Elsevier Editorial System(tm) for Journal of Quantitative Spectroscopy and Radiative

Transfer

Manuscript Draft

Manuscript Number:

Title: MARVEL analysis of the measured high-resolution spectra of \$^{14}\$NH\$_3\$

Article Type: Full Length Article

Keywords: ammonia vapor; high-resolution spectroscopy; rotation-vibration energy levels

Corresponding Author: Prof. Jonathan Tennyson,

Corresponding Author's Institution: University College London

First Author: Afaf Al Derzi

Order of Authors: Afaf Al Derzi; Tibor Furtenbacher; Jonathan Tennyson; Sergei Yurchenko; Attila Csaszar

Abstract: Accurate, experimental rotational--vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top \$^{14}\$NH\$_3\$ molecule.

All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources.

The transition data are in the 0.7--17~000 \cm\ region, with a large gap between 7~000 and 15~000 \cm.

The MARVEL (Measured Active Rotational--Vibrational Energy Levels) algorithm is used to determine the energy levels.

Out of the 29~450 measured transitions

10~041 and 18~947 belong to ortho- and para-\$^{14}\$NH\$_3\$, respectively.

A careful analysis of the related experimental spectroscopic network (SN) allows

28~530 of the measured transitions to be validated,

18~178 of these are unique, while 462 transitions belong to floating components.

Despite the large number of spectroscopic measurements published over the last 80 years,

the transitions determine only 30 vibrational band origins of \$^{14}\$NH\$_3\$,

8 for ortho- and 22 for para-\$^{14}\$NH\$_3\$.

The highest \$J\$ value,

where \$J\$ stands for the rotational quantum number, for which an energy level is validated is 31.

The number of experimental-quality ortho- and para- $^{14}SNH_3$ rovibrational energy levels is $1\sim724$ and $3\sim237$, respectively.

The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously.

The lists of validated lines and levels for \$^{14}\$NH\$_3\$ are deposited in the Supporting Information to this paper.

Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines,

which should prove to be useful for the understanding of future complex high-resolution

spectroscopy on \$^{14}\$NH\$_3\$; these lines are also deposited in the Supporting Information to this paper.

Suggested Reviewers: Alain Campargue Alain.Campargue@ujf-grenoble.fr

Isabelle Kleiner isabelle.kleiner@lisa.u-pec.fr

Vladimir Spirko vladimir.spirko@jh-inst.cas.cz

MARVEL analysis of the measured high-resolution spectra of $^{14}\mathrm{NH_3}$

Afaf R. Al Derzi^a, Tibor Furtenbacher^b, Jonathan Tennyson^a, Sergei N. Yurchenko^a, Attila G. Császár^b

^aDepartment of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

^bInstitute of Chemistry, Loránd Eötvös University, H-1117 Budapest, Pázmány sétány 1/A, Hungary and MTA-ELTE Research Group on Complex Chemical Systems, H-1518 Budapest 112, P.O. Box 32, Hungary

Abstract

Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top $^{14}NH_3$ molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7–17 000 cm⁻¹ region, with a large gap between 7 000 and 15 000 cm⁻¹. The MARVEL (Measured Active Rotational–Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-¹⁴NH₃, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80

Preprint submitted to JQSRT

Email addresses: j.tennyson@ucl.ac.uk (Jonathan Tennyson), csaszar@chem.elte.hu (Attila G. Császár)

years, the transitions determine only 30 vibrational band origins of $^{14}NH_3$, 8 for ortho- and 22 for para- $^{14}NH_3$. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para- $^{14}NH_3$ rovibrational energy levels is 1 724 and 3 237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for $^{14}NH_3$ are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on $^{14}NH_3$; these lines are also deposited in the Supporting Information to this paper. *Key words:* ammonia vapor; high-resolution spectroscopy; rotation-vibration energy levels

1. Introduction

There are several reasons which can be given to explain why the structure 19, 20, 21, 22, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149of the ammonia molecule have been the subject of a large number of experimental and theoretical investigations. In what follows we focus on spectroscopic issues most relevant for our own study presented here: (1) Ammonia is a simple, stable four-atomic chemical species. It is one of the principal deposits of nitrogen in molecules, it provides one of the most accurate "molecular thermometers" for the interstellar medium, and it is omnipresent in planet-forming primordial gas clouds. (2) Since ammonia contains "only" four nuclei and 10 electrons, it is among the few polyatomic molecules for which sophisticated quantum chemical (electronic and nuclear motion) computations have become feasible during the last decades. Therefore, potential energy surfaces (PESs) of varying accuracy have been derived for ammonia [8, 75, 102, 103, 106, 109, 111, 118, 126, 127, 133, 134] and rotationalvibrational states of ever increasing accuracy and of ever increasing excitation have been computed. (3) The quantum chemical model of the ammonia molecule involves a characteristic large-amplitude motion called inversion, exhibiting a symmetric double-well potential [83, 100, 107, 121, 150]. The height of the effective barrier is $2021 \pm 20 \text{ cm}^{-1}$, when relativistic effects (about $+20 \text{ cm}^{-1}$), Born–Oppenheimer diagonal corrections (about – 10 cm⁻¹), and zero-point vibrations (about $+244 \text{ cm}^{-1}$) are all considered [20, 100, 150, 151]. Treating the inversion motion is challenging for perturbative approaches and calls for fourth-age quantum chemical [152] nuclear motion treatments [131, 153, 154, 155, 156]. (4) The parent isotopologue of ammonia, ¹⁴NH₃, exists in two nuclear-spin isomer forms (Table 1), ortho (proton quartet) and para (proton doublet), which correspond to different values of the total nuclear spin (I) of the three H atoms [157]. The related nuclear-spin conversion in ammonia has been investigated in a number of publications [63, 68, 74, 122] but has not been observed in high-resolution spectroscopic experiments. (5) Ammonia is poisonous and its ever-increasing release into the atmosphere of earth has undesirable consequences; thus, monitoring of ammonia in the atmosphere and a detailed understanding of the nitrogen cycle are particularly important scientific objectives. Remote sensing of spatially resolved atmospheric concentrations of ammonia requires reliable and extensive laboratory data. (6) Ammonia spectra are proving useful for metrology studies including accurate determination of the Boltzmann constant [136, 141, 143], determining the time variation of the electron-to-proton mass ratio [116, 158], and other precision measurements [149].

These arguments are sufficient to explain why an attempt is made here to collect all the high-resolution experimental information available for $^{14}NH_3$, critically review and validate it, and determine experimental-quality rovibrational energy levels using the MARVEL (Measured Active Rotational–

$\Gamma_{\rm rve}$	Statistical weight
A'_1	0
A'_2	12
E'	6
A_1''	0
$A_2^{\prime\prime}$	12
E''	6

Table 1: Spin statistical weights and symmetry characteristics of the rovibrational states of ¹⁴NH₃ based on the $D_{3h}(M)$ molecular symmetry (MS) group.^{*a*}

^{*a*} Levels of species $A_2^{\dagger} := \{A_2^{'}, A_2^{''}\}$ belong to ortho-¹⁴NH₃, levels of species $E^{\dagger} := \{E^{'}, E^{''}\}$ belong to para-¹⁴NH₃ (by definition, ortho levels should have the higher spin statistical weights [157]), while levels of species $A_1^{\dagger} := \{A_1^{'}, A_1^{''}\}$ are so-called 'missing' levels.

Vibrational Energy Levels) [159, 160, 161, 162, 163] protocol and code. Note that MARVEL has been used successfully to determine experimental-quality energy levels for nine water isotopologues [164, 165, 166, 167, 168], three H_3^+ isotopologues [169, 170], and parent ketene [171] prior to being used here to obtain energy levels for ¹⁴NH₃ via a weighted linear least-squares fit.

2. Theoretical background

2.1. The MARVEL protocol

The methods employed in this study for collecting and critically evaluating labeled experimental transition wavenumbers and their uncertainties and for inverting the transitions in order to obtain the best possible energy levels with corresponding uncertainties are based on the concept of spectroscopic networks [159, 160, 172] and on the MARVEL inversion-refinement procedure [159, 160, 161, 162, 163]. During a MARVEL analysis we simultaneously process all the available assigned and labeled experimental lines which yield, via a weighted linear least-squares inversion protocol, the associated energy levels. In MARVEL a robust reweighting scheme [173] is adopted, whereby uncertainties for selected line positions are changed (in practice increased) during the iterative refinement of the levels [161]. After removing outliers from the experimental transition data and applying the iterative robust reweighting algorithm, a database is created containing self-consistent and uniquely labeled transitions and improved uncertainties. The procedure is such that the final energy levels and their uncertainties are guaranteed to be compatible with the (adjusted) uncertainties of the experimental line positions. This means that all experimental transitions used in the MARVEL procedure agree, within their revised stated uncertainties, with the predicted transitions built upon the MARVEL energy levels. This criterion for the uncertainty is therefore more stringent than the usual standard deviation used to represent statistical error in experiments and will usually lead to the quoted MARVEL uncertainties being systematically larger.

After the data collection is completed, the first step in the MARVEL pro-

cedure is to split the transition data into components of the spectroscopic network (SN) [160], characterizing the molecule as well as the measured data. Components of the SN contain all interconnected rotational-vibrational energy levels supported by the grand database of the labeled transitions. For $^{14}NH_3$, the transitions must form two rooted, principal components (PC) [160], an ortho and a para one (Table I). Other components of the SN whose nodes are unattached to either of the two PCs are designated as floating components (FCs). The absolute energies of the FCs cannot be determined in a MARVEL run, only the relative energies within a FC.

The second step of the MARVEL procedure involves the checking of all transitions for uniqueness of and errors in their labels. Conflicts arising from the transcription of the experimental data must be found and corrected at this stage.

The third step is the execution of the iterative weighted linear leastsquares fit. The fit must be followed carefully to ensure the correctness of the energy levels. This involves occasional rechecking of the experimental data.

Finally, in the fourth step, the MARVEL energy levels, including their labels, are checked against first-principles results given in the BYTe first-principles linelist of $^{14}NH_3$ [174]. At this stage a few transitions yielding energy levels incompatible with clear trends observable between variational and MARVEL energy levels are removed.

2.2. Nuclear spin statistics

A valid basis function for expressing the complete internal motion wavefunction results from the combination of a rovibronic (rve) state having symmetry $\Gamma_{\rm rve}$ and a nuclear spin state, having symmetry $\Gamma_{\rm ns}$, whereby the direct product of the two symmetries is an allowed symmetry of the complete internal motion wavefunction, $\psi_{\rm int}$ [157]. In other words, the allowed states fulfill the $\Gamma_{\rm rve} \otimes \Gamma_{\rm ns} \supset \Gamma_{\rm int}$ relation.

The existence of nuclear spin states which do not have the allowed symmetry for combination with a particular rovibronic state introduces the concept of 'missing' levels. Such rovibronic levels correspond to eigenvalues of the usually employed rovibronic Hamiltonians, but no transitions will originate from or end on them because of the symmetry restriction. ¹⁴NH₃ is a pyramidal molecule of the molecular symmetry group D_{3h} [157]. The statistical weights given in Table 1 for ¹⁴NH₃ arise from the use of nuclear spins I = 1for ¹⁴N and $I = \frac{1}{2}$ for ¹H and application of the Pauli principle to the identical, fermionic H atoms. The $A_1^{\dagger} := \{A_1', A_1''\}$ (ro)vibrational states are not allowed due to their zero nuclear spin statistical weight factors.

2.3. Quantum numbers and selection rules

It is a requirement of the MARVEL protocol that the input dataset contains a unique label for both the lower and the upper states involved in each transition so that the spectroscopic network corresponding to the union of the measurements can be built up unambiguously. There is no requirement that the labels have any physical significance, although this is desirable.

Due to the nature of the experimental transition data available for $^{14}NH_3$, issues were anticipated with the approximate rovibrational labels employed by the different experimental investigations. Many of the problems arising from the lack of an established and accepted set of quantum numbers for symmetric tops have recently been discussed in detail for $^{14}NH_3$ by some of us in 13DoHiYuTe [142]. In what follows we basically follow the recommendations of Ref. [142].

For consistency and to maintain a single set of uniform labels for all levels, we choose to label vibrational states in the usual normal-mode notation, $(v_1 v_2 v_3 l_3 v_4 l_4)$, where the corresponding ν_1 and ν_2 are the symmetric stretch and symmetric bend modes, respectively, and l_3 and l_4 are vibrational angular momentum quantum numbers corresponding to the doubly degenerate ν_3 (asymmetric stretch) and ν_4 (asymmetric bend) modes, respectively. Naturally, $l_m = -v_m, -v_m + 2, ..., v_m - 2, v_m$ with m = 3, 4. Furthermore, $l = l_3 + l_4$, where l represents the total vibrational angular momentum. Following Ref. [142], we choose $L_3 = |l_3|$, $L_4 = |l_4|$, and L = |l|. None of the vibrational quantum numbers are good quantum numbers.

¹⁴NH₃ is a symmetric-top rotor. The standard symmetric-top quantum numbers $(J \ k)$ are used as part of the label of the rovibrational states. Rotations are described by the rigorous quantum number J and the rotational angular momentum quantum number k (and K = |k|) corresponding to the projection of the rotational angular momentum **J** on the C_3 symmetry axis, k = -J, ..., J. Note that k is not a good quantum number. Using K in the label makes the definition of the rotational state incomplete. For example, BYTe uses rotational parity as an extra label, while 13DoHiYuTe [142] recommends $\Gamma_{\rm r}$.

Another descriptor employed is *i*, corresponding to the inversion symmetry of the ν_2 vibrational motion, which can take values of 0 or 1 (symmetric, *s*, or asymmetric, *a*, respectively). The last triad of descriptors of an energy level is its vibrational, rotational, and total symmetry, represented by $\Gamma_{\rm v}$, $\Gamma_{\rm r}$, and $\Gamma_{\rm rv}$, respectively, spanning A_1^{\dagger} , A_2^{\dagger} , and E^{\dagger} .

In summary, as only the uniqueness of the labels of the energy levels is required for a MARVEL analysis, in the present study we decided to employ labels with redundant information to describe rotational-vibrational energy levels of ${}^{14}NH_3$. The rotation-vibration levels of NH_3 are thus identified by a set of altogether 12 descriptors: $(v_1 \ v_2 \ v_3 \ v_4 \ l_3 \ l_4 \ J \ K \ i \ \Gamma_r \ \Gamma_v)$. This set of descriptors is basically the same as that employed in 13DoHiYuTe [142], except that here l_3 and l_4 are used instead of L_3 and L_4 , respectively. The present choice ensures that all labels used in MARVEL are unique, as required. Although for many low-lying states the quantum numbers chosen embody several redundancies, in "extreme" cases, involving multiple excitations in degenerate vibrations, only i is not required to uniquely specify each state. Retention of i was recommended in Ref. [142] because of the importance of the inversion mode. Variational nuclear motion computations, employed in this study extensively for validation and quality assurance, yield the rigorous descriptors J and $\Gamma_{\rm rv}$ without difficulty; other approximate quantum numbers and symmetry descriptors can usually be extracted but this is not without difficulties. The vibrational and rotational labels are sometimes referred to as $(v_1 \ v_2 \ v_3^{l_3} v_4^{l_4})$ and $[J \ K]$, respectively.

Experimentalists prefer to label measured transitions as $\Delta K \Delta J(J, K)_{s/a}$ or $\Delta K \Delta J_K(J)$, and use the standard P, Q, R notation for $\Delta K := K_f - K_i =$ -1, 0, +1 and $\Delta J := J_f - J_i = -1, 0, +1$, respectively. These labels were converted to the 13-element description defined above. We note that for a number of data sources it proved necessary to systematically relabel data as the published labels were inconsistent with and occasionally did not map into the 13 descriptors employed in this study.

Before processing the published transition data, we checked, as thoroughly as possible, whether the transition labels were correct, *i.e.*, correspond to the known selection rules [142], and consistent. The selection rules related to approximate quantum numbers are based on symmetry relations. The explicit selection rules applicable for NH₃ are $\Delta J = 0, \pm 1, A'_2 \leftrightarrow A''_2$ and $E' \leftrightarrow E''$. The symmetry selection rules give rise to a rule that $\Delta k = 3n$ with n = 0, 1, 2, ...; when applying this rule one needs to remember that each $K = 1, 2, 4, 5, 7, 8, \ldots$ comprise a degenerate pair $k = \pm K$ which means that, for example, transitions of the form $K' = 1 \leftarrow K'' = 2$ are allowed, since 1 - (-2) = 3, as well as -1 - (+2) = -3 [69]. Ammonia shows a strong propensity to undergo transitions with $\Delta k = 0$ for transitions between states with A_1^{\dagger} and A_2^{\dagger} vibrational symmetry. If all transitions had this form, each value of K would give rise to a distinct component of the SN of $^{14}NH_3$. However, so-called "forbidden" transitions with $\Delta k = 3, 6, \dots$ [45, 69] can link these components; "forbidden" transitions therefore play a particularly important role in that they connect components which would otherwise be distinct.

Where possible, we corrected those descriptors of the labels which proved to be inconsistent among the many sources. To expedite this procedure, for many molecules help comes from rovibrational labels taken from computations based on the use of an effective Hamiltonian (EH). However, for the majority of the higher-lying energy levels, results from accurate EH computations are not available for ¹⁴NH₃. Validation of some of the labels attached to the observed transitions was thus performed as follows. Transitions were examined for consistency of the upper levels derived from combination difference (CD) relations. This method is a simple and powerful tool for the assignment of rovibrational spectra; however, it cannot be applied to transitions not part of several CD relations. All the transitions associated with a given rotational level of the vibrational ground state have been considered for combination differences. At this stage, conflicts in the labels could be traced and corrected. Many CD relations for other vibrational states have also been checked.

2.4. BYTe

Yurchenko *et al.* published two ¹⁴NH₃ linelists [174, 175] and one for ¹⁵NH₃ [176], computed using variational nuclear motion procedures outlined below. The initial ¹⁴NH₃ linelist [175] is only valid for applications up to 300 K, while their hot ¹⁴NH₃ linelist [174], which they named BYTe, is more extensive, more accurate, and more useful for higher temperatures; thus, only BYTe will concern us here.

The BYTe linelist [174], comprised of 1 373 897 energy levels and 1 138 323 351 transitions, was computed using the nuclear motion program TROVE [154], a spectroscopically-determined potential energy surface [177], and an *ab initio* dipole moment surface [110]. Although BYTe offers a very extensive range of energy and associated transitions, with levels up to 18 000 cm⁻¹ and rotational states with $J \leq 36$, the underlying PES means that these levels become increasingly unreliable above about 5 000 cm⁻¹. Above 5 000 cm⁻¹ more accurate calculated energy levels are available from Huang *et al.* [118, 178, 179]; however, during these studies no transition intensities were computed and therefore they do not provide a linelist.

2.5. Vibrational labels

As mentioned above, the MARVEL procedure requires all states to be distinctly labelled in a consistant, if not necessarily physically meaningful, manner. The energy levels of ammonia become complicated at higher energies and a small number of works considered here [57, 95, 96, 148] make line assignments but do not provide a full set of labels for the upper vibrational state involved in the transition. Since these works provide valuable information on ammonia energy levels we attempted to provide vibrational labels so that the measured transitions could be included in our analysis. We would warn against ascribing too much physical meaning to these new labels.

In performing this labeling a distinction must be made between spectra which lie in the frequency range covered by the BYTe linelist and that of 86CoLe [57] which does not. For unlabelled transitions lying within the BYTe regions an attempt was made to label transitions either from other (labelled) experimental works or using BYTe, in which case BYTe labels were adopted. In what follows the labeling is discussed separately for each relevant source.

99KlBrTaKo [95] contains 138 partially assigned lines between 3010 and 3554 cm^{-1} . We were able to label 114 of these and regard the other 24 as unvalidated.

00CoKlTaBr [96] contains 22 partially labelled lines between 1423 and 1905 cm⁻¹. All of these lines could be labelled based on the information available from the other experimental sources and BYTe.

The cold spectrum given in 14FoGoHeSo [148] only contains vibrationally unlabelled transitions. We were able to label about half of the reported transitions based on our MARVEL analysis of all other sources. These transitions are included in the final MARVEL analysis.

For the visible wavelength spectra of 86CoLe [57] a somewhat different strategy was required to label the observed transitions. All lower states were assumed to belong to the ground vibrational state, 000⁰0⁰. Feasible upper-state vibrational labels were taken from BYTe and arranged in simple energy order. The vibrational labels were picked one by one to supplement the upper state label with the simple guiding principle to keep the number of distinct labels at a minimum. This method generated a self-consistent set of transitions with self-consistent labels but the vibrational labels chosen are without physical meaning. In the end we were able to label all the 323 transitions in 86CoLe using only 18 vibrational band origins (VBO). A significant number of upper states could be confirmed by CD relations. We are thus confident of the upper state energies given by this procedure if not the labels.

3. Experimental data and data treatment

For ¹⁴NH₃, there exists a large number of at least partially assigned highresolution experimental spectra [2, 13, 20, 29, 30, 31, 38, 41, 42, 45, 46, 50, 51, 52, 53, 54, 57, 62, 67, 69, 76, 77, 79, 84, 85, 86, 88, 91, 92, 95, 96, 98, 99, 112, 119, 128, 129, 130, 132, 135, 139, 140, 142, 146, 148]. The data from room-temperature measurements are augmented by data from a number of warm (373 K) [31, 46], hot (up to 1640 K) [129, 135, 137, 138], and cold [93, 148] spectra. Hot spectra are rich in high-J and hot-band transitions but often have significantly larger uncertainties and a much increased chance of misassignment and mislabeling. Indeed, the hot emission spectra of 12HaLiBeb [138] remain substantially unassigned.

Some of the papers on ammonia spectra [32, 33, 34, 36, 38, 39, 51, 55, 57, 66, 71, 78, 81, 90, 94, 97, 101, 108, 117] report only (temperature-dependent) line intensity or lineshape data or treat the theory of the ammonia spectra [70, 83, 180, 110, 118, 133, 134]; therefore, they are not employed in a direct fashion in this study though they proved to be useful during the preliminary analysis of the measured transitions. Some of the papers contain unassigned transitions which were not used during the MARVEL analysis though attempts, described above, were made to add missing vibrational labels to assigned but partially labelled spectra.

Measured spectra of ¹⁴NH₃ vapor are basically a superposition of two separate spectra, that of ortho-ammonia and para-ammonia, the strongly forbidden transitions between the two nuclear-spin isomers have never been observed. Nuclear quadrupole moments, Q, characterize the deviation of the electrical charge distribution of an atomic nucleus from perfect spherical symmetry. $Q(^{14}N)$ is much bigger than $Q(^{1}H)$. Thus, ¹⁴NH₃ energy levels experience considerable hyperfine splittings leading to a hyperfine structure (hfs) [113, 123]. The hfs is not taken into account in the present study.

The information about the experimental sources of rovibrational transitions, including wavenumber range and physical conditions of the measurements, as well as the total number of measured and validated transitions of the source are given in Table 2. Comments relevant to the characterization of the sources is provided in Section 3.2.

3.1. Magic numbers

MARVEL results in the correct energy levels in an absolute sense for components not connected to the principal components (PC) of the SN of 14 NH₃ only if the value of the lowest-energy level within a higher-energy component, zero by definition, is shifted to the correct transition energy. It is rather difficult to connect any floating components to the two principal components. Due to the limited amount of pure rotation data for 14 NH₃, the experimental SN contains 154 FCs, comprised of 462 transitions. To maintain the experimental character of the MARVEL energy levels, no attempt was made to connect the FCs to the PCs using information from either EHs or first-principles computations.

Since the energy separation between ortho and para states is not measured experimentally, it is necessary to fix it for the lowest ortho and para levels using what we call a magic number. This was done by setting the energy of the $(0 \ 0 \ 0^0 \ 0^0)[11]$ state to 16.172993 cm⁻¹ resulting from an EH fit [52], with an assumed zero uncertainty.

Tag	$Range/cm^{-1}$	Trans.		Physical o	conditions		Comments
	·	A / V	T/K	p/hPa	Rec.	L/m	-
75PoKa [31]	0.24 - 1.3	119 /119	373	0.004 - 0.01			
74CoPo [30]	0.69 - 2.0	50 / 50	RT		SMW		
80Cohen [41]	2.1 - 4.1	18 / 18	RT		SMW		
82SaHaAmSh [46]	2.3 - 5.9	12 / 12	373	0.04	LSS,SMW	0.3/3.5	
92SaEnHiPo [76]	2.4 - 1859.7	808 / 805	RT	0.04	SMW,FTS	3.5/2.0	
98BeUrWi [91]	4.7 - 25.7	5 / 5	RT	0.004		3.9	(IIa
81UrSpPaKa [45]	4.7 - 969.0	299 / 299	RT	1.05	SMW		(III
84PoMa [51]	10 - 1250.2	534 / 532	RT,296	0.07 - 3.3	FTS	0.2, 0.5	
88TaEnHi [69]	10.7 - 11.1	14 / 14	RT	0.07	LMDR	3.5	(II
10YuPeDrSu [129]	13.3 - 832.7	2166 / 1782			THz		(IId
06ChPePiMa [181]	15.6 - 46.4	30 / 30	77,300	0.07 - 0.27			
71HeDeGo [29]	19.9 - 19.9	1 / 1	\mathbf{RT}		SMW	0.3	
94BrPe [81]	39.0-219,3331-3415	174/174					
96KrTrBoBa [86]	40.5 - 40.5	1 / 1	RT		SMW,THz		
11DrYuPeGu [130]	84.0-89.0	5 / 5	18	0.07 - 0.67	SMW,THz	0.06	
99KlBrTaKo [95]	363-3634	2223 / 2209	296	0.05 - 0.31	FTS	0.1 - 73	(II
86UrCuMaNa [62]	511 - 1351	599 / 576	\mathbf{RT}	0.01,0.2	FTS	192	
86HeBiBa [58]	620-739	184 / 184					(II
80UrSpPaMc [42]	678-2014	333 / 333	\mathbf{RT}	0.27 - 13.3	IR,GRS		
83UrPaKaYa [50]	709-1159	640 / 639	\mathbf{RT}	1	FTS,DFLS	0.6	(II
99FaYa [94]	771 - 1179	126 / 126					
86SaScMaPo [60]	772-1157	138 / 138					
11ZoShOvPo [135]	780-2029	6119 / 5897	573 - 1593	0.001 - 0.66	FTS,EMS	1.2	(II
85BrTo [54]	814-1122	81 / 81	\mathbf{RT}	0.001	FTS	2.4 - 193	
84Weber [53]	853-1880	176 / 174	\mathbf{RT}	0.013		0.25	
94ChChCh [82]	929-955	49 / 49					
81SaMiWo [43]	933-1085	32 / 32					
78Nereson [35]	943-956	27 / 27					(11
00UrHeKhFi [98]	948-952	2 / 2	RT	0.0001 - 0.0007	IR-IR,SDST	2.0	(11
79HiJeFa [38]	949-949	1 / 1	RT	0.13	DFLS	0.3	
11LeTrDaBo [136]	966-966	1 / 1	273.15				(II
98FiKhRuLe [92]	967-967	1 / 1	RT	0.004		1.4	(11
11GuJeMoPe [132]	1126-1171	22 / 22	253 - 296	1.6 - 20	FTS		(IIn
84UrCuNaPa [52]	1168 - 2127	951 / 941	RT	0.01,0.2	FTS	1.5	(II
13DoHiYuTe[142]	1170-5170	2103 / 2103					(II
01CoTaKlBr [99]	1202 - 2749	1323 / 1321	295-300	0.3 - 3.3	FTS	0.25 - 433	(II
00CoKlTaBr [96]	1333-3454	1202 / 1198	295-300	0.3 - 1.3	IR-IR	0.04 - 433	(II
95KlTaBr [84]	2087-3115	2207 / 2117	294-298	0.06 - 0.9	FTS	1.5	
89GuAbTuRa [71]	3023-3675	1375 / 1375					
85AnFiFrIl [182]	3135-3620	624 / 610	297	6.7 - 26.7	DFLS	1.5	(II
85UrMiRa [56]	3148-4504	481 / 479					
93PiDa [79]	3331-3415	100 / 100	297	6.7 - 26.7	DFLS	0.58	(II
14DiMiQuSc [147]	3355-3355	1/1					(II
89UrTuRaGu [72]	3970-4648	892 / 890					·
14CeHoVeCa [146]	4275-4340	235 / 230					
96BrMa [85]	4791-5293	638 / 638	RT,cold	0.0013	FTS	0.25 - 25.0	(III
12SuBrHuSc [140]	6347-6974	1089 / 1058	185-296	0.1 - 2.7	FTS	0.25 - 24.4	(II)

Table 2: Data sources and their characteristics for $^{14}\mathrm{NH}_3$. See section 3.2 for comments.^a

93LuHeNi [77]	6405-6881	380 / 332	293-294	2.1, 1.3	FTS	0.2 - 2.4	(IIw)
14FoGoHeSo [148]	6410-6764	144 / 144	14	830/0.15	CRDS,CEAS	max.700	(IIx)
07LiLeXu [115]	6421 - 6678	104 / 104					(IIy)
08LeLiXu [119]	6440 - 6832	233 / 194	RT	0.4	VISTA	2.8	(IIz)
10PeHa [128]	6460 - 6541	14 / 12					
04XuLiYaTr [108]	6466	1 / 1					
99BePeMe [93]	6540 - 6625	22 / 22	10,30	0.003	CEAS		(IIaa)
86CoLe [57]	15259 - 15553	323 / 321	200,295		MODR		(IIbb)

^a The tags listed are used to identify experimental data sources throughout this paper. The range given represents the range corresponding to validated wavenumber entries within the MARVEL input file and not the range covered by the relevant experiment. Uncertainties of the individual lines can be obtained from the Supporting Information. Trans. = transitions, with A = number of assigned transitions in the original data source, V = number of transitions validated in this study. T = temperature (K), given explicitly when available from the original publication, with RT = room temperature. p = pressure (hPa). Rec. = experimental technique used for the recording of the spectrum, with CARS = coherent anti-Stokes Raman spectroscopy, CEAS = cavity enhanced absorption spectroscopy, CRDS = cavity ringdown spectroscopy, DFLS = difference frequency laser spectroscopy, EMS = emission spectroscopy, FMSS = frequency-multiplied sub-millimetre spectroscopy, FTS = Fourier-transform spectroscopy, ICLAS = intracavity laser absorption spectroscopy, LD = Lamb dip, LMDR = laser-microwave double resonance, MMW = millimeterwave spectroscopy, MODR = microwave double resonance spectroscopy, MRE = multiresonance experiment, NR = not relevant, SMW = submillimeter-microwave spectrometer, THz = terahertz spectrometer, TuFIR = tunable far infrared, and VISTA = vibrational isotopic shift technique spectroscopy.

3.2. Comments on the data sources

(IIa) 98BeUrWi [91] Rotation-vibration transitions in the ν_2 band.

(IIb) 81UrSpPaKa [45] The lines measured include a few $\Delta k = \pm 3$ "perturbation allowed" transitions.

(IIc) 88TaEnHi [69] Reports Q-branch ($\Delta J = 0, J = 4 - 10$) $\Delta k = \pm 1 \leftarrow \mp 2$ rotational "perturbation-allowed" $s \leftarrow s$ and $a \leftarrow a$ transitions in the submillimeter-wave region (around 330 GHz).

(IId) 10YuPeDrSu [129] Employed numerous spectroscopic techniques to study high J transitions of the ground and the ν_2 states. Measurements were carried out using a frequency multiplied submillimeter spectrometer at the Jet Propulsion Laboratory (JPL), a tunable far-infrared spectrometer at the University of Toyama, and a high-resolution Bruker IFS 125 Fourier transform spectrometer (FTS) at the synchrotron facility SOLEIL. Highly excited ammonia was created using radiofrequency and dc discharges, which allowed assignments of transitions with J up to 35. This source contains 222 $\Delta k = 3$ transitions assigned for the first time.

(IIe) 99KlBrTaKo [95] The A/V values concerning the transitions originally assigned in this source are 2223/2205.

(IIf) 86HeBiBa [58] This source contains a substantial number of unassigned lines.

(IIg) 83UrPaKaYa [50] Nine calculated lines removed prior to the MARVEL analysis.

(IIh) 11ZoShOvPo [135] Presents a partial assignment of the emission spectra due to 12HaLiBeb [138]. 12HaLiBeb recorded ammonia emissions at a range of temperatures comprising 100 °C intervals between 300 and 1300 °C plus 1370 °C. Two regions are covered: 740 to 1690 cm⁻¹ (region A) and 1080 to 2200 cm⁻¹ (region B). All spectra were recorded at a resolution of 0.01 cm⁻¹ and were generated from 240 and 80 scans for regions A and B, respectively. The overall accuracy of the line positions after calibration is about ± 0.002 cm⁻¹. An unassigned experimental linelist based on these spectra were provided by 12HaLiBea [137].

(IIi) 78Nereson [35] Contains 50 measured lines in the 10.6 μ m region but only 27 of them could be assigned.

(IIj) 00UrHeKhFi [98] High-accuracy vibration-rotation-inversion frequen-

cies.

(IIk) 11LeTrDaBo [136] A high-accuracy determination of a single line complete with full hyperfine structure as part of a campaign to get a more accurate determination of the Boltzmann constant, $k_{\rm B}$.

(III) 98FiKhRuLe [92] Double-resonance sub-Doppler study of the allowed and $\Delta k = -3$ forbidden Q(3,3) transitions which have v = 2. There is only one measured transition in this source, all others are calculated ones.

(IIm) 11GuJeMoPe [132] Hot ammonia spectra.

(IIn) 84UrCuNaPa [52] Transitions within the ν_4 state, including "forbidden" $\Delta k \pm 2$ ones. This source contains low-energy transitions corresponding to an effective Hamiltonian and these transitions have been used successfully at an early stage of the study to ensure the completeness of the pure rotational energy levels.

(IIo) 13DoHiYuTe[142] The database provided in this paper contains 40 227 transitions. Only the 2 103 newly assigned experimental transitions were utilized during the present analysis.

(IIp) 01CoTaKlBr [99] The initial uncertainty employed during the MAR-VEL analysis is ± 0.002 cm⁻¹.

(IIq) 00CoKlTaBr [96] Terahertz spectroscopy in the $v_2 = 1$ state. The A/V values concerning the transitions originally assigned are 1180/1176.

(IIr) 85AnFiFrII [182] Besides the transitions employed in this study, this source contains 60 Raman lines that are not included in the MARVEL database.

(IIs) 93PiDa [79] Uncertainty used is 0.001 cm^{-1} .

(IIt) 14DiMiQuSc [147] Molecular beam study of a single line using two

photon infrared-laser induced population transfer; the high resolution study resolves the hyperfine structure.

(IIu) 96BrMa [85] This is a distinct source covering the region 4790–5295 $\rm cm^{-1}$ within HITRAN, from where most of the lines were taken. As pointed out in 13DoHiYuTe [142], versions earlier than 2012 of HITRAN contained a mistake which made alsmost all of the 96BrMa transitions strongly forbidden. This paper suggests that 89CoLe [70] should be recalibrated by +0.004 $\rm cm^{-1}$. No recalibration was attempted during the MARVEL analysis.

(IIv) 12SuBrHuSc [140] High-resolution spectra recorded at an unapodized resolution of about 0.0111 from 3000–7500 cm⁻¹ with a signal to noise ratio of nearly 1000:1, using the McMath-Pierce FTS located at Kitt Peak National Observatory. Residual $H_2^{16}O$ features inside the FTS were used as frequency calibration. The accuracy of the measured lines goes from 0.0001 to 0.003 cm⁻¹, the latter for badly blended features. This source contains a substantial number of unassigned lines.

(IIw) 93LuHeNi [77] Contains a total of 1 710 observed lines from spectra of the 1.5 μ m region recorded using a FTS. Assignments, performed through the ground-state combination difference (GSCD) technique, are reported for 283 lines in the strong $\nu_1 + \nu_3$ combination band and for 98 in the weak $2\nu_3$ overtone band. Consequently, numerous lines remained unassigned in the spectra. There are indications from more recent measurements [101, 125] that a small ($\approx 0.002 \text{ cm}^{-1}$) recalibration of 93LuHeNi data may be required. However, the more recent measurements are for only relatively few lines and thus no recalibration [166] was attempted during the MARVEL analysis.

(IIx) 14FoGoHeSo [148] Jet-cooled spectra of ammonia, the rotational tem-

perature is around 14 K and 17 K in the CRDS and CEAS experiments, respectively. The paper strictly focuses on rotational issues and vibrational labels are provided in this work. We were able to give vibrational labels to 144 of the 265 measured lines presented.

(IIy) 07LiLeXu [115] This paper reports lines from two experiments: most lines were recorded using an an external cavity tunable diode laser (ECTDL) spectrometer but a set of 15 lines were recorded using an FTS under unspecified conditions, these lines are cited as N. Ibrahim, J. Orphal, P. Chelin, C.E. Fellows (2005). We note that 08LeOrRuHe [120] reported an unassigned FTS spectrum in this region, alongside an unassigned CDEAS spectrum recorded at higher frequencies, but the line positions do not correspond with those reported by 07LiLeXu.

(IIz) 08LeLiXu [119] ECTDL spectra recorded from 6400 to 6808 cm⁻¹. This paper uses VISTA, a vibrational isotopic shift technique, for assignment, for classifying spectral lines into their respective absorption bands from their fingerprint isotopic shifts.

(IIaa) 99BePeMe [93] The significantly simplified spectrum, containing only transitions starting from J'' = 0, 1, 2, of two perpendicular bands, $\nu_1 + \nu_3$ and $\nu_1 + 2\nu_4$, of rotationally-cold (temperature between 10 K and 30 K) ammonia was recorded using a diode laser. No band heads have been observed due to their low intensity. 18 $\nu_1 + \nu_3$ and nine $\nu_1 + 2\nu_4$ ($l_4 = 2$) transitions were reported. Lines in this spectrum are calibrated to lines given by 93LuHeNi [77]; since no uncertainty is given the uncertainty given by 93LuHeNi, ± 0.001 cm⁻¹, was assumed.

(IIbb) 86CoLe [57] This paper reports spectra recorded using both microwave-

detected microwave-optical double resonance spectra and of photoacoustic absorption spectra which probed N–H 5 and 6 quanta overtones. Vibrational state labels, obtained here as described in section 2.4, must be regarded as arbitrary.

Table 3: Vibrational band origins (VBO) for ¹⁴NH₃, with standard abbreviated (SA) and detailed normal-mode $(v_1v_2v_3v_4L_3L_4L)$ labels, vibrational symmetries (Γ_v) , MARVEL uncertainties (Unc.), and the number of validated rotational-vibrational levels (RL) associated with the vibrational levels present in the MARVEL database.^{*a*}

SA	$v_1v_2v_3v_4$ L ₃ L ₄ L	$\Gamma_{\rm v}$	$\rm VBO/cm^{-1}$	$Unc.^a$	RL
$ZPVE \equiv 0^+$	0 0 0 0 0 0 0	A'_1	0.000000^{b}	994	359
0-	0 0 0 0 0 0 0	$A_2^{\prime\prime}$	0.794368	697	355
$\begin{array}{c} \nu_{2}^{+} \\ \nu_{2}^{-} \\ 2\nu_{2}^{+} \\ \nu_{4}^{+} \\ \nu_{4}^{-} \\ 2\nu_{2}^{-} \end{array}$	$0 \ 1 \ 0 \ 0 \ 0 \ 0$	A'_1	[932.4]		306
ν_2^-	$0 \ 1 \ 0 \ 0 \ 0 \ 0$	$A_2^{\prime\prime}$	968.122894	497	310
$2\nu_{2}^{+}$	0 2 0 0 0 0 0 0	A'_1	[1597.5]		172
ν_4^+	$0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$	E'	1626.274636	1544	295
ν_4^-	$0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$	$E^{\prime\prime}$	1627.372362	2168	300
$2\nu_{2}^{-}$	0 2 0 0 0 0 0 0	$A_2^{\prime\prime}$	1882.178422	1152	225
$_{3\nu_{2}^{2+}}$	0 3 0 0 0 0 0	A'_1	[2384.2]		98
$(\nu_2 + \nu_4)^+$	$0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$	E'	2540.523012	1411	162
$(\nu_2 + \nu_4)^-$	$0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$	$E^{\prime\prime}$	2586.126091	1980	164
$3\nu_{2}^{-}$	0 3 0 0 0 0 0	$A_2^{\prime\prime}$	2895.522916	1411	87
:	1 state missing at $3189(E')$				
$2\nu_4^{0,+}$	0 0 0 2 0 0 0	A'_1	[3216.0]		61
$2\nu_4^{0,-}$	0 0 0 2 0 0 0	$A_2^{\prime\prime}$	3217.588264	1782	48
$\begin{array}{c} 2\nu_4^{0,-} \\ 2\nu_4^{2,+} \\ 2\nu_4^{2,-} \\ \nu_1^+ \\ \nu_1^- \\ \nu_3^+ \\ \nu_3^- \\ \nu_3^- \\ 4\nu_2^+ \end{array}$	$0 \ 0 \ 0 \ 2 \ 0 \ 2 \ 2$	E'	3240.162903	3086	117
$2\nu_4^{2,-}$	$0 \ 0 \ 0 \ 2 \ 0 \ 2 \ 2$	$E^{\prime\prime}$	3241.598311	1782	106
ν_{1}^{+}	$1 \ 0 \ 0 \ 0 \ 0 \ 0$	A'_1	[3336.1]		62
ν_1^-	$1 \ 0 \ 0 \ 0 \ 0 \ 0$	$A_2^{\prime\prime}$	3337.097887	3651	62
ν_{3}^{+}	$0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$	E'	3443.628071	968	125
ν_3^-	$0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$	$E^{\prime\prime}$	3443.987642	968	131
$4\nu_{2}^{+}$	$0 \ 4 \ 0 \ 0 \ 0 \ 0 \ 0$	A'_1	[3462.5]		20
$(2\nu_2 + \nu_4)^-$	$0 \ 2 \ 0 \ 1 \ 0 \ 1 \ 1$	$E^{\prime\prime}$	[3502.1]		10
:	2 states missing at $4007(E')\&4062(A''_2)$				
$(\nu_2 + 2\nu_4^0)^+$	0 1 0 2 0 0 0	A'_1	[4115.6]		24
$(\nu_2 + 2\nu_4^2)^+$	$0 \ 1 \ 0 \ 2 \ 0 \ 2 \ 2$	E'	[4135.9]		22
$(\nu_2 + 2\nu_4^0)^-$	$0 \ 1 \ 0 \ 2 \ 0 \ 0 \ 0$	$A_2^{\prime\prime}$	[4173.3]		12
$(\nu_2 + 2\nu_4^2)^-$	$0 \ 1 \ 0 \ 2 \ 0 \ 2 \ 2$	$E^{\prime\prime}$	[4193.1]		22
$(\nu_1 + \nu_2)^+$	$1 \ 1 \ 0 \ 0 \ 0 \ 0$	A'_1	[4294.5]		69
$(\nu_1 + \nu_2)^-$	$1 \ 1 \ 0 \ 0 \ 0 \ 0$	$A_2^{\prime\prime}$	4320.031622	2080	70
$(\nu_2 + \nu_3)^+$	$0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$	E'	4416.915038	1000	109
$(\nu_2 + \nu_3)^-$	$0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1$	$E^{\prime\prime}$	4435.446463	2000	112
	2 states missing at $4530(E'')\&4695(A'_1)$				
$(2\nu_2 + 2\nu_4^0)^+$	0 2 0 2 0 0 0	A_1'	[4754.3]		1
	2 states missing at $4773(E')\&4800(E')$				
$3\nu_4^{1,-}$	0 0 0 3 0 1 1	$E^{\prime\prime}$	[4802.4]		1
:	4 states missing(4842–4845)				
$(\nu_1 + \nu_4)^+$	4 states missing(4642-4643) 1 0 0 1 0 1 1	E'	4955.756078	1000	100
$(\nu_1 + \nu_4)^-$ $(\nu_1 + \nu_4)^-$	1 0 0 1 0 1 1 1 0 0 1 0 1 1	$E^{\prime\prime}$	[4956.9]	1000	23
$(\nu_1 + \nu_4)$ $(\nu_1 + 2\nu_2)^+$	1 2 0 0 0 0 0	A'_1	[4950.9]		23
$(\nu_1 + 2\nu_2)^+$ $(\nu_3 + \nu_4)^+$	0 0 1 1 1 1 0	A'_2	[5051.4]		30
$(\nu_3 + \nu_4)^-$ $(\nu_3 + \nu_4)^-$	0 0 1 1 1 1 0	$A_{1}^{\prime\prime}$	[5051.4]		23
(v3 T V4)	0 0 1 1 1 1 0	¹ 1	[0002.1]		20

•	4 states $missing(5052-5070)$				
$(2\nu_2 + 2\nu_4^0)^0$	0 2 0 2 0 0 0	$A_2^{\prime\prime}$	[5092.6]		1
	1 state missing at $5103(E')$				
$(2\nu_2 + 2\nu_4^2)^-$	0 2 0 2 0 2 2	$E^{\prime\prime}$	[5112.8]		2
$(2\nu_2 + \nu_3)^+$	$0\ 2\ 1\ 0\ 1\ 0\ 1$	E'	[5146.3]		16
	$0 \ 2 \ 1 \ 0 \ 1 \ 0 \ 1$	$E^{\prime\prime}$	[5352.8]		11
:	25 states missing(5235-6231)				
$(2\nu_2 + 3\nu_4^1)^+$	0 2 0 3 0 1 1	E'	[6310.3]		3
:	10 states missing				
$2\nu_{1}^{+}$	$2 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	A_1'	[6514.1]		1
	1 state missing				
$(\nu_1 + 2\nu_4^2)^+$	1 0 0 2 0 2 2	E'	6556.421597	1988	38
-	$1 \ 0 \ 0 \ 2 \ 0 \ 2 \ 2$	$E^{\prime\prime}$	6557.930442	5185	40
:	3 states missing				
$(\nu_1 + \nu_3)^+$	$1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$	E'	6608.821870	1988	75
$(\nu_1 + \nu_3)^-$	1 0 1 0 1 0 1	$E^{\prime\prime}$	6609.753328	2478	77
$(\nu_1 + 2\nu_4^0)^+$	$1 \ 0 \ 0 \ 2 \ 0 \ 0 \ 0$	A'_1	[6648.2]		1
	$1 \ 0 \ 0 \ 2 \ 0 \ 0 \ 0$	$A_{2}^{\prime \prime}$	[6649.8]		1
$(\nu_3 + 2\nu_4^0)^+$	$0 \ 0 \ 1 \ 2 \ 1 \ 0 \ 0$	$\bar{A'_2}$	[6651.4]		3
$(\nu_3 + 2\nu_4^0)^-$	$0 \ 0 \ 1 \ 2 \ 1 \ 0 \ 0$	$A_1^{\prime\prime}$	[6652.6]		3
	2 states missing				
$(\nu_3 + 2\nu_4^2)^+$	0 0 1 2 1 2 1	E'	6677.431678	1990	59
$(\nu_3 + 2\nu_4^2)^-$	$0 \ 0 \ 1 \ 2 \ 1 \ 2 \ 1$	$E^{\prime\prime}$	6678.310343	1990	60
$(\nu_2 + 3\nu_4^1)^-$	$0 \ 2 \ 0 \ 3 \ 0 \ 1 \ 1$	$E^{\prime\prime}$	6678.929943	2000	3
	8 states missing				
$2\nu_2 + \nu_3 + \nu_4$	0211 1 1 0	A'_1	[6719.3]	_	1
$2\nu_3$	0 0 2 0 0 0 0	-	[6792.0]		24
$2\nu_3$	0 0 2 0 0 0 0	A'_1	[6793.1]		26
	1 state missing(E'')				
$2\nu_3$	0 0 2 0 2 0 2	E'	6850.244878	5300	17
$2\nu_3$	0 0 2 0 2 0 2	$E^{\prime\prime}$	6850.654943	3900	18

^a The VBOs are reported in the order of increasing energy. The uncertainties are given in units of 10^{-6} cm⁻¹. The approximate VBO values given in brackets are taken from Ref. [183].

 $^{b}\,$ The value of the vibrational ground state was fixed to zero with zero uncertainty.

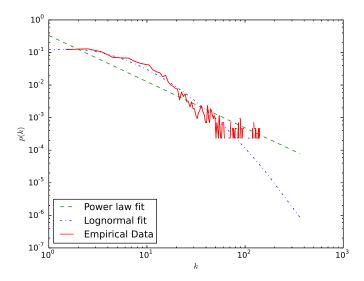


Figure 1: Size-frequency distribution of the experimental spectrocopic network (SN) of ${}^{14}NH_3$.

4. MARVEL energy levels

4.1. The SN of $^{14}NH_3$

Discussion of the experimental-type MARVEL energy levels cannot be complete without first discussing the spectroscopic network resulting in the MARVEL energy levels.

The rotational-vibrational transitions characterizing one-photon (absorption or emission) experiments form a spectroscopic network (SN) [159, 160, 172]. SNs are large, finite, weighted, rooted graphs, where the vertices are discrete energy levels (with associated uncertainties), the edges are transitions (with measured uncertainties), and in a simple picture the weights are provided by the transition intensities. The root of the graph is the lowest energy level. According to the quantum mechanical selection rules, the transitions of ¹⁴NH₃ generate two principal components (PC). The root of the

para component is the $[J \ K] = [0 \ 0]$ energy level of the ground vibrational state, while the root of the ortho component is the $[J \ K] = [1 \ 1]$ level of the same VBO.

The size-frequency $[\log k - \log p(k)]$ distribution of the links is one of the most important properties of complex networks. As earlier studies suggested for asymmetric tops [159, 160, 172], the degree-distribution functions of experimental SNs of molecules show a heavy-tailed distribution, indicating that the SNs are characterized by hubs, *i.e.*, a small number of nodes with a large number of connections. Figure 1 depicts the degree-distribution function of $^{14}NH_3$, exhibiting the expected heavy-tailed behavior. As observed before [172], it is hard to distinguish between the power-law and the log-normal distributions, *i.e.*, whether the degree distribution follows a power-law or log-normal distribution. Nevertheless, it is clear that the experimental SN of ${}^{14}\mathrm{NH}_3$ contains hubs. As expected, the most important hubs are on the ground vibrational state. The three largest hubs are as follows: $[J \ K \ \Gamma_r] =$ $[5 \ 3 \ A_1^{"}], [5 \ 3 \ A_2^{"}], and [4 \ 2 \ E']$ with 170, 167, and 161 links, respectively. This observation agrees with our earlier experience [160] that the rotational quantum numbers of the hubs are about J = 4 to 6, which is partly due to the fact that most measurements are performed at room temperature.

4.2. Comparison of MARVEL and BYTe energy levels

As an independent validation of the MARVEL energy levels and their labels, systematic comparisons were performed with variational nuclear motion computations. For this comparison the so-called BYTe [134] (see section 2.4) energy list was used.

Since neither the rotational nor the vibrational labels of the energy levels

in BYTe are derived from experiments, the MARVEL and the BYTe labels are occasionally different. Therefore, only the values of energies, the exact descriptors, and the inversion symmetry were used for comparison. We used a matching cut-off of 0.5 cm⁻¹ between the MARVEL and BYTe energies up to 5000.0 cm⁻¹ and 1.0 cm⁻¹ above this energy. The BYTe list provides the rotational ($\Gamma_{\rm rot}$), the vibrational ($\Gamma_{\rm vib}$), and the total symmetry ($\Gamma_{\rm tot}$), but only the total symmetry is exact. Therefore, (in a few cases) the rotational and vibrational symmetries of the MARVEL levels may differ from the BYTe symmetry labels. Nevertheless, each MARVEL level fulfills $\Gamma_{\rm rot}^{\rm MARVEL} \otimes \Gamma_{\rm vib}^{\rm MARVEL} = \Gamma_{\rm tot}^{\rm BYTe}$. As a result, each MARVEL energy level has a corresponding BYTe energy level, as far as the value of the energy level, the J quantum number, and the total symmetry are concerned.

4.3. VBOs

The MARVEL VBOs determined for ¹⁴NH₃ are given in Table 3. Despite the fact that a large number of rovibrational transitions have been measured for ¹⁴NH₃, there are only 25 VBOs, seven for ortho- and 18 for para-¹⁴NH₃, determined for this molecule. However, it should be noted that direct determination of the VBO states of A_1^{\dagger} symmetry is not possible since these states cannot possess a rotationless (J = 0) state. In fact, the coverage of VBOs is complete up to 3 500 cm⁻¹, the first missing VBO, of E'' symmetry, is at 3 502 cm⁻¹. That more para-¹⁴NH₃ VBOs are known than ortho ones is in line with the fact that a larger number of para-¹⁴NH₃ energy levels are known, despite that the spin-statistical weight is twice as large for the ortho levels. This is due to the selection rules governing the transitions.

The uncertainties of the VBOs are fairly substantial, usually on the order

of 0.001–0.004 cm⁻¹. This calls for new measurements employing highly accurate new techniques, such as frequency combs, to further improve our understanding of the vibrational energy level structure of $^{14}NH_3$.

To understand some of the complexity underlying the measured spectra of $^{14}NH_3$ and the assignment procedure, we note that, based on earlier *ab initio* computations [118, 133], there are up to 43 VBOs in the range 6 300–7 000 cm⁻¹ alone. As Table 3 shows, considerably less than half of these VBOs are involved in measured transitions and only a few VBOs became known based on the MARVEL analysis of all available experimental transitions.

4.4. Prediction of unmeasured lines

Our MARVEL procedure yields 4 961 energy levels based on the analysis of 28 530 validated, "networked" transitions. However, the number of possible transitions between the MARVEL energy levels is actually substantially more than this number. Figure 2 shows an analysis of this for spectra at 296 K. It compares the spectrum arising from the transitions analyzed with those obtained by including allowed transitions between MARVEL levels and the full spectrum predicted by BYTe. It can be seen that use of MARVEL predicted transitions helps to give an ammonia spectrum with a much more complete coverage.

Figure 2 also shows the spectrum of ammonia currently available from the HITRAN 2012 database [184]. This latest edition of HITRAN contains 45 302 lines for $^{14}NH_3$ (and 1090 for $^{15}NH_3$). As summarized in Table 2 of Ref. [142], in the 2008 edition of HITRAN there were 27 994 $^{14}NH_3$ transitions coming from nine sources. We note that not all the lines included in HITRAN 2012 are the result of actual experimental measurement. Indeed,

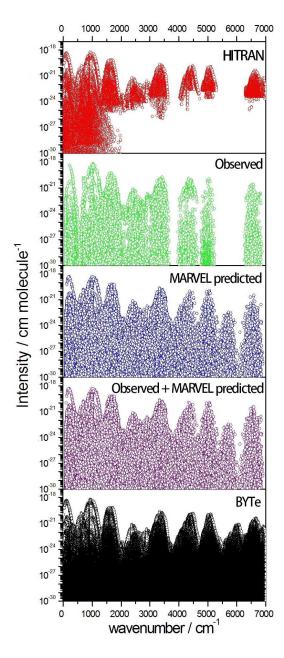


Figure 2: Comparison of spectra at 296 K for one-photon absorption transitions of $^{14}NH_3$ up to 7000 cm⁻¹. Top panel – lines present in the HITRAN [184] database; second panel – observed transition present in MARVEL; third panel – MARVEL predicted transitions, omitting the observed lines; fourth panel – sum of the observed and MARVEL predicted transitions; and bottom panel – all lines predicted by variational computations (BYTe [175]). Except for the top panel, all intensities come from BYTe.

the 2012 update to HITRAN contains transitions in several bands predicted by 13DoHiYuTe [142] on the basis of empirical energy levels and first principles (BYTe) transition intensities. We suggest that a significantly better coverage could be obtained by extending this analysis using our new set of energy levels. A list of predicted lines synthesized from MARVEL energy levels and BYTe intensities is given in the Supporting Information.

5. Summary and Conclusions

The complexity of high-resolution 14 NH₃ spectra, emphasized already by Herzberg [185], hinders significantly the application of standard tools of molecular spectroscopy, including effective Hamiltonians, for their analysis. Advancements in the fourth age of quantum chemistry [152] makes possible the extensive use of sophisticated variational nuclear motion techniques which help to decipher even complex spectral features and can be used to correct problems extensive databases, like HITRAN, used to have about the linelist of 14 NH₃. The repertoire of useful novel tools to study spectra of 14 NH₃ has been extended in this study with the MARVEL procedure, standing for Measured Active Rotational-Vibrational Energy Levels, allowing the empirical investigation and self-consistent verification of all measured and labelled transitions and yielding experimental energy levels with self-consistent uncertainties.

As part of the MARVEL analysis, we collected 29 450 measured transitions from 56 sources which, after careful checking and labelling, underwent a MARVEL analysis and resulted in 1 724 and 3 237 energy levels for ortho- and para-¹⁴NH₃, respectively. This set of experimental energy levels should prove highly useful in all future analysis of experimental spectra of $^{14}NH_3$. Based on MARVEL energy levels and BYTe intensities, a linelist has been generated, and deposited in the Supporting Information to this paper. This linelist and the associated comparison of "observed" and "MARVEL predicted" spectra prove (see Fig. 2) how much more extensive is the information content of measured spectra if they are analyzed together, as done in MARVEL.

Acknowledgement

We thank Drs. Stephen Coy and Isabelle Kleiner for providing copies of the supplementary material from their work, and Dr Linda Brown for providing helpful information. This work has received partial support from the European Research Council under Advanced Investigator Project 267219, the Scientific Research Fund of Hungary (grant OTKA NK83583), and an ERA-Chemistry grant.

References

- A. Almenningen, O. Bastiansen, The use of the electron diffraction sector method for location of hydrogen in gas molecules, Acta Chem. Scand. 9 (1955) 815–820.
- [2] W. S. Benedict, E. K. Plyler, Vibration-rotation bands of ammonia. II. The molecular dimensions and harmonic frequencies of ammonia and deuterated ammonia, Can. J. Phys. 35 (1957) 1235–1241.
- [3] K. Kuchitsu, J. P. Guillory, L. S. Bartell, Electron-diffraction study of ammonia and deuteroammonia, J. Chem. Phys. 49 (1963) 2488–2493.
- [4] C. Tavard, M. Roualt, M. Roux, M. Cornille, Calculation of X-ray and electron intensities scattered by the NH₃ and H₂O molecules, J. Chem. Phys. 39 (1963) 2390–2391.

- [5] O. Bastiansen, B. Beagley, A comparison of the molecular structures of ammonia and deuteroammonia as determined by electron diffraction, Acta Chem. Scand. 18 (1964) 2077–2080.
- [6] Y. Morino, K. Kuchitsu, S. Yamamoto, The anharmonic constants and average structure of ammonia, Spectrochim. Acta A24 (1968) 335–352.
- [7] P. R. Bunker, W. P. Kraemer, V. Špirko, An *ab initio* investigation of the potential function and rotation-vibration energies of NH₃, Can. J. Phys. 62 (1984) 1801–1805.
- [8] V. Spirko, W. P. Kraemer, Anharmonic potential function and effective geometries for the NH₃ molecule, J. Mol. Spectrosc. 133 (1989) 331– 344.
- [9] J. Demaison, L. Margulés, J. E. Boggs, The equilibrium N–H bond length, Chem. Phys. 260 (2000) 65–81.
- [10] I. Szabó, C. Fábri, G. Czakó, E. Mátyus, A. G. Császár, Temperaturedependent, effective structures of the ¹⁴NH₃ and ¹⁴ND₃ molecules, J. Phys. Chem. A 116 (2012) 4356–4362.
- [11] E. F. Barker, The molecular spectrum of ammonia. II. The double band at 10 μ , Phys. Rev. 33 (1929) 684–691.
- [12] R. M. Badger, C. H. Cartwright, The pure rotation spectrum of ammonia, Phys. Rev. 33 (1929) 692–700.
- [13] D. M. Dennison, J. D. Hardy, The parallel type absorption bands of ammonia, Phys. Rev. 39 (1932) 938–947.
- [14] E. Fermi, Sulle bande di oscillazione e rotazione dell'ammoniaca, Nuovo Cimento 9 (1932) 277–283.
- [15] H. J. Unger, Infrared absorption bands of ammonia, Phys. Rev. 43 (1933) 123–128.
- [16] H.-Y. Sheng, E. F. Barker, D. M. Dennison, Further resolution of two parallel bands of ammonia and the interaction between vibration and rotation, Phys. Rev. 60 (1941) 786–794.
- [17] W. Gordy, M. Kessler, Microwave spectra: The hyperfine structure of ammonia, Phys. Rev. 71 (1947) 640.

- [18] H. H. Nielsen, D. M. Dennison, Anomalous values of certain of the fine structure lines in the ammonia microwave spectrum, Phys. Rev. 72 (1947) 1101–1108.
- [19] R. L. Hauser, R. A. Oetjen, The infrared spectra of HCl, DCl, HBr, and NH₃ in the region 40 to 140 microns, J. Chem. Phys. 21 (1953) 1340-1343.
- [20] J. P. Gordon, H. J. Zeiger, C. H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH₃, Phys. Rev. 95 (1954) 282–284.
- [21] G. R. Gunther-Mohr, R. L. White, A. L. Schawlow, W. E. Good, D. K. Coles, Hyperfine structure in the spectrum of ¹⁴NH₃. I. Experimental results, Phys. Rev. 94 (1954) 1184–1191.
- [22] G. R. Gunther-Mohr, C. H. Townes, J. H. Van Vleck, Hyperfine structure in the spectrum of ¹⁴NH₃. II. Theoretical discussion, Phys. Rev. 94 (1954) 1191–1203.
- [23] W. S. Benedict, E. K. Plyler, E. D. Tidwell, Vibration-rotation bands of ammonia. III. The region 3.2–4.3 microns, J. Chem. Phys. 29 (1958) 829–845.
- [24] J. S. Garing, H. H. Nielsen, *l*-type doubling in NH₃, Proc. Natl. Acad. Sci. US 44 (1958) 467–472.
- [25] M. Tsuboi, T. Shimanouchi, S. Mizushima, Analysis of P- and R-branches of the 950 cm⁻¹ band of ¹⁴NH₃, Spectrochim. Acta 13 (1958) 80–92.
- [26] H. M. Mould, W. C. Price, G. R. Wilkinson, A high-resolution study and analysis of the ν_2 NH₃ vibration-rotation band, Spectrochim. Acta 15 (1959) 313–330.
- [27] S. G. Kukolich, Measurement of ammonia hyperfine structure with a two-cavity maser, Phys. Rev. 156 (1967) 83–92.
- [28] S. G. Kukolich, S. C. Wofsy, ¹⁴NH₃ hyperfine structure and quadrupole coupling, J. Chem. Phys. 52 (1970) 5477–5481.
- [29] P. Helminger, F. C. De Lucia, W. Gordy, Rotational spectra of NH_3 and ND_3 in the 0.5-mm wavelength region, J. Mol. Spectrosc. 39 (1971) 94–97.

- [30] E. A. Cohen, R. L. Poynter, The microwave spectrum of ${}^{14}NH_3$ in the v = 000011 state, J. Mol. Spectrosc. 53 (1974) 131–139.
- [31] R. L. Poynter, R. K. Kakar, The microwave frequencies, line parameters, and spectral constants for ¹⁴NH₃, Astrophys. J. Suppl. Ser. 29 (1975) 87–96.
- [32] W. K. Bischel, P. J. Kelly, C. K. Rhodes, High-resolution Dopplerfree two-photon spectroscopic studies of molecules. II. The ν_2 bands of $^{14}NH_3$, Phys. Rev. A 13 (1976) 1829–1841.
- [33] S. M. Freund, T. Oka, Infrared-microwave two-photon spectroscopy: The ν_2 band of NH₃, Phys. Rev. A 13 (1976) 2178–2190.
- [34] T. Kostiuk, M. J. Mumma, J. J. Hillman, D. Buhl, L. W. Brown, J. L. Faris, D. L. Spears, NH₃ spectral line measurements on Earth and Jupiter using a 10 μ m superheterodyne receiver, Infrared Phys. 17 (1977) 431–439.
- [35] N. Nereson, Diode laser measurements of NH₃ absorption lines around 10.6 μm, J. Mol. Spectrosc. 69 (1978) 489–493.
- [36] J. P. Sattler, K. J. Ritter, Diode laser spectra of NH_3 in the 9.5- μ m region, J. Mol. Spectrosc. 69 (1978) 486–488.
- [37] L. D. G. Young, A. T. Young, An improved fit to the inversion spectrum of ¹⁴NH₃, J. Quant. Spectrosc. Rad. Transfer 20 (1978) 533–537.
- [38] J. J. Hillman, D. E. Jennings, J. L. Faris, Diode laser–CO₂ laser heterodyne spectrometer: measurement of 2sQ(1,1) in $2\nu_2 \nu_2$ of NH₃, Appl. Opt. 18 (1979) 1808–1811.
- [39] M. Takami, H. Jones, T. Oka, Transition dipole moments of NH_3 in excited vibrational states determined by laser Stark spectroscopy, J. Chem. Phys. 70 (1979) 3557–3558.
- [40] S. P. Belov, L. I. Gershstein, A. F. Krupnov, A. V. Maslovskij, S. Urban, V. Špirko, Inversion and inversion-rotation spectrum of $^{14}NH_3$ in the ν_2 excited state, J. Mol. Spectrosc. 84 (1980) 288–304.
- [41] E. A. Cohen, The ν_4 state inversion spectra of ${}^{15}\text{NH}_3$ and ${}^{14}\text{NH}_3$, J. Mol. Spectrosc 79 (1980) 496–501.

- [42] S. Urban, V. Špirko, D. Papoušek, R. S. McDowell, N. G. Nereson, S. P. Belov, L. I. Gershstein, A. V. Maslovskij, A. F. Krupnov, J. Curtis, K. Narahari Rao, Coriolis and *l*-type interactions in the ν₂, 2ν₂, and ν₄ states of ¹⁴NH₃, J. Mol. Spectrosc. 79 (1980) 455–495.
- [43] J. P. Sattler, L. S. Miller, T. L. Worchesky, Diode laser heterodyne measurements on ¹⁴NH₃, J. Mol. Spectrosc. 88 (1981) 347–351.
- [44] J. P. Sattler, T. L. Worchesky, Additional diode laser heterodyne measurements on ammonia, J. Mol. Spectrosc. 90 (1981) 297–301.
- [45] Š. Urban, V. Špirko, D. Papoušek, J. Kauppinen, S. P. Belov, L. I. Gershtein, A. F. Krupnov, A simultaneous analysis of the microwave, submillimeterwave, far infrared, and infrared-microwave two-photon transitions between the ground and ν₂ inversion-rotation levels of ¹⁴NH₃, J. Mol. Spectrosc. 88 (1981) 274–292.
- [46] H. Sasada, Y. Hasegawa, T. Amano, T. Shimizu, High-resolution infrared and microwave spectroscopy of the ν_4 and $2\nu_2$ bands of $^{14}NH_3$ and $^{15}NH_3$, J. Mol. Spectrosc. 96 (1982) 106–130.
- [47] E. A. Cohen, W. H. Weber, R. L. Poynter, J. S. Margolis, Observation of forbidden transitions in the ν_4 band of NH₃: Corrections to the ground state $\Delta K = 3$ intervals, Mol. Phys. 50 (1983) 727–732.
- [48] M. Ohtsu, H. Kotani, H. Tagawa, Spectral measurements of NH₃ and H₂O for pollutant gas monitoring by 1.5 μ m InGaAsP/InP lasers, J. Appl. Phys. 22 (1983) 1553.
- [49] V. Spirko, Vibrational anharmonicity and the inversion potential function of NH₃, J. Mol. Spectrosc. 101 (1983) 30–47.
- [50] S. Urban, D. Papoušek, J. Kauppinen, K. Yamada, G. Winnewisser, The ν_2 band of ¹⁴NH₃: A calibration standard with better than 1×10^{-4} cm⁻¹ precision, J. Mol. Spectrosc. 101 (1983) 1–15.
- [51] R. L. Poynter, J. S. Margolis, The ν_2 spectrum of NH₃, Mol. Phys. 51 (1984) 393–412.
- [52] Š. Urban, R. D'Cunha, K. Narahari Rao, D. Papoušek, The $\Delta k = \pm 2$ "forbidden band" and inversion-rotation energy levels of ammonia, Can. J. Phys. 62 (1984) 1775–1791.

- [53] W. H. Weber, Laser-Stark spectrum of NH_3 with the CO laser: Determination of the ground state dipole moment, J. Mol. Spectrosc. 107 (1984) 405–416.
- [54] L. R. Brown, R. A. Toth, Comparison of the frequencies of NH₃, CO₂, H₂O, N₂O, CO, and CH₄ as infrared calibration standards, J. Opt. Soc. Am. B 2 (1985) 842–856.
- [55] K. Kim, Integrated infrared intensities in NH₃, J. Quant. Spectrosc. Radiat. Transfer 33 (1985) 611–614.
- [56] S. Urban, P. Misra, K. Narahari Rao, The $\nu_1 + \nu_2$ and $\nu_1 + \nu_2 \nu_2$ bands of ¹⁴NH₃ and ¹⁵NH₃, J. Mol. Spectrosc. 114 (1985) 377–394.
- [57] S. L. Coy, K. K. Lehmann, Rotational structure of ammonia NH stretch overtones: Five and six quanta bands, J. Chem. Phys. 84 (1986) 5239– 5249.
- [58] J. Hermanussen, A. Bizzarri, G. Baldacchini, Diode laser measurements of ammonia absorption lines over the range 620–740 cm⁻¹, J. Mol. Spectrosc. 119 (1986) 291–298.
- [59] D. Papousek, Š. Urban, V. Špirko, K. Narahari Rao, The $\Delta k = \pm 2$ and $\Delta k = \pm 3$ forbidden transitions in the vibrational-rotational spectra of symmetric top molecules NH₃ and H₃O⁺, J. Mol. Struct. 141 (1986) 361–366.
- [60] H. Sasada, R. H. Schwendeman, G. Magerl, R. L. Poynter, J. S. Margolis, High-resolution spectroscopy of the $v_2 = 2a \leftarrow v_2 = 1s$ band of ¹⁴NH₃, J. Mol. Spectrosc. 117 (1986) 317–330.
- [61] Y. Ueda, J. Iwahori, Laser Stark spectroscopy; a case study in the ν_2 fundamental band of ¹⁴NH₃, J. Mol. Spectrosc. 116 (1986) 191–213.
- [62] Š. Urban, R. D'Cunha, J. Manheim, K. Narahari Rao, High-J transitions in the ν_2 bands of ¹⁴NH₃ and ¹⁵NH₃, J. Mol. Spectrosc. 118 (1986) 298–309.
- [63] H. D. Barth, F. Huisken, CARS spectroscopy in supersonic jets of ammonia monomers and clusters, J. Chem. Phys. 87 (1987) 2549–2559.
- [64] R. D'Cunha, The $a2\nu_2 \leftarrow s\nu_2$ bands of ¹⁴NH₃ and ¹⁵NH₃, J. Mol. Spectrosc. 122 (1987) 130–134.

- [65] E. Lellouch, N. Lacome, G. Guelachvili, G. Tarrago, T. Encrenaz, Ammonia: Experimental absolute linestrengths and self-broadening parameters in the 1800- to 2100-cm⁻¹ range, J. Mol. Spectrosc. 124 (1987) 333–347.
- [66] K. Tanaka, H. Ito, T. Tanaka, CO₂ laser-microwave double resonance spectroscopy of NH₃: Precise measurement of dipole moment in the ground state, J. Chem. Phys. 87 (1987) 1557–1567.
- [67] K. K. Lehmann, S. L. Coy, Spectroscopy and intramolecular dynamics of highly excited vibrational states of NH₃, J. Chem. Soc. Faraday Trans. II 84 (1988) 1389–1406.
- [68] M. Snels, G. Baldacchini, Shape and width if IR absorption lines of ammonia expanded in a supersonic jet, Appl. Phys. B 47 (1988) 277– 282.
- [69] K. Tanaka, Y. Endo, E. Hirota, Submillimeter-wave spectrum of $k = \pm 1 \leftarrow \mp 2$ transitions of NH₃, Chem. Phys. Lett. 146 (1988) 165–168.
- [70] S. L. Coy, K. K. Lehmann, Modeling the rotational and vibrational structure of the i.r. optical spectrum of NH₃, Spectrochim. Acta 45A (1989) 47–56.
- [71] G. Guelachvili, A. H. Abdullah, N. Tu, K. Narahari Rao, Š. Urban, D. Papoušek, Analysis of high-resolution Fourier-transform spectra of $^{14}NH_3$ at 3.0 μ m, J. Mol. Spectrosc. 133 (1989) 345–364.
- [72] S. Urban, N. Tu, K. Narahari Rao, G. Guelachvili, Analysis of high-resolution Fourier transform spectra of $^{14}NH_3$ at 2.3 μ m, J. Mol. Spectrosc. 133 (1989) 312–330.
- [73] L. Fusina, G. Baldacchini, The spectroscopic parameters of the $\nu_2 = 2a$ state for ¹⁴NH₃ and ¹⁵NH₃, J. Mol. Spectrosc. 141 (1990) 23–28.
- [74] M. Hepp, G. Winnewisser, K. M. T. Yamada, Collisional nuclear spin intercombination in NH₃ observed in supersonic jet expansion by diode laser spectroscopy, J. Mol. Spectrosc. 153 (1992) 376–384.
- [75] J. M. L. Martin, T. J. Lee, P. R. Taylor, An accurate ab initio quartic force field for ammonia, J. Chem. Phys. 97 (1992) 8361–8371.

- [76] H. Sasada, Y. Endo, E. Hirota, R. L. Poynter, J. S. Margolis, Microwave and Fourier-transform infrared spectroscopy of the $v_4 = 1$ and $v_2 = 2$ states of NH₃, J. Mol. Spectrosc. 151 (1992) 33–53.
- [77] L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, Analysis of the high-resolution spectrum of ammonia (¹⁴NH₃) in the near-infrared region, 6400–6900 cm⁻¹, J. Mol. Spectrosc. 162 (1993) 230–245.
- [78] V. N. Markov, A. S. Pine, G. Buffa, O. Tarrini, Self broadening in the ν_1 band of NH₃, J. Quant. Spectrosc. Radiat. Transfer 50 (1993) 167–178.
- [79] A. S. Pine, M. Dang-Nhu, Spectral intensities in the ν_1 band of NH₃, J. Quant. Spectrosc. Radiat. Transfer 50 (1993) 565–570.
- [80] T. Wu, H. An, P. Jiang, Y. Fang, S. Tao, P. Ye, Spectral measurement of NH₃ absorption lines by a 1.5μm grating-external-cavity semiconductor laser, Opt. Lett. 18 (1993) 729.
- [81] L. R. Brown, D. B. Peterson, An empirical expression for linewidths of ammonia from far-infrared measurements, J. Mol. Spectrosc. 168 (1994) 593–606.
- [82] Z. Chu, L. Chen, P. K. Cheo, Absorption spectra of NH₃ using a microwave-sideband CO₂-laser spectrometer, J. Quant. Spectrosc. Radiat. Transfer 51 (1994) 591–602.
- [83] E. Kauppi, L. Halonen, Five-dimensional local mode-Fermi resonance model for overtone spectra of ammonia, J. Chem. Phys. 103 (1995) 6861–6872.
- [84] I. Kleiner, G. Tarrago, L. R. Brown, Positions and intensities in the $3\nu_2/\nu_2 + \nu_4$ vibrational system of ¹⁴NH₃ near 4 µm, J. Mol. Spectrosc. 173 (1995) 120–145.
- [85] L. R. Brown, J. S. Margolis, Empirical line parameters of NH_3 from 4791 to 5294 cm⁻¹, J. Quant. Spectrosc. Radiat. Transfer 56 (1996) 283–294.
- [86] A. F. Krupnov, M. Y. Tretyakov, M. Bogey, S. Bailleux, A. Walters, B. Delcroix, S. Civiš, Microwave measurements of $J = 2 \leftarrow 1, K = 0, 1$ ammonia transitions at 1.215 THz, J. Mol. Spectrosc. 176 (1996) 442–443.

- [87] K. Sarka, H. W. Schötter, Effective Hamiltonian for rotation-inversion states of ammonia-like molecules, J. Mol. Spectrosc. 179 (1996) 195– 204.
- [88] M. D. Marshall, K. C. Izgi, J. S. Muenter, IR-microwave double resonance studies of dipole moments in the ν_1 and ν_3 states of ammonia, J. Chem. Phys. 107 (1997) 1037–1044.
- [89] D. J. Rush, K. B. Wiberg, Ab initio CBS-QCI calculations of the inversion mode of ammonia, J. Phys. Chem. A 101 (1997) 3143–3151.
- [90] M. Behrens, U. Buck, R. Fröchtenicht, M. Hartmann, F. Huisken, F. Rohmund, Rotationally resolved IR spectroscopy of ammonia trapped in cold helium clusters, J. Chem. Phys. 109 (1998) 5914–5920.
- [91] S. P. Belov, S. Urban, G. Winnewisser, Hyperfine structure of rotationinversion levels in the excited ν_2 state of ammonia, J. Mol. Spectrosc. 189 (1998) 1–7.
- [92] H. Fichoux, M. Khelkhal, E. Rusinek, J. Legrand, F. Herlemont, S. Urban, Double resonance sub-Doppler study of the allowed and $\Delta K = -3$ forbidden Q(3,3) transitions to the ν_2 vibrational state of ¹⁴NH₃, J. Mol. Spectrosc. 192 (1998) 169–178.
- [93] G. Berden, R. Peeters, G. Meijer, Cavity-enhanced absorption spectroscopy of the 1.5 μ m band system of jet-cooled ammonia, Chem. Phys. Lett. 307 (1999) 131–138.
- [94] M. Fabian, K. M. T. Yamada, Absolute intensity of the NH₃ ν_2 band, J. Mol. Spctrosc. 198 (1999) 102–109.
- [95] I. Kleiner, L. R. Brown, G. Tarrago, Q.-L. Kou, N. Picqué, G. Guelachvili, V. Dana, J.-Y. Mandin, Positions and intensities in the $2\nu_4/\nu_1/\nu_3$ vibrational system of ¹⁴NH₃ near 3 μ m, J. Mol. Spectrosc. 193 (1999) 46–71.
- [96] C. Cottaz, I. Kleiner, G. Tarrago, L. R. Brown, J. S. Margolis, R. L. Poynter, H. M. Pickett, T. Fouchet, P. Drossart, E. Lellouch, Line positions and intensities in the $2\nu_2/\nu_4$ vibrational system of ¹⁴NH₃ near 57 μ m, J. Mol. Spectrosc. 203 (2000) 285–309.

- [97] T. Fouchet, E. Lellouch, B. Bézard, T. Encrenaz, P. Drossart, H. Feuchtgruber, T. de Graauw, ISO-SWS observations of Jupiter: Measurement of the ammonia troposhperic profile and of the ¹⁵N/¹⁴N isotopic ratio, Icarus 143 (2000) 223–243.
- [98] S. Urban, F. Herlemont, M. Khelkhal, H. Fichoux, J. Legrand, Highaccuracy determination of the frequency and quadrupole structure of the sP(1,0) and aR(0,0) transitions to the ν_2 state of ¹⁴NH₃, J. Mol. Spectrosc. 200 (2000) 280–282.
- [99] C. Cottaz, G. Tarrago, I. Kleiner, L. R. Brown, Assignments and intensities of ¹⁴NH₃ hot bands in the 5- to 8- μ m ($3\nu_2 \nu_2$, $\nu_2 + \nu_4 \nu_2$) and 4- μ m ($4\nu_2 \nu_2$, $\nu_1 \nu_2$, $\nu_3 \nu_2$ and $2\nu_4 \nu_2$) regions, J. Mol. Spectrosc. 209 (2001) 30–49.
- [100] W. Klopper, C. C. M. Samson, G. Tarczay, A. G. Császár, Equilibrium inversion barrier of NH₃ from extrapolated coupled-cluster pair energies, J. Comp. Chem. 22 (2001) 1306–1314.
- [101] M. E. Webber, D. S. Baer, R. K. Hanson, Ammonia monitoring near 1.5 μ m with diode-laser absorption sensors, Appl. Optics 40 (2001) 2031–2042.
- [102] H. Lin, W. Thiel, S. N. Yurchenko, M. Carvajal, P. Jensen, Vibrational energies for NH₃ based on high level *ab initio* potential energy surfaces, J. Chem. Phys. 117 (2002) 11265–11276.
- [103] T. Rajamäki, A. Miani, L. Halonen, Six-dimensional *ab initio* potential energy surfaces for H₃O⁺ and NH₃: Approaching the subwavenumber accuracy for the inversion splittings, J. Chem. Phys. 118 (2003) 10929– 10938.
- [104] C. Leonard, S. Carter, N. C. Handy, The barrier to inversion of ammonia, Chem. Phys. Lett. 370 (2003) 360–365.
- [105] J. S. Gibb, G. Hancock, R. Peverall, G. A. D. Ritchie, L. J. Russell, Diode laser based detection and determination of pressure-induced broadening coefficients in the $\nu_1 + \nu_3$ combination band of ammonia, Eur. Phys. J. D 28 (2004) 59–66.
- [106] D. Lauvergnat, A. Nauts, A harmonic adiabatic approximation to calculate vibrational states of ammonia, Chem. Phys. 305 (2004) 105.

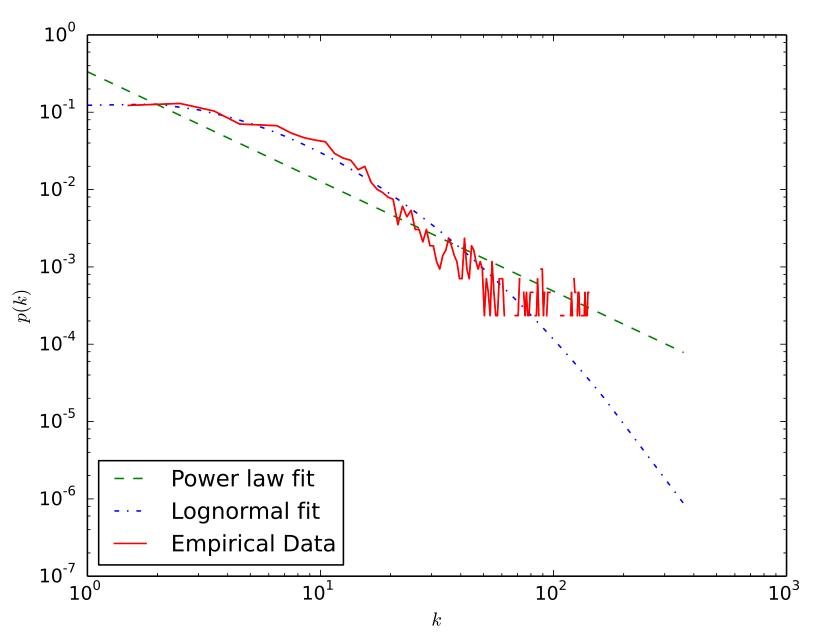
- [107] T. Rajamäki, M. Kállay, T. Noga, P. Valiron, L. Halonen, High excitations in coupled-cluster series: Vibrational energy levels of ammonia, Mol. Phys. 102 (2004) 2297–2310.
- [108] L.-H. Xu, Z. Liu, I. Yakovlev, M. Y. Tretyakov, R. M. Lees, External cavity tunable diode laser NH₃ spectra in the 1.5 μ m region, Infrared Phys. Techn. 45 (2004) 31–45.
- [109] R. Marquardt, K. Sagui, W. Klopper, M. Quack, Global analytical potential energy surface for large amplitude motions in ammonia, J. Phys. Chem. B 109 (2005) 8439–8451.
- [110] S. N. Yurchenko, M. Carvajal, H. Lin, J. Zheng, W. Thiel, P. Jensen, Dipole moment and rovibrational intensities in the electronic ground state of NH₃: Bridging the gap between *ab initio* theory and spectroscopic experiment, J. Chem. Phys. 122 (2005) 104317.
- [111] S. N. Yurchenko, J. Zheng, H. Lin, P. Jensen, W. Thiel, Potential energy surface for the electronic ground state of NH_3 up to 20000 cm⁻¹ above equilibrium, J. Chem. Phys. 123 (2005) 134308.
- [112] P. Chen, J. C. Pearson, H. M. Pickett, S. Matsuura, G. A. Blake, Measurements of ¹⁴NH₃ in the $\nu_2 = 1$ state by a solid-state, photomixing, THz spectrometer, and a simultaneous analysis of the microwave, terahertz, and infrared transitions between the ground and ν_2 inversionrotation levels, J. Mol. Spectrosc. 236 (2006) 116–126.
- [113] L. H. Coudert, E. Roueff, Linelists for NH₃, NH₂D, ND₂H, and ND₃ with quadrupole coupling hyperfine components, Astron. Astrophys. 449 (2006) 855–859.
- [114] O. Pirali, M. Vervloet, Far-infrared Fourier transform emission spectroscopy in the gas phase, Chem. Phys. Lett. 423 (2006) 376–381.
- [115] L. Li, R. M. Lees, L.-H. Xu, External cavity tunable diode laser spectra of the $\nu_1 + 2\nu_4$ stretch-band combination bands of ¹⁴NH₃ and ¹⁵NH₃, J. Mol. Spectrosc. 243 (2007) 219–226.
- [116] H. L. Bethlem, M. Kajita, B. Sartakov, G. Meijer, W. Ubachs, Prospects for precision measurements on ammonia molecules in a fountain, Eur. Phys. J. D 163 (2008) 55–69.

- [117] A. M. Cubillas, J. Hald, J. C. Petersen, High resolution spectroscopy of ammonia in a hollow-core fibre, Opt. Expr. 16 (2008) 3976–3985.
- [118] X. Huang, D. W. Schwenke, T. J. Lee, An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH₃, J. Chem. Phys. 129 (2008) 214304.
- [119] R. M. Lees, L. Li, L.-H. Xu, New VISTA on ammonia in the 1.5 μ m region: Assignments for the $\nu_3+2\nu_4$ bands of ¹⁴NH₃ and ¹⁵NH₃ by isotopic shift labeling, J. Mol. Spectrosc. 251 (2008) 241–251.
- [120] D. M. O'Leary, J. Orphal, A. A. Ruth, U. Heitmann, P. Chelin, C. E. Fellows, The cavity-enhanced absorption spectrum of NH₃ in the near-infrared region between 6856 and 7000 cm⁻¹, J. Quant. Spectrosc. Radiat. Transfer 109 (2008) 1004–1015.
- [121] C. Puzzarini, Ab initio characterization of XH_3 (X = N,P). Part II. Electric, magnetic and spectroscopic properties of ammonia and phosphine, Theor. Chem. Acc. 121 (2008) 1–10.
- [122] P. Cacciani, J. Cosleou, M. Khelkhal, M. Tudorie, C. Puzzarini, P. Pracna, Nuclear spin conversion in NH₃, Phys. Rev. A 80 (2009) 042507.
- [123] G. Cazzoli, L. Dore, C. Puzzarini, The hyperfine structure of the inversion-rotation transition $J_K = 1_0 \leftarrow 0_0$ of NH₃ investigated by Lamb-dip spectroscopy, Astron. Astrophys. 507 (2009) 1707–1710.
- [124] A. Czajkowski, A. J. Alcock, J. E. Bernard, A. A. Madej, M. Corrigan, S. Chepurov, Studies of saturated absorption and measurements of optical frequency for lines in the $\nu_1 + \nu_3$ and $\nu_1 + 2\nu_4$ bands of ammonia at 1.5 micron, Opt. Express 17 (2009) 9258–9269.
- [125] H. Jia, W. Zhao, T. Cai, W. Chen, W. Zhang, X. Gao, Absorption spectroscopy of ammonia between 6526–6538 cm⁻¹, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 347–356.
- [126] S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, P. Jensen, J. Tennyson, A variationally computed T = 300 K line list for NH₃, J. Phys. Chem. A 113 (2009) 11845–11855.

- [127] Y. Q. Li, A. J. C. Varandas, Ab-initio-based global many-body expansion potential energy surface for the electronic ground state of the ammonia molecule, J. Phys. Chem. A 114 (2010) 6669–6680.
- [128] J. C. Petersen, J. Hald, Microwave optical double resonance spectroscopy of ammonia in a hollow-core fiber, Opt. Express 18 (2010) 7955–7964.
- [129] S. Yu, J. C. Pearson, B. J. Drouin, K. Sung, O. Pirali, M. Vervloet, M.-A. Martin-Drumel, C. P. Endres, T. Shiraishi, K. Kobayashi, F. Matsushima, Submillimeter-wave and far-infrared spectroscopy of high-Jtransitions of the ground and $\nu_2 = 1$ states of ammonia, J. Chem. Phys. 133.
- [130] B. J. Drouin, S. Yu, J. C. Pearson, H. Gupta, Terahertz spectroscopy for space applications: 2.5–2.7 THz spectra of HD, H₂O and NH₃, J. Mol. Struct. 1006 (2011) 2–12.
- [131] C. Fábri, E. Mátyus, A. G. Császár, Rotating full- and reduceddimensional quantum chemical models of molecules, J. Chem. Phys. 134 (2011) 074105.
- [132] M. Guinet, P. Jeseck, D. Mondelain, I. Pepin, C. Janssen, C. Camy-Peyret, J. Y. Mandin, Absolute measurements of intensities, positions and self-broadening coefficients of R branch transitions in the ν_2 band of ammonia, J. Quant. Spectrosc. Rad. Transfer 112 (2011) 1950–1960.
- [133] X. Huang, D. W. Schwenke, T. J. Lee, Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections, J. Chem. Phys. 134 (2011) 044320.
- [134] S. N. Yurchenko, R. J. Barber, J. Tennyson, W. Thiel, P. Jensen, Toward efficient refinement of molecular potential energy surfaces: Ammonia as a case study, J. Mol. Spectrosc. 268 (2011) 123–129.
- [135] N. F. Zobov, S. V. Shirin, R. I. Ovsyannikov, O. L. Polyansky, S. N. Yurchenko, R. J. Barber, J. Tennyson, R. J. Hargreaves, P. F. Bernath, Analysis of high temperature ammonia spectra from 780 to 2100 cm⁻¹, J. Mol. Spectrosc. 269 (2011) 104–108.
- [136] C. Lemarchand, M. Triki, B. Darquie, C. J. Borde, C. Chardonnet, C. Daussy, Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy, New J. Phys 13 (2011) 073028.

- [137] R. J. Hargreaves, G. Li, P. F. Bernath, Ammonia line lists from 1650 to 4000 cm⁻¹, J. Quant. Spectr. Rad. Transfer 113 (2012) 670–679.
- [138] R. J. Hargreaves, G. Li, P. F. Bernath, Hot NH₃ spectra for astrophysical applications, Astrophys. J. 735 (2012) 111.
- [139] P. Cacciani, P. Cermak, J. Cosléou, M. Khelkhal, P. Jeseck, X. Michaut, New progress in spectroscopy of ammonia in the infrared range using evolution of spectra from 300 K down to 122 K, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1084–1091.
- [140] K. Sung, L. R. Brown, X. Huang, D. W. Schwenke, T. J. Lee, S. L. Coy, K. K. Lehmann, Extended line positions, intensities, empirical lower state energies and quantum assignments of NH₃ from 6300 to 7000 cm⁻¹, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 1066–1083.
- [141] M. Triki, C. Lemarchand, B. Darquie, P. L. T. Sow, V. Roncin, C. Chardonnet, C. Daussy, Speed-dependent effects in NH₃ selfbroadened spectra: Towards the determination of the Boltzmann constant, Phys. Rev. A 85.
- [142] M. J. Down, C. Hill, S. N. Yurchenko, J. Tennyson, L. R. Brown, I. Kleiner, Re-analysis of ammonia spectra: Updating the HITRAN ¹⁴NH₃ database, J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 260– 272.
- [143] C. Lemarchand, S. Mejri, P. L. T. Sow, M. Triki, S. K. Tokunaga, S. Briaudeau, C. Chardonnet, B. Darquie, C. Daussy, A revised uncertainty budget for measuring the Boltzmann constant using the Doppler broadening technique on ammonia, Metrologica 50 (2013) 623–630.
- [144] R. Marquardt, K. Sagui, J. Zheng, W. Thiel, D. Luckhaus, S. Yurchenko, F. Mariotti, M. Quack, Global analytical potential energy surface for the electronic ground state of NH₃ from high level ab initio calculations, J. Phys. Chem. A 117 (2013) 7502–7522.
- [145] P. Cacciani, P. Cermák, J. Cosléou, J. El Rohm, J. Hovorka, M. Khelkhal, Spectroscopy of ammonia in the range 6626–6805 cm⁻¹: using temperature dependence towards a complete list of lower state energy transitions, Mol. Phys. 112 (2014) 2476–2485.

- [146] P. Cermák, J. Hovorka, P. Veis, P. Cacciani, J. Cosléou, J. E. Romh, M. Khelkhal, Spectroscopy of ¹⁴NH₃ and ¹⁵NH₃ in the 2.3 μm spectral range with a new VECSEL laser source, J. Quant. Spectrosc. Radiat. Transfer 137 (2014) 13–22.
- [147] P. Dietiker, E. Milogyadov, M. Quack, A. Schneider, G. Seyfang, Two photon IR-laser induced population transfer in NH₃ – First steps to measure parity violation in chiral molecules, in: P. S. D. Stock, R. Wester (Ed.), Proceedings of the 19th Symposium on Atomic, Cluster and Surface Physics 2014 (SASP 2014), Innsbruck University Press, Insbruck, 2014.
- [148] T. Földes, D. Golebiowski, M. Herman, T. P. Softley, G. Di Lonardo, L. Fusina, Low-temperature high-resolution absorption spectrum of ¹⁴NH₃ in the $\nu_1 + \nu_3$ band region (1.51 µm), Mol. Phys. 112 (2014) 2407–2418.
- [149] P. L. T. Sow, S. Mejri, S. K. Tokunaga, O. Lopez, A. Goncharov, B. Argence, C. Chardonnet, A. Amy-Klein, C. Daussy, B. Darquie, A widely tunable 10-μm quantum cascade laser phase-locked to a stateof-the-art mid-infrared reference for precision molecular spectroscopy, App. Phys. Lett. 104 (2014) 264101.
- [150] A. G. Császár, W. D. Allen, H. F. Schaefer III, In pursuit of the *ab initio* limit for conformational energy prototypes, J. Chem. Phys. 108 (1998) 9751–9764.
- [151] A. G. Császár, G. Tarczay, M. L. Leininger, O. L. Polyansky, J. Tennyson, W. D. Allen, Dream or reality: complete basis set full configuration interaction potential energy hypersurfaces, in: J. Demaison, K. Sarka (Eds.), In: Spectroscopy from Space, Kluwer, 317–339, 2001.
- [152] A. G. Császár, C. Fábri, T. Szidarovszky, E. Mátyus, T. Furtenbacher, G. Czakó, Fourth age of quantum chemistry: Molecules in motion, Phys. Chem. Chem. Phys. 14 (2012) 1085–1106.
- [153] E. Mátyus, G. Czakó, B. Sutcliffe, A. G. Császár, Variational vibrational calculations with arbitrary potentials using the Eckart–Watson Hamiltonians and the discrete variable representation, J. Chem. Phys. 127 (2007) 084102.


- [154] S. N. Yurchenko, W. Thiel, P. Jensen, Theoretical ROVibrational energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules, J. Mol. Spectrosc. 245 (2007) 126–140.
- [155] E. Mátyus, J. Šimunek, A. G. Császár, On variational computation of a large number of vibrational energy levels and wave functions for medium-sized molecules, J. Chem. Phys. 131 (2009) 074106.
- [156] E. Mátyus, G. Czakó, A. G. Császár, Toward black-box-type fulland reduced-dimensional variational (ro)vibrational computations, J. Chem. Phys. 130 (2009) 134112.
- [157] P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, NRC Research, 1998.
- [158] A. Owens, S. N. Yurchenko, W. Thiel, V. Špirko, Prediction of the ¹⁴NH₃ and ¹⁵NH₃ probes of a variable proton-to-electron mass ratio, J. Phys. Chem. Lett. .
- [159] A. G. Császár, G. Czakó, T. Furtenbacher, E. Mátyus, An active database approach to complete spectra of small molecules, Ann. Rep. Comp. Chem. 3 (2007) 155–176.
- [160] A. G. Császár, T. Furtenbacher, Spectroscopic networks, J. Mol. Spectrosc. 266 (2011) 99–103.
- [161] T. Furtenbacher, A. G. Császár, J. Tennyson, MARVEL: measured active rotational-vibrational energy levels, J. Mol. Spectrosc. 245 (2007) 115–125.
- [162] T. Furtenbacher, A. G. Császár, On employing $H_2^{16}O$, $H_2^{17}O$, $H_2^{18}O$, and $D_2^{16}O$ lines as frequency standards in the 15 – 170 cm⁻¹ window, J. Quant. Spectrosc. Radiat. Transfer 109 (2008) 1234–1251.
- [163] T. Furtenbacher, A. G. Császár, MARVEL: measured active rotationalvibrational energy levels. II. Algorithmic improvements, J. Quant. Spectrosc. Radiat. Transfer 113 (2012) 929–935.
- [164] J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, L. Daumont, A. Z. Fazliev, T. Furtenbacher, I. E.

Gordon, S. N. Mikhailenko, S. V. Shirin, IUPAC critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part I. Energy Levels and Transition Wavenumbers for $H_2^{17}O$ and $H_2^{18}O$, J. Quant. Spectrosc. Radiat. Transf. 110 (2009) 573–596.

- [165] J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S. N. Mikhailenko, B. A. Voronin, IUPAC critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD¹⁶O, HD¹⁷O, and HD¹⁸O, J. Quant. Spectrosc. Radiat. Transf. 111 (2010) 2160–2184.
- [166] J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothmam, A. C. Vandaele, N. F. Zobov, A. R. Al Derzi, C. Fábri, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, L. Lodi, I. I. Mizus, IUPAC critical evaluation of the rotationalvibrational spectra of water vapor. Part III. Energy levels and transition wavenumbers for H₂¹⁶O, J. Quant. Spectrosc. Radiat. Transf. 117 (2013) 29–80.
- [167] J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothmam, A. C. Vandaele, N. F. Zobov, N. Dénes, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S.-M. Hu, T. Szidarovszky, I. A. Vasilenko, IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D₂¹⁶O, D₂¹⁷O and D₂¹⁸O, J. Quant. Spectrosc. Radiat. Transf. 142 (2014) 93–108.
- [168] J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, N. F. Zobov, A Database of Water Transitions from Experiment and Theory (IUPAC Technical Report), Pure Appl. Chem. 86 (2014) 71–83.
- [169] T. Furtenbacher, T. Szidarovszky, C. Fábri, A. G. Császár, MARVEL Analysis of the Rotational-Vibrational States of the Molecular Ions H₂D⁺ and D₂H⁺, Phys. Chem. Chem. Phys. 15 (2013) 10181–10193.

- [170] T. Furtenbacher, T. Szidarovszky, E. Mátyus, C. Fábri, A. G. Császár, Analysis of the Rotational-Vibrational States of the Molecular Ions H⁺₃, J. Chem. Theory Comput. 9 (2013) 5471–5478.
- [171] C. Fábri, E. Mátyus, T. Furtenbacher, B. Mihály, T. Zoltáni, L. Nemes, A. G. Császár, Analysis of the Rotational-Vibrational States of the Molecular Ions H⁺₃, J. Chem. Phys. 135 (2011) 094307.
- [172] T. Furtenbacher, P. Árendás, G. Mellau, A. G. Császár, Simple molecules as complex systems, Sci. Rep. 4 (2014) 4654.
- [173] J. K. G. Watson, Robust weighting in least-squares fits, J. Mol. Spectrosc. 219 (2003) 326–328.
- [174] S. N. Yurchenko, R. J. Barber, J. Tennyson, A variationally computed hot line list for NH₃, Mon. Not. R. Astron. Soc. 413 (2011) 1828–1834.
- [175] S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, P. Jensen, J. Tennyson, A variationally computed T=300 K line list for NH₃, J. Phys. Chem. A 113 (2009) 11845–11855.
- [176] S. N. Yurchenko, A theoretical room-temperature line list for ¹⁵NH₃, J. Quant. Spectr. Rad. Transfer 152 (2015) 28–36.
- [177] S. N. Yurchenko, R. J. Barber, J. Tennyson, W. Thiel, P. Jensen, Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study, J. Mol. Spectrosc. 268 (2011) 123–129.
- [178] X. Huang, D. W. Schwenke, T. J. Lee, Rovibrational spectra of ammonia. I. Unprecedented accuracy of a potential energy surface used with nonadiabatic corrections, J. Chem. Phys. 134 (2011) 044320.
- [179] X. Huang, D. W. Schwenke, T. J. Lee, Rovibrational spectra of ammonia. II. Detailed analysis, comparison, and prediction of spectroscopic assignments for ¹⁴NH₃, ¹⁵NH₃, and ¹⁴ND₃, J. Chem. Phys. 134 (2011) 044321.
- [180] R. Marquardt, M. Quack, I. Thanopulos, D. Luckhaus, A global electric dipole function of ammonia and isotopomers in the electronic ground state, J. Chem. Phys. 119 (2003) 10724.

- [181] P. Chen, J. C. Pearson, H. M. Pickett, S. Matsuura, G. A. Blake, Measurements of ¹⁴NH₃ in the state by a solid-state, photomixing, THz spectrometer, and a simultaneous analysis of the microwave, terahertz, and infrared transitions between the ground and inversionrotation levels, J. Mol. Spectrosc. 236 (2006) 116–126.
- [182] R. Angstl, H. Finsterholzl, H. Frunder, D. Illig, D. Papoušek, P. Pračna, K. N. Rao, H. W. Schrotter, Š. Urban, Fourier transform and CARS spectroscopy of the ν₁ and ν₃ fundamental bands of ¹⁴NH₃, J. Mol. Spectrosc. 114 (1985) 454–472.
- [183] S. N. Yurchenko, J. Zheng, H. Lin, P. Jensen, W. Thiel, Potential energy surface for the electronic ground state of NH_3 up to 20000 cm⁻¹ above equilibrium, J. Chem. Phys. 123 (2005) 134308.
- [184] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, G. Wagner, The *HITRAN* 2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 130 (2013) 4 50, doi:10.1016/jqsrt.2013.07.002.
- [185] G. Herzberg, Molecular spectra and molecular structure, Vols. 1-3, Van Nostrand Reinhold, Melbourne, 1945.

energylevels.txt Click here to download e-component, for online publication only: EnergyLevels.txt readme.txt Click here to download e-component, for online publication only: ReadMe.txt transitions.txt Click here to download e-component, for online publication only: Transitions.txt Manuscript Click here to download LaTeX Source Files: final.tex