
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document by clicking the Feedback[+] link at: http://docs.sun.com

Sun HPC ClusterTools™ 8.2
Software User’s Guide

Part No. 821-0225-10
June 2009, Revision A

Please
Recycle

Copyright 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Netra, Solaris, docs.sun.com, Sun HPC ClusterTools and Sun Cluster are trademarks or registered
trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Netra, Solaris,docs.sun.com, Sun HPC ClusterTools, et Sun Cluster sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. ou ses filiales aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

AMD, Opteron, le logo AMD, et le logo AMD Opteron sont des marques de fabrique ou des marques déposées de Advanced Micro Devices.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes
qui font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par
la legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

Contents

Preface xi

1. Introduction to Sun HPC ClusterTools Software 1

Supported Configurations 1

Open Runtime Environment (ORTE) 2

Executing Programs With mpirun 2

Integration With Distributed Resource Management Systems 3

Open MPI Features 3

Debugging With TotalView 4

2. Fundamental Concepts 5

Clusters and Nodes 5

Processes 6

How Programs Are Launched 6

How the Open MPI Environment Is Integrated With Distributed Resource
Management Systems 7

Using Sun Grid Engine With ORTE 7

Submitting Jobs Under Sun Grid Engine Integration 8

MCA Parameters 8

How ORTE Works With Zones in the Solaris 10 Operating System 8
iii

3. Before You Begin 11

Prerequisites 11

Command and Man Page Paths 11

Setting Up Your Path 12

▼ To Set Up Your Path for the Solaris OS and the Sun Studio Compiled
Linux Version 12

▼ To Set Up Your Path for the GNU Compiled Linux Version 13

Core Files 13

Setting Up a known_hosts File 13

4. Compiling MPI Programs 15

Supported Compilers 15

Using the Compiler Wrappers 16

Using Non-Default Error Handlers 16

Compiling Fortran 90 Programs 17

5. Running Programs With the mpirun Command 19

About the mpirun Command 19

Syntax for the mpirun Command 20

mpirun Options 20

Using Environment Variables With the mpirun Command 21

Using MCA Parameters With the mpirun Command 21

Canceling Send and Receive Operations 22

mpirun Command Examples 22

▼ To Run a Program With Default Settings 23

▼ To Run Multiple Processes 23

▼ To Direct mpirun By Using an Appfile 23

Mapping MPI Processes to Nodes 24

Specifying Available Hosts 24

Specifying Hosts By Using a Hostfile 25
iv Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Specifying Hosts By Using the --host Option 26

▼ To Specify Multiple Slots Using the --host Option 26

Excluding Hosts From Scheduling By Using the --host Option 26

Oversubscribing Nodes 27

Scheduling Policies 27

Scheduling By Slot 27

▼ To Specify By-Slot Scheduling 28

Scheduling By Node 29

▼ To Specify By-Node Scheduling 29

Comparing By-Slot to By-Node Scheduling 30

Controlling Input/Output 30

▼ To Redirect Standard I/O 31

Controlling Other Job Attributes 31

▼ To Change the Working Directory 31

▼ To Specify Debugging Output 32

▼ To Display Command Help (–h) 32

Submitting Jobs Under Sun Grid Engine Integration 36

Defining Parallel Environment (PE) and Queue 36

▼ To Use PE Commands 36

▼ To Use Queue Commands 37

Submitting Jobs in Interactive Mode 38

▼ To Set the Interactive Display 38

▼ To Submit Jobs Interactively 38

▼ To Verify That Sun Grid Engine Is Running 39

▼ To Start an Interactive Session Using qrsh 39

Using MPI Client/Server Applications 39

▼ To Launch the Client/Server Job 39

Using Name Publishing 40
Contents v

Troubleshooting Client/Server Jobs 41

For More Information 42

6. Running Programs With mpirun in Distributed Resource Management
Systems 43

mpirun Options for Third-Party Resource Manager Integration 43

Checking Your Open MPI Configuration 44

▼ To Check for rsh/ssh 44

▼ To Check for PBS/Torque 44

▼ To Check for Sun Grid Engine 44

Running Parallel Jobs in the PBS Environment 44

▼ To Run an Interactive Job in PBS 45

▼ To Run a Batch Job in PBS 46

Running Parallel Jobs in the Sun Grid Engine Environment 47

Defining Parallel Environment (PE) and Queue 48

▼ To Use PE Commands 48

▼ To Use Queue Commands 49

Submitting Jobs Under Sun Grid Engine Integration 49

▼ To Set the Interactive Display 49

▼ To Submit Jobs in Batch Mode 50

▼ To See a Running Job 51

▼ To Delete a Running Job 51

rsh Limitations 51

Using rsh as the Job Launcher 52

Using Sun Grid Engine as the Job Launcher 52

For More Information 53

7. Using MCA Parameters With mpirun 55

About the Modular Component Architecture 56

Open MPI Frameworks 56
vi Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

OMPI Frameworks 57

ORTE Frameworks 58

OPAL Frameworks 59

The ompi_info Command 59

Command Options 60

Using the ompi_info Command With MCA Parameters 63

▼ To List All MCA Parameters 63

▼ To List All MCA Parameters For a Framework 63

▼ To Display All MCA Parameters For a Selected Component 67

Using MCA Parameters 68

▼ To Set MCA Parameters From the Command Line 69

Using MCA Parameters As Environment Variables 69

▼ To Set MCA Parameters in the sh Shell 69

▼ To Set MCA Parameters in the C Shell 70

▼ To Specify MCA Parameters Using a Text File 71

Including and Excluding Components 72

▼ To Include and Exclude Components Using the Command Line 73

Processor and Memory Affinity 73

Using Processor Affinity 73

Using Memory Affinity 74

▼ To Find Out Whether Memory Affinity Is Supported 74

Running MPI Jobs With Processor and Memory Affinity 75

▼ To Enable Affinity Using the Command Line 75

Using MCA Parameters With Sun Grid Engine 76

Changing the Default Values in MCA Parameters 78

For More Information 79

8. Using the DTrace Utility With Open MPI 81

Checking the mpirun Privileges 82
Contents vii

▼ To Determine the Correct Privileges on the Cluster 82

Running DTrace with MPI Programs 83

Running an MPI Program Under DTrace 84

▼ To Trace a Program Using the mpitrace.d Script 84

▼ To Trace a Parallel Program and Get Separate Trace Files 84

Attaching DTrace to a Running MPI Program 85

▼ To Attach DTrace to a Running MPI Program 85

Simple MPI Tracing 85

Tracking Down Resource Leaks 87

Using the DTrace mpiperuse Provider 92

DTrace Support in the ClusterTools Software 92

Available mpiperuse Probes 92

Specifying an mpiperuse Probe in a D Script 93

Available Arguments 94

How To Use mpiperuse Probes to See Message Queues 94

mpiperuse Usage Examples 96

▼ To Count the Number of Messages To or From a Host 96

▼ To Count the Number of Messages To or From Specific BTLs 96

▼ To Obtain Distribution Plots of Message Sizes Sent or Received From
a Host 97

▼ To Create Distribution Plots of Message Sizes By Communicator, Rank,
and Send/Receive 97

A. Troubleshooting 99

MPI Messages 99

Standard Error Classes 99

MPI I/O Error Handling 101

Exceeding the File Descriptor Limit 103

Increasing the Number of Available File Descriptors 103

▼ To View the Hard Limit from the C Shell 103
viii Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To View the Hard Limit from the Bourne Shell 104

▼ To Increase the Number of File Descriptors 104

Setting File Descriptor Limits When Using Sun Grid Engine 105

Index 107
Contents ix

x Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Preface

This manual explains how to use distributed resource management packages for
effective resource management and utilization accounting. The following packages
work in conjunction with the Open Message-Passing Interface (Open MPI) parallel
applications:

■ Sun Grid Engine Version 6.1 software

■ Altair PBS Professional 9.2 or Torque 2.3

Before You Read This Book
The Sun HPC ClusterTools™ 8.2 Software Release Notes includes release note
information for the other components in this suite. For information about writing
MPI programs, refer to the Open MPI Software Programming and Reference Guide. For
information about a specific distributed resource management package, refer to the
documentation supplied with that package.

For more information about Open MPI and its components, see the Open MPI web
site at:

http://www.open-mpi.org

Using UNIX Commands
This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.
xi

http://www.open-mpi.org

See one or more of the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at

http://www.sun.com/documentation
xii Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.sun.com/documentation

Typographic Conventions

Shell Prompts

Related Documentation
This book focuses on Open MPI and assumes familiarity with the MPI Standard. The
following materials provide useful background about using Open MPI and about the

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface xiii

MPI Standard.

The Sun HPC ClusterTools documentation is available online at:

http://www.sun.com/documentation

For more information about the Sun HPC ClusterTools software, see the related Web
site at:

http://www.sun.com/clustertools

For more information about Open MPI and its components, see the Open MPI web
site at:

http://www.open-mpi.org

For more information about Sun Grid Engine software, see the Sun Grid Engine web
site at:

http://www.sun.com/software/gridware

Application Title Part Number

Sun HPC ClusterTools
Software

Sun HPC ClusterTools 8.2 Software
Release Notes
Sun HPC ClusterTools 8.2 Software
Installation Guide

821-0223-10

821-0224-10
xiv Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.open-mpi.org
http://www.sun.com/clustertools
http://www.sun.com/documentation
http://www.sun.com/software/gridware

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit comments about this document by clicking the Feedback[+] link
at http://www.sun.com.

Please include the title and part number of your document with your feedback:

Sun HPC ClusterTools 8.2 Software User’s Guide, part number 821-0225-10

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
Preface xv

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com.
http://www.sun.com/documentation/

CHAPTER 1

Introduction to Sun HPC
ClusterTools Software

Sun HPC ClusterTools™ 8.2 software is a set of parallel development tools that
extend the Sun network computing solutions to high-end distributed-memory
applications. This chapter summarizes its required configuration and principal
components. It contains the following sections:

■ “Supported Configurations” on page 1

■ “Open Runtime Environment (ORTE)” on page 2

■ “Integration With Distributed Resource Management Systems” on page 3

■ “Open MPI Features” on page 3

■ “Debugging With TotalView” on page 4

Supported Configurations
Sun HPC ClusterTools 8.2 software can be used in any of the following operating
system enfiromments:

■ Solaris(TM) 10 Operation System (Solaris 10 OS)

■ Red Hat Linux versions 5 (RHEL)

■ SuSe Linux versions 10 (SLES)

■ CentOS 5.3 Linux

■ OpenSolaris 2009.06

Sun HPC ClusterTools 8.2 software supports the following compilers in the Solaris
OS and Linux environments:

■ Solaris OS

■ Sun Studio 10, 11, 12, and 12U1 C, C++, and Fortran
1

■ Linux

■ Sun Studio 12U1 C, C++, and Fortran

■ gcc 3.3.3, 3.4.6, 4.1.2

■ Intel 11.0 20081105

■ PGI 7.1-4

■ Pathscale 3.2

Sun HPC ClusterTools 8.2 software can run MPI jobs of up to 4096 processes on as
many as 1024 nodes. It also provides support for spawning MPI processes.

The Sun HPC ClusterTools 8.2 software runs on clusters connected by any TCP/IP-
capable interconnect, such as high-speed Ethernet, Gigabit Ethernet, Infiniband, and
Myrinet MX.

Open Runtime Environment (ORTE)
Sun HPC ClusterTools 8.2 is based on the Open MPI message-passing interface.
Open MPI operates using the Open Runtime Environment (ORTE). ORTE starts jobs
and provides some status information.

The Open MPI mpirun and mpiexec commands are actually symbolic links to the
orterun command. All three commands perform the same function, which is to
launch MPI jobs.

ORTE is compatible with a number of other launchers, including rsh/ssh, Sun Grid
Engine, and PBS Professional/Torque.

Each of ORTE’s primary operations is summarized in the sections that follow.
Subsequent chapters contain the procedures.

Executing Programs With mpirun

Sun HPC ClusterTools 8.2 software can start both serial and parallel jobs. The syntax
and use of mpirun are described in Chapter 5.
2 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Integration With Distributed Resource
Management Systems
Sun HPC ClusterTools 8.2 software provides integration facilities with two select
distributed resource management (DRM) systems. These systems provide proper
resource allocation, parallel job control and monitoring, and proper job accounting.
They are:

■ Sun Grid Engine Version 6.1 and 6.2 software

■ Altair PBS Professional 9.2, or Cluster Resources Torque 2.3

Note – Open MPI itself supports other third-party launchers supported by Open
MPI, such as SLURM. However, these launchers are currently not supported in Sun
HPC ClusterTools software. To use these other third-party launchers, you must
download the Open MPI source, compile, and link with the libraries for the
launchers.

You can launch parallel jobs directly from these distributed resource management
systems. The DRM interacts closely with ORTE for proper resource description and
with the multiple processes comprising the requested parallel job.

For a description of the scalable and open architecture of the DRM integration
facilities, see “How the Open MPI Environment Is Integrated With Distributed
Resource Management Systems” on page 7. For instructions, see Chapter 6.

Open MPI Features
Open MPI is a highly optimized version of the Message Passing Interface (MPI)
communications library. It implements all of the MPI 1.2 Standard and the MPI 2.0
Standard. Its highlights are:

■ Integration with the Open Runtime Environment (ORTE)

■ Support for MPI I/O

■ Seamless use of different network protocols; for example, code compiled on a Sun
HPC cluster that has a fast Ethernet network can be run without change on a
cluster that has an Infiniband network

■ Multiprotocol support so that MPI picks the fastest available medium for each
type of connection (such as shared memory, fast Ethernet, Infiniband)
Chapter 1 Introduction to Sun HPC ClusterTools Software 3

■ Communication via shared memory for fast performance

■ Optimized collectives for multiprocessors and clusters of multiprocessors

■ Full F77, C, and C++ support, and basic F90 support

Debugging With TotalView
TotalView is a third-party multiprocess debugger from TotalView Technologies
(formerly Etnus) that runs on many platforms. Support for using the TotalView
debugger on Open MPI applications includes:

■ Making Sun HPC ClusterTools software compatible with the TotalView debugger

■ Allowing Open MPI jobs to be debugged by TotalView using the Sun Grid Engine
or the Portable Batch System (PBS)

■ Allowing multiple instantiations of TotalView on a single cluster

■ Supporting TotalView in Sun HPC ClusterTools software

Refer to the TotalView documentation at http://www.totalviewtech.com for
more information about using TotalView.

In addition, the Open MPI Frequently Asked Questions (FAQ) contains information
about how to use the TotalView debugger with Open MPI. This information is
available at:

http://www.open-mpi.org/faq/?category=running#run-with-tv
4 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.totalviewtech.com
http://www.open-mpi.org/faq/?category=running#run-with-tv

CHAPTER 2

Fundamental Concepts

This chapter summarizes a few basic concepts that you should understand to get the
most out of Sun’s HPC ClusterTools software. It contains the following sections:

■ “Clusters and Nodes” on page 5
■ “Processes” on page 6
■ “How the Open MPI Environment Is Integrated With Distributed Resource

Management Systems” on page 7
■ “MCA Parameters” on page 8
■ “How ORTE Works With Zones in the Solaris 10 Operating System” on page 8

Clusters and Nodes
High performance computing clusters1 are groups of servers interconnected by any
Sun-supported interconnect. Each server in a cluster is called a node. A cluster can
consist of a single node.

ORTE (Open Run-Time Environment) is the runtime support system for Open MPI
that allows users to execute their applications in a distributed clustering
environment.

When using ORTE, you can select the cluster and nodes on which your MPI
programs will run and how your processes will be distributed among them. For
instructions, see Chapter 5, “Running Programs With the mpirun Command.”

1. Sun™ Cluster is a completely different technology used for high availability (HA) applications.
5

For more information about how Open MPI allocates computing resources, see the
FAQ entitled “Running MPI Jobs” at:

http://www.open-mpi.org/faq/?category=running

Processes
Open MPI allows you to control several aspects of job and process execution, such
as:

■ Number of processes to be launched

■ Number of available slots on each node

■ Process launcher to be used (such as Sun Grid Engine, PBS, rsh/ssh)

■ Mapping processes to nodes

How Programs Are Launched
The exact instructions vary from one resource manager to another, and are affected
by your Open MPI configuration, but they all follow these general guidelines:

1. You can launch the job either interactively or through a script. Instructions for
both are provided in Chapter 5 and Chapter 6.

2. You can enter the DRM processing environment (for example, Sun Grid Engine)
before launching jobs with mpirun.

3. You can reserve resources for the parallel job and set other job control parameters
from within the DRM, or use a hosts file to specify the parameters.

For tasks and instructions, see Chapter 5.
6 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.open-mpi.org/faq/?category=running

How the Open MPI Environment Is
Integrated With Distributed Resource
Management Systems
As described in Chapter 1, the Open MPI/Sun HPC ClusterTools 8.2 environment
provides close integration between ORTE and several different DRM systems,
including the following:

■ Sun Grid Engine

■ Torque

■ PBS

The integration process is similar for all DRM systems, with some individual
differences. At run time, mpirun calls the specified DRM system (launcher), which
in turn launches the job.

For information on the ways in which mpirun interacts with DRM systems, see
Chapter 5. In addition, see the FAQ on running MPI jobs at:

http://www.open-mpi.org/faq/?category=running

Chapter 6 provides instructions for script-based and interactive job launching.

Using Sun Grid Engine With ORTE
HPC sites use batch systems to share resources fairly and accountably, and also to
guarantee that a job can obtain the resources it needs to run at maximum efficiency.
To properly monitor a job’s resource consumption, the batch system must be the
agent that launches the job.

Sun Grid Engine, like many other batch systems, cannot launch multiple process
jobs (such as MPI applications) on its own. In Sun HPC ClusterTools 8.2, ORTE
launches the multiple process jobs and sets up the environment required by Open
MPI.

When Sun Grid Engine launches a parallel job in cooperation with ORTE, Sun Grid
Engine “owns” the resulting launched processes. Sun Grid Engine monitors the
resources for these processes, thereby creating a tightly integrated environment for
resource accounting. OpenRTE allows users to execute their parallel applications.
Chapter 2 Fundamental Concepts 7

http://www.open-mpi.org/faq/?category=running

Note – There is also an open source version of Grid Engine (GE) hosted on
http://www.sunsource.net. Although the Sun HPC ClusterTools 8.2/Open MPI
integration is developed with Sun Grid Engine, this integration should work for the
open source Grid Engine as well.

Submitting Jobs Under Sun Grid Engine
Integration
To submit jobs under Sun Grid Engine integration in Sun HPC ClusterTools 8.2, you
must first create a Sun Grid Engine (SGE) environment using qsub, qsh, and so on.
Instructions about how to set up the parallel environment (PE) and queue in Sun
Grid Engine are described in the Sun HPC ClusterTools 8.2 Software User’s Guide.

There are two ways to submit jobs under Sun Grid Engine integration: interactive
mode and batch mode. “Running Parallel Jobs in the Sun Grid Engine Environment”
on page 47 explains how to submit jobs in both modes in the Sun Grid Engine
environment.

MCA Parameters
Open MPI provides MCA (Modular Component Architecture) parameters for use
with the mpirun command. These parameters and their values direct mpirun to
perform specified functions. To specify an MCA parameter, use the
-mca flag and the parameter name and value with the mpirun command.

For more information about how to use MCA parameters, see Chapter 7.

How ORTE Works With Zones in the
Solaris 10 Operating System
The Solaris 10 Operating System (Solaris 10 OS) enables you to create secure,
isolated areas within a single instance of the Solaris 10 OS. These areas, called zones,
provide secure environments for running applications. Applications that execute in
one zone cannot monitor or affect activity in another zone. You can create multiple
non-global zones to run as virtual instances of the Solaris OS on the same hardware.
8 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

sunsource.net

The global zone is the default zone for the Solaris system. You install Sun HPC
ClusterTools software into the global zone. Any non-global zones running under
that Solaris system “inherit” that installation. This means that you may install and
configure Sun HPC ClusterTools and compile/run/debug your programs in either a
global or a non-global zone.

Note – The non-global zones do not inherit the links set up in the global zone. This
means that you must type out the full path to the Sun HPC ClusterTools executables
on the command line.
Chapter 2 Fundamental Concepts 9

10 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

CHAPTER 3

Before You Begin

This chapter provides miscellaneous information about the runtime environment
that you should know before you begin to use it. It contains the following sections:

■ “Prerequisites” on page 11

■ “Command and Man Page Paths” on page 11

■ “Core Files” on page 13

■ “Setting Up a known_hosts File” on page 13

Prerequisites
If your program uses Sun HPC ClusterTools components, compile and link it on a
cluster that contains the Sun HPC ClusterTools software.

It is strongly suggested that you use the Sun HPC ClusterTools 8.2 compiler wrapper
to compile applications. These compiler wrappers add the appropriate compiler and
linker flags to the command line and call the underlying compiler and linker for
you. Compiler wrappers are available for C, C++, Fortran 77, and Fortran 90.

For more information about compiling MPI applications, see the “Compiling MPI
Applications” FAQ at:

http://www.open-mpi.org/faq/?category=mpi-apps

Command and Man Page Paths
Sun HPC ClusterTools commands typically reside in the following directories:
11

http://www.open-mpi.org/faq/?category=mpi-apps

■ Solaris OS: /opt/SUNWhpc/HPC8.2/sun/bin

■ Linux:

■ /opt/SUNWhpc/HPC8.2/gnu/bin for the GNU compiled version

■ /opt/SUNWhpc/HPC8.2/sun/bin for the Sun Studio compiled version

■ /opt/SUNWhpc/HPC8.2/pgi/bin for the PGI compiled version

■ /opt/SUNWhpc/HPC8.2/intel/bin for the Intel compiled version

■ /opt/SUNWhpc/HPC8.2/pathscale/bin for the Pathscale compiled version

You can run the Sun HPC ClusterTools software directly from the directory in which
your ClusterTools commands are installed, or you may add the directory to your
PATH or set the PATH environment variable.

The man pages for Sun HPC ClusterTools commands reside in the
/opt/SUNWhpc/HPC8.2/<compiler-name>/man.

Note – The examples in this manual refer to the default location for the Solaris and
Sun Studio compiled Linux binaries. Be sure to use the path name that corresponds
to your operating system and ClusterTools version.

Setting Up Your Path

▼ To Set Up Your Path for the Solaris OS and the Sun
Studio Compiled Linux Version
For example, if you installed the Sun HPC ClusterTools 8.2 software for the Solaris
OS in the default location of /opt/SUNWhpc/HPC8.2/sun/bin, you would add
this location to your PATH as shown in the following example:

The setenv command prefixes the PATH on both the local and remote hosts with
/opt/SUNWhpc/HPC8.2/sun/bin.

% setenv PATH /opt/SUNWhpc/HPC8.2/sun/bin:${PATH}
12 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Set Up Your Path for the GNU Compiled Linux
Version
For example, if you installed the GNU compiled version of the Sun HPC
ClusterTools 8.2 software for Linux in the default location of
/opt/SUNWhpc/HPC8.2/gnu/bin, you would add this location to your PATH as
shown in the following example:

The setenv command prefixes the PATH on both the local and remote hosts with
/opt/SUNWhpc/HPC8.2/gnu/bin.

Core Files
Core files are produced as they normally are in the Solaris environment. However, if
more than one process dumps core in a multiprocess program, the resulting core file
may be overwritten in the same directory. Use coreadm(1M) to control the naming
and placement of core files.

To disable the core dump, use the limit(1) command. You can use the following
command in the C shell:

Setting Up a known_hosts File
If you are using ssh to connect to your remote nodes, you must set up your
~/.ssh/known_hosts file to contain the remote nodes’ host key, especially if you
try to run on a cluster with many nodes for the first time.

% setenv PATH /opt/SUNWhpc/HPC8.2/gnu/bin:${PATH}

% limit coredumpsize 0
Chapter 3 Before You Begin 13

Setting up the known_hosts file avoids having to respond to the following prompts
when running mpirun to the remote nodes:

% /opt/SUNWhpc/HPC8.2/sun/bin/mpirun -host host04,host05,host06
hostname

The authenticity of host ’host04 (129.148.9.88)’ can’t be
established.
RSA key fingerprint is
ff:73:0e:91:7b:19:e6:a3:9a:f8:6c:07:0a:ce:1a:f2.
Are you sure you want to continue connecting (yes/no)?
The authenticity of host ’host05 (129.148.9.84)’ can’t be
established.
RSA key fingerprint is
11:f6:bd:f7:a9:5b:05:ab:73:ee:81:0f:c8:2f:ac:cb.
Are you sure you want to continue connecting (yes/no)?
The authenticity
of host ’host06 (129.148.9.86)’ can’t be established.
RSA key fingerprint is
c1:24:c4:9c:86:33:25:3b:08:59:12:b5:1b:9d:b2:c6.
Are you sure you want to continue connecting (yes/no)?
Host key verification failed.
yes
Please type ’yes’ or ’no’: yes
Please type ’yes’ or ’no’: yes
Please type ’yes’ or ’no’: yes
Please type ’yes’ or ’no’: yes
Please type ’yes’ or ’no’: yes
Please type ’yes’ or ’no’: yes
...
14 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

CHAPTER 4

Compiling MPI Programs

This chapter describes the compilers that Sun HPC ClusterTools Software supports
for both the Solaris OS and Linux. In addition, it describes changes you might make
in your application code to recompile and run programs developed with a previous
version of Sun HPC ClusterTools software in Sun HPC ClusterTools 8.2.

This chapter contains the following topics:

■ “Supported Compilers” on page 15

■ “Using the Compiler Wrappers” on page 16

■ “Using Non-Default Error Handlers” on page 16

■ “Compiling Fortran 90 Programs” on page 17

If you previously compiled your application with the tmcc compiler, then you must
recompile your applications using the mpicc compiler if you want them to be
compatible with Sun HPC ClusterTools 8.2 software. The tmcc compiler is not
supported in Sun HPC ClusterTools 8.2, and there is no backward compatibility.

Supported Compilers
For the Solaris OS, Sun HPC ClusterTools 8.2 software supports Sun Studio 10, 11,
12, and 12 U1 C, C++, and Fortran compilers.

For the Linux OS, the ClusterTools 8.2 software supports

■ Sun Studio 12 U1 compilers

■ gcc Linux 3.3.3, 3.4.6, and 4.1.2 compilers

■ Intel 11.0 20081105 compiler

■ PGI 7.1-4 compiler
15

■ Pathscale 3.2 compiler

Using the Compiler Wrappers
Sun HPC ClusterTools 8.2 supplies compiler wrappers for you to use instead of
directly calling the compilers when compiling applications for use with the Sun HPC
ClusterTools 8.2 software. These compiler wrappers do not actually perform the
compilation and linking steps themselves, but they add the appropriate compiler
and linker flags and call the compiler and linker.

Note – Using the compiler wrappers is strongly suggested. If you decide not to use
them, the Open MPI Web site at http://www.open-mpi.org contains instructions
about how to compile without using them.

The following compiler wrappers are available:

For more information about the compiler wrappers, their use, and troubleshooting,
see the Open MPI FAQ at:

http://www.open-mpi.org/faq/?category=mpi-apps

Using Non-Default Error Handlers
In Open MPI, the non-default error handler does not persist, and the default error
handler is used. This causes any call used after MPI_Finalize to be aborted.

TABLE 4-1 Compiler Wrappers

Language Compiler Wrapper

C mpicc

C++ mpiCC, mpicxx, or mpic++ (Note: mpiCC is for use on case-
sensitive file systems only)

Fortran 77 mpif77

Fortran 90 mpif90
16 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.open-mpi.org/faq/?category=mpi-apps
http://www.open-mpi.org

Compiling Fortran 90 Programs
When you are compiling MPI programs written in Fortran 90, you must use the
-xalias=actual switch. Otherwise, your program could fail.

This condition is due to a known condition in the MPI standard. The standard states
that “The MPI Fortran binding is inconsistent with the Fortran 90 standard in several
respects.” Specifically, the Fortran 90 compiler could break MPI programs that use
non-blocking operations.

For more information about this issue, see

http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-
2.0/node19.htm#Node19
Chapter 4 Compiling MPI Programs 17

http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/node19.htm#Node19

18 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

CHAPTER 5

Running Programs With thempirun
Command

This chapter describes the general syntax of the mpirun command and lists the
command’s options. This chapter also shows some of the tasks you can perform with
the mpirun command. It contains the following sections:

■ “About the mpirun Command” on page 19
■ “Syntax for the mpirun Command” on page 20
■ “mpirun Command Examples” on page 22
■ “Mapping MPI Processes to Nodes” on page 24
■ “Controlling Input/Output” on page 30
■ “Controlling Other Job Attributes” on page 31
■ “Submitting Jobs Under Sun Grid Engine Integration” on page 36
■ “Using MPI Client/Server Applications” on page 39
■ “For More Information” on page 42

Note – The mpirun, mpiexec, and orterun commands all perform the same
function, and they can be used interchangeably. The examples in this manual all use
the mpirun command.

About the mpirun Command
The mpirun command controls several aspects of program execution in Open MPI.
mpirun uses the Open Run-Time Environment (ORTE) to launch jobs. If you are
running under distributed resource manager software, such as Sun Grid Engine or
PBS, ORTE launches the resource manager for you.
19

If you are using rsh/ssh instead of a resource manager, you must use a hostfile or
host list to identify the hosts on which the program will be run. When you issue the
mpirun command, you specify the name of the hostfile or host list on the command
line; otherwise, mpirun executes all the copies of the program on the local host, in
round-robin sequence by CPU slot. For more information about hostfiles and their
syntax, see “Specifying Hosts By Using a Hostfile” on page 25.

Both MPI programs and non-MPI programs can use mpirun to launch the user
processes.

Some example programs are provided in the /opt/SUNWhpc/HPC8.2/examples
directory for you to try to compile/run as sanity tests.

Syntax for the mpirun Command
The following example shows the general single-process syntax for mpirun:

For a simple SPMD (Single Process, Multiple Data) job, the typical syntax is:

For jobs involving multiple instructions, the command syntax appears similar to the
following:

For an MPMD (Multiple Program, Multiple Data) parallel application, the syntax
follows this form:

This command starts x number of copies of the program program1, and then starts y
copies of the program program2.

mpirun Options
The options control the behavior of the mpirun command. They might or might not
be followed by arguments.

% mpirun [options] [program–name]

% mpirun -np x program-name

% mpirun [options] [program-name] : [options2] [program-name2] ...

% mpirun -np x program1 : -np y program2
20 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Caution – If you do not specify an argument for an option that expects to be
followed by an argument (for example, the --app <filename> option), that option
will read the next option on the command line as an argument. This might result in
inconsistent behavior.

The procedure “To Display Command Help (–h)” on page 32 lists the options in
alphabetical order, with a brief description of each.

Using Environment Variables With the mpirun
Command
Use the -x args option (where args is the environment variable(s) you want to use) to
specify any environment variable you want to pass during runtime. The -x option
exports the variable specified in args and sets the value for args from the current
environment. For example:

Using MCA Parameters With the mpirun
Command
The mpirun command uses MCA (Multiple Component Architecture) parameters to
pass environment variables. To specify an MCA parameter, use the -mca option with
the mpirun command, and then specify the parameter type, the parameter you want
to pass as an environment variable, and the value you want to set. For example:

This sets the MCA parameter mpi_show_handle_leaks to the value of 1 before
running the program named a.out with four processes. In general, the format used
on the command line is --mca parameter_name value.

Note – There are multiple ways to specify the values of MCA parameters. This
chapter discusses how to use them from the command line with the mpirun
command. MCA parameters are discussed in more detail in Chapter 7.

% mpirun -x LD_LIBRARY_PATH=/opt/SUNWhpc/HPC8.2/lib -np 4 a.out

% mpirun --mca mpi_show_handle_leaks 1 -np 4 a.out
Chapter 5 Running Programs With the mpirun Command 21

Canceling Send and Receive Operations
Open MPI supports the canceling of receive operations. However, the canceling of
sends is not supported; therefore, a send will never be successfully canceled.

For more information about canceling send and receive operations, see the
MPI_Cancel(3) man page.

mpirun Command Examples
The examples in this section show how to use the mpirun command options to
specify how and where the processes and programs run.

The following table shows the process control options for the mpirun command.
The procedures that follow the table explain how these options are used and show
the syntax for each.

TABLE 5-1 Program/Process Control Options

Task mpirun option Page Number (For More
Information)

To run a program with
default settings

(no need to specify an
option)

18

To run multiple parallel
processes

-c or –np <number of
processes>

19

To display command help -h or --help 27

To change the working
directory

-wdir or --wdir <directory> 26

To specify the list of hosts
on which to invoke
processes (also known as
the rankmap string)

-host or --host or -H 22

To specify the list of hosts
on which to execute the
program (also known as the
rankmap file)

-hostfile <filename> or
--hostfile <filename> or
-machinefile <filename>
or
--machinefile <filename>

21
22 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Run a Program With Default Settings
● To run the program with default settings, enter the command and program

name, followed by any required arguments to the program:

▼ To Run Multiple Processes
By default, an MPI program started with mpirun runs as one process.

● To run the program as multiple processes, use the –np option:

When you request multiple processes, ORTE attempts to start the number of
processes you request, regardless of the number of CPUs available to run those
processes. For more information, see “Oversubscribing Nodes” on page 27.

▼ To Direct mpirun By Using an Appfile
You can use a type of text file (called an appfile) to direct mpirun. The appfile
specifies the nodes on which to run, the number of processes to launch on each
node, and the programs to execute in a parallel application. When you use the
--app option, mpirun takes all its direction from the contents of the appfile and
ignores any other nodes or processes specified on the command line.

To start up in debugging
mode

-d or

--debug or

-debugger or

--debugger <sequence>

To specify verbose output -v 27

To specify multiple
executables

-np 2 exe1 : -np 6
exe2

% mpirun program–name

% mpirun –np process–count program–name

TABLE 5-1 (Continued)Program/Process Control Options

Task mpirun option Page Number (For More
Information)
Chapter 5 Running Programs With the mpirun Command 23

For example the following shows an appfile called my_appfile:

● To use the --app option with the mpirun command, specify the name and
path of the appfile on the command line. For example:

This command produces the same results as running a.out and b.out from the
command line.

Mapping MPI Processes to Nodes
When you issue the mpirun command from the command line, ORTE reads the
number of processes to be launched from the -np option, and then determines
where the processes will run.

To determine where the processes will run, ORTE uses the following criteria:

■ Available hosts (also referred to as nodes), specified by a hostfile or by the
--host option

■ Scheduling policy (round-robin or by-slot)

■ Default and maximum numbers of slots available on each host

■ ORTE also checks to see whether the current environment/shell runs with any
third-party launcher (such as Sun Grid Engine or PBS) to determine where the
processes will launch.

Specifying Available Hosts
You specify the available hosts to Open MPI in three ways:

■ Through the batch scheduler in your resource management software. This option
is described in detail in Chapter 6.

Comments are supported; comments begin with
Application context files specify each sub-application in the
parallel job, one per line. The first sub-application is the 2
a.out processes:
-np 2 a.out
The second sub-application is the 2 b.out processes:
-np 2 b.out

% mpirun --app my_appfile
24 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

■ By using a hostfile with the --hostfile option. The hostfile is a text file that
contains the names of hosts, the number of available slots on each host, and the
maximum slots on each host.

■ By using the --host option. Use this option to specify which hosts to include or
exclude.

Specifying Hosts By Using a Hostfile
The hostfile lists each node, the available number of slots, and the maximum
number of slots on that node. For example, the following listing shows a simple
hostfile:

In this example file, node0 is a single-processor machine. node1 has two slots.
node2 and node3 both have 4 slots, but the values of slots and max_slots are
the same (4) on node2. This disallows the processors on node2 from being
oversubscribed. The four slots on node3 can be oversubscribed, up to a maximum of
20 processes.

When you use this hostfile with the --nooversubscribe option (see
“Oversubscribing Nodes” on page 27), mpirun assumes that the value of
max_slots for each node in the hostfile is the same as the value of slots for each
node. It overrides the values for max_slots set in the hostfile.

Open MPI assumes that the maximum number of slots you can specify is equal to
infinity, unless explicitly specified. Resource managers also do not specify the
maximum number of available slots.

Note – Open MPI includes a commented default hostfile at
/opt/SUNWhpc/HPC8.2/etc/openmpi-default-hostfile. Unless you specify
a different hostfile at a different location, this is the hostfile that OpenMPI uses. It is
empty by default, but you may edit this file to add your list of nodes. See the
comments in the hostfile for more information.

node0
node1 slots=2
node2 slots=4 max_slots=4
node3 slots=4 max_slots=20
Chapter 5 Running Programs With the mpirun Command 25

Specifying Hosts By Using the --host Option
You can use the --host option to mpirun to specify the hosts you want to use on the
command line in a comma-delimited list. For example, the following command
directs mpirun to run a program called a.out on hosts a, b, and c:

Open MPI assumes that the default number of slots on each host is one, unless you
explicitly specify otherwise.

▼ To Specify Multiple Slots Using the --host Option
To specify multiple slots with the -host option for each host repeat the host name
on the command line for each slot you want to use. For example:

If you are using a resource manager such as Sun Grid Engine or PBS, the resource
manager maintains an accurate count of available slots.

Excluding Hosts From Scheduling By Using the --host
Option
You can also use the --host option in conjunction with a hostfile to exclude any
nodes not explicitly specified on the command line. For example, assume that you
have the following hostfile called my_hosts:

Suppose you issue the following command to run program a.out:

This command launches one instance of a.out on host c, but excludes the other
hosts in the hostfile (a, b, and d).

% mpirun -np 3 --host a,b,c a.out

% mpirun -host node1,node1,node2,node2 ...

a slots=2 max_slots=20
b slots=2 max_slots=20
c slots=2 max_slots=20
d slots=2 max_slots=20

% mpirun -np 1 --hostfile my_hosts --host c a.out
26 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Note – If you use these two options (--hostfile and --host) together, make sure
that the host(s) you specify using the --host option also exist in the hostfile.
Otherwise, mpirun exits with an error.

Oversubscribing Nodes
If you schedule more processes to run than there are available slots, this is referred
to as oversubscribing. Oversubscribing a host is not suggested, as it might result in
performance degradation.

mpirun has a --nooversubscribe option. This option implicitly sets the
max_slots value (maximum number of available slots) to the same value as the
slots value for each node, as specified in your hostfile. If the number of processes
requested is greater than the slots value, mpirun returns an error and does not
execute the command. This option overrides the value set for max_slots in your
hostfile.

For more information about oversubscribing, see the following URL:

http://www.open-mpi.org/faq/?category=running#oversubscribing

Scheduling Policies
ORTE uses two types of scheduling policies when it determines where processes will
run:

■ By slot (default). This scheme schedules processes to run on each successive slot
on one host. When all those slots are filled, scheduling begins on the next host in
the hostfile.

■ By node. In this scheme, Open MPI schedules the processes by finding the first
available slot on a host, then the first available slot on the next host in the hostfile,
and so on, in a round-robin fashion.

Scheduling By Slot
This is the default scheduling policy for Open MPI. If you do not specify a
scheduling policy, this is the policy that is used.
Chapter 5 Running Programs With the mpirun Command 27

http://www.open-mpi.org/faq/?category=running#oversubscribing

In by-slot scheduling, Open MPI schedules processes on a node until all of its
available slots are exhausted (that is, all slots are running processes) before
proceeding to the next node. In MPI terms, this means that Open MPI tries to
maximize the number of adjacent ranks in MPI_COMM_WORLD on the same host
without oversubscribing that host.

▼ To Specify By-Slot Scheduling
If you want to explicitly specify by-slot scheduling for some reason, there are two
ways to do it:

1. Specify the --byslot option to mpirun. For example, the following command
specifies the --byslot and --hostfile options:

The following example uses the -host option:

2. Set the MCA parameter rmaps_base_schedule_policy to the value slot.
For example:

Note – The examples in this chapter set MCA parameters on the command line. For
more information about the ways in which you can set MCA parameters, see
Chapter 7. In addition, the Open MPI FAQ contains information about MCA
parameters at the following URL:

http://www.open-mpi.org/faq/?category=tuning#setting-mca-params

% mpirun -np 4 --byslot --hostfile myfile a.out

% mpirun -np 4 --byslot -host node0,node0,node1,node1 a.out

% mpirun --mca rmaps_base_schedule_policy slot -np 4 a.out
28 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.open-mpi.org/faq/?category=tuning#setting-mca-params

The following output example shows the contents of a simple hostfile called my-
hosts and the results of the mpirun command using by-slot scheduling.

Scheduling By Node
In by-node scheduling, Open MPI schedules a single process on each node in a
round-robin fashion (looping back to the beginning of the node list as necessary)
until all processes have been scheduled. Nodes are skipped once their default slot
counts are exhausted.

▼ To Specify By-Node Scheduling
There are two ways to specify by-node scheduling:

■ Specify the --bynode option to mpirun. For example:

■ Set the MCA parameter rmaps_base_schedule_policy to the value node.
For example:

% cat my-hosts
node0 slots=2 max_slots=20
node1 slots=2 max_slots=20
% mpirun --hostfile my-hosts -np 8 --byslot hello | sort
Hello World I am rank 0 of 8 running on node0
Hello World I am rank 1 of 8 running on node0
Hello World I am rank 2 of 8 running on node1
Hello World I am rank 3 of 8 running on node1
Hello World I am rank 4 of 8 running on node0
Hello World I am rank 5 of 8 running on node0
Hello World I am rank 6 of 8 running on node1
Hello World I am rank 7 of 8 running on node1

% mpirun -np 4 --bynode --hostfile my-hosts a.out

% mpirun --mca rmaps_base_schedule_policy node -np 4 a.out
Chapter 5 Running Programs With the mpirun Command 29

The following output example shows the contents of the same hostfile used in the
previous example and the results of the mpirun command using by-node
scheduling.

Comparing By-Slot to By-Node Scheduling
In the examples in this section, node0 and node1 each have two slots. The diagrams
show the differences in scheduling between the two methods.

By-slot scheduling for the two nodes can be represented as follows:

By-node scheduling for the same two nodes can be represented this way:

Controlling Input/Output
Open MPI directs UNIX standard input to /dev/null on all processes except the
rank 0 process of MPI_COMM_WORLD. The MPI_COMM_WORLD rank 0 process
inherits standard input from mpirun. The node from which you invoke mpirun

% cat my-hosts
node0 slots=2 max_slots=20
node1 slots=2 max_slots=20
% mpirun --hostfile my-hosts -np 8 --bynode hello | sort
Hello World I am rank 0 of 8 running on node0
Hello World I am rank 1 of 8 running on node1
Hello World I am rank 2 of 8 running on node0
Hello World I am rank 3 of 8 running on node1
Hello World I am rank 4 of 8 running on node0
Hello World I am rank 5 of 8 running on node1
Hello World I am rank 6 of 8 running on node0
Hello World I am rank 7 of 8 running on node1

node0 node1

0 2
1 3
4 6
5 7

node0 node1

0 1
2 3
4 5
6 7
30 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

need not be the same as the node where the MPI_COMM_WORLD rank 0 process
resides. Open MPI handles the redirection of the mpirun standard input to the rank
0 process.

Open MPI directs UNIX standard output and standard error from remote nodes to
the node that invoked mpirun, and then prints the information from the remote
nodes on the standard output/error of mpirun. Local processes inherit the standard
output/error of mpirun and transfer to it directly.

▼ To Redirect Standard I/O
To redirect standard I/O for Open MPI applications, use the typical shell redirection
procedure on mpirun. For example:

In this example, only the MPI_COMM_WORLD rank 0 process will receive the
stream from my_input on stdin. The stdin on all the other nodes will be tied to
/dev/null. However, the stdout from all nodes will be collected into the
my_output file.

Controlling Other Job Attributes

▼ To Change the Working Directory
Use the –wdir or --wdir option to specify the path of an alternative working
directory to be used by the processes spawned when you run your program:

% mpirun -np 2 my_app < my_input > my_output

To Perform This Task Use This Option

To change the working directory –wdir or
--wdir

To display debugging output -d

To display command help –h

% mpirun –-wdir working–directory program–name
Chapter 5 Running Programs With the mpirun Command 31

Setting a path with –-wdir does not affect where the runtime environment looks for
executables. If you do not specify --wdir, the default is the current working
directory. For example:

The syntax above changes the working directory for a.out to
/home/mystuff/bin.

▼ To Specify Debugging Output
Use this syntax to specify debugging output. For example:

The -d option shows the user-level debugging output for all of the ORTE modules
used with mpirun. To see more information from a particular module, you can set
additional MCA debugging parameters. The availability of the additional debugging
information depends on how the module of interest is implemented.

For more information on MCA parameters, see Chapter 7. For more information
about whether a module provides additional verbose or debug mode, run the
ompi_info command on that module.

▼ To Display Command Help (–h)
To display a list of mpirun options, use the –h option (alone). The following
example shows the output from mpirun -h:

% mpirun –-wdir /home/mystuff/bin a.out

% mpirun –d a.out

% ./mpirun -h
mpirun (Open MPI) 1.3.3r21324-ct8.2-b09j-r40

Usage: mpirun [OPTION]... [PROGRAM]...
Start the given program using Open RTE

 -am <arg0> Aggregate MCA parameter set file list
 --app <arg0> Provide an appfile; ignore all other command line
 options
 -bynode|--bynode Whether to allocate/map processes round-robin by
 node
 -byslot|--byslot Whether to allocate/map processes round-robin by
32 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

 slot (the default)
-c|-np|--np <arg0> Number of processes to run
 -cf|--cartofile <arg0>
 Provide a cartography file
-d|-debug-devel|--debug-devel
 Enable debugging of OpenRTE
 -debug|--debug Invoke the user-level debugger indicated by the
 orte_base_user_debugger MCA parameter
 -debug-daemons|--debug-daemons
 Enable debugging of any OpenRTE daemons used by
 this application
 -debug-daemons-file|--debug-daemons-file
 Enable debugging of any OpenRTE daemons used by
 this application, storing output in files
 -debugger|--debugger <arg0>
 Sequence of debuggers to search for when "--debug"
 is used
 -default-hostfile|--default-hostfile <arg0>
 Provide a default hostfile
 -display-allocation|--display-allocation
 Display the allocation being used by this job
 -display-devel-allocation|--display-devel-allocation
 Display a detailed list (mostly intended for
 developers) of the allocation being used by this
 job
 -display-devel-map|--display-devel-map
 Display a detailed process map (mostly intended for
 developers) just before launch
 -display-map|--display-map
 Display the process map just before launch
 -do-not-launch|--do-not-launch
 Perform all necessary operations to prepare to
 launch the application, but do not actually launch
 it
 -do-not-resolve|--do-not-resolve
 Do not attempt to resolve interfaces
 -gmca|--gmca <arg0> <arg1>
 Pass global MCA parameters that are applicable to
 all contexts (arg0 is the parameter name; arg1 is
 the parameter value)
-h|--help This help message
-H|-host|--host <arg0> List of hosts to invoke processes on
 --hetero Indicates that multiple app_contexts are being
 provided that are a mix of 32/64 bit binaries
 -hostfile|--hostfile <arg0>
 Provide a hostfile
 -launch-agent|--launch-agent <arg0>
 Command used to start processes on remote nodes
 (default: orted)
Chapter 5 Running Programs With the mpirun Command 33

 -leave-session-attached|--leave-session-attached
 Enable debugging of OpenRTE
 -loadbalance|--loadbalance
 Balance total number of procs across all allocated
 nodes
 -machinefile|--machinefile <arg0>
 Provide a hostfile
 -mca|--mca <arg0> <arg1>
 Pass context-specific MCA parameters; they are
 considered global if --gmca is not used and only
 one context is specified (arg0 is the parameter
 name; arg1 is the parameter value)
 -n|--n <arg0> Number of processes to run
 -nolocal|--nolocal Do not run any MPI applications on the local node
 -nooversubscribe|--nooversubscribe
 Nodes are not to be oversubscribed, even if the
 system supports such operation
 --noprefix Disable automatic --prefix behavior
 -npernode|--npernode <arg0>
 Launch n processes per node on all allocated nodes
 -ompi-server|--ompi-server <arg0>
 Specify the URI of the Open MPI server, or the name
 of the file (specified as file:filename) that
 contains that info

-output-filename|--output-filename <arg0>
Redirect output from application processes into
filename.rank.

 -path|--path <arg0> PATH to be used to look for executables to start
 processes
 -pernode|--pernode Launch one process per available node on the
 specified number of nodes [no -np => use all
 allocated nodes]
 --prefix <arg0> Prefix where Open MPI is installed on remote nodes
 --preload-files <arg0>
 Preload the comma separated list of files to the
 remote machines current working directory before
 starting the remote process.
 --preload-files-dest-dir <arg0>
 The destination directory to use in conjunction
 with --preload-files. By default the absolute and
 relative paths provided by --preload-files are
 used.
-q|--quiet Suppress helpful messages

-report-pid|--report-pid
Print out pid

 -rf|--rankfile <arg0>
Provide a rankfile file

-s|--preload-binary Preload the binary on the remote machine before
 starting the remote process.
34 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

 -server-wait-time|--server-wait-time <arg0>
 Time in seconds to wait for ompi-server (default:
 10 sec)
 -slot-list|--slot-list <arg0>
 List of processor IDs to bind MPI processes to
 (e.g., used in conjunction with rank files)

-stdin|--stdin <arg0>
Specify procs to receive stdin [rank, none]
(default: 0, indicating rank 0)

-tag-output|--tag-output
Tag all output with [job,rank]

-timestamp-output|--timestamp-output
Timestamp all application process output

 -tmpdir|--tmpdir <arg0>
 Set the root for the session directory tree for
 orterun ONLY
 -tv|--tv Deprecated backwards compatibility flag; synonym
 for "--debug"
-v|--verbose Be verbose
-V|--version Print version and exit
 -wait-for-server|--wait-for-server
 If ompi-server is not already running, wait until
 it is detected (default: false)
 -wd|--wd <arg0> Synonym for --wdir
 -wdir|--wdir <arg0> Set the working directory of the started processes
-x <arg0> Export an environment variable, optionally
 specifying a value (e.g., "-x foo" exports the
 environment variable foo and takes its value from
 the current environment; "-x foo=bar" exports the
 environment variable name foo and sets its value to
 "bar" in the started processes)
 -xml|--xml Provide all output in XML format

-xterm|--xterm <arg0>
Create a new xterm window and display output from
the specified ranks there

Report bugs to http://www.open-mpi.org/community/help/
Chapter 5 Running Programs With the mpirun Command 35

Submitting Jobs Under Sun Grid Engine
Integration
There are two ways to submit jobs under Sun Grid Engine integration: interactive
mode and batch mode. The instructions in this chapter describe how to submit jobs
interactively. For information about how to submit jobs in batch mode, see
Chapter 6.

Defining Parallel Environment (PE) and Queue
A PE needs to be defined for all the queues in the Sun Grid Engine cluster to be used
as ORTE nodes. Each ORTE node should be installed as an Sun Grid Engine
execution host. To allow the ORTE to submit a job from any ORTE node, configure
each ORTE node as a submit host in Sun Grid Engine.

Each execution host must be configured with a default queue. In addition, the
default queue set must have the same number of slots as the number of processors
on the hosts.

▼ To Use PE Commands
● To display a list of available PEs (parallel environments), type the following:

● To define a new PE, you must have Sun Grid Engine manager or operator
privileges. Use a text editor to modify a template for the PE. The following
example creates a PE named orte.

● To modify an existing PE, use this command to invoke the default editor:

% qconf -spl
make

% qconf -ap orte

% qconf -mp orte
36 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

● To show a particular PE that has been defined, type this command:

The value NONE in user_lists and xuser_lists mean enable everybody and
exclude nobody.

The value of control_slaves must be TRUE; otherwise, qrsh exits with an error
message.

The value of job_is_first_task must be FALSE or the job launcher consumes a
slot. In other words, mpirun itself will count as one of the slots and the job will fail,
because only n-1 processes will start.

▼ To Use Queue Commands
● To show all the defined queues, type the following command:

The queue all.q is set up by default in Sun Grid Engine.

● To configure the orte PE from the example in the previous section to the
existing queue, type the following:

You must have Sun Grid Engine manager or operator privileges to use this
command.

% qconf -sp orte
pe_name orte
slots 8
user_lists NONE
xuser_lists NONE
start_proc_args /bin/true
stop_proc_args /bin/true
allocation_rule $round_robin
control_slaves TRUE
job_is_first_task FALSE
urgency_slots min

% qconf -sql
all.q

% qconf -mattr queue pe_list "orte" all.q
Chapter 5 Running Programs With the mpirun Command 37

Submitting Jobs in Interactive Mode

▼ To Set the Interactive Display
Before you submit a job, you must have your DISPLAY environment variable set so
that the interactive window will appear on your desktop, if you have not already
done so.

For example, if you are working in the C shell, type the following command:

▼ To Submit Jobs Interactively
1. Use the source command to set the Sun Grid Engine environment variables

from a file:

2. Use the qsh command to start the interactive X Windows session, and specify
the parallel environment (in this example, ORTE) and the number of slots to
use:

3. On a different node in the cluster, use the cd command to switch to the
directory where your executable is located.

4. Issue the mpirun command.

In the above example, Sun Grid Engine starts the user executable hostname with 4
processes on the two Sun Grid Engine assigned slots. The following example
shows the output from the mpirun command with the specified options.

% setenv DISPLAY desktop:0.0

mynode4% source /opt/sge/default/common/settings.csh

mynode4% qsh -pe orte 2
waiting for interactive job to be scheduled...
Your interactive job 324 has been successfully scheduled.

mynode5% cd /workspace/joeuser/ompi/trunk/builds/sparc32-g/bin

mynode5% /opt/SUNWhpc/HPC8.2/sun/bin/mpirun -np 4 hostname

mynode5% /opt/SUNWhpc/HPC8.2/sun/bin/mpirun -np 4 --hostname mynode5

mynode5
38 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Verify That Sun Grid Engine Is Running
The following is not required for normal operation, but if you want to verify that
Sun Grid Engine is being used, add --mca ras_gridengine_verbose to the
mpirun command line. For example:

▼ To Start an Interactive Session Using qrsh

An alternate way to start an interactive session is by using qrsh instead of qsh. For
example:

Using MPI Client/Server Applications
The instructions in this section explain how to get best results when starting Open
MPI client/server applications.

▼ To Launch the Client/Server Job
1. Type the following command to launch the server application. Substitute the

name of your MPI job’s universe for univ1:

2. Type the following command to launch the client application, substituting the
name of your MPI job’s universe for univ1:

% ./mpirun -np 4 -mca ras_gridengine_verbose 100 hostname
[mynode6:04234] ras:gridengine: JOB_ID: 28
[mynode6:04234] ras:gridengine: mynode6: PE_HOSTFILE shows slots=2
[mynode6:04234] ras:gridengine: mynode7: PE_HOSTFILE shows slots=2
mynode6
mynode6
mynode7
mynode7
%

% qrsh -V -pe orte 8 mpirun -np 4 -byslot hostname

% ./mpirun -np 1 --universe univ1 t_accept

% ./mpirun -np 4 --universe univ1 t_connect
Chapter 5 Running Programs With the mpirun Command 39

If the client and server jobs span more than 1 node, the first job (that is, the server
job) must specify on the mpirun command line all the nodes that will be used.
Specifying the node names allocates the specified hosts from the entire universe of
server and client jobs.

For example, if the server runs on node0 and the client job runs on node1 only, the
command to launch the server must specify both nodes (using the -host
node0,node1 flag) even it uses only one process on node0.

Assuming that the persistent daemon is started on node0, the command to launch
the server would look like this:

The command to launch the client is:

Using Name Publishing
If you are planning on using name publishing, you must perform some additional
tasks. You need to start up an ompi-server processon your server so that both the
clients andservers can exchange information using that server.

For information about how to start the ompi-server process, type the following
command on your server:

node0% ./mpirun -np 1 --universe univ1 -host node0,node1 t_accept

node0% ./mpirun -np 4 --universe univ1 -host node1 t_connect

% man ompi-server
40 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Troubleshooting Client/Server Jobs
If the MPI client/server job fails to start, you might see error messages similar to
this:

These messages indicate that there is residual data left in the /tmp directory. This
can happen if a previous client/server job has already run from the same node.

To empty the /tmp directory, use the orte-clean utility. For more information
about orte-clean, see the orte-clean man page.

You might also need to run orte-clean if you see error messages similar to the
following:

node0% ./orted --persistent --seed --scope public --universe univ4
--debug
[node0:21760] procdir: (null)
[node0:21760] jobdir: (null)
[node0:21760] unidir:
/tmp/openmpi-sessions-joeuser@node0_0/univ4
[node0:21760] top: openmpi-sessions-joeuser@node0_0
[node0:21760] tmp: /tmp
[node0:21760] orte_init: could not contact the specified
universe name univ4
[node0:21760] [NO-NAME] ORTE_ERROR_LOG: Unreachable in file
/opt/SUNWhpc/HPC8.2/sun/bin/orted/runtime/orte_init_stage1.c
at line 221

node0% ./orted --persistent --seed --scope public --universe univ4 --debug
[node0:21760] procdir: (null)
[node0:21760] jobdir: (null)
[node0:21760] unidir:
/tmp/openmpi-sessions-joeuser@node0_0/univ4
[node0:21760] top: openmpi-sessions-joeuser@node0_0
[node0:21760] tmp: /tmp
[node0:21760] orte_init: could not contact the specified
universe name univ4
[node0:21760] [NO-NAME] ORTE_ERROR_LOG: Unreachable in file
/opt/SUNWhpc/HPC8.2/sun/bin/orted/runtime/orte_init_stage1.c
at line 221
--
It looks like orte_init failed for some reason; your parallel process is likely
to abort. There are many reasons that a parallel process can fail during
orte_init; some of which are due to configuration or environment problems. This
failure appears to be an internal failure; here’s some additional information
(which may only be relevant to an Open MPI developer):
 orte_sds_base_contact_universe failed
Chapter 5 Running Programs With the mpirun Command 41

For More Information
For more information about the mpirun command and its options, see the following:

■ Chapter 7, “Using MCA Parameters With mpirun” on page 55

■ the mpirun(3) man page

■ Open MPI FAQ at http://www.open-mpi.org

 --> Returned value -12 instead of ORTE_SUCCESS
--
[node0:21760] [NO-NAME] ORTE_ERROR_LOG: Unreachable in file
/opt/SUNWhpc/HPC8.2/sun/bin/orted/runtime/orte_system_init.c
at line 42
[node0:21760] [NO-NAME] ORTE_ERROR_LOG: Unreachable in file
/opt/SUNWhpc/HPC8.2/sun/bin/orte/runtime/orte_init.c
at line 52
Open RTE was unable to initialize properly. The error occured while attempting
to orte_init(). Returned value -12 instead of ORTE_SUCCESS.
42 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.open-mpi.org

CHAPTER 6

Running Programs With mpirun in
Distributed Resource Management
Systems

This chapter describes the options to the mpirun command that are used for
distributed resource management, and provides instructions for each resource
manager. It contains the following sections:

■ “mpirun Options for Third-Party Resource Manager Integration” on page 43

■ “Running Parallel Jobs in the PBS Environment” on page 44

■ “Running Parallel Jobs in the Sun Grid Engine Environment” on page 47

mpirun Options for Third-Party
Resource Manager Integration
ORTE is compatible with a number of other launchers, including rsh/ssh, Sun Grid
Engine, and PBS.

Note – Open MPI itself supports other third-party launchers supported by Open
MPI, such as SLURM and Torque. However, these launchers are currently not
supported in Sun HPC ClusterTools software. To use these other third-party
launchers, you must download the Open MPI source, compile, and link with the
libraries for the launchers.
43

Checking Your Open MPI Configuration
To see whether your Open MPI installation has been configured for use with the
third-party resource manager you want to use, issue the ompi_info command and
pipe the output to grep. The following examples show how to use ompi_info to
check for the desired third-party resource manager.

▼ To Check for rsh/ssh
To see whether your Open MPI installation has been configured to use the rsh/ssh
launcher:

▼ To Check for PBS/Torque
To see whether your Open MPI installation has been configured to use the
PBS/Torque launcher:

▼ To Check for Sun Grid Engine
To see whether your Open MPI installation has been configured to use Sun Grid
Engine:

Running Parallel Jobs in the PBS
Environment
If your Open MPI environment is set up to include PBS, Open MPI automatically
detects when mpirun is running within PBS, and will execute properly.

% ompi_info | grep rsh
MCA plm: rsh (MCA v2.0, API v2.0, Component v1.3)

% ompi_info | grep tm
MCA ras: tm (MCA v2.0, API v2.0, Component v1.3)
MCA plm: tm (MCA v2.0, API v2.0, Component v1.3)

% ompi_info | grep gridengine
MCA ras: gridengine (MCA v2.0, API v2.0, Component v1.3)
44 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

First reserve the number of resources by invoking the qsub command with the
–l option. The –l option specifies the number of nodes and the number of processes
per node. For example, this command sequence reserves four nodes with four
processes per node for the job myjob.sh:

When you enter the PBS environment, you can launch an individual job or a series
of jobs with mpirun. The mpirun command launches the job using the nodes and
processes information from PBS.The resource information is accessed using the tm
calls provided by PBS; hence, tm is the name used to identify the module in ORTE.
The job ranks are children of PBS, not ORTE.

You can run an ORTE job within the PBS environment in two different ways:
interactive and scripted.

▼ To Run an Interactive Job in PBS
1. Enter the PBS environment interactively with the –I option to qsub, and use

the
–l option to reserve resources for the job.

Here is an example.

The command sequence shown above enters the PBS environment and reserves
one node called mynode with two processes for the job. Here is the output:

2. Launch the mpirun command.

Here is an example that launches the hostname command with a verbose output:

% qsub –l nodes=4:ppn=4 myjob.sh

% qsub –l nodes=2:ppn=2 –I

qsub: waiting for job 20.mynode to start
qsub: job 20.mynode ready
Sun Microsystems Inc. SunOS 5.10 Generic June 2006
pbs%

pbs% /opt/SUNWhpc/HPC8.2/sun/bin/mpirun -np 4 -mca plm_tm_verbose
1 hostname
Chapter 6 Running Programs With mpirun in Distributed Resource Management Systems 45

The output shows the hostname program being run on ranks r0 and r1:

▼ To Run a Batch Job in PBS
1. Write a script that calls mpirun.

In the following examples, the script is called myjob.csh. The system is called
mynode. Here is an example of the script.

2. Enter the PBS environment and use the –l option to qsub to reserve resources
for the job.

Here is an example of how to use the -l option with the qsub command.

This command enters the PBS environment and reserves one node with two
processes for the job that will be launched by the script named myjob.csh.

% /opt/SUNWhpc/HPC8.2/sun/bin/mpirun -np 4 -mca plm_tm_verbose 1
hostname
[hostname1:09064] plm:tm: launching on node mynode1
[hostname2:09064] plm:tm: launching on node mynode2
hostname2
hostname1
hostname2
hostname1

#!/bin/csh

/opt/SUNWhpc/HPC8.2/sun/bin/mpirun -np 2 -mca plm_tm_verbose 1
hostname

% qsub -l nodes=2:ppn=2 myjob.csh
46 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Here is the output to the script myjob.csh.

After the job finishes, it generates two output files:

■ name_of_job.ejob_id is the file that shows the error outputs (for example,
myjob.csh.e2365 in the above example).

■ name_of_job.ojob_id is the file that shows the standard outputs (for example,
myjob.csh.o2365 in the above example).

As you can see, the pbsrun command calls mpirun, which forks into two calls of
the hostname program, one for each node.

Running Parallel Jobs in the Sun Grid
Engine Environment
Sun Grid Engine 6.1 is the supported version of Sun Grid Engine for Sun HPC
ClusterTools 8.2.

Before you can run parallel jobs, make sure that you have defined the parallel
environment and queue before running the job.

% more myjob.csh.*
::::::::::::::
myjob.csh.e2365
::::::::::::::
::::::::::::::
myjob.csh.o2365
::::::::::::::
Warning: no access to tty (Bad file number).
Thus no job control in this shell.
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
hostname5
hostname4
hostname5
hostname4
Chapter 6 Running Programs With mpirun in Distributed Resource Management Systems 47

Defining Parallel Environment (PE) and Queue
A PE needs to be defined for all the queues in the Sun Grid Engine cluster to be used
as ORTE nodes. Each ORTE node should be installed as a Sun Grid Engine execution
host. To allow the ORTE to submit a job from any ORTE node, configure each ORTE
node as a submit host in Sun Grid Engine.

Each execution host must be configured with a default queue. In addition, the
default queue set must have the same number of slots as the number of processors
on the hosts.

▼ To Use PE Commands
● To display a list of available PEs (parallel environments), type the following:

● To define a new PE, you must have Sun Grid Engine manager or operator
privileges. Use a text editor to modify a template for the PE. The following
example creates a PE named orte.

● To modify an existing PE, use this command to invoke the default editor:

● To show a particular PE that has been defined, type this command:

The value NONE in user_lists and xuser_lists mean enable everybody and
exclude nobody.

% qconf -spl
make

% qconf -ap orte

% qconf -mp orte

% qconf -sp orte
pe_name orte
slots 8
user_lists NONE
xuser_lists NONE
start_proc_args /bin/true
stop_proc_args /bin/true
allocation_rule $round_robin
control_slaves TRUE
job_is_first_task FALSE
urgency_slots min
48 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

The value of control_slaves must be TRUE; otherwise, qrsh exits with an error
message.

The value of job_is_first_task must be FALSE or the job launcher consumes a
slot. In other words, mpirun itself will count as one of the slots and the job will fail,
because only n-1 processes will start.

▼ To Use Queue Commands
● To show all the defined queues, type the following command:

The queue all.q is set up by default in Sun Grid Engine.

● To configure the orte PE from the example in the previous section to the
existing queue, type the following:

You must have Sun Grid Engine manager or operator privileges to use this
command.

Submitting Jobs Under Sun Grid Engine
Integration
There are two ways to submit jobs under Sun Grid Engine integration: interactive
mode and batch mode. The instructions in this section describe how to submit jobs
in batch mode. For information about how to use interactive mode, see Chapter 5.

▼ To Set the Interactive Display
Before you submit a job, you must have your DISPLAY environment variable set so
that the interactive window will appear on your desktop, if you have not already
done so.

For example, if you are working in the C shell, type the following command:

% qconf -spl
all.q

% qconf -mattr queue pe_list "orte" all.q

% setenv DISPLAY desktop:0.0
Chapter 6 Running Programs With mpirun in Distributed Resource Management Systems 49

▼ To Submit Jobs in Batch Mode

Note – Before you can use the parallel environment, make sure that you have set it
up before running the job. See “Defining Parallel Environment (PE) and Queue” on
page 48 for more information.

1. Create the script. In this example, mpirun is embedded within a script to qsub.

Note – The --mca ras_gridengine_verbose 100 setting is used in this
example only to show that Sun Grid Engine is being used. This would not be needed
for normal operation.

2. Next, source the Sun Grid Engine environment variables from a settings.csh
file where $SGE_ROOT is set to /opt/sge:.

3. To start the batch (or scripted) job, specify the parallel environment, slot
number and the user executable.

Since this is submitted as a batch job, you would not expect to see output at the
terminal. If no indication is given for where the output should go, Sun Grid
Engine redirects to your home directory and creates <job_name>.o<job_number>.

The job creates the output files. The file name with the format name_of_job.ojob_id
contains the standard output. The file name with the format name_of_job.ejob_id
contains the error output. If the job executes normally, the error output files will be
empty.

mynode4% cat SGE.csh
#!/usr/bin/csh

set PATH: including location of MPI program to be run
setenv PATH /opt/SUNWhpc/HPC8.2/examples/connectivity:${PATH}

mpirun -np 4 -mca ras_gridengine_verbose 100 connectivity.sparc -v

% source $SGE_ROOT/default/common/settings.csh

% qsub -pe orte 2 sge.csh
your job 305 (“sge.csh") has been submitted
50 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

The following example lists the files produced by a job called sge.csh with the job
ID number 866:

By default, the output files are located in your home directory, but you can use Sun
Grid Engine software to change the location of the files, if desired.

Note – In most cases, you do not need to change the values set in the gridengine
MCA parameters. If you run into difficulty and want to change the values for
debugging purposes, the option is available. For more information about MCA
parameters, see Chapter 7.

▼ To See a Running Job
● Type the following command:

▼ To Delete a Running Job
● Type the following command:

where job-number is the number of the job you want to delete.

For more information about Sun Grid Engine commands, refer to the Sun Grid
Engine documentation.

rsh Limitations

Note – This issue affects both rsh and the Sun Grid Engine program qrsh. qrsh
uses rsh to launch jobs.

% ls -rlt ~ | tail
-rw-r--r-- 1 joeuser mygroup 0 Jan 16 16:42 sge.csh.po866
-rw-r--r-- 1 joeuser mygroup 0 Jan 16 16:42 sge.csh.pe866
-rw-r--r-- 1 joeuser mygroup 0 Jan 16 16:42 sge.csh.e866
-rw-r--r-- 1 joeuser mygroup 194 Jan 16 16:42 sge.csh.o866

% qstat -f

% qdel job-number
Chapter 6 Running Programs With mpirun in Distributed Resource Management Systems 51

If you are using rsh or qrsh as the job launcher on a large cluster with hundreds of
nodes, rsh might show the following error messages when launching jobs on the
remote nodes:

This indicates that rsh is running out of sockets when launching the job from the
head node.

Using rsh as the Job Launcher
If you are using rsh as your job launcher, use ssh instead. Add the following to
your command line:

Using Sun Grid Engine as the Job Launcher
If you are using Sun Grid Engine version 6.1 or earlier as your job launcher, you can
modify the Sun Grid Engine configuration to allow Sun Grid Engine to use ssh
instead of rsh to launch tasks on the remote nodes. The following web site describes
how to perform this workaround:

http://gridengine.sunsource.net/howto/qrsh_qlogin_ssh.html

Note that this workaround does not properly track resource usage, nor does it allow
proper job accounting. Sun Grid Engine tracks resource usage by attaching an extra
groupid when launching tasks as a user of the remote connection.

Sun Grid Engine version 6.2 fixes this issue by not using rsh to start jobs on remote
nodes. Instead Sun Grid Engine version 6.2 makes use of a native Interactive Job
Support (IJS), which removes any dependencies on rsh, ssh, or telnet. It is
recommended that you upgrade to the latest available version of Sun Grid Engine.

rcmd: socket: Cannot assign requested address
rcmd: socket: Cannot assign requested address
rcmd: socket: Cannot assign requested address
[node0:00749] ERROR: A daemon on node m2187 failed to start as
expected.
[node0:00749] ERROR: There may be more information available from
[node0:00749] ERROR: the ’qstat -t’ command on the Grid Engine
tasks.
[node0:00749] ERROR: If the problem persists, please restart the
[node0:00749] ERROR: Grid Engine PE job

-mca plm_rsh_agent ssh
52 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://gridengine.sunsource.net/howto/qrsh_qlogin_ssh.html
http://gridengine.sunsource.net/howto/qrsh_qlogin_ssh.html

For More Information
For more information about using the mpirun command to perform batch
processing, see the following:

■ mpirun(3) man page

■ Running MPI Jobs section of the Open MPI FAQ at http://www.open-
mpi.org/faq/?category=running#plm-available
Chapter 6 Running Programs With mpirun in Distributed Resource Management Systems 53

http://www.open-mpi.org/faq/?category=running#plm-available
http://www.open-mpi.org/faq/?category=running#plm-available

54 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

CHAPTER 7

Using MCA Parameters With
mpirun

Open MPI uses Modular Component Architecture (MCA) parameters to provide a
way to tune your runtime environment. Each parameter corresponds to a specific
function. You change the value of the parameter in order to change the function.

Developing an Open MPI application that uses MCA parameters poses a number of
advantages. Developers and administrators can customize the Open MPI
environment to suit the specific needs of hardware or the operating environment.
For example, a system administrator might use MCA parameters to optimize an
Open MPI installation on a network so that users only need to run with the default
values to obtain the best performance.

This chapter contains the following topics:

■ “About the Modular Component Architecture” on page 56

■ “Open MPI Frameworks” on page 56

■ “The ompi_info Command” on page 59

■ “Using MCA Parameters” on page 68

■ “For More Information” on page 79

In order to understand how MCA parameters fit within Open MPI, you must
understand how the Modular Component Architecture is constructed.
55

About the Modular Component
Architecture
The Modular Component Architecture (MCA) is the backbone for much of Open
MPI’s functionality. It is a series of frameworks, components, and modules that are
assembled at runtime to create an MPI implementation.

An MCA framework manages a specific Open MPI task (such as process launching for
ORTE). Each MCA framework supports a single component type, but can support
multiple versions of that type. The framework uses the services from the MCA base
functionality to find and/or load components.

An MCA component is an implementation of a framework’s interface. It is a
standalone collection of code that can be bundled into a plug-in that can be inserted
into the Open MPI code base, either at runtime and/or at compile time.

An MCA module is an instance of a component. For example, if a node running an
Open MPI application has multiple Ethernet NICs, the Open MPI application will
contain one TCP MPI point-to-point component, but two TCP point-to-point
modules.

For more information about the Open MPI Modular Component Architecture, see
the Open MPI FAQ on runtime tuning at:

http://www.open-mpi.org/faq/?category=tuning

Open MPI Frameworks
There are three types of frameworks in Open MPI:

■ In the MPI layer (OMPI)

■ In the run-time layer (ORTE)

■ In the operating system/platform layer (OPAL)

You might think of these frameworks as ways to group MCA parameters by
function. For example, the OMPI btl framework controls the functions in the byte
transfer layer, or BTL (point-to-point byte movement) in the network. All of the
MCA parameters that are grouped under btl affect the BTL layer.
56 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.open-mpi.org/faq/?category=tuning

In addition to the parameters that are grouped under the individual frameworks,
there are top-level MCA parameters that affect the frameworks themselves and
specify values to your Open MPI installation.

To view the available top-level parameters in each group, type the following
command:

where groupname stands for the parameter group you want to view. For example, to
view the available MPI parameters, you would type:

OMPI Frameworks
The following table lists the frameworks in the MPI layer.

TABLE 7-1 Top-Level MCA Parameters

Parameter Group Description

mca Specify paths or functions for MCA parameters

mpi Specify MPI behavior at runtime

orte Specify debugging functions and components for ORTE

opal Specify stack trace information

% ompi_info --param groupname groupname

% ompi_info --param mpi mpi

TABLE 7-2 OMPI Frameworks

Framework Description

allocator Memory allocator

bml BTL management layer (managing multiple devices)

btl Byte transfer layer (point-to-point byte movement)

coll MPI collective algorithms

io MPI-2 I/O functionality

mpool Memory pool management

mtl Messaging transport layer

osc One-sided communication
Chapter 7 Using MCA Parameters With mpirun 57

Currently, there is no simple way to get a list of the available components in a
framework. You can use the grep command to search for components. For example,
the following command searches for a list of components in the btl framework:

ORTE Frameworks
The following table lists the ORTE frameworks.

pml Point-to-point management layer (fragmenting, reassembly, top-layer
protocols, etc.)

rcache Memory registration management

topo MPI topology information

% ompi_info | grep btl

TABLE 7-3 ORTE Frameworks

Framework Description

errmgr Error manager

gpr General purpose registry

iof I/O forwarding

ns Name server

oob Out-of-band communication

plm Process launch module (was pls).

ras Resource allocation subsystem

rds Resource discovery subsystem

rmaps Resource mapping subsystem

rmgr Resource manager (upper meta layer for all other Resource frameworks)

rml Remote messaging layer (routing of OOB messages)

schema Name schemas

sds Startup discovery services

soh State of health

TABLE 7-2 OMPI Frameworks (Continued)

Framework Description
58 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

OPAL Frameworks
The following table lists the OPAL frameworks.

A complete list of MCA parameters, grouped under each of these frameworks,
appears in Appendix B.

The ompi_info Command
The ompi_info command returns information about your Sun HPC
ClusterTools/Open MPI installation. When you issue the command without any
modifiers, ompi_info returns the following information:

■ Revision information for Open MPI, ORTE, and OPAL

■ Installed compilers

■ Architecture of the node on which Open MPI is installed

■ Version information for the installed frameworks

TABLE 7-4 OPAL Frameworks

Framework Description

backtrace Stack trace framework for debugging

maffinity Memory affinity

memory Memory hooks

paffinity Processor affinity

timer High-resolution timers
Chapter 7 Using MCA Parameters With mpirun 59

Command Options
The ompi_info command has the following options:

The output from the ompi_info command appears similar to the following:

TABLE 7-5 Options for the ompi_info Command

Option Description

-a or
--all

Shows all configuration options and MCA parameters

--arch Shows the architecture on which this installation of Open MPI
was compiled

-c or
--config

Shows configuration options

-gmca or
--gmca param-name value

Passes global MCA parameters that apply to all contexts. param-
name is the parameter name; value is the value of the parameter

-h or
--help

Shows the ompi_info help message

--hostname Shows the name of the host on which Open MPI was configured
and built

--internal Shows internal MCA parameters (not meant to be modified by
users)

-mca or
--mca param-name value

Passes context-specific MCA parameters; they are considered
global if --gmca is not used. param-name is the name of the
parameter; value is the value for that parameter.

--param arg1 arg2 Shows MCA parameters. arg1 can be a specific framework name
or all. arg2 can be a specific parameter name or all.

--parsable or

--parseable

Displays output in parsable format

--path pathname Shows the paths with which Open MPI was configured.

--pretty Displays output in “prettyprint” format (default)

-v or
--version arg0 arg1

Shows version of Open MPI or a component. arg0 can be the
name of a specific framework or all. arg1 can be the name of a
specific component or all.

% ompi_info
 Open MPI: 1.2r13978-ct7b027r1708
 Open MPI SVN revision: 0
60 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

 Open RTE: 1.2r13978-ct7b027r1708
 Open RTE SVN revision: 0
 OPAL: 1.2r13978-ct7b027r1708
 OPAL SVN revision: 0
 Prefix: /opt/SUNWhpc/HPC8.2
 Configured architecture: i386-pc-solaris2.10
 Configured by: root
 Configured on: Thu Mar 8 16:47:40 EST 2008
 Configure host: burpen-csx10-0
 Built by: root
 Built on: Thu Mar 8 17:04:51 EST 2008
 Built host: burpen-csx10-0
 C bindings: yes
 C++ bindings: yes
 Fortran77 bindings: yes (all)
 Fortran90 bindings: yes
 Fortran90 bindings size: trivial
 C compiler: cc
 C compiler absolute: /ws/ompi-tools/SUNWspro/SOS12/bin/cc
 C++ compiler: CC
 C++ compiler absolute: /ws/ompi-tools/SUNWspro/SOS12/bin/CC
 Fortran77 compiler: f77
 Fortran77 compiler abs: /ws/ompi-tools/SUNWspro/SOS12/bin/f77
 Fortran90 compiler: f95
 Fortran90 compiler abs: /ws/ompi-tools/SUNWspro/SOS12/bin/f95
 C profiling: yes
 C++ profiling: yes
 Fortran77 profiling: yes
 Fortran90 profiling: yes
 C++ exceptions: yes
 Thread support: no
 Internal debug support: no
 MPI parameter check: runtime
Memory profiling support: no
Memory debugging support: no
 libltdl support: yes
 Heterogeneous support: yes
 mpirun default --prefix: yes
 MCA backtrace: printstack (MCA v1.0, API v1.0, Component v1.2)
 MCA paffinity: solaris (MCA v1.0, API v1.0, Component v1.2)
 MCA maffinity: first_use (MCA v1.0, API v1.0, Component v1.2)
 MCA timer: solaris (MCA v1.0, API v1.0, Component v1.2)
 MCA allocator: basic (MCA v1.0, API v1.0, Component v1.0)
 MCA allocator: bucket (MCA v1.0, API v1.0, Component v1.0)
 MCA coll: basic (MCA v1.0, API v1.0, Component v1.2)
 MCA coll: self (MCA v1.0, API v1.0, Component v1.2)
 MCA coll: sm (MCA v1.0, API v1.0, Component v1.2)
 MCA coll: tuned (MCA v1.0, API v1.0, Component v1.2)
 MCA io: romio (MCA v1.0, API v1.0, Component v1.2)
Chapter 7 Using MCA Parameters With mpirun 61

 MCA mpool: sm (MCA v1.0, API v1.0, Component v1.2)
 MCA mpool: udapl (MCA v1.0, API v1.0, Component v1.2)
 MCA pml: cm (MCA v1.0, API v1.0, Component v1.2)
 MCA pml: ob1 (MCA v1.0, API v1.0, Component v1.2)
 MCA bml: r2 (MCA v1.0, API v1.0, Component v1.2)
 MCA rcache: rb (MCA v1.0, API v1.0, Component v1.2)
 MCA rcache: vma (MCA v1.0, API v1.0, Component v1.2)
 MCA btl: self (MCA v1.0, API v1.0.1, Component v1.2)
 MCA btl: sm (MCA v1.0, API v1.0.1, Component v1.2)
 MCA btl: tcp (MCA v1.0, API v1.0.1, Component v1.0)
 MCA btl: udapl (MCA v1.0, API v1.0, Component v1.2)
 MCA topo: unity (MCA v1.0, API v1.0, Component v1.2)
 MCA osc: pt2pt (MCA v1.0, API v1.0, Component v1.2)
 MCA errmgr: hnp (MCA v1.0, API v1.3, Component v1.2)
 MCA errmgr: orted (MCA v1.0, API v1.3, Component v1.2)
 MCA errmgr: proxy (MCA v1.0, API v1.3, Component v1.2)
 MCA gpr: null (MCA v1.0, API v1.0, Component v1.2)
 MCA gpr: proxy (MCA v1.0, API v1.0, Component v1.2)
 MCA gpr: replica (MCA v1.0, API v1.0, Component v1.2)
 MCA iof: proxy (MCA v1.0, API v1.0, Component v1.2)
 MCA iof: svc (MCA v1.0, API v1.0, Component v1.2)
 MCA ns: proxy (MCA v1.0, API v2.0, Component v1.2)
 MCA ns: replica (MCA v1.0, API v2.0, Component v1.2)
 MCA oob: tcp (MCA v1.0, API v1.0, Component v1.0)
 MCA ras: dash_host (MCA v1.0, API v1.3, Component v1.2)
 MCA ras: gridengine (MCA v1.0, API v1.3, Component v1.2)
 MCA ras: localhost (MCA v1.0, API v1.3, Component v1.2)
 MCA ras: tm (MCA v1.0, API v1.3, Component v1.2)
 MCA rds: hostfile (MCA v1.0, API v1.3, Component v1.2)
 MCA rds: proxy (MCA v1.0, API v1.3, Component v1.2)
 MCA rds: resfile (MCA v1.0, API v1.3, Component v1.2)
 MCA rmaps: round_robin (MCA v1.0, API v1.3, Component v1.2)
 MCA rmgr: proxy (MCA v1.0, API v2.0, Component v1.2)
 MCA rmgr: urm (MCA v1.0, API v2.0, Component v1.2)
 MCA rml: oob (MCA v1.0, API v1.0, Component v1.2)
 MCA plm: gridengine (MCA v1.0, API v1.3, Component v1.2)
 MCA plm: proxy (MCA v1.0, API v1.3, Component v1.2)
 MCA plm: rsh (MCA v1.0, API v1.3, Component v1.2)
 MCA plm: tm (MCA v1.0, API v1.3, Component v1.2)
 MCA sds: env (MCA v1.0, API v1.0, Component v1.2)
 MCA sds: pipe (MCA v1.0, API v1.0, Component v1.2)
 MCA sds: seed (MCA v1.0, API v1.0, Component v1.2)
 MCA sds: singleton (MCA v1.0, API v1.0, Component v1.2)
62 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Using the ompi_info Command With MCA
Parameters
The ompi_info command can list the parameters for a given component, all the
parameters for a specific framework, or all parameters. The ompi_info output for
most parameters contains a description of the parameter. The output for any
parameter shows the current value of that parameter.

▼ To List All MCA Parameters
● Type the following command at the system prompt:

The output from ompi_info lists all of the installed frameworks, their MCA
parameters, and their current values.

▼ To List All MCA Parameters For a Framework
● Type the following command at the system prompt:

In this example, the command lists all of the available MCA parameters for the
btl framework. The output from ompi_info looks similar to the following:

% ompi_info --param all all

% ompi_info --param btl all

MCA btl: parameter "btl_base_debug" (current value: "0")
If btl_base_debug is 1 standard debug is output, if >

 1 verbose debug is output
 MCA btl: parameter "btl" (current value: <none>)
 Default selection set of components for the btl
 framework (<none> means "use all components that can
 be found")
 MCA btl: parameter "btl_base_verbose" (current value: "0")
 Verbosity level for the btl framework (0 = no
 verbosity)
 MCA btl: parameter "btl_self_free_list_num" (current value:
 "0")
 Number of fragments by default
 MCA btl: parameter "btl_self_free_list_max" (current value:
 "-1")
 Maximum number of fragments
 MCA btl: parameter "btl_self_free_list_inc" (current value:
Chapter 7 Using MCA Parameters With mpirun 63

 "32")
 Increment by this number of fragments
 MCA btl: parameter "btl_self_eager_limit" (current value:
 "131072")

Eager size fragmeng (before the rendez-vous ptotocol)
 MCA btl: parameter "btl_self_min_send_size" (current value:
 "262144")
 Minimum fragment size after the rendez-vous
 MCA btl: parameter "btl_self_max_send_size" (current value:
 "262144")
 Maximum fragment size after the rendez-vous
 MCA btl: parameter "btl_self_min_rdma_size" (current value:
 "2147483647")
 Maximum fragment size for the RDMA transfer
 MCA btl: parameter "btl_self_max_rdma_size" (current value:
 "2147483647")
 Maximum fragment size for the RDMA transfer
 MCA btl: parameter "btl_self_exclusivity" (current value:
 "65536")
 Device exclusivity
 MCA btl: parameter "btl_self_flags" (current value: "10")
 Active behavior flags
 MCA btl: parameter "btl_self_priority" (current value: "0")

MCA btl: parameter "btl_sm_free_list_num" (current value: "8")
 MCA btl: parameter "btl_sm_free_list_max" (current value:
 "-1")
 MCA btl: parameter "btl_sm_free_list_inc" (current value:
 "64")
 MCA btl: parameter "btl_sm_exclusivity" (current value:
 "65535")
 MCA btl: parameter "btl_sm_latency" (current value: "100")
 MCA btl: parameter "btl_sm_max_procs" (current value: "-1")
 MCA btl: parameter "btl_sm_sm_extra_procs" (current value:
 "2")
 MCA btl: parameter "btl_sm_mpool" (current value: "sm")
 MCA btl: parameter "btl_sm_eager_limit" (current value:
 "4096")
 MCA btl: parameter "btl_sm_max_frag_size" (current value:
 "32768")
 MCA btl: parameter "btl_sm_size_of_cb_queue" (current value:
 "128")
 MCA btl: parameter "btl_sm_cb_lazy_free_freq" (current value:
 "120")
 MCA btl: parameter "btl_sm_priority" (current value: "0")
 MCA btl: parameter "btl_tcp_if_include" (current value:
 <none>)
 MCA btl: parameter "btl_tcp_if_exclude" (current value: "lo")
 MCA btl: parameter "btl_tcp_free_list_num" (current value:
 "8")
64 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

 MCA btl: parameter "btl_tcp_free_list_max" (current value:
 "-1")
 MCA btl: parameter "btl_tcp_free_list_inc" (current value:
 "32")
 MCA btl: parameter "btl_tcp_sndbuf" (current value: "131072")
 MCA btl: parameter "btl_tcp_rcvbuf" (current value: "131072")
 MCA btl: parameter "btl_tcp_endpoint_cache" (current value:
 "30720")
 MCA btl: parameter "btl_tcp_exclusivity" (current value: "0")
 MCA btl: parameter "btl_tcp_eager_limit" (current value:
 "65536")
 MCA btl: parameter "btl_tcp_min_send_size" (current value:
 "65536")
 MCA btl: parameter "btl_tcp_max_send_size" (current value:
 "131072")
 MCA btl: parameter "btl_tcp_min_rdma_size" (current value:
 "131072")
 MCA btl: parameter "btl_tcp_max_rdma_size" (current value:
 "2147483647")
 MCA btl: parameter "btl_tcp_flags" (current value: "122")
 MCA btl: parameter "btl_tcp_priority" (current value: "0")
 MCA btl: parameter "btl_udapl_free_list_num" (current value:
 "8")
 Initial size of free lists (must be >= 1).
 MCA btl: parameter "btl_udapl_free_list_max" (current value:
 "-1")
 Maximum size of free lists (-1 = infinite, otherwise
 must be >= 1).
 MCA btl: parameter "btl_udapl_free_list_inc" (current value:
 "8")
 Increment size of free lists (must be >= 1).
 MCA btl: parameter "btl_udapl_mpool" (current value: "udapl")
 Name of the memory pool to be used.
 MCA btl: parameter "btl_udapl_max_modules" (current value:
 "8")
 Maximum number of supported HCAs.
 MCA btl: parameter "btl_udapl_num_recvs" (current value: "8")
 Total number of receive buffers to keep posted per
 endpoint (must be >= 1).
 MCA btl: parameter "btl_udapl_num_sends" (current value: "7")
 Maximum number of sends to post on an endpoint (must
 be >= 1).
 MCA btl: parameter "btl_udapl_sr_win" (current value: "4")

Window size at which point an explicit credit message
 will be generated (must be >= 1).
 MCA btl: parameter "btl_udapl_eager_rdma_num" (current value:
 "32")

Number of RDMA buffers to allocate for small messages
 (must be >= 1).
Chapter 7 Using MCA Parameters With mpirun 65

 MCA btl: parameter "btl_udapl_max_eager_rdma_peers" (current
 value: "16")

Maximum number of peers allowed to use RDMA for short
 messages (independently RDMA will still be used for

large messages, (must be >= 0; if zero then RDMA will
 not be used for short messages).
 MCA btl: parameter "btl_udapl_eager_rdma_win" (current value:
 "28")

Window size at which point an explicit credit message
 will be generated (must be >= 1).
 MCA btl: parameter "btl_udapl_timeout" (current value:
 "10000000")
 Connection timeout, in microseconds.
 MCA btl: parameter "btl_udapl_conn_priv_data" (current value:
 "1")

Use connect private data to establish connections (not
supported by all uDAPL implementations).
 MCA btl: parameter "btl_udapl_async_events" (current value:
 "1000000000")
 The asynchronous event queue will only be checked
 after entering progress this number of times.
 MCA btl: parameter "btl_udapl_buffer_alignment"
(current value: "256")
 Preferred communication buffer alignment, in bytes
 (must be >= 1).

MCA btl: parameter "btl_udapl_evd_qlen" (current value: "256")
The event dispatcher queue length is a function of the number of connections as
well as the maximum number of outstanding data transfer operations.

MCA btl: parameter "btl_udapl_max_request_dtos" (current value:
"44")
Maximum number of outstanding submitted sends and rdma
operations per endpoint, (see Section 6.6.6 of uDAPL Spec.).
 MCA btl: parameter "btl_udapl_max_recv_dtos" (current value:
 "8")
 Maximum number of outstanding submitted receive
 operations per endpoint, (see Section 6.6.6 of uDAPL
 Spec.).
 MCA btl: parameter "btl_udapl_exclusivity" (current value:
 "1014")
 uDAPL BTL exclusivity (must be >= 0).
 MCA btl: parameter "btl_udapl_eager_limit" (current value:
 "8192")
 Eager send limit, in bytes (must be >= 1).
 MCA btl: parameter "btl_udapl_min_send_size" (current value:
 "16384")
 Minimum send size, in bytes (must be >= 1).
 MCA btl: parameter "btl_udapl_max_send_size" (current value:
 "65536")
 Maximum send size, in bytes (must be >= 1).
66 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Display All MCA Parameters For a Selected
Component
● Type the following command at the system prompt:

The ompi_info output looks similar to the following:

 MCA btl: parameter "btl_udapl_min_rdma_size" (current value:
 "524288")
 Minimum RDMA size, in bytes (must be >= 1).
 MCA btl: parameter "btl_udapl_max_rdma_size" (current value:
 "131072")
 Maximum RDMA size, in bytes (must be >= 1).
 MCA btl: parameter "btl_udapl_flags" (current value: "2")
 BTL flags, added together: PUT=2 (cannot be 0).
 MCA btl: parameter "btl_udapl_bandwidth" (current value:
 "225")
 Approximate maximum bandwidth of network (must be >=
 1).
 MCA btl: parameter "btl_udapl_priority" (current value: "0")
 MCA btl: parameter "btl_base_include" (current value: <none>)
 MCA btl: parameter "btl_base_exclude" (current value: <none>)
 MCA btl: parameter "btl_base_warn_component_unused" (current
 value: "0")
 This parameter is used to turn on warning messages
 when certain NICs are not used

% ompi_info --param btl tcp

MCA btl: parameter "btl_base_debug" (current value: "0")
If btl_base_debug is 1 standard debug is output, if >

 1 verbose debug is output
 MCA btl: parameter "btl" (current value: <none>)
 Default selection set of components for the btl
 framework (<none> means "use all components that can
 be found")
 MCA btl: parameter "btl_base_verbose" (current value: "0")
 Verbosity level for the btl framework (0 = no
 verbosity)
 MCA btl: parameter "btl_tcp_if_include" (current value:
 <none>)
 MCA btl: parameter "btl_tcp_if_exclude" (current value: "lo")
 MCA btl: parameter "btl_tcp_free_list_num" (current value:
 "8")
Chapter 7 Using MCA Parameters With mpirun 67

Using MCA Parameters
There are three ways to use MCA parameters with Open MPI:

1. Setting the parameter from the command line using the mpirun --mca
command. This method assumes the highest precedence; values set for
parameters using this method override any other values specified for the same
parameter.

2. Using the parameter as an environment variable. Values for parameters set in this
fashion assume the next highest priority.

3. Setting the parameter values in a text file. Parameter values specified using this
method have the lowest priority.

 MCA btl: parameter "btl_tcp_free_list_max" (current value:
 "-1")
 MCA btl: parameter "btl_tcp_free_list_inc" (current value:
 "32")
 MCA btl: parameter "btl_tcp_sndbuf" (current value: "131072")
 MCA btl: parameter "btl_tcp_rcvbuf" (current value: "131072")
 MCA btl: parameter "btl_tcp_endpoint_cache" (current value:
 "30720")
 MCA btl: parameter "btl_tcp_exclusivity" (current value: "0")
 MCA btl: parameter "btl_tcp_eager_limit" (current value:
 "65536")
 MCA btl: parameter "btl_tcp_min_send_size" (current value:
 "65536")
 MCA btl: parameter "btl_tcp_max_send_size" (current value:
 "131072")
 MCA btl: parameter "btl_tcp_min_rdma_size" (current value:
 "131072")
 MCA btl: parameter "btl_tcp_max_rdma_size" (current value:
 "2147483647")
 MCA btl: parameter "btl_tcp_flags" (current value: "122")
 MCA btl: parameter "btl_tcp_priority" (current value: "0")
 MCA btl: parameter "btl_base_warn_component_unused" (current
 value: "0")
 This parameter is used to turn on warning messages
 when certain NICs are not used
68 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Set MCA Parameters From the Command
Line
● Type the following command at the system prompt:

In this example, param-name stands for the name of the MCA parameter you want
to set, and value stands for the new value you want to specify for the parameter.
For example, the following command sets the value of the
mpi_show_handle_leaks parameter to 1 for the specified job:

This sets the value of MCA parameter mpi_show_handle_leaks to 1 before
running the program a.out with four processes.

Using MCA Parameters As Environment
Variables
As with other types of environment variables, the syntax for setting MCA
parameters as environment variables varies with the type of command shell.

▼ To Set MCA Parameters in the sh Shell
1. Type the following command at the prompt:

where param-name is the name of the MCA parameter you want to set, and value
is the desired value for the parameter. For example, the following command sets
the mpi_show_handle_leaks parameter to 1:

% mpirun --mca param-name value

% mpirun --mca mpi_show_handle_leaks 1 -np 4 a.out

% OMPI_MCA_param-name=value

% OMPI_MCA_mpi_show_handle_leaks=1
Chapter 7 Using MCA Parameters With mpirun 69

2. Type the following command:

For example, an export command using the parameter used in the previous step
would look like this:

3. Issue the mpirun command with the desired options. For example:

▼ To Set MCA Parameters in the C Shell
1. Use the setenv command to set the MCA parameter.

where param-name is the name of the MCA parameter you want to set, and value
is the desired value for the parameter. The following example shows how to set
the mpi_show_handle_leaks parameter to 1.

2. Issue the mpirun command for the program (in this example, a.out).

% export OMPI_MCA_param-name

% export OMPI_MCA_mpi_show_handle_leaks

% mpirun -np 4 a.out

% setenv OMPI_MCA_param-name value

% setenv OMPI_MCA_mpi_show_handle_leaks 1

% mpirun -np 4 a.out
70 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Specify MCA Parameters Using a Text File
1. Create a text file, specifying each parameter/value pair on a separate line.

Comments are allowed. For example:

2. Name the file mca-params.conf and save it.

You can save the file either to your home directory under
$HOME/.openmpi/mca-params.conf, where the parameter values in the file
will only affect your jobs, or you can save it to
/opt/SUNWhpc/HPC8.2/lib/openmpi-mca-params.conf, where the
parameter values in the file affect all users.

The following example shows the output from the ompi_info command for
mca_param_files.

This is a comment
Set the same MCA parameter as in previous examples
mpi_show_handle_leaks = 1

Default to rsh always
plm_rsh_agent = rsh

mpi_preconnect_all = 1
mpi_param_check = 0
#
udapl parameters - comment or uncomment as needed
#
#btl = self,tcp,sm
#btl = self,udapl,sm
btl = ^tcp

% ompi_info --param mca mca_param_files
MCA mca: parameter "mca_param_files" (current value:
"/home/joeuser/.openmpi/mca-params.conf:
/opt/SUNWhpc/HPC8.2/etc/openmpi-mca-params.conf")
Path for MCA configuration files containing default parameter values
MCA mca: parameter "mca_component_path" (current value:
"/opt/SUNWhpc/HPC8.2/lib/openmpi:/home/joeuser/.openmpi/components")
Path where to look for Open MPI and ORTE components
MCA mca: parameter "mca_verbose" (current value: <none>)
Top-level verbosity parameter
MCA mca: parameter "mca_component_show_load_errors" (current value: "1")
Whether to show errors for components that failed to load or not
MCA mca: parameter "mca_component_disable_dlopen" (current value: "0")
Whether to attempt to disable opening dynamic components or not
Chapter 7 Using MCA Parameters With mpirun 71

The MCA parameter mca_param_files specifies a colon-delimited path of files to
search for MCA parameters. Files to the left of the colon have lower precedence; files
to the right of the colon have higher precedence. At runtime, mpirun searches the
following two files in order when the mca_param_files parameter is set:

1. $HOME/.openmpi/mca-params.conf: The user-supplied set of values takes the
highest precedence.

2. $prefix/etc/openmpi-mca-params.conf: The system-supplied set of values
has a lower precedence.

In the above example, Open MPI first searches /home/joeuser/.openmpi/mca-
params.conf for MCA parameters, and then searches
/opt/SUNWhpc/HPC8.2/etc/openmpi-mca-params.conf. If a parameter
appears in both locations, the value set in the second file (the file to the right of the
colon) is used.

Including and Excluding Components
Each MCA framework has a top-level MCA parameter that you can use to select
which components are to be used at runtime. In other words, there is an MCA
parameter of the same name as each MCA framework (for example, btl) that you
can use to include or exclude components from a given run.

You can use top-level parameters in the same way you would use other MCA
parameters (for example, you can set them from the command line, as environment
variables, or in text files).

For example, the btl MCA parameter is used to control which byte transfer layer
(BTL) components are used with mpirun. The value for the btl parameter is a list of
components separated by commas, with the optional prefix ^ (caret symbol).

Note – Do not mix “include” instructions with “exclude” instructions in the same
command; otherwise, mpirun returns an error.
72 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Include and Exclude Components Using the
Command Line
● Type the following command at the system prompt:

In this example, the components comp1 and comp2 are included for the framework
specified by --mca framework. Component comp3 is excluded, since it is preceded
by the ^ (caret) symbol.

For example, the following command excludes the tcp and openib components
from the BTL framework, and implicitly includes all the other components:

The use of the caret followed by the ellipsis in the command means “Perform the
opposite action with the rest of the components.” When the mpirun -- mca
command specifies components to be excluded, the caret followed by the ellipsis
ellipsis implicitly includes the rest of the components in that framework. When the
mpirun --mca command specifically includes components, the caret followed by
the ellipsis means “and exclude the components not specified.”

For example, the following command includes only the self, sm, and gm
components of btl and implicitly excludes the rest:

Processor and Memory Affinity

Using Processor Affinity
The term processor affinity refers to the state where the operating system allows only
that process to run on a specific processor. On multi-processor machines, this can
help improve performance by not allowing the operating system to move processes
between processors. This can eliminate the "jitter" from performance characteristics
due to the OS moving processes, which means that performance characteristics
should be consistent among multiple runs. This approach can dramatically improve
performance.

% mpirun --mca framework comp1, comp2 ^comp3

% mpirun --mca btl ^tcp,openib ...

% mpirun --mca btl self,sm,gm ...
Chapter 7 Using MCA Parameters With mpirun 73

Note – Processor affinity should not be used when a node is over-subscribed (that
is, when more processes are launched than there are processors). This can lead to a
serious degradation in performance (even more than simply oversubscribing the
node). Open MPI usually detects this situation and automatically disables the use of
processor affinity (and displays run-time warnings to this effect). For more
information about oversubscribing nodes, see “Oversubscribing Nodes” on page 27.

Using Memory Affinity
Memory affinity is only relevant for Non-Uniform Memory Access (NUMA)
machines, such as many models of multi-processor Opteron™ machines. In a
NUMA architecture, memory is physically distributed throughout the machine, even
though it is virtually treated as a single address space. That is, memory may be
physically local to one or more processors; therefore, the memory is remote to other
processors. This means that some memory can be accessed more quickly by a
process than other memory.

Open MPI supports general and specific memory affinity, which means that it
generally tries to allocate all memory local to the processor that asked for it. When
shared memory is used for communication, Open MPI uses memory affinity to make
certain pages local to specific processes in order to minimize memory network/bus
traffic.

▼ To Find Out Whether Memory Affinity Is Supported
Open MPI supports memory affinity on a variety of systems.

● To find out which systems are supported, type the ompi_info command and
look for maffinity components to see if your system is supported. For
example:

Note – Memory affinity support is enabled only when processor affinity is enabled.
This is because processes might allocate local memory and then move to a different
processor, and the second processor might be remote from the memory that the
process just allocated. This negates the purpose of specifying memory affinity.

% ompi_info | grep maffinity
MCA maffinity: first_use (MCA v1.0, API v1.0, Component v1.2)
74 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Running MPI Jobs With Processor and Memory Affinity
If your system supports processor and memory affinity as shown using the
ompi_info command, you can explicitly tell Open MPI to use affinity when
running MPI jobs.

Note – Processor and memory affinity function only on multi-processor machines.

Currently, Open MPI only offers coarse-grained controls for processor affinity. For
this reason, you can obtain the best results if processes in an Open MPI job using
processor affinity are the only intensive processes running on the nodes being used
for the job. Since most schedulers do not provide information on which processors
should be used for specific processes, Open MPI assumes that its processes are
"alone" on the node. Open MPI then exclusively claims CPUs, starting with the first
one.

This means that if two processor-affinity-enabled jobs are running on the same node,
they will both attempt to claim the first processor(s) on the node, resulting in CPU
thrashing (and severely degraded performance).

Note – When running with processor affinity, all processors must be operational.
Otherwise, processor affinity will not function because all the processors must be
accessed in sequence.

▼ To Enable Affinity Using the Command Line
● To enable processor (and potentially memory) affinity, set the MCA parameter

opal_paffinity_alone to 1.

For example, the following command enables processor affinity while running the
program a.out on four processors:

The command shown in this example assumes that this job is running on a single 4-
processor machine or two 2-processor machines. Setting opal_paffinity_alone
tells Open MPI to bind each process to a specific processor. If memory affinity is
supported, Open MPI also attempts to use memory affinity for this job.

You set values for opal_paffinity_alone in the same way you set other MCA
parameters. For more information about setting MCA parameters, see “Using MCA
Parameters” on page 68.

% mpirun --mca opal_paffinity_alone 1 -np 4 a.out
Chapter 7 Using MCA Parameters With mpirun 75

Note – Open MPI automatically disables processor affinity on any node that is
oversubscribed (that is, where more Open MPI processes are launched in a single job
on a node than it has processors) and returns warning messages. However, you may
use processor affinity with degraded performance mode if the nodes are not
oversubscribed.

Using MCA Parameters With Sun Grid Engine
The ras_gridengine parameters enable you to specify the output from the Open
MPI RAS (Resource Allocation Subsystem). The rsh PLM (Process Launch Module)
contains the gridengine parameters.

The following example shows the mpirun command with a specified MCA
parameter.

The following table shows the available MCA parameters and their default values.

% mpirun -np 4 -mca plm_gridengine_debug 100 connectivity.sparc -v

TABLE 7-6 MCA Parameters For Use With Sun Grid Engine Integration

MCA Parameter Default
Value

Function

ras_gridengine_debug 0 Enable debugging output for the
gridengine ras component

ras_gridengine_verbose 0 Enable verbose output for the gridengine
ras component

ras_gridengine_show_jobid 0 Show the JOB_ID of the Grid Engine job

ras_gridengine_priority 100 Priority of the gridengine ras component

plm_base_reuse_daemons 0 Specifies whether to reuse daemons to
launch dynamically spawned processes

plm_gridengine_debug 0 Enable debugging of gridengine plm
component

plm_gridengine_verbose 0 Enable verbose output of the gridengine
qrsh -inherit command

plm_gridengine_priority 100 Priority of the gridengine plm component

plm_gridengine_orted orted The command name that the gridengine
plm component will invoke for the ORTE
daemon
76 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

To view a list of the RAS parameters from the command line, use the ompi_info
command. The following example shows how to specify the RAS parameters and the
output from the ompi_info command.

% ompi_info -param ras gridengine
 MCA ras: parameter "ras" (current value: <none>)
 Default selection set of components for the ras
 framework (<none> means "use all components that can
 be found")

MCA ras: parameter "ras_gridengine_debug" (current value: "0")
 Enable debugging output for the gridengine ras
 component
 MCA ras: parameter "ras_gridengine_priority" (current value:
 "100")
 Priority of the gridengine ras component
 MCA ras: parameter "ras_gridengine_verbose" (current value:
 "0")
 Enable verbose output for the gridengine ras
 component

MCA ras: parameter "ras_gridengine_show_jobid" (current value:
 "0")
 Show the JOB_ID of the Grid Engine job
Chapter 7 Using MCA Parameters With mpirun 77

This example shows the output from the ompi_info command when the PLM
parameters are specified:

Changing the Default Values in MCA Parameters

Note – In most cases, you do not need to change the default values in the
gridengine MCA parameters. If you encounter a difficulty and want to change the
values for debugging purposes, the options are available.

There are options available in the MCA PLM and RAS components and modules to
allow changes of the default values.

For more information about how to change the values in MCA parameters, see the
General Run-time Tuning FAQ on the Open MPi Web site at:

http://www.open-mpi.org/faq/?category=tuning#setting-mca-params

% ompi_info -param plm gridengine
MCA plm: parameter "plm_base_reuse_daemons" (current value:
 "0")
 If nonzero, reuse daemons to launch dynamically
 spawned processes. If zero, do not reuse daemons
 (default)
 MCA plm: parameter "plm" (current value: <none>)
 Default selection set of components for the plm
 framework (<none> means "use all components that can
 be found")
 MCA plm: parameter "plm_base_verbose" (current value: "0")
 Verbosity level for the plm framework (0 = no
 verbosity)

MCA plm: parameter "plm_gridengine_debug" (current value: "0")
 Enable debugging of gridengine plm component
 MCA plm: parameter "plm_gridengine_verbose" (current value:
 "0")

Enable verbose output of the gridengine qrsh -inherit
 command
 MCA plm: parameter "plm_gridengine_priority" (current value:
 "100")
 Priority of the gridengine plm component
 MCA plm: parameter "plm_gridengine_orted" (current value:
 "orted")
 The command name that the gridengine plm component
 will invoke for the ORTE daemon
78 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.open-mpi.org/faq/?category=tuning#setting-mca-params

For More Information
For more information about the Modular Component Architecture and MCA
parameters, refer to the following sources:

■ Chapter 5, “Running Programs With the mpirun Command” on page 19

■ Open MPI FAQ about runtime tuning: http://www.open-
mpi.org/faq/?category=tuning

■ The ompi_info man page

■ The ompi_info --help command
Chapter 7 Using MCA Parameters With mpirun 79

80 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

CHAPTER 8

Using the DTrace Utility With Open
MPI

This chapter describes how to use the Solaris™ Dynamic Tracing (DTrace) utility
with Open MPI. DTrace is a comprehensive dynamic tracing utility that you can use
to monitor the behavior of applications programs as well as the operating system
itself. You can use DTrace on live production systems to understand those systems’
behavior and to track down any problems that might be occurring.

The D language is the programming language used to create the source code for
DTrace programs.

The content of this chapter assumes knowledge of the D language and how to use
DTrace.

The following topics are covered in this chapter:

■ “Checking the mpirun Privileges” on page 82
■ “Running DTrace with MPI Programs” on page 83
■ “Tracking Down Resource Leaks” on page 87
■ “Using the DTrace mpiperuse Provider” on page 92

For more information about the D language and DTrace, refer to the Solaris Dynamic
Tracing Guide (Part Number 817-6223). This guide is part of the Solaris 10 OS
Software Developer Collection.
81

Solaris 10 OS documentation can be found on the web at the following location:

http://www.sun.com/documentation

Follow these links to the Solaris Dynamic Tracing Guide:

Solaris Operating Systems -> Solaris 10 -> Solaris 10 Software Developer Collection

Note – The programs and script mentioned in the sections that follow are located at:

/opt/SUNWhpc/examples/mpi/dtrace

Checking the mpirun Privileges
Before you run a program under DTrace, you need to make sure that you have the
correct mpirun privileges.

In order to run the script under mpirun, make sure that you have dtrace_proc
and dtrace_user privileges. Otherwise, DTrace will return the following error
because it does not have sufficient privileges:

▼ To Determine the Correct Privileges on the Cluster
To determine whether you have the appropriate privileges on the entire cluster,
perform the following steps:

1. Use your favorite text editor to create the following shell script, called
mpppriv.sh:

2. Type the following command, replacing host1 and host2 with the names of
hosts in your cluster:

dtrace: failed to initialize dtrace: DTrace requires additional
privileges

#!/bin/sh
mpppriv.sh - run ppriv under a shell so you can get the privileges
of the process that mpirun creates
ppriv $$

% mpirun -np 2 --host host1,host2 mpppriv.sh
82 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.sun.com/documentation

If the output of ppriv shows that the E privilege set has the dtrace privileges, then
you will be able to run dtrace under mpirun (see the following two examples).
Otherwise, you must adjust your system to get dtrace access.

The following example shows the output from ppriv when the privileges have not
been set:

This example shows ppriv output when the privileges have been set:

Note – To update your privileges, ask your system administrator to add the
dtrace_user and dtrace_proc privileges to your account in the
/etc/user_attr file.

After the privileges have been changed, you can use the ppriv command to view
the changed privileges.

Running DTrace with MPI Programs
There are two ways to use dynamic tracing with MPI programs:

■ Run the MPI program directly under DTrace

■ Attach DTrace to a running MPI program

% ppriv $$
4084: -csh
flags = <none>
E: basic
I: basic
P: basic
L: all

% ppriv $$
2075: tcsh
flags = <none>
E:basic,dtrace_proc,dtrace_user
I:basic,dtrace_proc,dtrace_user
P:basic,dtrace_proc,dtrace_user
L: all
Chapter 8 Using the DTrace Utility With Open MPI 83

Running an MPI Program Under DTrace
For illustration purposes, assume you have a program named mpiapp.

▼ To Trace a Program Using the mpitrace.d Script
● Type the following command:

The advantage of tracing an MPI program in this way is that all the processes in the
job will be traced from the beginning. This method is probably most useful in doing
performance measurements, when you need to start at the beginning of an
application and you need all the processes in a job to participate in collecting data.

This approach also has some disadvantages. One disadvantage of running a
program like the one in the above example is that all the tracing output for all four
processes is directed to standard output (stdout). One way around this problem is
to create a script similar to the script in the following section.:

▼ To Trace a Parallel Program and Get Separate Trace
Files
1. Create a shell script (called partrace.sh in this example) similar to the

following:

2. Type the following command to run the partrace.sh shell script:

This will run mpiapp under dtrace using the mpitrace.d script. The script saves
the trace output for each process in a job under a separate file name, based on the
program name and rank of the process. Note that subsequent runs will append the
data into the existing trace files.

Note – The status of the OMPI_COMM_WORLD_RANK.trace variable is unstable and
subject to change. Use this variable with caution.

% mpirun -np 4 dtrace -s mpitrace.d -c mpiapp

#!/bin/sh
partrace.sh - a helper script to dtrace Open MPI jobs from the
start of the job.
dtrace -s $1 -c $2 -o $2.$OMPI_COMM_WORLD_RANK.trace

% mpirun -np 4 partrace.sh mpitrace.d mpiapp
84 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Attaching DTrace to a Running MPI Program
The second way to use dtrace with Open MPI is to attach dtrace to a running
MPI program.

▼ To Attach DTrace to a Running MPI Program
Perform the following procedure:

1. Log in to the node in which you are interested.

2. Type commands similar to the following command to get the process ID (PID)
of the running program on the node of interest.

3. Decide which rank you want to use to attach dtrace.

The lower PID number is usually the lower rank on the node.

4. Type the following command to attach to the rank 1 process (identified by its
process ID, which is 24770 in the example) and run the DTrace script
mpitrace.d:

Simple MPI Tracing
DTrace enables you to easily trace programs. When used in conjunction with MPI
and the more than 200 functions defined in the MPI standard, DTrace provides an
easy way to determine which functions might be in error during the debugging
process, or those functions that might be of interest. After you determine the
function showing the error, it is easy to locate the desired job, process, and rank on
which to run your scripts. As demonstrated above, DTrace allows you to perform
these determinations while the program is running

Although the MPI standard provides the MPI profiling interface, using DTrace does
provide a number of advantages. The advantages of using DTrace include the
following:

■ The PMPI interface requires you to restart a job every time you make changes to
the interposing library.

% prstat 0 1 | grep mpiapp
24768 joeuser 526M 3492K sleep 59 0 0:00:08 0.1% mpiapp/1
24770 joeuser 518M 3228K sleep 59 0 0:00:08 0.1% mpiapp/1

% dtrace -p 24770 -s mpitrace.d
Chapter 8 Using the DTrace Utility With Open MPI 85

■ DTrace allows you to define probes that let you capture tracing information on
MPI without having to code the specific details for each function you want to
capture.

■ The DTrace scripting language D has several built-in functions that help in
debugging problematic programs.

The following example shows a simple script that traces the entry and exit into all
the MPI API calls.

When you use this example script to attach DTrace to a job that performs send and
recv operations, the output looks similar to the following:

mpitrace.d:
pid$target:libmpi:MPI_*:entry
{
printf(“Entered %s...”, probefunc);
}

pid$target:libmpi:MPI_*:return
{
printf(“exiting, return value = %d\n”, arg1);
}

% dtrace -q -p 24770 -s mpitrace.d
Entered MPI_Send...exiting, return value = 0
Entered MPI_Recv...exiting, return value = 0
Entered MPI_Send...exiting, return value = 0
Entered MPI_Recv...exiting, return value = 0
Entered MPI_Send...exiting, return value = 0 ...
86 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

You can easily modify the mpitrace.d script to include an argument list. The
resulting output resembles truss output. For example:

The mpitruss.d script shows how you can specify wildcard names to match the
functions. Both probes will match all send and receive type function calls in the MPI
library. The first probe shows the usage of the built-in arg variables to print out the
arglist of the function being traced.

Take care when wildcarding the entrypoint and the formatting argument output,
because you could end up printing either too many arguments, or not enough
arguments, for certain functions. For example, in the above case, the MPI_Irecv and
MPI_Isend functions will not have their Request handle parameters printed out.

The following example shows a sample output of the mpitruss.d script:

Tracking Down Resource Leaks
One of the biggest issues with programming is the unintentional leaking of resources
(such as memory). With MPI, tracking and repairing resource leaks can be somewhat
more challenging because the objects being leaked are in the middleware, and thus
are not easily detected by the use of memory checkers.

mpitruss.d:
pid$target:libmpi:MPI_Send:entry,
pid$target:libmpi:MPI_*send:entry,
pid$target:libmpi:MPI_Recv:entry,
pid$target:libmpi:MPI_*recv:entry
{
printf(“%s(0x%x, %d, 0x%x, %d, %d, 0x%x)”,probefunc, arg0, arg1,
arg2, arg3, arg4, arg5);
}
pid$target:libmpi:MPI_Send:return,
pid$target:libmpi:MPI_*send:return,
pid$target:libmpi:MPI_Recv:return,
pid$target:libmpi:MPI_*recv:return
{
printf(“\t\t = %d\n”, arg1);
}

% dtrace -q -p 24770 -s mpitruss.d
MPI_Send(0x80470b0, 1, 0x8060f48, 0, 1,0x8060d48) = 0
MPI_Recv(0x80470a8, 1, 0x8060f48, 0, 0, 0x8060d48) = 0
MPI_Send(0x80470b0, 1, 0x8060f48, 0, 1, 0x8060d48) = 0
MPI_Recv(0x80470a8, 1,0x8060f48, 0, 0, 0x8060d48) = 0 ...
Chapter 8 Using the DTrace Utility With Open MPI 87

DTrace helps with debugging such problems using variables, the profile provider,
and a callstack function. The mpicommcheck.d script (shown in the example below)
probes for all the MPI communicator calls that allocate and deallocate
communicators, and keeps track of the stack each time the function is called. Every
10 seconds the script dumps out the current count of MPI communicator calls and
the total calls for the allocation and deallocation of communicators. When the
dtrace session ends (usually by pressing Ctrl-C, if you attached to a running MPI
program), the script will print out the totals and all the different stack traces, as well
as the number of times those stack traces were reached.

In order to perform these tasks, the script uses DTrace features such as variables,
associative arrays, built-in functions (count, ustack) and the predefined variable
probefunc.
88 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

The following example shows the mpicommcheck.d script.

This script attaches dtrace to a suspect section of code in your program (that is, a
section of code that might contain a resource leak). If, during the process of running
the script, you see that the printed totals for allocations and deallocations are
starting to steadily diverge, you might have a resource leak. Depending on how your

mpicommcheck.d:
BEGIN
{
 allocations = 0;
 deallocations = 0;
 prcnt = 0;
}

pid$target:libmpi:MPI_Comm_create:entry,
pid$target:libmpi:MPI_Comm_dup:entry,
pid$target:libmpi:MPI_Comm_split:entry
{
 ++allocations;
 @counts[probefunc] = count();
 @stacks[ustack()] = count();
}

pid$target:libmpi:MPI_Comm_free:entry
{
 ++deallocations;
 @counts[probefunc] = count();
 @stacks[ustack()] = count();
}

profile:::tick-1sec
/++prcnt > 10/
{
 printf(“===
==============”);
 printa(@counts);
 printf(“Communicator Allocations = %d \n”, allocations);
 printf(“Communicator Deallocations = %d\n”, deallocations);
 prcnt = 0;
}

END
{
 printf(“Communicator Allocations = %d, Communicator
Deallocations = %d\n”,

allocations, deallocations);
}

Chapter 8 Using the DTrace Utility With Open MPI 89

program is designed, it might take some time and observation of the
allocation/deallocation totals in order to definitively determine that the code
contains a resource leak. Once you do determine that a resource leak is definitely
occurring, you can press Ctrl-C to break out of the dtrace session. Next, using the
stack traces dumped, you can try to determine where the issue might be occurring.

The following example shows code containing a resource leak, and the output that is
displayed using the mpicommcheck.d script.

The sample MPI program containing the resource leak is called mpicommleak. This
program performs three MPI_Comm_dup operations and two MPI_Comm_free
operations. The program thus “leaks” one communicator operation with each
iteration of a loop.

When you attach dtrace to mpicommleak using the mpicommcheck.d script
above, you will see a 10-second periodic output. This output shows that the count of
the allocated communicators is growing faster than the count of deallocations.

When you finally end the dtrace session by pressing Ctrl-C, the session will have
output a total of five stack traces, showing the distinct three MPI_Comm_dup and
two MPI_Comm_free call stacks, as well as the number of times each call stack was
encountered.
90 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

For example:

% prstat 0 1 | grep mpicommleak
 24952 joeuser 518M 3212K sleep 59 0 0:00:01 1.8% mpicommleak/1
 24950 joeuser 518M 3212K sleep 59 0 0:00:00 0.2% mpicommleak/1
% dtrace -q -p 24952 -s mpicommcheck.d
===
 MPI_Comm_free 4
 MPI_Comm_dup 6
Communicator Allocations = 6
Communicator Deallocations = 4
===
 MPI_Comm_free 8
 MPI_Comm_dup 12
Communicator Allocations = 12
Communicator Deallocations = 8
===
 MPI_Comm_free 12
 MPI_Comm_dup 18
Communicator Allocations = 18
Communicator Deallocations = 12
^C
Communicator Allocations = 21, Communicator Deallocations = 14

libmpi.so.0.0.0`MPI_Comm_free
 mpicommleak`deallocate_comms+0x19
 mpicommleak`main+0x6d
 mpicommleak`0x805081a
 7

 libmpi.so.0.0.0`MPI_Comm_free
 mpicommleak`deallocate_comms+0x26
 mpicommleak`main+0x6d
 mpicommleak`0x805081a
 7

 libmpi.so.0.0.0`MPI_Comm_dup
 mpicommleak`allocate_comms+0x1e
 mpicommleak`main+0x5b
 mpicommleak`0x805081a
 7

 libmpi.so.0.0.0`MPI_Comm_dup
 mpicommleak`allocate_comms+0x30
 mpicommleak`main+0x5b
 mpicommleak`0x805081a
 7

 libmpi.so.0.0.0`MPI_Comm_dup
 mpicommleak`allocate_comms+0x42
 mpicommleak`main+0x5b
 mpicommleak`0x805081a
 7
Chapter 8 Using the DTrace Utility With Open MPI 91

Using the DTrace mpiperuse Provider
PERUSE is an MPI interface that allows you to obtain detailed information about the
performance and interactions of processes, software, and MPI. PERUSE provides a
greater level of detail about process performance than does the standard MPI
profiling interface (PMPI).

For more information about PERUSE and the current PERUSE specification, see:

http://www.mpi-peruse.org

Open MPI includes a DTrace provider named mpiperuse. This provider enables
you to configure Open MPI to support DTrace probes into the Open MPI shared
library libmpi.

DTrace Support in the ClusterTools Software
In Sun HPC ClusterTools 8.2 software, there are preconfigured executables and
libraries with the mpiperuse provider probes built in. They are located in the
/opt/SUNWhpc/HPC8.2/sun/instrument directory. Use the wrappers and
utilities located in this directory to access the mpiperuse provider.

Note – No recompilation is necessary in order to use the mpiperuse provider. Just
run the application to be DTraced using
/opt/SUNWhpc/HPC8.2/sun/instrument/bin/mpirun.

Available mpiperuse Probes
The DTrace mpiperuse probes expose the events specified in the current PERUSE
specification. These events track the life cycle of requests within the MPI library. For
more information about this life cycle and the actual events provided by PERUSE,
see Section 4 of the PERUSE Specification.

Sections 4.3.1 and 4.4 of the PERUSE Specification list and describe the individual
events exposed by PERUSE.

The mpiperuse provider makes these events available to DTrace. The probe names
correspond to the event names listed in Sections 4.3.1 and 4.4 of the PERUSE
specification. For each event, the corresponding probe name is similar, except that
92 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

http://www.mpi-peruse.org

the leading PERUSE is removed, the probe name is all lowercase, and underscores
are replaced with hyphens. For example, the probe for
PERUSE_COMM_MSG_ARRIVED is comm-msg-arrived.

All of the probes are classified under the mpiperuse provider. This means that to
find the probe names, you would look under the mpiperuse name. It also means
that when you make a DTrace statement, you can include a wildcard for all probes
simply by using the mpiperuse classification.

Specifying an mpiperuse Probe in a D Script
In the D scripting language, specifying an mpiperuse provider takes the following
form:

where probe-name is the name of the mpiperuse probe you want to use.

For example, to specify a probe to capture a PERUSE_COMM_REQ_ACTIVATE
event, add the following line to a D script:

This alerts DTrace that you want to use the mpiperuse provider to capture the
PERUSE_COMM_REQ_ACTIVATE event. In this example, the optional object and
function fields in the probe description are omitted. This directs DTrace to find all
occurrences of the comm-req-activate probes in the MPI library and its plugins
instead of a specific probe. This is necessary because certain probes can happen in
multiple places in the MPI library.

For more information about the D language and its syntax, refer to the Solaris
Dynamic Tracing Guide (Part Number 817-6223). This guide is part of the Solaris 10
OS Software Developer Collection.

mpiperuse$target:::probe-name

 mpiperuse$target:::comm-req-activate
Chapter 8 Using the DTrace Utility With Open MPI 93

Available Arguments
All of the mpiperuse probes receive the following arguments:

How To Use mpiperuse Probes to See Message
Queues
To use the mpiperuse provider, make reference to the appropriate mpiperuse
provider probes and arguments in a DTrace script, as you would for any other
provider (such as the pid provider).

The procedure for running scripts with mpiperuse probes follows the same steps as
those shown in “Running an MPI Program Under DTrace” on page 84 and
“Attaching DTrace to a Running MPI Program” on page 85, except that you must
edit the partrace.sh script before you run it.

Change partrace.sh to include a -Z switch after the dtrace command, as shown
in the following example.

This change allows probes that do not exist at initial load time to be used in a script
(that is, the probes are in plugins that have not been dlopened).

The following example shows how to use the mpiperuse probes when running a
DTrace script. Use the example script provided in
/opt/SUNWhpc/HPC8.2/sun/examples/dtrace/mpistat.d

TABLE 8-1 Available mpiperuse Arguments

args[0] = mpiconninfo_t
*i

This provides a basic source and destination for the request and which
protocol is expected to be used for the transfer. This typedef is defined in
/usr/lib/dtrace/mpi.d.

args[1] = uintptr_t uid This is the PERUSE unique id for the request that fired the probe (as defined
by the PERUSE specifications). For OMPI this is the address of the actual
request.

args[2] = uint_t op This value indicates whether the probe is for a send == 0 or recv == 1
request.

args[3] =
mpicomm_spec_t *cs

This structure is defined in /usr/lib/dtrace/mpi.d and mimics the spec
structure, as defined on page 22 of the PERUSE specification.

#!/bin/sh
partrace.sh - a helper script to dtrace Open MPI jobs from the
start of the job.
dtrace -Z -s $1 -c $2 -o $2.$OMPI_COMM_WORLD_RANK.trace
94 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

1. Compile and run a script against a program.

In this example, the script file is called dtest.c. Substitute the name and path of
your script for dtest.c.

2. In another window, type the following command:

% /opt/SUNWhpc/HPC8.2/sun/instrument/bin/mpicc
~myhomedir/scraps/usdt/examples/dtest.c -o dtest
% /opt/SUNWhpc/HPC8.2/sun/instrument/bin/mpirun -np 2 dtest
Initing MPI...
Initing MPI...
Do communications...
Do communications...
attach to pid 13371 to test tracing.

% dtrace -q -p 13371 -s /opt/SUNWhpc/HPC8.2/sun/examples/dtrace/mpistat.d
input(Total) Q-sizes Q-Matches output
bytes active posted unexp posted unexp bytes active
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 5 0
 0 0 0 0 1 0 5 0
 0 0 0 0 1 0 5 0
 0 0 0 0 1 0 5 0
 0 0 0 0 1 0 5 0
 0 0 0 0 1 0 5 0
 0 0 0 0 1 0 5 0
 0 0 0 0 1 0 5 0
 0 0 0 0 2 0 10 0
 0 0 0 0 2 0 10 0
 0 0 0 0 2 0 10 0
 0 0 0 0 2 0 10 0
 0 0 0 0 2 0 10 0
 0 0 0 0 2 0 10 0
 0 0 0 0 2 0 10 0
 0 0 0 0 2 0 10 0
 0 0 0 0 3 0 15 0
 0 0 0 0 3 0 15 0
 0 0 0 0 3 0 15 0
 0 0 0 0 3 0 15 0
 0 0 0 0 3 0 15 0
 0 0 0 0 3 0 15 0
 0 0 0 0 3 0 15 0
Chapter 8 Using the DTrace Utility With Open MPI 95

mpiperuse Usage Examples
The examples in this section show how to perform the described DTrace operations
from the command line.

▼ To Count the Number of Messages To or From a Host
● Issue the following DTrace command, substituting the process ID of the

process you want to monitor for pid:

DTrace returns a result similar to the following. In this example, the process ID is
25428 and the host name is joe-users-host2.

▼ To Count the Number of Messages To or From Specific
BTLs
● Issue the following DTrace command, substituting the process ID of the

process you want to monitor for pid:

DTrace returns a result similar to the following. In this example, the process ID is
25445.

dtrace -p pid -n ’mpiperuse$target:::comm-req-xfer-end { @[args[0]->ci_remote]
= count(); }’

% dtrace -p 25428 -n ’mpiperuse$target:::comm-req-xfer-end {@[args[0]-
>ci_remote] = count();}’
dtrace: description ’mpiperuse$target:::comm-req-xfer-end ’ matched 17 probes
^C
joe-users-host2 recv 3
joe-users-host2 send 3

dtrace -p pid -n ’mpiperuse$target:::comm-req-xfer-end { @[args[0]->ci_protocol]
= count(); }’

 % dtrace -p 25445 -n ’mpiperuse$target:::comm-req-xfer-end {@[args[0]-
>ci_protocol] = count();}’
dtrace: description ’mpiperuse$target:::comm-req-xfer-end ’ matched 17 probes
^C

 sm 60
96 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

▼ To Obtain Distribution Plots of Message Sizes Sent or
Received From a Host
● Issue the following DTrace command, substituting the process ID of the

process you want to monitor for pid:

DTrace returns a result similar to the following. In this example, the process ID is
25445.

▼ To Create Distribution Plots of Message Sizes By
Communicator, Rank, and Send/Receive
● Issue the following DTrace command, substituting the process ID of the

process you want to monitor for pid:

DTrace returns a result similar to the following. In this example, the process ID is
24937.

dtrace -p pid -n ’mpiperuse$target:::comm-req-xfer-end { @[args[0]->ci_remote]
= quantize(args[3]->mcs_count); }’

 % dtrace -p 25445 -n ’mpiperuse$target:::comm-req-xfer-end {@[args[0]-
>ci_remote] = quantize(args[3]->mcs_count);}’
dtrace: description ’mpiperuse$target:::comm-req-xfer-end ’ matched 17 probes
^C

 myhost
 value ------------- Distribution ------------- count
 2 | 0
 4 |@@ 4
 8 | 0

dtrace -p pid -n ’mpiperuse$target:::comm-req-xfer-end {@[args[3]->mcs_comm,
args[3]->mcs_peer, args[3]->mcs_op] = quantize(args[3]->mcs_count);}’

% dtrace -p 24937 -n ’mpiperuse$target:::comm-req-xfer-end {@[args[3]->mcs_comm,
args[3]->mcs_peer, args[3]->mcs_op] = quantize(args[3]->mcs_count);}’
dtrace: description ’mpiperuse$target:::comm-req-xfer-end ’ matched 19 probes
^C
 134614864 1 recv
 value ------------- Distribution ------------- count
 2 | 0
 4 |@@ 9
 8 | 0
Chapter 8 Using the DTrace Utility With Open MPI 97

 134614864 1 send
 value ------------- Distribution ------------- count
 2 | 0
 4 |@@ 9
 8 | 0
98 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

APPENDIX A

Troubleshooting

This appendix describes some common problem situations, resulting error messages,
and suggestions for fixing the problems. Open MPI error reporting, including I/O,
follows the MPI-2 Standard. By default, errors are reported in the form of standard
error classes. These classes and their meanings are listed in TABLE A-1 (for non-I/O
MPI) and TABLE A-2 (for MPI I/O), and are also available on the MPI man page.

MPI Messages

Standard Error Classes
Listed below are the error return classes you might encounter in your MPI
programs. Error values can also be found in mpi.h (for C), mpif.h (for Fortran),
and mpi++.h (for C++).

TABLE A-1 Open MPI Standard Error Classes

Error Code Value Meaning

MPI_SUCCESS 0 Successful return code.

MPI_ERR_BUFFER 1 Invalid buffer pointer.

MPI_ERR_COUNT 2 Invalid count argument.

MPI_ERR_TYPE 3 Invalid datatype argument.

MPI_ERR_TAG 4 Invalid tag argument.

MPI_ERR_COMM 5 Invalid communicator.
99

MPI_ERR_RANK 6 Invalid rank.

MPI_ERR_ROOT 7 Invalid root.

MPI_ERR_GROUP 8 Null group passed to function.

MPI_ERR_OP 9 Invalid operation.

MPI_ERR_TOPOLOGY 10 Invalid topology.

MPI_ERR_DIMS 11 Illegal dimension argument.

MPI_ERR_ARG 12 Invalid argument.

MPI_ERR_UNKNOWN 13 Unknown error.

MPI_ERR_TRUNCATE 14 Message truncated on receive.

MPI_ERR_OTHER 15 Other error; use Error_string.

MPI_ERR_INTERN 16 Internal error code.

MPI_ERR_IN_STATUS 17 Look in status for error value.

MPI_ERR_PENDING 18 Pending request.

MPI_ERR_REQUEST 19 Illegal MPI_Request() handle.

MPI_ERR_KEYVAL 36 Illegal key value.

MPI_ERR_INFO 37 Invalid info object.

MPI_ERR_INFO_KEY 38 Illegal info key.

MPI_ERR_INFO_NOKEY 39 No such key.

MPI_ERR_INFO_VALUE 40 Illegal info value.

MPI_ERR_TIMEDOUT 41 Timed out.

MPI_ERR_SYSRESOURCES 42 Out of resources.

MPI_ERR_SPAWN 45 Error spawning.

MPI_ERR_WIN 46 Invalid window.

MPI_ERR_BASE 47 Invalid base.

MPI_ERR_SIZE 48 Invalid size.

MPI_ERR_DISP 49 Invalid displacement.

MPI_ERR_LOCKTYPE 50 Invalid locktype.

TABLE A-1 Open MPI Standard Error Classes (Continued)

Error Code Value Meaning
100 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

MPI I/O Error Handling
Open MPI I/O error reporting follows the MPI-2 Standard. By default, errors are
reported in the form of standard error codes (found in
/opt/SUNWhpc/include/mpi.h). Error classes and their meanings are listed in
TABLE A-2. They can also be found in mpif.h (for Fortran) and mpi.h (for C).

You can change the default error handler by specifying MPI_FILE_NULL as the file
handle with the routine MPI_File_set_errhandler(), even if no file is currently
open. Or, you can use the same routine to change the error handler for a specific file.

MPI_ERR_ASSERT 51 Invalid assert.

MPI_ERR_RMA_CONFLICT 52 Conflicting accesses to window.

MPI_ERR_RMA_SYNC 53 Erroneous RMA synchronization.

MPI_ERR_NO_MEM 54 Memory exhausted.

MPI_ERR_LASTCODE 55 Last error code.

TABLE A-2 Open MPI I/O Error Classes

Error Class Value Meaning

MPI_ERR_FILE 20 Bad file handle.

MPI_ERR_NOT_SAME 21 Collective argument not identical on all
processes.

MPI_ERR_AMODE 22 Unsupported amode passed to open.

MPI_ERR_UNSUPPORTED_DATAREP 23 Unsupported datarep passed to
MPI_File_set_view().

MPI_ERR_UNSUPPORTED_OPERATION 24 Unsupported operation, such as seeking
on a file that supports only sequential
access.

MPI_ERR_NO_SUCH_FILE 25 File (or directory) does not exist.

MPI_ERR_FILE_EXISTS 26 File exists.

TABLE A-1 Open MPI Standard Error Classes (Continued)

Error Code Value Meaning
Appendix A Troubleshooting 101

MPI_ERR_BAD_FILE 27 Invalid file name (for example, path
name too long).

MPI_ERR_ACCESS 28 Permission denied.

MPI_ERR_NO_SPACE 29 Not enough space.

MPI_ERR_QUOTA 30 Quota exceeded.

MPI_ERR_READ_ONLY 31 Read-only file system.

MPI_ERR_FILE_IN_USE 32 File operation could not be completed,
as the file is currently open by some
process.

MPI_ERR_DUP_DATAREP 33 Conversion functions could not be
registered because a data representation
identifier that was already defined was
passed to MPI_REGISTER_DATAREP.

MPI_ERR_CONVERSION 34 An error occurred in a user-supplied
data-conversion function.

MPI_ERR_IO 35 I/O error.

MPI_ERR_INFO 37 Invalid info object.

MPI_ERR_INFO_KEY 38 Illegal info key.

MPI_ERR_INFO_NOKEY 39 No such key.

MPI_ERR_INFO_VALUE 40 Illegal info value.

MPI_ERR_LASTCODE 55 Last error code.

TABLE A-2 Open MPI I/O Error Classes (Continued)

Error Class Value Meaning
102 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Exceeding the File Descriptor Limit
If your application attempts to open a file descriptor when the maximum limit of
open file descriptors has been reached, the job will fail and display the following
message:

Should this occur, increase the value of the file descriptor hard limit before starting
your job again.

The Solaris OS default file descriptor limit is 256. When you start an MPI job, a
program called an orted (for ORTE daemon) spawns the user processes. For each
user process spawned, the orted takes up four file descriptors. In addition, the job
takes 12 additional file descriptors regardless of the number of processes spawned.

To calculate the number of file descriptors needed to run a certain job, use the
following formula:

file descriptors = 12 + 4 * np

where np is the number of processes launched.

If the number of file descriptors needed is greater than 256, you must increase the
number of available descriptors to a value equal to or greater than the number you
calculated. Otherwise, the processes fail and the error message is displayed.

Increasing the Number of Available File
Descriptors

▼ To View the Hard Limit from the C Shell
1. Log in to a C shell as superuser.

mynode% mpirun -np 61 hello_c
mpirun noticed that job rank 0 with PID 0 on node burl-ct-v440-1
exited on signal 15 (Terminated).
59 additional processes aborted (not shown)
Appendix A Troubleshooting 103

2. Determine the current hard limit value for your Solaris implementation. Type
the following command:

▼ To View the Hard Limit from the Bourne Shell
1. Log in to a Bourne shell as superuser.

2. Use the ulimit function. Type the following command:

Each function returns the file descriptor hard limit that was in effect. The new value
you set for the number of available file descriptors must be less than or equal to this
number. The usual default value for the hard limit in the Solaris OS is 64000 (64K).

▼ To Increase the Number of File Descriptors

Note – You must perform this procedure on each of the nodes on which you plan to
run.

1. Open the /etc/system file in a text editor.

2. Add the following line to the file:

where value is the new maximum number of file descriptors. For example, the
following line added to the /etc/system file increases the maximum number of
file descriptors to 1024:

3. Save the file and exit the text editor.

4. Reboot the system.

limit –h descriptors

ulimit –Hn

set rlim_fd_cur=value

set rlim_fd_cur=1024
104 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Setting File Descriptor Limits When Using Sun
Grid Engine
If you are using Sun Grid Engine to launch your jobs on very large multi-processor
nodes, you might see an error message about exceeding your file descriptor limit,
and your jobs might fail. This can happen because Sun Grid Engine cannot set the
file descriptor limit in its queue.

There are three ways in which you can adjust the number of available file
descriptors when you use Sun Grid Engine:

1. Set the file descriptor limit in your login shell (.cshrc, .tcshrc, .bashrc, and
so on).

2. Modify the /etc/shell file for each of the nodes on your cluster as described in
the previous section, “To Increase the Number of File Descriptors” on page 104.
Remember that you must reboot all of the nodes in the cluster once you have
finished modifying the files.

3. On a Sun Grid Engine execution host, modify the
$SGE_ROOT/default/common/sgeexecd startup script to increase the file
descriptor limit to the same value as the hard limit (as described in the previous
section). You must restart the sgeexecd daemon on the host. Since this script is
shared among the Sun Grid Engine execution hosts in the cluster using NFS, you
may make the change on one host, and it will be propagated to the other Sun Grid
Engine hosts in the cluster.
Appendix A Troubleshooting 105

106 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

Index
A
applications

migrating, 15
recompiling, 15

B
batch systems, 7

C
cluster

about, 5
command line interface (CRE), 2
compilation, 16
compilers

mpicc, 16
mpicc compiler, 15
mpiCC, mpicxx, mpic++, 16
mpif77, 16
mpif90, 16
wrapper compilers, 16

compiling
using the wrapper compilers, 16

configurations, supported, 1
CRE, 2

D
D language, 81
default settings

how to run a program with, 23
documentation

MPI Reference Manual, xi
product notes, xi

Sun documentation on the web, xiii
DTrace, 81

advantages over MPI profiling, 85
attaching to an MPI process, 85
running with MPI programs, 83
tracing MPI programs, 85
tracking resource leaks, 88
using with MPI, 84

dtrace_proc, 82
dtrace_user, 82
Dynamic tracing

using with MPI, 83

E
E privilege set

dtrace privileges, 83
error classes, standard, 99
error classes, Sun MPI I/O, 101
error handling, MPI I/O, 101
errors

tracing using DTrace, 85
exceeding the file descriptor limit, 103

F
File descriptor

exceeding the limit, 103

G
Grid Engine

open source version, 8
107

H
help, how to display, 32
How to

attach DTrace to an MPI process, 85
change the working directory, 31
determine which function is returning errors, 85
determine your mprun privileges, 82
display command help, 32
run a program as multiple processes, 23
run a program with default settings, 23
track down a resource leak, 89
use DTrace with an MPI program, 84
use DTrace with Sun MPI, 81

L
limit -h, 103
linking, 16

M
mapping MPI processes to nodes, 24
MCA parameters, 8

gridengine parameters, 51
messages, MPI, 99
MPI

attaching DTrace to a process, 85
running a program under DTrace, 84
Sun MPI, 3
tracing programs, 84
tracing programs using DTrace, 85
tracking resource leaks, 87

MPI messages, 99
MPI_COMM_WORLD

inheriting stdin, 30
mpicc compiler, 15
mpif77, 16
mpif90, 16
mpirun

-mca option, 8
mprun

-C, 31
default settings, 23
determining privileges on the cluster, 82
-h, 32
-np, 23
privileges for use with DTrace, 82
syntax, 20

-v, 32

N
node

mapping MPI processes to, 24
nodes

about, 5

O
Open MPI

and Sun N1 Grid Engine, 7

P
parallel environment (PE), 8
process

how to run a program as multiple, 23
mapping to nodes, 24

R
remote nodes

standard output, 31
Resource leaks

determining using DTrace, 89
tracking, 87

S
scalability, 2
Solaris Dynamic Tracing utility (DTrace), 81
standard error, 31
standard input, 30
standard output, 31
submitting jobs

under Sun N1 Grid Engine, 8
Sun Grid Engine

and Open MPI, 7
Sun HPC ClusterTools 6

migrating applications, 15
Sun N1 Grid Engine

gridengine MCA parameters, 51

T
tmcc compiler, 15
troubleshooting, 99

U
ulimit -Hn, 104
108 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

W
wildcards

using in tracing scripts, 87
working directory, how to change the, 31
Index 109

110 Sun HPC ClusterTools 8.2 Software User’s Guide • June 2009

	Sun HPC ClusterTools™ 8.2 Software User’s Guide
	Contents
	Preface
	Introduction to Sun HPC ClusterTools Software
	Supported Configurations
	Open Runtime Environment (ORTE)
	Executing Programs With mpirun

	Integration With Distributed Resource Management Systems
	Open MPI Features
	Debugging With TotalView

	Fundamental Concepts
	Clusters and Nodes
	Processes
	How Programs Are Launched

	How the Open MPI Environment Is Integrated With Distributed Resource Management Systems
	Using Sun Grid Engine With ORTE
	Submitting Jobs Under Sun Grid Engine Integration

	MCA Parameters
	How ORTE Works With Zones in the Solaris 10 Operating System

	Before You Begin
	Prerequisites
	Command and Man Page Paths
	Setting Up Your Path
	To Set Up Your Path for the Solaris OS and the Sun Studio Compiled Linux Version
	To Set Up Your Path for the GNU Compiled Linux Version

	Core Files
	Setting Up a known_hosts File

	Compiling MPI Programs
	Supported Compilers
	Using the Compiler Wrappers
	Using Non-Default Error Handlers
	Compiling Fortran 90 Programs

	Running Programs With the mpirun Command
	About the mpirun Command
	Syntax for the mpirun Command
	mpirun Options
	Using Environment Variables With the mpirun Command
	Using MCA Parameters With the mpirun Command
	Canceling Send and Receive Operations

	mpirun Command Examples
	To Run a Program With Default Settings
	To Run Multiple Processes
	To Direct mpirun By Using an Appfile

	Mapping MPI Processes to Nodes
	Specifying Available Hosts
	Specifying Hosts By Using a Hostfile
	Specifying Hosts By Using the --host Option
	To Specify Multiple Slots Using the --host Option
	Excluding Hosts From Scheduling By Using the --host Option
	Oversubscribing Nodes

	Scheduling Policies
	Scheduling By Slot
	To Specify By-Slot Scheduling
	Scheduling By Node
	To Specify By-Node Scheduling

	Comparing By-Slot to By-Node Scheduling

	Controlling Input/Output
	To Redirect Standard I/O

	Controlling Other Job Attributes
	To Change the Working Directory
	To Specify Debugging Output
	To Display Command Help (-h)

	Submitting Jobs Under Sun Grid Engine Integration
	Defining Parallel Environment (PE) and Queue
	To Use PE Commands
	To Use Queue Commands

	Submitting Jobs in Interactive Mode
	To Set the Interactive Display
	To Submit Jobs Interactively
	To Verify That Sun Grid Engine Is Running
	To Start an Interactive Session Using qrsh

	Using MPI Client/Server Applications
	To Launch the Client/Server Job
	Using Name Publishing

	Troubleshooting Client/Server Jobs

	For More Information

	Running Programs With mpirun in Distributed Resource Management Systems
	mpirun Options for Third-Party Resource Manager Integration
	Checking Your Open MPI Configuration
	To Check for rsh/ssh
	To Check for PBS/Torque
	To Check for Sun Grid Engine

	Running Parallel Jobs in the PBS Environment
	To Run an Interactive Job in PBS
	To Run a Batch Job in PBS

	Running Parallel Jobs in the Sun Grid Engine Environment
	Defining Parallel Environment (PE) and Queue
	To Use PE Commands
	To Use Queue Commands

	Submitting Jobs Under Sun Grid Engine Integration
	To Set the Interactive Display
	To Submit Jobs in Batch Mode
	To See a Running Job
	To Delete a Running Job

	rsh Limitations
	Using rsh as the Job Launcher
	Using Sun Grid Engine as the Job Launcher

	For More Information

	Using MCA Parameters With mpirun
	About the Modular Component Architecture
	Open MPI Frameworks
	OMPI Frameworks
	ORTE Frameworks
	OPAL Frameworks

	The ompi_info Command
	Command Options
	Using the ompi_info Command With MCA Parameters
	To List All MCA Parameters
	To List All MCA Parameters For a Framework
	To Display All MCA Parameters For a Selected Component

	Using MCA Parameters
	To Set MCA Parameters From the Command Line
	Using MCA Parameters As Environment Variables
	To Set MCA Parameters in the sh Shell
	To Set MCA Parameters in the C Shell
	To Specify MCA Parameters Using a Text File

	Including and Excluding Components
	To Include and Exclude Components Using the Command Line

	Processor and Memory Affinity
	Using Processor Affinity
	Using Memory Affinity
	To Find Out Whether Memory Affinity Is Supported
	Running MPI Jobs With Processor and Memory Affinity
	To Enable Affinity Using the Command Line

	Using MCA Parameters With Sun Grid Engine
	Changing the Default Values in MCA Parameters

	For More Information

	Using the DTrace Utility With Open MPI
	Checking the mpirun Privileges
	To Determine the Correct Privileges on the Cluster

	Running DTrace with MPI Programs
	Running an MPI Program Under DTrace
	To Trace a Program Using the mpitrace.d Script
	To Trace a Parallel Program and Get Separate Trace Files

	Attaching DTrace to a Running MPI Program
	To Attach DTrace to a Running MPI Program

	Simple MPI Tracing

	Tracking Down Resource Leaks
	Using the DTrace mpiperuse Provider
	DTrace Support in the ClusterTools Software
	Available mpiperuse Probes
	Specifying an mpiperuse Probe in a D Script

	Available Arguments
	How To Use mpiperuse Probes to See Message Queues
	mpiperuse Usage Examples
	To Count the Number of Messages To or From a Host
	To Count the Number of Messages To or From Specific BTLs
	To Obtain Distribution Plots of Message Sizes Sent or Received From a Host

	To Create Distribution Plots of Message Sizes By Communicator, Rank, and Send/Receive

	Troubleshooting
	MPI Messages
	Standard Error Classes

	MPI I/O Error Handling
	Exceeding the File Descriptor Limit
	Increasing the Number of Available File Descriptors
	To View the Hard Limit from the C Shell
	To View the Hard Limit from the Bourne Shell
	To Increase the Number of File Descriptors

	Setting File Descriptor Limits When Using Sun Grid Engine

	Index

