application
Response

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/oneapi/1/messaging/inbound/subscriptions/sub123
Content-Length: 254
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"resourceReference": {"resourceURL": "
http://example.com/oneapi/1/messaging/inbound/subscriptions/sub123”}}

Example 13–16 shows a sample of a OneAPI Application Notification Message.

Example 13–16 OneAPI Application Notification Message

{"inboundMessageNotification":
{"inboundMessage": {
 "destinationAddress": "tel:+1-555-0100",
 "messageId": "msg123",
 "inboundMMSMessage": {"subject": "That Chili Relleno was delicious?"},
 "link": {
 "href":
"http://example.com/oneapi/1/messaging/inbound/subscriptions/sub123",
 "rel": "Subscription"
 },

Subscribe to Notifications of Messages Sent to Application

13-22 Services Gatekeeper Communication Service Reference Guide

 "resourceURL": "http://example.com/oneapi/1/
messaging/inbound/registrations/reg123/messages/msg123",
 "senderAddress": "tel:+5550101"
}}}

Stop Subscription to Application Message Notifications

OneAPI Multimedia Messaging/MM7 13-23

Stop Subscription to Application Message Notifications

The Stop Subscription to Application Message Notification operation terminates a
previously set up subscription to an application message notification.

To stop a previously set up subscription, provide the correlator for the notification
passed earlier in the Subscribe to Notifications of Messages Sent to Application
request.

There is no request or response body for the Stop Subscription to Notifications of
Messages Sent to Application operation. If the request fails, the body of the error
response will contain the identifier for the notification and the type of exception.

13Authorization
Basic or OAuth 2.0

13HTTP Method
DELETE

13URI
http://host:port/oneapi/1/messaging/inbound/subscriptions/subscriptionID

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier is installed.

■ subscriptionID is the reference to the created subscription.

13Request Body
There is no request body.

13Response Header
Standard header fields. If the request fails, the Status-Line header field contains the
status code and the reason for the failure. See "Errors and Exceptions" in Using the
OneAPI RESTful Interfaces for more information.

13Response Body
There is no response body.

13Examples
Example 13–17 shows a sample of a OneAPI Stop Subscription to Notifications of
Messages Sent to Application request.

Example 13–17 OneAPI Stop Subscription to Notifications of Messages Sent to
Application Request

DELETE http://example.com/oneapi/1/messaging/inbound/subscriptions/sub123 HTTP/1.1
Accept: application/json
Host: example.com:80

Stop Subscription to Application Message Notifications

13-24 Services Gatekeeper Communication Service Reference Guide

Example 13–18 shows a sample of a OneAPI Stop Subscription to Notifications of
Messages Sent to Application response.

Example 13–18 OneAPI Stop Subscription to Notifications of Messages Sent to
Application Response

HTTP/1.1 204 No content
Accept: application/json
Date: Thu, 04 Jun 2009 02:51:59 GMT

14

OneAPI Payment/Diameter 14-1

14OneAPI Payment/Diameter

This chapter describes the Oracle Communications Services Gatekeeper OneAPI
Payment/Diameter communication service in detail.

About the Payment Interface
Applications use the RESTful Payment interface to charge an amount to an end-user’s
account using Diameter and to refund amounts to that account. Applications can also
reserve amounts, reserve additional amounts, charge against the reservation or release
the reservation.

The Services Gatekeeper OneAPI Payment interface complies with Open Mobile
Alliance (OMA) specifications. See "OneAPI Payment Interface" in Services Gatekeeper
Statement of Compliance for a reference to the supported specification and RESTful
bindings schema. Note that this interface does not support volume charging.

See "Using the OneAPI RESTful Interfaces" in Services Gatekeeper Application Developer's
Guide for general information on creating applications using the OneAPI RESTful
interface.

The information provided in this document is based on the OneAPI specification and
provided here for convenience.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations can be found at

http://host:port/oneapi/1/payment/application.wadl

Where host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

Charge Amount

14-2 Services Gatekeeper Communication Service Reference Guide

Charge Amount

The Charge Amount operation charges an amount directly to an end-user’s
application using the Diameter protocol.

To charge an amount for a call, provide the telephone address of the end-user
(endUserId), a reference code (code) in case there is any dispute regarding the charges,
and the billing information to charge for the call.

14Authorization
Basic or OAuth 2.0

14HTTP Method
POST

14URI
http://host:port/oneapi/1/payment/endUserId/transactions/amount

Where:

host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

endUserId is the address of the subscriber to charge (MSISDN).

14Request Header
The MIME-type for the Content-Type header field can be either
application/x-www-form-urlencoded or application/json.

14Request Body
The request body for the Charge Amount operation accepts the following parameters:

■ endUserId: String. The URL-escaped end user ID. For example, a MSISDN
including the ‘tel:’ protocol identifier and the country code preceded by ‘+’.For
example, tel:+15415550100.

■ transactionOperationStatus: Enumeration. This indicates the desired resource
state, in this case ‘charged’. See "Resource States" for more information.

■ description: String. The human-readable text to appear on the bill provided so the
subscriber can easily see what was purchased.

■ currency: String. The 3-figure currency code defined in ISO4217.

■ amount: Decimal. The amount to be charged.

■ code: String. The charging code, from an existing contractual description that
references an operator price point.

■ clientCorrelator: String. Optional. This uniquely identifies the create charge
request. If there is a communication failure during the charge request, using the
same client correlator when retrying the request allows the operator to avoid
applying the same charge twice.

■ onBehalfOf: String. Optional. Allows aggregators or partners to specify the actual
payee.

Charge Amount

OneAPI Payment/Diameter 14-3

■ purchaseCategoryCode: String. Optional. An indication of the content type.
Values meaningful to the billing system would be published by a OneAPI
implementation.

■ channel: String. Optional. Can be Wap, Web, MMS, or SMS, depending on the
source of user interaction.

■ taxAmount: Decimal. Optional. Indicates a tax amount already charged by the
merchant or application.

■ serviceID: String. Optional. The ID of the partner or merchant service.

■ productID: String. Optional. Combines with the serviceID to uniquely identify the
product being purchased.

14Response Header
The Location header field contains the URI:

http://host:port/oneapi/1/payment/endUserId/transactions/amount/transactionID

Where transactionID is the string identifier returned in the response body.

The Status-Line header field returned indicates if the charge has been created or
accepted. An accepted response indicates that additional processing is required before
the transaction is complete. If the request fails, the Status-Line header field will contain
the status code and the reason for the failure. See "Errors and Exceptions" in Services
Gatekeeper Application Developer's Guide for more information.

14Response Body
The response body contains a confirmation amountTransaction JSON data structure
consisting of the parameters supplied in the payment request.

{"amountTransaction": {
 "clientCorrelator": "String",
 "endUserId": "String",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "Decimal",
 "currency": "String",
 "description": " String"
 },
 "totalAmountCharged": "Decimal"
 },
 "code": "String",
 "resourceURL": "URL"
 "transactionOperationStatus": "String"
}}

A resourceURL is included as a reference to the response. The
transactionOperationStatus provides the resource state. See, "Resource States" for
more information.

14Examples
Example 14–1 shows a sample of a OneAPI Charge Payment request.

Example 14–1 OneAPI Charge Payment Request

POST http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amount
HTTP/1.1

Charge Amount

14-4 Services Gatekeeper Communication Service Reference Guide

Accept: application/json
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

endUserId= tel%3A%2B15415550100&
transactionOperationStatus=charged&
description= Alien%20%20Game&
currency=USD&
amount=10&
code=REF-12345&
clientCorrelator=54321&
onBehalfOf=Example%20Games%20Inc&
purchaseCategoryCode=Game&
channel=WAP&
taxAmount=0

Example 14–2 shows a sample of a OneAPI Charge Payment response.

Example 14–2 OneAPI Charge Payment Response

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT
Location:
http://example.com/1/payment/tel%3A%2B15415550100/transactions/amount/abc123

{"amountTransaction": {
 "clientCorrelator": "54321",
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "10",
 "currency": "USD",
 "description": " Alien Game"
 },
 "totalAmountCharged": "10"
 },
 "code": "REF-12345",
 "resourceURL": "
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amount/abc12
3
 "transactionOperationStatus": "Charged"
}}

Query Transaction Status

OneAPI Payment/Diameter 14-5

Query Transaction Status

The Query Transaction Status operation retrieves the current status of a payment
transaction. This operation is useful in cases where the original charge request returns
a status of processing. Applications may require a confirmed charge to a subscriber’s
account before allowing access to paid resources.

To query for a transaction’s status, provide the transactionID of the earlier transaction.

14Authorization
Basic or OAuth 2.0

14HTTP Method
GET

14URI
http://host:port/oneapi/1/payment/endUserId/transactions/amount/transactionID

Where host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running. The endUserId is the address of the
subscriber originally charged (MSISDN). The transactionID is provided by Services
Gatekeeper in the original payment request response.

14Request Header
The header contains the Host and Authorization code (if required).

14Request Body
There is no request body for this operation.

14Response Header
The header contains the response status, Content-Type, Content-Length and Date.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Errors and Exceptions" in Services Gatekeeper Application
Developer's Guide for more information.

14Response Body
The response body contains the transaction’s amountTransaction JSON data structure
consisting of the parameters supplied in the payment request.

{"amountTransaction": {
 "clientCorrelator": "String",
 "endUserId": "String",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "Decimal",
 "currency": "String",
 "description": " String"
 },
 "totalAmountCharged": "Decimal"
 },

Query Transaction Status

14-6 Services Gatekeeper Communication Service Reference Guide

 "code": "String",
 "resourceURL": "URL"
 "transactionOperationStatus": "String"
}}

A resourceURL is included as a reference to the response. The
transactionOperationStatus provides the current resource state. See "Resource States"
for more information.

14Examples
Example 14–3 shows a sample of a OneAPI Query Transaction Status request.

Example 14–3 OneAPI Query Transaction Status Request

GET http://example.com/1/payment/tel%3A%2B15415550100/transactions/amount/abc123
Host: example.com
Authorization: n0t4fr4id333

Example 14–4 shows a sample of a OneAPI Query Transaction Status response.

Example 14–4 OneAPI Query Transaction Status Response

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT
Location:
http://example.com/1/payment/tel%3A%2B15415550100/transactions/amount/abc123

{"amountTransaction": {
 "clientCorrelator": "54321",
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "10",
 "currency": "USD",
 "description": " Alien Game"
 },
 "totalAmountCharged": "10"
 },
 "code": "REF-12345",
 "resourceURL": "
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amount/abc12
3
 "transactionOperationStatus": "Charged"
}}

List Transactions for Application User

OneAPI Payment/Diameter 14-7

List Transactions for Application User

The List Transactions for Application User operation lists all the transactions a
subscriber has performed within an application.

To list a subscriber’s transactions for an application, provide a valid OAuth token
provided by Services Gatekeeper to identify the application and subscriber.

The response body contains a list of applicable transactions and their current status.

14Authorization
Basic or OAuth 2.0

14HTTP Method
GET

14URI
http://host:port/oneapi/1/payment/endUserId/transactions/amount

Where:

host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

endUserId is the address of the subscriber to charge (MSISDN).

14Request Header
Provide a valid OAuth bearer token to identify both the end user and the application
in the Authorization header field.

14Request Body
There is no request body for this operation.

14Response Header
The Location header field contains the URI:

http://host:port/oneapi/1/payment/endUserId/transactions/amount/transactionID

where transactionID is the string identifier returned in the response body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See "Errors and Exceptions" in Services Gatekeeper Application
Developer's Guide for more information.

14Response Body
The response body contains a list of amountTransaction JSON data structures
consisting of the parameters supplied in the payment requests.

{"amountTransaction": {
 "clientCorrelator": "String",
 "endUserId": "String",
 "paymentAmount": {
 "chargingInformation": {

List Transactions for Application User

14-8 Services Gatekeeper Communication Service Reference Guide

 "amount": "Decimal",
 "currency": "String",
 "description": " String"
 },
 "totalAmountCharged": "Decimal"
 },
 "code": "String",
 "resourceURL": "URL"
 "transactionOperationStatus": "String"
}}

A resourceURL is included as a reference to the response for each transaction. The
transactionOperationStatus provides the resource state. See "Resource States" for
more information.

14Examples
Example 14–5 shows a sample of a OneAPI List Transactions for Application User
request.

Example 14–5 OneAPI List Transactions for Application User Request

GET http://example.com/1/payment/tel%3A%2B15415550100/transactions/amount
HTTP/1.1
Accept: application/json
Authorization: n0t4fr4id333
Date: Thu, 06 Feb 1976 02:51:59 GMT

Example 14–6 shows a sample of a OneAPI List Transactions for Application User
response.

Example 14–6 OneAPI List Transactions for Application User Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT
{"paymentTransactionList": {
"amountTransaction": [
 {
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "9",
 "currency": "USD",
 "code": "abc123",
 "description": "Alien%20Invaders"
 },
 },
 "code": "REF-ASM600-239238",
 "resourceURL":
"https://example.com/1/payment/tel%3A%2B15415550100/transactions/amount/tx-a3c0e4e
006da40a8a5b5-045972478cc3",
 "transactionOperationStatus": "Charged"
 },
 {
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "9",

List Transactions for Application User

OneAPI Payment/Diameter 14-9

 "currency": "USD",
 "code": "def456",
 "description": "Snakes%20Alive"
 },
 },
 "code": "REF-ASM600-239568",
 "resourceURL":
"https://example.com/1/payment/tel%3A%2B15415550100/transactions/amount/tx-134sf3e
6e6405gfd904e62d8ed84343u",
 "transactionOperationStatus": "Charged"
 },
 {
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "9",
 "currency": "USD",
 "code": "wac-c116480e-316a-44e7-be76-5fde978b2f59",
 "description": "Monkey%20Tennis."
 },
 },
 "code": "REF-ASM600-239211",
 "resourceURL":
"https://example.com/1/payment/tel%3A%2B15415550100/transactions/amount/tx-391sff4
e6401gf3f404d82d9fe954545v",
 "transactionOperationStatus": "Charged"
 },
],
"resourceURL":
"https://example.com/1/payment/tel%3A%2B15415550100/transactions/amount"
}}

Refund Amount

14-10 Services Gatekeeper Communication Service Reference Guide

Refund Amount

The Refund Amount operation refunds a currency amount directly to a subscriber’s
application using the Diameter protocol.

To refund an amount to a subscriber, submit a POST operation request in the same
format as the Charge Amount operation.

14Authorization
Basic or OAuth 2.0

14HTTP Method
POST

14URI
http://host:port/oneapi/1/payment/endUserId/transactions/amount

Where:

host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

endUserId is the address of the subscriber to refund (MSISDN).

14Request Header
The MIME-type for the Content-Type header field can be either
application/x-www-form-urlencoded or application/json.

14Request Body
The request body for the Refund Amount operation accepts the following parameters:

■ endUserId: String. The URL-escaped end user ID. For example, a MSISDN
including the ‘tel:’ protocol identifier and the country code preceded by ‘+’. For
example, tel:+15415550100.

■ transactionOperationStatus: Enumeration.This indicates the desired resource
state, in this case ‘refunded’. See "Resource States" for more information.

■ description: String. The human-readable text to appear on the bill, so the
subscriber can easily see what was refunded.

■ currency: String. The 3-figure currency code defined in ISO4217.

■ amount: Decimal. The amount to be refunded.

■ code: String. The charging code, from an existing contractual description that
references an operator price point.

■ clientCorrelator: String. Uniquely identifies this refund request. If there is a
communication failure during the refund request, using the same client correlator
when retrying the request allows the operator to avoid applying the same refund
twice.

■ onBehalfOf: String. Optional. Allows aggregators or partners to specify the actual
payee.

Refund Amount

OneAPI Payment/Diameter 14-11

■ purchaseCategoryCode: String. Optional. An indication of the content type.
Values meaningful to the billing system would be published by a OneAPI
implementation.

■ channel: String. Optional. Can be “Wap”, “Web”, “MMS”, or “SMS”, depending
on the source of user interaction.

■ taxAmount: Decimal. Optional. Indicates a tax amount already charged by the
merchant or application.

■ serviceID: String. Optional. The ID of the partner or merchant service.

■ productID: String. Optional. Combines with the serviceID to uniquely identify the
product being refunded.

14Response Header
The Location header field contains the URI:

http://host:port/oneapi/1/payment/endUserId/transactions/amount/transactionID

where, transactionID is the string identifier returned in the response body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. See “Errors and Exceptions” in Using the OneAPI RESTful
Interfaces for more information.

14Response Body
The response body contains a confirmation amountTransaction JSON data structure
consisting of the parameters supplied in the refund request.

{"amountTransaction": {
 "clientCorrelator": "String",
 "endUserId": "String",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "Decimal",
 "currency": "String",
 "description": " String"
 },
 "totalAmountRefunded": "Decimal"
 },
 "code": "String",
 "resourceURL": "URL"
 "transactionOperationStatus": "String"
}}

A resourceURL is included as a reference to the response. The
transactionOperationStatus provides the resource state. See "Resource States" for
more information.

14Examples
Example 14–7 shows a sample of a OneAPI Refund request.

Example 14–7 OneAPI Refund Request

POST http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amount
HTTP/1.1
Accept: application/json
Host: example.com:80

Refund Amount

14-12 Services Gatekeeper Communication Service Reference Guide

Content-Type: application/x-www-form-urlencoded
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

endUserId=tel%3A%2B15415550100&
transactionOperationStatus=refunded&
description= Alien%20Game&
currency=USD&
amount=10&
code=REF-12345&
clientCorrelator=54321&
onBehalfOf=Example%20Games%20Inc&
purchaseCategoryCode=Game&
channel=WAP&
taxAmount=0

Example 14–8 shows a sample of a OneAPI Refund response.

Example 14–8 OneAPI Refund Response

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT
Location:
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amount/efg78
9

{"amountTransaction": {
 "clientCorrelator": "54321",
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "10",
 "currency": "USD",
 "description": "Alien Invaders"
 },
 "totalAmountRefunded": "10"
 },
 "code": "REF-12345",
 "resourceURL":
"http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amount/efg7
89",
 "transactionOperationStatus": "Refunded"
}}

Reserve Amount

OneAPI Payment/Diameter 14-13

Reserve Amount

The Reserve Amount operation reserves a currency amount for a subscriber account to
use as future payment.

To reserve an amount for future payment, provide the address of the enduser and the
billing information for the transaction.

If the Reserve Amount operation is successful, the response body contains the string
identifier for the reservation.

The default expiration or timeout of reserved amounts in Services Gatekeeper is 86400
seconds. To change the timeout duration to another value:

1. Locate and unpack the following .jar file:

OCSG_Domain\config\store_
schema\com.bea.wlcp.wlng.plugin.payment.px30.diameter.store_5.1.0.0.jar

2. Open the wlng-cachestore-config-extensions.xml file for editing.

3. Locate the <expiry expiry_age="86400"/> parameter.

4. Edit the value by entering the number of seconds before a reservation expires.

5. Save the file.

6. Repackage the .jar file in the original location.

7. Restart the instance of Services Gatekeeper.

Changing the default expiration setting also changes the Parlay X payment reservation
timeout in Services Gatekeeper.

14Authorization
Basic or OAuth 2.0

14HTTP Method
POST

14URI
http://host:port/oneapi/1/payment/endUserId/transactions/amountReservation

Where host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

endUserId is the address of the subscriber to charge the reservation to (MSISDN).

14Request Header
The MIME-type for the Content-Type header field can be either
application/x-www-form-urlencoded or application/json.

14Request Body
The request body for the Reserve Amount operation accepts the following parameters:

Reserve Amount

14-14 Services Gatekeeper Communication Service Reference Guide

■ endUserId: String. The URL-escaped enduser ID. For example, a MSISDN
including the ‘tel:’ protocol identifier and the country code preceded by ‘+’. For
example, tel:+15415550100.

■ transactionOperationStatus: Enumeration. This indicates the desired resource
state, in this case ‘reserved’. See "Resource States" for more information.

■ description: String. The human-readable text to appear on the bill, so the users can
easily see what they reserved.

■ currency: String. The 3-figure currency code defined in ISO4217.

■ amount: Decimal. The amount to be reserved.

■ code: String. The charging code, from an existing contractual description that
references an operator price point.

■ clientCorrelator: String. Uniquely identifies this create reservation request. If there
is a communication failure during the reservation request, using the same client
correlator when retrying the request allows the operator to avoid applying the
same reservation twice.

■ referenceSequence: Integer. Allows Services Gatekeeper to distinguish easily
between new and repeated requests in the case of a communication failure. For
each transaction within a reservation sequence, iterate the referenceSequence by 1.
For example:

initial reservation use referenceSequence=1

reserve additional amount use referenceSequence=2

charge reservation use referenceSequence=3

release reservation use referenceSequence=4

If you do not need to reserve an additional amount, then the referenceSequence
for charge reservation is 2 and the referenceSequence for release reservation is 3.

■ onBehalfOf: String. Optional. Allows aggregators or partners to specify the actual
payee.

■ purchaseCategoryCode: String. Optional. An indication of the content type.
Values meaningful to the billing system would be published by a OneAPI
implementation.

■ channel: String. Optional. Can be “Wap”, “Web”, “MMS”, or “SMS”, depending
on the source of user interaction.

■ taxAmount: Decimal. Optional. Indicates a tax amount already charged by the
merchant or application.

■ serviceID: String. Optional. The ID of the partner or merchant service.

■ productID: String. Optional. Combines with the serviceID to uniquely identify the
product being reserved.

14Response Header
The Location header field contains the URI:

http://host:port/oneapi/1/payment/endUserId/transactions/amountReservation/transac
tionID

Where:

transactionID is the string identifier returned in the response body.

Reserve Amount

OneAPI Payment/Diameter 14-15

If the request fails, the Status-Line header field contains the status code and the reason
for the failure. See “Errors and Exceptions” in Using the OneAPI RESTful Interfaces for
more information.

14Response Body
The response body contains a confirmation amountReservationTransaction JSON data
structure consisting of the parameters supplied in the reservation request.

{"amountReservationTransaction": {
 "clientCorrelator": "String",
 "endUserId": "String",
 "paymentAmount": {
 "chargingInformation": {
 "amount": "Decimal",
 "currency": "String",
 "description": " String"
 },
 },
 "code": "String",
 "resourceURL": "URL"
 "transactionOperationStatus": "String"
}}

A resourceURL is included as a reference to the response. The
transactionOperationStatus provides the resource state. See "Resource States" for
more information.

14Reserving Additional Amount
The Reserve Amount operation is used to update an existing reservation to request
additional funds or resources. See "Charge Amount" for more information. Change the
following parameters in the request for additional funds:

■ transactionOperationStatus=reserved: Indicates that we are not changing the
resource state, just the value being reserved. See "Resource States" for more
information.

■ amount: The additional reserved amount for this request (not the total amount
reserved so far).

■ referenceSequence: Each time you reserve an additional amount against an
existing reservation, make sure to iterate the referenceSequence each time. This
ensures Services Gatekeeper can distinguish between new requests for additional
amounts, and those that are being repeated due to a communication failure.

14Examples
Example 14–9 shows a sample of a OneAPI Reserve Amount request.

Example 14–9 OneAPI Reserve Amount Request

POST
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amountReserv
ation HTTP/1.1
Accept: application/json
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

Reserve Amount

14-16 Services Gatekeeper Communication Service Reference Guide

endUserId= tel%3A%2B15415550100&
transactionOperationStatus=reserved&
description= Streaming%20video%20of%20the%Big%20Fight&
currency=USD&
amount=10&
referenceCode=Video-abc123&
clientCorrelator=54321&
referenceSequence=1&
onBehalfOf=Example%20Video%20Inc&
purchaseCategoryCode=Video&
channel=WAP&
taxAmount=0

Example 14–10 shows a sample of a OneAPI Reserve Amount response.

Example 14–10 OneAPI Reserve Amount Response

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT
Location:
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amountReserv
ation/abc123

{"amountReservationTransaction": {
 "clientCorrelator": "54321",
 "endUserId": "tel:+15415550100",
 "paymentAmount": {"chargingInformation": {
 "amount": "10",
 "currency": "USD",
 "description": "Streaming video of the Big Fight"
 }},
 "code": "REF-12345",
 "referenceSequence": "1",
 "transactionOperationStatus": "Reserved"
}}

Example 14–11 shows a sample of a OneAPI Reserve Additional Amount request.

Example 14–11 OneAPI Reserve Additional Amount Request

POST
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amountReserv
ation/abc123 HTTP/1.1
Accept: application/json
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

transactionOperationStatus=reserved&
amount=5&
code=REF-12346&
referenceSequence=2&

Example 14–12 shows a sample of a OneAPI Reserve Additional Amount response.

Reserve Amount

OneAPI Payment/Diameter 14-17

Example 14–12 OneAPI Reserve Additional Amount Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"amountReservationTransaction": {
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "amountReserved": "15",
 "chargingInformation": {
 "amount": "10",
 "currency": "USD",
 "description": "Streaming Video of the Big Fight"
 },
 "totalAmountCharged": "0"
 },
 "code": "REF-12346",
 "referenceSequence": "2",
 "resourceURL": "
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amountReserv
ation/abc123",
 "transactionOperationStatus": "Reserved"
}}

Charge Reservation

14-18 Services Gatekeeper Communication Service Reference Guide

Charge Reservation

The Charge Reservation operation charges a previously reserved amount against a
subscriber’s account.

To charge a previously reserved amount to a subscriber’s account, provide the
information for billing, the reservation identifier obtained from the initial request to
reserve funds, and the reference code for any possible disputes.

14Authorization
Basic or OAuth 2.0

14HTTP Method
POST

14URI
http://host:port/oneapi/1/payment/endUserId/transactions/amountReservation/transac
tionID

Where:

host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

endUserId is the address of the subscriber to charge (MSISDN).

transactionID is the unique value generated by Services Gatekeeper from the original
reservation request.

14Request
Change the following parameters in the reservation request to charge against a
reservation:

■ transactionOperationStatus=charged: Indicates a change in the resource state to
charge against the reservation. See "Resource States" for more information.

■ amount: The total amount to charge against the reservation.

■ referenceSequence: Iterate the referenceSequence with the charge request. This
ensures the OneAPI server can distinguish between new requests for charging
against a reservation, and those that are being repeated due to a communication
failure.

■ description: Update the description to reflect the completed transaction.

The clientCorrelator parameter is not used as the resource has already been created.

14Response Header
If the request fails, the Status-Line header field contains the status code and the reason
for the failure. See “Errors and Exceptions” in Using the OneAPI RESTful Interfaces for
more information

Charge Reservation

OneAPI Payment/Diameter 14-19

14Response Body
The response body contains a confirmation amountReservationTransaction JSON data
structure consisting of the parameters supplied in the charge request.

{"amountReservationTransaction":
 "endUserId": "String",
 "paymentAmount": {
 "amountReserved":"Decimal",
 "chargingInformation": {
 "amount": "Decimal",
 "currency": "String",
 "description": " String"
 },
 "totalAmountCharged": "Decimal"
 },
 "code": "String",
 "resourceURL": "URL"
 "transactionOperationStatus": "String"
}

Once the charge has been applied, the amountReserved parameter should have a
value of zero. The totalAmountCharged parameter contains the final amount to
charge against the reservation.

A resourceURL is included as a reference to the response. The
transactionOperationStatus provides the resource state. See "Resource States" for
more information.

14Examples
Example 14–13 shows a sample of a OneAPI Charge Amount Against Reservation
request.

Example 14–13 OneAPI Charge Amount Against Reservation Request

POST
http://example.com/1/payment/tel%3A%2B15415550100/transactions/amountReservation/a
bc123 HTTP/1.1
Accept: application/json
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

transactionStatus=charged&
description= Three%20rounds%20of%20the%Big%20Fight&
amount=15&
code=REF-123457&
referenceSequence=3&

Example 14–14 shows a sample of a OneAPI Charge Amount Against Reservation
response.

Example 14–14 OneAPI Charge Amount Against Reservation Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

Charge Reservation

14-20 Services Gatekeeper Communication Service Reference Guide

{"amountReservationTransaction": {
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "amountReserved": "0",
 "chargingInformation": {
 "amount": "15",
 "currency": "USD",
 "description": " Streaming Video of the Big Fight "
 },
 "totalAmountCharged": "15"
 },
 "code": "REF-123457",
 "referenceSequence": "3",
 "resourceURL": "
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amountReserv
ation/abc123 ",
 "transactionOperationStatus": "Charged"
}}

Release Reservation

OneAPI Payment/Diameter 14-21

Release Reservation

The Release Reservation operation returns funds left in a reservation to the subscriber
account against which the reservation was made.

To return funds left in a reservation to an account, provide the transactionID identifier
obtained from the initial reservation request.

14Authorization
Basic or OAuth 2.0

14HTTP Method
POST

14URI
http://host:port/oneapi/1/payment/endUserId/transactions/amountReservation/transac
tionID

Where:

host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running

endUserId is the address of the subscriber to charge (MSISDN).

transactionID is the unique value generated by Services Gatekeeper from the original
reservation request.

14Request
Change the following parameters in the reservation request to release a reservation:

■ transactionOperationStatus=released: Indicates a change in the resource state to
release the reservation. See "Resource States" for more information.

■ referenceSequence: Iterate the referenceSequence when releasing a reservation.
This ensures the OneAPI server can distinguish between new requests for
reservation release, and those that are being repeated due to a communication
failure.

14Response Header
If the request fails, the Status-Line header field contains the status code and the reason
for the failure. See “Errors and Exceptions” in Using the OneAPI RESTful Interfaces for
more information.

14Response Body
The response body contains a confirmation amountReservationTransaction JSON data
structure consisting of the parameters supplied in the release reservation request.

 {"amountReservationTransaction": {
 "endUserId": "String",
 "paymentAmount": {
 "amountReserved":"Decimal",
 "chargingInformation": {

Release Reservation

14-22 Services Gatekeeper Communication Service Reference Guide

 "amount": "Decimal",
 "currency": "String",
 "description": " String"
 },
 "totalAmountCharged": "Decimal"
 },
 "code": "String",
 "resourceURL": "URL"
 "transactionOperationStatus": "String"
}}

Once the resource reservation has been released the amountReserved parameter
should have a value of zero. The totalAmountCharged parameter contains the final
amount to charge against the reservation.

A resourceURL is included as a reference to the response. The
transactionOperationStatus provides the resource state. See "Resource States" for
more information.

14Examples
Example 14–15 shows a sample of a OneAPI Release Reservation request.

Example 14–15 OneAPI Charge Release Reservation Request

POST
http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amountReserv
ation/abc123 HTTP/1.1
Accept: application/json
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

transactionOperationStatus=released&
referenceSequence=4&

Example 14–16 shows a sample of a OneAPI Release Reservation response.

Example 14–16 OneAPI Release Reservation Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"amountReservationTransaction": {
 "endUserId": "tel:+15415550100",
 "paymentAmount": {
 "amountReserved": "0",
 "chargingInformation": {
 "amount": "10",
 "currency": "USD",
 "description": "Streaming Video of the Big Fight"
 },
 "totalAmountCharged": "5"
 },
 "code": "REF-12346",
 "referenceSequence": "4",
 "resourceURL": "

Release Reservation

OneAPI Payment/Diameter 14-23

http://example.com/oneapi/1/payment/tel%3A%2B15415550100/transactions/amountReserv
ation/abc123 ",
 "transactionOperationStatus": "Released"
}}

Resource States

14-24 Services Gatekeeper Communication Service Reference Guide

Resource States

The client application passes the transactionOperationStatus in the request body so
that the resource can be placed into a desired state. Services Gatekeeper either
confirms this desired state in the transactionStatus response field, or instead shows a
failure state as shown in Table 14–1 and Table 14–2.

Table 14–1 Resource States for Charges and Refunds

Value Description

Charged A successful charge was made.

Refunded A successful refund was made.

Denied The policy exception in the response will explain
the reason. For example, insufficient balance,
security issue, etc.

Refused The charge or refund was refused, or not
explicitly accepted.

Table 14–2 Resource States for Reservations

Value Description

Reserved A successful reservation was created.

Denied The policy exception in the response will explain
the reason. For example, insufficient balance,
security issue, etc.

Refused The reservation was refused, or not explicitly
accepted.

Charged A reservation has been charged against.

Released The reservation has ended.

Payment Exceptions

OneAPI Payment/Diameter 14-25

Payment Exceptions

For an overview of exceptions in the Services Gatekeeper RESTful interface, see
“Errors and Exceptions” in Using the OneAPI RESTful Interfaces for more information.
A list of service and policy exceptions specific to the payment interface is provided in
Table 14–3.

Table 14–3 Service Exceptions for Payment

ID Exception Text Variables

SVC0270 Charging operation failed,
the charge was not applied

None

SVC0271 Refunds not supported Guidance from the implementation on what to
do instead should be provided

SVC0273 Refund failed The reason the refund failed. Valid reasons
include:

■ The user did not accept the refund

■ The refund request is for an amount
greater than the original charge

Payment Exceptions

14-26 Services Gatekeeper Communication Service Reference Guide

15

OneAPI Short Messaging/SMPP 15-1

15OneAPI Short Messaging/SMPP

This chapter describes the Oracle Communications Services Gatekeeper OneAPI Short
messaging/SMPP communication service in detail.

About the OneAPI Short Messaging Interface
Applications use the RESTful OneAPI SMS interface to send and fetch SMS messages,
deliver status reports, and start and stop notifications.

When the request body for an SMS operation contains a request for a delivery receipt,
the application provides a notifyURL correlator for the message being sent and
includes an endpoint address for returning the delivery notification.

The Services Gatekeeper OneAPI SMS interface complies with Open Mobile Alliance
(OMA) specifications. See the discussion on OneAPI short messaging in Services
Gatekeeper Statement of Compliance for a reference to the supported specification and
RESTful bindings schema.

See "Using the OneAPI RESTful Interfaces" in Services Gatekeeper Application Developer's
Guide for information on using the Services Gatekeeper OneAPI interfaces.

The information provided in this chapter is based on the OneAPI specification and is
provided here for convenience.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the OneAPI REST service descriptions of these operations are located
here:

http://host:port/oneapi/1/smsmessaging/application.wadl

where host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

Sending SMS Messages

15-2 Services Gatekeeper Communication Service Reference Guide

Sending SMS Messages

To send an SMS message, provide the OneAPI-formatted URI of the addresses that
must receive the message in the request body. If the sender requires a delivery receipt,
specify the required parameters for the receipt.

If the Send SMS operation is successful, the Location header field in the response
contains the request identifier (which is also provided in the response body for this
operation).

If the application requires a receipt for delivery of the message, the application must
provide the notifyURL to which notifications are to be sent in the message body.

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/oneapi/1/smsmessaging/outbound/senderAddress/requests

Where:

host and port are the host name and port of the machine on which Services Gatekeeper
is installed.

senderAddress is the subscriber for which the message is being sent.

15Request Header
The MIME-type for the Content-Type header field can be
application/x-www-form-urlencoded, application/json or application/xml.

15Request Body
The request body for the OneAPI send SMS operation accepts the following
parameters:

■ address: String. At least one address is the URL-escaped end user ID; in this case
the MSISDN including the ’tel:’ protocol identifier and the country code preceded
by ‘+’. i.e., tel:+15415550100.

■ message: String. Must be URL-escaped as per RFC 1738. Messages over 160
characters may be sent as two or more messages by the operator.

■ senderAddress: String. The address to whom a responding SMS may be sent.

■ clientCorrelator: String. Optional. Uniquely identifies this create SMS request. If
there is a communication failure during the request, using the same client
correlator when retrying the request allows the operator to avoid sending the same
SMS twice.

■ senderName: String. Optional. The URL-escaped name of the sender to appear on
the terminal. This is the address to whom a responding SMS may be sent.

Sending SMS Messages

OneAPI Short Messaging/SMPP 15-3

If the senderName parameter is present, Services Gatekeeper displays the
senderName value as the sender entry in the SMS message delivered to the mobile
subscriber.

If the senderName parameter is not present, Services Gatekeeper displays the
value in the senderAddress parameter as the sender entry in the SMS message
delivered to the mobile subscriber.

■ notifyURL: anyURL. The URL-escaped URL to which a notification of delivery
sent. The notifyURL will be ignored if a notification subscription already exists for
the senderAddress. The format of this notification is shown in Example 15–1.

callbackData: String. Will be passed back in this notification, so you can use it to
identify the message the receipt relates to or any other useful data, such as a
function name.

15Response Header
The Location header field contains the URI:

http://host:port/oneapi/1/smsmessaging/outbound/address/requests/requestID

Where requestID is the string identifier returned in the response body.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. For more information, see "Errors and Exceptions" in Services
Gatekeeper Application Developer's Guide.

15Response Body
The body of the response contains the request identifier as the string value for the
resourceReference attribute. It is the request identifier returned in the Location header
field of the response message and is also included in the resourceReference body. The
application uses this request identifier to retrieve the delivery status for the sent
message.

The response body for this operation is represented by the following JSON structure,
where the value part of the name/value pair indicates its data type:

{"resourceReference": {"resourceURL": "String"}}

15Examples
Example 15–1 shows a sample OneAPI Send SMS request.

Example 15–1 OneAPI Send SMS Request

POST http://example.com/oneapi/1/smsmessaging/outbound/
tel%3A%2B5550100/requests HTTP/1.1
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Accept: application/json

address=tel%3A%2B15415550100&
address=tel%3A %2B15415550101&
senderAddress=tel:%2B5550100&
message=Hello%20World&
clientCorrelator=123456&
notifyURL=http://application.example.com/notifications/DeliveryInfoNotification&
callbackData=some-data-useful-to-the-requester&
senderName=ACME%20Inc.

Sending SMS Messages

15-4 Services Gatekeeper Communication Service Reference Guide

Example 15–2 shows a sample Send SMS response.

Example 15–2 OneAPI Send SMS Response

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/1/smsmessaging/outbound/
tel%3A%2B5550100/requests/abc123
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"resourceReference": {"resourceURL": "
http://example.com/oneapi/1/smsmessaging/outbound/
tel%3A%2B5550100/requests/abc123"}}

Query Delivery Status of SMS Message

OneAPI Short Messaging/SMPP 15-5

Query Delivery Status of SMS Message

The Query Delivery Status operation retrieves the delivery status of a previously-sent
message by using the system-generated requestID returned when the message was
created.

If the Query Delivery Status is successful, the response body contains the delivery
status for each of the addresses contained in the original send SMS request.

15Authorization
Basic or OAuth 2.0

15HTTP Method
GET

15URI
http://host:port/oneapi/1/smsmessaging/outbound/senderAddress/requests/requestID/d
eliveryInfos

Where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

■ senderAddress is the address to which a responding SMS may be sent.

■ requestID is the identifier returned in the result object of the corresponding Send
operation.

15Request Body
There is no request body.

15Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. See “Errors and Exceptions” in Using the
OneAPI RESTful Interfaces for more information.

15Response Body
The response body contains an array of structures as the value for deliveryInfo. Each
element in the array contains values for the following parameters.

■ address: String. The telephone number to which the initial message was sent.

■ deliveryStatus: Enumeration value. Table 15–1 lists the possible statuses:

Table 15–1 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to the network. For
concatenated messages, returned only when all
the SMS-parts have been successfully delivered to
the network.

Query Delivery Status of SMS Message

15-6 Services Gatekeeper Communication Service Reference Guide

■ resourceURL: A reference to the response.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

{"deliveryInfoList": {
 "deliveryInfo": [
 { "address": "String",
 "deliveryStatus": "String"},
 { "address": "String",
 "deliveryStatus": "String"}],
 "resourceURL": "
http://example.com/oneapi/1/smsmessaging/outbound/senderAddress/requests/requestID
/deliveryInfos"
}}

15Examples
Example 15–3 shows a sample OneAPI Query Delivery Status request.

Example 15–3 OneAPI Query Delivery Status Request

GET
http://example.com/oneapi/1/smsmessaging/outbound/tel%3A%2B5550100/requests/abc123
/deliveryInfos HTTP/1.1
Accept: application/json

Example 15–4 shows a sample OneAPI Query Delivery Status response.

Example 15–4 OneAPI Query Delivery Status Response

HTTP/1.1 200 OK
Content-Type: application/json
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"deliveryInfoList": {
 "deliveryInfo": [
 { "address": "tel:+15415550100",
 "deliveryStatus": "MessageWaiting"},
 { "address": "tel:+15415550101",
 "deliveryStatus": "MessageWaiting"}],
 "resourceURL": "
http://example.com/oneapi/1/smsmessaging/outbound/tel%3A%2B5550100/requests/abc123
/deliveryInfos "

DeliveryUncertain Delivery status unknown, for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

DeliveredToTerminal Successful delivery to the terminal. For
concatenated messages, returned only when all
the SMS-parts have been successfully delivered to
the terminal.

MessageWaiting The message is still queued for delivery. This is a
temporary state, pending transition to one of the
preceding states.

Table 15–1 (Cont.) Enumeration Values for Delivery Status

Value Description

Query Delivery Status of SMS Message

OneAPI Short Messaging/SMPP 15-7

}}

Subscribe to SMS Delivery Notification

15-8 Services Gatekeeper Communication Service Reference Guide

Subscribe to SMS Delivery Notification

The Subscribe to SMS Delivery Notification operation creates a subscription to
delivery notifications for an application.

To set up an SMS notification, provide the criteria which will trigger notifications and
a notifyURL for the delivery of the notifications. The criteria can be a string which,
when matched, could be the notification of an SMS received or of a delivery receipt.

The request body contains the correlator for the notification, the notifyURL to which
the call direction notifications must be sent and, optionally, the callbackData (a string
to identify the notification).

If the subscription request is successful:

■ The response header will contain the URI of the publish/subscribe server.

■ A data object associated with the result of the short message operation will be sent
to the notifyURL address specified in the request body. This data object will
contain the appropriate notification (that the message was received or a delivery
receipt for the call).

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/oneapi/1/smsmessaging/outbound/senderAddress/subscriptions

where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

■ senderAddress is the address to whom a responding SMS may be sent.

15Request Header
The MIME-type for the Content-Type header field can be application/json,
application/xml, or application/x-www-form-urlencoded.

15Request Body
The request body for the subscription operation accepts the following parameters:

■ notifyURL: URL. This will be used by the server to POST the notifications to you,
so include the URL of your own listener application

■ clientCorrelator: String. Optional. Uniquely identifies this create subscription
request. If there is a communication failure during the request, using the same
client correlator when retrying the request allows the operator to avoid creating a
duplicate subscription.

■ callbackData: String. Optional. A function name or other data that you would like
included when the POST is received.

Subscribe to SMS Delivery Notification

OneAPI Short Messaging/SMPP 15-9

15Response Header
The Location header field contains the URI of the notification server:

http://host:port/oneapi/1/smsmessaging/outbound/subscriptions/subscriptionID

Where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

■ subscriptionID is the reference to the created subscription.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. For more information, see "Errors and Exceptions" in Services
Gatekeeper Application Developer's Guide.

15Response Body
The response body contains a confirmation deliveryReceiptSubscription JSON data
structure consisting of the parameters supplied in the subscription request.

{"deliveryReceiptSubscription": {
 "callbackReference": {
 "callbackData": "String",
 "notifyURL": " www.yourURL.here ",
 "criteria":"String"
 },
 "resourceURL": " URL "}}

A resourceURL is included as a reference to the response.

15Notification Data Object for SMS Delivery Receipt Sent to notifyURL
After a OneAPI SMS subscription is made, Services Gatekeeper delivers a message
receipt notification to the notifyURL specified in the subscription request.

This nested JSON object contains the following as the value of the attribute name
deliveryInfoNotification:

■ callbackData: String. The correlator used to identify the notification.

■ deliveryInfo: JSON Object. Contains the following two parameters:

– address: String. The message recipient’s subscriber ID.

– deliveryStatus: Enumeration value. Table 15–2 lists the possible statuses:

Table 15–2 Enumeration Values for Delivery Status

Value Description

DeliveredToNetwork Successful delivery to the network. For
concatenated messages, returned only when all
the SMS-parts have been successfully delivered to
the network.

DeliveryUncertain Delivery status unknown, for example, if it was
handed off to another network.

DeliveryImpossible Unsuccessful delivery; the message could not be
delivered before it expired.

Subscribe to SMS Delivery Notification

15-10 Services Gatekeeper Communication Service Reference Guide

The notification data object delivered to the notifyURL address is represented by the
following JSON data structure, where the value part of each name/value pair indicates
its data type:

{"deliveryInfoNotification": {
 "callbackData": "String",
 "deliveryInfo": {
 "address": "String",
 "deliveryStatus": "Enumeration Value"},
 }}

15Examples
Example 15–5 shows a sample OneAPI Subscribe to SMS Delivery Notifications
request.

Example 15–5 OneAPI Subscribe to SMS Delivery Notifications Request

POST http://example.com/oneapi/1/smsmessaging/outbound/
tel%3A%2B5550100/subscriptions HTTP/1.1
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Accept: application/json

notifyURL=http://www.oracle.com&
criteria="GIGPICS"&
callbackData=doSomething()

Example 15–6 shows a sample OneAPI Subscribe to SMS Delivery Notifications
response.

Example 15–6 OneAPI Subscribe to SMS Delivery Notifications Response

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/oneapip/1/smsmessaging/outbound/subscriptions/sub789
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"deliveryReceiptSubscription": {
 "callbackReference": {
 "callbackData": "doSomething()",
 "notifyURL": " www.oracle.com ",
 "criteria":"Urgent"
 },
 "resourceURL": "
http://example.com/oneapi/1/smsmessaging/outbound/subscriptions/sub789 "}}

Example 15–7 shows a sample OneAPI SMS Delivery Notification message.

DeliveredToTerminal Successful delivery to the terminal. For
concatenated messages, returned only when all
the SMS-parts have been successfully delivered to
the terminal.

Table 15–2 (Cont.) Enumeration Values for Delivery Status

Value Description

Subscribe to SMS Delivery Notification

OneAPI Short Messaging/SMPP 15-11

Example 15–7 OneAPI SMS Delivery Notification Message

{"deliveryInfoNotification": {
 "callbackData": "12345",
 "deliveryInfo": {
 "address": "tel:+15415550100",
 "deliveryStatus": "DeliveredToNetwork"},
 }}

Stop Subscription to Delivery Notifications

15-12 Services Gatekeeper Communication Service Reference Guide

Stop Subscription to Delivery Notifications

The Stop Subscription to Delivery Notification operation terminates a previously set
up SMS notification for the application.

To stop a previously set up SMS notification, provide the correlator for the notification
passed earlier in the Subscribe to SMS Delivery Notification request.

There is no request or response body for the Stop Subscription to Delivery Notification
operation. If the request fails, the body of the error response will contain the identifier
for the notification and the type of exception.

15Authorization
Basic or OAuth 2.0

15HTTP Method
DELETE

15URI
http://host:port/oneapi/1/smsmessaging/outbound/subscriptions/subscriptionID

Where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

■ subscriptionID is the reference to the created subscription.

15Request Body
There is no request body.

15Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. For more information, see "Errors and
Exceptions" in Services Gatekeeper Application Developer's Guide.

15Response Body
There is no response body.

15Examples
Example 15–8 shows a sample OneAPI Stop Subscription to SMS Delivery
Notifications request.

Example 15–8 OneAPI Stop Subscription to Deliver Notification Request

DELETE http://example.com/oneapi/1/smsmessaging/outbound/subscriptions/sub789
HTTP/1.1
Accept: application/json
Host: example.com:80

Stop Subscription to Delivery Notifications

OneAPI Short Messaging/SMPP 15-13

Example 15–9 shows a sample OneAPI Stop Subscription to SMS Delivery
Notifications response.

Example 15–9 OneAPI Stop Subscription to Deliver Notification Response

HTTP/1.1 204 No Content
Date: Thu, 04 Jun 2009 02:51:59 GMT

Retrieve Messages Sent to Web Application

15-14 Services Gatekeeper Communication Service Reference Guide

Retrieve Messages Sent to Web Application

The OneAPI Retrieve Messages Sent to Web Application operation polls Services
Gatekeeper for the SMS messages that have been received from the network for an
application.

The request header for the Retrieve Messages SMS operation contains the registration
identifier necessary to retrieve the SMS messages intended for the application. This
registration value should have been set up with the off-line provisioning step that
enables the application to receive notification that SMS messages have been received.

There is no request body.

If the Retrieve Messages Sent to Web Application operation is successful, the response
body will contain the message, the URI of the sender, the SMS service activation
number, and the date and time when the message was sent.

15Authorization
Basic or OAuth 2.0

15HTTP Method
GET

15URI
http://host:port/oneapi/1/smsmessaging/inbound/registrations/registrationID/messag
es?maxBatchSize=X

where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

■ registrationId is the value previously set up to enable the application to receive
notification that SMS messages have been received according to specified criteria.

■ The value of maxBatchSize is the maximum number of message to return.

15Request Header
The MIME-type for the accept header field is application/json.

15Request Body
There is no request body.

15Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. For more information, see "Errors and
Exceptions" in Services Gatekeeper Application Developer's Guide.

15Response Body
The response body is an inboundSMSMessageList containing an array of structures
as the value for inboundSMSMessage. The response body also contains the following
parameters:

Retrieve Messages Sent to Web Application

OneAPI Short Messaging/SMPP 15-15

■ inboundSMSMessage: Array. Contains the following parameters:

– dateTime: dateTime. The date and time when the message was received.

– destinationAddress: String. The number or shortcode for the application.

– messageID: String. A server generated message identifier.

– message: String. The SMS message.

– resourceURL: URL. Link to the message.

– senderAddress: String. The MSISDN of the sender.

■ numberOfMessagesInThisBatch: Integer. The total number of messages in the
batch.

■ resourceURL: URL Self-referring resource URL.

The response body for this operation is represented by the following JSON data
structure, where the value part of each name/value pair indicates its data type:

"inboundSMSMessage": [
 { "dateTime": "dateTime",
 "destinationAddress": "String",
 "messageId": "String",
 "message": "String",
 "resourceURL": "URL",
 "senderAddress": "String"},

15Examples
Example 15–10 shows a sample OneAPI Retrieve Messages request.

Example 15–10 OneAPI Retrieve Messages Request

GET
http://example.com/oneapi/1/smsmessaging/inbound/registrations/3456/messages?maxBa
tchSize=2 HTTP/1.1
Host: example.com:80
Accept: application/json

Example 15–11 shows a sample OneAPI Retrieve Messages response.

Example 15–11 OneAPI Retrieve Messages Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 12345
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"inboundSMSMessageList": {
 "inboundSMSMessage": [
 { "dateTime": "2009-11-19T12:00:00",
 "destinationAddress": "3456",
 "messageId": "msg1",
 "message": "Let’s Go Sharks!!",
 "resourceURL":
"http://example.com/oneapi/1/smsmessaging/inbound/registrations/3456/messages/msg1
",
 "senderAddress": "+15415550100"},
 { "dateTime": "2009-11-19T12:00:00",
 "destinationAddress": "3456",

Retrieve Messages Sent to Web Application

15-16 Services Gatekeeper Communication Service Reference Guide

 "messageId": "msg2",
 "message": "Thorton Shoots! He Scores! Goal!",
 "resourceURL": "
http://example.com/oneapi/1/smsmessaging/inbound/registrations/3456/messages/msg2"
,
 "senderAddress": "+15415550100"}
],
 "numberOfMessagesInThisBatch": "2",
 "resourceURL":
"http://example.com/oneapi/1/smsmessaging/inbound/registrations/3456/messages",
 "totalNumberOfPendingMessages": "20"}}

Subscribe to Notifications of Messages Sent to Application

OneAPI Short Messaging/SMPP 15-17

Subscribe to Notifications of Messages Sent to Application

The Subscribe to Notifications Sent to Application operation creates a subscription to
delivery notifications for when an application receives a message.

To set up an application notification, provide the destinationAddress that will trigger
notifications and a notifyURL for the delivery of the notifications. The
destinationAddress is the MSISDN, or code set up in Services Gatekeeper, to which
subscribers may send an SMS to your application.

If the subscription request is successful:

■ The response header contains the URI of the publish/subscribe server.

■ The response contains a resourceURL indicating the URI of the newly created
subscription.

15Authorization
Basic or OAuth 2.0

15HTTP Method
POST

15URI
http://host:port/oneapi/1/smsmessaging/inbound/subscriptions

where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

15Request Header
The MIME-type for the Content-Type header field is
application/x-www-form-urlencoded.

15Request Body
The request body for the subscription operation accepts the following parameters:

■ destinationAddress: String. The MSISDN, or code agreed upon by the operator, to
which subscribers may send an SMS to your application.

■ notifyURL: URL. Is used by the server to POST the notifications to you, so include
the URL of your own listener application.

■ criteria: String. Optional. Case-insensitive text to match against the first word of
the message, ignoring any leading whitespace. This allows you to reuse a short
code among various applications, each of which can register its own subscription
with different criteria.

■ notificationFormat: Content Type. Optional. The content type in which
notifications will be sent; for OneAPI only JSON is supported.

■ clientCorrelator: String. Optional. Uniquely identifies this create subscription
request. If there is a communication failure during the request, using the same

Subscribe to Notifications of Messages Sent to Application

15-18 Services Gatekeeper Communication Service Reference Guide

client correlator when retrying the request allows the operator to avoid creating a
duplicate subscription.

■ callbackData: String. Optional. A function name or other data that you would like
included when the POST is received.

15Response Header
The Location header field contains the URI of the publish/subscribe server:

http://host:port/oneapi/1/smsmessaging/inbound/subscriptions/subscriptionID

where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

■ subscriptionID is the reference to the created subscription.

If the request fails, the Status-Line header field will contain the status code and the
reason for the failure. For more information, see "Errors and Exceptions" in Services
Gatekeeper Application Developer's Guide.

15Response Body
The response body contains a confirmation resourceReference JSON data structure
consisting of the parameters supplied in the subscription request.

{"resourceReference": {"resourceURL": "URL"}}

The resourceURL indicates the URI of the newly created subscription.

15Notification Data Object for Application Notification Message Sent to notifyURL
After a OneAPI Application Notification subscription is made, Services Gatekeeper
delivers a message receipt notification to the specified notifyURL in the subscription
request.

This nested JSON object contains the following parameters as the value of the attribute
name inboundSMSMessageNotification:

■ callbackData: String. The correlator used to identify the notification.

■ inboundSMSMessage: Array. Contains the following parameters:

– dateTime: dateTime. The date and time when the message was received.

– destinationAddress: String. The number or shortcode for the application.

– messageID: String. A server-generated message identifier.

– message: String. The SMS message.

– resourceURL: URL. A link to the message.

– senderAddress: String. The MSISDN of the sender.

The notification data object delivered to the notifyURL address is represented by the
following JSON data structure, where the value part of each name/value pair indicates
its data type:

{"inboundSMSMessageNotification": {
 "callbackData": "String",
 "inboundSMSMessage": {
 "dateTime": "dateTime",

Subscribe to Notifications of Messages Sent to Application

OneAPI Short Messaging/SMPP 15-19

 "destinationAddress": "String",
 "messageId": "String",
 "message": "String",
 "senderAddress": "String"
 }
}}

15Examples
Example 15–12 shows a sample OneAPI Subscribe to Notifications of Messages Sent to
Applications request.

Example 15–12 OneAPI Subscribe to Notifications of Messages Sent to Applications
Request

POST http://example.com/oneapi/1/smsmessaging/inbound/subscriptions HTTP/1.1
Host: example.com:80
Content-Type: application/x-www-form-urlencoded
Accept: application/json

destinationAddress=3456&
notifyURL=http://www.yoururl.here/notifications/DeliveryInfoNotification&
criteria=Vote&
notificationFormat=JSON&
callbackData=doSomething()&
clientCorrelator=12345

Example 15–13 shows a sample OneAPI Subscribe to Notifications of Messages Sent to
Applications response.

Example 15–13 OneAPI Subscribe to Notifications of Messages Sent to Application
Response

HTTP/1.1 201 Created
Content-Type: application/json
Location: http://example.com/oneapi/1/smsmessaging/inbound/subscriptions/sub678
Content-Length: 254
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"resourceReference": {"resourceURL":
"http://example.com/oneapi/1/smsmessaging/inbound/subscriptions/sub678"}}

Example 15–14 shows a sample OneAPI Application Notification Message.

Example 15–14 OneAPI Application Notification Message

{"inboundSMSMessageNotification": {
 "callbackData": "12345",
 "inboundSMSMessage": {
 "dateTime": "2009-11-19T12:00:00",
 "destinationAddress": "3456",
 "messageId": "mes1234",
 "message": "Vote for Mega Boy Band",
 "senderAddress": "+15415550100"
 }
}}

Stop Subscription to Application Message Notifications

15-20 Services Gatekeeper Communication Service Reference Guide

Stop Subscription to Application Message Notifications

The Stop Subscription to Application Message Notification operation terminates a
previously set up application message notification subscription.

To stop a previously set up subscription, provide the correlator for the notification
passed earlier in the Subscribe to Notifications of Messages Sent to Application
request.

There is no request or response body for the Stop Subscription to Notifications of
Messages Sent to Application operation. If the request fails, the body of the error
response will contain the identifier for the notification and the type of exception.

15Authorization
Basic or OAuth 2.0

15HTTP Method
DELETE

15URI
http://host:port/oneapi/1/smsmessaging/inbound/subscriptions/subscriptionID

where:

■ host and port are the host name and port of the machine on which Services
Gatekeeper is installed.

■ subscriptionID is the reference to the created subscription.

15Request Body
There is no request body.

15Response Header
Standard header fields. If the request fails, the Status-Line header field will contain the
status code and the reason for the failure. For more information, see "Errors and
Exceptions" in Services Gatekeeper Application Developer's Guide.

15Response Body
There is no response body.

15Examples
Example 15–15 shows a sample OneAPI Stop Subscription to Notifications of
Messages Sent to Application request.

Example 15–15 OneAPI Stop Subscription to Notifications of Messages Sent to
Application Request

DELETE http://example.com/oneapi/1/smsmessaging/inbound/subscriptions/sub123
HTTP/1.1
Accept: application/json
Host: example.com:80

Stop Subscription to Application Message Notifications

OneAPI Short Messaging/SMPP 15-21

Example 15–16 shows a sample OneAPI Stop Subscription to Notifications of
Messages Sent to Application response.

Example 15–16 OneAPI Stop Subscription to Notifications of Messages Sent to
Application Response

HTTP/1.1 204 No content
Accept: application/json
Date: Thu, 04 Jun 2009 02:51:59 GMT

Stop Subscription to Application Message Notifications

15-22 Services Gatekeeper Communication Service Reference Guide

16

OneAPI Terminal Location/MLP 16-1

16OneAPI Terminal Location/MLP

This chapter describes the Oracle Communications Services Gatekeeper OneAPI
Terminal Location/MLP communication service in detail.

About the Terminal Location Interface
Applications use the RESTful OneAPI Terminal Location interface to get a location for
an individual terminal or a group of terminals.

The Services Gatekeeper OneAPI Location interface complies with Open Mobile
Alliance (OMA) specifications. See the discussion about OneAPI terminal location in
Services Gatekeeper Statement of Compliance for a reference to the supported specification
and RESTful bindings schema.

See “Using the OneAPI RESTful Interfaces” in Services Gatekeeper Application
Developer's Guide for general information on using the OneAPI RESTful interfaces.

The information provided in this document is based on the OneAPI specification and
is provided here for convenience.

REST Service Descriptions Available at Run-time
When the Administration Server for your Services Gatekeeper domain is in the
running state, the REST service descriptions of these operations are located here:

http://host:port/oneapi/1/terminallocation/application.wadl

Where host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

Query Mobile Terminal Location

16-2 Services Gatekeeper Communication Service Reference Guide

Query Mobile Terminal Location

The Query Terminal Location operation retrieves the location of one or more terminals.

To retrieve the location of a specific terminal, provide its URI as the address value of
the query object in the Request-URI of the GET method. Repeat the address parameter
in the request for multiple terminals.

If the Query Terminal Location operation is successful, the response body contains a
nested JSON data object containing the physical coordinates of each specific terminal
and the date and time for when such data was last collected.

A locationRetrievalStatus is also provided for each terminal in the response body.

16Authorization
Basic or OAuth 2.0

16HTTP Method
GET

16URI
http://host:port/oneapi/1/terminallocation/queries/location?${query}

Where:

■ host and port are the host name and port of the machine on which the Services
Gatekeeper Access Tier (AT) services are running.

■ ${query} contains the following parameters:

– address: String. The MSISDN of the mobile device to locate. Repeat the
address parameter for multiple devices. The protocol and ‘+’ identifier must
be used for MSISDN, and must be URL-escaped. %3A represents ‘:’ and %2B
represents ‘+’.

– requestedAccuracy: Integer. The preferred accuracy of the result, in meters.
Typically, when you request an accurate location, it will take longer to retrieve
than a coarse location. For example, requestedAccuracy=10 will take longer
than requestedAccuracy=100.

16Request Header
The MIME-type for the Content-Type header field is application/json.

16Request Body
There is no request body.

16Response Header
Standard header fields. If the request fails, the Status-Line header field contains the
status code and the reason for the failure. For more information, see the discussion
about "Errors and Exceptions" in Services Gatekeeper Application Developer's Guide.

Query Mobile Terminal Location

OneAPI Terminal Location/MLP 16-3

16Response Body
The location of the specific terminal is returned in the body of the response as the
value of the terminalLocation JSON object. For more than one terminal, a
terminalLocationList consisting of multiple terminalLocation objects are returned.

The parameters in this object are:

■ address: String. Denotes the terminal located (local and international numbers are
supported).

■ currentLocation: JSON Object. Contains the following parameters:

– accuracy: Integer

– altitude: Integer

– latitude: Number (floating point)

– longitude: Number (floating point)

– timestamp: String. The date and time when the terminal’s geographical
coordinates were collected, given in ISO 8601 extended format,
yyyy-mm-ddThh-mm-ss.

■ locationRetrievalStatus: String. Contains one of the possible values:

– Retrieved: Successful retrieval of the terminal location for the address

– Not Retrieved: Services Gatekeeper was unable to locate the terminal location
for the address

– Error: A service policy or exception has occurred. For more information, see
the discussion about "Errors and Exceptions" in Services Gatekeeper Application
Developer's Guide.

The response body for this operation is represented by the following JSON data
structure, where the value part of the name/value pair indicates its data type. A
response containing multiple terminal locations are contained in a
terminalLocationList structure, as in Example 16–4, "Query Multiple Mobile
Terminals Location Response".

{"terminalLocation": {
 "address": "String",
 "currentLocation": {
 "accuracy": "Integer",
 "altitude": "Float",
 "latitude": "Float",
 "longitude": "Float",
 "timestamp": "Calendar"
 },

16Examples
Example 16–1 shows a sample of a OneAPI Single Mobile Terminal Location request.

Example 16–1 Query Single Mobile Terminal Location Request

GET
http://example.com/oneapi/1/terminallocation/queries/location?&address=tel&3A%2B15
415550100&requestedAccuracy=1000 HTTP/1.1
Host: example.com:80
Accept: application/json

Example 16–2 shows a sample of a OneAPI Single Mobile Terminal response.

Query Mobile Terminal Location

16-4 Services Gatekeeper Communication Service Reference Guide

Example 16–2 Query Single Mobile Terminal Location Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 1234
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"terminalLocationList": {"terminalLocation": {
 "address": "tel:15415550100",
 "currentLocation": {
 "accuracy": "100",
 "altitude": "1001.0",
 "latitude": "-80.86302",
 "longitude": "41.277306",
 "timestamp": "2009-06-03T00:27:23.000Z"
 },
 "locationRetrievalStatus": "Retrieved"
}}}

Example 16–3 shows a sample of a OneAPI Multiple Mobile Terminals Location
request.

Example 16–3 Query Multiple Mobile Terminals Location Request

GET
http://example.com/oneapi/1/terminallocation/queries/location?&address=tel%3A%2B15
415550100&address=tel%3A%2B15415550101&requestedAccuracy=1000 HTTP/1.1
Host: example.com:80
Accept: application/json

Example 16–4 shows a sample of a OneAPI Multiple Mobile Terminals Location
request.

Example 16–4 Query Multiple Mobile Terminals Location Response

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.5
Server: Example/v3
Content-Type: application/json
Content-Length: 1234
Date: Thu, 04 Jun 2009 02:51:59 GMT

{"terminalLocationList": {"terminalLocation": [
 { "address": "tel:15415550100",
 "currentLocation": {
 "accuracy": "100",
 "altitude": "1001.0",
 "latitude": "-80.86302",
 "longitude": "41.277306",
 "timestamp": "2009-06-03T00:27:23.000Z"},
 "locationRetrievalStatus": "Retrieved"},
 { "address": "tel:15415550101",
 "errorInformation": {
 "messageId": "SVC0001",
 "text": "A service error occurred. %1 %2",
 "variables": ["Location information is not available for",
"tel:15415550101"]
 },
 "locationRetrievalStatus": "Error"
 }
]}}

17

Extended Web Services Binary SMS/SMPP 17-1

17Extended Web Services Binary SMS/SMPP

This chapter describes the Oracle Communications Services Gatekeeper Extended Web
Services (EWS) Binary SMS/Short Message Peer to Peer (SMPP) Communication
Service in detail.

Overview of the EWS Binary SMS/SMPP
The EWS Binary SMS/SMPP communication service allows applications to send and
receive generic binary object attachment, such as vCards. It exposes the Oracle
Extended Web Services Binary SMS interface.

The communication service acts as an External Short Message Entity (ESME) that
connects to a Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the EWS Binary SMS/SMPP
communication service supports for the application-facing interfaces and the network
protocols, see Services Gatekeeper Statement of Compliance.

Using the EWS Binary SMS/SMPP communication service an application can:

■ Send short messages with binary attachments to one or more destination
addresses.

■ Subscribe and unsubscribe for network-triggered binary short messages with
binary attachments.

■ Receive network-triggered short messages with binary attachments.

The actual message element is made up of an array of UDH and message parts,
encoded in Base64. See "3rd Generation Partnership Project; Technical Specification
Group Terminals; Technical realization of the short message service (SMS); (Release 6)
3GPP 23.040 Version 6.5.0" at:

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

The send message operation gives an application the flexibility to manipulate the
SMPP UDH and message data. The UDH and message data elements are each
optional, but both cannot be null at the same time; otherwise no data would be sent at
all. The overall binaryMessage element is required. The contents of the UDH and the
message can be of any binary data, although any byte array should be less than 140
bytes due to SMPP limitations, and the number of BinaryMessage arrays should be
less than the SegmentsLimit specified in OAM. The default value is 1024. See the
segmentsLimit attribute to SmsMBean for details.

This communication service supports automatic chunking of oversized binary SMS
messages to handle messages that exceed the maximum size limits that switches
enforce for a single SMS request. Oversized unsegmented messages are automatically

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

Overview of the EWS Binary SMS/SMPP

17-2 Services Gatekeeper Communication Service Reference Guide

divided into size-conforming individual messages. This feature is supported for SMSs
using user data header (UDH) and Sar headers, and you must select the header your
implementation uses. The default is UDH. See Configuring Automatic Chunking of
Binary SMSs for in Services Gatekeeper Application Developer’s Guide for details.

The notification operation gives the application access to an array of SMPP UDHs, the
SMPP DCS, the protocol identifier according to 3GPP 23.040 Version 6.5.0, and other
data such as sender address, destination address and timestamp of the message.

SMPP expects the sender name value to be in ASCII characters. The use of non-ASCII
characters may cause the request to become garbled or even be removed at the SMSCS

Services Gatekeeper provides support for the billing identification identifier, smpp_
billing_id, defined in SMPP Specification 5.1, through the use of a tunneled
parameter. It also supports the ussd_service_operation, which was added as an
optional parameter to the deliverSM operation as a tunneled parameter in SMPP v 5.1.
See the descriptions of the smpp_billing_id and ussd_service_operation tunneled
parameters in "Parlay X 2.1 Short Messaging/SMPP" for more information.

Send Receipts
Send receipts are acknowledgements that the network node has received the short
message from the application by Services Gatekeeper. Although a single short message
may be sent to multiple destination addresses, normally only one send receipt is
returned to the application by Services Gatekeeper. The receipt is returned
synchronously in the response message to the sendBinarySms operation.

Delivery Receipts
Delivery receipt notifications can be set up using the sendBinarySms operation, but
the actual asynchronous delivery of receipts is accomplished using the Parlay X 2.1
Short Messaging interface. See "Delivery Receipts" in "Parlay X 2.1 Short
Messaging/SMPP" for information on delivery receipts.

Connection Handling and Provisioning
The EWS Binary SMS/SMPP communication service uses the Services Gatekeeper
SMPP Server Service to establish and manage southbound connections between
Services Gatekeeper and Short Message Service Centers (SMSCs). The SMPP Server
Service is deployed as an Oracle WebLogic Server Service.

The SMPP Server Service provides these services for the Parlay X 2.1 Short Messaging
and Native SMPP plug-ins as well as for EWS Binary SMS/SMPP.

For information about configuration options pertaining to these client connections, see
the "System Properties for SMPP Server Service" and "Reference: Attributes and
Operations for SMPP Server Service" sections.

The client connection ID is created on the plug-in’s successful bind with the SMSC.
The connection ID changes on a successful rebind.

For information about connection handling and provisioning, multiple connections
and multiple plug-in instances, windowing, and load balancing/high availability, see
the applicable sections in "Parlay X 2.1 Short Messaging/SMPP".

Events and Statistics

Extended Web Services Binary SMS/SMPP 17-3

Application Interfaces
For information on the application interface for the EWS Binary SMS/SMPP
communication service, see the discussion about extended web services binary SMS in
Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion on
binary short messaging in Services Gatekeeper Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same
functionality as the application interfaces. The internal representations are identical,
and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics
For general information, see "Events, Alarms, and Charging".

The Extended Web Services Binary SMS/SMPP communication service generates
event data records (EDRs), charging data records (CDRs), alarms, and statistics to
assist system administrators and developers in monitoring the service.

Event Data
Table 17–1 lists the IDs of the EDRs created by the EWS Binary SMS/SMPP
communication service. This list does not include EDRs created when exceptions are
thrown.

See "Events and Statistics" for the list of EDRs generated by the SMPP Server Service.

Charging Data Records
EWS Binary SMS/SMPP-specific CDRs are generated under the following conditions:

■ After a mobile-terminated sendBinarySms request is sent from Services
Gatekeeper to the network.

■ After a a network-triggered binary SMS message has been successfully delivered
to the application.

Statistics
Table 17–2 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

Table 17–1 EDRs Generated by EWS Binary SMS /SMPP

EDRID Method Called

7101 sendBinarySms

7201 startBinarySmsNotification

7202 stopBinarySmsNotification

7204 notifyBinarySmsDeliveryReceipt

7205 notifyBinarySmsReception

Managing EWS Binary SMS/SMPP

17-4 Services Gatekeeper Communication Service Reference Guide

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing EWS Binary SMS/SMPP
The properties, workflow, tunneled parameters and management operations for the
EWS Binary SMS/SMPP communication service are identical to those provided for the
Parlay X 2.1 Short Messaging/SMPP communication service.

For details, see:

■ Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary
SMS/SMPP

■ Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services
Binary SMS/SMPP

■ Configuration Workflow for Parlay X 2.1 Short Messaging/SMPP and Extended
Web Services Binary SMS/SMPP

■ Management Operations in the SMPP Server Service

■ Set the fields and methods for the SmsMBean from the Administration Console or
a Java application. For information on the methods and fields, see the “All
Classes” section of Services Gatekeeper OAM Java API Reference

■ Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP

Table 17–2 Methods and Transaction Types for EWS Binary SMS/SMPP

Method Transaction type

sendBinarySMS TRANSACTION_TYPE_MESSAGING_SEND

receivedMobileOriginatedBinarySMS TRANSACTION_TYPE_MESSAGING_RECEIVE

18

Extended Web Services Quality of Service /Diameter 18-1

18Extended Web Services Quality of Service
/Diameter

This chapter describes the Oracle Communications Services Gatekeeper Extended Web
Services Quality of Service (QoS)/Diameter communication service in detail.

See Services Gatekeeper Application Developer's Guide for information on the QoS
RESTful interface.

Understanding the EWS Quality of Service/Diameter Communication
Service

The Services Gatekeeper Extended Web Services Quality of Service (QoS)/Diameter
communication service provides applications with a RESTful interface that allows
them to control the quality of a subscriber connection. Among the connection quality
aspects that the QoS feature can control include limiting and boosting subscriber
connection bandwidth, as well as tuning connection latency. The QoS RESTful
interface allows the application to initiate the following operations:

■ Apply a QoS policy

■ Apply a QoS policy based upon a pre-defined template

■ Modify an existing QoS policy

■ Remove an existing QoS policy

■ Register and unregister for QoS-related events

■ Query a QoS policy

While the Services Gatekeeper QoS feature enables an application to control QoS,
actually executing the applied QoS policy and applying quality changes to a
subscriber connection requires a separate Policy and Charging Rule Function (PCRF),
such as Oracle Communications Policy Controller, working in conjunction with a
Policy and Charging Enforcement Function (PCEF), solutions which are provided by
various third parties.

Note: Services Gatekeeper applies a QoS plan to a subscriber ID and
a framed IP address. Applying QoS plans to individual data streams
for a particular subscriber ID is not supported.

Application Interfaces

18-2 Services Gatekeeper Communication Service Reference Guide

Using Degraded Mode
This communication service offers a degraded mode feature to multi-tier Services
Gatekeeper implementations that use databases on standalone systems. Degraded
mode allows your implementation to continue processing traffic using Oracle
coherence storage in the event that the database becomes unavailable for any reason.
Processing time is not degraded, however this is intended as a short-term solution.
Your coherence memory is limited and can fill up depending on your request rate and
the size of your coherence memory. Once the coherence memory is full, your
implementation will no longer process requests.

To use this feature you must configure your Oracle Coherence settings; see
"Configuring Coherence to Use Degraded Mode" for details.

An Example End to End QoS Solution
While Services Gatekeeper can apply and remove QoS plans, it provides no capability
for actually enforcing QoS changes; instead it works in conjunction with PCRF and
PCEF servers. Figure 18–1 illustrates a typical end to end QoS solution:

Figure 18–1 An Example End to End QoS Solution

In Figure 18–1:

1. A subscriber’s mobile device is registered with the Gateway GPRS Support Node
(GGSN) or the PCEF.

2. The GGSN or PCEF requests a default QoS plan from the PCRF.

3. Once the QoS plan is returned from the PCRF, the GGSN or PCEF executes that
plan and connects the subscriber’s device to the Internet.

4. A subscriber application sends a RESTful request to Services Gatekeeper for a
change in QoS.

5. Services Gatekeeper sends the QoS request to the PCRF using the Rx protocol.

6. The PCRF pushes the new QoS plan to the PCEF using the Gx protocol, and the
PCEF executes that plan.

7. The PCRF interfaces with BRM or another billing management system to charge
the subscriber appropriately.

Application Interfaces
For information about the RESTful-based interface for the Extended Web Services
Quality of Service (QoS)/Diameter communication service, see the discussion of QoS
interfaces in the Services Gatekeeper Application Developer's Guide, another document in
this set.

Events and Statistics

Extended Web Services Quality of Service /Diameter 18-3

Events and Statistics
The Extended Web Services Quality of Service (QoS)/Diameter communication service
generates Event Data Records (EDRs) and alarms, to assist system administrators and
developers in monitoring the service.

For general information, see "Events, Alarms, and Charging".

Event Data Records
Table 18–1 lists IDs of the EDRs created by the Extended Web Services Quality of
Service (QoS)/Diameter communication service.

Alarms
For the list of QoS-related alarms, see Services Gatekeeper Alarms Handling Guide.

Table 18–1 EDRs Generated Quality of Service/Diameter Communication Service

EDR ID Method Called

91801 ApplyQoSFeatureResponse and applyQoSFeature

91802 QoSStatus and getQoSStatus

91803 ActualProperties and modifyQoSFeature

91804 removeQoSFeature

91805 QoSFeatureExpiration

91806 startQoSNotification

91807 stopQoSNotification

91808 sendInitAAR

91809 sendModifyAAR

91810 sendSTR

91811 handleRxRAR

91812 applicationQoSNotification_NotifyQoSEvent

91813 Application Tier: ApplyQoSFeatureResponse and
applyQoSFeature

91814 Application Tier: QoSStatus and getQoSStatus

91815 Application Tier: ActualProperties and modifyQoSFeature

91816 Application Tier: removeQoSFeature

91817 Application Tier: startQoSNotification

91818 Application Tier: stopQoSNotification

91819 applyTemplateBasedQoS

91820 modifyTemplateBasedQoS

91821 Application Tier: applyTemplateBasedQos

Specifications for the EWS Quality of Service/Diameter Communication Service

18-4 Services Gatekeeper Communication Service Reference Guide

Specifications for the EWS Quality of Service/Diameter Communication
Service

Table 18–2 lists the technical specifications for the Extended Web Services Quality of
Service (QoS)/Diameter communication service.

Managing the EWS Quality of Service/Diameter Communication Service
This section describes properties and workflows for the Extended Web Services
Quality of Service (QoS)/Diameter communication service plug-in instance.

General Configuration Workflow
The following procedure provides an outline to configure the Extended Web Services
Quality of Service (QoS)/Diameter plug-in using the Administration Console or an
MBean browser.

1. Select wlng, then PluginManager, and then createPluginInstance.

2. Set PluginServiceId to Plugin_qos_diameter and PluginInstanceId to Plugin_qos_
diametern where n is an integer that is not already in use by an existing QoS
plug-in instance.

3. Select wlng then PluginManager then addRoute.

Table 18–2 Elements of the Extended Web Services Quality of Service/ Diameter
Communication Service

Element Description

Managed object in
Administration Console

To access this object, select domain_name, then OCSG,
AdminServer, Communication Services, and then Plugin_qos_
diametern in that oder. Here, n is the number of the particular
plug-in instance.

MBean Domain=com.bea.wlcp.wlng

Deployment Name=wlng_nt_qos#6.0.0.0

InstanceName=Plugin_qos_diametern where n is the number of
the particular plug-in instance

Type=oracle.ocsg.plugin.qos.diameter.management.QoSMBean

Network protocol
plug-in service ID

Plugin_qos_diameter

Network protocol
plug-in instance ID

Plugin_qos_diamtern where n is the number of the particular
plug-in instance

Supported address
scheme

tel

Application-facing
interface

RESTful

Network-facing interface Diameter Rx

Service type QoS RESTful management interface

Deployment artifacts wlng_at_qos_rest.ear, wlng_nt_qos_rest.ear,
com.bea.wlcp.wlng.plugin.qos.diameter.store_6.0.0.0.jar, and
RestfulQoSClient.jar (PTE)

Managing the EWS Quality of Service/Diameter Communication Service

Extended Web Services Quality of Service /Diameter 18-5

4. Set PluginInstanceId to the id you configured in step 2 and enter an appropriate
value for AddressExpression depending upon your Services Gatekeeper
configuration.

5. Select the MBean wlng_nt_qos#6.0.0.0 and select the plug-in instance you created
in step 2.

6. Select wlng_nt_qos#6.0.0.0 then select the plug-in you created in step 2. Expand
QoSMBean and configure the plug-in instance attributes:

■ Attribute: DestinationHost

■ Attribute: DestinationPort

■ Attribute: DestinationRealm

■ Attribute: OriginHost

■ Attribute: OriginPort

■ Attribute: OriginRealm

7. Ensure that your PCRF is listening on the DestinationPort configured for the QoS
plug-in.

Configuring Coherence to Use Degraded Mode
Degraded mode uses coherence storage for processing in the even that an external
database is unavailable. You need to configure the coherence storage cache settings
from write-through to use both write-behind and refresh-ahead, and specify the
database tables to use for processing.

See "Using Degraded Mode" for a discussion on when to use this option.

See "Caching Data Sources" in Developing Applications with Oracle Coherence for a
discussion of the write-through, write-behind, and refresh-ahead options. See
“Managing and Configuring the Storage Service” in Services Gatekeeper System
Administrator's Guide for instructions on how to change this setting in Services
Gatekeeper.

To configure degraded mode:

1. Open the Gatekeeper_home/modules/com.bea.wlcp.wlng.storage.tc_
6.0.0.0.jar/gk-coherence-cache-config.xml file for editing.

2. Configure the coherence cache to use write-behind and refresh-ahead as shown in
the example below. This example sets up a write-behind cache with a
write-requeue-threshold of 10, a refresh-ahead factor of 0.5, and an expiry-delay of
20 seconds.

 <distributed-scheme>
 <scheme-name>default-wlng-write-behind</scheme-name>
 <service-name>DistributedCache</service-name>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme>
 <scheme-ref>default-rw-local-scheme</scheme-ref>
 </local-scheme>

Note: DestinationHost and DestinationPort should be the correct
values for your PCRF.

Managing the EWS Quality of Service/Diameter Communication Service

18-6 Services Gatekeeper Communication Service Reference Guide

 </internal-cache-scheme>
 <cachestore-scheme>
 <class-scheme>
 <scheme-ref>default-db-class-scheme</scheme-ref>
 </class-scheme>
 </cachestore-scheme>
 <read-only>false</read-only>
 <write-delay>20s</write-delay>
 <write-batch-factor>0.2</write-batch-factor>

 <write-requeue-threshold>10</write-requeue-threshold>
 <refresh-ahead-factor>0.5</refresh-ahead-factor>
 <expiry-delay>20s</expiry-delay>

 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

3. Save and close the file.

4. Open the domain_home/config/stora_
schema/com.bea.wlcp.wlng.plugin.qos.diameter.store_
5.1.0.0.jar/wlng-cachestore-config-extensions.xml file for writing.

5. Change the table type names for these database tables in the
wlng-cachestore-config-extensions.xml file:

■ rest_qos_session_data

■ rest_qos_notification_corres

■ rest_qos_notification_register

■ rest_qos_template

You need to change the type_id of these tables from wlng.db.wt to wlng.db.wb.
For example, change wlng.db.wt.plugin.qos.diameter.session_data to
wlng.db.wb.plugin.qos.diameter.session_data.

Example 18–1 shows these tables with the correct table names:

Example 18–1 Changing the rest_qos tables in wlng-cachestore-config-extensions.xml

- <store type_id="wlng.db.wb.plugin.qos.diameter.session_data" db_table_
name="rest_qos_session_data">
- <identifier>
 <classes key-class="java.lang.String"
value-class="oracle.ocsg.plugin.qos.diameter.store.AFSessionData" />
 </identifier>
 </store>
- <query name="com.bea.wlcp.wlng.plugin.qos.diameter.SessionDataQuery">
- <sql>
- <![CDATA[SELECT * FROM rest_qos_session_data WHERE sessionId = ?
]]>
 </sql>
 <filter-class>oracle.ocsg.plugin.qos.diameter.store.FilterImpl</filter-class>
 </query>
- <query name="com.bea.wlcp.wlng.plugin.qos.diameter.SessionDataQueryByNodeId">
- <sql>
- <![CDATA[SELECT * FROM rest_qos_session_data WHERE nodeid = ?
]]>
 </sql>

Managing the EWS Quality of Service/Diameter Communication Service

Extended Web Services Quality of Service /Diameter 18-7

 <filter-class>oracle.ocsg.plugin.qos.diameter.store.FilterImpl</filter-class>
 </query>
- <db_table name="rest_qos_notification_corres" desc="qos notification
correlator">
 <key_column name="correlator" data_type="VARCHAR(255)" desc="correlator" />
 <bucket_column name="correlatorData" desc="correlator data" />
 </db_table>
- <store type_id="wlng.db.wb.plugin.qos.diameter.notification.correlator" db_
table_name="rest_qos_notification_corres">
- <identifier>
 <classes key-class="java.lang.String"
value-class="oracle.ocsg.plugin.qos.diameter.store.CorrelatorData" />
 </identifier>
 </store>
- <query name="com.bea.wlcp.wlng.plugin.qos.diameter.CorrelatorQuery">
- <sql>
- <![CDATA[SELECT * FROM rest_qos_notification_corres
]]>
 </sql>
 <filter-class>oracle.ocsg.plugin.qos.diameter.store.FilterImpl</filter-class>
 </query>
- <db_table name="rest_qos_notification_register" desc="">
- <multi_key_column name="endUserId" data_type="VARCHAR(255)" desc="">
- <methods>
 <get_method name="getEndUserId" />
 <set_method name="setEndUserId" />
 </methods>
 </multi_key_column>
- <multi_key_column name="eventCriteria" data_type="INT" desc="">
- <methods>
 <get_method name="getEvent" />
 <set_method name="setEvent" />
 </methods>
 </multi_key_column>
 <bucket_column name="qoSRegisterData" desc="The register data of the qos
notification" />
- <value_column name="correlator" data_type="VARCHAR(255)" desc="correlator from
client(parlayRest)">
- <methods>
 <get_method name="getCorrelator" />
 <set_method name="setCorrelator" />
 </methods>
 </value_column>
- <value_column name="endpoint" data_type="VARCHAR(255)" desc="end point">
- <methods>
 <get_method name="getEndPoint" />
 <set_method name="setEndPoint" />
 </methods>
 </value_column>
 </db_table>
- <store type_id="wlng.db.wb.plugin.qos.diameter.qos_register_data" db_table_
name="rest_qos_notification_register">
- <identifier>
 <classes
key-class="oracle.ocsg.plugin.qos.diameter.store.QoSEventRegistrationKey"
value-class="oracle.ocsg.plugin.qos.diameter.store.QoSEventRegistration" />
 </identifier>
 </store>
- <query
name="com.bea.wlcp.wlng.plugin.qos.diameter.NotificationRegisterQueryByCorrelator"

Managing the EWS Quality of Service/Diameter Communication Service

18-8 Services Gatekeeper Communication Service Reference Guide

>
- <sql>
- <![CDATA[SELECT * FROM rest_qos_notification_register WHERE correlator = ?
]]>
 </sql>
 <filter-class>oracle.ocsg.plugin.qos.diameter.store.FilterImpl</filter-class>
 </query>
- <db_table name="rest_qos_template" desc="">
- <multi_key_column name="pluginInstanceId" data_type="VARCHAR(255)" desc="">
- <methods>
 <get_method name="getPluginId" />
 <set_method name="setPluginId" />
 </methods>
 </multi_key_column>
- <multi_key_column name="matchRule" data_type="VARCHAR(255)" desc="">
- <methods>
 <get_method name="getMatchRule" />
 <set_method name="setMatchRule" />
 </methods>
 </multi_key_column>
 <bucket_column name="qoSTemplateData" desc="The template data of the apply qos
request" />
- <value_column name="content" data_type="BLOB" desc="template configuration in
xml style">
- <methods>
 <get_method name="getContent" />
 <set_method name="setContent" />
 </methods>
 </value_column>
 </db_table>

6. Save and close the file.

7. If the domain is running, stop and restart it.

Managing Extended Web Services Quality of Service Templates
Using the Administration Console or an MBean browser such as the Platform Test
Environment, you can perform the following operations on QoS templates:

■ Load a QoS Template

■ Retrieve an Existing QoS Template

■ List Match Rules for a QoS Template

■ Delete a QoS Template

The creation of QoS templates and the usage of the QoS RESTful interface is covered in
detail in the Services Gatekeeper Application Developer's Guidee, another document in this
document set.

Load a QoS Template
For more information creating QoS templates, see the discussion on template-based
apply QoS in Services Gatekeeper Application Developer's Guide, another document in this
document set. Once you have created a QoS template, to load it, do the following.

1. Select the MBean wlng_nt_qos#6.0.0.0 and select the plug-in instance you wish to
configure.

2. Expand QoSMBean and select loadQoSRequestTemplate.

Managing the EWS Quality of Service/Diameter Communication Service

Extended Web Services Quality of Service /Diameter 18-9

3. In the MatchRule text box, enter a regular expression that matches the subscriber
identifiers you want associated with the QoS template.

4. In the Content text box, paste in the contents of a valid QoS template.

5. Execute the MBean operation.

The QoS template is loaded and available for use. See "Operation:
loadQoSRequestTemplate" for more details.

Retrieve an Existing QoS Template
To retrieve an existing QoS template, do the following.

1. Select the MBean wlng_nt_qos#6.0.0.0 and select the plug-in instance you wish to
configure.

2. Expand QoSMBean and select retrieveQoSRequestTemplate.

3. In the MatchRule text box, enter a regular expression that matches the subscriber
identifiers you have associated with a QoS template. If you are not sure which
MatchRules are defined, you can use the listQoSRequestTemplateMatchRules
operation.

4. Execute the MBean operation.

The QoS template is returned in the Output text box. See "Operation:
retrieveQoSRequestTemplate" for more details.

List Match Rules for a QoS Template
To list match rules for a QoS template, do the following.

1. Select the MBean wlng_nt_qos#6.0.0.0 and select the plug-in instance you wish to
configure.

2. Expand QoSMBean and select listQoSRequestTemplateMatchRules.

3. Execute the MBean operation.

The MatchRules configured for the plug-in are returned in the Output text box. See
"Operation: listQoSRequestTemplateMatchRule" for more details.

Delete a QoS Template
To delete a QoS template, do the following.

1. Select the MBean wlng_nt_qos#6.0.0.0 and select the plug-in instance you wish to
configure using the Administration Console or an MBean browser.

2. Expand QoSMBean and select deleteQoSRequestTemplate.

3. In the MatchRule text box, enter a regular expression that matches the subscriber
identifiers associated with the QoS template you want to delete.

4. Execute the MBean operation.

The QoS template is deleted. See "Operation: deleteQoSRequestTemplate" for more
details.

Reference: Attributes and Operations for EWS Quality of Service/ Diameter

18-10 Services Gatekeeper Communication Service Reference Guide

Reference: Attributes and Operations for EWS Quality of Service/
Diameter

This section describes the attributes and operations for the configuration and
maintenance of the Extended Web Services Quality of Service (QoS)/Diameter
communication service:

■ Attribute: DestinationHost

■ Attribute: DestinationPort

■ Attribute: DestinationRealm

■ Attribute: OriginHost

■ Attribute: OriginPort

■ Attribute: OriginRealm

■ Attribute: Connected

■ Operation: connect

■ Operation: disconnect

■ Operation: loadQoSRequestTemplate

■ Operation: retrieveQoSRequestTemplate

■ Operation: listQoSRequestTemplateMatchRule

■ Operation: deleteQoSRequestTemplate

Attribute: DestinationHost
Scope: Shared

Unit: Not applicable

Format: String

The host name of the PCRF diameter server.

Valid values are either a host name or a regular expression matching a host name. The
default value is host.destination.com.

Attribute: DestinationPort
Scope: Shared

Unit: Not applicable

Format: Integer

Port number of the PCRF diameter server.

Valid values are 0–65535. The default value is 3588.

Attribute: DestinationRealm
Scope: Shared

Unit: Not applicable

Format: String

Diameter destination realm used for requests.

Reference: Attributes and Operations for EWS Quality of Service/ Diameter

Extended Web Services Quality of Service /Diameter 18-11

Valid values are either a realm or a regular expression matching a realm. The default
value is destination.com.

Attribute: OriginHost
Scope: Local

Unit: Not applicable

Format: String

Host name of the machine running the QoS plug-in.

Valid values are either a host name or a regular expression matching a host name. The
default value is host.origin.com.

Attribute: OriginPort
Scope: Local

Unit: Not applicable

Format: Integer

Port number of the machine running the QoS plug-in.

Valid values are 0–65535. A value of 0 indicates a random port and should be used
when upgrading the plug-in. The default value is 0.

Attribute: OriginRealm
Scope: Local

Unit: Not applicable

Format: String

Diameter originating realm used for requests.

Valid values are either a realm or a regular expression matching a realm. The default
value is origin.com.

Attribute: Connected
Scope: Local

Unit: Not applicable

Format: Boolean

Boolean value indicating whether the plug-in is connected.

Valid values are true or false. The default value false.

Operation: connect
Scope: Local

Connects the QoS plug-in to the PCRF diameter server. If the plug-in is already
connected, it will first be disconnected and then reconnected using the current
parameters.

Signature:

connect()

Reference: Attributes and Operations for EWS Quality of Service/ Diameter

18-12 Services Gatekeeper Communication Service Reference Guide

Operation: disconnect
Scope: Local

Disconnects the QoS plug-in from the PCRF diameter server. If the plug-in is not
currently connected, no action is taken.

Signature:

disconnect()

Operation: loadQoSRequestTemplate
Scope: Shared

This operation loads a QoS template for use with the template-based QoS interfaces.

The MatchRule parameter is a regular expression that determines to which subscriber
IDs the QoS template will apply. For example a MatchRule value of tel:1234* will
match any subscriber whose ID begins with tel:1234.

The Content parameter takes a template formatted according to the XSD found in the
xsd subdirectory in the plugin_qos_diameter.jar file which itself is contained within
the wlng_nt_qos.ear archive located in Middleware_Home/ocsg_6.0/applications
directory.

For more information on QoS templates, see the discussion on template-based apply
QoS in Services Gatekeeper Application Developer's Guide.

Signature:

loadQoSRequestTemplate(MatchRule: String, Content: XML)

Table 18–3 lists the parameters that the loadQoSRequestTemplate operation accepts.

Operation: retrieveQoSRequestTemplate
Scope: Local

This operation retrieves a QoS template associated with a particular subscriber ID or a
range of subscriber IDs defined by the MatchRule parameter.

The MatchRule parameter is a regular expression that determines to which subscriber
IDs the QoS template is applied. For example a MatchRule value of tel:1234* will
match any subscriber whose ID begins with tel:1234.

Signature:

retrieveQoSRequestTemplate(MatchRule: String)

Table 18–4 lists the parameters that the retrieveQoSRequestTemplate operation
accepts.

Table 18–3 loadQoSRequestTemplate Parameters

Parameter Description

MatchRule Literal or regular expression matching one or more subscriber IDs.

Content A valid QoS template.

Reference: Attributes and Operations for EWS Quality of Service/ Diameter

Extended Web Services Quality of Service /Diameter 18-13

Operation: listQoSRequestTemplateMatchRule
Scope: Local

This operation lists all of the match rules that have been defined for the plug-in.

Signature:

listQoSRequestTemplateMatchRule()

Operation: deleteQoSRequestTemplate
Scope: Shared

This operation deletes a QoS template associated with a particular subscriber ID or a
range of subscriber IDs defined by the MatchRule parameter.

The MatchRule parameter is a regular expression that determines to which subscriber
IDs the QoS template is applied. For example a MatchRule value of tel:1234* will
match any subscriber whose ID begins with tel:1234.

Signature:

deleteQoSRequestTemplate(MatchRule: String)

Table 18–5 lists the operations that the deleteQoSRequestTemplate operation accepts.

Table 18–4 retrieveQoSRequestTemplate Parameters

Parameter Description

MatchRule Literal or regular expression matching one or more subscriber IDs.

Table 18–5 retrieveQoSRequestTemplate Parameters

Parameter Description

MatchRule Literal or regular expression matching one or more subscriber IDs.

Reference: Attributes and Operations for EWS Quality of Service/ Diameter

18-14 Services Gatekeeper Communication Service Reference Guide

19

Extended Web Services Subscriber Profile/LDAPv3 19-1

19Extended Web Services Subscriber
Profile/LDAPv3

This chapter describes the Oracle Communications Services Gatekeeper Extended Web
Services (EWS) Subscriber Profile/Lightweight Directory Access Protocol (LDAPv3)
communication service in detail.

Overview of the EWS Subscriber Profile/LDAPv3 Communication Service
The EWS Subscriber Profile/LDAPv3 communication service exposes Oracle’s
Extended Web Services Subscriber Profile application interface.

The communication service acts as an LDAP client to a directory service, connecting to
the directory service using LDAPv3.

For the exact version of the standards that the communication service supports for the
application-facing interfaces and the network protocols, see Services Gatekeeper
Statement of Compliance.

Using the EWS Subscriber Profile/LDAPv3 communication service, an application
can:

■ Retrieve the specific value for a particular property belonging to a subscriber
profile stored in an LDAP data source.

■ Retrieve an entire subscriber profile from an LDAP data source, subject to SLA
filtering.

Application Interfaces
For information about the application interface for the Extended Web Services
Subscriber Profile communication service, see the discussion on extended web services
subscriber profile in Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion on
subscriber profile in Services Gatekeeper Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same
functionality as the SOAP-based interfaces. The internal representations are identical,
and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Events and Statistics

19-2 Services Gatekeeper Communication Service Reference Guide

Events and Statistics
The EWS Subscriber Profile/LDAPv3 communication service generates Event Data
Records (EDRs), Charging Data Records (CDRs), alarms, and statistics to assist system
administrators and developers in monitoring the service

See "Events, Alarms, and Charging" for more information.

Event Data Records
Table 19–1 lists IDs of the EDRS created by the EWS Subscriber Profile/LDAPv3
communication service. This list does not include EDRs created when exceptions are
thrown

Charging Data Records
EWS Subscriber Profile/LDAPv3-specific CDRs are generated under the following
conditions:

■ After Services Gatekeeper has returned a full or partial subscriber profile to an
application based on one or more attributes requested by that application.

■ After Services Gatekeeper has returned a subscriber profile to an application based
on the ID of the profile.

Statistics
Table 19–2 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing EWS Subscriber Profile/LDAPv3
This section describes the properties and workflow for the EWS Subscriber
Profile/LDAPv3 plug-in instance.

It includes an LDAP server schema to use in constructing LDAP queries.

A connection pool is used for connections to the LDAP server. The connection pool is
shared among all plug-in instances, and any configuration settings related to this pool
or schema updates are broadcast to all plug-in instances in the cluster.

Use the updateLDAPSettings method to force configuration changes to take effect.

Table 19–1 EDRs Generated by EWS Subscriber Profile/LDAPv3

EDR ID Method Called

13001 get

13002 getProfile

Table 19–2 Methods and Transaction Types for EWS Subscriber Profile/LDAPv3

Method Transaction Type

get TRANSACTION_TYPE_SUBSCRIBER_PROFILE

getProfile TRANSACTION_TYPE_SUBSCRIBER_PROFILE

Managing EWS Subscriber Profile/LDAPv3

Extended Web Services Subscriber Profile/LDAPv3 19-3

Properties for EWS Subscriber Profile/LDAPv3
Table 19–3 lists the technical specifications for the communication service.

LDAP Server Schema
All subscriber-profile-related operations are handed off to network nodes that accept
LDAP queries according to LDAPv3. The decision concerning which node in the
LDAP directory should be used to perform the query is decided at run time based on

Table 19–3 Properties for EWS Subscriber Profile/LDAPv3

Property Description

Managed object in
Administration Console

To access the object, select domain_name, then OCSG, then server_
name, then Communication Services, then plugin_instance_id in
that order.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned
when the plug-in instance is created.

Type=com.bea.wlcp.wlng.plugin.subscriberprofile.ldap.managed
plugin.management.SubscriberProfileMBean

Documentation: See the “All Classes” section of Services Gatekeeper
OAM Java API Reference

Network protocol
plug-in service ID

Plugin_ews_subscriber_profile_ldap

Network protocol
plug-in instance ID

The ID is assigned when the plug-in instance is created. See the
discussion about configuring and managing the plug-in manager
in Services Gatekeeper System Administrator's Guide.

Supported Address
Scheme

tel, id, imsi, ipv4/ipv6

Application-facing
interface

com.bea.wlcp.wlng.ews.plugin.SubscriberProfilePlugin

Service type SubscriberProfile

Exposes to the service
communication layer a
Java representation of:

Extended Web Services Subscriber Profile

Interfaces with the
network nodes using:

LDAP

Deployment artifact

NT EAR

wlng_nt_subscriber_
profile_ews.ear

ews_subscriber_profile_service.jar and Plugin_ews_subscriber_
profile_ldap.jar

Deployment artifact

AT EAR: Normal

wlng_at_subscriber_
profile_ews.ear

ews_subscriber_profile.war and rest_subscriber_profile.war

Deployment artifact

AT EAR: SOAP Only

wlng_at_subscriber_
profile_ews_soap.ear

ews_subscriber_profile.war

Managing EWS Subscriber Profile/LDAPv3

19-4 Services Gatekeeper Communication Service Reference Guide

configuration settings. The data that is handed back to the application that initiated
the Subscriber Profile query is filtered using the result filter mechanism in the service
provider group and application group SLAs. For more information, see the discussion
about <resultRestrictions> in the defining service provider group and application
group SLAs desction of the Services Gatekeeper Accounts and SLAs Guide.

A schema is used for constructing queries. See Example 19–1.

Example 19–1 LDAP Query schema XSD

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="LdapConfig">
<xs:complexType>
<xs:sequence>
<xs:element name="Keys" type="KeySet" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="LdapObject" type="LdapObject" minOccurs="1"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="KeyObject">
<xs:sequence>
<xs:element name="uriScheme" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="addressKeyName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="objectKeyName" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="objectKeyValue" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="optional"/>
</xs:complexType>

<xs:complexType name="KeySet">
<xs:sequence>
<xs:element name="Key" type="KeyObject" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="LdapObject">
<xs:sequence>
<xs:element name="ObjectKeySet" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="keyName" type="xs:string" use="required"/>
<xs:attribute name="keyValue" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

The LDAP server schema describes the following elements:

■ LdapObject: Holder of a KeySet

■ KeySet: Defines a collection of KeyObjects. Sets of keys are used because there
may be several ways to reach a certain node in the tree. One LDAP plug-in
instance can be configured with several KeySets and can provide the link between
the search key in the Extended Web Services interface and the LDAP tree.

■ KeyObject: Defines an entry point to the LDAP tree and provides the link
between the search key in the Extended Web Services interface and the LDAP tree.

Table 19–4 describes the schema objects in detail.

Managing EWS Subscriber Profile/LDAPv3

Extended Web Services Subscriber Profile/LDAPv3 19-5

Example 19–2 shows a directory information tree built using the schema described in
Table 19–4.

Example 19–2 Example of LDAP server schema

<?xml version="1.0" encoding="UTF-8"?>
<LdapConfig xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation='sp_config.xsd'>
<Keys id="myKeys">
<Key id="misidnKey">
<uriScheme>tel</uriScheme>
<addressKeyName>msisdn</addressKeyName>
<objectKeyName>domainName</objectKeyName>
<objectKeyValue>msisdnD</objectKeyValue>
</Key>
<Key id="imsiKey">
<uriScheme>imsi</uriScheme>
<addressKeyName>imsi</addressKeyName>
<objectKeyName>domainName</objectKeyName>
<objectKeyValue>imsiD</objectKeyValue>
</Key>
<Key id="subscriberIdKey">
<uriScheme>id</uriScheme>
<addressKeyName>id</addressKeyName>
<objectKeyName>domainName</objectKeyName>

Table 19–4 LDAP Server Schema

Object Element Description

LdapObject ObjectKeySet Defines the KeySet through which it can be
reached. Refers to theID attribute of a
defined KeySet.

LdapObject id The identity of the LdapObject. Can be
referenced from other LdapObjects through
the ParentObjectId field.

LdapObject keyName The name of the key through which the
LdapObject can be reached.

LdapObject keyValue The value of the key through which the
LdapObject can be reached.

KeyObject uriScheme Defines the URI scheme of the address for
which this key applies.

KeyObject addressKeyName Defines the key name with which the
address value is associated.

KeyObject objectKeyName Provides the possibility of defining the
addressing key of a possible tree node
above the node that is reached by the
address key (that is, like the domain object
in the 3DS directory information tree).

KeyObject objectKeyValue See objectKeyName. Defines the value of
the key.

KeyObject id The identity of the key. Used only for
descriptive purposes.

KeySet Key All keys in the KeySet

KeySet id The identity of the KeySet. Used when
associating an LdapObject with a KeySet.

Managing EWS Subscriber Profile/LDAPv3

19-6 Services Gatekeeper Communication Service Reference Guide

<objectKeyValue>subsD</objectKeyValue>
</Key>
<Key id="ipv4Key">
<uriScheme>ipv4</uriScheme>
<addressKeyName>ipv4Addr</addressKeyName>
<objectKeyName>domainName</objectKeyName>
<objectKeyValue>ipv4D</objectKeyValue>
</Key>
</Keys>
<LdapObject id="mySchema" keyName="serviceName" keyValue="mySchema">
<ObjectKeySet>myKeys</ObjectKeySet>
</LdapObject>
</LdapConfig>

Configuration Workflow for EWS Subscriber Profile/LDAPv3
Following is an outline for configuring the plug-in using the Administration Console
or an MBean browser.

1. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID as listed in the "Properties for
EWS Subscriber Profile/LDAPv3" section.

2. Select the MBean for the plug-in instance. The MBean display name is the same as
the plug-in instance ID given when the plug-in instance was created.

3. Define the characteristics of the LDAP server to connect to using these fields:

■ Port

■ AuthDN

■ BaseDN

■ AuthPassword

4. Define the schema using either the Schema field or the updateSchemaURL
operation.

See "LDAP Server Schema" for a description of the schema and "Configuration
Workflow for EWS Subscriber Profile/LDAPv3" for a description of the mappings.

5. Define the connection pool characteristics for the connection using these fields:

■ MinConnections

■ MaxConnections

■ ConnTimeout

■ RecoverTimerInterval

6. Set up the routing rules to the plug-in instance. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in instance ID and address schemes listed in
the "Properties for EWS Subscriber Profile/LDAPv3" section.

7. If required, create and load a node SLA. For details see the discussion about
defining global node and service provider group node SLAs and managing SLAs
in Services Gatekeeper Accounts and SLAs Guide.

8. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Managing EWS Subscriber Profile/LDAPv3

Extended Web Services Subscriber Profile/LDAPv3 19-7

Management Operations for EWS Subscriber Profile/LDAPv3
There are no specific management operations, except for the updateLDAPSettings
method, used to update the LDAP connection pool after changing any of these fields:

■ MinConnections

■ MaxConnections

■ ConnTimeout

■ RecoverTimerInterval

Provisioning for EWS Subscriber Profile/LDAPv3
If the results from the LDAP query should be filtered, use the service provider group
and application group SLAs. See the discussion about <resultRestrictions> in the
defining service provider group and application group SLAs desction of the Services
Gatekeeper Accounts and SLAs Guide.

For a description of the attributes and operations of the SubscriberProfileMBean
MBean, see the “All Classes” section of Services Gatekeeper OAM Java API Reference.

Managing EWS Subscriber Profile/LDAPv3

19-8 Services Gatekeeper Communication Service Reference Guide

20

Extended Web Services WAP Push/PAP 20-1

20Extended Web Services WAP Push/PAP

This chapter describes the Oracle Communications Services Gatekeeper Extended Web
Services (EWS) WAP Push/Push Access Protocol (PAP) communication service in
detail.

Overview of the EWS WAP Push/PAP Communication Service
The EWS WAP Push/PAP communication service exposes the Oracle Extended Web
Services WAP Push interface.

The communication service connects to a Push Proxy Gateway (PPG) using Push
Access Protocol (PAP) 2.0. See "Push Access Protocol (PAP) 2.0" for information about
this network protocol.

For the exact version of the standards that the communication service supports for the
application-facing interfaces and the network protocols, see Services Gatekeeper
Statement of Compliance.

Using the EWS WAP Push/PAP communication service, an application can:

■ Send a WAP Push message to a single or multiple (bulk) destinations.

■ Send a replacement WAP Push message.

■ Ask to be notified asynchronously of the status of WAP Push messages that have
been sent. The possible values returned include:

– Rejected: The message was not accepted.

– Pending: The message is in process.

– Delivered: The message was successfully delivered to the end-user.

– Undeliverable: The message could not be delivered because of a problem.

– Expired: The message reached the maximum age allowed by server policy or
could not be delivered by the time specified in the push submission.

– Aborted: The mobile device aborted the message.

– Timeout: The delivery process timed out.

– Cancelled: The message was cancelled through the cancel operation.

– Unknown: The server does not know the state of the message.

■ Send a result notification message. This occurs only if the initial push submission
was accepted for processing. One result notification message is sent per
destination address.

Application Interfaces

20-2 Services Gatekeeper Communication Service Reference Guide

Push Access Protocol (PAP) 2.0
EWS WAP Push/PAP supports a subset of the PAP 2.0 operations. These include:

■ push-message: Submits a message to be delivered. This operation is also used to
send a replacement message.

■ push-response: The response to the push-message operation. This response
includes a code specifying the immediate status of the message submission, of the
following general types:

– 1xxx Success: The action was successfully received, understood, and accepted

– 2xxx Client Error: The request contains bad syntax or cannot be fulfilled

– 3xxx Server Error: The server failed to fulfil an apparently valid request

– 4xxx: Service Failure: The service could not be performed. The operation may
be retried

■ resultnotification-message: Specifies the final outcome of a specific message for a
specific recipient. Sent only if the initial request includes the URL to which this
notification is to be delivered. Includes both textual indication of state and a status
code including the following general types:

– 1xxx Success: The action was successfully received, understood, and accepted

– 2xxx Client Error: The request contains bad syntax or cannot be fulfilled

– 3xxx Server Error: The telecom network node failed to fulfil an apparently
valid request

– 4xxx: Service Failure: The service could not be performed. The operation may
be retried

– 5xxx: Mobile Device Abort: The mobile device aborted the operation.

■ resultnotification-response: The response to the result notification. This response
includes a code specifying the status of the notification

– 1xxx Success: The action was successfully received, understood, and accepted

– 2xxx Client Error: The request contains bad syntax or cannot be fulfilled

■ badmessage-response: A response indicating that request is unrecognizable or is of
a protocol version that is not supported. This response contains either a 3002 code
(Version not supported) or a 2000 code (Bad Request). In the case of Bad Request, a
fragment of the unrecognizable message is included in the response

See Services Gatekeeper Statement of Compliance for the exact version of the protocol
standard Services Gatekeeper supports.

Application Interfaces
For information about the application interface for the Extended Web Services WAP
Push communication service, see the discussion on Extended Web Services WAP Push
in Services Gatekeeper Application Developer's Guide.

For information about the RESTful Call Notification interface, see the discussion on
WAP Push in Services Gatekeeper Application Developer's Guide.

The RESTful Service Call Notification interfaces provide RESTful access to the same
functionality as the SOAP-based interfaces. The internal representations are identical,
and for the purposes of creating SLAs and reading CDRs, and so on, they are the same.

Managing the EWS WAP Push/PAP Communication Service

Extended Web Services WAP Push/PAP 20-3

Events and Statistics
The EWS WAP Push/PAP communication service generates Event Data Records
(EDRs), charging data records (CDRs), alarms, and statistics to assist system
administrators and developers in monitoring the service

See "Events, Alarms, and Charging" for more information.

Charging Data Records
EWS WAP Push/PAP-specific CDRs are generated under the following conditions:

■ When the sendPushMessage response returns from the network.

■ When a sendResultNotificationMessage response returns from the application.

Event Data Records
Table 20–1 lists the IDs of the EDRs created by the EWS WAP Push communication
service.

Statistics
Table 20–2 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing the EWS WAP Push/PAP Communication Service
This section describes the properties and workflow for the EWS WAP Push/PAP
plug-in instance.

Properties for EWS WAP Push/PAP
Table 20–3 lists the technical specifications for the communication service.

Table 20–1 EDRs Generated by EWS WAP Push/PAP

EDRID Method Called

14001 sendPushMessage

14002 sendResultNotificationMessage

Table 20–2 Methods and Transaction Types for EWS WAP Push/PAP

Method Transaction type

sendPushMessage TRANSACTION_TYPE_MESSAGE_SENDER_SEND

sendResultNotificationMessage TRANSACTION_TYPE_MESSAGE_SENDER_NOTIFY

Table 20–3 Properties for EWS WAP Push/PAP

Property Description

Managed object in
Administration Console

To access the managed object, select domain_name, then OCSG,
then server_name, then Communication Services, then plugin_
instance_id in that order.

Managing the EWS WAP Push/PAP Communication Service

20-4 Services Gatekeeper Communication Service Reference Guide

WAP User Address Scheme
The wapuser address scheme supports the client address formats defined in the
Wireless Application Protocol Push Proxy Gateway Service Specification.

To use the wapuser address scheme, the application should set the WAPPUSH and
TYPE values in the destinationAddress. For example, given the address:

WAPPUSH=+155519990730

TYPE=PLMN@ppg.carrier.com

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id assigned
when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.pushmessage.pap.management
.PushMessagePAPMBean

Documentation: See the “All Classes” section of Services Gatekeeper
OAM Java API Reference

Network protocol
plug-in service ID

Plugin_ews_push_message_pap

Network protocol
plug-in instance ID

The ID is assigned when the plug-in instance is created. See the
discussion about configuring and managing the plug-in manager
in Services Gatekeeper System Administrator's Guide.

Supported Address
Scheme

tel, wapuser

See "WAP User Address Scheme" for information on the wapuser
address scheme.

Application-facing
interface

com.bea.wlcp.wlng.ews.plugin.PushMessagePlugin

com.bea.wlcp.wlng.ews.callback.PushMessageNotificationCallb
ack

Service type PushMessage

Exposes to the service
communication layer a
Java representation of:

Extended Web Services WAP Push

Interfaces with the
network nodes using:

Push Access Protocol (PAP), 2.0. WAP-247-PAP-20010429-a

Deployment artifact:

NT EAR

wlng_nt_push_message_
ews.ear

ews_push_message_service.jar, Plugin_ews_push_message_
pap.jar, and ews_push_message_pap.war

Deployment artifact:

AT EAR: Normal

wlng_at_push_message_
ews.ear

ews_push_message.war, ews_push_message_callback.jar, and
rest_push_message.war

Deployment artifact:

AT EAR: SOAP Only

wlng_at_push_message_
ews_soap.ear

ews_push_message.war and ews_push_message_callback.jar

Table 20–3 (Cont.) Properties for EWS WAP Push/PAP

Property Description

Managing the EWS WAP Push/PAP Communication Service

Extended Web Services WAP Push/PAP 20-5

set the destinationAddress to:

WAPPUSH=+155519990730/TYPE=PLMN@ppg.carrier.com

Given the address:

WAPPUSH=john.doe%40wapforum.org

TYPE=USER@ppg.carrier.com

set the destinationAddress to:

WAPPUSH=john.doe%40wapforum.org/ TYPE=USER@ppg.carrier.com

Configuration Workflow for EWS WAP Push/PAP
Following is an outline for configuring the plug-in using the Administration Console.

1. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID as listed in the "Properties for
EWS WAP Push/PAP" section.

2. Using the Administration Console or an MBean browser, select the MBean for the
plug-in instance. The MBean display name is the same as the plug-in instance ID
assigned when the plug-in instance was created.

3. Define the characteristics of the PPG server to connect to using the
PPGNotificationURL and PPGURL fields.

4. Specify heartbeat behavior. See the discussion on configuring heartbeats in Services
Gatekeeper System Administrator's Guide.

5. Set up the routing rules to the plug-in instance. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in instance ID and address schemes listed in
the "Properties for EWS WAP Push/PAP" section.

6. If required, create and load a node SLA. For details see the discussion on defining
global node and service provider group node SLAs and managing SLAs in Services
Gatekeeper Accounts and SLAs Guide.

7. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

For a description of the attributes and operations of the PushMessagePAPMBean
MBean, see the “All Classes” section of Services Gatekeeper OAM Java API Reference.

Managing the EWS WAP Push/PAP Communication Service

20-6 Services Gatekeeper Communication Service Reference Guide

21

Native MM7 21-1

21Native MM7

This chapter describes the Oracle Communications Services Gatekeeper Native MM7
communication service in detail.

Overview of the Native MM7 Communication Service
The Native MM7 communication service exposes the 3GPP MM7 standard interfaces.

From the point of view of an application, the communication service acts as an MMS
relay server. From the point of view of the network, it acts as an MMS VAS application.

For the exact version of the standards that the Native MM7 communication service
supports for the application-facing interfaces and the network protocols, see Services
Gatekeeper Statement of Compliance.

Using the Native MM7 communication service, an application can:

■ Send a multimedia message to one or many destination addresses.

The payload in these multimedia messages can be any type that can be specified
using Multipurpose Internet Mail Extensions (MIME), including multipart
messages. If a subscription for notifications has been previously set up, the request
can also specify that a delivery report or a read report should be returned later in
relation to this message.

■ Receive delivery reports on sent multimedia messages that have arrived from the
network.

■ Receive read-reply reports on sent multimedia messages that have arrived from
the network.

■ Receive multimedia messages from the network.

Requests can flow in two directions using the Native MM7 communication service:
from the application to the network and from the network to the application.

Status Reports
There are two types of status reports that can be returned to the application from the
network via Services Gatekeeper. Both are returned asynchronously, using callback
information provided when the notification is set up. If the network sends a report but
no notification has been set up, Services Gatekeeper sends the network an error code
indicating permanent failure.

■ Delivery Reports

■ Read-Reply Report

Application Interfaces

21-2 Services Gatekeeper Communication Service Reference Guide

Delivery Reports
Delivery reports are acknowledgements that the network node has handled the
message from the application that was submitted. The report indicates the status of the
message: for example, Forwarded, Expired, or Rejected. There is one delivery report
per destination address. If a connection error occurs within Services Gatekeeper or
between Services Gatekeeper and the application, an error code is returned to the
network, which resends the message.

Read-Reply Report
Read-reply reports contain the final delivery status of the multimedia message. The
final delivery status reports whether the message has actually been delivered by the
network to the mobile terminal. It also includes the status of the message at that
terminal; for example, Read or Deleted without being read.

Because a recipient can request that read-reply reports not be generated, lack of a
read-reply report does not necessarily mean that the message has not been rendered
on the recipient’s terminal.

There is one read-reply report per destination address. If a connection error occurs
within Services Gatekeeper or between Services Gatekeeper and the application, an
error code is returned to the network, which resends the message.

Network-triggered Multimedia Messages
For an application to receive multimedia messages from the network, it must register
its interest in these messages by setting up a subscription. A subscription, or
notification, is defined by a destination address. For the message to be accepted by
Services Gatekeeper, the destination address must match the subscription. Each
registered subscription must be unique, and subscription attempts with overlapping
criteria are rejected. If a message with several destination addresses arrives, Services
Gatekeeper iterates through the list until it reaches a match or until the list is
exhausted.

Application Interfaces
For information on the application interface for the Native MM7 communication
service, see the discussion about the Native Interfaces in Services Gatekeeper Application
Developer's Guide.

Events and Statistics
The Native MM7 communication service generates Event Data Records (EDRs),
Charging Data Records (CDRs), alarms, and statistics to assist system administrators
and developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records
Table 21–1 lists the IDs of the EDRs created by the Native MM7 communication
service.

Managing Native MM7

Native MM7 21-3

Charging Data Records
Native MM7 -specific CDRs are generated under the following conditions:

■ After an MMS message has been successfully sent from the application to the
network.

■ After an MMS message has been successfully sent from the network to the
application.

■ After a delivery report has been successfully delivered to the application.

■ After a read-reply report has been successfully delivered to the application.

Statistics
Table 21–2 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing Native MM7
This section describes the properties and workflow for the Native MM7
communication service.

Properties for Native MM7
Table 21–3 lists the technical specifications for the communication service.

Table 21–1 EDRs Generated by Native MM7

EDR ID Description

401000 An application-initiated message has entered the plug-in.

401001 An application-initiated message has exited the plug-in.

401002 A network-triggered message sent via v.1.0 has entered the
plug-in.

401003 A network-triggered message has exited the plug-in. It is
formatted according to v. 1.2.

401004 A delivery report using v. 1.0 has entered the plug-in.

401005 A delivery report has exited the plug-in. It is formatted according
to v 1.2

401006 A read-reply report using v. 1.0 has entered the plug-in.

401007 A read-reply report has exited the plug-in. It is formatted
according to v. 1.2

Table 21–2 Methods and Transaction Types for Native MM7

Method Transaction type

submit TRANSACTION_TYPE_MESSAGING_MMS_SEND

deliver TRANSACTION_TYPE_MESSAGING_MMS_RECEIVE

Managing Native MM7

21-4 Services Gatekeeper Communication Service Reference Guide

Configuration Workflow for Native MM7
Following is an outline for configuring the plug-in using the Administration Console
or an MBean browser.

1. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID as listed in the "Properties for
Native MM7" section.

2. Using the Administration Console or an MBean browser, select the MBean for the
plug-in instance. The MBean display name is the same as the plug-in instance ID
assigned when the plug-in instance was created.

3. Configure the behavior of the plug-in instance with these fields

■ Mm7RelayServerAddress

■ HTTPBasicAuthentication. If using HTTP basic authentication also define:
these fields

– HTTPBasicAuthenticationUsername

– HTTPBasicAuthenticationPassword

Table 21–3 Properties for Native MM7

Property Description

Managed object in
Administration Console

To access the managed object, select domain_name, then OCSG,
then server_name, then Communication Services, and then
plugin_instance_id in that order.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id
assigned when the plug-in instance is created

Type=com.bea.wlcp.wlng.plugin.mm7.management.Mm7MBe
an

Network protocol plug-in
service ID

Plugin_multimedia_messaging_mm7

Network protocol plug-in
instance ID

The ID is assigned when the plug-in instance is created. See the
discussion about configuring and managing the plug-in
manager in Services Gatekeeper System Administrator's Guide.

Supported Address Scheme tel, mailto, short

Application-facing
interfaces

com.bea.wlcp.wlng.mm7.plugin.MmsPlugin

com.bea.wlcp.wlng.mm7.callback.MmsVaspCallback

Service type Mm7

Exposes to the service
communication layer a Java
representation of:

3GPP TS 23.140 V5.3.0 (REL-5-MM7-1-2.xsd)

Interfaces with the network
nodes using:

MM7 (REL-5-MM7-1-0 or REL-5-MM7-1-2)

Deployment artifacts Plugin_multimedia_messaging_mm7.jar, mm7_service.jar, 1_
0_mm7_vasp.war, 1_2_mm7_vasp.war packaged in wlng_nt_
multimedia_messaging_mm7.ear

mm7.war, mm7_callback_client.jar packaged in wlng_at_
multimedia_messaging_mm7.ear

Managing Native MM7

Native MM7 21-5

■ XSDVersion

4. Specify heartbeat behavior. See the discussion on configuring heartbeats in Services
Gatekeeper System Administrator's Guide.

5. Set up the routing rules to the plug-in instance. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in instance ID and address schemes listed in
the "Properties for Native MM7" section.

6. Provide the administrator of the MM7 server with the URL to which the MM7
server should deliver mobile-originated messages and delivery reports:

■ For REL-5-MM7-1-0 the default URL is:

http://IP_Address_of_NT_ Server:port/1_0_mm7_vasp/mms_vasp

■ For REL-5-MM7-1-2 the default URL is:

http://IP_Address_of_NT Server:port/1_2_mm7_vasp/mms_vasp

7. If required, create and load a node SLA. For details, see the discussion about
defining global node and service provider group node SLAs and managing SLAs
in Services Gatekeeper Accounts and SLAs Guide

8. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Provisioning Workflow for Native MM7
Following is an outline for provisioning Native MM7.

1. Register offline notifications. This means that mobile-originated messages should
not result in notifications to an application, but instead be stored in Services
Gatekeeper for polling. Use the addVASPIDMapping method to register offline
notifications. Use the following operations to manage the offline registrations:

■ listAllVASIDMapping

■ addVASPIDMapping

■ removeReceiveMmsNotification

2. Register online notifications. This means that registrations for mobile-originated
messages are managed on behalf of an application. Use the addVASPIDMapping
method to register online notifications. Use the following methods to manage the
online registrations:

■ listAllVASPIDMapping

■ enableReceiveMmsNotification

■ removeStatusReporting

For a description of the attributes and operations of the Mm7MBean MBean, see the
“All Classes” section of Services Gatekeeper OAM Java API Reference.

Managing Native MM7

21-6 Services Gatekeeper Communication Service Reference Guide

22

Native SMPP 22-1

22Native SMPP

This chapter describes the Oracle Communications Services Gatekeeper Native SMPP
communication service in detail.

Overview of the Native SMPP Communication Service
The Native SMPP communication service exposes the SMPP v. 3.4 standard interfaces.

The communication service acts as an External Short Message Entity (ESME) that
connects to a Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the Native SMPP communication service
supports for the application-facing interfaces and the network protocols, see “Native
SMPP Compliance” in Services Gatekeeper Statement of Compliance.

The Native SMPP communication service access the network using the following
network protocols:

■ SMPP v 3.4

■ SMPP v 5.1

SMPP v 5.1 supports the billing identification parameter and ussd service_
operation as optional parameters to Deliver_SM. See "smpp_billing_id" and
"ussd_service_operation" for more information.

Using the Native SMPP communication service, an application can:

■ Send a short message to one or many destination addresses.

■ Cancel a previously sent message that has not yet been delivered.

■ Replace a previously sent message that has not yet been delivered.

■ Query the delivery status of a previously sent message.

■ Receive short messages arrived from the network.

■ Receive the delivery status of a previously sent message.

Requests flow in two directions: from the application to the network and from the
network to the application.

All Native SMPP components are deployed in the network tier (NT).

SMPP Server Service
The core module of the Native SMPP communication service is an SMPP Server
Service deployed as an Oracle WebLogic Server Service. It provides connection

Overview of the Native SMPP Communication Service

22-2 Services Gatekeeper Communication Service Reference Guide

services for the Native SMPP and Parlay X 2.1 Short Messaging plug-ins. The SMPP
Server Service:

■ Receives SMPP data from the socket.

■ Constructs the SMPP protocol data unit (PDU).

■ Associates the current PDU with the correct application instance.

■ Invokes the plug-in.

■ Manages connections between Services Gatekeeper and applications.

■ Manages connections between Services Gatekeeper and Short Message Service
Centers (SMSCs).

Because the SMPP Server Service is deployed in the NT, applications using the Native
SMPP Native communication service must be able to connect directly to the network
tier. Firewalls must be configured to allow connection to the ports defined for the
SMPP Server Service.

Connection Handling and Provisioning
The Native SMPP communication service uses the Services Gatekeeper SMPP Server
Service to establish and manage southbound (client) connections between Services
Gatekeeper and SMSCs.

See "System Properties for SMPP Server Service" and "Reference: Attributes and
Operations for SMPP Server Service" for information about configuring connections
between the Services Gatekeeper SMPP server service and a short messaging service
center (SMSC).

A client connection is created when this plug-in successfully binds with an SMSC. A
successful rebind changes the connection ID.

About Creating and Resetting Connections
The connections between an application and Services Gatekeeper are called server
connections and the connections between Services Gatekeeper and an SMSC are called
client connections. Most applications require both connections to successfully operate.

■ If at least one plug-in instance successfully binds with Services Gatekeeper:

– A server connection is established between the application and Services
Gatekeeper.

– A client connection is established between Services Gatekeeper and the SMSC.

– Services Gatekeeper sends a successful bind response to the application.

■ Any plug-ins that fail to bind will periodically try to reconnect.

■ If the client connection is not successfully established, Services Gatekeeper
attempts to reconnect with the SMSC, and its corresponding server connection
continues to receive requests from the application. However, the plug-in can not
process these requests, and instead it sends an error response to the application.
through the server connection. The application requests are not stored and not
re-sent to the SMSC.

■ By default, mobile-originated message requests fail and return an error if a client
connection is established but a corresponding server connection is not. If you
expect this to happen a lot, you can set the
rejectMOMessagesWithNoAppReceiverConnection attribute to the
SMPPServiceMBean to true to reduce the processing overhead of these errors and

Overview of the Native SMPP Communication Service

Native SMPP 22-3

spawn an informational alarm with a severity of warning instead of an error. The
alarm number is 400514:

<alarm id="400514" severity="warning"
 description="No application receiver connection found. Rejecting
 DeliverSm with MO SMS.">
 <filter>
 <method>
 <name>processDeliverSM</name>
 <class>oracle.ocsg.protocol.smpp.south.SouthPduTask</class>
 <position>after</position>
 </method>
 </filter>
¦ </alarm>

See the “All Classes” section of the OAM Java API Reference for more information
on the SMPPServiceMBean.

■ If all plug-in instances fail to bind, Services Gatekeeper sends a failure bind
response to the application, and closes and removes the server connection.

■ If a client connection is successfully established with the SMSC, the connection is
verified periodically using ENQUIRE_LINK requests (heartbeats). If the
ENQUIRE_LINK requests fail a configurable number of times, Services
Gatekeeper attempts to reconnect with the SMSC. If the client connection
reconnect attempts fail a configurable number of times, the connection is closed
and removed. See "Attribute: EnquireLinkMaxFailureTimes" and "Attribute:
RetryTimesBeforeGiveUp" for details.

You use the connectionId and pluginInstanceId parameters to the "Operation:
resetClientConnection" to establish or reestablish connections between Services
Gatekeeper and SMSCs. The connection-related operations for this plug-in accept
values for these parameters according to these rules:

■ You reset all connections for a plug-in using pluginInstanceId. Any configuration
changes you send in takes effect. This is the most common resetting strategy
because it generally does not make sense to reset a single SMCC connection and
leave the rest connecting to another SMSC.

■ You reset a single connection for a plug-in using connectionId, and only that
connection is reset. Any connection configuration settings you include are ignored
to avoid resetting the connection with new, conflicting settings. You will probably
only reset a single connection rarely, for example in cases where a single
connection is misbehaving and you are reluctant to reset all of the others.

■ If a value for the connectionId parameter is provided, this communication service
ignores any value provided for the pluginInstanceId parameter. That is, only if
connectionId has no value then a parameter value for pluginInstanceId is used.

■ If connectionId has no value or no value that matches the fields sent, and the
value for plugininstanceid does match, then all connections for pluginInstanceId
are reset.

■ Use "Operation: listClientConnections" to list client connections.

About Session Handling
Applications can bind to Services Gatekeeper as a transmitter, a receiver, or a
transceiver. An application can establish several parallel sessions by issuing multiple
bind operations.

Overview of the Native SMPP Communication Service

22-4 Services Gatekeeper Communication Service Reference Guide

The number of concurrent connections is provisioned for each Native SMPP plug-in, if
connection-based routing is not enabled. See "Attribute: BindType", "Attribute:
NumberReceiverConnections", "Attribute: NumberTransceiverConnections", and
"Attribute: NumberTransmitterConnections".

The SMPP Server Service should be provisioned with the following data about the
application instance:

■ The port number to bind to.

■ The maximum number of concurrent sessions allowed.

■ Whether subsequent operations should be allowed to target a previously sent
short message.

■ Whether network-triggered short messages and delivery reports should be
forwarded to the application.

■ The address range that, when matched with the destination address of a
network-triggered short message, forwards the message to the application.

See "Operation: addApplicationSpecificSettings" for details about configuring these
settings.

Creating an Interceptor With a Custom Error Code
For mobile-originated (MO) traffic, you can create an interceptor that includes any
checks or validation tests for the SMS DeliverSm request message. In cases where you
want to reject the DeliverSm message, you can send the DeliverSMResp message
back to the SMSC with the SMPP commandStatus of your choosing. You create and
add a DenyPluginException to the interceptor to set the error code. For example:

new DenyPluginException("custom_smpp_errorcode", decimal_smpp_commandstatus);

Where decimal_smpp_commandstatus is the decimal format of a hexadecimal SMPP error
code. For example, an error code value of ("custom_smpp_errorcode", 123) translates
to the 0x0000007b command status.

See “Using Service Interceptors to Manipulate Requests” in Services Gatekeeper
Extension Developer’s Guide for more information on using interceptors.

Example 22–1 shows an example interceptor that checks MO messages (ignoring
delivery reports), confirms their sourceaddress, and if necessary, throws one of two
DenyPluginException exception messages.

Deploy this interceptor the MO_NORTH interceptor point.

Example 22–1 Example SMPP interceptor

package com.bea.wlcp.wlng.interceptor;

import java.lang.reflect.Method;
import com.bea.wlcp.wlng.api.plugin.DenyPluginException;
import org.apache.log4j.Logger;

import com.bea.wlcp.wlng.api.interceptor.Context;
import com.bea.wlcp.wlng.api.interceptor.Interceptor;

public class NativeSMPPInterceptor implements Interceptor {
 private Logger logger = Logger.getLogger(NativeSMPPInterceptor.class);

Overview of the Native SMPP Communication Service

Native SMPP 22-5

 @Override
 public Object invoke(Context ctx) throws Exception {

 Object[] args = ctx.getArguments();
 String address = null;

 if (args == null || args.length == 0 || args[0] == null){
 //do nothing
 } else if (args[0].getClass().getName().equals(new
String("oracle.ocsg.protocol.smpp.event.DeliverSm"))){

 try {
 Class<?> c = args[0].getClass();
 Method m = c.getMethod("isDeliverReceipt", new Class[0]);
 boolean isDeliverReceipt = (boolean) m.invoke(args[0], new Object[0]);
 if (!isDeliverReceipt) { //we only want to check MO messages, not delivery
receipts
 m = c.getMethod("getSourceAddress", new Class[0]);
 Object obj = m.invoke(args[0], new Object[0]);
 Class<?> c1 = obj.getClass();
 Method m1 = c1.getMethod("getAddress", new Class[0]);
 address = (String) m1.invoke(obj, new Object[0]);
 }
 }catch(Exception e){
 e.printStackTrace();
 throw new RuntimeException();
 }

 if(address!= null && address.endsWith("9999")){
 //reject
 throw new DenyPluginException("custom_smpp_errorcode", 123);
 }else if(address!= null && address.endsWith("8888")) {
 //reject
 throw new DenyPluginException("custom_smpp_errorcode", 456);
 }else {
 //We 'approve' all other sourceaddresses
 }
 }
 return ctx.invokeNext(this);
 }
}

Authentication
Authentication credentials are configured in the Native SMPP plug-in instance MBean.
See "Reference: Attributes and Operations for Native SMPP Plug-in" for more
information.

Applications use an application instance ID as the ESME system_id and the related
password when binding to Services Gatekeeper.

Connection Pooling
The SMPP Server Service maintains server and client connection pools.

Server Connection Pools
The SMPP Server Service maintains a server connection pool for application-facing
(northbound) connections. The pool is created when the SMPP Server Service is
started.

Overview of the Native SMPP Communication Service

22-6 Services Gatekeeper Communication Service Reference Guide

The plug-in obtains connections from this pool to send messages to the application.

The server connections are used to:

■ Invoke the plug-in.

■ Send messages to and receive messages from the application.

■ Manage the application-facing SMPP timers.

■ Manage windowing toward the application.

■ Cache transaction mapping information for transactions between Services
Gatekeeper and the application.

Client Connection Pools
The SMPP Server Service maintains a client connection pool for network-facing
(southbound) connections.

The plug-in sends BIND and UNBIND requests to the client pool and obtains a client
connection ID from the pool to perform SMPP transactions.

The client connections are used to:

■ Invoke the plug-in.

■ Send messages to and receive messages from the SMSC.

■ Manage the network-facing SMPP timers.

■ Manage windowing toward the SMSC.

■ Cache transaction mapping information between Services Gatekeeper and the
SMSC.

Timeouts
You can configure timers for both application-facing and network-facing connections.
Some of the timers for application-facing and network-facing connections have the
same names, but they are configured in different MBeans.

SMPP Server Service Timers
The SMPP Server Service provides the following configurable timers for connections
between Services Gatekeeper and applications:

■ Initiation timer: This timer ensures that when an application initiates a connection,
the BIND occurs within a specified period after the connection is established to
Services Gatekeeper. See "Attribute: InitiationTimerValue" for more information.

■ Inactivity timer: This timer establishes a period of inactivity after which, if no
SMPP messages are exchanged with the application, Services Gatekeeper closes
the connection. See "Attribute: InactivityTimerValue" for more information.

■ Connection timer: This timer sets the heartbeat interval that Services Gatekeeper
uses to request the connection status on the server connection. If the ENQUIRE_
LINK requests fail, Services Gatekeeper closes the connection and attempts to
reconnect. See "Attribute: EnquireLinkTimerValue" in "Reference: Attributes and
Operations for SMPP Server Service" for more information.

■ Transaction timer: This timer establishes the interval between an SMPP request to
the application and the corresponding SMPP response. If the interval is reached,
Services Gatekeeper does not re-send the request. In this case, Services Gatekeeper
removes the transaction information and discards the PDU response. See

Overview of the Native SMPP Communication Service

Native SMPP 22-7

"Attribute: RequestTimerValue" in "Reference: Attributes and Operations for SMPP
Server Service" for more information.

You can disable any of these timers by setting their values to 0.

Plug-in Instance Timers
The plug-in instance MBean provides the following configurable timers for
connections between Services Gatekeeper and SMSCs:

■ Connection timer: This timer sets the heartbeat interval that Services Gatekeeper
uses to request the connection status on the client connection. If the ENQUIRE_
LINK requests fail, Services Gatekeeper closes the connection and attempts to
reconnect. See "Attribute: EnquireLinkTimerValue" in "Reference: Attributes and
Operations for Native SMPP Plug-in" for more information.

■ Transaction timer: This timer establishes the interval between an SMPP request to
the SMSC and the corresponding SMPP response. If the interval is reached,
Services Gatekeeper does not re-send the request. In this case, Services Gatekeeper
removes the transaction information and discards the PDU response. See the
"Attribute: RequestTimerValue" in "Reference: Attributes and Operations for
Native SMPP Plug-in" for more information.

Windowing
To maximize throughput, Native SMPP supports windowing on both the
application-facing and network-facing interfaces. Windowing provides a way to
specify the amount of data that can be transmitted without receiving an
acknowledgment.

Requests wait in a windowing queue until they can be submitted. Two values apply to
the windowing queue. The windowing maximum queue size is the size of the queue,
specifying the maximum number of requests that can wait in the queue at one time.
The windowing maximum wait time value specifies the maximum amount of time
that a single request can wait in the windowing queue.

The windowing size value is the number of unacknowledged requests that can be sent
simultaneously.

Windowing for mobile-originated requests toward the application is configured in the
following parameters in the SMPP Server Service’s addApplicationSpecificSettings
operation:

■ windowingSize

■ windowingMaxQueueSize

■ windowingMaxWaitTime

See "Operation: addApplicationSpecificSettings" for more information.

Windowing for mobile-terminated requests toward the SMSC is configured in the
following plug-in instance MBean attributes:

■ Attribute: WindowingSize

■ Attribute: WindowingMaxQueueSize

■ Attribute: WindowingMaxWaitTime

A request moves from the windowing queue to the window. From the window it is
submitted for processing. A submitted request remains in the window until its

Overview of the Native SMPP Communication Service

22-8 Services Gatekeeper Communication Service Reference Guide

response is received. When the response is received, the request is released and
another request can be moved from the windowing queue to the window.

If any one of these three windowing parameters is set to a value less than zero,
windowing is turned off. If all of these three parameters are greater than zero,
windowing is turned on.

In both directions, if the windowing request queue is full or the timer has expired, the
request is not sent and an error code is returned to the plug-in instance.

Connection-Based Routing
Connection-based routing lets network operators configure geo-redundant sites to
allow applications to send mobile-originated (MO), mobile-terminated (MT,) and
delivery receipt (DR) traffic to and from any of the redundant sites. For example, a DR
can be sent to a site other than the one through which the original message was
submitted.

Enable Connection-Based Routing
To use this feature, set the ConnectionBasedRouting attribute in the SMPP Server
Service to true. By default this attribute is false. See "Attribute:
ConnectionBasedRouting" for more information.

When connection-based routing is enabled, messages from the network are routed to
the application that caused or that could have caused the connection in the plug-in to
be established to the SMSC. This works both for delivering a short message with a new
message and delivering a short message containing a delivery receipt. This means that
DELIVER_SM with a new message is not routed based on the destination address,
and DELIVER_SM containing a delivery receipt is not routed based on the message
identifier.

Limitations
The following are some limitations and issues pertaining to connection-based routing:

■ If an application is configured to support subsequent operations (CANCEL_SM,
QUERY_SM and REPLACE_SM), those requests must be sent to the same
geographic site as the original submit requests. They will not be accepted if sent to
the other site. When Services Gatekeeper checks the subsequent operations, it
returns an error response if it cannot find the original SUBMIT_SM request in the
store.

■ If subsequent operations are enabled and a submit request is sent through site 1
but delivery receipt arrives on site 2, the data stored about the message in the
database on site 1 is not deleted until the information is considered to be too old.
The consequence is that an application can continue sending subsequent
operations related to the message through site 1 even after the message was
delivered.

■ If connection-based routing is enabled, the NumberReceiverConnections,
NumberTransceiverConnections, and NumberTransmitterConnections attributes
in the plug-in instance are ignored, because connections to the SMSC cannot be
shared among different application instances.

Short Code Translation
The Native SMPP communication service does not offer short code translations.

Overview of the Native SMPP Communication Service

Native SMPP 22-9

USSD Support
Native SMPP provides Unstructured Supplementary Services Data (USSD) through
the its_session_info, service_type, and ussd_service_operation optional parameters.

its_session_info
Required parameter for the CDMA Interactive Teleservice as defined by the Korean
PCS carriers [KORITS]. Contains control information for the interactive session
between an MS and an ESME.

See Section 5.3.2.43 of the Short Message Peer to Peer Protocol Specification v3.4 for the
formal definition of the parameter and the appropriate subsections of Section 4 for its
specification as an optional parameter for SUBMIT_SM, DELIVER_SM, and DATA_
SM.

Format
Octet String

Following is a description of the octet string.

Bits 7...............0

SSSS SSSS (octet 1)

NNNN NNNE (octet 2)

Octet 1 contains the session number (0 -255) encoded in binary. The session number
remains constant for each session.

The sequence number of the dialog unit (as assigned by the ESME) within the session
is encoded in bits [7. . . 1] of octet 2.

The End of Session Indicator indicates the message is the end of the conversation
session and is encoded in bit 0 of octet 2 as follows:

■ 0 = End of Session Indicator inactive

■ 1 = End of Session Indicator active

service_type
Indicates the SMS application service associated with the message. Allows the ESME
to use enhanced messaging services such as “replace_if_present” (generic) and to
control the teleservice used on the air interface (for example, ANSI-136/TDMA,
IS-95/CDMA).

Used to support USSD (Unstructured Supplementary Service Data 3G TS 23.090
version 3.0.0) messages through the SMPP protocol.

See Section 5.2.11 of the Short Message Peer to Peer Protocol Specification v3.4. for the
formal definition of the parameter and the appropriate subsections of Section 4 for its
specification as a mandatory parameter for SUBMIT_SM, SUBMIT_MULTI,
DELIVER_SM, DATA_SM, and CANCEL_SM.

Format
Octet String

Value
The pre-defined generic service type value for USSD is USSD.

Overview of the Native SMPP Communication Service

22-10 Services Gatekeeper Communication Service Reference Guide

ussd_service_operation
Defines the USSD service operation that is required when SMPP is used as an interface
to a (GSM) USSD system.

Used to support tunneling USSD (Unstructured Supplementary Service Data 3G TS
23.090 version 3.0.0) messages through the SMPP protocol.

Used as an optional parameter to SMPP SUBMIT_SM.

Defined in section Section 5.3.2.44 of the Short Message Peer to Peer Protocol Specification
v3.4.

Added to DELIVER_SM in the SMPP 5.1 specification. See Short Message Peer to Peer
Protocol Specification Version 5.1.

Format
Octet String

Value
Valid values are:

■ 0 = PSSD indication

■ 1 = PSSR indication

■ 2 = USSR request

■ 3 = USSN request

■ 4 to 15 Reserved

■ 16 = PSSD response

■ 17 = PSSR response

■ 18 = USSR confirm

■ 19 = USSN confirm

■ 20 to 31 Reserved

■ 32 to 255 Reserved for vendor-specific USSD operations

Billing Identification
The native SMPP communication service supports the billing_identification
parameter in the format in the SMPP Specification 5.1 through an optional parameter
named smpp_billing_id.

The parameter works with SMPP 5.1 SMSCs, but with not with SMPP 3.4 SMSCs.

smpp_billing_id
Defines the billing information according to the format in the SMPP Specification 5.1,
section 4.8.4.3 titled "billing_identification".

Format
Hexadecimal string

Table 22–1 describes the format.

Overview of the Native SMPP Communication Service

Native SMPP 22-11

If the value is not sent as a hexadecimal string, it is ignored and a warning is logged.

Here is sample code for encoding the string.

private String getHexEncodedString(String normalString) {
 byte[] bHexStr = normalString.getBytes();
 String retVal = "";
..String sOctet = null;
 for (int i = 0; i < bHexStr.length; i++) {
 sOctet = Integer.toHexString((int) (bHexStr[i] & 0xFF));
 if (sOctet.length() == 1) {
 sOctet = "0" + sOctet;
 }
 retVal = retVal.concat(sOctet);
 }
 return retVal.toUpperCase(); }

Load Balancing, High Availability and Fail-Over
To optimize system utilization, applications should load-balance application-triggered
requests among all network tier servers.

The SMSC should load-balance network-triggered requests among all network tier
servers.

Load balancing is supported only among plug-in instances that are located in same
network tier server and share same large account. When a request is sent to a plug-in
instance, the plug-in instances use the SMPP Server Service in the same server to
forward the request to the applications. When a request is sent to the SMPP Server
Service, the SMPP Server Service uses a plug-in instance in the same server to process
the request.

High availability and fail-over is supported between Services Gatekeeper and the
SMSC. High availability between the application and Services Gatekeeper must be
handled by each application.

A prerequisite for high-availability for the Native SMPP communication service is
redundant network tier servers, redundant network interface cards in each network
tier server, and a redundant set of SMPP servers to connect to. High availability
between Services Gatekeeper and the network is achieved by using at least two
different plug-in instances per network tier server and having the plug-in instances
connect to different SMPP servers.

Between SMPP applications and Services Gatekeeper, the applications handle high
availability and fail-over for application-initiated requests by binding to two or more

Table 22–1 Format for smpp_bliing_id Value

Field
Size
(octets) Type Description

parameter
tag

2 Integer 0x060B

length 2 Integer Length of value part in octets

value 1 - 1024 Octet
String

Bits 7......0

0XXXXXXX (Reserved)1XXXXXXX (Vendor
Specific)

The first octet represents the Billing Format tag
and indicates the format of the billing
information contained in the remaining octets.

Application Interfaces

22-12 Services Gatekeeper Communication Service Reference Guide

network tier servers. For network-triggered requests, the same requirement that the
applications bind to two or more network tier servers applies.

High availability behavior is as follows:

■ In a Services Gatekeeper cluster, if the server becomes unavailable after sending a
Submit SM request to and receiving the SUBMIT_SM_RESP from the SMSC, the
SMSC routes the subsequent delivery receipt to another server. This other server
retrieves the message information from cluster-level storage and processes it.

■ In a Services Gatekeeper cluster, if a server becomes unavailable after sending a
SUBMIT_ SM request to and receiving the SUBMIT_SM_RESP from an
application, the application routes the subsequent CANCEL_SM, QUERY_SM or
REPLACE_SM request to another server. This other server retrieves the message
information from cluster-level storage and processes it.

■ In a geo-redundant configuration, all sites are connected to the SMSC. If a site
becomes unavailable after sending a SUBMIT_ SM request to and receiving the
SUBMIT_SM_RESP from the SMSC, the SMSC routes the subsequent delivery
receipt to another site. This other site uses connection-based routing to process the
delivery receipt.

■ In a geo-redundant configuration, if an application is configured to support
subsequent operations (CANCEL_SM, QUERY_SM, and REPLACE_SM) through
the subsequentOperationsAllowed parameter to the
addApplicationSpecificSettings operation, those requests must be sent to the
same geographic site from which the original submit requests were sent. They will
not be accepted if they are sent to another site.

■ In a geo-redundant configuration, if an application is configured to support
subsequent operations and a submit request is sent through site 1 but delivery
receipt arrives on site 2, the data stored about the message in the database on site 1
is not deleted until the information is considered to be too old. The consequence is
that an application can continue sending subsequent operations related to the
message through site 1 even after the message was delivered.

The Native SMPP communication service can be provisioned for applications to share
the same large account in the SMPP server, so that they share the same bind. However,
his configuration is not recommended since it impacts high availability for
network-triggered requests. When there is only one bind between Services Gatekeeper
and the SMPP server, and more than one application is listening for network-triggered
messages, the Native SMPP communication service must listen to incoming messages
on behalf of all the applications. The bind between the plug-in and the network node
is performed on all network tier servers, so network-triggered messages can be sent to
any of these servers. If the network-triggered request ends up in a server that the
application has not bound to, the communication service does not try to look up a
server that the application has bound to. Instead, it does not see an active bind and
treats the request as undeliverable to the application. Because it is common for SMPP
servers to load-balance between binds, it is very likely that 50% or more of the requests
will fail in this setup. The only way to ensure high availability in this scenario is to
mandate that all applications bind to all network tier servers.

Application Interfaces
For information on the application interface for the Native SMPP communication
service, see the discussion about Native SMPP Interfaces in Services Gatekeeper
Application Developer's Guide.

Events and Statistics

Native SMPP 22-13

Events and Statistics
The Native SMPP communication service generates event data records (EDRs),
charging data records (CDRs), alarms, and statistics to assist system administrators
and developers in monitoring the service

For general information, see "Events, Alarms, and Charging".

Event Data Records
Table 22–2 lists IDs of the EDRs created by the SMPP Server Service.

Table 22–2 EDRs Generated by the SMPP Server Service

EDR ID Description

400000 Entering the NorthChannelProcessor recvBind method.

400001 Entering the NorthChannelProcessor recvUnbind method.

400002 Entering the NorthChannelProcessor recvSubmitSM method.

400003 Leaving the NorthChannelProcessor sendSubmitSMResp
method.

400004 Entering the NorthChannelProcessor recvSubmitMulti method.

400005 Leaving the NorthChannelProcessor sendSubmitMultiResp
method.

400006 Entering the NorthChannelProcessor recvQuerySM method.

400007 Leaving the NorthChannelProcessor sendQuerySMResp
method.

400008 Entering the NorthChannelProcessor recvCancelSM method.

400009 Leaving the NorthChannelProcessor sendCancelSMResp
method.

400010 Entering the NorthChannelProcessor recvReplaceSM method.

400011 Leaving the NorthChannelProcessor sendReplaceSMResp
method.

400020 Leaving the SouthChannelProcessor sendBind method.

400021 Leaving the SouthChannelProcessor sendUnbind method.

400022 Leaving the SouthChannelProcessor sendSubmitSM method.

400023 Entering the SouthChannelProcessor recvSubmitSMResp
method.

400024 Leaving the SouthChannelProcessor sendSubmitMulti method.

400025 Entering the SouthChannelProcessor recvSubmitMultiResp
method.

400026 Leaving the SouthChannelProcessor sendQuerySM method.

400027 Entering the SouthChannelProcessor recvQuerySMResp
method.

400028 Leaving the SouthChannelProcessor sendCancelSM method.

400029 Entering the SouthChannelProcessor recvCancelSMResp
method.

400030 Leaving the SouthChannelProcessor sendReplaceSM method.

Events and Statistics

22-14 Services Gatekeeper Communication Service Reference Guide

The Native SMPP plug-in instance does not exchange events directly with the
application or the SMSC, so it does not generate any EDRs.

Charging Data Records
Native SMPP plug-in-specific CDRs are generated under the following conditions:

■ When a submitSm or submitSmMulti method has successfully been sent to the
network, and Services Gatekeeper has received a response with OK status.

■ When a deliverSm method with a mobile-originated message has been received
by Services Gatekeeper, and a deliverSm has been forwarded to an application.
Note that the CDR is generated regardless of commandstatus in DeliverSmResp
from application.

■ After Services Gatekeeper receives and processes DeliverSm with a delivery
receipt. The CDR is generated regardless of whether Services Gatekeeper was able
to forward the deliverSm to any applications. If the deliverSm was forwarded to
an application, the CDR is generated regardless of commandstatus in
DeliverSmResp from application.

Statistics
Table 22–3 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counters.

400031 Entering the SouthChannelProcessor recvReplaceSMResp
method.

400051 Entering the NorthChannelProcessor recvUnbindResp method.

400054 Entering the NorthChannelProcessor recvGenericNack method.

400055 Entering the NorthChannelProcessor sendBindResp method.

400056 Leaving the NorthChannelProcessor sendUnbind method.

400057 Leaving the NorthChannelProcessor sendUnbindResp method.

400060 Leaving the NorthChannelProcessor sendGenericNack method.

400061 Entering the SouthChannelProcessor recvBindResp method.

400062 Entering the SouthChannelProcessor recvUnbind method.

400063 Entering the SouthChannelProcessor recvUnbindResp method.

400066 Entering the SouthChannelProcessor recvGenericNack method.

400067 Leaving the SouthChannelProcessor sendUnbindResp method.

400070 Leaving the SouthChannelProcessor sendGenericNack method.

400100 Leaving the NorthChannelProcessor sendDeliverSM method.

400101 Entering the NorthChannelProcessor recvDeliverSMResp
method.

400108 Entering the SouthChannelProcessor recvDeliverSM method.

400109 Leaving the SouthChannelProcessor sendDeliverSMResp
method.

Table 22–2 (Cont.) EDRs Generated by the SMPP Server Service

EDR ID Description

Properties for Native SMPP Plug-in

Native SMPP 22-15

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing Native SMPP
This section describes the properties and workflow for the Native SMPP
communication service.

Properties for SMPP Server Service
Table 22–4 lists the technical specifications for the SMPP Server Service.

Properties for Native SMPP Plug-in
Table 22–5 lists the technical specifications for the Native SMPP plug-in.

Table 22–3 Methods and Transaction Types for Native SMPP

Method Transaction type

submitSm TRANSACTION_TYPE_MESSAGING_SEND

submitSmMulti TRANSACTION_TYPE_MESSAGING_SEND

receiveMoReq TRANSACTION_TYPE_MESSAGING_RECEIVE

Table 22–4 SMPP Server Service Properties

Property Description

Managed object in
Administration Console

To access the managed object, select domain_name, then OCSG,
then server_name, then Container Services, then SMPPService.

MBean Domain=com.bea.wlcp.wlng

Name=wlng

InstanceName=SMPPService

Type=oracle.ocsg.protocol.smpp.management.SMPPServiceM
Bean

Exposes this interface to
applications

Short Message Peer to Peer, Protocol Specification v3.4

Deployment artifacts oracle.ocsg.protocol.smpp_api_5.0.0.0.jar,
oracle.ocsg.protocol.smpp_5.0.0.0.jar

Table 22–5 Native SMPP Plug-in Properties

Property Description

Managed object in
Administration Console

To access the managed object, select domain_name, then OCSG,
then server_name, then Communication Services, and then
Plugin_sms_smpp#5.0 in that order.

MBean Domain=com.bea.wlcp.wlng

Name=wlng_nt

InstanceName=same as the network protocol instance_id
assigned when the plug-in instance is created

Type=oracle.ocsg.plugin.nativesmpp.management.NativeSMP
PPluginMBean

Configuration Workflow for Native SMPP Communication Service

22-16 Services Gatekeeper Communication Service Reference Guide

Configuration Workflow for Native SMPP Communication Service
Following is an outline for configuring this plug-in using the Administration Console
or an MBean browser. You can also accomplish these steps programmatically. See the
“All Classes” section of the OAM Java API Reference for details on the
SMPPServiceMBean.

1. Navigate to Container Services and then SMPPService.

2. Configure the behavior of the SMPP Server Service.

See "Reference: Attributes and Operations for SMPP Server Service" for
descriptions of the configuration options.

3. Using "Operation: updateAllServerPorts", apply the configuration settings for the
Native SMPP Service.

4. Create one or more instances of the plug-in service. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the network protocol plug-in service ID as described in
the "Properties for Native SMPP Plug-in" section.

5. Using the console or an MBean browser, select the MBean for the plug-in instance
that you want to configure. The MBean display name is the same as the plug-in
instance ID assigned when the plug-in instance was created.

6. Configure the behavior of the plug-in instance. See "Reference: Attributes and
Operations for Native SMPP Plug-in" for the list of attributes that you can set.

7. Apply the configuration settings for the Native SMPP plug-in instance by
restarting the plug-in or using "Operation: resetClientConnection".

8. Set up the routing rules to the plug-in instance. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System

Deployment name wlng_nt_native_smpp_sms#5.0

Network protocol plug-in
service ID

Plugin_sms_smpp

Network protocol plug-in
instance ID

The ID is assigned when the plug-in instance is created. See the
discussion about configuring and managing the plug-in
manager in Services Gatekeeper System Administrator's Guide.

Exposes to the service
communication layer a Java
representation of:

SMPP v3.4, depends on common SMPP server service

Short Message Peer to Peer Protocol Specification v3.4

Interfaces with the network
nodes using:

SMPP v3.4, depends on common SMPP server service4

Short Message Peer to Peer Protocol Specification v3.4

Service Type SMPP

Application-facing
interfaces

oracle.ocsg.protocol.smpp.plugin.SMPPPluginNorth

oracle.ocsg.protocol.smpp.service.SMPPServiceNorth

Network-facing interfaces oracle.ocsg.protocol.smpp.plugin.SMPPPluginSouth

oracle.ocsg.protocol.smpp.service.SMPPServiceSouth

Supported Address Scheme tel

Deployment artifact wlng_nt_native_smpp_sms.ear

Table 22–5 (Cont.) Native SMPP Plug-in Properties

Property Description

System Properties for SMPP Server Service

Native SMPP 22-17

Administrator's Guide. Use the plug-in instance ID and address schemes listed in
the "Properties for Native SMPP Plug-in" section.

9. If required, create and load a node SLA. For details see the discussion on defining
global node and service provider group node SLAs and managing SLAs in Services
Gatekeeper Accounts and SLAs Guide.

10. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Provisioning Workflow for Native SMPP Communication Service
Following is an outline of tasks for provisioning the communication service.

1. To register application instances to use the Native SMPP communication service,
use "Operation: addApplicationSpecificSettings" in the MBean for the SMPP
Server Service. Use the following operations to manage the account settings:

■ Operation: addApplicationSpecificSettings

■ Operation: deleteApplicationSpecificSettings

2. Using "Operation: updateAllServerPorts", apply the provisioning settings.

Context Attributes for Native SMPP Server
There SMPPServiceMBean context attributes can be checked by a custom interceptor.

Attribute: native_smpp_mo_destAddressHasAppMapping
Format: Boolean

Default Value: False

If it is set to true, Services Gatekeeper checks whether there is an application matching
the destination address in the DeliverSm action. False means that Services Gatekeeper
does not to check for a matching application in DeliverSm.

Attribute: native_smpp_mo_hasActiveReceiver
Format: Boolean

Default Value: False

If set to true, Services Gatekeeper checks whether the application matching the
destination address in DeliverSm has an active receiver connection. False means that
Services Gatekeeper does not check whether the application has an active receiver
connection.

System Properties for SMPP Server Service
The SMPP Server Service has some system properties that cannot be modified at
runtime. Set these properties on the Java command line when you start Services
Gatekeeper.

These system properties are applicable to both Native SMPP and Parlay X SMS/SMPP
plug-ins.

Reference: Attributes and Operations for SMPP Server Service

22-18 Services Gatekeeper Communication Service Reference Guide

System Property: oracle.ocsg.protocol.smpp.serverservice.max_threads
Format: Integer

Maximum number of threads available to server connections.

The default is 32.

System Property: oracle.ocsg.protocol.smpp.serverservice.min_threads
Format: Integer

Minimum number of threads available to client and server connections. Each client
connection uses one thread. Each server port uses one thread.

The default is 2.

System Property: wlng.legacy.smpp.PDUManipulationAllowed
Format: Boolean

Specifies whether an interceptor can modify a parameter passed between the SMPP
Server Service and a plug-in.

Set to true to allow parameter modification, false to prohibit it.

The default is true.

System Property: wlng.smpp.max_payload_size
Format: Integer

Specifies the maximum number of characters in an SMS message.

The default is the maximum defined by the Parlay X 2.1 SMS specification: 160 GSM
7-bit characters or 70 Unicode characters.

Reference: Attributes and Operations for SMPP Server Service
The attributes listed in this section are used only by the Native SMPP communication
service through the SMPPServiceMBean.

All of the operations are used by the Native SMPP communication service, but only
the following four are used by the Parlay X 2.1 Short Messaging/SMPP and Extended
Web Services Binary SMS/SMPP communication services:

■ Operation: closeClientConnection

■ Operation: listClientConnections

■ Operation: listPluginInstances

■ Operation: resetClientConnection

This section describes the attributes and operations for configuration and
maintenance.

■ Attribute: ConnectionBasedRouting

■ Attribute: EnquireLinkMaxFailureTimes

■ Attribute: EnquireLinkTimerValue

■ Attribute: InactivityTimerValue

Reference: Attributes and Operations for SMPP Server Service

Native SMPP 22-19

■ Attribute: InitiationTimerValue

■ Attribute: LooseBinding

■ Attribute: OfflineMO

■ Attribute: rejectMOMessagesWithNoAppReceiverConnection

■ Attribute: RequestTimerValue

■ Attribute: ServerAddress

■ Attribute: ServerPort

■ Attribute: SmscSystemId

■ Operation: addApplicationSpecificSettings

■ Operation: closeClientConnection

■ Operation: closeServerConnection

■ Operation: closeServerPort

■ Operation: deleteApplicationSpecificSettings

■ Operation: listApplicationSpecificSettings

■ Operation: listClientConnections

■ Operation: listClusterServerConnectionsForMOJumping

■ Operation: listPluginInstances

■ Operation: listServerConnections

■ Operation: listServerPorts

■ Operation: resetClientConnection

■ Operation: resetServerPort

■ Operation: updateAllServerPorts

Attribute: ConnectionBasedRouting
Scope: Cluster

Unit: Not applicable

Format: Boolean

Enables and disables connection-based routing for Native SMPP plug-ins.

Connection-based routing lets operators configure geo-redundant sites to allow
applications to send MO, MT, and DR traffic to and from either of the sites.

Set to true to enable, false to disable. The default is false.

For more information, see "Connection-Based Routing".

This attribute can be modified only when there are no active connections between
SMPP applications and the SMPP Server Service.

Attribute: EnquireLinkMaxFailureTimes
Scope: Cluster

Unit: Not applicable

Reference: Attributes and Operations for SMPP Server Service

22-20 Services Gatekeeper Communication Service Reference Guide

Format: Integer

Maximum number of failed ENQUIRE_LINK requests to the application before the
connection with the application is closed.

Attribute: EnquireLinkTimerValue
Scope: Cluster

Unit: Seconds

Format: Integer

Minimum interval between the submission of ENQUIRE_LINK requests (heartbeats)
to an application.

To disable the sending of ENQUIRE_LINK requests, set this value to 0 (zero).

Attribute: InactivityTimerValue
Scope: Cluster

Unit: Seconds

Format: Integer

Maximum period of inactivity for an application before the connection with the
application is closed.

Use 0 (zero) for no timeout.

Attribute: InitiationTimerValue
Scope: Cluster

Unit: Seconds

Format: Integer

Maximum time between establishment a connection to the application and the BIND
request.

If the timeout value is reached, the server connection is closed.

Use 0 (zero) for no timeout.

Attribute: LooseBinding
Scope: Server

Unit: Not applicable

Format: Boolean

Controls behavior on application BIND and UNBIND.

If true, the following applies:

■ As long as there are transmitting-capable connections (TX, TRX) from applications,
TX and TRX connections will be kept open to SMSCs.

■ As long as there are receiving-capable connections (RX, TRX) from applications,
RX and TRX connections will be kept open to SMSCs.

If false, the binding rules are more restrictive:

Reference: Attributes and Operations for SMPP Server Service

Native SMPP 22-21

■ As long as there are TX connections from applications, TX connections will be kept
open to SMSCs.

■ As long as there are RX connections from applications, RX connections will be kept
open to SMSCs.

■ As long as there are TRX connections from applications, TRX connections will be
kept open to SMSCs.

This attribute value cannot be changed while there is an active connection with an
application.

The default is true.

Attribute: OfflineMO
Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether the JMS-based routing functionality for network-triggered messages
is enabled. If true, a message from the network to an NT server that does not have an
active bind to the appropriate application can be placed in a JMS queue from which
another server that does have an active bind can fetch it and send it to the application.

The default is false.

The time that the message stays alive in the JMS queue is configurable. The default
value is 3600000 milliseconds. To change this value, in the administrative console:

1. Select Services ->Messaging->JMS Modules.

2. Click WLNGJMSResource. The Settings page opens.

3. On the Configuration tab, click LegacySMSConnectionFactory. The Settings for
LegacySMSConnectionFactory page opens

4. On the Configuration tab, select the Default Delivery sub-tab.

5. Make your changes to the Default Time-to-Live attribute.

6. Click Save.

7. Click the Activate Changes button in the Change Center.

This attribute is not applicable if ConnectionBasedRouting is true.

Attribute: rejectMOMessagesWithNoAppReceiverConnection
Scope: Cluster

Format: Boolean

Default value: FALSE.

If set to true, rejects a MO DeliverSm request early in the processing flow.

If set to false, the request is still rejected, but much later in the processing flow, and in
some cases after attempting a resend of the message.

 Both cases address the condition where:

■ A receiver connection exists between Services Gatekeeper and an SMSC

Reference: Attributes and Operations for SMPP Server Service

22-22 Services Gatekeeper Communication Service Reference Guide

■ No matching receiver connection between Services Gatekeeper and application
exists that can handle a DeliverSm action.

Attribute: RequestTimerValue
Scope: Cluster

Unit: Seconds

Format: Integer

Maximum time between the submission of a request to an application and the receipt
of the corresponding response, before the connection is closed.

Set to 0 (zero) for no timeout.

Attribute: ServerAddress
Scope: Server

Unit: Not applicable

Format: String

Default host name or IP address that applications use to connect to the SMPP Server
Service.

Multiple addresses are supported as a comma-separated list of IP addresses.

Attribute: ServerPort
Scope: Server

Unit: Not applicable

Format: Integer [1024–65535]

Default port that applications use to connect to the SMPP Server Service.

Updating this attribute takes effect immediately if the old port and the new port are
not in use. In this case, the SMPP Server Service closes the old port and opens the new
port.

If the old port is in use when this attribute is set, it is closed after the last application
instance that used it is removed by the deleteApplicationSpecificSettings operation.
See "Operation: deleteApplicationSpecificSettings" for more information.

When a new application instance is added with the addApplicationSpecificSettings
operation, if the acceptPort parameter to that operation is a negative value, all traffic
from the application uses the new port. See "Operation:
addApplicationSpecificSettings" for more information.

Attribute: skipAddressrangeCheckInBindRequest
Scope: Cluster

Unit: NA

Format: Boolean

Default Value: False

Reference: Attributes and Operations for SMPP Server Service

Native SMPP 22-23

If set to false, Services Gatekeeper confirms that the address range provided in the
bind request from a Native SMPP application exactly matches what is provisioned in
the application-specific setting. The address range must exactly match.

You can remove this checking by setting this attribute to true.

Attribute: SmscSystemId
Scope: Cluster

Unit: Not applicable

Format: String; maximum 16 characters

SMSC system ID. Sent to an ESME client upon a successful BIND.

Operation: addApplicationSpecificSettings
Scope: Cluster

Specifies connection details for an application with the specified
applicationInstanceId.

Required for an application instance to access the SMPP Server Service.

This operation takes effect immediately after it is invoked. The SMPP Server Service
closes the old port, if it is not in use, and opens the new port, if it is not in use.

See "Windowing" for more information about the windowingSize,
windowingMaxQueueSize, and windowingMaxWaitTime parameters.

Signature:

addApplicationSpecificSettings(applicationInstanceId: int, acceptPort: int,
maxSession: int, subsequentOperationsAllowed: boolean, notificationEnabled:
boolean, addressRange: String, windowingSize: int, windowingMaxQueueSize: int,
windowingMaxWaitTime: int)

Table 22–6 addApplicationSpecificSettings Parameters

Parameter Description

applicationInstanceId ID of the application instance for which the settings are valid.

acceptPort Port to which the application is allowed to bind. A negative
value allows binding to the port specified as the ServerPort.
See "Attribute: ServerPort" for more information.

maxSession Maximum number of concurrent sessions the application is
allowed to establish.

A negative value allows an unlimited number of concurrent
sessions.

Reference: Attributes and Operations for SMPP Server Service

22-24 Services Gatekeeper Communication Service Reference Guide

Operation: closeClientConnection
Scope: Server

Closes the specified client connection between the communication service and the
SMSC.

You use the connectionId and pluginInstanceId parameters to establish connections.
See "Connection Handling and Provisioning" for information on using these
parameters.

subsequentOperationsAllowe
d

Specifies if the application is allowed to perform the
following operations on a previously-sent short message:

■ QUERY_SM

■ REPLACE_SM

■ CANCEL_SM

Enter:

■ true to allow

■ false to deny

Setting this attribute to false reduces the resource utilization
by the SMPP Server Service since it does not need to track
each request in its store.

See "Connection-Based Routing" for details about how
subsequent operations are handled in geo-redundant
configurations.

notificationEnabled Specifies if the application is allowed to receive
network-triggered messages. If allowed, the application can
send the BIND_TRANSCEIVER and BIND_RECEIVER
operations.

Enter:

■ true to allow

■ false to deny

addressRange If the notificationEnabled parameter is true, specifies the
address range for listening for network-triggered short
messages. Only messages that are sent to this address range
are forwarded to the application.

The address range is expressed as a regular expression. When
used for binding a receiver or transceiver, the address range
in the bind operation must be in the specified range.
Otherwise the bind is rejected. See Appendix A in SMPP
Protocol Specification v3.4.

This setting is valid only if the application is allowed to
receive network-triggered messages.

Example:

^1234

windowingSize Maximum number of concurrent mobile-originated requests.

windowingMaxQueueSize Maximum number of mobile-originated requests allowed to
wait in the windowing queue.

windowingMaxWaitTime Maximum time in seconds that each mobile-originated
request is allowed to wait in the windowing queue.

Table 22–6 (Cont.) addApplicationSpecificSettings Parameters

Parameter Description

Reference: Attributes and Operations for SMPP Server Service

Native SMPP 22-25

Signature:

closeClientConnection(connectionId: String, pluginInstanceId: String)

Operation: closeServerConnection
Scope: Server

Closes the specified server connections between the communication service and the
application.

You use the connectionId and pluginInstanceId parameters to establish connections.
See "Connection Handling and Provisioning" for information on using these
parameters.

If the port parameter is matched, closes all connections to that port.

Signature:

closeServerConnection(connectionId: string, appInstanceId: string, port: int)

Operation: closeServerPort
Scope: Server

Closes the specified server port on which the SMPP Server Service is listening. Closes
all server and client connections on the specified port.

Signature:

closeServerPort(port: int)

Operation: deleteApplicationSpecificSettings
Scope: Cluster

Deletes application-specific settings for an application with the specified
applicationInstanceId.

The application will no longer be able to access the SMPP Server Service.

Table 22–7 closeClientConnection Parameters

Parameter Description

connectionId Id of connection to be closed. Created by a previous BIND.

pluginInstanceId Id of plug-in instance for which related connections are to be
closed.

Table 22–8 closeServerConnection Parameters

Parameter Description

connectionId Id of connection to be closed. Created by a previous BIND
operation.

appInstanceId Id of application instance for which related connections are to
be closed.

port Port for which connections are to be closed.

Table 22–9 closeServerPort Parameters

Parameter Description

port Port to close.

Reference: Attributes and Operations for SMPP Server Service

22-26 Services Gatekeeper Communication Service Reference Guide

Signature:

deleteApplicationSpecificSettings(applicationInstanceId: String)

Operation: listApplicationSpecificSettings
Scope: Cluster

Displays all application-specific settings.

Signature:

listApplicationSpecificSettings()

Operation: listClientConnections
Scope: Server

Displays description and status of all client connections. These are connections
between the communication service and the SMSC.

Signature:

listClientConnections()

Operation: listClusterServerConnectionsForMOJumping
Scope: Cluster

Displays the description and status for cluster server connections for which the MO
jumping is enabled.

For information about MO jumping, see "Attribute: OfflineMO" for more information.

Signature:

listClusterServerConnectionsForMOJumping()

Operation: listPluginInstances
Scope: Server

Displays description and status for all registered plug-in instances.

listPluginInstances()

Operation: listServerConnections
Scope: Server

Displays description and status of each server connection.

Signature:

listServerConnections()

Operation: listServerPorts
Scope: Server

Table 22–10 deleteApplicationSpecificSettings Parameters

Parameter Description

applicationInstanceId ID of the application instance for which to delete settings

Reference: Attributes and Operations for SMPP Server Service

Native SMPP 22-27

Displays description and status of each server port.

Signature:

listServerPorts()

Operation: resetClientConnection
Scope: Server

Closes and restarts the specified client connection between the communication service
and the SMSC. See "About Creating and Resetting Connections" for information on
using the connectionId and pluginstanceId parameters to create connections.

connectionId Syntax for the Native SMPP plug-in:

plugin_instance_id#plugin_version

For example:

Plugin_px21_short_messaging_smpp_myinstance#6.0.0.0

connectionId Syntax for the Parlay X 2.1 Short Messaging/SMPP plug-in:

Plugin_px21_short_messaging_smpp_myinstance

For example:

plugin_instance_id

Signature:

resetClientConnection(connectionId: String, pluginInstanceId: String)

Operation: resetServerPort
Scope: Server

Closes and restarts the specified application-facing server port on which the SMPP
Server Service is listening. This operation resets all server and client connections on
the specified port.

Signature:

resetServerPort(port: int)

Operation: updateAllServerPorts
Scope: Server

Table 22–11 resetClientConnection Parameters

Parameter Description

connectionId Id of the connection to be reset. Created by a previous BIND
operation.

pluginInstanceId Id of the plug-in instance for which related connections are to be
reset.

Table 22–12 resetServerPort Parameters

Parameter Description

port Port to reset.

Reference: Attributes and Operations for Native SMPP Plug-in

22-28 Services Gatekeeper Communication Service Reference Guide

Closes and restarts all server ports all local server ports in the current configuration.

Signature:

updateAllServerPorts()

Reference: Attributes and Operations for Native SMPP Plug-in
This section describes the attributes and operations for configuration and
maintenance:

■ Attribute: BindType

■ Attribute: DeliverSmRespCommandStatus

■ Attribute: EnableDeleteAfterCancel

■ Attribute: EnableDeleteAfterNotify

■ Attribute: EnableDeleteAfterQuery

■ Attribute: EnquireLinkTimerValue

■ Attribute: EsmeAddressRange

■ Attribute: EsmeNpi

■ Attribute: EsmePassword

■ Attribute: EsmeSystemId

■ Attribute: EsmeSystemType

■ Attribute: EsmeTon

■ Attribute: LocalAddress

■ Attribute: LocalPort

■ Attribute: MessageIdInHexFormat

■ Attribute: NumberReceiverConnections

■ Attribute: NumberTransceiverConnections

■ Attribute: NumberTransmitterConnections

■ Attribute: RequestTimerValue

■ Attribute: RetryTimesBeforeGiveUp

■ Attribute: RetryTimesBeforeReconnect

■ Attribute: SmscAddress

■ Attribute: SmppVersion

■ Attribute: SmscPort

■ Attribute: WindowingMaxQueueSize

■ Attribute: WindowingMaxWaitTime

■ Attribute: WindowingSize

Attribute: BindType
Scope: Server

Unit: Not applicable

Reference: Attributes and Operations for Native SMPP Plug-in

Native SMPP 22-29

Format: Integer

Specifies how the plug-in binds to the SMSC.

Use:

■ 1 to bind as Transceiver

■ 2 to bind as Transmitter

■ 3 to bind as Receiver

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: DeliverSmRespCommandStatus
Scope: Cluster

Unit: Not applicable

Format: Integer

Error code to used in the command_status field when the application is unavailable.
See section 5.1.3 command_status in SMPP Protocol Specification v3.4.

Specifies how the plug-in responds to an SMSC if a network-triggered short message
cannot be delivered to an application that subscribed for notifications on incoming
short messages.

The default is ESME_RINVDSTADR.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Table 22–13 lists the possible values for DeliverSmRespCommandStatus.

Attribute: EnableDeleteAfterCancel
Scope: Cluster

Unit: Not applicable

Format: Boolean

Table 22–13 DeliverSmRespCommandStatus Response Codes

Error Code Definition Possible Scenario

1 Invalid Message Length Failed to decode the short message in deliverSm (MOAT).

6 Invalid priority flag The priority flag is less than 0 or greater than 3.

8 System Error An internal Services Gatekeeper error has occurred, for
example, a storage exception.

10 Invalid Source Address An invalid source address in deliverSm, for example, an
empty address.

11 Invalid Address Services Gatekeeper received a delivery receipt with an
unknown address or a MOAT from an address without
any registration.

12 Invalid Message ID The messageId in deliverSm is null or unknown.

67 Invalid esm_class field
data

Invalid esm_class field data in deliverSm, for example, -1.

Reference: Attributes and Operations for Native SMPP Plug-in

22-30 Services Gatekeeper Communication Service Reference Guide

Specifies whether to delete SMPP session information from storage after receipt of a
CANCEL_SM_RESP.

The default is true.

Attribute: EnableDeleteAfterNotify
Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether to delete SMPP session information from storage after receipt of the
delivery report with the final message state.

The default is true.

Attribute: EnableDeleteAfterQuery
Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies whether to delete SMPP session information from storage after the receipt of
the query response with the final message state.

The default is false.

Attribute: EnquireLinkTimerValue
Scope: Cluster

Unit: Seconds

Format: Integer

Minimum interval between ENQUIRE_LINK requests to the SMSC.

The default is 60.

To disable the sending of ENQUIRE_LINK requests, set this value to 0 (zero).

Attribute: EsmeAddressRange
Scope: Server

Unit: Not applicable

Format: String formatted as a regular expression.

ESME address range. This is the address range of the SMS messages to be sent to the
plug-in instance by the SMSC.

The default is ^.*$.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: EsmeNpi
Scope: Server

Reference: Attributes and Operations for Native SMPP Plug-in

Native SMPP 22-31

Unit: Not applicable

Format: Integer

The ESME Numbering Plan Indicator (NPI) used in a BIND request.

Used for destination address and as a default for originating address. Also used for
both destination address and originating address during bind operation. Use:

■ 0 for Unknown

■ 1 for ISDN (E163/E164)

■ 3 for Data (X.121)

■ 4 for Telex (F.69)

■ 6 for Land Mobile (E.212)

■ 8 for National

■ 9 for Private

■ 10 for ERMES

■ 14 for Internet (IP)

■ 18 for WAP Client ID

The default is 0.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: EsmePassword
Scope: Cluster

Unit: Not applicable

Format: String

Password used by the plug-in instance for connecting to the SMSC as an ESME.

Attribute: EsmeSystemId
Scope: Cluster

Unit: Not applicable

Format: String

System ID used by the plug-in instance when connecting to the SMSC as an ESME.

The default is OCSG.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: EsmeSystemType
Scope: Cluster

Unit: Not applicable

Format: String

System type used by the plug-in instance for connecting to the SMSC as an ESME.

Reference: Attributes and Operations for Native SMPP Plug-in

22-32 Services Gatekeeper Communication Service Reference Guide

The default is mess_gateway.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: EsmeTon
Scope: Cluster

Unit: Not applicable

Format: Integer

ESME Type Of Number (TON).

Used for destination address and as a default for originating address. Also used for
both destination address and originating address in a BIND request. Use:

■ 0 for Unknown

■ 1 for International

■ 2 for National

■ 3 for Network

■ 4 for Subscriber

■ 5 for Alphanumeric

■ 6 for Abbreviated

■ 7 Reserved

The default is 0.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: LocalAddress
Scope: Server

Unit: Not applicable

Format: String

Local server address used by the plug-in to connect to the SMSC. The address can be
expressed as an IP address or host name. The address or host name must resolve to a
local address.

Enter "" to use the default address of the server.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: LocalPort
Scope: Server

Unit: Not applicable

Format: Integer [1 - (65535 - number of connections)]

Local port used by the plug-in to connect to the SMSC.

The default is 3000.

Reference: Attributes and Operations for Native SMPP Plug-in

Native SMPP 22-33

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: MessageIdInHexFormat
Scope: Cluster

Unit: Not applicable

Format: Boolean

Specifies the message_id format used in SUBMIT_SM_RESP, SUBMIT_MULTI_
RESP, DATA_SM_RESP operations.

If true, the format is hexadecimal; if false, it is decimal.

The default is false.

Attribute: NumberReceiverConnections
Scope: Cluster

Unit: Not applicable

Format: Integer

Number of connections used to connect to the SMSC if the bind type is 3.

The default is 1.

See "Attribute: BindType" for more information.

The connections are established with the first successful BIND between the
application and Services Gatekeeper, if connection-based routing is disabled.

If connection-based routing is enabled, connections to the SMSC cannot be shared
among different application instances, so this attribute is ignored.

Attribute: NumberTransceiverConnections
Scope: Cluster

Unit: Not applicable

Format: Integer

Number of connections used to connect to the SMSC if the bind type is 1.

The default is 1.

See "Attribute: BindType" for more information.

The connections are established with the first successful BIND between the
application and Services Gatekeeper, if connection-based routing is disabled.

If connection-based routing is enabled, connections to the SMSC cannot be shared
among different application instances, so this attribute is ignored.

Attribute: NumberTransmitterConnections
Scope: Cluster

Unit: Not applicable

Format: Integer

Reference: Attributes and Operations for Native SMPP Plug-in

22-34 Services Gatekeeper Communication Service Reference Guide

Number of connections used to connect to the SMSC if the bind type is or 2.

The default is 1.

See "Attribute: BindType" for more information.

The connections are established with the first successful BIND between the
application and Services Gatekeeper, if connection-based routing is disabled.

If connection-based routing is enabled, connections to the SMSC cannot be shared
among different application instances, so this attribute is ignored.

Attribute: RequestTimerValue
Scope: Cluster

Unit: Seconds

Format: Integer

Maximum time between the submission of a request to the SMSC and the receipt of
the corresponding response before the connection is terminated.

The default is 20.

Set to 0 (zero) for no timeout.

Attribute: RetryTimesBeforeGiveUp
Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of times for the plug-in to try to reconnect to the server service.

The default is 30.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: RetryTimesBeforeReconnect
Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of times for the plug-in to try to connect to the server service before
attempting to reconnect.

The default is 3.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: SmscAddress
Scope: Cluster

Unit: Not applicable

Format: String

Reference: Attributes and Operations for Native SMPP Plug-in

Native SMPP 22-35

SMSC address as an IP address or host name.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: SmppVersion
Scope: Cluster

Unit: Not applicable

Format: String

SMPP version of the communication service used between Services Gatekeeper and
the SMSC.

Valid values are 3.4 and 5.1.

3.4 is the fully-supported version.

5.1 is provided to support the billing identification parameter and the ussd_service_
operation parameter for the DELIVER_SM operation. See "USSD Support" and
"Billing Identification" for information about these parameters

The default is 3.4.

Attribute: SmscPort
Scope: Cluster

Unit: Not applicable

Format: Integer

Listening port used by the SMSC

The default is 5016.

The setting is not applied until the plug-in is restarted or the SMPP Server Service
"Operation: resetClientConnection" is performed.

Attribute: WindowingMaxQueueSize
Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of mobile-terminated requests to the SMSC allowed in the
windowing queue.

The default is 100.

If any one of the three windowing attributes (WindowingMaxQueueSize,
WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero,
windowing is turned off. If all of these three attributes have values greater than zero,
windowing is turned on.

See "Windowing" for general information about windowing.

Attribute: WindowingMaxWaitTime
Scope: Cluster

Reference: Attributes and Operations for Native SMPP Plug-in

22-36 Services Gatekeeper Communication Service Reference Guide

Unit: Seconds

Format: Integer

Maximum time that a mobile-terminated request to the SMSC is allowed to wait in the
windowing queue.

The default is 15.

If any one of the three windowing attributes (WindowingMaxQueueSize,
WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero,
windowing is turned off. If all of these three attributes have values greater than zero,
windowing is turned on.

See "Windowing" for general information about windowing.

Attribute: WindowingSize
Scope: Cluster

Unit: Not applicable

Format: Integer

Maximum number of simultaneous unacknowledged mobile-terminated requests to
the SMSC enforced for each connection.

The default is 5.

If any one of the three windowing attributes (WindowingMaxQueueSize,
WindowingMaxWaitTime, or WindowingSize) is set to a value less than zero,
windowing is turned off. If all of these three attributes have values greater than zero,
windowing is turned on.

See "Windowing" for general information about windowing.

23

Native UCP 23-1

23Native UCP

This chapter describes the Oracle Communications Services Gatekeeper Native UCP
communication service.

Overview of the Native UCP Communication Service
The Native UCP communication service exposes the UCP Short Message Service
Center EMI-UCP standard interfaces.

The communication service acts as a Short Message Terminal (SMT) that connects to a
Short Messaging Service Center (SMSC) over TCP/IP.

For the exact version of the standards that the UCP communication service supports
for the application-facing interfaces and the network protocols, see Services Gatekeeper
Statement of Compliance.

The Native UCP service can:

■ Connect to a specified SMSC address.

■ Open a session with the SMSC.

■ Send acknowledgments to the SMSC.

■ Send acknowledgments to the application.

■ Send a mobile-terminated SMS message to destination addresses.

■ Deliver a mobile-originated SMS message.

■ Deliver a delivery notification associated with a previously sent mobile-terminated
SMS message.

All Native UCP components are deployed in the network tier.

The core module of the Native UCP communication service is a Native UCP Protocol
Server Service deployed as an Oracle WebLogic Server Service. The Native UCP
Protocol Server Service:

■ Receives UCP data from the socket.

■ Constructs the UCP protocol data unit (PDU).

■ Associates the current PDU with the correct application instance.

■ Invokes the plug-in.

There is also a Native UCP managed plug-in module, as well as the Native UCP
plug-in instances.

Overview of the Native UCP Communication Service

23-2 Services Gatekeeper Communication Service Reference Guide

In addition, Native UCP uses the Connection Information Manager service to create
and manage a credential map to support each plug-in instance. For information about
the Connection Information Manager, see the discussion about managing and
configuring native UCP connection information in Services Gatekeeper System
Administrator's Guide.

The entire Native UCP Service is deployed in the network tier, so applications using it
must connect directly to the network tier. The network and any firewall should be
configured to allow connection to the ports defined for the Native UCP Service.

There is no failover between network tier servers. Redundant SMSCs and redundant
network cards are required to support high-availability features.

To optimize system utilization, the application and the SMSC should load balance the
requests among all network tier servers.

Hitless upgrade is not supported for the Native UCP communication service. To
upgrade you must restart the server.

Connection and Credential Handling
Plug-in instances establish connections to Services Gatekeeper using facilities provided
by the Protocol Server Service. They also use the Protocol Server Service to open a
session and to send requests to the SMSC. The Protocol Server Service creates a new
socket connection for each session management operation of subtype "open session"
that is sent.

The Native UCP Protocol Server Service uses the Connection Information Manager´s
getConnectInfo operation to get the connection information for a particular plug-in
instance. When a plug-in instance sends a Native UCP PDU to the Protocol Server
Service passing its plug-in instance ID, a connection ID is returned. This connection ID
identifies the SMSC connection on which the request was sent.

A server-side connection connects an application to Services Gatekeeper, which is the
server in this context.

A client-side connection connects an SMSC to Services Gatekeeper, which is a client in
this context.

Native UCP has no unbind operation. There are no receiver, transceiver, or transmitter
connection types. If a connection is lost, the Protocol Server Service automatically
closes one connection to the SMSC for the current application instance. See "Multiple
Connections" for more information.

Credentials
The Protocol Server Service performs network credential mappings based on a
credential map set up in the Connection Information Manager.

A user/password combination is associated with a credential ID that is stored in the
Connection Information Manager. See the Connection Information Manager´s
createOrUpdateUserPasswordCredentialEntry operation. The credential ID is
associated with a plug-in instance and an application instance in an entry in the
Connection Information Manager's credential map. See the Connection Information
Manager’s createOrUpdateCredentialMap operation.

For detailed information on how to configure the connection information and the
credential map, see the discussion about managing and configuring native UCP
connection information in Services Gatekeeper System Administrator's Guide.

Overview of the Native UCP Communication Service

Native UCP 23-3

Windowing and Transaction Numbers
To maximize throughput, Native UCP supports windowing on both the
application-facing and network-facing interfaces. This provides a way to specify the
amount of data that can be transmitted to and from the network without receiving an
acknowledgment.

On the server side, Native UCP creates a transaction number (TRN) allocation table
using default values. These are used by server-side connections sending deliver_
short_message and deliver_notification requests to an application.

On the client side, Native UCP creates a transaction number allocation table using
values configured in the Connection Information Manager. Configure the client-side
windowing behavior by setting the parameters listed in Table 23–1 using the
Connection Information Manager´s addXParamToCredentialEntry operation. For
information about this operation, see the discussion on managing and configuring
connection information in Services Gatekeeper System Administrator's Guide.

Behavior When the Window is Exceeded
If Services Gatekeeper tries to allocate a TRN when all the TRNs have been allocated
and none is old enough to be cleaned up and maxWaitAcquireTimeout has expired,
an exception is thrown causing Services Gatekeeper to respond with a NACK.

Behavior When TRNs Are Not Released
When a TRN is allocated, values that have already been allocated are checked to see
whether they have expired. Entries older than allocationTimeout are cleaned and
automatically released. An error is logged, but no alarm is generated. No NACK is
triggered for a request that was originally associated with the expired TRN.

Multiple Connections
An application instance can establish multiple TCP connections to Services
Gatekeeper. Multiple application instances, those with different application instance
names, cannot share a connection to the SMSC.

If one connection between an application instance and an SMSC is dropped, Services
Gatekeeper does not automatically close associated application instance connections as
long as there are other SMSC connections available for that same application instance.
If all connections to the SMSC for a particular application instance are dropped,
Services Gatekeeper terminates all of that application instance’s connections.

Table 23–1 UCP Windowing Parameters in ConnectionInfoManager

Parameter Description Default

windowSize Maximum number of unacknowledged transactions
allowed between a plug-in instance and an SMSC

100

maxWaitAcquireTimeout Maximum time in milliseconds that a request can
wait while trying to allocate a transaction number

3000

allocationTimeout Maximum time in milliseconds that an allocated
transaction number can be held while the plug-in or
the SMSC is waiting for an acknowledgment

5000

maxQueueSize Maximum number of threads that can wait for a
transaction number to be allocated

5

Overview of the Native UCP Communication Service

23-4 Services Gatekeeper Communication Service Reference Guide

Connection Pooling
When an application instance sends an open session operation on a new connection,
the Protocol Server Service tries to establish a connection to the underlying SMSCs and
then to open the session. It does not automatically establish connection pools to the
underlying SMSCs. It establishes additional connections only when an application
instance establishes multiple connections with Services Gatekeeper.

Because an application may establish multiple connections, a request sent from the
Protocol Server Service to a plug-in includes a server-side connection identifier. This
identifier is then included when the plug-in uses the Protocol Server Service to send
acknowledgments back to the application. Acknowledgments must be sent on the
same connection as the corresponding request. Delivery reports can be sent on a
different connection.

Windowing and Transaction Numbers
To maximize throughput, Native UCP supports windowing on both the
application-facing and network-facing interfaces. This provides a way to specify the
amount of data that can be transmitted to and from the network without receiving an
acknowledgment.

On the server side, Native UCP creates a transaction number (TRN) allocation table
using default values. These are used by server-side connections sending deliver_
short_message and deliver_notification requests to an application.

On the client side, Native UCP creates a transaction number allocation table using
values configured in the Connection Information Manager. Configure the client-side
windowing behavior by setting the parameters listed in Table 23–2 using the
Connection Information Manager´s addXParamToCredentialEntry operation. For
information about this operation, see the discussion about managing and configuring
native UCP connection information in Services Gatekeeper System Administrator's Guide.

Behavior When the Window is Exceeded
If Services Gatekeeper tries to allocate a TRN when all the TRNs have been allocated
and none is old enough to be cleaned up and maxWaitAcquireTimeout has expired,
an exception is thrown causing Services Gatekeeper to respond with a NACK.

Behavior When TRNs Are Not Released
When a TRN is allocated, values that have already been allocated are checked to see
whether they have expired. Entries older than allocationTimeout are cleaned and
automatically released. An error is logged, but no alarm is generated. No NACK is
triggered for a request that was originally associated with the expired TRN.

Table 23–2 UCP Windowing Parameters in ConnectionInfoManager

Parameter Description Default

windowSize Maximum number of unacknowledged transactions
allowed between a plug-in instance and an SMSC

100

maxWaitAcquireTimeout Maximum time in milliseconds that a request can
wait while trying to allocate a transaction number

3000

allocationTimeout Maximum time in milliseconds that an allocated
transaction number can be held while the plug-in or
the SMSC is waiting for an acknowledgment

5000

maxQueueSize Maximum number of threads that can wait for a
transaction number to be allocated

5

Overview of the Native UCP Communication Service

Native UCP 23-5

Authentication
Applications are authenticated on receipt of the openSession PDU, after which the
connection is associated with the authenticated identity.

Subsequent requests on the connection trigger an identity assertion associating the
request with the identity that was authenticated with the receipt of the open session
PDU. A consequence of this behavior is that an application can continue to send
messages after the password has been changed. To force a new authentication, close
the connection.

Table 23–3 describes the mapping between the Native UCP authentication parameters
and the Services Gatekeeper parameters.

The password is stored in the Connection Information Manager. No password
information is stored by the Protocol Server Service or by the plug-in.

Availability and Retry
The availability and retry behavior of the Protocol Server Service is as follows.

Application-Initiated traffic
If there is no acknowledgment from the network, the UCP Protocol Server Service does
not start any timers per request, does not perform any retries, and does not report an
acknowledgment back to the application.

The only exception to this behavior is when the wait on an openSession request
exceeds the configured Native UCP OpenSessionTimeout maximum. See the
OpenSessionTimeout field for more information.

If the Protocol Server Service receives an exception when calling the submit_short_
message operation, it sends a NACK to the application.

Network-Initiated traffic
If the underlying SMSC does not receive an acknowledgment from Services
Gatekeeper, the SMSC should resend the request.

If a message is sent to an application but no acknowledgment is returned from the
application, the UCP Protocol Server Service does not start any per request timers,
does not perform any retries, and does not send back an acknowledgment to the
application.

If the Protocol Server Service receives an exception when calling the deliver_short_
message or deliver_notification operation, it sends a NACK to the SMSC.

Delivery reports do not have to be sent on the same server that sent the original
delivery request, even in a geo-redundant setup. In a clustered configuration, if the
server that submits an SMS fails, another server can handle the delivery report for that
SMS.

Table 23–3 Authentication Parameters

Native UCP Parameter
Services Gatekeeper ConnectionInfoManager Credential
Parameter

originating address (OAdC) application instance name

password password

Overview of the Native UCP Communication Service

23-6 Services Gatekeeper Communication Service Reference Guide

Client-Side Retry Handling
Native UCP automatically tries to re-establish a dropped connection when an initial
openSession attempt or an established session fails. The number of retries attempted is
configured by the maxReconnectAttempts attribute and the number of milliseconds
between retries by the timeBetweenReconnectAttempts attribute.

The retry behavior is as follows:

■ Initial openSession failure: When an application sends the initial open session
request, Services Gatekeeper sends one open session request to each SMSC that
matches the current configuration in terms of plug-ins, routes, SLAs, and so on. If
one of the SMSCs responds with an ACK, Services Gatekeeper returns an ACK to
the application.

For all SMSCs that Services Gatekeeper cannot connect to or receive an
acknowledgment from, it tries to re-establish a connection. Specifically, retry is
triggered in the following cases:

– Services Gatekeeper receives a NACK in response to the open session request.

– The socket to the SMSC cannot be set up.

– The socket is closed before the acknowledgment is received.

– The timeout period, configured by the OpenSessionTimeout attribute, expires
before an acknowledgment is received.

■ Established session failure: If the client-side connection is dropped and the
Services Gatekeeper application instance associated with the dropped connection
still has other working connections, Services Gatekeeper sends an open session
request to each SMSC that matches the current configuration, following the same
procedure as described above for an initial openSession failure.

Use the dumpOngoingClientConnectionsRetryInfo and
stopOngoingClientConnectionRetry operations to manage connections that are in the
retry state.

Heartbeat Support
Native UCP provides heartbeat support by sending UCP operation "31" (SMT alert)
requests at regular intervals. This prevents firewalls and the SMSC from closing an
idle connection.

Server-Side Heartbeat Support
Heartbeat support for Native UCP server-side connections has the following
characteristics:

■ In response to a UCP operation type "31"(SMT Alert), the corresponding
acknowledgment is sent.

■ There are no timeouts associated with heartbeats.

■ Services Gatekeeper does not close any connections because of missing heartbeat
requests.

■ Heartbeats received on server-side connections are not forwarded to client-side
connections.

■ There are no configuration attributes associated with server-side heartbeat
functions.

Events and Statistics

Native UCP 23-7

Client-Side Heartbeat Support
Heartbeat support for Native UCP client-side connections has the following
characteristics:

■ Heartbeats are not enabled by default for a client-side connection.

■ Heartbeats are enabled by setting the heartbeatInterval parameter in the
Connection Information Manager. This parameter defines the interval, in
milliseconds, between UCP operation type 31 requests. The value is configured
with the addXParamToCredentialEntry method of the ConnectionInfoManager
MBean.

For information about this operation, see discussion on managing and configuring
connection information in Services Gatekeeper System Administrator's Guide.

■ Services Gatekeeper does not close any client-side connections because of missing
acknowledgments on heartbeat requests.

■ Received client-side heartbeat acknowledgments are not forwarded to server-side
connections.

Storage Provider
The Native UCP Protocol Server Service and the Native UCP plug-in use the default
Services Gatekeeper store.

Application Interfaces
For information about the application interface for the Native UCP communication
service, see the discussion about Native UCP Interfaces in Services Gatekeeper
Application Developer's Guide.

Events and Statistics
The Native UCP communication service generates event data records (EDRs), charging
data records (CDRs), alarms, and statistics to assist system administrators and
developers in monitoring the service

For general information, see Appendix A, "Events, Alarms, and Charging."

Event Data Records
Table 23–4 lists IDs of the EDRs created by the Native UCP communication service.

When there are multiple SMSCs, it is possible that EDR data generated for open
session requests may contain the wrong data for some of the EDRs because EDR data
is stored in the current context.

Table 23–4 EDRs Generated by Native UCP

EDR ID Description

402001 application-initiated openSession to the SMSC

402002 application-initiated submitSM to the SMSC

402003 application-initiated ACK to the SMSC

402004 application-initiated NACK to the SMSC

402010 network-triggered deliverSM to the application

Events and Statistics

23-8 Services Gatekeeper Communication Service Reference Guide

Table 23–5 describes Native UCP-specific fields included in the Native UCP EDRs.

About UCP_trn/UCP_mappedTrn
Transaction numbers must be mapped in the following cases:

■ When sending a submit_short_message operation (51) to the SMSC and receiving
the corresponding acknowledgment

■ When sending a deliver_notification operation (53) to the application and
receiving the corresponding acknowledgment

■ When sending a deliver_short_message operation (52) to the application and
receiving the corresponding acknowledgment

A UCP_mappedTrn is required in the following circumstances because pooled
connections create the possibility of sending conflicting or overlapping transaction
numbers were they not mapped:

■ When a submit_short_message request is sent:

– UCP_trn holds the original transaction number as received by the application.

– UCP_mappedTrn holds the transaction number that was used in the request
to the SMSC.

■ When the acknowledgment for the submit_short_message request is received:

– UCP_trn holds the original transaction number, which is then used to forward
the acknowledgment to the application.

– UCP_mappedTrn holds the transaction number that was included in the
acknowledgment from the SMSC.

402011 network-triggered deliveryNotification to the application

402012 network-triggered ACK to the application

402013 network-triggered NACK to the application

Table 23–5 Native UCP-Specific EDR Fields

EDR Parameter Description

UCP_isOperation true if EDR is for an operation, false if for an acknowledgment

UCP_opType UCP operation type; for example, 51 for a submit_short_message
request

UCP_trn UCP transaction number; see "About UCP_trn/UCP_mappedTrn"

UCP_mappedTrn mapped transaction number; see "About UCP_trn/UCP_
mappedTrn"

UCP_sourceConnID source connection ID; for the connection that received the PDU

UCP_
outgoingConnID

outgoing connection ID for the connection on which the PDU was
sent

UCP_adc AdC parameter in the UCP PDU

UCP_oadc OAdC parameter in the UCP PDU; see "About UCP_oadc"

UCP_scts Service Center Timestamp (SCTS) parameter in the UCP PDU

Table 23–4 (Cont.) EDRs Generated by Native UCP

EDR ID Description

Managing Native UCP

Native UCP 23-9

About UCP_oadc
The UCP_oadc parameter used in a deliver_notification operation (53) identifies the
recipient of a message that was previously sent by the submit_short_message
operation (51).

The UCP_oadc parameter normally contains the large account/originator number.

Charging Data Records
The Native UCP communication service generates charging data records (CDRs)
under the following conditions:

■ After a mobile-originated SMS UCP PDU has been processed by the plug-in.

■ After a mobile-terminated SMS UCP PDU has been processed by the plug-in.

■ When an ACK is received.

The CDR includes the service center timestamp (SCTS). The ACK is correlated
with submit_short_message using the connection identifiers and the transaction
number (TRN).

■ When a delivery report for a mobile-terminated SMS message is received.

The CDR includes the SCTS for correlation with submit (and submit ACK) using
SCTS and AdC and OAdC parameters.

Statistics
Table 23–6 maps methods invoked from either the application or the network to the
transaction types collected by the Services Gatekeeper statistics counter.

Alarms
For the list of alarms, see Services Gatekeeper Alarms Handling Guide.

Managing Native UCP
This section describes the properties and workflow for the Native UCP
communication service.

Native UCP relies upon facilities in Services Gatekeeper Connection Information
Manager to create and store connection and credential information for a UCP plug-in
instance. For information about this manager, see discussion on managing and
configuring connection information in Services Gatekeeper System Administrator's Guidee.

Plug-in instances are associated with application instances and authentication
credentials through the createOrUpdateCredentialMap operation in the Connection
Information Manager.

There can be only one application instance per large account.

The work manager is registered when the managed plug-in is started. Settings in the
Native UCP managed plug-in provide the IP address and port where the plug-in

Table 23–6 Methods and Transaction Types for Native UCP

Method Transaction Type

submit_short_message TRANSACTION_TYPE_MESSAGING_SEND

deliver_short_message TRANSACTION_TYPE_MESSAGING_RECEIVE

Properties for Native UCP Protocol Server Service

23-10 Services Gatekeeper Communication Service Reference Guide

registers its work manager. These settings apply to all the Native UCP plug-in
instances. If these settings are changed, a restart is required.

Properties for Native UCP Protocol Server Service
Table 23–7 lists the technical specifications for the UCP protocol server service.

Properties for Native UCP Managed Plug-in
Table 23–8 lists the technical specifications for the Native UCP managed plug-in.

Properties for Native UCP Plug-in Instance
Table 23–9 lists the technical specifications for the plug-in instance.

Table 23–7 Native UCP Protocol Server Service Properties

Property Description

Managed object in
Administration Console

To manage the object, select domain_name , then OCSG, then
server_name, then Container Services, and then UCPService.

MBean Domain=com.bea.wlcp.wlng

Name=wlng

InstanceName=UCPService

Type=oracle.ocsg.protocol.ucp.management.UCPServerMBean

Documentation: See the “All Classes” section of Services
Gatekeeper OAM Java API Reference

Exposes this interface to
applications

EMI-UCP 5.1

Deployment artifacts oracle.ocsg.protocol.ucp_6.0.0.0.jar, oracle.ocsg.protocol.ucp_
api_6.0.0.0.jar

Table 23–8 Native UCP Managed Plug-in Properties

Property Description

Managed object in
Administration Console

To manage the object, select domain_name, then OCSG, then
server_name, then Communication Services, and then
oracle.ocsg.native_ucp_sms

MBean Domain=com.bea.wlcp.wlng

AppName=native_ucp_sms#6.0.0

InstanceName = oracle.ocsg.native_ucp_sms

Type =
oracle.ocsg.plugin.nativefacade.ucp.management.NativeUCP
ManagedPluginMBean

Documentation: See the “All Classes” section of Services
Gatekeeper OAM Java API Reference

Supported Network
Interface

UCP v5.1

Supported Application
Interface

UCP v5.1

Deployment artifact wlng_nt_native_ucp_sms.ear

Configuration Workflow for Native UCP Communication Service

Native UCP 23-11

Configuration Workflow for Native UCP Communication Service
Following is an outline for configuring the plug-in using the Administration Console
or an MBean browser.

1. Configure the listen address and the listen port in the Native UCP managed
plug-in MBean, NativeUCPManagedPluginMBean. All the Native UCP plug-in
instances use these fields.

■ listenAddress

■ listenPort

See "Reconfiguring Native UCP Listen Ports" if you need to change these values.

2. [Optional] Configure the Native UCP address routing interceptor if there is a
possibility of multiple SMSCs owning the same address. This ensures that
messages sent to the same address are sent to the same SMSC. It also ensures that
all message segments for a concatenated SMS message are sent to the same SMSC.

This interceptor is not enabled by default.

To enable it, edit the interceptor chain to include the NativeUCPAddressRouting
class:

a. Open the config.xml file that is bundled in the interceptors.ear file in the
Services Gatekeeper installation.

This is the file in which the interceptor chain is defined.

b. Locate the RoundRobinPluginList routing interceptor in the file. The line
looks like this:

<interceptor class="com.bea.wlcp.wlng.interceptor.RoundRobinPluginList"
index="1000"/>

Table 23–9 Native UCP Plug-in Instance Properties

Property Description

Managed object in
Administration Console

To manage the object, select domain_name, then OCSG, then
server_name, then Communication Services, then plugin_
instance_id in that order.

MBean Domain=com.bea.wlcp.wlng

AppName=native_ucp_sms#5.1.0

Instance Name=same as the network protocol instance_id
assigned when the plug-in instance is created

Type=oracle.ocsg.plugin.nativefacade.ucp.management.Native
UCPPluginMBean

Documentation: See the “All Classes” section of Services
Gatekeeper OAM Java API Reference

Supported network
interface

UCP v5.1

Supported application
interface

UCP v5.1

Supported character sets 7-bit GSM charset + Unicode (16-bit UCS2)

Supported address scheme tel

Deployment artifact wlng_nt_native_ucp_sms.ear

Provisioning Workflow for Native UCP Communication Service

23-12 Services Gatekeeper Communication Service Reference Guide

c. Add the NativeUCPAddressRouting class interceptor immediately before the
RoundRobinPluginList routing interceptor. The line for the
NativeUCPAddressRouting interceptor looks like this:

<interceptor class="com.bea.wlcp.wlng.interceptor.NativeUCPAddressRouting"
index="950"/>

The resulting interceptor chain should look like this:

 ...
 <interceptor
class="com.bea.wlcp.wlng.interceptor.FilterPluginListUsingCustomMatch"
index="800"/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.RemoveOptional"
index="900"/>
 <interceptor
class="com.bea.wlcp.wlng.interceptor.NativeUCPAddressRouting" index="950"/>
 <interceptor class="com.bea.wlcp.wlng.interceptor.RoundRobinPluginList"
index="1000"/>
 <interceptor
class="com.bea.wlcp.wlng.interceptor.InvokeServiceCorrelation"
index="1100"/>
 ...

The interceptor verifies that the request it is intercepting is a Native UCP request
before it modifies the plug-in list. If it is not a Native UCP request, the list is not
modified.

Provisioning Workflow for Native UCP Communication Service
Perform steps 1 through 5 in the Connection Information Manager. The operations and
attributes used in these steps are described in the discussion about managing and
configuring connection information in Services Gatekeeper System Administrator's Guide.

1. Create one or more Native UCP plug-in instances. See the discussion about
configuring and managing the plug-in manager in Services Gatekeeper System
Administrator's Guide. Use the plug-in service ID described in the "Properties for
Native UCP Plug-in Instance" section.

2. Set up the network connection mapping for the plug-in instance using the
Connection Information Manager.

■ createOrUpdateLocalHostAddress

■ createOrUpdateRemoteHostAddress

■ createOrUpdateListenAddress

3. Set up the network credential mapping. This associates a user and password with
a credential ID. Use the following operation:

■ createOrUpdateUserPasswordCredentialEntry

4. Create or update the credential map for the plug-in instance. This entry associates
the credential ID with the application instance ID and the plug-in instance ID. Use
the following operation:

■ createOrUpdateCredentialMap

5. Add any connection-specific parameters needed to support windowing and
heartbeats. See "Windowing and Transaction Numbers" and "Heartbeat Support"
for more information. Use the addXParamToCredentialEntry method.

Reference: Attributes and Operations for Native UCP Protocol Server Service

Native UCP 23-13

6. Configure the retry behavior for the Native UCP Protocol Server Service with the
MaxReconnectAttempts and TimeBetweenReconnectAttempts fields.

7. Configure the timeout limit for the plug-in instance with the OpenSessionTimeout
field.

8. If required, create and load a node SLA. For details see the discussion on defining
global node and service provider group node SLAs and managing SLAs in Services
Gatekeeper Accounts and SLAs Guide.

9. Provision the service provider accounts and application accounts. For information,
see Services Gatekeeper Portal Developer's Guide.

Reconfiguring Native UCP Listen Ports
The listen port and address is used by the Native UCP plug-in upon startup to register
a work manager in the UCP Protocol Server Service.

To reconfigure the listen port and listen address:

1. In the Connection Information Manager, create the new listen address and port
using the createOrUpdateListenAddress operation.

2. Remove the old listen address and port using the Connection Information
Manager’s removeListenAddress operation.

3. View the new listen address configuration using the Connection Information
Manager’s getAllListenAddress operation.

4. In the Native UCP Managed Plug-in, change the listenAddress and listenPort
attributes to match the new values that you just configured in the Connection
Information Manager. See the listenAddress and listenPort fields for more
information.

5. Register the work manager at the new port using the reRegisterWorkManager
operation. See the reRegisterWorkManager method for more information.

Services Gatekeeper cannot accept new server-side connections on the new ports
until you restart the ports using the restartPorts operation. See the restartPorts
method for more information.

6. Using thelistUCPServersString method in the Native UCP Protocol Server
Service, view the currently running listen ports.

7. Using the restartports method, close and restart all current listening ports. This
closes all server-side and client-side connections.

8. Using the listUCPServersString, verify that Native UCP is listening on the new
ports.

9. Using thedumpServerSideconnectionsInfo method, verify that applications are
reconnecting on the new listen ports.

10. Using the dumpClientSideConnectionsInfo method, verify that connections to
the SMSCs have been re-established.

Reference: Attributes and Operations for Native UCP Protocol Server
Service

This section describes the attributes and operations for configuration and
maintenance:

Reference: Attributes and Operations for Native UCP Protocol Server Service

23-14 Services Gatekeeper Communication Service Reference Guide

■ Attribute: MaxReconnectAttempts

■ Attribute: TimeBetweenReconnectAttempts

■ Attribute: UCPProtocol (read-only)

■ Operation: closeClientSideConnection

■ Operation: closeServerSideConnection

■ Operation: dumpClientSideConnectionsInfo

■ Operation: dumpOngoingClientConnectionsRetryInfo

■ Operation: dumpServerSideConnectionsInfo

■ Operation: listUCPServersString

■ Operation: restartPorts

■ Operation: stopOngoingClientConnectionRetry

Attribute: MaxReconnectAttempts
Scope: Cluster

Unit: Not applicable

Format: Integer

Specifies the maximum number of reconnect retries permitted.

See "Attribute: TimeBetweenReconnectAttempts" and "Client-Side Retry Handling" for
information about how dropped connections are handled.

Attribute: TimeBetweenReconnectAttempts
Scope: Cluster

Unit: Milliseconds

Format: Integer

Specifies the time, in milliseconds, between reconnect attempts.

See "Attribute: TimeBetweenReconnectAttempts" and "Client-Side Retry Handling" for
information about how dropped connections are handled.

Attribute: UCPProtocol (read-only)
Scope: Cluster

Unit: Not applicable

Format: String

Table 23–10 MaxReconnectAttempts Values

Value Meaning

-1 retry forever; no maximum

0 no retries

< 0 maximum number of retries

-1 retry forever; no maximum

Reference: Attributes and Operations for Native UCP Protocol Server Service

Native UCP 23-15

Specifies the UCP protocol string.

This value must match a protocol string defined for a listen address in the Connection
Information Manager.

Operation: closeClientSideConnection
Scope: Server

Closes a client-side connection between Services Gatekeeper (the client in this
relationship) and an SMSC.

After this method is used to close a client-side connection, no retries are attempted on
the closed connection.

Does not implicitly close any server-side connections.

Use "Operation: dumpClientSideConnectionsInfo" to see information about the open
client-side connections

Signature:

closeClientSideConnection(pluginInstanceID: String, ocsgUser: String,
connectionID: String)

Operation: closeServerSideConnection
Scope: Server

Closes a server-side connection between an application and Services Gatekeeper (the
server in this relationship).

Does not implicitly close any client-side connections

Use "Operation: dumpServerSideConnectionsInfo" to see information about the open
server-side connections.

Signature:

closeServerSideConnection(pluginInstanceID: String, ocsgUser: String,
connectionID: String)

Table 23–11 closeClientSideConnection Parameters

Parameter Description

pluginInstanceID Instance ID of the connected plug-in instance

ocsgUser User name used to connect

connectionID Connection ID the request was sent on

pluginInstanceID Instance ID of the connected plug-in instance

Table 23–12 closeServerSideConnection Parameters

Parameter Description

pluginInstanceID Instance ID of the connected plug-in instance

ocsgUser User name used to connect

connectionID Connection ID the request was sent on

pluginInstanceID Instance ID of the connected plug-in instance

Reference: Attributes and Operations for Native UCP Protocol Server Service

23-16 Services Gatekeeper Communication Service Reference Guide

Operation: dumpClientSideConnectionsInfo
Scope: Server

Lists information for all the current client-side connections. These are the connections
between Services Gatekeeper and SMSCs.

Dumped information includes pluginInstanceID, ocsgUser, and connectionID for all
current connections.

Signature:

dumpClientSideConnectionInfo()

Operation: dumpOngoingClientConnectionsRetryInfo
Scope: Server

Lists current client-side connections that are experiencing periodic retry attempts.

The following sample output shows a dump for a connection that has already
performed seven retries and is configured to perform an infinite number of retries
("Attribute: MaxReconnectAttempts" = -1), with 60 seconds between retry attempts
("Attribute: TimeBetweenReconnectAttempts"= 60000):

<pluginInstance id="native_ucp_sms_plugin_2">
<user name="1234567">
<connection max_retries="-1" current_retries="7" retry_interval="60000" id="c_
localhost:9887_tmp_8237645"/>
</user>
</pluginInstance>

Signature:

dumpOngoingClientConnectionsRetryInfo()

Operation: dumpServerSideConnectionsInfo
Scope: Server

Lists information for all the current server-side connections. These are the connections
between Services Gatekeeper and applications.

Dumped information includes pluginInstanceID, ocsgUser, and connectionID for all
current connections.

Signature:

dumpServerSideConnectionInfo()

Operation: listUCPServersString
Scope: Server

Lists the currently running UCP servers as a comma-separated list of strings in the
format host:port.

Signature:

listUCPServersString()

Operation: restartPorts
Scope: Server

Reference: Attributes and Operations for Native UCP Protocol Server Service

Native UCP 23-17

Restarts the Native UCP listen ports.

This operation must be performed if users of the Native UCP Protocol Server Service
have reregistered their work managers at new ports. See the reRegisterWorkManager
method for more information.

The new ports must have been configured in the Connection Information Manager
MBean for the UCP protocol. See the createOrUpdateListenAddress and
removeListenAddress operations in managing and configuring connection
information in Services Gatekeeper System Administrator's Guide.

This operation abruptly terminates all ongoing traffic and closes all server-side and
client-side connections.

Signature:

restartPorts()

Operation: stopOngoingClientConnectionRetry
Scope: Server

Stops ongoing retry attempts for the specified connection.

Use "Operation: dumpOngoingClientConnectionsRetryInfo" to see information about
the current client-side connections that are in the retry state.

See "Client-Side Retry Handling" for more information.

Signature:

stopOngoingClientConnectionRetry(pluginInstanceID: String, ocsgUser: String,
connectionID: String)

For descriptions of the attributes and operations of the
NativeUCPManagedPluginMBean and NativeUCPPluginMBean MBeans, see the
“All Classes” section of Services Gatekeeper OAM Java API Reference.

Table 23–13 stopOngoingClientConnectionRetry Parameters

Parameter Description

pluginInstanceID Instance ID of the plug-in instance that is trying to reconnect

ocsgUser User name used to connect

connectionID Connection ID the request was sent on

pluginInstanceID Instance ID of the plug-in instance that is trying to reconnect

Reference: Attributes and Operations for Native UCP Protocol Server Service

23-18 Services Gatekeeper Communication Service Reference Guide

A

Events, Alarms, and Charging A-1

AEvents, Alarms, and Charging

This appendix describes the features common to the handling of events, alarms, and
charging in Oracle Communications Services Gatekeeper.

Events
Events are handled differently in the access tier and the network tier.

Event handling in the Access Tier
The access tier runs in the WebLogic Server’s Web Services Container, so events or
alarms that are raised there can be monitored through standard JMX mechanisms or
by using the WebLogic Diagnostics Framework.

For more information on how this works, see:

■ Designing Manageable Applications in Oracle Fusion Middleware Developing
Manageable Applications With JMX for Oracle WebLogic Server

■ Oracle Fusion Middleware Developing Manageable Applications With JMX for Oracle
WebLogic Server

Event handling in the Network Tier
In the network tier, much of the functionality comes from the interaction between
communication services and the Services Gatekeeper Container Services. To capture
this specialized level of information, and other pertinent information about the status
of the tier, Services Gatekeeper has developed specific mechanisms to record the data.

In standard communication services, all status information generated by the network
tier - events, alarms, charging data, and usage statistics - begins as an event, which is
fired whenever designated methods are called or exceptions are thrown. These events
are then sent to the EDR Service.

In the EDR Service, events are processed through XML-based filters, which provide
the criteria by which the events are classified into types. The filters can also be used to
transform the data in the original event, including adding other useful information.
When the information has been processed by the filters, it is delivered to type-specific
listeners. There are three types of filters that are all found in the wlng-edr.xml file.
They produce three distinct types of data: Event Data Records (EDRs), Charging Data
Records (CDRs), and Alarms. All three of these filters can be customized as desired,
using the Administrative Console. These filters can also deliver desired event-based
information to external JMS-based listeners. Such listeners are set up as standard JMS
topic subscribers and can be anywhere on the network. See Services Gatekeeper System
Administrator's Guide for more information on setting up these filters.

Events

A-2 Services Gatekeeper Communication Service Reference Guide

Each EDR always includes the data in Table A–1.

In addition, most events include the data in Table A–2.

Table A–1 EDR Data

Element Represents

ServiceName The service type (SMS, Call Handling, etc.) that produced the
event

ServerName The name of the WLS host

Timestamp The time at which the event was triggered (in milliseconds from
midnight 1 January 1970)

ContainerTransactionID The transaction ID from WebLogic Server, if available. This
identifies the thread on which the request is executed

Class The name of the class that logged the event

Method The name of the method that logged the event

Source The kind of event. There are two possible values for this field:

■ Method: the event was fired in relation to a method call

■ Exception: the event was fired in relation to an exception
being thrown

Table A–2 Event Data

Element Represents

Direction The direction in which the request is traveling. There are two
possible values for this field:

■ South: traveling toward the network node

■ North: traveling toward the application

Position The position of the EDR relative to the method that logged the
EDR. There are two possible values for this field:

■ Before: the event occurred before the method

■ After: the event occurred after the method

Interface The interface at which the EDR is logged. There are three possible
values for this field:

■ North: the event was logged at the north plug-in interface

■ South: the event was logged at the south plug-in interface

■ Other: the event was logged someplace other than the north
or south interfaces

State Indicates where the EDR was dispatched:

■ ENTER_AT: upon entering the AT layer, southbound

■ ENTER_NT: upon entering the NT layer, southbound

■ ENTER_NET: upon entering the network layer, southbound

■ EXIT_AT: upon exiting the AT layer, northbound

■ EXIT_NT: upon exiting the NT layer, northbound

■ EXIT_NET: upon exiting the network layer, northbound

Exception The name of the exception that triggered the EDR

SessionId The application’s session identifier

ServiceProviderId The service provider account identifier

Alarms

Events, Alarms, and Charging A-3

Alarms
Network tier alarms are those events that are of immediate interest to the operator.
They are EDRs that are defined via filters created in the internal configuration file.
While each alarm begins as an EDR, not all the information available in the EDR is
stored when the alarm is written to the database (although that information can be
retrieved using an external listener). Each alarm entry in the database includes the
information described in Table A–3.

ApplicationId The application account identifier

AppInstanceId Current application instance ID. If current traffic is Oauth
enabled and the EDR is triggered by AT, the value is "OAuth_
User".

TransactionId Transaction Id. Correlates completed traffic among all three EDR
states

Facade The facade, either "REST" or "SOAP"

OrigAddress The originating address with scheme. For example:
tel:12123334444

DestAddress The destination address. If this is a send list, the first address will
be listed here. Additional addresses are stored in the
AdditionalInfo field.

AdditionalInfo Variable information depending on the communication service.
Stored as “key=value\n” pairs.

PluginID The unique ID of the plug-in instance

URL The URL of the current web service

WebAppName Name of the current web application

HttpMethod HTTP request method. For example "POST", or "GET".

RequestContext Attributes in the request context map. (Name/Value pairs)

InterceptorChain List of all of the interceptors that are triggered

SubscriberId Subscriber identifier (using route address)

Table A–3 Alarm Data

Element Represents

alarm_id A unique sequential identifier

source The name of the software module that raised the alarm and the IP
address of the server in which the module runs. This is not the
same as the Source field in the event

timestamp The time at which the event was triggered (in milliseconds from
midnight 1 January 1970)

severity The importance of the alarm. There are four possible values for
this field:

■ 4 for warning

■ 3 for minor

■ 2 for major

■ 1 for critical

Table A–2 (Cont.) Event Data

Element Represents

Charging Data Records

A-4 Services Gatekeeper Communication Service Reference Guide

Management integration
Services Gatekeeper supports integration of its alarm and event mechanisms with
external management tools.

OSS
An Operation Support System (OSS) can integrate with Services Gatekeeper alarm and
event services through the creation of external JMS listeners. Integration can be
managed by OAM scripts through the use of JMX-based tools.

SNMP
Services Gatekeeper supports the sending of alarms as SNMP traps to SNMP
managers. The alarms sent to the SNMP managers can be filtered on alarm severity.

Charging Data Records
CDRs originate as filtered EDRs. While each CDR begins as an EDR, not all the
information available in the EDR is stored when the CDR is written to the database,
although that information can be retrieved using an external listener. Table A–4 lists
information that each CDR in the database contains.

identifier The alarm type

alarm_info Information provided by the module that raised the alarm

additional_info This field includes:

■ Service Provider ID

■ Application ID

■ Application Instance ID

■ Plug-in instance ID

■ Other information depending on context

Table A–4 CDR Data

Element Represents

transaction_id The Services Gatekeeper transaction sequence number

service_name The communication service whose use is being tracked

service_provider The Service Provider ID

application_id The Application ID

application_instance_id The user name of the Application Account. This is a string that is
equivalent to the 2.2 value: Application Instance Group ID

container_transaction_id The transaction ID from WebLogic Server, if available. This
identifies the thread on which the request is executed

server_name The name of the server in which the CDR was generated

timestamp The time at which the event was triggered (in milliseconds from
midnight 1 January 1970)

service_correlation_ID An identifier that allows the usage of multiple service types to be
correlated into a single charging unit

Table A–3 (Cont.) Alarm Data

Element Represents

Charging Data Records

Events, Alarms, and Charging A-5

charging_session_id An ID correlating related transactions within a service capability
module that belong to one charging session. For example, a call
containing three call legs will produce three separate transactions
within the same session

In installations where sessions are not used, this field contains
only a placeholder value.

start_of_usage The date and time the request began to use the services of the
underlying network

connect_time The date and time the destination party responded. Used for Call
Control traffic only

end_of_usage The date and time the request stopped using the services of the
underlying network

duration_of_usage The total time the request used the services of the underlying
network

amount_of_usage The used amount. Used when charging is not time dependent, as
in, for example, flat rate services

originating_party The originating party’s address

destination_party The destination party's address. This is the first address in the
case of send lists, with all additional addresses placed in the
additional_info field.

charging_info A service code added by the application or by policy service

additional_info If the communication service supports send lists, all destination
addresses other than the first, under the destinationParty key. In
addition any other information provided by the communication
service

Table A–4 (Cont.) CDR Data

Element Represents

Charging Data Records

A-6 Services Gatekeeper Communication Service Reference Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	1 Understanding Communication Services
	About the Software Architecture
	Communication Services
	Container Services
	Communication Service Deployment Model

	2 Understanding the Communication Service Architecture
	Understanding How Communication Services Work
	Typical Application-Initiated Traffic Flow
	Typical Network-Triggered Traffic Flow
	Common Features

	3 Services Gatekeeper OAuth 2.0 Authorization and Resource Servers
	Using OAuth 2.0 with Services Gatekeeper

	4 Application Subscription Management
	Overview of the Application Subscription Management Service
	Application Interfaces
	Support for OAuth Authentication
	Events and Statistics
	Event Data Records

	Managing Application Subscription Management
	Properties for Application Subscription Management
	Configuration Workflow for Application Subscription Management
	Deploying Application Subscription Management Packages
	Creating an Application Subscription Management plug-in Instance
	Editing Application Subscription Management Attributes
	Loading Application Subscription Configuration Files
	Loading Trusted Applications
	Cleaning Up Pending Requests and Expired Subscriptions
	Retrieving Application Subscription Configuration Files
	Retrieving Application Subscription Lists
	Configure Application OAuth Scope
	Connecting to an SMSC

	Handling Traffic from Applications without Subscriptions

	5 Parlay X 2.1 Multimedia Messaging/MM7
	Overview of the Parlay X 2.1 Multimedia Messaging/MM7 Communication Service
	Processing Application-initiated Requests
	Send Receipts
	Delivery Receipts

	Processing Network-triggered Requests
	Retrieving Offline MMS Messages

	Polling Functionality
	Short Code Translation

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 2.1 MM7 Rel 6.8.0
	ChargedParty
	ChargedPartyCD
	timeStamp
	expiryDate
	allowAdaptation
	DeliveryCondition
	UAProf
	StatusText

	Managing Parlay X 2.1 Multimedia Messaging/MM7
	Properties for Parlay X 2.1 Multimedia Messaging/MM7
	Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/MM7
	Provisioning Parlay X 2.1 MultiMedia Messaging/MM7 Communication Service

	6 Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP
	Overview of the Parlay X 2.1 Multimedia Messaging/SMTP, POP3, and IMAP Communication Service
	Processing Application-Initiated Requests
	Send Requests
	Send Receipts
	Delivery Receipts
	Retry Requests

	Processing Network-Triggered Requests
	Retrieving Offline Messages

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Alarms

	Managing Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
	Properties for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
	Configuration Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP
	Provisioning Workflow for Parlay X 2.1 MultiMedia Messaging/SMTP, POP3, and IMAP

	7 Parlay X 2.1 Short Messaging/SMPP
	Overview of the Parlay X 2.1 Short Messaging/SMPP Communication Service
	Split and Submit Messaging
	Processing Application-Initiated Requests
	Send Receipts
	Delivery Receipts

	Processing Network-Triggered Requests
	Connection Handling and Provisioning
	Multiple Connections and Multiple Plug-in Instances
	Windowing
	Segments
	Short Code Translation
	Load Balancing, High Availability, and Failover
	Character Set Encoding
	Standard and Extended GSM Alphabets
	Other Alphabets
	Overriding the DefaultDataCoding Attribute

	Application Interfaces
	Events and Statistics
	Event Data
	Charging Data Records
	Statistics
	Alarms

	Tunneled Parameters for Parlay X 2.1 Short Messaging / SMPP
	submit_date
	done_date
	sms.protocol.id
	source_port
	destination_port
	data_coding
	esm_class
	sms.service.type
	sms.replace.if.present
	com.bea.wlcp.wlng.plugin.sms.OriginatingAddressType
	com.bea.wlcp.wlng.plugin.sms.DestinationAddressType.n
	com.bea.wlcp.wlng.plugin.sms.RequestDeliveryReportFlag
	com.bea.wlcp.wlng.plugin.sms.DataCoding
	com.bea.wlcp.wlng.plugin.sms.Priority
	originating_address
	smpp_billing_id
	dest_addr_subunit
	dest_bearer_type
	service_type
	ussd_service_operation
	its_session_info
	smpp_optional_int_tlv_param_tags
	smpp_optional_int_tlv_param_values
	smpp_optional_octet_tlv_param_tags
	smpp_optional_octet_tlv_param_values
	com.bea.wlcp.wlng.plugin.sms.smpp.schedule_delivery_time
	sms.validity.period

	Managing Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP
	Properties for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP
	Configuration Workflow for Parlay X 2.1 Short Messaging/SMPP and Extended Web Services Binary SMS/SMPP
	Management Operations in the SMPP Server Service

	8 Parlay X 3.0 Device Capabilities/LDAPv3
	Overview of the Parlay X 3.0 Device Capabilities/LDAPv3 Communication Service
	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics

	Managing Parlay X 3.0 Device Capabilities/LDAPv3
	Properties for Parlay X 3.0 Device Capabilities/LDAPv3 Plug-in
	Configuration Workflow for Device Capabilities/LDAPv3 Plug-in
	Creating an LDAP-to-XML Mapping File

	Reference: Attributes and Operations for Device Capabilities/LDAPv3
	Attribute: AuthDN
	Attribute: AuthPassword
	Attribute: BaseDN
	Attribute: ConnTimeout
	Attribute: DeviceIdAttributeName
	Attribute: DeviceNameAttributeName
	Attribute: DeviceProfileURLAttributeName
	Attribute: Host
	Attribute: LDAPConnectionStatus
	Attribute: MaxConnections
	Attribute: MinConnections
	Attribute: Port
	Attribute: recoverTimerInterval
	Attribute: Schema
	Operation: apply
	Operation: updateSchemaURL

	9 Parlay X 3.0 Payment/Diameter
	Overview of the Parlay X 3.0 Payment Communication Service
	Amount Charging
	Volume Based Charging
	Processing Direct Queries/Application-initiated Requests
	Processing Notifications/Network-triggered Requests
	Validating Reservation Requests

	Application Interfaces
	Changing the List of Diameter AVPs for Your Implementation
	About the AVP Template Files
	Adding New AVPs for Diameter Payment in Template Files
	Adding Diameter AVPs to a Template File During Runtime

	Forwarding AVPs as Xparams from the Charging Server to the Application
	Events and Statistics
	Event Data Records
	Statistics

	Tunneled Parameters for Parlay X 3.0 Payment / Diameter
	session-id

	Managing Parlay X 3.0 Payment /Diameter
	Properties for Parlay X 3.0 Payment/Diameter
	Configuration Workflow for Parlay X 3.0 Payment/Diameter
	Provisioning Workflow for Parlay X 3.0 Payment/Diameter

	10 Parlay X 3.0 Address List Management Interface
	Overview of the Parlay X 3.0 Address List Management Interface
	Address List Management Architecture
	Group URI Format
	Managing Groups
	Controlling Group Access
	Managing and Querying Group Members
	Managing and Querying Group Attributes
	Managing and Querying Group Member Attributes

	Application Interfaces
	Events and Statistics
	Event Data Records
	Alarms

	Managing Parlay X 3.0 Address List Management Architecture
	Properties for Parlay X 3.0 Address List Management Architecture
	Configuration Workflow for Parlay X 3.0 Address List Management Architecture

	Reference: Attributes and Operations for Parlay X 3.0 Address List Management Architecture
	Attribute: GroupNameMaxLength
	Attribute: GroupSize
	Operation: createGroup
	Operation: queryGroups
	Operation: deleteGroup
	Operation: setAccess
	Operation: queryAccess
	Operation: addMember
	Operation: addMembers
	Operation: queryMembers
	Operation: deleteMember
	Operation: deleteMembers
	Operation: addGroupAttribute
	Operation: queryGroupAttribute
	Operation: deleteGroupAttribute
	Operation: addGroupMemberAttribute
	Operation: queryGroupMemberAttributes
	Operation: deleteGroupMemberAttribute
	Operation: addMemberAttribute
	Operation: queryMemberAttributes
	Operation: deleteMemberAttribute

	11 Parlay X 4.0 Application-Driven Quality of Service/Diameter
	Overview of the Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter Communication Service
	How it Works

	Adding SOAP-Based QoS Support to an Application
	Managing Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter
	Properties for Parlay X 4.0 Application-Driven QoS/Diameter
	Configuration Workflow for Parlay X 4.0 Application-Driven QoS/Diameter

	Events and Statistics
	Event Data Records
	Charging Data Records

	Reference: Attributes and Operations for Parlay X 4.0 Application-Driven Quality of Service (QoS)/Diameter
	Attribute: DestinationHost
	Attribute: DestinationPort
	Attribute: DestinationRealm
	Attribute: OriginHost
	Attribute: OriginPort
	Attribute: OriginRealm
	Attribute: Connected
	Attribute: RecordHistory
	Operation: connect
	Operation: disconnect
	Operation: loadQoSRequestTemplate
	Operation: retrieveQoSRequestTemplate
	Operation: listQoSRequestTemplateMatchRule
	Operation: deleteQoSRequestTemplate

	12 REST Services
	Overview of REST Services

	13 OneAPI Multimedia Messaging/MM7
	About the OneAPI Multimedia Messaging Interface
	REST Service Descriptions Available at Run-time

	Sending MMS Messages
	Query Delivery Status of MMS Message
	Subscribe to MMS Delivery Notification
	Stop Subscription to Delivery Notifications
	Retrieve Messages Sent to Web Application
	Retrieving Full Messages

	Subscribe to Notifications of Messages Sent to Application
	Stop Subscription to Application Message Notifications

	14 OneAPI Payment/Diameter
	About the Payment Interface
	REST Service Descriptions Available at Run-time

	Charge Amount
	Query Transaction Status
	List Transactions for Application User
	Refund Amount
	Reserve Amount
	Charge Reservation
	Release Reservation
	Resource States
	Payment Exceptions

	15 OneAPI Short Messaging/SMPP
	About the OneAPI Short Messaging Interface
	REST Service Descriptions Available at Run-time

	Sending SMS Messages
	Query Delivery Status of SMS Message
	Subscribe to SMS Delivery Notification
	Stop Subscription to Delivery Notifications
	Retrieve Messages Sent to Web Application
	Subscribe to Notifications of Messages Sent to Application
	Stop Subscription to Application Message Notifications

	16 OneAPI Terminal Location/MLP
	About the Terminal Location Interface
	REST Service Descriptions Available at Run-time

	Query Mobile Terminal Location

	17 Extended Web Services Binary SMS/SMPP
	Overview of the EWS Binary SMS/SMPP
	Send Receipts
	Delivery Receipts
	Connection Handling and Provisioning

	Application Interfaces
	Events and Statistics
	Event Data
	Charging Data Records
	Statistics
	Alarms

	Managing EWS Binary SMS/SMPP

	18 Extended Web Services Quality of Service /Diameter
	Understanding the EWS Quality of Service/Diameter Communication Service
	Using Degraded Mode
	An Example End to End QoS Solution

	Application Interfaces
	Events and Statistics
	Event Data Records
	Alarms

	Specifications for the EWS Quality of Service/Diameter Communication Service
	Managing the EWS Quality of Service/Diameter Communication Service
	General Configuration Workflow
	Configuring Coherence to Use Degraded Mode
	Managing Extended Web Services Quality of Service Templates
	Load a QoS Template
	Retrieve an Existing QoS Template
	List Match Rules for a QoS Template
	Delete a QoS Template

	Reference: Attributes and Operations for EWS Quality of Service/ Diameter
	Attribute: DestinationHost
	Attribute: DestinationPort
	Attribute: DestinationRealm
	Attribute: OriginHost
	Attribute: OriginPort
	Attribute: OriginRealm
	Attribute: Connected
	Operation: connect
	Operation: disconnect
	Operation: loadQoSRequestTemplate
	Operation: retrieveQoSRequestTemplate
	Operation: listQoSRequestTemplateMatchRule
	Operation: deleteQoSRequestTemplate

	19 Extended Web Services Subscriber Profile/LDAPv3
	Overview of the EWS Subscriber Profile/LDAPv3 Communication Service
	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing EWS Subscriber Profile/LDAPv3
	Properties for EWS Subscriber Profile/LDAPv3
	LDAP Server Schema
	Configuration Workflow for EWS Subscriber Profile/LDAPv3
	Management Operations for EWS Subscriber Profile/LDAPv3
	Provisioning for EWS Subscriber Profile/LDAPv3

	20 Extended Web Services WAP Push/PAP
	Overview of the EWS WAP Push/PAP Communication Service
	Push Access Protocol (PAP) 2.0

	Application Interfaces
	Events and Statistics
	Charging Data Records
	Event Data Records
	Statistics
	Alarms

	Managing the EWS WAP Push/PAP Communication Service
	Properties for EWS WAP Push/PAP
	WAP User Address Scheme
	Configuration Workflow for EWS WAP Push/PAP

	21 Native MM7
	Overview of the Native MM7 Communication Service
	Status Reports
	Delivery Reports
	Read-Reply Report

	Network-triggered Multimedia Messages

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Native MM7
	Properties for Native MM7
	Configuration Workflow for Native MM7
	Provisioning Workflow for Native MM7

	22 Native SMPP
	Overview of the Native SMPP Communication Service
	SMPP Server Service
	Connection Handling and Provisioning
	About Creating and Resetting Connections
	About Session Handling

	Creating an Interceptor With a Custom Error Code
	Authentication
	Connection Pooling
	Server Connection Pools
	Client Connection Pools

	Timeouts
	SMPP Server Service Timers
	Plug-in Instance Timers

	Windowing
	Connection-Based Routing
	Enable Connection-Based Routing
	Limitations

	Short Code Translation
	USSD Support
	its_session_info
	service_type
	ussd_service_operation

	Billing Identification
	smpp_billing_id

	Load Balancing, High Availability and Fail-Over

	Application Interfaces
	Events and Statistics
	Event Data Records
	Charging Data Records
	Statistics
	Alarms

	Managing Native SMPP
	Properties for SMPP Server Service
	Properties for Native SMPP Plug-in
	Configuration Workflow for Native SMPP Communication Service
	Provisioning Workflow for Native SMPP Communication Service
	Context Attributes for Native SMPP Server
	Attribute: native_smpp_mo_destAddressHasAppMapping
	Attribute: native_smpp_mo_hasActiveReceiver

	System Properties for SMPP Server Service
	System Property: oracle.ocsg.protocol.smpp.serverservice.max_threads
	System Property: oracle.ocsg.protocol.smpp.serverservice.min_threads
	System Property: wlng.legacy.smpp.PDUManipulationAllowed
	System Property: wlng.smpp.max_payload_size

	Reference: Attributes and Operations for SMPP Server Service
	Attribute: ConnectionBasedRouting
	Attribute: EnquireLinkMaxFailureTimes
	Attribute: EnquireLinkTimerValue
	Attribute: InactivityTimerValue
	Attribute: InitiationTimerValue
	Attribute: LooseBinding
	Attribute: OfflineMO
	Attribute: rejectMOMessagesWithNoAppReceiverConnection
	Attribute: RequestTimerValue
	Attribute: ServerAddress
	Attribute: ServerPort
	Attribute: skipAddressrangeCheckInBindRequest
	Attribute: SmscSystemId
	Operation: addApplicationSpecificSettings
	Operation: closeClientConnection
	Operation: closeServerConnection
	Operation: closeServerPort
	Operation: deleteApplicationSpecificSettings
	Operation: listApplicationSpecificSettings
	Operation: listClientConnections
	Operation: listClusterServerConnectionsForMOJumping
	Operation: listPluginInstances
	Operation: listServerConnections
	Operation: listServerPorts
	Operation: resetClientConnection
	Operation: resetServerPort
	Operation: updateAllServerPorts

	Reference: Attributes and Operations for Native SMPP Plug-in
	Attribute: BindType
	Attribute: DeliverSmRespCommandStatus
	Attribute: EnableDeleteAfterCancel
	Attribute: EnableDeleteAfterNotify
	Attribute: EnableDeleteAfterQuery
	Attribute: EnquireLinkTimerValue
	Attribute: EsmeAddressRange
	Attribute: EsmeNpi
	Attribute: EsmePassword
	Attribute: EsmeSystemId
	Attribute: EsmeSystemType
	Attribute: EsmeTon
	Attribute: LocalAddress
	Attribute: LocalPort
	Attribute: MessageIdInHexFormat
	Attribute: NumberReceiverConnections
	Attribute: NumberTransceiverConnections
	Attribute: NumberTransmitterConnections
	Attribute: RequestTimerValue
	Attribute: RetryTimesBeforeGiveUp
	Attribute: RetryTimesBeforeReconnect
	Attribute: SmscAddress
	Attribute: SmppVersion
	Attribute: SmscPort
	Attribute: WindowingMaxQueueSize
	Attribute: WindowingMaxWaitTime
	Attribute: WindowingSize

	23 Native UCP
	Overview of the Native UCP Communication Service
	Connection and Credential Handling
	Credentials
	Multiple Connections
	Connection Pooling

	Windowing and Transaction Numbers
	Behavior When the Window is Exceeded
	Behavior When TRNs Are Not Released

	Authentication
	Availability and Retry
	Application-Initiated traffic
	Network-Initiated traffic
	Client-Side Retry Handling

	Heartbeat Support
	Server-Side Heartbeat Support
	Client-Side Heartbeat Support

	Storage Provider

	Application Interfaces
	Events and Statistics
	Event Data Records
	About UCP_trn/UCP_mappedTrn
	About UCP_oadc

	Charging Data Records
	Statistics
	Alarms

	Managing Native UCP
	Properties for Native UCP Protocol Server Service
	Properties for Native UCP Managed Plug-in
	Properties for Native UCP Plug-in Instance
	Configuration Workflow for Native UCP Communication Service
	Provisioning Workflow for Native UCP Communication Service
	Reconfiguring Native UCP Listen Ports
	Reference: Attributes and Operations for Native UCP Protocol Server Service
	Attribute: MaxReconnectAttempts
	Attribute: TimeBetweenReconnectAttempts
	Attribute: UCPProtocol (read-only)
	Operation: closeClientSideConnection
	Operation: closeServerSideConnection
	Operation: dumpClientSideConnectionsInfo
	Operation: dumpOngoingClientConnectionsRetryInfo
	Operation: dumpServerSideConnectionsInfo
	Operation: listUCPServersString
	Operation: restartPorts
	Operation: stopOngoingClientConnectionRetry

	A Events, Alarms, and Charging
	Events
	Event handling in the Access Tier
	Event handling in the Network Tier

	Alarms
	Management integration
	OSS
	SNMP

	Charging Data Records

