# RECEIVED BY DTIE OCT 1 3 1967



### OAK RIDGE NATIONAL LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION



79

for the

**U.S. ATOMIC ENERGY COMMISSION** 

**ORNL** - **TM** - 1666 (NAA-SR-MEMO-12184)

METHODS FOR CALCULATING FAST-NEUTRON LEAKAGE FROM THE SNAP-TSF REACTOR AND PRELIMINARY RESULTS

R. S. Hubner

**NOTICE** This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report.

## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

# DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

#### LEGAL NOTICE -

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ORNL TM-1666 (NAA-SR-MEMO-12184)

Contract No. W-7405-eng-26

Neutron Physics Division

# METHODS FOR CALCULATING FAST-NEUTRON LEAKAGE FROM THE SNAP-TSF REACTOR AND PRELIMINARY RESULTS\*

R. S. Hubner\*\*

#### LEGAL NOTICE

This report was prepared as an account of Government sponsored work Neither the United States, nor the Commission, nor any person acting on behalf of the Commission

A Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights, or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission" includes any em-

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor

### OCTOBER 1967

\*Work performed for the AEC Space Nuclear Auxiliary Power Project under ORNL contract W-6405-eng-26 and Atomics International contract AT(ll-l)-GEN-8.

\*\*On assignment from Atomics International.

•

•

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U. S. ATOMIC ENERGY COMMISSION Blank Page

### TABLE OF CONTENTS

|      | ABSTRACT                                                                                                                                                                                                                                                                   | 3                                           |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|      | INTRODUCTION                                                                                                                                                                                                                                                               | 4                                           |
| I.   | SNAP-TSF REACTOR MODEL FOR 05R                                                                                                                                                                                                                                             | 6                                           |
|      | Reactor Description<br>O5R System Data Tape - CODE 6<br>Phi Tape, Anisotropic Angular Scattering - CODE 8<br>Thermal Parameters<br>O5R Input<br>O5R User Subroutines<br>Source Routines<br>Inelastic Routines<br>Track Length Selection                                    | 6<br>12<br>15<br>16<br>19<br>19<br>22<br>23 |
| II.  | FISSION DISTRIBUTION IN THE SNAP-TSF REACTOR                                                                                                                                                                                                                               | 25                                          |
|      | 05R Calculation<br>Fission Distribution Analysis                                                                                                                                                                                                                           | 25<br>26                                    |
| III. | NEUTRON LEAKAGE FROM THE SNAP-TSF REACTOR                                                                                                                                                                                                                                  | 27                                          |
|      | ANISN Adjoint S <sub>n</sub> Calculations<br>Source Biasing - Shield Source Problem<br>Exponential Transform - Shield Source Problem<br>Source Biasing - Core-Mapping Problem<br>Exponential Transform - Core-Mapping Problem<br>OSR Calculations<br>Shield Source Problem | 35<br>35<br>47<br>48<br>51<br>61<br>61      |
| IV.  | ANALYSIS OF 05R LEAKAGE CALCULATIONS                                                                                                                                                                                                                                       | 62                                          |
|      | Program SNARLS<br>Source Tape Preparation<br>Neutron Leakage Angular Flux<br>SNARLS Output<br>Source Tape Checking<br>Source Tape Utilization                                                                                                                              | 62<br>62<br>65<br>66<br>66                  |
|      | Calculation                                                                                                                                                                                                                                                                | 67                                          |
|      | Leakage Angular Flux from Bottom Face of                                                                                                                                                                                                                                   | 68                                          |
|      | Core Mapping - Program ACTIFK<br>GEOM Input<br>Total Cross Section Tape - CODE 7                                                                                                                                                                                           | 72<br>81<br>81                              |
|      | Elastic Scattering Angular Distribution,<br>F Tape - CODE 7<br>ACTIFK Input<br>ACTIFK User Subroutines                                                                                                                                                                     | 83<br>83<br>83                              |

)

4

,

# TABLE OF CONTENTS (contd.)

## Page No.

ŧ

\*

ŧ

| V. CONCLUSIONS       95         App. A. GEOM INPUT FOR DRUMS IN       98         1. Shield Source Problem       98         2. Core-Mapping Problem       104         App. B. GEOM INPUT FOR DRUMS OUT 30°       104         App. C. INPUT LISTINGS FOR OSE DATA TAPE PREPARATIONS       121         1. CODE 6 Input Listing       121         2. CODE 8 Input for Fission Distribution Calculation       125         1. OSE INPUT LISTINGS       125         1. OSE Ruput for the Shield Source Problem       127         3. OSE Input for the Core-Mapping Problem       129         App. E. OSE Subroutines SOURCE, DATAIN, SPACE, and       131         1. OSE Subroutines FISESN and FISEN       131         2. OSE Subroutines FISESN and FISEN       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       145         2. OSE Subroutine Source Input for the Fission       145         3. OSE Subroutine Source Input for the Fission       145         4. OSE Subroutine Source Input for the Shield       5000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                         |        |    | Cor             | e Mapping<br>Collimated Detector Description<br>ACTIFK Calculation<br>ACTIFK Results                                                | 84<br>84<br>87<br>87 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| App. A. GEOM INPUT FOR DRUMS IN       98         1. Shield Source Problem       98         2. Core-Mapping Problem       104         App. B. GEOM INPUT FOR DRUMS OUT 30°       110         App. C. INPUT LISTINGS FOR OSE DATA TAPE PREPARATIONS       121         2. CODE 6 Input Listing       121         2. CODE 6 Input Listing       122         2. CODE 8 Input Listing       124         App. D. OSE INPUT LISTINGS       125         1. OSE Input for Fission Distribution Calculation       125         2. OSE Input for the Shield Source Problem       127         3. OSE Nuput for the Core-Mapping Problem       129         App. E. OSE SOURCE ROUTINE LISTINGS       131         1. OSE Subroutines SOURCE, DATAIN, SPACE, and VECTOR       131         2. OSE Subroutines FISESN and FISEN       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR THE FISSION DISTRIBUTION PROBLEM       145         3. OSE Subroutine Source Input for the Fission Distribution Problem       145         4. Input Instructions       150         3. OSE Subroutine Source Input for the Shield Source Problem       152         4. OSE Subroutine Source Input for the Shield Source Problem       152         4. OSE Subroutine Source Input for the Core-Mapping Problem       153         5. OSE                                                                                                                                           | v.     | C  | ONCL            | USIONS                                                                                                                              | 95                   |
| 1. Shield Source Problem       98         2. Core-Mapping Problem       104         App. B. GEOM INFUT FOR DRUMS OUT 30°       110         App. C. INPUT LISTINGS FOR 05R DATA TAPE PREPARATIONS       121         2. CODE 6 Input Listing       121         2. CODE 8 Input Listing       124         App. D. OSR INFUT LISTINGS       125         1. OSR Input for Fission Distribution Calculation       125         2. OSR Input for the Shield Source Problem       127         3. OSR Input for the Core-Mapping Problem       129         App. E. OSR SOURCE ROUTINE LISTINGS       131         1. OSR Subroutines SOURCE, DATAIN, SPACE, and       121         2. OSR Subroutines FISESN and FISSN       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       145         1. Input Instructions       145         2. OSR Subroutine Source Input for the Fission       145         3. OSR Subroutine Source Input for the Shield       50         3. OSR Subroutine Source Input for the Core-Mapping       151         4. OSR Subroutine Source Input for the Core-Mapping       151         4. Input Instructions       151         4. OSR Subroutine Source Input for the Core-Mapping       152         4. OSR Subroutine Source Input for the Core-Mapping       152 </th <th>App.</th> <th>Α.</th> <th>GE</th> <th>OM INPUT FOR DRUMS IN</th> <th>98</th>                                                                         | App.   | Α. | GE              | OM INPUT FOR DRUMS IN                                                                                                               | 98                   |
| App. B. GEOM INPUT FOR DRUMS OUT 30°       110         App. C. INPUT LISTINGS FOR OSR DATA TAPE PREPARATIONS       121         1. CODE 6 Input Listing       121         2. CODE 8 Input Listing       124         App. D. OSR INPUT LISTINGS       125         1. OSR Input for Fission Distribution Calculation       125         2. OSR Input for the Shield Source Problem       127         3. OSR Input for the Core-Mapping Problem       129         App. E. OSR SOURCE ROUTINE LISTINGS       131         1. OSR Subroutines SOURCE, DATAIN, SPACE, and       131         2. OSR Subroutines FISESN and FISSN       131         2. OSR Subroutines FOR SOURCE ROUTINES AND INPUT FOR       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       145         2. OSR Subroutine Source Input for the Fission       145         3. OSR Subroutine Source Input for the Fission       150         3. OSR Subroutine Source Input for the Shield       150         3. OSR Subroutine Source Input for the Core-Mapping       152         4. OSR Subroutine Source Input for the Core-Mapping       152         4. OSR Subroutine Source Input for the Core-Mapping       152         4. OSR Subroutine Source Input for the Core-Mapping       152         4. OSR Subroutine Source Input for the Core-Mapping       153 <td></td> <td></td> <td>1.<br/>2.</td> <td>Shield Source Problem<br/>Core-Mapping Problem</td> <td>98<br/>104</td> |        |    | 1.<br>2.        | Shield Source Problem<br>Core-Mapping Problem                                                                                       | 98<br>104            |
| App. C. INPUT LISTINGS FOR OSE DATA TAPE PREPARATIONS       121         1. CODE 6 Input Listing       121         2. CODE 8 Input Listing       124         App. D. OSE INPUT LISTINGS       125         1. OSE Input for Fission Distribution Calculation       125         2. OSE Input for the Shield Source Problem       127         3. OSE Input for the Core-Mapping Problem       129         App. E. OSE SOURCE ROUTINE LISTINGS       131         1. OSE Subroutines SOURCE, DATAIN, SPACE, and       131         2. OSE Subroutines FISESN and FISSN       131         2. OSE Subroutines FOR SOURCE ROUTINES AND INPUT FOR       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       142         PROBLEM, AND THE CORE-MAPPING PROBLEM       145         1. Input Instructions       145         2. OSE Subroutine Source Input for the Fission       145         3. OSE Subroutine Source Input for the Shield       150         3. OSE Subroutine Source Input for the Core-Mapping       152         4. OSE Subroutine Source Input for the Core-Mapping       152         4. OSE Subroutine Source Input for the Core-Mapping       152         4. OSE Subroutine Source Input for the Core-Mapping       152         4. OSE Subroutine Source Input for the Core-Mapping       152                                                                                                                                            | App.   | в. | GE              | OM INPUT FOR DRUMS OUT 30°                                                                                                          | 110                  |
| 1. CODE 6 Input Listing       121         2. CODE 8 Input Listing       124         App. D. O5R INPUT LISTINGS       125         1. 05R Input for Fission Distribution Calculation       125         2. 05R Input for the Shield Source Problem       127         3. 05R Input for the Core-Mapping Problem       129         App. E. 05R SOURCE ROUTINE LISTINGS       131         1. 05R Subroutines SOURCE, DATAIN, SPACE, and       131         2. 05R Subroutines FISESN and FISSN       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       144         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       145         1. Input Instructions       145         2. 05R Subroutine Source Input for the Shield Source PROBLEM, AND THE CORE-MAPPING PROBLEM       145         1. Input Instructions       150         3. 05R Subroutine Source Input for the Fission       151         4. O5R Subroutine Source Input for the Shield Source Problem       152         4. O5R Subroutine Source Input for the Core-Mapping       152         4. O5R Subroutine Source Input for the Core-Mapping       152         4. O5R Subroutine Source Input for the Core-Mapping       152         4. O5R Subroutine Source Input for PROGRAM NNPCOM       153         2. Program NNPCOM Listing       154 </td <td>App.</td> <td>C.</td> <td>IN</td> <td>PUT LISTINGS FOR 05R DATA TAPE PREPARATIONS</td> <td>121</td>               | App.   | C. | IN              | PUT LISTINGS FOR 05R DATA TAPE PREPARATIONS                                                                                         | 121                  |
| App. D. OSR INPUT LISTINGS       125         1. OSR Imput for Fission Distribution Calculation       125         2. OSR Input for the Shield Source Problem       127         3. OSR Imput for the Core-Mapping Problem       129         App. E. OSR SOURCE ROUTINE LISTINGS       131         1. OSR Subroutines SOURCE, DATAIN, SPACE, and       131         2. OSR Subroutines FISESN and FISSN       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       145         1. Input INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR       145         2. OSR Subroutine Source Input for the Shield Source       145         3. OSR Subroutine Source Input for the Fission       150         3. OSR Subroutine Source Input for the Shield Source Problem       151         4. OSR Subroutine Source Input for the Core-Mapping Problem       152         App. G. INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNFCOM       153         2. Program NNFCOM Listing       154         App. H. OSR INELASTIC SUBROUTINES       158         1. OSR Subroutine NONELAS Listing       158         2. OSR Subroutine BENZN (UO, VO, WO, SO2, WTO)       158         1. OSR SUBROUTINE GETETA LISTING       161                                                                                                                                                                                                                                           |        |    | 1.<br>2.        | CODE 6 Input Listing<br>CODE 8 Input Listing                                                                                        | 121<br>124           |
| <ol> <li>OSR Input for Fission Distribution Calculation 125</li> <li>OSR Input for the Shield Source Problem 127</li> <li>OSR Input for the Core-Mapping Problem 129</li> <li>App. E. OSR SOURCE ROUTINE LISTINGS</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | App.   | D. | 05              | R INPUT LISTINGS                                                                                                                    | <b>1</b> 25          |
| App. E. OSR SOURCE ROUTINE LISTINGS       131         1. OSR Subroutines SOURCE, DATAIN, SPACE, and<br>VECTOR       131         2. OSR Subroutines FISESN and FISSN       141         App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR<br>THE FISSION DISTRIBUTION PROBLEM, THE SHIELD SOURCE<br>PROBLEM, AND THE CORE-MAPPING PROBLEM       145         1. Input Instructions       145         2. OSR Subroutine Source Input for the Fission<br>Distribution Problem       150         3. OSR Subroutine Source Input for the Shield<br>Source Problem       151         4. OSR Subroutine Source Input for the Core-Mapping<br>Problem       152         App. G. INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM       153         2. Program NNPCOM Listing       154         App. H. OSR INELASTIC SUBROUTINES       158         1. OSR Subroutine NONELAS Listing       158         2. OSR Subroutine BEN2N (UO, VO, WO, SO2, WTO)<br>Listing       158         3. OSR Subroutine BEN2N (UO, VO, WO, SO2, WTO)       160                                                                                                                                                                                                                                                                                                                                                                                                                             |        |    | 1.<br>2.<br>3.  | 05R Input for Fission Distribution Calculation<br>05R Input for the Shield Source Problem<br>05R Input for the Core-Mapping Problem | 125<br>127<br>129    |
| <ol> <li>OSR Subroutines SOURCE, DATAIN, SPACE, and<br/>VECTOR</li> <li>OSR Subroutines FISESN and FISSN</li> <li>141</li> <li>App. F. INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR<br/>THE FISSION DISTRIBUTION PROBLEM, THE SHIELD SOURCE<br/>PROBLEM, AND THE CORE-MAPPING PROBLEM</li> <li>Input Instructions</li> <li>OSR Subroutine Source Input for the Fission<br/>Distribution Problem</li> <li>OSR Subroutine Source Input for the Shield<br/>Source Problem</li> <li>OSR Subroutine Source Input for the Core-Mapping<br/>Problem</li> <li>OSR Subroutine Source Input for the Core-Mapping</li> <li>Program NNPCOM Listing</li> <li>Input Instructions</li> <li>OSR Subroutine NONELAS Listing</li> <li>OSR Subroutine BEN2N (UO, VO, WO, SO2, WTO)<br/>Listing</li> <li>OSR SUBROUTINE GETETA LISTING</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | App.   | E. | 05              | R SOURCE ROUTINE LISTINGS                                                                                                           | 131                  |
| <ul> <li>App. F. INPOT INSTRUCTIONS FOR SOURCE ROUTINES AND INPOT FOR<br/>THE FISSION DISTRIBUTION PROBLEM, THE SHIELD SOURCE<br/>PROBLEM, AND THE CORE-MAPPING PROBLEM 145</li> <li>1. Input Instructions 145</li> <li>2. 05R Subroutine Source Input for the Fission<br/>Distribution Problem 150</li> <li>3. 05R Subroutine Source Input for the Shield<br/>Source Problem 151</li> <li>4. 05R Subroutine Source Input for the Core-Mapping<br/>Problem 152</li> <li>App. G. INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM 153</li> <li>2. Program NNPCOM Listing 154</li> <li>App. H. 05R INELASTIC SUBROUTINES 158</li> <li>1. 05R Subroutine NONELAS Listing 158</li> <li>2. 05R Subroutine BEN2N (UO, VO, WO, S02, WTO)<br/>Listing 160</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A      | T  | 1.<br>2.        | O5R Subroutines SOURCE, DATAIN, SPACE, and<br>VECTOR<br>O5R Subroutines FISESN and FISSN                                            | 131<br>141           |
| <ol> <li>Input Instructions</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | App.   | F. | IN.<br>TH<br>PR | E FISSION DISTRIBUTION PROBLEM, THE SHIELD SOURCE<br>OBLEM, AND THE CORE-MAPPING PROBLEM                                            | <b>1</b> 45          |
| Distribution Problem       150         3. O5R Subroutine Source Input for the Shield       151         4. O5R Subroutine Source Input for the Core-Mapping       152         App. G. INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM       153         1. Input Instructions       153         2. Program NNPCOM Listing       154         App. H. O5R INELASTIC SUBROUTINES       158         1. O5R Subroutine NONELAS Listing       158         2. O5R Subroutine BEN2N (UO, VO, WO, SO2, WTO)       160         App. I. O5R SUBROUTINE GETETA LISTING       161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    | 1.<br>2.        | Input Instructions<br>05R Subroutine Source Input for the Fission                                                                   | 145                  |
| Source Problem 151<br>4. 05R Subroutine Source Input for the Core-Mapping<br>Problem 152<br>App. G. INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM 153<br>1. Input Instructions 153<br>2. Program NNPCOM Listing 154<br>App. H. O5R INELASTIC SUBROUTINES 158<br>1. 05R Subroutine NONELAS Listing 158<br>2. 05R Subroutine BEN2N (UO, VO, WO, SO2, WTO)<br>Listing 160<br>App. I. O5R SUBROUTINE GETETA LISTING 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    | 3.              | O5R Subroutine Source Input for the Shield                                                                                          | 150                  |
| Problem       152         App. G. INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM       153         1. Input Instructions       153         2. Program NNPCOM Listing       154         App. H. OSR INELASTIC SUBROUTINES       158         1. OSR Subroutine NONELAS Listing       158         2. OSR Subroutine BEN2N (UO, VO, WO, SO2, WTO)       160         App. I. OSR SUBROUTINE GETETA LISTING       161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    | 4.              | Source Problem<br>05R Subroutine Source Input for the Core-Mapping                                                                  | 151                  |
| <ul> <li>App. G. INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM 153</li> <li>1. Input Instructions 153</li> <li>2. Program NNPCOM Listing 154</li> <li>App. H. OSR INELASTIC SUBROUTINES 158</li> <li>1. OSR Subroutine NONELAS Listing 158</li> <li>2. OSR Subroutine BEN2N (UO, VO, WO, SO2, WTO)</li> <li>Listing 160</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |    |                 | Problem                                                                                                                             | 152                  |
| <pre>1. Input Instructions 153<br/>2. Program NNPCOM Listing 154<br/>App. H. OSR INELASTIC SUBROUTINES 158<br/>1. OSR Subroutine NONELAS Listing 158<br/>2. OSR Subroutine BEN2N (UO,VO,WO,SO2,WTO)<br/>Listing 160<br/>App. I. OSR SUBROUTINE GETETA LISTING 161</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | App.   | G. | IN              | PUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM                                                                                     | 153                  |
| App. H. OSR INELASTIC SUBROUTINES 158<br>1. OSR Subroutine NONELAS Listing 158<br>2. OSR Subroutine BEN2N (UO,VO,WO,SO2,WTO)<br>Listing 160<br>App. I. OSR SUBROUTINE GETETA LISTING 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    | 1.<br>2.        | Input Instructions<br>Program NNPCOM Listing                                                                                        | 153<br>154           |
| <pre>1. 05R Subroutine NONELAS Listing 158 2. 05R Subroutine BEN2N (UO,VO,WO,SO2,WTO) Listing 160 App. I. 05R SUBROUTINE GETETA LISTING 161</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | App.   | H. | 05              | R INELASTIC SUBROUTINES                                                                                                             | 158                  |
| App. I. OSR SUBROUTINE GETETA LISTING 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |    | 1.<br>2.        | 05R Subroutine NONELAS Listing<br>05R Subroutine BEN2N (U0,V0,W0,S02,WTO)                                                           | 158<br>160           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Araa . | I. | 05              | R SUBROUTINE GETETA LISTING                                                                                                         | <u>1</u> 61          |

TABLE OF CONTENTS (contd.)

### Page No.

| App. | J. | LI:<br>BU:                 | STING FOR PROGRAMS ANALYSIS (FISSION DISTRI-<br>TION) AND POWPOW                                                                                                                              | 163                             |
|------|----|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|      |    | 1.<br>2.                   | Program ANALYSIS Listing<br>Program POWPOW Listing                                                                                                                                            | 163<br>175                      |
| App. | K. | IN<br>DI:<br>PRO           | PUT INSTRUCTIONS FOR PROGRAM ANALYSIS (OF FISSION<br>STRIBUTION) AND FOR POWPOW; SNAP-TSF DATA FOR<br>OGRAM ANALYSIS                                                                          | 182                             |
|      |    | 1.<br>2.<br>3.             | Input Instructions - ANALYSIS<br>Input Instructions - POWPOW<br>ANALYSIS (of Fission Distribution) Input                                                                                      | 182<br>183<br>184               |
| App. | L. | IN<br>PRO                  | PUT INSTRUCTIONS AND PROGRAM LISTINGS FOR<br>OGRAMS BIASOR AND IMPORT                                                                                                                         | 185                             |
|      |    | 1.<br>2.<br>3.<br>4.       | Input Instructions - BIASOR<br>Input Instructions - IMPORT<br>Program BIASOR Listing<br>Program IMPORT Listing                                                                                | 185<br>186<br>188<br>190        |
| App. | М. | IN<br>PRO                  | PUT INSTRUCTIONS AND PROGRAM LISTING FOR<br>OGRAM SORSPREP                                                                                                                                    | <b>1</b> 91                     |
|      |    | 1.<br>2.                   | Input Instructions<br>Program SORSPREP Listing                                                                                                                                                | 192<br>194                      |
| App. | N. | II<br>Pl<br>ST             | NPUT INSTRUCTIONS, FLOW DIAGRAM, AND LISTINGS FOR<br>ROGRAM SNARLS; LISTINGS FOR PROGRAM CKSOURTP AND<br>UBROUTINE SNEUT (X,Y,Z,A,B,C,W,E,NTAPE,NSKIP)                                        | 200                             |
|      |    | 1.<br>2.<br>3.<br>4.<br>5. | Input Instructions for Program SNARLS<br>Flow Diagrams for Program SNARLS<br>Program SNARLS Listing<br>Program CKSOURTP Listing<br>Subroutine SNEUT (X,Y,Z,A,B,C,W,E,NTAPE,<br>NSKIP) Listing | 200<br>205<br>207<br>236<br>238 |
| App. | 0. | SN                         | ARLS INPUT DATA FOR THE SNAP-TSF REACTOR                                                                                                                                                      | 240                             |
|      |    | l.<br>2                    | SNARLS Input Data for the Shield Source<br>Tape Preparation                                                                                                                                   | 240                             |
|      |    | പ•<br>റ                    | Flux (SNAP-TSF Reactor Bottom)                                                                                                                                                                | 241                             |
|      |    | 3•<br>4.                   | SNARLS Input Data for the Leakage Flux Radial<br>Distribution (SNAP-TSF Reactor Bottom)                                                                                                       | 242                             |
|      |    |                            | trum (SNAP-TSF Reactor Bottom)                                                                                                                                                                | 243                             |

•

,

# TABLE OF CONTENTS (contd.)

## Page No.

2

,

| App. | Ρ.         | INPUT DATA FOR THE CORE-MAPPING PROBLEM                                                                                                                                                                        | 244                             |
|------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|      |            | <ol> <li>Input Data for the Total Cross Section<br/>Tape Preparation</li> <li>Input Data for the F Tape Preparation</li> <li>ACTIFK Input Data</li> <li>GEOM Input Data</li> <li>STBATCH Input Data</li> </ol> | 244<br>248<br>251<br>252<br>257 |
| App. | <b>ୟ</b> • | INPUT INSTRUCTIONS FOR ACTIFK AND ACTIFK USER<br>SUBROUTINE STBATCH                                                                                                                                            | 258                             |
|      |            | <pre>1. Input Instructions - ACTIFK 2. Input Instructions - ACTIFK User    Subroutine STBATCH</pre>                                                                                                            | 258<br>260                      |
| App. | R.         | FLOW DIAGRAMS FOR ACTIFK USER SUBROUTINES                                                                                                                                                                      | 262                             |
| App. | s.         | ACTIFK USER SUBROUTINE LISTINGS                                                                                                                                                                                | 272                             |

#### LIST OF FIGURES

- Fig. 1. Axial Geometry of SNAP-TSF Model.
- Fig. 2. X,Y Cross Section of Core Zone of SNAP-TSF Reactor Model, Drums In. Dashed lines indicate block boundaries.
- Fig. 3. X,Y Cross Section of Core Zone of SNAP-TSF Reactor Model, Drums at 30 deg.
- Fig. 4. Axial Relative Power (R = 0.0 to 11.239 cm).
- Fig. 5. Axial Relative Power (R = 0.0 to 7.2 cm).
- Fig. 6. Axial Relative Power (R = 7.2 to 11.239 cm).
- Fig. 7. Radial Relative Power. Axial averaging interval entire core axial length.
- Fig. 8. Radial Relative Power. Axial averaging interval bottom half of core.
- Fig. 9. Radial Relative Power. Axial averaging interval top half of core.
- Fig. 10. Axial  $S_{16}$  Adjoint Flux for SNAP-TSF Reactor Plus Shield Configuration; Top to Bottom of Core. Averaged over energy with fission spectrum weighting.
- Fig. 11. S<sub>16</sub> Adjoint Flux Spectrum for SNAP-TSF Reactor Plus Shield Configuration. Averaged over core with axial power distribution weighting.
- Fig. 12. Normalized Power Distributions for SNAP-TSF Reactor Plus Shield Configuration; Top to Bottom of Core.  $\int_{0}^{20} P(z) dz = 1$ , where z is in S<sub>n</sub> interval units.
- Fig. 13. Source Angle Biased Distribution for SNAP-TSF Reactor Plus Shield Configuration.  $S_n$  energy group 8.187 to 10.0 MeV; second  $S_n$  interval from core bottom.
- Fig. 14. Axial S<sub>16</sub> Adjoint Flux for SNAP-TSF Reactor; Top to Bottom of Core. Averaged over energy with fission spectrum weighting.

l

- Fig. 15. S<sub>16</sub> Adjoint Flux Spectrum for SNAP-TSF Reactor. Averaged over core with axial power distribution weighting.
- Fig. 16. Normalized Power Distributions for SNAP-TSF Reactor; Top to Bottom of Core.  $\int_{0}^{20} P(z) dz = 1$ , where z is in S<sub>n</sub> interval units.
- Fig. 17. Source Angle Biased Distribution for SNAP-TSF Reactor.  $S_n$  energy group 8.187 to 10.0 MeV; second  $S_n$  interval from core bottom.
- Fig. 18. Angular Leakage Flux from the SNAP-TSF Reactor Bottom. Averaged over radius 0.0 to 11.239 cm and over azimuthal angle.
- Fig. 19. Leakage Flux Radial Distribution, SNAP-TSF Reactor Bottom.
- Fig. 20. Leakage Flux Spectrum from the SNAP-TSF Reactor Bottom. Averaged over radius 0.0 to 11.239 cm.
- Fig. 21. Collimator Geometry.
- Fig. 22. Perfect Collimator Diagram for Core Mapping Problem.
- Fig. 23. Collimated Leakage Flux Spectra from the SNAP-TSF Reactor Bottom. Collimator angle 0 deg from normal to reactor bottom; R = radius at which collimator axis intersects reactor bottom (in Y = 0plane).
- Fig. 24. Collimated Leakage Flux Spectra from the SNAP-TSF Reactor Bottom. Collimator angle 30 deg from normal to reactor bottom in Y = 0 plane; R = radius at which collimator axis intersects reactor bottom.
- Fig. 25. Collimated Leakage Flux Spectra from the SNAP-TSF Reactor Bottom. Collimator angle 60 deg from normal to reactor bottom in Y = 0 plane; R = radius at which collimator axis intersects reactor bottom.

## METHODS FOR CALCULATING FAST-NEUTRON LEAKAGE FROM THE SNAP-TSF REACTOR AND PRELIMINARY RESULTS

R. S. Hubner

#### ABSTRACT

The 05R Monte Carlo code and associated analysis codes were modified for use in the analyses of the ORNL SNAP-TSF experiments on the leakage of fast neutrons from a SNAP reactor. The reactor geometry is given in great detail. Anisotropic elastic scattering, beryllium (n,2n) reactions, and inelastic scattering processes are treated thoroughly. Importance information obtained from adjoint S<sub>n</sub> calculations was used to construct biased distributions in 05R for the selection of source neutron parameters and of neutron track lengths between reactions. Input instructions and listings for programs and subroutines that were developed are given in the appendices; flow diagrams for certain routines are also given. Power distributions, angular leakage flux, and fluxes viewed by collimated detectors were calculated for some preliminary analyses; 05R source neutron tapes for subsequent 05R calculations on the penetration of neutrons through a SNAP-2 shield were prepared. Requirements for the final analyses are given.

#### INTRODUCTION

A SNAP-TSF program is being conducted at Oak Ridge National Laboratory which will determine, experimentally and analytically, leakage of fast neutrons from a SNAP-10A reactor and their transmission through a SNAP-2 shield. The proposed experimental program includes measuring the neutron angular leakage spectra from the bottom face of the reactor with a tightly collimated detector, determining the fast-neutron doses transmitted through a SNAP-2 shield with the SNAP-10A reactor used as the source, and, possibly, studying the transmitted doses from scatter sources outside the shield shadow.

The analyses of these experiments require not only an adequate transport model which adequately handles anisotropic elastic scattering, inelastic scattering, and n,2n reactions but also some way of describing the geometry in three dimensions and in great detail. Monte Carlo methods are easily adapted to these requirements and offer the best available means of doing the work. Problems arise, however, in minimizing computer time or, in other words, extracting as much information as possible from each neutron history so as to process fewer histories. This can be achieved to some degree by using biased distributions in selecting source neutrons and in governing their paths. The biased distributions can be constructed, in principle, if the importance of the neutrons to the desired answer is known as a function of energy, direction, and position. Results of adjoint  $S_n$  calculations can be interpreted as importance functions.<sup>1</sup>

The O5R Monte Carlo neutron transport code<sup>2</sup> was selected for the analysis of the SNAP-TSF experiments. It has the above advantages and has had much successful use at ORNL. Adjoint  $S_n$  calculations performed with ANISN<sup>3</sup> were used to provide importance functions from which biased distributions were determined.

<sup>&</sup>lt;sup>1</sup>R. R. Coveyou, V. R. Cain, and K. J. Yost, "Adjoint and Importance in Monte Carlo Application," <u>Nucl. Sci. Eng. 27</u>, 219 (1967).

<sup>&</sup>lt;sup>2</sup>D. C. Irving et al., <u>O5R</u>, A General-Purpose Monte Carlo Neutron Transport <u>Code</u>, ORNL-3662 (1965).

<sup>&</sup>lt;sup>3</sup>W. W. Engle, Jr., <u>A User's Manual for ANISN, A One-Dimensional Discrete</u> Ordinates Transport Code with Anisotropic Scattering, K-1693 (1967).

Since the O5R program must be modified for the user's particular problem and since it provides only a collision tape\* as output, several programs and subroutines were written to assist in providing input and source description and in analyzing the output. The analytical work reported here involved the development of these machine programs for the CDC 1604A computer and some preliminary calculations using the programs.

There were two separate problems to be analyzed for the SNAP-TSF reactor. The first (referred to later as the shield source problem) was to determine the total leakage neutron angular flux spectra to be used as a source in subsequent O5R calculations of neutron penetration in the SNAP-2 shield. The second (referred to later as the core mapping problem) was to determine the angular flux spectra to be measured by collimated detectors viewing small fractions of the bottom face of the reactor. Each of these problems required different biasing in order to achieve good statistics for a reasonable running time.

The O5R source selection subroutines<sup>4</sup> required that the axial and radial source distributions be separable. A special O5R calculation was made to determine this source distribution.

For the particular SNAP-10A configuration used (which had the control drums in) the leakage angular distribution, spectra, and spatial distribution were determined. As in the proposed core-mapping experiments, the spectra at several collimated detectors were calculated assuming perfect collimation. The leakage source for subsequent calculations of neutron penetration in a SNAP-2 shield was determined.

<sup>\*</sup>A collision tape contains a variety of neutron parameters for any or all of such events as source, collision, escape from system, etc.

<sup>&</sup>lt;sup>4</sup>L. G. Mooney, <u>A Cylindrical Volume Source Routine for the 05R Monte Carlo</u> <u>Code</u>, RRA-T53 (June 30, 1965).

#### I. SNAP-TSF REACTOR MODEL FOR 05R

#### Reactor Description

The 05R program that was developed for the CDC-1604A computer differed from the usual program in that the 8-medium and 8-scatter limitation was relaxed to accept 16 media and 16 scatterers. The dimensions, atomic densities, and materials on which the geometric and material model for the SNAP-TSF reactor was based are given elsewhere.<sup>5-8</sup> An axial cross section of the reactor as it was described for the 05R geometry input is shown in Fig. 1. Figure 2 shows a cross section through the core perpendicular to the axial direction (Z direction) with the control drums in; the surface numbers are circled and placed on the positive sides of the surfaces. For the position of the drums out, additional blocks and surfaces were required as shown in Fig. 3. Zones were defined by Z = constant planes; the zone boundaries are given in Table 1. Note that the direction from top to bottom of the reactor is positive.

05R geometry description allows any boundary within the system to be a plane or a quadratic surface with any orientation. Table 2 lists the surfaces required in the SNAP-TSF reactor with the control drums rotated in. For the drums-out configuration the same surfaces were used that are given in Table 2; however, the location zone number was different and can be found in Table 1. To describe the drums, the region between -35.1150 and -4.0 cm was divided into three zones, numbered 3, 4, and 5. Zone 4 contained the drums and had four different surfaces; for this configuration surface 8 is described by

 $X(\cos\theta + \sin\theta) + Y(\cos\theta - \sin\theta) + 29.038 \cos\theta + 0.122 \sin\theta - 5.5124 = 0,$ 

<sup>&</sup>lt;sup>5</sup>A. R. Dayes, II, <u>SNAP 10A/2 Nuclear Calculational Model</u>, <u>NAA-SR-MEMO-</u> 9248 (Nov. 22, 1963) (Secret RD).

<sup>&</sup>lt;sup>6</sup>Fuels Quality Control Group, <u>SNAPTRAN V Core-Fuel Element Data Packages</u>, NAA-SR-MEMO-9946 (May 14, 1964) (Secret RD).

<sup>&</sup>lt;sup>7</sup>A. R. Fallon, Atomics International, internal letter to E. J. Donovan (Aug. 30, 1965).

<sup>&</sup>lt;sup>8</sup>Atomics International Drawings 7670-12002 through 7670-12007, 7670-11034, 7670-11039, 10FS-16002, 10FS-11012, 10FSM2-15002 through 10FSM2-15005, 7611-18001, 7611-18002, and 7580-18010 through 7580-18035.



Fig. 1. Axial Geometry of SNAP-TSF Model.



Fig. 2. X,Y Cross Section of Core Zone of SNAP-TSF Reactor Model, Drums In. Dashed lines indicate block boundaries.



Fig. 3. X,Y Cross Section of Core Zone of SNAP-TSF Reactor Model, Drums at 30 deg.

| Drum           | Drums In                    |                | is Out                      |                                   |
|----------------|-----------------------------|----------------|-----------------------------|-----------------------------------|
| Zone<br>Number | Lower Z<br>Boundary<br>(cm) | Zone<br>Number | Lower Z<br>Boundary<br>(cm) | Description                       |
| 1.             | -39.7455                    | l              | -39.7455                    | Top head                          |
| 2              | -36.9794                    | 2              | -36.9794                    | Top grid and vessel               |
| 3              | -35.1150                    | 3              | -35.1150                    | Core and stationary<br>reflectors |
|                |                             | 4              | -32.5750                    | Core, reflectors, and<br>drums    |
|                |                             | 5              | - 6.54                      | Core and stationary reflectors    |
| 4              | - 4.0                       | 6              | - 4.0                       | Bottom grid and vessel            |
| 5              | - 2.5146                    | 7              | - 2.5146                    | Bottom NaK and bottom vessel      |
|                | 1.4710                      |                | 1.4710                      | (Upper boundary)                  |

Table 1. 05R Axial Zone Boundaries

| Surface<br>Number  | Description                                            | Equation (cm units)                                                                          | Location,<br>Zone<br>Number               |
|--------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|
| 1                  | Cylindrical top head<br>boundary                       | $X^2 + Y^2 - 130.55782 = 0$                                                                  | 1                                         |
| 2<br>3<br>4<br>5   | Hexagonal core and<br>grid boundaries<br>(planes)      | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                         | 2,3,4<br>2,3,4<br>2,3,4<br>2,3,4<br>2,3,4 |
| 6                  | Vessel inner cylinder                                  | $X^2 + Y^2 - 127.04108 = 0$                                                                  | 2,3,4,5                                   |
| 7                  | Vessel outer cylinder<br>(see also surface 13)         | $X^2 + Y^2 - 129.92010 = 0$                                                                  | 2,3                                       |
| 8<br>9<br>10<br>11 | Octagonal external<br>reflector boundaries<br>(planes) | X + Y + 23.52820 = 0<br>X - Y + 23.52820 = 0<br>X + Y - 23.52820 = 0<br>X - Y - 23.52820 = 0 | 3<br>3<br>3<br>3                          |
| 12                 | External reflector inner<br>cylindrical boundary       | $X^2 + Y^2 - 133.74044 = 0$                                                                  | 3                                         |
| 13                 | Vessel outer cylinder                                  | $X^2 + Y^2 - 13^4.29913 = 0$                                                                 | 4,5                                       |
| <u>ו</u>           | Vessel bottom, exterior<br>(sphere)                    | $X^2 + Y^2 + Z^2 - 93.98Z = 0$                                                               | 5                                         |
| 15                 | Vessel bottom, internal<br>(sphere)                    | $X^2 + Y^2 + Z^2 - 93.98Z - 29.93946 = 0$                                                    | 5                                         |

Table 2. 05R Surfaces, Drums In

and surface 10 by

 $X(\cos\theta + \sin\theta) + Y(\cos\theta - \sin\theta) - 29.038 \cos\theta$ - 0.122 sin $\theta$  + 5.5124 = 0 ,

where  $\theta$  was the drum rotation angle. The drum cylinder surfaces were added; the equations were

 $X^2 + Y^2 - 29.16X - 28.916Y + 339.7529 = 0$ 

for surface 16 and

$$X^2 + Y^2 + 29.16X + 28.916Y + 339.7529 = 0$$

for surface number 17. Surfaces 18 and 19 were added to describe the original surfaces 8 and 10 in zones 3 and 5.

The media used in the 05R description of the reactor are given in Table 3 along with the atomic densities used in each medium. In the Code 6 input for the system data tape (CODE 6) for each medium, the atomic density for the "other" entry in the element column was added to the atomic density of the element with the asterisk.

The O5R input for subroutine GEOM is given in Appendix A for the drums-in configuration and in Appendix B for the drums rotated out  $30^{\circ}$  ( $\theta = 30^{\circ}$ ).

### 05R System Data Tape - CODE 6

The parameters and probabilities required by 05R for the running of a problem are obtained from a data tape prepared by CODE 6 (ref. 2). The O5R master cross-section library, along with the CODE 6 input - element identification, cross section identification, atomic densities, and number of subgroups per super group for each medium - is processed, and the O5R system data tape is written. Appendix C lists the CODE 6 input for the O5R system data tape used in all O5R runs on the SNAP-TSF reactor. The energy range was from 18 MeV to 0.4 eV. Sixty-four subgroups per supergroup were used for all media.

| 05R<br>Medium<br>Number | Description                                                      | Element                                                                          | Atomic<br>Density<br>(atoms/barn.cm)                                                                        |
|-------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| l                       | Top head<br>Type 321 stainless steel, NaK                        | Ni<br>Fe <b>*</b><br>Cr<br>Na<br>K<br>Other                                      | 0.006469<br>0.04401<br>0.01252<br>0.001247<br>0.002600<br>0.00323                                           |
| 2                       | Top grid hexagon<br>Type 316 stainless steel,Hastelloy<br>N, NaK | Ni*<br>Fe<br>Cr<br>Na<br>K<br>Other                                              | 0.01881<br>0.00747<br>0.00373<br>0.003006<br>0.006267<br>0.00335                                            |
| 3                       | Top grid edge<br>Type 316 stainless steel, René 41,<br>NaK       | Ni<br>Fe*<br>Cr<br>Na<br>K<br>Other                                              | 0.004786<br>0.009797<br>0.003964<br>0.003750<br>0.007818<br>0.00237                                         |
| λ,                      | Core hexagon<br>Fuel, Be, Hastelloy N, NaK                       | 235 <sub>U</sub><br>238 <sub>U</sub><br>H<br>Zr<br>Be<br>Ni*<br>Na<br>K<br>Other | 0.0010964<br>0.00008247<br>0.049956<br>0.02715<br>0.008147<br>0.002646<br>0.0005311<br>0.001107<br>0.000989 |
| 5                       | Internal Be reflector<br>Be, NaK                                 | Be<br>Na<br>K                                                                    | 0.11348<br>0.0002742<br>0.0005717                                                                           |
| 6                       | Vessel<br>Type 321 stainless steel                               | Ni<br>Fe*<br>Cr<br>Other                                                         | 0.008651<br>0.05885<br>0.01674<br>0.004309                                                                  |
| 7                       | External Be reflector                                            | Ве                                                                               | 0.12014                                                                                                     |

Table 3. O5R Media and Atomic Densities

| 05R<br>Medium<br>Number | Description                                                          | Element                             | Atomic<br>Density<br>(atoms/barn.cm)                               |
|-------------------------|----------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|
| 8                       | Bottom grid hexagon<br>Type 316 stainless steel, Hastelloy<br>N, NaK | Ni<br>Fe*<br>Cr<br>Na<br>K<br>Other | 0.01093<br>0.01574<br>0.005163<br>0.002967<br>0.006186<br>0.002527 |
| 9                       | Bottom grid edge<br>Type 316 stainless steel, NaK                    | Ni<br>Fe*<br>Cr<br>Na<br>K<br>Other | 0.006740<br>0.03666<br>0.01027<br>0.001712<br>0.003570<br>0.00295  |
| 10                      | Bottom NaK<br>NaK                                                    | Na<br>K                             | 0.004945<br>0.010310                                               |

Table 3 (cont.)

\*See text.

In 05R each type of reaction is treated as a separate scattering type; thus elastic scatter, inelastic scatter, and n,2n reactions in a given element would be treated as three separate scatterers. As listed in Appendix C, each element generally appears twice in a given medium, once for elastic scatter and once for inelastic scatter; exceptions are hydrogen, which has only elastic scatter; <sup>238</sup>U, for which inelastic scatter was ignored; beryllium, in which inelastic scatter was replaced by the n,2n reaction; and zirconium, which has three entries in the core medium. For zirconium the third entry (the n,2n reaction) was a dummy entry and was treated the same as the second entry (inelastic scatter).

In addition, the  $f_1$  coefficients for elastic scatter for all elements except hydrogen were written on the 05R system data tape; the  $f_1$  coefficients for beryllium n,2n reactions were also written on the tape. These are the coefficients for the  $P_1$  term in the Legendre polynomial expansion of the angular scattering distributions.

#### Phi Tape, Anisotropic Angular Scattering - CODE 8

The master cross-section library contained the coefficients for the expansion of anisotropic angular elastic scattering distributions in Legendre polynomials. For the elements excluding hydrogen used in the SNAP-TSF reactor the order of the expansion was  $P_8$  except for zirconium and the isotopes of uranium, for which it was  $P_6$  and  $P_{14}$  respectively; hydrogen elastic scattering was isotropic in the center-of-mass system. O5R used these distributions for the selection of the cosine of the angle of scatter for an elastic reaction. The parameters required for this selection were prepared by CODE 8 (ref. 2) and written on the phi tape. Appendix C lists the CODE 8 input for the phi tape used in all the O5R runs on the SNAP-TSF reactor except the fission distribution run.  $P_1$  scattering was used for the fission distribution calculation; the data, the  $f_1$  coefficients, were obtained from the O5R system data tape.

#### Thermal Parameters

The thermal neutron option used in the O5R calculation of the SNAP-TSF fission distribution was the one-velocity treatment. Thermal cross sections for the O5R input were obtained from the program QUICKTE;<sup>9</sup> the spectrum was calculated at 700°F.<sup>10</sup> The averaged thermal microscopic cross sections for the elements in the SNAP-10A reactor are given in Table 4. Table 5 lists the macroscopic cross sections for each medium.

#### 05R Input

For the fission distribution calculation the energy below which neutrons were considered to be in the one-velocity thermal group, EBOT, was 0.4 eV; NTHRML was equal to 1. The LFl parameters were positive for elastic scattering in order to pick the  $f_1$ 's from the system data tape and to use the anisotropic distribution function  $P(\mu) = (1 + 3f_1\mu)/2$  for the selection of  $\mu$ , the cosine of the elastic scattering angle. The LFl's were zero for all inelastic scatter and for elastic scatter in hydrogen in order to select  $\mu$  from an isotropic distribution function in the center-of-mass system. Neutrons with weights below 0.005 were subjected to Russian roulette, with the surviving neutrons given the weight 0.1. The purpose of this procedure was to decrease the time spent in following thermal neutrons. The OSR input for this problem is listed in Appendix D.

The items of interest written on the collision tape were the collision coordinates and the fission weight at each collision point.

For the shield source and core-mapping 05R calculations, the energy below which neutrons were ignored, EBOT, was 0.1 MeV; NTHRML was equal to 0. The LF1 parameters were negative for elastic scattering in order to pick the cosine of the elastic scattering angle from the Legendre polynomial expansion of the anisotropic scattering distribution; the constants were obtained from the phi tape. The LF1's were zero for all inelastic

<sup>&</sup>lt;sup>9</sup>M. Boling and W. Rhoades, <u>QUICKIE - A Computer Program for Spatially</u> <u>Independent Multigroup Slowing Down and Thermalization Calculations</u>, NAA-SR-9233 (Apr. 15, 1964).

<sup>&</sup>lt;sup>10</sup>W. B. Green, Atomics International, private communication.

| Element          | σ <sub>a</sub> (barns) | σ <sub>s</sub> (barns) | νσ <sub>f</sub> (barns) |
|------------------|------------------------|------------------------|-------------------------|
| 235U             | 334.28                 | 10.0                   | 690.95                  |
| 238 <sub>U</sub> | 1.583                  | 8.3                    | 0                       |
| H                | 0.17705                | 59.352                 | 0                       |
| Zr               | 0.09865                | 6.242                  | 0                       |
| Ве               | 0.005337               | 5.91                   | 0                       |
| Ni               | 2.453                  | 17.5                   | 0                       |
| Fe               | 1.397                  | 10.87                  | 0                       |
| Na               | 0.27998                | 3.28                   | 0                       |
| К                | 1.104                  | 2.16                   | 0                       |
| Mn*              | 7.305                  | 2.3                    | 0                       |
| Cr               | 1.617                  | 4.23                   | 0                       |
| Мо               | 1.44                   | 5.87                   | 0                       |
| В                | 402.62                 | 3•7                    | 0                       |
| Co*              | 21.03                  | 7.0                    | 0                       |
| С                | 0.002                  | 4.76                   | 0                       |
| 0                | 0.0001054              | 3.86                   | 0                       |

Table 4. Thermal Microscopic Cross Sections for the SNAP-10A Reactor at 700°F from Program QUICKIE

\*Maxwell-Boltzmann averaged at 800°F; not from QUICKIE.

| Medium<br>Number | Thermal Mean<br>Free Path,<br>l/Σ <sub>T</sub> (cm) | Thermal<br>Nonabsorption<br>Probability,<br>$\Sigma_{\rm s}/\Sigma_{\rm T}$ | Average Fission<br>Neutrons per<br>Collision,<br>νΣ <sub>f</sub> /Σ <sub>T</sub> |
|------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| l                | 1.3025                                              | 0.85613                                                                     | 0                                                                                |
| 2                | 1.8396                                              | 0.85789                                                                     | 0                                                                                |
| 3                | 3.2821                                              | 0.80416                                                                     | 0                                                                                |
| 4                | 0.27432                                             | 0.89166                                                                     | 0.20781                                                                          |
| 5                | 1.4834                                              | 0.99806                                                                     | 0                                                                                |
| 6                | 0.99001                                             | 0.85730                                                                     | 0                                                                                |
| 7                | 1.40713                                             | 0.99909                                                                     | 0                                                                                |
| 8                | 2.0463                                              | 0.85440                                                                     | 0                                                                                |
| 9                | 1.4738                                              | 0.85558                                                                     | 0                                                                                |
| 10               | 19.5099                                             | 0.75092                                                                     | 0                                                                                |

| Table 5. | Thermal Macroscopic Parameters fo | r Each |
|----------|-----------------------------------|--------|
|          | Medium in the SNAP-10A Reactor    |        |

scatter and for elastic scatter in hydrogen in order to select the cosine of the scattering angle from an isotropic distribution function in the center-of-mass system. Russian roulette was not used. The O5R input for these problems is listed in Appendix D.

For the shield source problem the items of interest written on the collision tape were the coordinates, weight, energy, and direction for neutrons escaping from the system. For the core-mapping problem the same parameters were of interest not only for escapes but also for source and collision points; additional parameters required by program ACTIFK (described in a later section) were included.

#### 05R User Subroutines

In 05R a variety of subroutines must be written for the user's particular problem. These include subroutine SOURCE for the selection of source neutron coordinates, direction, and energy, subroutine NONELAS to control the treatment of inelastic scattering, and subroutine GETETA which governs the selection of track length between reactions in the system.

In the following discussion the programming pertains to the shield source and core-mapping problems. The special case for the fission distribution calculation used the subroutine NONELAS, which allowed only the evaporation model for the treatment of inelastic scattering, and used the regular subroutine GETETA (ref. 2) for track length selection. Subroutine SOURCE for the fission distribution problem was the same as in the following discussion; however, the biasing options were not used.

#### Source Routines

The neutron source description for O5R allowed the selection of neutron coordinates from a hexagonal volume as in the SNAP-10A core. The power distribution governing this selection was assumed to be separable in the radial and axial directions. Source neutron direction and energy were selected from an isotropic distribution and the <sup>235</sup>U fission spectrum respectively. To enhance the desired quantity to be calculated, biasing schemes favoring source neutrons which make important contributions to the answer were available. The source routine consisted of several subroutines written by Mooney.<sup>4</sup> Subroutine SOURCE was the control routine, with subroutine DATAIN supplying source input data, subroutine SPACE selecting source neutron coordinates, and subroutine VECTOR selecting source neutron directions. Subroutines FISESN and FISSN<sup>11</sup> were written for the selection of source neutron energy. Subroutines SOURCE, DATAIN, SPACE, and VECTOR were modified to suit the requirements of the problems. Listings of all these subroutines may be found in Appendix E. Data input sheets are given in Appendix F.

The selection of source neutron coordinates occurred in subroutine SPACE. Source neutrons were picked from a circular area circumscribing the hexagonal core boundaries. A rejection technique was used to eliminate source neutrons from the area outside the hexagonal core.

If the biasing option was omitted, the coordinates were selected from the normalized cumulative power distributions  $I_1(r)$  and  $I_2(z)$ ; thus, if  $\eta_i$ is a random number and R and Z are the random values to be selected, then

 $\eta_1 = I_1(R)$ 

 $\eta_2 = I_2(Z) ,$ 

where

$$I_{1}(R) = \int_{0}^{R} r P_{1}(r) dr ,$$

$$I_{2}(Z) = \int_{Z_{L}}^{Z} P_{2}(z) dz ,$$

$$\int_{0}^{R} r P_{1}(r) dr = 1 ,$$

$$\int_{Z_{L}}^{Z} P_{2}(z) dz = 1 ,$$

<sup>11</sup>E. A. Straker, Oak Ridge National Laboratory, private communication.

 $Z_{L}$  = lower z boundary of core,  $Z_{U}$  = upper z boundary of core,  $R_{n}$  = radius of core,

 $P_1$  and  $P_2$  = power distributions, radial and axial respectively (normalized). Values of R and Z were obtained using tabulated values of  $I_1(r)$  and  $I_2(z)$  with  $r^2$  interpolation for  $I_1(r)$  and linear interpolation for  $I_2(z)$ .

In the biasing option, the biased distributions were controlled by the r and z interval size. Source neutrons were selected from each interval with equal probability. The biased distributions,  $P_{Bl}(r)$  and  $P_{B2}(z)$ , were calculated in subroutine DATAIN using the input interval sizes; these distributions were histograms, constant over each interval. The input actual distributions,  $P_1(r)$  and  $P_2(z)$ , were linear in each interval. A source neutron with selected coordinates R and Z had its weight adjusted by the factor

$$\frac{P_{1}(\mathbf{R}) P_{2}(\mathbf{Z})}{P_{B1}(\mathbf{R}) P_{B2}(\mathbf{Z})}$$

When using biased distributions combined with rejection techniques, the total weight assigned to all source neutrons will be in error by a constant factor. The final answer in units per source neutron will not contain this error; however, in order to make all intermediate calculations correct, the constant was calculated in subroutine DATAIN and applied to the probability distributions.

The selection of source neutron direction occurred in subroutine VECTOR. The actual source neutron direction distribution was assumed to be isotropic, and when biasing was not used, the direction cosines were obtained by calling subroutine  $GTISO(U,V,W).^2$ 

For source neutron directions, the cosine of the polar angle measured from the z axis,  $\gamma$ , also can be selected from a biased distribution. Again the biased distribution is controlled by the interval size, values of  $\gamma$ being selected from each interval with equal probability. The resulting biased distribution,  $P_{\rm B}(\gamma)$ , is constant over each interval, and its magnitude is a function of the interval size. If N is the number of intervals, then

$$P_{B}(\gamma) = \frac{1}{N(\gamma_{2} - \gamma_{1})} \quad \text{for } \gamma_{1} < \gamma < \gamma_{2}$$

The real distribution,  $P(\gamma)$ , was taken to be isotropic; that is,  $P(\gamma) = 1/2$ . The weight correction factor is given by

$$\frac{P(\gamma)}{P_{B}(\gamma)} = \frac{N(\gamma_{2} - \gamma_{1})}{2} \quad \text{for } \gamma_{1} < \gamma < \gamma_{2}$$

The selection of source neutron energy occurred in subroutine FISESN.<sup>11</sup> The spectrum used in all calculations was the fission spectrum for  $^{235}$ U. COMMON data for this spectrum were contained in subroutine FISSN.

Biasing in FISESN was achieved by dividing the energy range into several groups and specifying the probability for energy selection in each group. Within a group the selection was from the spectrum as defined in that energy interval. Since the biasing parameters were to be obtained from adjoint  $S_n$  calculations, the group structure for FISESN was taken from the structure used in the adjoint  $S_n$  problems.

Input parameters for FISESN were read by subroutine SOURCE, Appendix F.

#### Inelastic Routines

In a more recent version of 05R<sup>12</sup> the treatment used for inelastic scattering is controlled by subroutine NONELAS. When an inelastic event occurs, NONELAS selects the appropriate subroutine to use based on medium and scatterer index. The NONELAS listing is given in Appendix H.

For the SNAP-TSF reactor two inelastic routines were used. The first was subroutine INELAS.<sup>12</sup> This routine gave a discrete level inelastic

<sup>12</sup>F. B. K. Kam, Oak Ridge National Laboratory, private communication.

scatter treatment. As many levels as are known may be used. For energies above a cutoff energy, EHI, the evaporation model was substituted. Table 6 lists the level energies along with EHI for each of the inelastic scatterers. Absent from the table are <sup>238</sup>U whose inelastic scattering was ignored, Be, which was treated in a different subroutine, and H, which has no inelastic scattering. Level energies and excitation probabilities were processed by program NNPCOM<sup>13</sup> (see Appendix G for the program listing and input instructions) to provide COMMON data for use in INELAS.

The second inelastic routine was subroutine  $BEN2N^{14}$  (see Appendix H for the listing). This routine treated the n,2n reaction in beryllium. Half the reactions used the discrete level model with a level energy of 2.46 MeV; in the remaining reactions the scattered neutron was given the energy 0.79 MeV in the center-of-mass system. The neutron weight was doubled for each reaction.

In all cases inelastic scattering was assumed to be isotropic in the center-of-mass system.

#### Track Length Selection

Selection of the neutron track length between reactions took place in subroutine GETETA.<sup>2</sup> This routine was rewritten in order to include the exponential transform<sup>15</sup> for the selection of biased track lengths. This method attempts to stretch the track lengths for favorable directions and to contract track lengths for unfavorable directions; thus, neutrons are pushed to regions of high importance. In the leakage from the reactor bottom, the favorable direction was the +Z direction.

Instead of selecting track lengths,  $\ell$ , from the distribution  $e^{-\Sigma_{T}\ell}$ , the distribution  $\frac{1}{B}e^{-\Sigma_{T}/\ell B}$  was used, where  $\Sigma_{T}$  = total macroscopic cross section;  $B = 1/[1 - \gamma \cdot (XNU)]$ ; but if B < 0.6, it is set equal to 0.6;  $\gamma = Z$  direction cosine;  $(XNU) = \lambda/\Sigma_{T}$ . The parameter  $\lambda$  can be determined only if the spatial rate of change of the importance of neutrons is known. The slope of the adjoint  $S_{n}$  flux as a function of Z was a measure of this rate of change. For all 05R calculations on the neutron leakage from the bottom of the reactor, this slope was used for  $\lambda$ .

<sup>13</sup>K. D. Franz, ORNL, private communication.

<sup>14</sup>F. B. K. Kam, ORNL, private communication.

<sup>15</sup>F. H. Clark, <u>The Exponential Transform as an Importance-Sampling Device</u>, <u>A Review</u>, ORNL-RSIC-14 (Jan. 1966).

| Element | Level Energy<br>(Negative Values)<br>(MeV)    | EHI<br>(MeV) |
|---------|-----------------------------------------------|--------------|
| Na      | 0.44<br>2.08<br>2.39<br>2.64<br>2.71          | 2.97         |
| K       | 2.52<br>2.81<br>3.05<br>3.59                  | 3.96         |
| Cr      | 1.43<br>2.37                                  | 5.50         |
| Fe      | 0.845<br>2.09<br>2.66<br>2.95<br>3.01<br>3.38 | 4.91         |
| Ni      | 1.45<br>2.46                                  | 5.0          |
| Zr      | 0.94                                          | 2.0          |
| 235U    | None                                          | 0.0          |

Table 6. Inelastic Scatter Level Data

When selecting track lengths from the above distribution, a weight adjustment must be made. If  $W_0$  was the original neutron weight, then the new weight, W, was

$$-\Sigma_{r}\ell[1-(1/B)]$$
  
W = W<sub>0</sub> B e

Since the weight recorded on the O5R collision tape for an escaping neutron is the old weight, a small change to O5R subroutine BANKR was necessary; the parameter OLDWT was multiplied by the factor

 $-\Sigma_{T} \ell [1-(1/B)]$ Be . This factor, called GLOP, was placed in COMMON.

The listing for subroutine GETETA is found in Appendix I. Input parameters for GETETA are read by subroutine SOURCE, Appendix F.

#### II. FISSION DISTRIBUTION IN THE SNAP-TSF REACTOR

The more efficient use of 05R for shielding calculations requires that the source distribution be specified and used for all batches of neutrons; thus the neutron thermalization problem can be ignored and neutrons with energies below a cutoff energy can be terminated. The 05R neutron source selection subroutines written for the SNAP-TSF reactor leakage calculation assumed that the source distribution (fission distribution) was separable and that axial and radial distributions would be supplied. A confirmation of separability and a determination of the distributions required that 05R be used in a complete reactor calculation involving neutron thermalization.

#### 05R Calculation

A special O5R calculation was done to determine the fission distribution for the SNAP-TSF core in the drums-in configuration. Neutrons were allowed to degrade to 0.4 eV; neutrons below 0.4 eV were placed in a one-velocity thermal group. Thermal cross sections were obtained from program QUICKIE.<sup>9</sup> Fissioning was allowed.

Several simplifications were used to conserve machine time: only the evaporation model was used for inelastic scattering, the  $f_1$  treatment of anisotropic elastic scattering was used, there was no neutron source biasing nor track stretching, and Russian roulette was used to kill neutrons whose weights fell below a specified value.

An initial source guess was used for the first batch of neutrons; 05R then calculated the source for each succeeding batch from the information acquired during the previous batch. Fourteen batches of 800 neutrons each were run. The fission weight produced at each collision point was written on the collision tape. Seven collision tapes were required.

The multiplication constant and its standard deviation were calculated using the average values from the last 9 batches. Its value was  $1.029 \pm 0.011$ .

#### Fission Distribution Analysis

An analysis program, ANALYSIS, was written to read the collision tapes and accumulate the fission weights in axial and radial bins and print out the resulting fission distributions with their standard deviations. A listing of the program can be found in Appendix J; input instructions are in Appendix K, along with input listings for the SNAP-TSF drums-in configuration.

The axial and radial bin specifications that were used in the fission distribution analysis for the SNAP-TSF reactor were too fine; that is, the interval sizes were too small. The result was that the standard deviations were large and histogram plots of the fission distributions were irregular. Program POWPOW was written to eliminate this statistical fluctuation without sacrificing the ability to have a well-defined distribution (small interval size). It averaged the axial distributions over larger radial intervals, and averaged the radial distributions over larger axial intervals. Since the radial distributions were averaged over the polar angle, the values near the hexagonal core boundaries required some adjustment so that they could be used in the O5R source routine (SOURCE). POWPOW performed this adjustment by multiplying the fission distribution by the ratio of the radial area increment to the hexagonal core area within the radial increment. POWPOW listings are in Appendix J; input instructions are in Appendix K.
Plots of the fission distribution obtained from POWPOW appear in Figs. 4 through 9. Both axial and radial distributions had a cosine shape. The curvature of the distributions indicated separability in the axial and radial directions.

A cosine fitting program<sup>16</sup> using the function A cos Bx and the method of least squares was used to fit the fission distributions. The results are given in Table 7, with the data plotted in the figure indicated.

After examination of Table 7 the following equations were selected to represent the power distributions in the SNAP-TSF reactor:

> $P(z) = 0.0445 \cos 0.0869z ,$  $P(r) = 0.0104 \cos 0.0896r .$

where P(z) and P(r) were proportional to the axial and radial power distributions respectively. These "smoothed" distributions were used as the actual source distributions in all the remaining 05R runs on the SNAP-TSF reactor (drums-in configuration).

#### III. NEUTRON LEAKAGE FROM THE SNAP-TSF REACTOR

The 05R calculations of neutron leakage from the SNAP-TSF reactor employed several biasing schemes which increased the number of neutrons making important contributions to the desired quantity. Thus better statistics resulted and fewer neutrons were processed with a saving of calculation time.

For the SNAP-TSF reactor and the SNAP-2 shield system, fair biasing parameters were available from past experience; however, systematic techniques for calculating biasing parameters that are close to optimum have been studied,<sup>1</sup> and it was felt that use of these techniques would be helpful in this investigation. The procedure assumes that an approximate solution to the equation adjoint to the original transport equation is available. This solution would represent the importance of a neutron at each point in phase space, which would then be used to obtain parameters for the biasing techniques. Since the adjoint equation in its complete form is as difficult to solve as the original equation, the adjoint

<sup>&</sup>lt;sup>16</sup>M. H. Lietzke, A Generalized Least Squares Program for the IBM-7090 Computer, ORNL-3259 (Mar. 21, 1962).



Fig. 4. Axial Relative Power (R = 0.0 to 11.239 cm).



Fig. 5. Axial Relative Power (R = 0.0 to 7.2 cm).



Fig. 6. Axial Relative Power (R = 7.2 to 11.239 cm).



Fig. 7. Radial Relative Power. Axial averaging interval - entire core axial length.



Fig. 8. Radial Relative Power. Axial averaging interval - bottom half of core.



Fig. 9. Radial Relative Power. Axial averaging interval - top half of core.

| Direction                   | Transverse Direction<br>Averaging Interval | Parameter<br>A | Standard<br>Deviation<br>in A | Parameter<br>B | Standard<br>Deviation<br>in B | Figure<br>Number |
|-----------------------------|--------------------------------------------|----------------|-------------------------------|----------------|-------------------------------|------------------|
| Axial<br>(center to bottom) | Entire radial dimension                    | 0.0442         | 0.00071                       | 0.0912         | 0.0015                        |                  |
| Axial<br>(center to top)    | Entire radial dimension                    | 0.0448         | 0.00126                       | 0.0825         | 0.0030                        |                  |
| Axial<br>(bottom to top)    | Entire radial dimension                    | 0.0445         | 0.00084                       | 0.0869         | 0.0019                        | 24               |
| Axial<br>(center to bottom) | R = 0.0 to 7.2 cm                          | 0.0436         | 0.00117                       | 0.0909         | 0.0026                        | 5                |
| Axial<br>(center to top)    | R = 0.0 to 7.2 cm                          | 0.0451         | 0.00108                       | 0.0820         | 0.0026                        | 5                |
| Axial<br>(center to bottom) | R = 7.2 to 11.239 cm                       | 0.0448         | 0.00074                       | 0.0916         | 0.0016                        | 6                |
| Axial<br>(center to top)    | R = 7.2 to 11.239 cm                       | 0.0446         | 0.00180                       | 0.0830         | 0.0043                        | 6                |
| Radial                      | Entire axial length                        | 0.0104         | 0.00012                       | 0.0896         | 0.0018                        | 7                |
| Radial                      | Bottom half of core                        | 0.0102         | 0.00014                       | 0.0871         | 0.0023                        | 8                |
| Radial                      | Top half of core                           | 0.0105         | 0.00019                       | 0.0917         | 0.0027                        | 9                |
| Radial                      | First quarter of axial<br>length (bottom)  | 0.0104         | 0.00023                       | 0.0900         | 0.0035                        |                  |
| Radial                      | Second quarter of axial length             | 0.0100         | 0.00024                       | 0.0843         | 0.0040                        |                  |
| Radial                      | Third quarter of axial length              | 0.0108         | 0.00029                       | 0.0960         | 0.0038                        |                  |
| Radial                      | Fourth quarter of axial length (top)       | 0.0102         | 0.00024                       | 0.0869         | 0.0038                        |                  |

| Table 7. Pa | rameters for | A cos E | 3x Fitting | of | Fission | Distributions |
|-------------|--------------|---------|------------|----|---------|---------------|
|-------------|--------------|---------|------------|----|---------|---------------|

calculations were performed with a simpler model to obtain better biasing for efficient Monte Carlo calculations; Program ANISN,<sup>3</sup> a one-dimensional  $S_n$  code, was used to provide this information.

# ANISN Adjoint Sn Calculations

One-dimensional descriptions for both the SNAP-TSF reactor with the SNAP-2 shield and the SNAP-TSF reactor alone were used in  $S_{16}$  adjoint flux calculations with  $P_2$  cross-section representation by program ANISN. The reactor shield model for the slab geometry is given in Table 8. The reactor-alone model did not have zone 7. Atomic densities were the same as those used in 05R (CODE 6).

The energy group structure is given in Table 9. For the reactor plus shield configuration, a shell source was placed in interval number 65, the shield bottom; the  $S_{16}$  angle interval index was 1, cosine  $\theta$  between 0.9494 and 1.0000. Fast-neutron dose factors were divided by the cosine of the midpoint angle of angle interval 1; the result was used as the shell source input. Table 10 lists the source input.

For the reactor alone, a unit isotropic shell source was placed in interval 34 (the reactor vessel bottom).

# Source Biasing - Shield Source Problem

The biased distributions required by subroutines SPACE and FISESN (both called by subroutine SOURCE) were obtained from the adjoint  $S_{16}$  flux data printed by program ANISN. The reduction of the flux data was accomplished by program BIASOR. Input instructions and program listing for BIASOR are found in Appendix L.

Input for BIASOR consisted of the adjoint  $S_n$  total flux as a function of position and energy. The flux was averaged over energy, using the energy-group-dependent fission probabilities as a weighting function. The resulting flux,  $\phi_1(z)$ , was a function of axial position only and was a measure of the axial importance of the neutron source. If P(z) is the actual power distribution,  $P_B(z)$  is the unnormalized biased power distribution, and the adjoint flux is used as the importance function, then

 $P_{B}(z) = \Phi_{1}(z) P(z)$ .

| Zone<br>Number | one Number of Outer<br>nber Intervals (a |          | Zone Description |
|----------------|------------------------------------------|----------|------------------|
| <u></u>        |                                          | 0.0      |                  |
| l              | 4                                        | 2.766    | Top head         |
| 2              | 2                                        | 4.6304   | Top grid         |
| 3              | 20                                       | 35•7454  | Core             |
| 24             | 2                                        | 37.2307  | Bottom grid      |
| 5              | 4                                        | 39•5307  | Bottom NaK       |
| 6              | 2                                        | 39.8482  | Bottom vessel    |
| 7              | 31                                       | 101.8482 | Shield           |

Table 8. One-Dimensional Slab Geometry for ANISN Description of the SNAP-TSF Reactor Plus Shield Configuration

| Adjoint S <sub>n</sub><br>Group Number                                                                                                                | Upper Energy<br>Boundary<br>(eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lower Energy<br>Boundary<br>(eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13<br>12<br>11<br>10<br>9<br>8<br>7<br>6<br>5<br>4<br>3<br>2<br>1 | 1.492 x 107<br>1.221 x 107<br>1.000 x 107<br>8.187 x 10 <sup>6</sup><br>6.703 x 10 <sup>6</sup><br>5.488 x 10 <sup>6</sup><br>4.493 x 10 <sup>6</sup><br>3.679 x 10 <sup>6</sup><br>3.012 x 10 <sup>6</sup><br>2.019 x 10 <sup>6</sup><br>1.653 x 10 <sup>6</sup><br>1.353 x 10 <sup>6</sup><br>1.108 x 10 <sup>6</sup><br>1.108 x 10 <sup>5</sup><br>1.111 x 10 <sup>5</sup><br>1.503 x 10 <sup>4</sup><br>3.355 x 10 <sup>3</sup><br>5.829 x 10 <sup>2</sup><br>1.013 x 10 <sup>2</sup><br>2.902 x 10 <sup>1</sup><br>1.068 x 10 <sup>1</sup><br>3.059 x 10 <sup>0</sup><br>1.125 x 10 <sup>0</sup><br>4.140 x 10 <sup>-1</sup> | 1.221 x $10^7$<br>1.000 x $10^7$<br>8.187 x $10^6$<br>6.703 x $10^6$<br>5.488 x $10^6$<br>3.679 x $10^6$<br>3.012 x $10^6$<br>3.012 x $10^6$<br>2.466 x $10^6$<br>2.466 x $10^6$<br>1.653 x $10^6$<br>1.653 x $10^6$<br>1.108 x $10^6$<br>9.072 x $10^5$<br>6.081 x $10^5$<br>1.111 x $10^5$<br>1.503 x $10^4$<br>3.355 x $10^3$<br>5.829 x $10^2$<br>1.013 x $10^2$<br>1.013 x $10^2$<br>2.902 x $10^1$<br>1.068 x $10^1$<br>3.059 x $10^0$<br>1.125 x $10^0$<br>4.140 x $10^{-1}$ |

Table 9. ANISN Adjoint  $S_n$  Energy Group Structure

| Adjoint S <sub>n</sub>                                                                                        | Fast-Neutron Dose*                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group Number                                                                                                  | (rads hr <sup>-1</sup> per neutron cm <sup>-2</sup> sec <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                  |
| 27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13<br>12<br>11<br>10<br>9 | 2.0046 x $10^{-5}$<br>1.8878 x $10^{-5}$<br>1.7776 x $10^{-5}$<br>1.7128 x $10^{-5}$<br>1.6511 x $10^{-5}$<br>1.5903 x $10^{-5}$<br>1.5832 x $10^{-5}$<br>1.2496 x $10^{-5}$<br>1.2496 x $10^{-5}$<br>1.1537 x $10^{-5}$<br>1.0840 x $10^{-5}$<br>9.8811 x $10^{-6}$<br>9.2181 x $10^{-6}$<br>8.6247 x $10^{-6}$<br>7.0724 x $10^{-6}$<br>5.9312 x $10^{-6}$<br>4.0400 x $10^{-6}$<br>1.6288 x $10^{-7}$ |

| Table | 10.   | ANISI  | N Adjoi | nt S <sub>n</sub> | Shell  | Source  | Input   | for | the |
|-------|-------|--------|---------|-------------------|--------|---------|---------|-----|-----|
|       | SNAP- | -TSF 1 | Reactor | Plus              | Shield | l Confi | guratio | on  |     |

\*Divided by 0.9801449.

BIASOR also averaged the adjoint  $S_n$  flux over position, using the actual power distribution as a weighting function. The resulting flux,  $\phi_2(E)$ , is a function of energy only and is a measure of the energy importance of the neutron source.  $\phi_2(E)$  was constant over each energy group i; thus,  $\phi_{2i} = \phi_2(E)$  for  $E_i < E < E_{i+1}$ . If  $F_i$  were the fission probability for energy group i and QE, were the biased fission probability, then

$$QE_{i} = \frac{\Phi_{2i}F_{i}}{\sum_{i} \Phi_{2i}F_{i}}$$

Although  $\sum_{i} QE_{i} = 1$ , the printed results from BIASOR may not equal 1 exactly, due to roundoff error; however, QE<sub>i</sub> input to FISESN (SOURCE input)

must have this property. Appropriate adjustments to the QE values must be made.

The adjoint  $S_n$  fluxes  $\phi_1(z)$  and  $\phi_2(E)$  are plotted in Figs. 10 and 11 respectively. The biased axial power distribution results are shown in Table 11. The biased axial power distribution is compared in Fig. 12 with the actual axial power distribution. The biased fission probability results are shown in Table 12.

For the  $QE_i$  input to subroutine FISESN, the biased fission source fractions in Table 12 were used except for adjoint  $S_n$  group Nos. 19 and 20 and group Nos. 15 through 18, whose values were averaged and placed in two broader energy groups.

An investigation of the adjoint  $S_n$  angular fluxes showed that the angular variation was relatively independent of axial position and of energy. For the source angle biased distribution, the adjoint  $S_n$  angular flux in the second  $S_n$  interval from the core bottom and the  $S_n$  energy group number 27 was used. This flux is plotted in Fig. 13 and listed in Table 13.

The biased radial distribution was arbitrarily selected to be flat.



Fig. 10. Axial  $\rm S_{16}$  Adjoint Flux for SNAP-TSF Reactor Plus Shield Configuration; Top to Bottom of Core. Averaged over energy with fission spectrum weighting.



Fig. ll.  $\rm S_{16}$  Adjoint Flux Spectrum for SNAP-TSF Reactor Plus Shield Configuration. Averaged over core with axial power distribution weighting.

| Adjoint S <sub>n</sub><br>Lower Z, Core<br>Interval Boundary<br>(cm)<br>(Top to Bottom)                                                                                                                                             | A<br>Actual<br>Axial Power<br>Distribution*                                                                                                                                                                                                                          | B<br>Fission Spectrum<br>Averaged Adjoint<br>S <sub>n</sub> Flux                                                                                                                                                                                                                                                                                                                                                                                                                 | C<br>Biased<br>Axial Power<br>Distribution**                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -35.115<br>-33.559<br>-32.004<br>-30.448<br>-28.892<br>-27.336<br>-25.780<br>-24.225<br>-22.669<br>-21.113<br>-19.558<br>-18.002<br>-16.446<br>-14.890<br>-13.334<br>-11.779<br>-10.223<br>- 8.667<br>- 7.112<br>- 5.556<br>- 4.000 | 0.01955<br>0.02832<br>0.03658<br>0.04415<br>0.05094<br>0.05678<br>0.06159<br>0.06528<br>0.06778<br>0.06904<br>0.06904<br>0.06904<br>0.06904<br>0.06528<br>0.06528<br>0.06159<br>0.05678<br>0.05094<br>0.05678<br>0.05094<br>0.04415<br>0.03658<br>0.02832<br>0.01955 | $6.341 \times 10^{-9}$<br>$8.091 \times 10^{-9}$<br>$1.034 \times 10^{-8}$<br>$1.321 \times 10^{-8}$<br>$1.690 \times 10^{-8}$<br>$2.163 \times 10^{-8}$<br>$2.770 \times 10^{-8}$<br>$3.552 \times 10^{-8}$<br>$4.556 \times 10^{-8}$<br>$5.851 \times 10^{-8}$<br>$7.518 \times 10^{-8}$<br>$1.245 \times 10^{-7}$<br>$1.605 \times 10^{-7}$<br>$2.070 \times 10^{-7}$<br>$2.673 \times 10^{-7}$<br>$3.452 \times 10^{-7}$<br>$4.467 \times 10^{-7}$<br>$7.523 \times 10^{-7}$ | 0.00094<br>0.00173<br>0.00286<br>0.00441<br>0.00650<br>0.00928<br>0.01289<br>0.01752<br>0.02334<br>0.03053<br>0.03922<br>0.04955<br>0.06141<br>0.07470<br>0.08881<br>0.10289<br>0.11517<br>0.12348<br>0.12363<br>0.11114 |

Table 11. Biased Axial Power Distribution for the SNAP-TSF Reactor Plus Shield Configuration

\*The sum of column A equaled 1. \*\*Column C equaled column A times column B, normalized such that the sum of column C equaled 1.



Fig. 12. Normalized Power Distributions for SNAP-TSF Reactor Plus Shield Configuration; Top to Bottom of Core.  $\int_{0}^{20} P(z) \ dz = 1, \ \text{where } z \text{ is } in \ S_n \ \text{interval units.}$ 

| Adjoint S <sub>n</sub><br>Group Number                                                             | Lower Energy<br>Boundary<br>(MeV)                                                                                                        | A<br>Fission Source<br>Fraction from<br>Subroutine<br>FISSN                                                                                                                                                                                                                                                                                                                                               | B<br>Power Distribu-<br>tion Averaged<br>Adjoint S <sub>n</sub><br>Flux in Core                                                                                                                                                                                                                                            | C<br>Normalized<br>Biased Fission<br>Source<br>Fraction*                                                                                      |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13<br>12<br>11 | 12.2<br>10.0<br>8.18<br>6.70<br>5.49<br>4.5<br>3.68<br>3.01<br>2.46<br>2.02<br>1.65<br>1.35<br>1.11<br>0.907<br>0.608<br>0.4076<br>0.111 | $1.795 \times 10^{-4}$ $8.785 \times 10^{-4}$ $3.492 \times 10^{-3}$ $1.002 \times 10^{-2}$ $2.118 \times 10^{-2}$ $3.785 \times 10^{-2}$ $5.84 \times 10^{-2}$ $7.45 \times 10^{-2}$ $8.95 \times 10^{-2}$ $9.4 \times 10^{-2}$ $9.4 \times 10^{-2}$ $8.9 \times 10^{-2}$ $8.0 \times 10^{-2}$ $8.0 \times 10^{-2}$ $8.0 \times 10^{-2}$ $1.08 \times 10^{-1}$ $7.0 \times 10^{-2}$ $8.3 \times 10^{-2}$ | 9.837 x $10^{-5}$<br>2.704 x $10^{-5}$<br>7.967 x $10^{-6}$<br>2.469 x $10^{-6}$<br>8.038 x $10^{-7}$<br>2.788 x $10^{-7}$<br>9.750 x $10^{-8}$<br>3.711 x $10^{-8}$<br>1.534 x $10^{-8}$<br>6.46 x $10^{-9}$<br>2.574 x $10^{-9}$<br>9.024 x $10^{-10}$<br>2.613 x $10^{-10}$<br>5.826 x $10^{-11}$<br>6.816 x $10^{-12}$ | 0.1334<br>0.1795<br>0.2102<br>0.1870<br>0.1287<br>0.0797<br>0.0430<br>0.0209<br>0.0104<br>0.0018<br>0.0006<br>0.0002<br>0<br>0<br>0<br>0<br>0 |

| Table | 12. | Source | Ener | rgy | Bias | sing | for  | the  | SNAP | -TSF |
|-------|-----|--------|------|-----|------|------|------|------|------|------|
|       | Re  | eactor | Plus | Shi | ield | Conf | igur | atic | on   |      |

\*Column C was obtained by multiplying column A times column B and normalizsuch that the sum of column C equaled 1.



Fig. 13. Source Angle Biased Distribution for SNAP-TSF Reactor Plus Shield Configuration.  $\rm S_n$  energy group 8.187 to 10.0 MeV; second  $\rm S_n$  interval from core bottom.

| Angle                                                                               | $S_{16}$<br>Cos $\theta$                                                                                                                                                                                          | Sie<br>Adjoint<br>Angular Flux                       |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Index                                                                               | Lower Boundary                                                                                                                                                                                                    | (Blased Distribution)                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 1.0000000 $0.9493858$ $0.8381952$ $0.6813418$ $0.5000000$ $0.3186582$ $0.1618048$ $0.0506142$ $0.0000000$ $-0.0506142$ $-0.1618048$ $-0.3186582$ $-0.5000000$ $-0.6813418$ $-0.8381952$ $-0.9493858$ $-1.0000000$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| Table 13. | Source  | Angle  | Biased | Distribution | for | SNAP-TSF |
|-----------|---------|--------|--------|--------------|-----|----------|
| React     | or Plus | Shield | Config | gurationa    |     |          |

a.  $s_n$  energy group 8.187 to 10.0 MeV; second  $s_n$  interval from core bottom.

The input for subroutine SOURCE does not include the biased distributions for the axial, radial, and angular selection of source neutron parameters; instead, it requires a specification of interval sizes from which parameters are selected with equal probability. In order to determine the interval sizes appropriate for the biased distributions, program SORSPREP was written. Input instructions and listings for SORSPREP are given in Appendix M.

SORSPREP input consists of the real and biased radial and axial source distributions and the biased angular source distribution. SORSPREP prints and punches the axial, radial, and angular input required by subroutine DATAIN (called by subroutine SOURCE).

# Exponential Transform - Shield Source Problem

The selection of track lengths,  $\ell$ , was made from the distribution  $\frac{1}{B} e^{-\Sigma_{T} \ell / B}$ , where  $\Sigma_{T}$  = total macroscopic cross section;  $B = \frac{1}{1 - \gamma(XNU)}$ , but if B < 0.6, it is set equal to 0.6;  $\gamma = z$  direction cosine, (XNU) =  $\lambda / \Sigma_{T}$ , and  $\lambda$  is the slope of the adjoint  $S_{n}$  flux.<sup>1</sup>

Examination of XNU for the adjoint  $S_n$  total flux and of XNU for the adjoint  $S_n$  angular flux in the first angular interval resulted in the decision to use the angular flux in the first angular interval. XNU's obtained from the total flux seemed too large in view of past experience, and the values did not decrease as the bottom system boundary was approached. The behavior of XNU's obtained from the angular flux seemed more appropriate.

Since the XNU's could be supplied as input by O5R region and by energy group, a large number of calculations of XNU were anticipated. Program IMPORT was written to aid in this work. IMPORT calculates  $\lambda$  and XNU for each S<sub>n</sub> energy group. It assumes that over a given broad interval,  $z_1 \leq z \leq z_2$ , the adjoint S<sub>n</sub> flux  $\phi$  can be represented by

$$\Phi = A e^{\lambda z}$$
 for  $z_1 \leq z \leq z_2$ ;

 $\lambda$  is then calculated using

47

$$\lambda = \frac{1}{z_2 - z_1} \ln \frac{\Phi_2}{\Phi_1} ,$$

and

$$XNU = \frac{\lambda}{\Sigma_{T}}$$

is obtained. A region of constant cross section may be divided into several broad z intervals containing two or more of the  $S_n$  intervals. The flux is then input as a function of energy at each of these broad interval boundaries. Since the adjoint  $S_n$  flux is an average value for the  $S_n$ interval, the broad interval boundary should be the midpoint of the  $S_n$ interval. Either the total flux or the angular flux for any angular group may be input. As many regions of constant cross section as desired may be processed. Input instructions and program listing are given in Appendix L.

For the shield source problem, the values of XNU for each  $S_n$  energy group were found to be constant over the entire axial length of the core. Results of these calculations, including values for the NaK at the reactor bottom, are given in Table 14.

Since the values of XNU were found to be relatively constant over energy intervals larger than the  $S_n$  energy intervals, the XNU input energy group structure was changed. Table 15 gives the XNU values used in the O5R calculation. Two regions were used: region 1, which was contained in zones 1 through 4 and region 2, which was contained in zone 5.

The source data and the track stretching parameters required as input to 05R for the shield source problem are listed in Appendix F.

# Source Biasing - Core-Mapping Problem

The biased distributions required by subroutines SPACE and FISESN were obtained from the adjoint flux data printed by program ANISN for the reactor without the shield. The reduction of the flux data was accomplished by methods described previously.

| I                                                                                            | Lower Energy                                                                                                                    | A<br>Total Macroscopic<br>Cross Section (cm <sup>-1</sup> )                                                                                                                 |                                                                                                                                                                                         | Slope of<br>Forward                                                                                                                                          | B<br>Adjoint S <sub>n</sub><br>Flux* (cm <sup>-1</sup> )                                                                                                                         | C<br>Exponential Trans-<br>form Parameter, XNU**                                                                                                                                 |                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S <sub>n</sub> Energy<br>Index                                                               | (MeV)                                                                                                                           | Core                                                                                                                                                                        | Bottom NaK                                                                                                                                                                              | Core                                                                                                                                                         | Bottom NaK                                                                                                                                                                       | Core                                                                                                                                                                             | Bottom NaK                                                                                                                                                             |
| 27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13<br>12 | 12.2<br>10.0<br>8.18<br>6.70<br>5.49<br>4.5<br>3.68<br>3.01<br>2.46<br>2.02<br>1.65<br>1.35<br>1.11<br>0.907<br>0.608<br>0.4076 | 018421<br>0.19930<br>0.20991<br>0.21877<br>0.22281<br>0.23420<br>0.25072<br>0.27134<br>0.29687<br>0.30808<br>0.33424<br>0.36937<br>0.40723<br>0.45383<br>0.54014<br>0.63661 | 0.03145<br>0.03298<br>0.03476<br>0.03753<br>0.04102<br>0.04642<br>0.05115<br>0.05215<br>0.05231<br>0.04932<br>0.04932<br>0.04186<br>0.03767<br>0.03502<br>0.03874<br>0.04662<br>0.03861 | 0.1319<br>0.1443<br>0.1554<br>0.1669<br>0.1793<br>0.1952<br>0.2124<br>0.2299<br>0.2495<br>0.2591<br>0.2821<br>0.3133<br>0.3503<br>0.3957<br>0.4549<br>0.5647 | 0.0242<br>0.0249<br>0.0256<br>0.0266<br>0.0290<br>0.0332<br>0.0372<br>0.0388<br>0.0400<br>0.0388<br>0.0400<br>0.0388<br>0.0341<br>0.0315<br>0.0297<br>0.0334<br>0.0397<br>0.0342 | 0.7158<br>0.7242<br>0.7401<br>0.7631<br>0.8047<br>0.8334<br>0.8471<br>0.8474<br>0.8404<br>0.8412<br>0.8439<br>0.8439<br>0.8439<br>0.8482<br>0.8601<br>0.8719<br>0.8422<br>0.8870 | 0.7707<br>0.7565<br>0.7363<br>0.7086<br>0.7064<br>0.7143<br>0.7278<br>0.7442<br>0.7640<br>0.7860<br>0.8136<br>0.8136<br>0.8362<br>0.8493<br>0.8627<br>0.8527<br>0.8866 |

Table 14. Adjoint  $S_n$  Parameters for the Exponential Transform in the SNAP-TSF Reactor Plus Shield Configuration

\*The adjoint  $S_{16}$  angular flux for angle index number 1. \*\*Column C was obtained by dividing column B by column A.

| I <u>th</u> Group<br>Lower Energy<br>Boundary (MeV) | 05R<br>Region l<br>XNU(1,I) | 05R<br>Region 2<br>XNU(2,I) |  |  |
|-----------------------------------------------------|-----------------------------|-----------------------------|--|--|
| 8.18                                                | 0.727                       | 0.754                       |  |  |
| 5.49                                                | 0.784                       | 0.708                       |  |  |
| 3.01                                                | 0.843                       | 0.729                       |  |  |
| 1.35                                                | 0.843                       | 0.800                       |  |  |
| 0.407                                               | 0.865                       | 0.863                       |  |  |
| 0.11                                                | 0.776                       | 0.705                       |  |  |

Table 15. XNU Values Used in 05R for the SNAP-TSF Reactor Plus Shield Configuration

The adjoint  $S_n$  fluxes  $\phi_1(Z)$  and  $\phi_2(E)$  are plotted in Figs. 14 and 15. The biased axial power distribution was calculated as shown in Table 16. The biased axial power distribution is compared to the actual axial power distribution in Fig. 16. The biased fission probabilities were calculated as shown in Table 17.

For the QE input to subroutine FISESN, the biased fission source fraction in Table 17 was used except for the values for the following adjoint S<sub>n</sub> group numbers which were averaged and placed in the corresponding broader energy groups:

Adjoint S group Nos. 25 through 27, 23 and 24, 21 and 22, 19 and 20, 14 and 15, and 12 and 13.

An investigation of the adjoint  $S_n$  angular fluxes showed that the angular variation was relatively independent of axial position and of energy. For the source angle biased distribution the adjoint  $S_n$  angular flux in the second  $S_n$  interval from the core bottom and the  $S_n$  energy group No. 27 was used. The flux data are given in Fig. 17 and Table 18.

The biased radial distribution was arbitrarily selected to be flat.

Program SORSPREP was used to prepare the above data for input to the O5R source routines.

# Exponential Transform - Core-Mapping Problem

The track stretching parameters XNU were obtained from the slope of the adjoint S<sub>n</sub> angular flux in the manner described previously; however, the values for XNU for each S<sub>n</sub> energy group were not constant over the entire axial length of the core. The reactor was divided into four axial 05R regions. The bottom NaK and vessel, zone 5, were the fourth region; the rest of the reactor consisted of regions 1 through 3 defined by the planes Z + 23.4469 = 0 and Z + 14.1124 = 0. Results of the XNU calculations for the four regions are given in Table 19.

Since the values of XNU were found to be relatively constant over larger energy intervals than the  $S_n$  energy intervals, the XNU input energy group structure was changed. Table 20 gives the XNU values used in the 05R calculation.



Fig. 14. Axial  $\rm S_{16}$  Adjoint Flux for SNAP-TSF Reactor; Top to Bottom of Core. Averaged over energy with fission spectrum weighting.



Fig. 15.  $\rm S_{16}$  Adjoint Flux Spectrum for SNAP-TSF Reactor. Averaged over core with axial power distribution weighting.

| Adjoint S <sub>n</sub><br>Lower Z,<br>Core Interval                                                                                                                                                                      | A<br>Actual<br>xial Power<br>stribution*                                                                                                                                                                                                                  | B<br>Fission Spectrum<br>Averaged Adjoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C<br>Biased<br>Axial Power                                                                                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (Top to Bottom) Di                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           | S <sub>n</sub> Flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C<br>Biased<br>Axial Power<br>Distribution**                                                                                                                                                                             |  |
| -35.115<br>-33.559<br>-32.004<br>-30.448<br>-28.892<br>-27.336<br>-25.780<br>-24.225<br>-22.669<br>-21.113<br>-19.558<br>-18.002<br>-16.446<br>-14.890<br>-13.334<br>-11.779<br>-10.223<br>- 8.667<br>- 7.112<br>- 5.556 | 0.01955<br>0.02832<br>0.03658<br>0.04415<br>0.05094<br>0.05678<br>0.06159<br>0.06528<br>0.06778<br>0.06904<br>0.06904<br>0.06904<br>0.06904<br>0.06528<br>0.06159<br>0.05678<br>0.05678<br>0.05678<br>0.05678<br>0.05678<br>0.05678<br>0.05678<br>0.05678 | $5.123 \times 10^{-5}$<br>$6.901 \times 10^{-5}$<br>$9.469 \times 10^{-5}$<br>$1.307 \times 10^{-4}$<br>$1.811 \times 10^{-4}$<br>$2.519 \times 10^{-4}$<br>$4.920 \times 10^{-4}$<br>$4.920 \times 10^{-4}$<br>$9.732 \times 10^{-4}$<br>$1.375 \times 10^{-3}$<br>$1.952 \times 10^{-3}$<br>$2.779 \times 10^{-3}$<br>$3.978 \times 10^{-3}$<br>$5.716 \times 10^{-3}$<br>$8.273 \times 10^{-2}$<br>$1.202 \times 10^{-2}$<br>$1.772 \times 10^{-2}$<br>$2.625 \times 10^{-2}$<br>$4.092 \times 10^{-2}$ | 0.00023<br>0.00045<br>0.00080<br>0.00134<br>0.00213<br>0.00331<br>0.00500<br>0.00743<br>0.01083<br>0.01553<br>0.02195<br>0.03059<br>0.04194<br>0.05664<br>0.07504<br>0.09743<br>0.12270<br>0.14986<br>0.17186<br>0.18494 |  |

Table 16. Biased Axial Power Distribution for the SNAP-TSF Reactor

\*The sum of columnA equaled 1.

\*\*Column C equaled column A times column B, normalized such that the sum of column C equaled 1.



Fig. 16. Normalized Power Distributions for SNAP-TSF Reactor; Top to Bottom of Core.  $\int_{0}^{20} P(z) dz = 1$ , where z is in S<sub>n</sub> interval units.

| Adjoint<br>Group<br>Number                                                                   | Lower Energy<br>Boundary<br>(MeV)                                                                                                | A<br>Fission Source<br>Fraction from<br>Subroutine<br>FISSN                                                                                                                                                                                                                                                                                                     | B<br>Power Distribu-<br>tion Averaged<br>Adjoint S <sub>n</sub><br>Flux in Core                                                                                                                                                                                                                                         | C<br>Normalized<br>Biased Fission<br>Source<br>Fraction*                                                                                                     |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13<br>12 | 12.2<br>10.0<br>8.18<br>6.70<br>5.49<br>4.5<br>3.68<br>3.01<br>2.46<br>-2.02<br>1.65<br>1.35<br>1.11<br>0.907<br>0.608<br>0.4076 | $1.795 \times 10^{-4}$ $8.785 \times 10^{-4}$ $3.492 \times 10^{-3}$ $1.002 \times 10^{-2}$ $2.118 \times 10^{-2}$ $3.785 \times 10^{-2}$ $7.45 \times 10^{-2}$ $7.45 \times 10^{-2}$ $8.95 \times 10^{-2}$ $9.4 \times 10^{-2}$ $8.9 \times 10^{-2}$ $8.9 \times 10^{-2}$ $8.0 \times 10^{-2}$ $8.0 \times 10^{-2}$ $1.08 \times 10^{-1}$ $7.0 \times 10^{-2}$ | 1.460 x $10^{-2}$<br>1.291 x $10^{-2}$<br>1.155 x $10^{-2}$<br>1.047 x $10^{-2}$<br>9.504 x $10^{-3}$<br>8.551 x $10^{-3}$<br>7.591 x $10^{-3}$<br>6.054 x $10^{-3}$<br>6.054 x $10^{-3}$<br>5.632 x $10^{-3}$<br>4.987 x $10^{-3}$<br>4.258 x $10^{-3}$<br>3.516 x $10^{-3}$<br>2.035 x $10^{-3}$<br>1.096 x $10^{-3}$ | 0.0006<br>0.0026<br>0.0093<br>0.0243<br>0.0465<br>0.0748<br>0.1025<br>0.1163<br>0.1254<br>0.1224<br>0.1084<br>0.0876<br>0.0650<br>0.0458<br>0.0508<br>0.0177 |

Table 17. Source Energy Biasing for the SNAP-TSF Reactor

\*Column C was obtained by multiplying column A times column B and normalizing such that the sum of column C equaled 1.



Fig. 17. Source Angle Biased Distribution for SNAP-TSF Reactor.  $s_n \ energy \ group \ 8.187$  to 10.0 MeV; second  $s_n$  interval from core bottom.

57

| S <sub>16</sub><br>cosθ<br>Lower Boundary                                                                                                                                                                         | S <sub>16</sub> , Adjoint<br>Angular Flux<br>(Biased Distribution)                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1,0000000                                                                                                                                                                                                         | x 10 <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 1.0000000<br>0.9493858<br>0.8381952<br>0.6813418<br>0.500000<br>0.3186582<br>0.1618048<br>0.0506142<br>0.0000000<br>-0.0506142<br>-0.1618048<br>-0.3186582<br>-0.500000<br>-0.6813418<br>-0.8381952<br>-0.9493858 | 9.475<br>9.392<br>9.030<br>8.352<br>7.331<br>6.010<br>4.662<br>3.676<br>2.849<br>3.015<br>2.632<br>2.110<br>1.617<br>1.249<br>1.022                                                                                                                                                                                                                                                                                        |  |  |
| -1.0000000                                                                                                                                                                                                        | 0.9061                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                   | $\begin{array}{c} S_{16} \\ cos\theta \\ Lower Boundary \\ \hline \\ 1.0000000 \\ 0.9493858 \\ 0.8381952 \\ 0.6813418 \\ 0.500000 \\ 0.3186582 \\ 0.1618048 \\ 0.0506142 \\ 0.000000 \\ -0.0506142 \\ 0.000000 \\ -0.0506142 \\ 0.000000 \\ -0.0506142 \\ 0.000000 \\ -0.0506142 \\ 0.000000 \\ -0.0506142 \\ -0.1618048 \\ -0.3186582 \\ -0.500000 \\ -0.6813418 \\ -0.8381952 \\ -0.9493858 \\ -1.000000 \\ \end{array}$ |  |  |

Table 18. Source Angle Biased Distribution for SNAP-TSF Reactor<sup>a</sup>

a.  $\mathrm{S}_n$  energy group 8.187 to 10.0 MeV; second  $\mathrm{S}_n$  interval from core bottom.

| Lower                                                                                  |                                                                                                                       | A                                                                                                                                                                            |                                                                                                                                                                   | B                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                    | C                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                              |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                        |                                                                                                                       | Total Macroscopic                                                                                                                                                            |                                                                                                                                                                   | Slope of Adjoint Sn                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                    | Exponential Transform                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                              |
|                                                                                        |                                                                                                                       | Cross Section (cm <sup>-1</sup> )                                                                                                                                            |                                                                                                                                                                   | Forward Flux <sup>a</sup> (cm <sup>-1</sup> )                                                                                                                 |                                                                                                                                                    |                                                                                                                                                    | Parameter, XNU <sup>b</sup>                                                                                                                                  |                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                              |
| Energy                                                                                 | Boundary                                                                                                              | Core                                                                                                                                                                         | Bottom                                                                                                                                                            | Top                                                                                                                                                           | Middle                                                                                                                                             | Bottom                                                                                                                                             | Bottom                                                                                                                                                       | Top                                                                                                                                                          | Middle                                                                                                                                             | Bottom                                                                                                                                                       | Bottom                                                                                                                                                       |
| Index                                                                                  | (MeV)                                                                                                                 |                                                                                                                                                                              | NaK                                                                                                                                                               | Core <sup>c</sup>                                                                                                                                             | Core <sup>C</sup>                                                                                                                                  | Core <sup>c</sup>                                                                                                                                  | NaK                                                                                                                                                          | Core <sup>c</sup>                                                                                                                                            | Core <sup>c</sup>                                                                                                                                  | Core <sup>C</sup>                                                                                                                                            | NaK                                                                                                                                                          |
| 27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>13 | 12.2<br>10.0<br>8.18<br>6.70<br>5.49<br>4.5<br>3.68<br>3.01<br>2.46<br>2.02<br>1.65<br>1.35<br>1.11<br>0.907<br>0.608 | 0.18421<br>0.19930<br>0.20991<br>0.21877<br>0.22281<br>0.23420<br>0.25072<br>0.27134<br>0.29687<br>0.30808<br>0.33424<br>0.36937<br>0.40723<br>0.40723<br>0.45383<br>0.54014 | 0.03145<br>0.03298<br>0.03476<br>0.03753<br>0.04102<br>0.04642<br>0.05115<br>0.05215<br>0.05231<br>0.04932<br>0.04186<br>0.03767<br>0.03502<br>0.03874<br>0.04662 | 0.1131<br>0.1238<br>0.1341<br>0.1456<br>0.1582<br>0.1736<br>0.1901<br>0.2067<br>0.2245<br>0.2382<br>0.2620<br>0.2382<br>0.2620<br>0.23301<br>0.3764<br>0.4413 | 0.0995<br>0.1098<br>0.1195<br>0.1302<br>0.1424<br>0.1571<br>0.1730<br>0.1891<br>0.2066<br>0.2197<br>0.2431<br>0.2738<br>0.3108<br>0.3576<br>0.4300 | 0.0707<br>0.0799<br>0.0886<br>0.0980<br>0.1086<br>0.1215<br>0.1353<br>0.1489<br>0.1647<br>0.1747<br>0.1951<br>0.2231<br>0.2279<br>0.3028<br>0.3843 | 0.0119<br>0.0115<br>0.0105<br>0.0096<br>0.0091<br>0.0100<br>0.0120<br>0.0131<br>0.0131<br>0.0131<br>0.0131<br>0.0111<br>0.0111<br>0.0101<br>0.0111<br>0.0156 | 0.6138<br>0.6213<br>0.6387<br>0.6653<br>0.7101<br>0.7413<br>0.7581<br>0.7581<br>0.7618<br>0.7563<br>0.7733<br>0.7838<br>0.7932<br>0.8106<br>0.8295<br>0.8171 | 0.5401<br>0.5508<br>0.5692<br>0.5951<br>0.6390<br>0.6710<br>0.6902<br>0.6968<br>0.6959<br>0.7130<br>0.7272<br>0.7413<br>0.7632<br>0.7880<br>0.7962 | 0.3838<br>0.4008<br>0.4222<br>0.4480<br>0.4872<br>0.5189<br>0.5397<br>0.5486<br>0.5548<br>0.5548<br>0.5672<br>0.5836<br>0.6041<br>0.6332<br>0.6672<br>0.7115 | 0.3788<br>0.3481<br>0.3028<br>0.2545<br>0.2213<br>0.2163<br>0.2353<br>0.2509<br>0.2592<br>0.2648<br>0.2767<br>0.2946<br>0.2898<br>0.2898<br>0.2869<br>0.3336 |

Table 19. Adjoint  ${\rm S}_n$  Parameters for the Exponential Transform in the SNAP-TSF Reactor

a. The adjoint  $\mathrm{S}_{16}$  angular flux for angle index number 1.

b. Column C was obtained by dividing column B by column A.

c. Top, middle, and bottom cores are described by regions 1, 2, and 3, respectively.

| Ith Group      | 05R       | 05R       | 05R       | 05R       |
|----------------|-----------|-----------|-----------|-----------|
| Lower Energy   | Region l  | Region 2  | Region 3  | Region 4  |
| Boundary (MeV) | XNU (1,I) | XNU (2,I) | XNU (3,I) | XNU (4,I) |
| 8.18           | 0.6246    | 0.5534    | 0.4023    | 0.3432    |
| 4.49           | 0.7056    | 0.6350    | 0.4847    | 0.2307    |
| 2.02           | 0.7624    | 0.6990    | 0.5526    | 0.2526    |
| 1.35           | 0.7885    | 0.7342    | 0.5938    | 0.2857    |
| 0.608          | 0.8191    | 0.7825    | 0.6706    | 0.3034    |
| 0.407          | 0.8713    | 0.8657    | 0.8253    | 0.4613    |

Table 20. XNU Values Used in 05R for the SNAP-TSF Reactor

The source data and the track stretching parameters required as input to 05R for the core-mapping problem are listed in Appendix F.

### 05R Calculations

Preliminary O5R calculations were made on the SNAP-TSF reactor for both the shield source and the core-mapping problems. A summary of the conditions imposed on these calculations follows.

- 1. The drums-in configuration was used in all cases.
- 2. The neutron source was obtained from the O5R calculations of the fission distribution.
- 3. Biasing parameters obtained from adjoint  $\mathop{\rm S}\nolimits_n$  calculations (ANISN) were used.
- 4. The phi tape was used for elastic scattering.
- 5. Inelastic scattering was isotropic in the center-of-mass system and a multilevel inelastic scattering model was used where data were known.
- 6. The lowest energy of interest was 0.1 MeV.

### Shield Source Problem

Two 05R calculations were made for the shield source problem. The first consisted of 47 batches of 800 neutrons each, with the value 0000343277244615 used for the starting random number. Since only the neutron parameters for an escape event were recorded, only one collision tape was generated. The second calculation consisted of 50 batches of 800 neutrons each, with the value 1773607236543075 used for the starting random number. Again only one collision tape was generated. The calculation time on the CDC 1604-A computer for this second calculation was 129 min.

# Core-Mapping Problem

One O5R calculation was made for the core-mapping problem. It consisted of 60 batches of 800 neutrons each, with the value 0000343277244615 used for the starting random number. Since neutron parameters for source, collision, and escape events were recorded, four collision tapes were generated. The calculation time on the CDC 1604-A computer was 172 min.

# IV. ANALYSIS OF OSR LEAKAGE CALCULATIONS

Two programs were involved in the analyses of O5R collision tapes: SNARLS and ACTIFK.<sup>17</sup> SNARLS was written to prepare tapes containing neutrons to be used as the source for subsequent O5R calculations on the penetration of neutrons through a SNAP-2 shield. It obtained its information from tapes prepared by the O5R shield source problem; only neutron escape events were considered. In addition, SNARLS used neutron escape events on the tapes prepared by the O5R core-mapping problem to calculate leakage angular fluxes. ACTIFK, like O5R, required modication by the user for his particular problem. It used neutron source and collision events on the tapes prepared by the O5R core-mapping problem to estimate statistically contributions to collimated detectors.

#### Program\_SNARLS

In operating SNARLS, the 05R collision tapes must be prepared with the following values for NBIND: lll000llllllll00000000000000. The SNARLS input provides for the enclosing of the reactor system by a cylinder and two planes perpendicular to the cylinder axis. The cylinder axis coincides with the z axis. These surfaces become the leakage surfaces. Neutron escapes from the reactor system are traced to these leakage surfaces, and the escape coordinates are changed to values at the intersection of the neutron track and the nearest surface.

SNARLS input instructions, flow diagram, and listings are found in Appendix N.

### Source Tape Preparation

Since a great number of leaking neutrons will contribute nothing to a shielded detector, the neutrons which leak must be processed to eliminate unimportant neutrons and to enhance important neutrons. If a neutron weight falls below a specified value, it is killed a specified fraction of the time (Russian roulette); if it survives its weight is increased an appropriate amount. If a neutron weight is above a specified value, it is split into two or more neutrons of equal weight, whose sum is the original weight, such that the individual weight does not exceed the above specified value (splitting).

<sup>17</sup>F. B. K. Kam and K. D. Franz, <u>ACTIFK, A General Analysis Code for 05R</u>, ORNL-3856 (September 1966).
Russian roulette and splitting are employed according to the following relation, where I is an energy index,

$$W_2 < R(I) < W_1 < S(I) < W_3$$

Weights  $W_1$  are accepted, weights  $W_3$  are aplit  $(W_3/S(I)) + 1$  times (smallest integer), and weights  $W_2$  have a survival fraction  $W_2/R(I)$ ; surviving neutrons are given the weight R(I). The weight standards S(I)and R(I) can be specified for two angular groups and for either one or two of four possible values of the leakage criteria, JTYPE1 and JTYPE2. The meanings of the possible values of JTYPE1 and JTYPE2 are given below:

- 1. leakage from the bottom plane (ZBOTNEW), positive Z direction,
- 2. leakage from the cylinder (RCYLIN), positive Z direction,
- 3. leakage from the cylinder, negative Z direction,
- 4. leakage from the top plane (ZTOPNEW), negative Z direction.

The weight standards can be obtained from the adjoint  $S_n$  calculation on the reactor-plus-shield configuration by using flux values at the reactor-shield interface. For a particular angular group, the optimum leakage weight W(E) should be proportional to  $1/\Phi(E)$ , the reciprocal of the adjoint flux spectrum:

$$W(E) \Phi(E) = K$$

Thus as  $\Phi(E)$  (the energy-dependent importance) increases, the optimum weight decreases, requiring that a larger number of neutrons leak for a given amount of weight. The constant K may be taken as the average of the neutron weight W(E) times the importance:

$$K = \overline{W(E)\phi(E)}$$

If the energy variation is represented by a group structure, then



where  $\Delta E(I)$  is the energy width of group I, and W(I) is the average weight.

A preliminary run with SNARLS will determine the W(I) for two angular groups; hence K can be found and the optimum weight W(I) for each energy group can be calculated. Since an optimum weight range is desired [between R(I) and S(I)], SNARLS input weight standards include  $\widetilde{W(I)}$ , R<sub>1</sub>(I), and S<sub>1</sub>(I), from which R(I) and S(I) are determined:

$$R(I) = R_1(I) \quad W(I) ,$$
  

$$S(I) = S_1(I) \quad W(I) .$$

In the input the following variables are used:

For the first angular group

WBAR(I,JTYPE1) 
$$\rightarrow W(I)$$
 for leakage JTYPE1  
WBAR(I,JTYPE2)  $\rightarrow W(I)$  for leakage JTYPE2  
WK(I)  $\rightarrow R_1(I)$   
SWK(I)  $\rightarrow S_1(I)$ 

For the second angular group

WMAX(I,JTYPE1) 
$$\rightarrow W(I)$$
 for leakage JTYPE1  
WMAX(I,JTYPE2)  $\rightarrow W(I)$  for leakage JTYPE2  
WK1(I)  $\rightarrow R_1(I)$   
SWK(I)  $\rightarrow S_1(I)$ 

The source tape preparation option may be omitted.

## Neutron Leakage Angular Flux

SNARLS can calculate the neutron leakage angular flux from either the leakage cylinder or the bottom leakage plane or both. The calculation can also be omitted.

In the case of the leakage cylinder, the z axis is divided into one or more intervals. In each interval, escaping neutron coordinates and directions are rotated such that the new x and y coordinates are zero and RCYLIN respectively. Angular bins are obtained by dividing the polar angle  $\theta$  into equal  $\cos\theta$  intervals from 0 to 1; the polar direction is perpendicular to the cylinder surface. An azimuthal angle interval is specified. The neutron weight divided by the cosine of the polar angle is accumumated in the appropriate angular bin for that interval. The average over all batches is divided by the area of the cylindrical surface in the z interval and the solid angle for the bin. The result is the average angular flux on the interval.

For the bottom leakage plane, the surface is divided into one or more rings. In each ring, escaping neutron coordinates and directions are rotated such that the new x coordinate is zero. Angular bins are obtained by dividing the polar angle  $\theta$  into equal  $\cos\theta$  intervals from 0 to 1; the polar direction is the positive z direction. An azimuthal angle interval is specified. The neutron weight divided by the cosine of the polar angle is accumulated in the appropriate angular bin for that interval. The average over all batches is divided by the area of the ring and the solid angle for the bin. The result is the average angular flux over the ring.

## SNARLS Output

The following items appear in the SNARLS output (certain items may be omitted according to the input specifications):

- a. the input data;
- b. the angular flux by energy group and space interval for each batch;

- c. for each batch, totals of the following items summed over all completed batches and listed by energy group for the bottom leakage plane:
  - number of escapes l. appear for the three other leakage criteria also,
  - escape weight 2.
  - 3. escape weight by angular group,
  - 4. number of escapes by angular group;
- d. the batch average leakage weight and the total number of escapes by leakage criteria and energy group;
- e. the batch average leakage angular flux and its percent standard deviation by energy and angle for each space interval;
- f. a statement indicating whether the source tape was written and the number of neutrons and total weight written for each batch.

Provision was made for continuing the source tape on a second reel if necessary. Thus, if NSOR and NSOR1 are specified on the input, NSOR + 1 and NSOR1 + 1 may also be used as tape logical numbers.

#### Source Tape Checking

A special purpose program, CKSOURPT, was written to print the contents of the source tape prepared by SNARLS. In addition. it prints the total number of escapes and total escape weight for several energy groups and two angular groups. A special version of CKSOURTP just prints the latter. The source tape must be on logical tape unit 5. No provision was made for continuation on another reel. No input is required; changes to energy and angular group structure must be made in the program. Listings for both versions of CKSOURTP are given in Appendix N.

#### Source Tape Utilization

Subroutine SNEUT(X,Y,Z,A,B,C,W,E,NTAPE,NSKIP) was written to read source tapes prepared by SNARLS and to return the following parameters describing a source neutron for O5R's use:

- a. spatial coordinates x, y, and z,
- b. direction cosines A, B, and C,

c. weight W,

d. energy E.

This subroutine should be called by O5R's subroutine SOURCE for each source neutron. The data required by SNEUT includes NTAPE, the logical number for the source tape, and NSKIP, the number of records of 50 neutrons to be skipped at the beginning of the source tape. SNEUT returns NTAPE = 0 when there are no more neutrons on the source tape. The calling program (subroutine SOURCE) may reset NTAPE and skip NSKIP records on a new source tape.

The listing for subroutine SNEUT(X,Y,Z,A,B,C,W,E,NTAPE,NSKIP) is given in Appendix N.

#### Preparation of Source Tape for SNAP-2 Shield Calculation

For the SNARLS leakage surface input, the SNAP-TSF reactor was bounded by the following surfaces:

- 1. a cylinder of radius 60.96 cm, with its axis coinciding with the z axis,
- 2. a plane at z = 1.48 cm, the bottom of the reactor,
- 3. a plane at z = -40.0, approximately the top of the reactor.

On the SNARLS runs the only leakage criterion of interest was leakage from the bottom of the reactor (JTYPE1=JTYPE2=1). Since the radius of the cylinder was considerably larger than the radius of the reactor system, leakage neutrons from the reactor sides with large z direction cosines were recorded on the bottom surface.

The O5R collision tape prepared by the shield source problem was used.

A preliminary SNARLS run was made to obtain data for the calculation of the energy-dependent optimum weight to be used in splitting and Russian roulette techniques for the final source tape preparation. The two angular groups were  $0.7 \le \mu \le 1.0$  and  $0 \le \mu < 0.7$ , where  $\mu = \cos\theta$ . The adjoint S<sub>n</sub> flux at the reactor-shield interface was found to be separable in energy and angle on the interval  $0 \le \mu \le 1.0$ ; the same flux was used for both angular groups. Table 21 summarizes the results of this calculation.

Using the optimum weight  $K/\Phi_i$ , an optimum weight range,  $W_{Ri}$ , was arbitrarily selected:

$$0.333 \text{ K/}_{i} \leq W_{\text{Ri}} \leq 3.0 \text{ K/}_{i}$$

Neutron weights below this range were subjected to Russian roulette; neutron weights above this range were subjected to splitting.

Two leakage source tapes were prepared, one using an 05R collision tape containing 47 batches of 800 neutrons each, and one using an 05R collision tape containing 50 batches of 800 neutrons each. (Both 05R problems used biasing obtained from adjoint  $S_n$  calculations.) SNARLS input data are listed in Appendix 0. The effect of Russian roulette and splitting on the neutron leakage data is given in Tables 22 and 23.

# Leakage Angular Flux from Bottom Face of SNAP-TSF Reactor

For the SNARLS leakage surface input the SNAP-TSF reactor was bounded by the following surfaces:

- 1. a cylinder of radius 18.135 cm, with its axis, with its axis coinciding with the z axis,
- 2. a plane at z = 1.48 cm, the bottom of the reactor,
- 3. a plane at z = -40.0 cm, approximately the top of the reactor.

On the SNARLS runs the leakage angular flux was calculated for the reactor bottom only, z = 1.48; a source tape preparation was omitted.

The four O5R collision tapes prepared by the core-mapping problem were used.

Test SNARLS runs showed that the statistics were too poor when a large number of radial, energy, and angular bins were used. The number of bins was reduced in the following ways:

1. The angular flux was averaged over all azimuthal angles (one azimuthal bin).

| Adjoint S <sub>n</sub> | Lower | A     | B<br>Adjoint S <sub>n</sub><br>Normalized                | C<br>Average<br>Weight  | Neutron<br>, W <sub>i</sub> | Optimum Weight,<br>K/ $\phi_i$ * |                         |
|------------------------|-------|-------|----------------------------------------------------------|-------------------------|-----------------------------|----------------------------------|-------------------------|
| Group, i               | (MeV) | (MeV) | $\beta_{\text{IUX}}, \varphi_{1}$<br>$0 \le \mu \le 1.0$ | μ ≥ 0.7                 | μ < 0.7                     | μ ≥0.7                           | μ < 0.7                 |
| 27                     | 12.2  | 2.8   | 1.000                                                    | 1.0 x 10 <sup>-4</sup>  | 4.06 x 10 <sup>-4</sup>     | •789 x 10 <b>-</b> 4             | 2.77 x 10 <sup>-4</sup> |
| 26                     | 10.0  | 2.2   | 0.302                                                    | 3.62 x 10 <sup>-4</sup> | 1.35 x 10 <sup>-3</sup>     | 2.61 x 10 <sup>-4</sup>          | •917 x 10 <sup>-3</sup> |
| 25                     | 8.18  | 1.82  | 0.0968                                                   | 1.30 x 10 <sup>-3</sup> | 3.13 x 10 <sup>-3</sup>     | 8.15 x 10 <sup>-4</sup>          | 2.86 x 10 <sup>-3</sup> |
| 24                     | 6.70  | 1.48  | 0.0329                                                   | 3.40 x 10 <sup>-3</sup> | 9.01 x 10 <sup>-3</sup>     | 2.40 x 10 <sup>-3</sup>          | 8.42 x 10 <sup>-3</sup> |
| 23                     | 5.49  | 1.21  | 0.0119                                                   | 7.52 x 10 <sup>-3</sup> | 2.82 x 10 <sup>-2</sup>     | 6.63 x 10 <sup>-3</sup>          | 2.33 x 10 <sup>-2</sup> |
| 22                     | 4.5   | 0•99  | 0.00462                                                  | 2.03 x 10 <sup>-2</sup> | 7.36 x 10 <sup>-2</sup>     | 1.71 x 10 <sup>-2</sup>          | 6.00 x 10 <sup>-2</sup> |
| 21                     | 3.68  | 0.82  | 0.00182                                                  | 6.10 x 10 <sup>-2</sup> | 1.43 x 10 <sup>-1</sup>     | 4.34 x 10 <sup>-2</sup>          | 1.52 x 10 <sup>-1</sup> |
| 20 through 18          | 2.02  | 1.66  | 0.000456                                                 | 8.49 x 10 <sup>-2</sup> | 1.87 x 10 <sup>-1</sup>     | 1.73 x 10 <sup>-1</sup>          | 6.07 x 10 <sup>-1</sup> |
| 17 through ll          | 0.111 | 1.909 | 0.000017                                                 | 9.92 x 10 <sup>-2</sup> | 2.06 x 10 <sup>-1</sup>     | 4.64 x 10°                       | 16.6 x 10°              |

Table 21. Biasing Parameters for the Source Tape Preparation

\*K was obtained by summing the product of columns A x B x C and dividing the result by the sum of column A.

| Lower              |           | 05R L              | eakage  |              | SNARLS Shield Source |                    |         |         |
|--------------------|-----------|--------------------|---------|--------------|----------------------|--------------------|---------|---------|
| Energy<br>Boundary | Number of | Number of Neutrons |         | Total Weight |                      | Number of Neutrons |         | Weight  |
| (MeV)              | μ > 0.7   | μ < 0.7            | μ > 0.7 | μ < 0.7      | μ > 0.7              | μ < 0.7            | μ > 0.7 | μ < 0.7 |
| 12.2               | 2086      | 677                | 0.241   | 0.285        | 2100                 | 773                | 0.246   | 0.290   |
| 10.0               | 2702      | 977                | 0.908   | 1.34         | 2559                 | 1095               | 0.913   | 1.34    |
| 8.18               | 3141      | 1164               | 3.53    | 4.07         | 3082                 | 1216               | 3.65    | 4.13    |
| 6.7                | 2894      | 1023               | 10.1    | 10.4         | 2825                 | 1048               | 10.3    | 10.8    |
| 5.49               | 2113      | 860                | 22.7    | 28.7         | 2313                 | 921                | 26.7    | 29.0    |
| 4.5                | 1414      | 585                | 32.4    | 37•7         | 1249                 | 520                | 32.3    | 37.6    |
| 3.68               | 837       | 376                | 56.4    | 52.6         | 804                  | 287                | 57.2    | 52.7    |
| 2.02               | 1187      | 804                | 266.0   | 270.0        | 883                  | 345                | 266.0   | 269.0   |
| 0.100              | 3048      | 2313               | 684.0   | 859.0        | 194                  | 91                 | 692.0   | 891.0   |

Table 22. Neutron Leakage Shield Source Data; 47 Batches of 800 Neutrons Each

| Lovor           |           | 05R L              | eakage  |              | SNARLS Shield Source |                    |         |         |  |
|-----------------|-----------|--------------------|---------|--------------|----------------------|--------------------|---------|---------|--|
| Lower<br>Energy | Number of | Number of Neutrons |         | Total Weight |                      | Number of Neutrons |         | Weight  |  |
| (MeV)           | μ > 0.7   | μ < 0.7            | μ > 0.7 | μ < 0.7      | μ > 0.7              | μ < 0.7            | μ > 0.7 | μ < 0.7 |  |
| 12.2            | 2253      | 811                | 0.242   | 0.304        | 2164                 | 903                | 0.245   | 0.318   |  |
| 10.0            | 2968      | 1009               | 0.946   | 1.13         | 2729                 | 1070               | 0.951   | 1.17    |  |
| 8.18            | 3353      | 1191               | 3.93    | 4.30         | 3318                 | 1245               | 3.98    | 4.37    |  |
| 6.7             | 3098      | 1147               | 9.37    | 12.6         | 2839                 | 1194               | 10.1    | 12.8    |  |
| 5.49            | 2229      | 845                | 21.4    | 23.6         | 2162                 | 840                | 22.1    | 24.0    |  |
| 4.5             | 1427      | 592                | 33.5    | 46.8         | 1276                 | 576                | 33•5    | 47.1    |  |
| 3.68            | 940       | 411                | 50.5    | 50.5         | 770                  | 288                | 50.5    | 50.4    |  |
| 2.02            | 1262      | 849                | 217.0   | 280.0        | 803                  | 355                | 217.0   | 281.0   |  |
| 0.100           | 3155      | 2373               | 2740.0  | 1080.0       | 352                  | 101                | 2740.0  | 1090.0  |  |

# Table 23. Neutron Leakage Shield Source Data; 50 Batches of 800 Neutrons Each

2. The angular flux as a function of polar angle  $\theta$  ( $\cos\theta = \mu$ ) was obtained from a SNARLS run in which three energy groups, 2 radial intervals, and 5 polar angle intervals were used; thus the angular flux was calculated as an average over the core bottom for three broad energy groups.

3. The leakage flux as a function of radial position was obtained from a SNARLS run in which three energy groups, one polar angle interval, and ten radial intervals were used.

4. The leakage spectrum was obtained from a SNARLS run in which two radial intervals, one polar angle interval, and ten energy groups were used. Input data for the three SNARLS problems are listed in Appendix O.

The results of the SNARLS leakage angular flux calculations are given in Figs. 18 through 20. The angular flux  $\phi(\mu)$  for three energy groups is presented in Fig. 18; the angular fluxes can be approximated by the following equations:

0.41 < E <2.0 MeV,  $\phi(\mu) = 2.11 \times 10^{-5} \mu^{1.71}$ neutrons cm<sup>-2</sup> steradian<sup>-1</sup> (source neutron)<sup>-1</sup>

2.0 < E < 4.0 MeV,  $\phi(\mu) = 9.10 \times 10^{-6} \mu^{2.37}$ neutrons cm<sup>-2</sup> steradian<sup>-1</sup> (source neutron)<sup>-1</sup>

 $4.0 < E < 18.0 \text{ MeV}, \quad \phi(\mu) = 3.29 \times 10^{-6} \mu^{3.14}$ neutrons cm<sup>-2</sup> steradian<sup>-1</sup> (source neutron)<sup>-1</sup>.

The leakage flux radial distributions are shown in Fig. 19 for three energy groups. The apparent dip in the distributions at the reactor center is probably due to undersampling in this region; since the biased source distribution was flat radially, fewer source neutrons were picked with small radii. The leakage flux spectrum is given in Fig. 20. The data presented in these figures are tabulated in Tables 24, 25, and 26.

#### Core Mapping - Program ACTIFK

In order to increase the number of scores at collimated detector locations, each collision point lying in the reactor system and lying in a cone defined by the collimator was allowed to contribute to the dose.

72



Fig. 18. Angular Leakage Flux from the SNAP-TSF Reactor Bottom. Averaged over radius 0.0 to 11.239 cm and over azimuthal angle.



Fig. 19. Leakage Flux Radial Distribution, SNAP-TSF Reactor Bottom.



Fig. 20. Leakage Flux Spectrum from the SNAP-TSF Reactor Bottom. Averaged over radius 0.0 to 11.239 cm.

| <u></u>                  | 0.4076 < E ·            | < 2.0 MeV                    | 2.0 < E < 4             | •0 MeV                       | 4.0 < E < 18.0 MeV      |                              |  |  |  |  |  |
|--------------------------|-------------------------|------------------------------|-------------------------|------------------------------|-------------------------|------------------------------|--|--|--|--|--|
| Cosine of<br>Polar Angle | Angular<br>Flux         | Standard<br>Deviation<br>(%) | Angular<br>Flux         | Standard<br>Deviation<br>(%) | Angular<br>Flux         | Standard<br>Deviation<br>(%) |  |  |  |  |  |
| 1-0.8                    | 1.69 x 10 <sup>-5</sup> | 4.8                          | 7.12 x 10 <sup>-6</sup> | 8.1                          | 2.36 x 10 <sup>-6</sup> | 4.9                          |  |  |  |  |  |
| 0.8-0.6                  | 1.40 x 10 <sup>-5</sup> | 11.1                         | 4.14 x 10 <sup>-6</sup> | 6.2                          | 1.19 x 10 <sup>-6</sup> | 8.3                          |  |  |  |  |  |
| 0.6-0.4                  | 5.82 x 10 <sup>-6</sup> | 7.1                          | 1.74 x 10 <sup>-6</sup> | 6.9                          | 3.07 x 10 <sup>-7</sup> | 12.3                         |  |  |  |  |  |
| 0.4-0.2                  | 3.20 x 10 <sup>-6</sup> | 22.7                         | 5.24 x 10 <sup>-7</sup> | 17.8                         | 8.30 x 10 <sup>-8</sup> | 37.6                         |  |  |  |  |  |

Table 24. Angular Leakage Flux [neutrons cm<sup>-2</sup> steradian<sup>-1</sup> (source neutron)<sup>-1</sup>] from SNAP-TSF Reactor Bottom

|                            | 0.4076 < E              | < 2.0 MeV                    | 2.0 < E < 1             | ↓.O MeV                      | 4.0 < E < 18.0 MeV      |                              |  |
|----------------------------|-------------------------|------------------------------|-------------------------|------------------------------|-------------------------|------------------------------|--|
| Radial<br>Distance<br>(cm) | Leakage<br>Flux         | Standard<br>Deviation<br>(%) | Leakage<br>Flux         | Standard<br>Deviation<br>(%) | Leakage<br>Flux         | Standard<br>Deviation<br>(%) |  |
| 0-1.5                      | 6.27 x 10 <sup>-5</sup> | 20.7                         | 1.62 x 10 <sup>-5</sup> | 18.9                         | 4.55 x 10 <sup>-6</sup> | 22.7                         |  |
| 1.5-3.0                    | 5.51 x 10 <sup>-5</sup> | 8.6                          | 2.14 x 10 <sup>-5</sup> | 10.8                         | 7.20 x 10 <sup>-6</sup> | 10.8                         |  |
| 3.0-4.5                    | 6.66 x 10 <sup>-5</sup> | 8.4                          | 2.42 x 10 <sup>-5</sup> | 22.0                         | 6.48 x 10 <sup>-6</sup> | 15.1                         |  |
| 4.5 <b>-</b> 6.0           | 5.63 x 10 <sup>-5</sup> | 7.8                          | 2.08 x 10 <sup>-5</sup> | 10.1                         | 5.52 x 10 <sup>-6</sup> | 9.6                          |  |
| 6.0-7.5                    | 4.99 x 10 <sup>-5</sup> | 9.0                          | 1.92 x 10 <sup>-5</sup> | 6.9                          | 5.43 x 10 <sup>-6</sup> | 11.4                         |  |
| 7.5-9.0                    | 6.14 x 10 <sup>-5</sup> | 15.4                         | 1.76 x 10 <sup>-5</sup> | 14.2                         | 4.73 x 10 <sup>-6</sup> | 12.3                         |  |
| 9.0-10.1                   | 5.74 x 10 <sup>-5</sup> | 27.6                         | 1.37 x 10 <sup>-5</sup> | 8.7                          | 3.84 x 10 <sup>-6</sup> | 10.3                         |  |
| 10.1-11.239                | 3.53 x 10 <sup>-5</sup> | 11.9                         | 1.08 x 10 <sup>-5</sup> | 8.2                          | 4.31 x 10 <sup>-6</sup> | 12.5                         |  |
| 11.239-14.0                | 2.64 x 10 <sup>-5</sup> | 5.5                          | 8.27 x 10 <sup>-6</sup> | 5.8                          | 4.18 x 10 <sup>-6</sup> | 23.0                         |  |
| 14.0-18.135                | 1.96 x 10 <sup>-5</sup> | 5.6                          | 6.47 x 10 <sup>-6</sup> | 5.8                          | 2.35 x 10 <sup>-6</sup> | 9.6                          |  |

Table 25. Radial Distribution of Leakage Flux [neutrons cm<sup>-2</sup> (source neutrons<sup>-1</sup>] from SNAP-TSF Reactor System

| Lower Energy<br>(MeV | Energy Width<br>(MeV                          | Leakage Flux<br>[neutrons cm <sup>-2</sup> MeV <sup>-1</sup><br>(source neutrons) <sup>-1</sup> ] | Standard<br>Deviation<br>(%) |
|----------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|
|                      | <u>, , , , , , , , , , , , , , , , , , , </u> |                                                                                                   |                              |
| 10.0                 | 8.0                                           | 6.04 x 10 <sup>-9</sup>                                                                           | 24.7                         |
| 7.0                  | 3.0                                           | $2.00 \times 10^{-7}$                                                                             | 18.2                         |
| 5.0                  | 2.0                                           | 1.02 x 10 <sup>-6</sup>                                                                           | 5.1                          |
| 4.0                  | 1.0                                           | 2.31 x 10 <sup>-6</sup>                                                                           | 6.3                          |
| 3.0                  | 1.0                                           | 5.75 x 10 <sup>-6</sup>                                                                           | 8.5                          |
| 2.5                  | 0.5                                           | 9.70 x 10 <sup>-6</sup>                                                                           | 10.2                         |
| 2.0                  | 0.5                                           | 1.29 x 10 <sup>-5</sup>                                                                           | 6.1                          |
| 1.5                  | 0.5                                           | 1.76 x 10 <sup>-5</sup>                                                                           | 4.7                          |
| 1.0                  | 0.5                                           | 3.58 x 10 <sup>-5</sup>                                                                           | 18.3                         |
| 0.4076               | 0.5924                                        | 4.51 x 10 <sup>-5</sup>                                                                           | 8.0                          |

| Table | 26. | Leakage    | Flux   | Spectrum  | from | the |
|-------|-----|------------|--------|-----------|------|-----|
|       | i   | SNAP-TSF 1 | Reacto | or Bottom |      |     |

The method, statistical estimation, involved determining the probability that the neutron at each collision point would on its next flight intersect the detector.

At each collision site within the collimator cone (see Fig. 21) the weight W scored at the detector is given by

$$W = \frac{W_{o} P(\mu) e^{-\lambda} D(\theta)}{r^{2}}$$

where

 $W_{a}$  = the neutron weight at the collision site,

- r = the distance from the collision site to the detector,
- $\lambda$  = the number of mean free paths through the system from the collision site to the detector,
- $\mu$  = the cosine of the angle between the neutron direction before collision and the direction from collision site to the detector,
- $P(\mu)$  = the probability per unit solid angle of scattering through an angle defined by  $\mu$ ,
- $D(\theta) = a$  collimator response function dependent upon the angle  $\theta$ between the collimator axis and the line joining the collision site to the collimator vertex (see Fig. 21).

(Realistic values of the last function were not used in this work.)

The accumulated weight W divided by the number of source neutrons is the flux per source neutron at the detector location. The accumulation may be done over energy groups, which gives a flux spectrum at the detector.

Program ACTIFK was modified to calculate flux spectra at the collimated detectors using the SNAP-TSF geometry and the collision tapes prepared by O5R runs on the SNAP-TSF reactor system. ACTIFK uses the same geometry input as O5R and the same approximations for elastic scattering distributions and for inelastic scattering treatment; program modifications

ORNL-DWG 67-459



Fig. 21. Collimator Geometry.

are required only in the subroutines which the user must write for each problem.

#### GEOM Input

With some minor modifications the 05R GEOM input was used for ACTIFK; the internal void medium number 1000 was changed to 500. The ACTIFK version that was used was for a maximum of 8 media and 32 scatterers per medium; however, the 05R collision tapes were prepared with 10-medium description of the reactor. In order to make the collision tapes and ACTIFK compatible, the first three 05R media were changed since collisions in these media were not important to the flux at the reactor bottom. In the GEOM input medium 1, the top head, was changed to medium 8, the bottom grid hexagon. Medium 2, the top grid hexagon, was changed to medium 8 also. Medium 3, the top grid edge, was changed to medium 9, the bottom grid edge. Then all media numbers excepting 1000 and 0 were reduced by 3. Table 27 shows the original 05R GEOM input media numbers and the modified ACTIFK GEOM input media numbers.

Media numbers read by ACTIFK from the O5R collision tapes, excepting 0 and 1000, were reduced by 3 in subroutine RELCOL; collisions with negative media numbers were not processed.

A listing of the ACTIFK GEOM input (drums in) appears in Appendix B

#### Total Cross Section Tape - CODE 7

Program ACTIFK needs a data tape containing the total cross sections for each medium in order to calculate  $\lambda$ , the number of mean free paths through the system from the collision site to the detector. Program XSECT (CODE 7)<sup>2</sup> generates this tape; however, several CODE 5's, cross-section arithmetic, and Code 4's, delete and recopy cross sections, were required to generate the total cross sections and to put them on the master crosssection library tape. The same compositions used in the O5R systems data tape preparation were used for the seven media in the generation of the total-cross-section tape. Listings of the CODE 4, CODE 5, and CODE 7 inputs are given in Appendix P.

| 05R<br>GEOM Media | ACTIFK<br>GEOM Media |
|-------------------|----------------------|
| 1                 | 5                    |
| 2                 | 5                    |
| 3                 | 6                    |
| 4                 | 1                    |
| 5                 | 2                    |
| 6                 | 3                    |
| 7                 | 24                   |
| 8                 | 5                    |
| 9                 | 6                    |
| 10                | 7                    |
| 1000              | 500                  |
| 0                 | 0                    |
|                   |                      |

Table 27. ACTIFK GEOM Media Numbers

83

## Elastic Scattering Angular Distribution, F Tape - CODE 7

ACTIFK must be able to determine the probability  $P(\mu)$  of scattering through the angle  $\theta$ , between the neutron direction before collision and the direction from collision site to the detector. The master crosssection library contains the coefficients for the Legendre polynomial expansion of anisotropic angular elastic scattering probabilities. CODE 7 prepares the tape giving these coefficients for use by ACTIFK. In the SNAP-TSF reactor the order of the expansion for hydrogen was  $P_0$ , for zirconium and for the isotopes of uranium was  $P_6$  and  $P_{14}$  respectively, and for all other elements was  $P_8$ . The CODE 7 input is listed in Appendix P.

#### ACTIFK Input

For the ACTIFK analysis of the O5R collision tapes generated by the core-mapping problem, the lowest energy of interest, EBOT, was 0.5 MeV. The LFl parameters were negative for elastic scattering in order to use the F tape data for anisotropic elastic-scattering probabilities. Inelastic scattering was treated as isotropic in the center-of-mass system. Data required by the option for full analysis of the statistics were included; ten space-energy detectors (a space-energy detector is a specified energy group for a specified detector) received this treatment.

Appendixes P and Q contain the ACTIFK input data and input instructions respectively.

#### ACTIFK User Subroutines

In ACTIFK, as in O5R, a variety of subroutines must be written for the user's particular problem. These include subroutine STBATCH to read in and to print out special data and to initialize certain variables; subroutine SDATA to calculate uncollided flux from source points; subroutine RELCOL to calculate scattered flux from collision sites; subroutine NBATCH to print out results at the end of each batch; subroutine OUTPUT to calculate and to print out batch averaged fluxes and standard deviations at the end of the run; and subroutine NONELAS to control the inelastic scattering treatment. Flow diagrams for these subroutines are given in Appendix R. Subroutine listings are in Appendix S. Input instructions for subroutine STBATCH are found in Appendix Q.

The estimator used in SDATA for the flux contribution from each source point was

$$W = \frac{W_{o} e^{-\lambda} D(\theta)}{\mu_{\pi r^{2}}} ,$$

and in RELCOL from each collision site was

$$W = \frac{W_{o} e^{-\lambda} P(\mu) D(\theta)}{r^{2}}$$

The collimator response function  $D(\theta)$  was evaluated in function COLF (C,V,I), where C = cos $\theta$ , V is the speed squared, and I is the detector index. Since collimator response functions have not yet been evaluated, this function was set equal to 1.0; this means perfect collimation if the collimator cone description is described properly.

# Core Mapping

#### Collimated Detector Description

For the preliminary ACTIFK analysis of the core-mapping problem, eight collimated detectors were specified. Perfect collimation was assumed. This implies that the collimator cone is defined by the collimator aperture and by the detector size, as shown in Fig. 22. The distance along the collimator axis from the bottom of the core to the detector was 142 cm, and from the bottom of the core to the collimator cone vertex was 91 cm. The collimator cone half-angle was 2.84°.

Table 28 gives the data required for the description of the eight collimated detectors. Detectors 1, 2, and 3 look at the reactor bottom at 0 radius and at angles 0, 30, and  $60^{\circ}$  respectively. Detector 4 looks at the reactor bottom at a radius of 5.923 cm and at  $0^{\circ}$ . Detectors 5, 6, 7, and 8 look at the reactor bottom at a radius of 11.864 cm and at angles of 0, 30 (away from reactor center), 30 (toward reactor center), and  $60^{\circ}$  (toward reactor center) respectively.



Fig. 22. Perfect Collimator Diagram for Core Mapping Problem.

| Detector Number                 |         |          |              |         |         |          |          |              |
|---------------------------------|---------|----------|--------------|---------|---------|----------|----------|--------------|
| Data Description                | 1       | 2        | 3            | 4       | 5       | 6        | 7        | 8            |
| Detector<br>X coordinate, cm    | 0.0     | -71.0    | -122.9763    | 5.923   | 11.846  | -59.154  | 82.846   | 143.8223     |
| Detector<br>Y coordinate, cm    | 0.0     | 0.0      | 0.0          | 0.0     | 0.0     | 0.0      | 0.0      | 0.0          |
| Detector<br>Z coordinate, cm    | 143.48  | 124.4563 | 72.48        | 143.48  | 143.48  | 124.4563 | 124.4563 | 72.48        |
| Cone vertex<br>X coordinate     | 0.0     | -45.5    | -78.8087     | 5.923   | 11.846  | -33.654  | 57•346   | 90.6547      |
| Cone vertex<br>Y coordinate     | 0.0     | 0.0      | 0.0          | 0.0     | 0.0     | 0.0      | 0.0      | 0.0          |
| Cone vertex<br>Z coordinate     | 92.48   | 80.2887  | 46.98        | 92.48   | 92.48   | 80.2887  | 80.2887  | 46.98        |
| Cone direction cosine, $\alpha$ | 0.0     | 0.5      | 0.86603      | 0.0     | 0.0     | 0.5      | -0.5     | -0.86603     |
| Cone direction cosine, $\beta$  | 0.0     | 0.0      | 0.0          | 0.0     | 0.0     | 0.0      | 0.0      | 0.0          |
| Cone direction cosine, $\gamma$ | -1.0    | -0.86603 | <b>-</b> 0.5 | -1.0    | -1.0    | -0.86603 | -0.86603 | <b>-</b> 0.5 |
| Cosine of cone<br>half angle    | 0.99876 | 0.99876  | 0.99876      | 0.99876 | 0.99876 | 0.99876  | 0.99876  | 0.99876      |

Table 28. Perfect Collimator Data for Core-Mapping Problem

There were eleven energy groups for each collimated detector. The boundaries were 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 10.0, and 18.0 MeV. There were ten space-energy detectors at which the full analyses of the statistics were requested. They were the fourth energy group for all detectors except detector number 3, the tenth energy group for detector number 1, and the third and seventh energy groups for detector number 3.

The input data read by subroutine STBATCH for the SNAP-TSF core mapping problem are given in Appendix P.

# ACTIFK Calculation

Using the four collision tapes prepared by the 05R run on the coremapping problem, one ACTIFK run was made. Out of the 60 batches on the tapes the first 40 batches of 800 neutrons each were processed. The running time on the CDC-1604A computer was 175 min.

#### ACTIFK Results

The flux spectra calculated by ACTIFK at each of the eight detectors are shown in Figs. 23 through 25. The same data are given in Tables 29 and 30. Except for detector No. 6, which was not looking toward the reactor core, and except for the energy group 1.5 to 2.0 MeV, which apparently contained a neutron with an extremely large weight, the standard deviations for 32000 source neutrons generally ranged from 5 to 20%; however, each detector viewed only a portion of the core, and relatively few of the source neutrons contributed anything to a given detector. The ACTIFK frequency table requested for ten of the space-energy detectors showed that the number of source neutrons that counted ranged from 68 to 2218. The frequency table also showed that for these particular ten space-energy detectors no one neutron nor any small group of neutrons contributed a large fraction to the final answer.

For the number of histories processed and for the amount of machine time involved, the results can be considered good.

Although the uncollided flux is treated separately in ACTIFK and averages for each batch are printed out, no provision to calculate the

87



Fig. 23. Collimated Leakage Flux Spectra from the SNAP-TSF Reactor Bottom. Collimator angle 0 deg from normal to reactor bottom; R = radius at which collimator axis intersects reactor bottom (in Y = 0 plane).



Fig. 24. Collimated Leakage Flux Spectra from the SNAP-TSF Reactor Bottom. Collimator angle 30 deg from normal to reactor bottom in Y = 0 plane; R = radius at which collimator axis intersects reactor bottom.



Fig. 25. Collimated Leakage Flux Spectra from the SNAP-TSF Reactor Bottom. Collimator angle 60 deg from normal to reactor bottom in Y = 0 plane; R = radius at which collimator axis intersects reactor bottom.

| <u> </u>                 |                                                           | Fl                                            | .ux Spectra [ne                               | utrons cm <sup>-2</sup> MeV                    | / <sup>-1</sup> (source neut)    | ron) <sup>-1</sup> ] for Detec     | etor                                                      | ······································ |
|--------------------------|-----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------------------------------|----------------------------------------|
| Lower<br>Energy<br>(MeV) | No. 1<br>$R = 0.0 \text{ cm}^{a}$<br>$\theta = 0^{\circ}$ | No. 2<br>R = 0.0  cm<br>$\theta = 30^{\circ}$ | No. 3<br>R = 0.0  cm<br>$\theta = 60^{\circ}$ | No. 4<br>R = 5.923  cm<br>$\theta = 0^{\circ}$ | No. 5<br>R = 11.846 cm<br>θ = 0° | No. 6<br>R = 11.846 cm<br>θ = 30°b | No. 7<br>R = 11.846  cm<br>$\theta = 30^{\circ \text{c}}$ | No. 8<br>R = 11.846 cm<br>θ = 60°c     |
| 0.5                      | 7.30 x 10 <sup>-8</sup>                                   | 5.90 x 10 <sup>-8</sup>                       | 2.10 x 10 <sup>-8</sup>                       | 6.00 x 10 <sup>-8</sup>                        | 2.46 x 10 <sup>-8</sup>          | 5.44 x 10 <sup>-9</sup>            | 5.00 x 10 <sup>-8</sup>                                   | 4.30 x 10 <sup>-8</sup>                |
| 1.0                      | 6.56 x 10 <sup>-8</sup>                                   | 5.60 x 10 <sup>-8</sup>                       | 1.61 x 10 <sup>-8</sup>                       | 5.88 x 10 <sup>-8</sup>                        | 2.08 x 10 <sup>-8</sup>          | 3.32 x 10 <sup>-9</sup>            | 4.00 x 10 <sup>-8</sup>                                   | 3.72 x 10 <sup>-8</sup>                |
| 1.5                      | 6.30 x 10 <sup>-8</sup>                                   | 6.22 x 10 <sup>-8</sup>                       | 8.90 x 10 <sup>-9</sup>                       | 5.20 x 10 <sup>-8</sup>                        | 1.34 x 10 <sup>-9</sup>          | 2.80 x 10 <sup>-9</sup>            | 3.20 x 10 <sup>-8</sup>                                   | 2.80 x 10 <sup>-8</sup>                |
| 2.0                      | 3.12 x 10 <sup>-8</sup>                                   | 2.18 x 10 <sup>-8</sup>                       | 5.90 x 10 <sup>-9</sup>                       | 2.56 x 10 <sup>-8</sup>                        | 1.09 x 10 <sup>-8</sup>          | 9.84 x 10 <sup>-10</sup>           | 2.24 x 10 <sup>-8</sup>                                   | 1.64 x 10 <sup>-8</sup>                |
| 2.5                      | 2.64 x 10 <sup>-8</sup>                                   | 1.58 x 10 <sup>-8</sup>                       | 3.72 x 10 <sup>-9</sup>                       | 2.18 x 10 <sup>-8</sup>                        | 4.40 x 10 <sup>-9</sup>          | 3.04 x 10 <sup>-10</sup>           | 1.45 x 10 <sup>-8</sup>                                   | 1.16 x 10 <sup>-8</sup>                |
| 3.0                      | 1.44 x 10 <sup>-8</sup>                                   | 1.10 x 10 <sup>~8</sup>                       | 2.56 x 10 <sup>-9</sup>                       | 1.17 x 10 <sup>-8</sup>                        | 2.76 x 10 <sup>-9</sup>          | 2.06 x 10 <sup>-10</sup>           | 1.24 x 10 <sup>-8</sup>                                   | 7.64 x 10 <sup>-9</sup>                |
| 3•5                      | 1.18 x 10 <sup>-8</sup>                                   | 8.52 x 10 <sup>-9</sup>                       | 1.41 x 10 <sup>-9</sup>                       | 8.56 x 10 <sup>-9</sup>                        | 3.12 x 10 <sup>-9</sup>          | 2.08 x 10 <sup>-10</sup>           | 9.92 x 10 <sup>-9</sup>                                   | 6.36 x 10 <sup>-9</sup>                |
| 4.0                      | 6.76 x 10 <sup>-9</sup>                                   | 4.64 x 10 <sup>-9</sup>                       | 1.04 x 10 <sup>-9</sup>                       | 5.66 x 10 <sup>-9</sup>                        | 1.34 x 10 <sup>-9</sup>          | 4.81 x 10 <sup>-11</sup>           | 5.28 x 10 <sup>-9</sup>                                   | 3.36 x 10 <sup>-9</sup>                |
| 5.0                      | 4.36 x 10 <sup>-9</sup>                                   | 2.60 x 10 <sup>-9</sup>                       | 4.66 x 10 <sup>-10</sup>                      | 3.39 x 10 <sup>-9</sup>                        | 9.04 x 10 <sup>-10</sup>         |                                    | 3.05 x 10 <sup>-9</sup>                                   | 1.60 x 10 <sup>-9</sup>                |
| 6.0                      | 9.72 x 10 <sup>-10</sup>                                  | 6.44 x 10 <sup>-10</sup>                      | 9.49 x 10 <sup>-11</sup>                      | 6.95 x 10 <sup>-10</sup>                       | 1.63 x 10 <sup>-10</sup>         |                                    | 5.90 x 10 <sup>-10</sup>                                  | 4.80 x 10 <sup>-10</sup>               |
| 10.0                     |                                                           |                                               |                                               |                                                |                                  |                                    |                                                           |                                        |

Table 29. ACTIFK Flux Spectra from the SNAP-TSF Reactor Bottom

a. For each detector R is the radius from the reactor axis and  $\theta$  is the collimator inclination angle.

b. Directed away from the reactor.

c. Directed toward the reactor.

| Lower |       | Standard Deviation (%) for Detector |       |       |       |      |       |       |  |  |  |  |
|-------|-------|-------------------------------------|-------|-------|-------|------|-------|-------|--|--|--|--|
| (MeV) | No. l | No. 2                               | No. 3 | No. 4 | No. 5 | No.6 | No. 7 | No. 8 |  |  |  |  |
| 0.5   | 8.5   | 9•4                                 | 12.6  | 12.7  | 13.5  | 18.4 | 9.1   | 8.9   |  |  |  |  |
| 1.0   | 8.2   | 11.6                                | 12.5  | 10.8  | 12.9  | 19.7 | 7.0   | 7.0   |  |  |  |  |
| 1.5   | 30.6  | 49•9                                | 7•9   | 33•3  | 11.0  | 24.5 | 7.4   | 10,8  |  |  |  |  |
| 2.0   | 6.0   | 6.2                                 | 9•9   | 7.2   | 15.8  | 21.0 | 6.4   | 5.1   |  |  |  |  |
| 2.5   | 13.3  | 8.9                                 | 10.1  | 18.4  | 20.8  | 28.5 | 6.2   | 6.7   |  |  |  |  |
| 3.0   | 8.9   | 10.8                                | 14.1  | 7•7   | 10.5  | 37.8 | 18.4  | 9.6   |  |  |  |  |
| 3.5   | 11.3  | 12.7                                | 12.5  | 7•5   | 20.7  | 51.9 | 16.5  | 11.9  |  |  |  |  |
| 4.0   | 11.8  | 10.7                                | 17.0  | 11.4  | 12.8  | 29.8 | 8.0   | 6.2   |  |  |  |  |
| 5.0   | 15.1  | 12.3                                | 18.9  | 13.2  | 19.5  |      | 11.4  | 10.7  |  |  |  |  |
| 6.0   | 18.7  | 14.6                                | 16.5  | 19.1  | 18.6  |      | 26.2  | 15.2  |  |  |  |  |
| 10.0  |       |                                     |       |       |       |      |       |       |  |  |  |  |

Table 30. ACTIFK - Standard Deviation for Flux Spectra from the SNAP-TSF Reactor Bottom

batch average was made. A hand calculation for the uncollided flux was made for detector No. 1, R = 0.0 cm and  $\theta = 0^{\circ}$ ; these data appear in Table 31.

A comparison between ACTIFK and SNARLS was made. Since the SNARLS results were averaged over the core bottom and azimuthal angle, the comparison was made only with the ACTIFK answers at R = 0.0. The flux at the detector,  $\Phi_{D}$ , was obtained from

$$\Phi_{\rm D} = \frac{\Phi(\mu) \ \Delta A}{R_2^2 \ F} ,$$

where

 $\Phi(\mu)$  = the SNARLS angular flux for  $\mu$  = 1.0 (cosine of the polar angle),

 $\Delta A$  = the area of the reactor bottom within the collimator cone,

- $R_2$  = the distance from the reactor bottom to the detector,
- F = the average leakage flux value over the core bottom, assuming that the value at R = 0.0 was 1.0 and that the distribution tion was the same as the radial power distribution.

This equation can be written

$$\Phi_{\rm D} = \Phi(\mu) \frac{\Delta A}{R_1^2} \frac{\frac{R^2}{L}}{\frac{R_2^2}{R_2^2}F} ,$$

where  $R_1$  is the distance from the reactor bottom to the collimator cone vertex. However, since  $\Delta A/R_1^2$  is the solid angle  $\Delta \Omega$  subtended by the collimator cone,

$$\Phi_{\rm D} = \Phi(\mu) \Delta \Omega \frac{R_{\rm L}^2}{R_{\rm 2}^2 F}$$

Inserting values for  $\Delta\Omega$ , R<sub>1</sub>, R<sub>2</sub>, and F,

$$\Phi_{\rm D} = 4.22 \text{ x } 10^{-3} \Phi(\mu)$$

| Lower<br>Energy<br>(MeV) | Uncollided Flux<br>[neutrons cm <sup>-2</sup> MeV <sup>-1</sup><br>(source neutron) <sup>-1</sup> ] | Standard<br>Deviation in<br>Uncollided Flux<br>(%) | Total Flux<br>[neutrons cm <sup>-2</sup> MeV <sup>-1</sup><br>(source neutron ) <sup>-1</sup> ] | Standard<br>Deviation in<br>Total Flux<br>(%) | Uncollided Flux<br>(% of total flux) |
|--------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|
| 0.5                      | 8.45 x 10 <sup>-9</sup>                                                                             | 8.6                                                | 7.30 x 10 <sup>-8</sup>                                                                         | 8.5                                           | 11.6                                 |
| l.0                      | 1.14 x 10 <sup>-8</sup>                                                                             | 5.4                                                | 6.56 x 10 <sup>-8</sup>                                                                         | 8.2                                           | 17.4                                 |
| 1.5                      | 1.15 x 10 <sup>-8</sup>                                                                             | 4.2                                                | 6.30 x 10 <sup>-8</sup>                                                                         | 30.6                                          | 18.2                                 |
| 2.0                      | 1.12 x 10 <sup>-8</sup>                                                                             | 4.2                                                | 3.12 x 10 <sup>-8</sup>                                                                         | 7•5                                           | 35.9                                 |
| 2.5                      | 8.55 x 10 <sup>-9</sup>                                                                             | 5.1                                                | 2.64 x 10 <sup>-8</sup>                                                                         | 13.3                                          | 32.4                                 |
| 3.0                      | 6.72 x 10 <sup>-9</sup>                                                                             | 6.0                                                | 1.44 x 10 <sup>-8</sup>                                                                         | 8.9                                           | 46.7                                 |
| 3.5                      | 5.15 x 10 <sup>-9</sup>                                                                             | 7.2                                                | 1.18 x 10 <sup>-8</sup>                                                                         | 11.3                                          | 43.6                                 |
| 4.0                      | 3.48 x 10 <sup>-9</sup>                                                                             | 5.4                                                | 6.76 x 10 <sup>-9</sup>                                                                         | 11.8                                          | 51.5                                 |
| 5.0                      | 1.82 x 10 <sup>-9</sup>                                                                             | 7.6                                                | 4.36 x 10 <sup>-9</sup>                                                                         | 15.1                                          | 41.7                                 |
| 6.0                      | 4.44 x 10 <sup>-10</sup>                                                                            | 6.4                                                | 9.72 x 10 <sup>-10</sup>                                                                        | 18.9                                          | 45.7                                 |
| 10.0                     |                                                                                                     |                                                    |                                                                                                 |                                               |                                      |

Table 31. ACTIFK Uncollided Flux Spectrum from the SNAP-TSF Reactor Bottom; Detector Number One

The comparison is presented in Table 32; the ACTIFK energy groups were combined to form the broader SNARLS energy groups.

# V. CONCLUSIONS

The O5R Monte Carlo neutron transport code was modified for the analysis of the ORNL SNAP-TSF experiments. In addition, the development of machine programs for the analyses of O5R collision tapes was completed; included were program SNARLS for the determination of the leakage neutron source to be used in subsequent O5R calculations of neutron penetration in a SNAP-2 shield and program ACTIFK for the calculation of the flux spectra measured by collimated detectors viewing portions of the bottom face of the reactor. A variety of programs were written to assist in the preparation of data for the analyses.

Some preliminary analyses were performed on the SNAP-TSF reactor. The geometry model, material specifications, and neutron reaction processes are given in great detail. For the preliminary analyses the reactor core consisted of a hexagonal volume in which the fuel, cladding, NaK and three beryllium rods were homogenized. The control drums were turned in.

The axial and radial power distributions were determined using 05R. Biased power distributions, neutron source energy distributions, and neutron source angular distributions for the 05R leakage calculations were obtained from importance functions derived from adjoint  $S_n$  calculations on the system.

A comparison between the SNARLS and ACTIFK results indicated that the two different flux estimators were in reasonable agreement.

A version of 05R which does not allow leakage from the system is currently under study; although this version is not a subject of this report, it has been tried on the preliminary core-mapping problem. Fewer histories were processed for a given computer running time in this version; however, better statistics are obtained at the lower energies. The final analyses of the experiments may require the use of the regular 05R for high-energy results and use of the "no leakage" version of 05R for the lower energy results.

| Table | 32. | ACTIFK-SNARLS | Comparison |
|-------|-----|---------------|------------|
|-------|-----|---------------|------------|

| Lower<br>Energy<br>(MeV) | SNARLS<br>Angular<br>Flux,φ(μ)<br>[neutrons cm <sup>2</sup> steradian <sup>-1</sup><br>(source neutron) <sup>-1</sup> ] | SNARLS<br>Calculated<br>Total Flux, <sup>Φ</sup> D<br>[neutrons cm <sup>-2</sup><br>(source neutron) <sup>-1</sup> ] | ACTIFK<br>Total Flux, <sup>4</sup> D<br>[neutrons cm <sup>-2</sup><br>(source neutron.) <sup>-1</sup> ] | SNARLS<br>Deviation from<br>ACTIFK<br>(%) |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                          |                                                                                                                         | Detector No. 1; $R = 0.0$ ar                                                                                         | and $\theta = 0^{\circ}$                                                                                |                                           |
| 0.5                      | 2.11 x 10 <sup>-5</sup>                                                                                                 | 0.89 x 10 <sup>-7</sup>                                                                                              | 1.01 x 10 <sup>-7</sup>                                                                                 | -12                                       |
| 2.0                      | 9.10 x 10 <sup>-6</sup>                                                                                                 | 3.84 x 10 <sup>-8</sup>                                                                                              | 4.19 x 10 <sup>-8</sup>                                                                                 | - 8                                       |
| 4.0                      | 3.29 x 10 <sup>-6</sup>                                                                                                 | 1.39 x 10 <sup>-8</sup>                                                                                              | 1.51 x 10 <sup>-8</sup>                                                                                 | - 8                                       |
|                          |                                                                                                                         | Detector No. 2; $R = 0.0$ and                                                                                        | nd 2 = 30°                                                                                              |                                           |
| 0.5                      | 1.65 x 10 <sup>-5</sup>                                                                                                 | 6.96 x 10 <sup>-8</sup>                                                                                              | 8.86 x 10 <sup>-8</sup>                                                                                 | -21                                       |
| 2.0                      | 6.47 x 10 <sup>-6</sup>                                                                                                 | 2.73 x 10 <sup>-8</sup>                                                                                              | 2.86 x 10 <sup>-8</sup>                                                                                 | <b>-</b> 5                                |
| 4.0                      | 2.09 x 10 <sup>-6</sup>                                                                                                 | 8.82 x 10 <sup>-9</sup>                                                                                              | 9.82 x 10 <sup>-9</sup>                                                                                 | -10                                       |
|                          |                                                                                                                         | Detector No. 3; $R = 0.0$ as                                                                                         | nd $\theta = 60^{\circ}$                                                                                |                                           |
| 0.5                      | 6.45 x 10 <sup>-6</sup>                                                                                                 | 2.72 x 10 <sup>-8</sup>                                                                                              | 2.30 x 10 <sup>-8</sup>                                                                                 | +18                                       |
| 2.0                      | 1.76 x 10 <sup>-6</sup>                                                                                                 | 7.43 x 10 <sup>-9</sup>                                                                                              | 6.80 x 10 <sup>-9</sup>                                                                                 | + 9                                       |
| 4.0                      | 3.73 x 10 <sup>-7</sup>                                                                                                 | 1.57 x 10 <sup>-9</sup>                                                                                              | 1.89 x 10 <sup>-9</sup>                                                                                 | -17                                       |

The final analyses of the SNAP-TSF experiments should be done with certain information on the reactor configuration available. The position of the fine control drums should be specified. If only one beryllium rod is in the core (at the core center), the source specifications should be changed, as well as the atomic densities of the core; one beryllium rod at the center can be handled exactly by the geometry specifications.

In addition, the correct NaK density should be used in the analyses; the preliminary analyses used the density at 20°C for the NaK. In order to improve statistics at small core radii, the radial biased source distribution should be changed. The flat distribution caused too many source neutrons to be picked at large radii. Collimator efficiency data should be obtained for program ACTIFK. These data are required by function COLF to adjust the detector results according to the collimator response for each collision site viewed.

With the improved reactor specifications a new O5R run must be made to determine the fission distribution. With the better fission distribution as the source, the final SNARLS and ACTIFK calculations can be done. APPENDIX A

GEOM INOUT FOR DRUMS IN

1. Shield Source Problem (2 Regions)

| ł         | MAI | _£        |           |            |         |         |          |          |
|-----------|-----|-----------|-----------|------------|---------|---------|----------|----------|
| X ZONE    |     | -16,3525, | 16.3525   |            |         |         |          | 0000020  |
| Y ZONE    |     | -16,8656, | 16,8656   |            |         |         |          | 00000030 |
| 7 ZONE    |     | -39,7455, | -36.9794, | <b>- 3</b> | 5,1150, | -4.0,   | -2,5146, | 00000040 |
| 1.47      | 1   |           |           |            |         |         |          | 00000050 |
| ZONE      |     | 1 1       |           |            |         |         |          | 00000060 |
| X BLOCK   | •   | -16.3525, | 16.3525   |            |         |         |          | 00000070 |
| Y BLOCK   |     | -16.8656, | 16.8656   |            |         |         |          | 00000080 |
| 7 BLOCK   |     | -39,7455, | -36.9794  |            |         |         |          | 00000090 |
| BLACK     | ł   |           |           |            |         |         |          | 00000100 |
| MEDIA     |     | 1, 1000   |           |            |         |         |          | 00000110 |
| SURFACES  |     | 1         |           |            |         |         |          | 00000120 |
| SECTOR -1 |     |           |           |            |         |         |          | 00000130 |
| SECTOR I  |     |           |           |            |         |         |          | 00000140 |
| REGIONS   |     | 1         |           |            |         |         |          | 4        |
| 70NE      |     | 2         |           |            |         |         |          | 00000150 |
| X BLOCK   |     | -16.3525, | -9,73370, |            | 0.0,    | 9,7337, | 16,3525  | 00000160 |
| Y BLOCK   |     | -16,8656, | 16.8656   |            |         |         |          | 0000170  |
| Z BLOCK   |     | -36,9794, | -35,1150  |            |         |         |          | 00000180 |
| BLACK     | I.  | 1 1       |           |            |         |         |          | 00000190 |
| MEDIA     |     | 3, 6      | , 1000    |            |         |         |          | 00000200 |
| SURFACES  |     | 6, 7      |           |            |         |         |          | 00000210 |
| SECTOR -1 | 0   |           |           |            |         |         |          | 00000220 |
| SECTOR I  | -   |           |           |            |         |         |          | 00000230 |
| SECTOR 0  | ļ.  |           |           |            |         |         |          | 00000240 |
| REGIONS   |     | ļ         |           |            |         |         |          | 241      |
| RLOCK     | 2   |           |           |            |         |         |          | 00000250 |
| MEDIA     |     | 2, 3      | , 3,      | 6,         | 1000    |         |          | 00000260 |
| SURFACES  |     | 3, 4      | , 6,      | 7          |         |         |          | 00000270 |
| SECTOR I  | 1   | 0 0       |           |            |         |         |          | 00000280 |
| SECTOR D  | -   | - 1 0     |           |            |         |         |          | 00000290 |
| SECTOR -1 | 0   | - 1 0     |           |            |         |         |          | 00000300 |
| SECTOR 0  | 0   | 1 -1      |           |            |         |         |          | 00000310 |
| SECTOR 0 0   |           |          |          |    |      |         | 00000320  |
|--------------|-----------|----------|----------|----|------|---------|-----------|
| REGIONS 3    | 1, 1      |          |          |    |      |         | 00000330  |
| MEDIA        | 2. 3.     | 3.       | 6. 1000  |    |      |         | 00000000  |
| SURFACES     | 2. 5.     | 6.       | 7        |    |      |         | 000000000 |
| SECTAR -1 -1 | n n       |          | <i>.</i> |    |      |         | 00000360  |
| SECTOR D I   | -1 0      |          |          |    |      |         | 00000370  |
| SECTOR I D   | -1 0      |          |          |    |      |         | 000000000 |
| SECTOR 0 0   |           |          |          |    |      |         | 000000000 |
| SECTOR 0 0   | 0 1       |          |          |    |      |         | 000000000 |
| REGIANS      | - ,       |          |          |    |      |         | 401       |
| BLOCK 4      | 1 1       |          |          |    |      |         | 000040    |
| MEDIA        | 3, 6,     | 1000     |          |    |      |         | 00000420  |
| SURFACES     | 6, 7      |          |          |    |      |         | 0000430   |
| SECTOR -1 0  |           |          |          |    |      |         | 00000440  |
| SECTOR I -I  |           |          |          |    |      |         | 00000450  |
| SECTOR 0 1   |           |          |          |    |      |         | 00000460  |
| REGIONS      | 1         |          |          |    |      |         | 461       |
| ZONE         | 3         |          |          |    |      |         | 00000470  |
| X BLOCK      | -16,3525, | -9.7337, | -6,6599, |    | 0.0, | 6.6599, | 00000480  |
| 9,7337,      | 16,3525   |          |          |    |      |         | 00000490  |
| Y BLOCK      | -16,8656, | 16.8656  |          |    |      |         | 00000500  |
| Z BLOCK      | -35,1150, | -4.0     |          |    |      |         | 00000510  |
| BLOCK I      |           |          |          |    |      |         | 00000520  |
| MEDIA        | 5, 6,     | 1000,    | 7, 0,    | 0  |      |         | 00000530  |
| SURFACES     | 6, 7,     | 8,       | 9, 12    |    |      |         | 00000540  |
| SECTOR -1 0  | 0 0 0     |          |          |    |      |         | 00000550  |
| SECTOR I -I  | 0 0 0     |          |          |    |      |         | 00000560  |
| SECTOR D I   | 0 0 -1    |          |          |    |      |         | 00000570  |
| SECTOR 0 0   |           |          |          |    |      |         | 00000580  |
| SECTOR D D   | -1 0 0    |          |          |    |      |         | 00000590  |
| SECTOR 0 0   |           |          |          |    |      |         | 00000600  |
| REGIONS      | I         |          |          |    |      |         | 601       |
| BLOCK 2      |           |          |          |    |      |         | 00000610  |
| MEDIA        | 4, 5,     | 5,       | 6, 1000, | 7, | 0,   | 0       | 00000620  |
| SURFACES     | 3, 4,     | 6,       | 7, 8,    | 9, | 12   |         | 00000630  |
| SECTOR I I   | 0 0 0     | 0        |          |    |      |         | 00000640  |

. .

| SECTOR 0  | - 1 | - 1 | 0   | 0   | 0   | 0          |    |    |      |   |     |    |   | 00000650 |
|-----------|-----|-----|-----|-----|-----|------------|----|----|------|---|-----|----|---|----------|
| SECTOR -I | 0   | - 1 | ٥   | 0   | 0   | 0          |    |    |      |   |     |    |   | 00000660 |
| SECTOR 0  | Q   | 1   | -1  | Π   | 0   | 0          |    |    |      |   |     |    |   | 00000670 |
| SECTOR 0  | 0   | 0   | 1   | 0   | 0   | =          |    |    |      |   |     |    |   | 00000680 |
| SECTOR D  | 0   | 0   | 0   | 1   | 1   | 1          |    |    |      |   |     |    |   | 00000690 |
| SECTOR D  | 0   | D   | D   | - 1 | D   | 0          |    |    |      |   |     |    |   | 00000700 |
| SECTOR 0  | 0   | Ö   | 0   | 0   | -   | 0          |    |    |      |   |     |    |   | 00000710 |
| REGIONS   |     |     | 1   |     |     |            |    |    |      |   |     |    |   | 711      |
| BLOCK     | 3   | 1   |     | 1   |     |            |    |    |      |   |     |    |   | 00000720 |
| MEDIA     |     |     | 4,  |     | 5,  |            | 5, | 6. | 1000 | , | 7   |    |   | 00000730 |
| SURFACES  |     |     | 3,  |     | 4,  |            | 6, | 7, | 12   |   |     |    |   | 00000740 |
| SECTOR I  | 1   | Π   | ٥   | n   |     |            |    |    |      |   |     |    |   | 00000750 |
| SECTOR 0  | -1  | -1  | 0   | 0   |     |            |    |    |      |   |     |    |   | 00000760 |
| SECTOR -I | 0   | - 1 | 0   | 0   |     |            |    |    |      |   |     |    |   | 00000770 |
| SECTOR 0  | 0   | 1   | - 1 | ٥   |     |            |    |    |      |   |     |    |   | 00000780 |
| SECTOR 0  | 0   | 0   | 1   | -1  |     |            |    |    |      |   |     |    |   | 00000790 |
| SECTOR 0  | 0   | 0   | 0   | 1   |     |            |    |    |      |   |     |    |   | 00000800 |
| REGIONS   |     |     | 1   |     |     |            |    |    |      |   |     |    |   | 801      |
| BLOCK     | 4   | 1   |     | 1   |     |            |    |    |      |   |     |    |   | 00000810 |
| MEDIA     |     |     | 4,  |     | 5,  |            | 5, | 6, | 1000 | , | 7   |    |   | 00000820 |
| SURFACES  |     |     | 2,  |     | 5,  |            | 6, | 7, | 12   |   |     |    |   | 00000830 |
| SECTOR -I | - 1 | 0   | 0   | 0   |     |            |    |    |      |   |     |    |   | 00000840 |
| SECTOR D  | 1   | - 1 | ٥   | D   |     |            |    |    |      |   |     |    |   | 00000850 |
| SECTOR I  | 0   | - 1 | 0   | 0   |     |            |    |    |      |   |     |    |   | 00000860 |
| SECTOR D  | 0   | 1   | - 1 | 0   |     |            |    |    |      |   |     |    |   | 00000870 |
| SECTOR 0  | 0   | 0   | 1   | -   |     |            |    |    |      |   |     |    |   | 00000880 |
| SECTOR 0  | 0   | 0   | 0   | 1   |     |            |    |    |      |   |     |    |   | 00000890 |
| REGIONS   |     |     | 1   |     |     |            |    |    |      |   |     |    |   | 891      |
| BLOCK     | 5   | 1   |     | 1   |     |            |    |    |      |   |     |    |   | 00000900 |
| MEDIA     |     |     | 4,  |     | 5,  |            | 5, | 6, | 1000 | , | 7,  | 0, | 0 | 00000910 |
| SURFACES  |     |     | 2,  |     | 5,  |            | 6, | 7, | 10   | , | 11, | 12 |   | 00000920 |
| SECTOR -I | - 1 | 0   | 0   | 0   | 0   | 0          |    |    |      |   |     |    |   | 00000930 |
| SECTOR D  | 1   | - 1 | ۵   | 0   | 0   | 0          |    |    |      |   |     |    |   | 00000940 |
| SECTOR I  | 0   | - 1 | 0   | 0   | 0   | 0          |    |    |      |   |     |    |   | 00000950 |
| SECTOR 0  | 0   | 1   | -   | 0   | 0   | 0          |    |    |      |   |     |    |   | 00000960 |
| SECTOR D  | 0   | 0   | 1   | ۵   | 0   | <b>=</b> [ |    |    |      |   |     |    |   | 00000970 |
| SECTOR 0  | 0   | 0   | O   | -1  | - 1 | 1          |    |    |      |   |     |    |   | 00000980 |

0 0 0 0 SECTOR 00000990 0 0 1 0 0 0 1 0 0 0 00010000 SECTOR 1001 REGIONS 1 BLOCK 00001010 6 1 1 00001020 MEDIA 5, 6, 1000, 7, 0, 0 6, 7, 10, 12 00001030 SURFACES 11. 00001040 SECTOR -1 0 0 0 0 00001050 SECTOR U 0 0 1 - 1 00001060 SECTOR 0 1 0 0 -SECTOR 00001070 0 ٥ - 1 - 1 00001080 SECTOR 0 D 1 0 Ω SECTOR 0 0 0 1 0 00001090 1091 REGIONS 1 0001100 ZONE 1 4 -9.7337, 0.0, 9.7337, 16,3525 00001110 -16.3525, XBLOCK -16.8656, 16,8656 00001120 YBLOCK -2.5146 00001130 ZBLOCK -4.0, BLOCK 1 00001140 1 9, 00001150 MEDIA 6, 1000 00001160 SURFACES 6, 13 00001170 SECTOR -1 0 SECTOR 00001180 1 -1 00001190 SECTOR n 1 1191 REGIONS 1 BLOCK 00001200 2 1 1 6. 1000 00001210 MEDIA 8, 9, 9, 3, 6, 13 00001220 SURFACES 4, SECTOR 00001230 0 0 1 00001240 SECTOR 0 0 - 1 - | 00001250 SECTOR -1 0 - 1 0 SECTOR 00001260 0 0 - 1 00001270 SECTOR 0 0 1 0 REGIONS 1271 1 00001280 BLOCK 3 1 8, 9, 6, 1000 00001290 MEDIA 9, 2, 13 00001300 SURFACES 5, 6, 00001310 SECTOR -1 -1 0 0

SECTOR ٥ 0 1 -1 SECTOR 1 0 - 1 0 SECTOR Π D 1 - 1 0 SECTOR 0 0 1 REGIONS 1 BLOCK 4 MEDIA 5, 6, 1000 SURFACES 6, 13 SECTOR #1 0 SECTOR 1 -1 0 1 SECTOR REGIONS 1 70NE 5 X BLOCK -16.3525, 16.3525 16.8656 Y BLOCK -16.8656, Z BLOCK -2.5146, 1.471 BLOCK 1 1 1 MEDIA 6, 6, 10, 1000, 1000 SURFACES 6, 13, 14, 15 SECTOR 1 -1 0 SECTOR .0 - 1 - 1 SECTOR -1 n Π 1 0 SECTOR 0 1 - 1 0 SECTOR 0 0 2 REGIONS QUADRIC SURFACES, DRUMS IN 15 I.OXSQ 1.0YS0 -130.55782 1.0X -1.732n5Y -19.4672 19.4672 1.73205Y 1.0X -1.73205Y 19.4672 1.0X 1.73205Y 1.0X -19.4672 I. OYSQ -127.04108 I.OXSQ I. DYSO -129.92010 I. DXSQ 1.0Y 1.0X 23,52820 1.0X -1,0Y 23,52820 1.0X 1.04 =23.52820 1.0X -1.0Y #23,52820

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

\$

| I, OXSQ   |           | I, DYSQ | -133.74044 | \$             | 00001660       |
|-----------|-----------|---------|------------|----------------|----------------|
| I.DXSQ    |           | I. OYSO | -134,29913 | \$             | 00001670       |
| I, OXSQ   |           | I, DYSA | I.OZSQ     | -93.982        | \$<br>00001680 |
| I. DXSQ   |           | I, DYSQ | I.DZSQ     | -93.982        | 00001690       |
| -29,93946 | <b>\$</b> |         |            | <b>a</b> . 100 | 00001700       |

2. Core-Mapping Problem (4 Regions)

| 1         | MAI | -E   |       |    |      |       |    |      |      |   |        |        |    |          |
|-----------|-----|------|-------|----|------|-------|----|------|------|---|--------|--------|----|----------|
| X ZONE    |     | -16  | .3525 |    | 16.  | 3525  |    |      |      |   |        |        |    | 00000020 |
| Y ZONE    |     | -16  | .8656 |    | 16.  | 8656  |    |      |      |   |        |        |    | 00000030 |
| ZONE      |     | - 39 | .7455 |    | -36. | 9794, |    | 35,1 | 150, |   | -4.0,  | -2.514 | 6, | 00000040 |
| 1.47      | 1   |      |       |    |      |       |    |      |      |   |        |        |    | 00000050 |
| ZONE      | 1   | 1    | 1     |    |      |       |    |      |      |   |        |        |    | 00000060 |
| X BLOCK   |     | -16  | .3525 | ,  | 16.  | 3525  |    |      |      |   |        |        |    | 00000070 |
| Y BLOCK   |     | -16  | .8656 |    | 16.  | 8656  |    |      |      |   |        |        |    | 00000080 |
| Z BLOCK   |     | -39  | ,7455 |    | -36. | 9794  |    |      |      |   |        |        |    | 00000090 |
| BLOCK     | 1   | 1    | 1     |    |      |       |    |      |      |   |        |        |    | 00000100 |
| MEDIA     |     |      | 1, 10 | 00 |      |       |    |      |      |   |        |        |    | 00000110 |
| SURFACES  |     |      | 1     |    |      |       |    |      |      |   |        |        |    | 00000120 |
| SECTOR -I |     |      |       |    |      |       |    |      |      |   |        |        |    | 00000130 |
| SECTOR I  |     |      |       |    |      |       |    |      |      |   |        |        |    | 00000140 |
| REGIONS   |     |      | 1     |    |      |       |    |      |      |   |        |        |    | 4        |
| ZONE      | 1   | 1    | 2     | 2  |      |       |    |      |      |   |        |        |    | 00000150 |
| X BLOCK   |     | -16  | .3525 |    | -9,7 | 3370, |    |      | 0.0, | 9 | ,7337, | 16.352 | 5  | 00000160 |
| Y BLOCK   |     | -16  | ,8656 |    | 16.  | 8656  |    |      |      |   |        |        |    | 00000170 |
| Z BLOCK   |     | -36  | .9794 |    | -35. | 1150  |    |      |      |   |        |        |    | 00000180 |
| BLOCK     | 1   | 1    | 1     |    |      |       |    |      |      |   |        |        |    | 00000190 |
| MEDIA     |     |      | 3,    | 6, | 100  | 0     |    |      |      |   |        |        |    | 00000200 |
| SURFACES  |     |      | έ,    | 7  |      |       |    |      |      |   |        |        |    | 00000210 |
| SECTOR -I | 0   |      |       |    |      |       |    |      |      |   |        |        |    | 00000220 |
| SECTOR I  | - 1 |      |       |    |      |       |    |      |      |   |        |        |    | 00000230 |
| SECTOR 0  | 1   |      |       |    |      |       |    |      |      |   |        |        |    | 00000240 |
| REGIONS   |     |      | 1     |    |      |       |    |      |      |   |        |        |    | 241      |
| BLOCK     | 2   | 1    | 1     |    |      |       |    |      |      |   |        |        |    | 00000250 |
| MEDIA     |     |      | 2,    | 3, |      | 3,    | 6. | 100  | 0    |   |        |        |    | 00000260 |
| SURFACES  |     |      | 3,    | 4, |      | 6,    | 7  |      |      |   |        |        |    | 00000270 |
| SECTOR I  | 1   | 0    | 0     |    |      |       |    |      |      |   |        |        |    | 00000280 |
| SECTOR _0 | -   | -    | 0     |    |      |       |    |      |      |   |        |        |    | 00000290 |
| SECTOR -1 | 0   | - 1  | 0     |    |      |       |    |      |      |   |        |        |    | 00000300 |
| SECTOR 0  | 0   | 1    | -     |    |      |       |    |      |      |   |        |        |    | 00000310 |

| SECTOR D<br>REGIONS<br>BLOCK 3<br>MEDIA<br>SURFACES<br>SECTOR -I -<br>SECTOR D<br>SECTOR D<br>SECTOR D | 0 0  <br>   <br>2,<br>  0 0<br>  -  0<br>0 -  0<br>0   - <br>0 0 | 3, 3,<br>5, 6, | 6,  <br>7 | 000     |   |              |         | 00000320<br>321<br>00000340<br>00000340<br>00000350<br>00000360<br>00000370<br>00000380<br>00000380<br>00000390 |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------|-----------|---------|---|--------------|---------|-----------------------------------------------------------------------------------------------------------------|
| REGIONS<br>BLOCK 4<br>MEDIA                                                                            | 3, 0                                                             | 6, 1000        |           |         |   |              |         | 401<br>00000410<br>00000420                                                                                     |
| SECTOR -I<br>SECTOR I -<br>SECTOR I                                                                    | с, .<br>О<br>І                                                   | /              |           |         |   |              |         |                                                                                                                 |
| REGIONS                                                                                                |                                                                  |                |           |         |   |              |         | 461                                                                                                             |
| Y BLACK                                                                                                | -16.3525.                                                        | -9.7337        | - 6       | . 6599. |   | n. <b>n.</b> | 6.6599. | 00000470                                                                                                        |
| 9.7337.                                                                                                | 16.3525                                                          |                |           |         |   |              | -,,,    | 00000490                                                                                                        |
| Y BLOCK                                                                                                | -16.8656,                                                        | 16.8656        |           |         |   |              |         | 00000500                                                                                                        |
| 7 BLOCK                                                                                                | -35,1150,                                                        | -4.0           |           |         |   |              |         | 00000510                                                                                                        |
| BLOCK                                                                                                  | 1 1                                                              | _              |           |         |   |              |         | 00000520                                                                                                        |
| MEDIA                                                                                                  | 5, (                                                             | 6, 1000,       | 7,        | 0,      | 0 |              |         | 00000530                                                                                                        |
| SURFACES                                                                                               | 6,                                                               | 7, 8,          | 5.        | 12      |   |              |         | 00000540                                                                                                        |
| SECTOR -I                                                                                              | 0 0 0 0                                                          |                |           |         |   |              |         | 00000550                                                                                                        |
| SECTOR I -                                                                                             | 1 0 0 0                                                          |                |           |         |   |              |         | 00000560                                                                                                        |
| SECTOR D                                                                                               | 1 0 0 -1                                                         |                |           |         |   |              |         | 00000570                                                                                                        |
| SECTOR D                                                                                               | 0                                                                |                |           |         |   |              |         | 00000580                                                                                                        |
| SECTOR 0                                                                                               | 0 - 1 0 0                                                        |                |           |         |   |              |         | 00000590                                                                                                        |
| SECTOR 0                                                                                               | 0 0 -1 0                                                         |                |           |         |   |              |         | 00000600                                                                                                        |
| REGIONS                                                                                                | ن <u>د</u> ا                                                     | 2, 3           |           |         |   |              |         | 601                                                                                                             |
| SURFACES                                                                                               | 16, 1                                                            | /              |           |         |   |              |         | 602                                                                                                             |
| SECTOR -1                                                                                              | U                                                                |                |           |         |   |              |         | 003                                                                                                             |
| SECTOR   -                                                                                             | 1                                                                |                |           |         |   |              |         | 004                                                                                                             |
| SECTOR 0                                                                                               | 1                                                                |                |           |         |   |              |         | 000                                                                                                             |

| BLOCK<br>MEDIA<br>SURFACES<br>SECTOR I<br>SECTOR 0<br>SECTOR 0 | 2<br>2 |       |     | 5,<br>4,<br>0<br>0<br>0<br>1<br>0<br>1 | <br>5,<br>6,<br>3 | 6 e<br>7 e | 1000 | , | 7,<br>9, | 0, | 0 |        | 00000610         00000620         0000640         0000660         0000660         0000670         0000680         0000690         0000700         0000710         0000710         0000711         711 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----|----------------------------------------|-------------------|------------|------|---|----------|----|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SURFACES<br>SECTOR -I<br>SECTOR I                                                                                                                                          | 0      | 16,   | 1   | 7                                      |                   |            |      |   |          |    |   |        | 712<br>713<br>714                                                                                                                                                                                     |
| SECTOR D                                                                                                                                                                   | Ţ      | ſ     |     |                                        |                   |            |      |   |          |    |   |        | 715                                                                                                                                                                                                   |
| MEDIA                                                                                                                                                                      | 0      | 4,    | ,   | 5,                                     | 5,                | 6,         | 1000 |   | 7        |    |   | L<br>f | 0000720                                                                                                                                                                                               |
| SURFACES                                                                                                                                                                   |        | 3,    |     | 4,                                     | 6,                | 7.         | 12   |   |          |    |   | C      | 0000740                                                                                                                                                                                               |
| SECTOR I                                                                                                                                                                   | 1      | 0 0   | 0   |                                        |                   |            |      |   |          |    |   | C      | 0000750                                                                                                                                                                                               |
| SECTOR 0                                                                                                                                                                   | - 1    | -1 0  | 0   |                                        |                   |            |      |   |          |    |   | (      | 0000760                                                                                                                                                                                               |
| SECTOR -1                                                                                                                                                                  | 0      | -1 0  | 0   |                                        |                   |            |      |   |          |    |   | C      | 0000770                                                                                                                                                                                               |
| SECTOR 0                                                                                                                                                                   | 0      | 1 - 1 | α   |                                        |                   |            |      |   |          |    |   |        | 0000780                                                                                                                                                                                               |
| SECTOR 0                                                                                                                                                                   | 0      | 0     | - 1 |                                        |                   |            |      |   |          |    |   | C      | 0000790                                                                                                                                                                                               |
| SECTOR 0                                                                                                                                                                   | 0      | 0 0   | I   |                                        |                   |            |      |   |          |    |   | 0      | 00000800                                                                                                                                                                                              |
| REGIONS                                                                                                                                                                    |        | 1,    |     | 2,                                     | 3                 |            |      |   |          |    |   |        | 801                                                                                                                                                                                                   |
| SURFACES                                                                                                                                                                   |        | 16,   | 1   | 7                                      |                   |            |      |   |          |    |   |        | 802                                                                                                                                                                                                   |
| SECTOR -1                                                                                                                                                                  | 0      |       |     |                                        |                   |            |      |   |          |    |   |        | 803                                                                                                                                                                                                   |
| SECTOR I                                                                                                                                                                   | - 1    |       |     |                                        |                   |            |      |   |          |    |   |        | 804                                                                                                                                                                                                   |
| SECTOR 0                                                                                                                                                                   | 1      |       |     |                                        |                   |            |      |   |          |    |   |        | 805                                                                                                                                                                                                   |
| BLOCK                                                                                                                                                                      | 4      | 1     | 1   |                                        |                   |            |      |   |          |    |   | C      | 0180000                                                                                                                                                                                               |
| MEDIA                                                                                                                                                                      |        | 4,    |     | 5,                                     | 5,                | 6,         | 1000 |   | 7        |    |   | C      | 10000820                                                                                                                                                                                              |
| SURFACES                                                                                                                                                                   |        | 2,    |     | 5,                                     | 6,                | 7.         | 12   |   |          |    |   | C      | 10000830                                                                                                                                                                                              |
| SECTOR -1                                                                                                                                                                  | - 1    | 0 0   | 0   |                                        |                   |            |      |   |          |    |   | ſ      | 10000840                                                                                                                                                                                              |
| SECTOR D                                                                                                                                                                   | i      | -1 0  | 0   |                                        |                   |            |      |   |          |    |   | ſ      | 10000850                                                                                                                                                                                              |
| SECTOR I                                                                                                                                                                   | Ó      | -1 0  | n   |                                        |                   |            |      |   |          |    |   | ſ      | 10000860                                                                                                                                                                                              |
| SECTOR 0                                                                                                                                                                   | 0      | I - I | 0   |                                        |                   |            |      |   |          |    |   | 0      | 0000870                                                                                                                                                                                               |

| SECTOR<br>SECTOR<br>REGIONS<br>SURFACES<br>SECTOR -<br>SECTOR |          | 0  <br>0 0<br> ,<br> 6, | -   | 2,  | 3     |     |       |     |    |   | 0000880<br>0000890<br>891<br>892<br>893<br>893 |
|---------------------------------------------------------------|----------|-------------------------|-----|-----|-------|-----|-------|-----|----|---|------------------------------------------------|
| SECTOR I<br>BLOCK                                             | )  <br>5 | 1                       | 1   |     |       |     |       |     |    |   | 895<br>0000000                                 |
| MEDIA                                                         |          | 4,                      | ,   | 5,  | 5,    | 6,  | 1000. | 7.  | Π. | n | 000000                                         |
| SURFACES                                                      |          | 2,                      |     | 5,  | 6,    | 7,  | 10,   | 11. | 12 | U | 000000000                                      |
| SECTOR -                                                      | - 1      | 0 0                     | Π   | 0   | Π     |     |       |     |    |   | 00000920                                       |
| SECTOR (                                                      | ) i      | -1 0                    | 0   | D   | C     |     |       |     |    |   | 00000940                                       |
| SECTOR                                                        | 0        | -1 0                    | 0   | 0   | 0     |     |       |     |    |   | 00000950                                       |
| SECTOR (                                                      | 0 0      | 1 -1                    | 0   | 0   | 0     |     |       |     |    |   | 00000960                                       |
| SECTOR (                                                      | 1 0      | 0 1                     | 0   | 0   | ~ 1   |     |       |     |    |   | 00000970                                       |
| SECTOR (                                                      | 0        | 0 0                     | -   | - 1 | 1     |     |       |     |    |   | 00000980                                       |
| SECTOR (                                                      | 0        | 0 0                     | 1   | 0   | 0     |     |       |     |    |   | 00000990                                       |
| SECTOR (                                                      | 0        | 0 0                     | 0   | 1   | 0     |     |       |     |    |   | 00001000                                       |
| REGIONS                                                       |          | 1,                      |     | 2,  | 3     |     |       |     |    |   | 1001                                           |
| SURFACES                                                      |          | 16,                     |     | 7   |       |     |       |     |    |   | 1002                                           |
| SECTOR -                                                      | 0        |                         |     |     |       |     |       |     |    |   | 1003                                           |
| SECTOR                                                        | -        |                         |     |     |       |     |       |     |    |   | 1004                                           |
| SECTOR (                                                      |          |                         |     |     |       |     |       |     |    |   | 1005                                           |
| BLOCK                                                         | 0        | 1                       | 1   | ,   | 1000  | -   |       | -   |    |   | 00001010                                       |
| MEDIA                                                         |          | 5.                      |     | 0,  | 1000, | / , | 0,    | ()  |    |   | 00001020                                       |
| SURFACES                                                      | n        | n n                     | n   | / , | 10,   | 114 | 12    |     |    |   |                                                |
| SECTOR TI                                                     | 0        | 0 0                     | 0   |     |       |     |       |     |    |   | 00001040                                       |
| DECTOR I                                                      |          | 0 U<br>0 0              | - 1 |     |       |     |       |     |    |   |                                                |
| SECTOR C                                                      |          | -1 -1                   | -   |     |       |     |       |     |    |   |                                                |
| SECTOR C                                                      | 0        |                         | 'n  |     |       |     |       |     |    |   |                                                |
| SECTOR I                                                      | n        | n i                     | n   |     |       |     |       |     |    |   | 00001000                                       |
| REGIONS                                                       |          |                         | 0   | 2,  | 3     |     |       |     |    |   | 191                                            |
| SURFACES                                                      |          | 16,                     |     | 7   |       |     |       |     |    |   | 1092                                           |
| SECTOR -                                                      | 0        |                         | ,   |     |       |     |       |     |    |   | 1093                                           |
| SECTOR                                                        | -1       |                         |     |     |       |     |       |     |    |   | 1094                                           |
| SECTOR C                                                      |          |                         |     |     |       |     |       |     |    |   | 1095                                           |

.

| TONE      | 1   | 1      | 4      |          |    |      |         |         | 00001100 |
|-----------|-----|--------|--------|----------|----|------|---------|---------|----------|
| XBLOCK    |     | -16.35 | 25,    | -9.7337: |    | 0.0, | 9.7337, | 16,3525 | 00001110 |
| YBLOCK    |     | -16.86 | 56,    | 16.8656  |    |      |         |         | 00001120 |
| 7 BLOCK   |     | - 4    | . [] , | -2,5146  |    |      |         |         | 00001130 |
| BLOCK     | 1   | 1      | 1      |          |    |      |         |         | 00001140 |
| MEDIA     |     | 9,     | 6,     | 1000     |    |      |         |         | 00001150 |
| SURFACES  |     | έ,     | 13     |          |    |      |         |         | 00001160 |
| SECTOR -1 | 0   |        |        |          |    |      |         |         | 00001170 |
| SECTOR I  | - 1 |        |        |          |    |      |         |         | 00001180 |
| SECTOR 0  | 1   |        |        |          |    |      |         |         | 00001190 |
| REGIONS   |     | 4      |        |          |    |      |         |         | 1191     |
| BLOCK     | 2   | 1      | 1      |          |    |      |         |         | 00001200 |
| MEDIA     |     | ε,     | 9,     | 9,       | 6, | 1000 |         |         | 00001210 |
| SURFACES  |     | 3,     | 4,     | 6,       | 13 |      |         |         | 00001220 |
| SECTOR I  | 1   | 0 0    |        |          |    |      |         |         | 00001230 |
| SECTOR 0  | - 1 | -1 0   |        |          |    |      |         |         | 00001240 |
| SECTOR -I | 0   | -1 0   |        |          |    |      |         |         | 00001250 |
| SECTOR D  | 0   | 1 -1   |        |          |    |      |         |         | 00001260 |
| SECTOR D  | 0   | 0 1    |        |          |    |      |         |         | 00001270 |
| REGIONS   |     | 4      |        |          |    |      |         |         | 1271     |
| BLOCK     | 3   | 1      | 1      |          |    |      |         |         | 00001280 |
| MEDIA     |     | ε,     | 9,     | 9,       | 6, | 1000 |         |         | 00001290 |
| SURFACES  |     | 2,     | 5,     | 6,       | 13 |      |         |         | 00001300 |
| SECTOR +1 | -   | 0 0    |        |          |    |      |         |         | 00001310 |
| SECTOR D  | 1   | -1 0   |        |          |    |      |         |         | 00001320 |
| SECTOR I  | Q   | -1 0   |        |          |    |      |         |         | 00001330 |
| SECTOR D  | 0   | =      |        |          |    |      |         |         | 00001340 |
| SECTOR D  | 0   | 0 1    |        |          |    |      |         |         | 00001350 |
| REGIONS   |     | 4      |        |          |    |      |         |         | 1351     |
| BLOCK     | 4   | 1      | 1      | A        |    |      |         |         | 00001360 |
| MEDIA     |     | s,     | 6,     | 1000     |    |      |         |         | 00001370 |
| SURFACES  |     | 6,     | 13     |          |    |      |         |         | 00001380 |
| SECTOR -I | 0   |        |        |          |    |      |         |         | 00001390 |
| SECTOR    | - 1 |        |        |          |    |      |         |         | 00001400 |
| SECTOR D  | 1   |        |        |          |    |      |         |         | 00001410 |
| REGIONS   |     | 4      |        |          |    |      |         |         | 1411     |
| ZONE      | 1   | 1      | 5      |          |    |      |         |         | 00001420 |

| X BLOCK<br>Y BLOCK<br>Z BLOCK<br>BLOCK<br>BLOCK<br>I<br>MEDIA<br>SURFACES<br>SECTOR I -I<br>SECTOR I -I<br>SECTOR I -I<br>SECTOR I -I<br>SECTOR I -<br>SECTOR I -<br>SECTOR I - | 525, 16,<br>656, 16,<br>146, 1<br>16, 1<br>13, 1 | 3525<br>8656<br>•471<br>0, 10<br>4, | 000, 1000<br>15 |    |         | 00001430<br>00001440<br>00001450<br>00001460<br>00001470<br>00001470<br>00001490<br>00001500<br>00001510<br>00001530 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|-----------------|----|---------|----------------------------------------------------------------------------------------------------------------------|
| REGIONS<br>17 OUADRI                                                                                                                                                            | PEACES. DR                                       | I ANI                               | IN. 4 DEGIANS   |    |         | 1531                                                                                                                 |
| I.DXSQ                                                                                                                                                                          | I.OYS                                            | 0 -                                 | 130.55782       | 8  |         | 00001550                                                                                                             |
| 1.0X                                                                                                                                                                            | -1.73205Y                                        |                                     | -19.4672        | \$ |         | 00001560                                                                                                             |
| 1.0X                                                                                                                                                                            | 1.73205Y                                         |                                     | 19.4672         | \$ |         | 00001570                                                                                                             |
| 1.0X                                                                                                                                                                            | -1.73205Y                                        |                                     | 19.4672         | \$ |         | 00001580                                                                                                             |
| 1.0X                                                                                                                                                                            | 1.73205Y                                         |                                     | -19.4672        | \$ |         | 00001590                                                                                                             |
| I.OXSQ                                                                                                                                                                          | 1.0YS                                            | Q -                                 | 127.04108       | \$ |         | 00001600                                                                                                             |
| I.OXSQ                                                                                                                                                                          | 1.0YS                                            | 0 -                                 | 129,92010       | \$ |         | 00001610                                                                                                             |
| 1.0×                                                                                                                                                                            | 1.0Y                                             |                                     | 23,52820        | \$ |         | 00001620                                                                                                             |
| 1.0×                                                                                                                                                                            | -1.0Y                                            |                                     | 23,52820        | S  |         | 00001630                                                                                                             |
| 1.0×                                                                                                                                                                            | 1.0Y                                             |                                     | -23,52820       | \$ |         | 00001640                                                                                                             |
| 1.0×                                                                                                                                                                            | -1,0Y                                            |                                     | -23,52820       | \$ |         | 00001650                                                                                                             |
| I.OXSQ                                                                                                                                                                          | I, DYS                                           | 0 -                                 | 133,74044       | \$ |         | 00001660                                                                                                             |
| I.DXSQ                                                                                                                                                                          | 1.0YS                                            | Q -                                 | 134.29913       | \$ |         | 00001670                                                                                                             |
| I.OXSQ                                                                                                                                                                          | 1,0YS                                            | 0                                   | I, DZSQ         |    | -93.98Z | \$<br>00001680                                                                                                       |
| I.DXSO                                                                                                                                                                          | I, DYS                                           | Q                                   | 1.0ZSQ          |    | -93.982 | 00001690                                                                                                             |
| -29,93946                                                                                                                                                                       | \$                                               |                                     |                 |    |         | 00001700                                                                                                             |
| 1.07                                                                                                                                                                            | 23,4469                                          | \$                                  |                 |    |         | 1701                                                                                                                 |
| 1.0Z                                                                                                                                                                            | 14,1124                                          | \$                                  |                 |    |         | 1702                                                                                                                 |

APPENDIX B

GEOM INPUT FOR DRUMS OUT 300

|    | 2       | MAL | E       |     |           |    |          |           |         | 00000000 |
|----|---------|-----|---------|-----|-----------|----|----------|-----------|---------|----------|
| X  | ZONE    |     | -16.352 | 5,  | 16.3525   |    |          |           |         | 0000020  |
| ۲  | ZONE    |     | -23.505 | 5,  | 23.5055   |    |          |           |         | 00000030 |
| 7  | ZONE    |     | -39.745 | 5.  | -36.9794, | 7  | 35.1150, | -32,5750, | -6.54,  | 00000040 |
|    | -4.     | 0,  | -2.514  | 6.  | 1.4710    |    |          |           |         | 00000050 |
| Ze | INE     | 1   | 1       | 1   |           |    |          |           |         | 00000060 |
| X  | BLOCK   |     | -16,352 | 5,  | 16.3525   |    |          |           |         | 00000070 |
| Y  | BLOCK   |     | -23.505 | 5,  | 23,5055   |    |          |           |         | 00000080 |
| Ζ  | BLOCK   |     | -39,745 | 5,  | -36.9794  |    |          |           |         | 00000090 |
| 81 | OCK     | 1   | I.      | 1   |           |    |          |           |         | 00000100 |
| ME | DIA     |     | 1, 1    | 000 |           |    |          |           |         | 00000110 |
| SL | JRFACES |     | 1       |     |           |    |          |           |         | 00000120 |
| SE | CTOR -1 |     |         |     |           |    |          |           |         | 00000130 |
| SE | CTOR I  |     |         |     |           |    |          |           |         | 00000140 |
| ZĆ | INE     | 1   | 1       | 2   |           |    |          |           |         | 00000150 |
| X  | BLOCK   |     | -16,352 | 5.  | -9,73370, |    | 0.0,     | 9,7337,   | 16.3525 | 00000160 |
| Y  | BLOCK   |     | -23.505 | 5.  | 23.5055   |    |          |           |         | 00000170 |
| Z  | BLOCK   |     | -36,979 | 4,  | -35.1150  |    |          |           |         | 00000180 |
| BL | OCK     | 1   | 1       | 1   |           |    |          |           |         | 00000190 |
| ME | DIA     |     | З,      | 6,  | 1000      |    |          |           |         | 00000200 |
| SL | JRFACES |     | 6,      | 7   |           |    |          |           |         | 00000210 |
| SE | CTOR -1 | 0   |         |     |           |    |          |           |         | 00000220 |
| SE | CTOR I  | -   |         |     |           |    |          |           |         | 00000230 |
| SE | CTOR 0  | 1   |         |     |           |    |          |           |         | 00000240 |
| BL | OCK.    | 2   | 1       | 1   |           |    |          |           |         | 00000250 |
| ME | DIA     |     | 2.      | 3,  | 3,        | 6, | 0001     |           |         | 00000260 |
| SL | IRFACES |     | З,      | 4,  | 6,        | 7  |          |           |         | 00000270 |
| SE | CTOR I  | 1   | 0 0     |     |           |    |          |           |         | 00000280 |
| SE | CTOR 0  | -   | -1 0    |     |           |    |          |           |         | 00000290 |
| SE | CTOR -I | Q   | -1 0    |     |           |    |          |           |         | 00000300 |
| SE | CTOR 0  | Q   | 1 - 1   |     |           |    |          |           |         | 00000310 |
| SE | CTOR D  | 0   | 0 1     |     |           |    |          |           |         | 00000320 |
| BL | OCK     | 3   | 1       | 1   |           |    |          |           |         | 00000330 |

MEDIA 2. 3, 3, 6, 1000 00000340 5, SURFACES 2, 6, 7 00000350 SECTOR -1 -1 0 0 00000360 SECTOR 0 0 - 1 00000370 SECTOR 0 1 - 1 Π 00000380 1 SECTOR 0 D . 00000390 0 SECTOR 0 0 00000400 BLACK 4 00000410 MEDIA 3, 6, 1000 00000420 SURFACES 6, 7 00000430 SECTOR -1 0 00000440 SECTOR 00000450 SECTOR D | 00000460 70NE 1 3 00000470 -0,6599, X BLACK -16.3525, -9.7337, 0.0. 6.6599, 00000480 9.7337, 16.3525 00000490 Y BLOCK -23.5055, -16.8656, 16.8656, 23.5055 00000500 -35.1150, Z BLOCK -32.5750 00000510 BLOCK 2 1 1 00000520 MEDIA 5, 6, 1000, 7, 1000, 1000 00000530 SURFACES 6, 7, 18, 9, 12 00000540 SECTOR -1 Q 0 0 n 00000550 0 00000560 SECTOR 1 - 1 0 0 SECTAR 0 1 0 0 - 1 00000570 SECTAR 0 0 1 00000580 1 1 SECTOR 0 - 1 0 0 0 00000590 0 -1 SECTOR Π 0 Ω 00000600 BLOCK 2 2 00000610 MEDIA 5, 5, 6, 1000, 7, 1000, 1000 4, 00000620 SURFACES 3, 4, 6. 7. 18, 9, 12 00000630 SECTOR 0 0 Π 0 Π 00000640 1 SECTOR 0 0 -1 - | П 0 n 00000650 SECTOR -1 0 - | 0 0 0 0 00000660 SECTOR 0 Π Π 0 1 -1 Π 00000670 SECTAR 0 0 Π 0 00000680 0 1 - 1 SECTOR 0 O U ٥ 1 1 00000690 1 SECTOR 0 D 0 n D D 00000700 -1

| SECTOR D<br>BLOCK<br>MEDIA<br>SURFACES<br>SECTOR I<br>SECTOR D<br>SECTOR -1                                    | 3<br>- I<br>0           | 0 0<br>2<br>4,<br>3,<br>0 0<br>-1 0 | -1<br>5,<br>4, | 0<br>5,<br>6,                | 6,<br>7,     | 1000,<br>12  | 7         |                  | 0000710<br>0000720<br>0000730<br>0000740<br>0000750<br>0000760                                           |
|----------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|----------------|------------------------------|--------------|--------------|-----------|------------------|----------------------------------------------------------------------------------------------------------|
| SECTOR O<br>SECTOR O<br>SECTOR O<br>BLOCK<br>MEDIA<br>SURFACES<br>SECTOR -1<br>SECTOR O<br>SECTOR O            | 0<br>0<br>4<br>-  <br>0 |                                     | 5,             | 5,<br>6,                     | 6,<br>7,     | 1000,<br>12  | 7         |                  | 10000780<br>10000790<br>10000800<br>10000810<br>10000810<br>10000830<br>10000840<br>10000840             |
| SECTOR D<br>SECTOR D<br>SECTOR D<br>RLOCK<br>MEDIA<br>SURFACES<br>SECTOR -1<br>SECTOR D<br>SECTOR 1            | 0<br>0<br>5<br>- 1      |                                     | 5,<br>5,<br>0  | 5,<br>6,<br>0                | 6 e<br>7 ,   | 1000,<br>19, | 7,<br>  , | 1000, 1000<br>12 | 10000870<br>10000880<br>10000890<br>10000900<br>10000910<br>10000920<br>10000920<br>10000920             |
| SECTOR D<br>SECTOR D<br>SECTOR D<br>SECTOR D<br>BLOCK<br>MEDIA<br>SURFACES<br>SECTOR I<br>SECTOR D<br>SECTOR D |                         |                                     |                | " <br> <br>0<br> 000,<br> 9, | 7 ;<br>    e | 1000,        | 1000      |                  | 10000970<br>10000980<br>10000990<br>10001000<br>10001020<br>10001020<br>10001020<br>10001050<br>10001050 |

| SECTOR   | 0   | 0  | 1    | 0    | 0   |           |          |       |     |         | 00001080 |
|----------|-----|----|------|------|-----|-----------|----------|-------|-----|---------|----------|
| SECTOR   | D   | Ū, | 0    |      | n   |           |          |       |     |         | 00001090 |
| BLOCK    |     | 1  | 1    |      | 1   |           |          |       |     |         | 00001100 |
| MEDIA    |     | ~  | 1001 | -    |     |           |          |       |     |         | 00001110 |
| BLOCK    |     | 6  | 1000 |      | 1   |           |          |       |     |         | 00001120 |
| MEDIA    |     | 7  | 1000 | 1    |     |           |          |       |     |         | 00001130 |
| BLOCK    |     | 0  | 1000 |      | 1   |           |          |       |     |         | 00001140 |
| MEDIA    |     |    | 1000 | 2    |     |           |          |       |     |         | 00001150 |
| BLOCK    |     | 4  | 1    | _    | I   |           |          |       |     |         | 00001160 |
| MEDIA    |     | ~  | 1000 | -    |     |           |          |       |     |         | 00001170 |
| BLOCK    |     | 5  | 1    |      | 1   |           |          |       |     |         | 00001180 |
| MEDIA    |     |    | 1000 | •    | ~   |           |          |       |     |         | 00001190 |
| BLOCK    |     | 6  | 1    |      | 1   |           |          |       |     |         | 00001200 |
| MEDIA    |     |    | 1000 | 2    |     |           |          |       |     |         | 00001510 |
| BLOCK    |     | 1  | 3    |      | 1   |           |          |       |     |         | 00001220 |
| MEDIA    |     |    | 1000 | ]    |     |           |          |       |     |         | 00001230 |
| BLACK    |     | 2  | 3    |      | 1   |           |          |       |     |         | 00001240 |
| MEDIA    |     |    | 1000 |      |     |           |          |       |     |         | 00001250 |
| BLOCK    |     | 3  | 3    |      | 1   |           |          |       |     |         | 00001260 |
| MEDIA    |     |    | 1000 | )    |     |           |          |       |     |         | 00001270 |
| BLOCK    |     | 4  | 3    |      | 1   |           |          |       |     |         | 00001280 |
| MEDIA    |     |    | 1000 | ]    |     |           |          |       |     |         | 00001290 |
| BLOCK    |     | 5  | 3    |      | 1   |           |          |       |     |         | 00001300 |
| MEDIA    |     |    | 1000 | 1    |     |           |          |       |     |         | 00001310 |
| BLOCK    |     | 6  | 3    |      | 1   |           |          |       |     |         | 00001320 |
| MEDIA    |     |    | 1000 | ]    |     |           |          |       |     |         | 00001330 |
| ZONE     |     | 1  | 1    | 4    | 4   |           |          |       |     |         | 00001340 |
| X BLACK  |     |    | -16, | 3525 | 5,  | -9,7337,  | -6.6599, | 0     | .0, | 6,6599, | 00001350 |
| 9,73     | 337 | ,  | 16.  | 3529 | 5   |           |          |       |     |         | 00001360 |
| Y BLOCK  |     |    | -23. | 5055 | 5,  | -16.8656, | 16,8656, | 23,50 | 55  |         | 00001370 |
| Z BLOCK  |     |    | -32. | 575  |     | -6,54     |          |       |     |         | 00001380 |
| BLOCK    |     | ł  | 1    |      | 1   |           |          |       |     |         | 00001390 |
| MEDIA    |     |    | 7    | . 10 | 000 |           |          |       |     |         | 00001400 |
| SURFACES | 5   |    | 8    | 2    |     |           |          |       |     |         | 00001410 |
| SECTOR   | 1   |    |      |      |     |           |          |       |     |         | 00001420 |
| SECTOR - | •   |    |      |      |     |           |          |       |     |         | 00001430 |
| RLOCK    |     | 6  | 3    |      | I.  |           |          |       |     |         | 00001440 |

.

.

| MEDIA     |        | 7,   | 1000 |      |
|-----------|--------|------|------|------|
| SURFAULS  |        | 10   |      |      |
| SECTOR FI |        |      |      |      |
| BLACK     | 2      | 1    | ĩ    |      |
| NEDIA     | 6.     | '-   | 1000 | 1000 |
| CUDEACES  |        | 6    | 1000 | 1000 |
| SURFACES  | - 1    | L 9  | 17   |      |
| SECTOR -1 | - 1    |      |      |      |
| SECTOR -I | U<br>1 |      |      |      |
| BLACK     | 5      | 7    | T.   |      |
| MEDIA     | ,      | 5    | 1000 | 1000 |
| SUPFACES  |        | 10   | 1000 | 1000 |
| SECTAD -1 | - 1    | 100  | 10   |      |
| SECTOR -1 | - 1    |      |      |      |
| SECTOR -1 | 1      |      |      |      |
| BLOCK -1  | 3      | 1    | T    |      |
| MEDIA     | 0      | 2.   | 1000 |      |
| SURFACES  |        | 12   | 1000 |      |
| SECTAR -1 |        | 1,   |      |      |
| SECTOR I  |        |      |      |      |
| BLACK     | 4      | 3    | 1    |      |
| MEDIA     |        | 7.   | innn |      |
| SURFACES  |        | 16   |      |      |
| SECTOR -1 |        |      |      |      |
| SECTOR I  |        |      |      |      |
| BLOCK     | 4      | 1    | 1    |      |
| MEDIA     |        | 1000 |      |      |
| BLOCK     | 5      | 1    | 1    |      |
| MEDIA     |        | 1000 |      |      |
| BLOCK     | 6      | 1    | 1    |      |
| MEDIA     |        | 1000 |      |      |
| BLOCK     | 1      | 3    | 1    |      |
| MEDIA     |        | 000  |      |      |
| BLOCK     | 2      | 3    | 1    |      |
| MEDIA     |        | 1000 |      |      |
| BLOCK     | 3      | 3    | 1    |      |

| AND A CONTRACT OF A |    | 100 Table 100 Ta |     |     |       |     |       |       |      |
|---------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|-----|-------|-------|------|
| MEDIA               |    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |       |     |       |       |      |
| BLOCK               | 1  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |     |       |     |       |       |      |
| MEDIA               |    | 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 6,  | 1000, | 7.  | 7,    | 1000, | 1000 |
| SURFACES            |    | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 7,  | 8,    | 91  | 12,   | 17    |      |
| SECTOR -I           | Q  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | 0   |       |     |       |       |      |
| SECTOR I            | -  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n   | 0   |       |     |       |       |      |
| SECTOR 0            | 1  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1 | 0   |       |     |       |       |      |
| SECTOR D            | 0  | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | 1   |       |     |       |       |      |
| SECTOR 0            | Q  | I Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n   | - 1 |       |     |       |       |      |
| SECTOR D            | 0  | - 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0   | -   |       |     |       |       |      |
| SECTOR N            | 0  | 0 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0   | 0   |       |     |       |       |      |
| BLOCK               | 6  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |     |       |     | _     |       |      |
| MEDIA               |    | 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 6,  | 1000, | 7.  | 7,    | 1000, | 1000 |
| SURFACES            |    | 6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 7,  | 10,   | 111 | 12,   | 16    |      |
| SECTOR -1           | 0  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | 0   |       |     |       |       |      |
| SECTOR I            | -1 | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | 0   |       |     |       |       |      |
| SECTOR 0            | 1  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1 | 0   |       |     |       |       |      |
| SECTOR 0            | D  | 0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | 1   |       |     |       |       |      |
| SECTOR 0            | 0  | -1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0   | - 1 |       |     |       |       |      |
| SECTOR 0            | Q  | I Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | - 1 |       |     |       |       |      |
| SECTOR 0            | 0  | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | 0   |       |     |       |       |      |
| BLOCK               | 2  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   |     |       |     |       |       |      |
| MEDIA               |    | 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 5,  | 5,    | 6,  | 1000, | 7,    | 1000 |
| SURFACES            |    | 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 4,  | 6,    | 7,  | 9,    | 12    |      |
| SECTOR              | 1  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n   | Û   |       |     |       |       |      |
| SECTOR D            | -  | -1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D   | ()  |       |     |       |       |      |
| SECTOR -I           | 0  | -1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0   | 0   |       |     |       |       |      |
| SECTOR D            | 0  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0   | 0   |       |     |       |       |      |
| SECTAR D            | 0  | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | -   |       |     |       |       |      |
| SECTOR D            | 0  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   |     |       |     |       |       |      |
| SECTOR              | 0  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 1 | 0   |       |     |       |       |      |
| BLACK               | 5  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | _   | ~~    |     |       | -     |      |
| MEDIA               |    | 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 5,  | 5,    | 6,  | 1000, | 7,    | 1000 |
| SURFACES            |    | 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 5,  | 6,    | 7,  |       | 15    |      |
| SECTOR -I           | -  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | 0   |       |     |       |       |      |
| SECTOR D            | 1  | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | U   |       |     |       |       |      |
| SECTOR I            | 0  | <b>-</b> I 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n   | 0   |       |     |       |       |      |

| SECTOR D<br>SECTOR D<br>SECTOR D<br>SECTOR D<br>BLOCK 3<br>MEDIA<br>SURFACES<br>SECTOR I |        |          | 0<br>- <br> <br>0<br>5,<br>4, | 5,<br>6, | ć,<br>7, | 1   | 000,<br>12 | 7   |       |         | 00002190<br>00002210<br>00002210<br>00002220<br>00002230<br>00002240<br>00002240<br>00002250<br>00002250 |
|------------------------------------------------------------------------------------------|--------|----------|-------------------------------|----------|----------|-----|------------|-----|-------|---------|----------------------------------------------------------------------------------------------------------|
| SECTOR 0 -<br>SECTOR -1<br>SECTOR 0<br>SECTOR 0<br>SECTOR 0                              |        |          |                               |          |          |     |            |     |       |         | 00002270<br>00002280<br>00002290<br>00002300<br>00002310                                                 |
| BLOCK 4<br>MEDIA                                                                         | •      | 2 1      | 5,                            | 5,       | 6,       | 1   | 000,       | 7   |       |         | 00002320                                                                                                 |
| SURFACES                                                                                 |        | 2.       | 5,                            | 6,       | 7.       |     | 12         |     |       |         | 00002340                                                                                                 |
| SECTOR -1 -                                                                              | • 1    | 0 0 0    |                               |          |          |     |            |     |       |         | 00002350                                                                                                 |
| SECTAR D                                                                                 | 1      | -1 0 0   |                               |          |          |     |            |     |       |         | 00002360                                                                                                 |
| SECTAR I                                                                                 | n      | -1 0 0   |                               |          |          |     |            |     |       |         | 00002370                                                                                                 |
| SECTAD 0                                                                                 | ñ      |          |                               |          |          |     |            |     |       |         | 00002380                                                                                                 |
|                                                                                          | ň      |          |                               |          |          |     |            |     |       |         | 0002000                                                                                                  |
| SECTOR D                                                                                 | ų<br>O | 0 1 -1   |                               |          |          |     |            |     |       |         | 00002090                                                                                                 |
| SECTOR D                                                                                 | U      | 0 0 1    |                               |          |          |     |            |     |       |         | 00002400                                                                                                 |
| ZONE                                                                                     |        | 1 5      |                               | A 7-7-   |          |     | 1500       |     | 2 0   |         | 00002410                                                                                                 |
| X REGCK                                                                                  |        | -10.3525 | •                             | =9.7337. |          | * 0 | . 6599,    |     | υ, υ, | 6,0599, | 00002420                                                                                                 |
| 9,7337,                                                                                  |        | 16.3525  |                               |          |          |     |            |     |       |         | 00002430                                                                                                 |
| Y BLOCK                                                                                  |        | -23,5055 |                               | 16.8656, |          | 16  | .8656,     | 23. | 5055  |         | 00002440                                                                                                 |
| Z BLOCK                                                                                  |        | -6.54    | ,                             | -4.0     |          |     |            |     |       |         | 00002450                                                                                                 |
| BLACK I                                                                                  |        | 2 1      |                               |          |          |     |            |     |       |         | 00002460                                                                                                 |
| MEDIA                                                                                    |        | 5,       | 6,                            | 1000,    | 7,       | 1   | 000, 100   | n   |       |         | 00002470                                                                                                 |
| SURFACES                                                                                 |        | 6.       | 7,                            | 18.      | 9,       |     | 12         |     |       |         | 00002480                                                                                                 |
| SECTAR .I                                                                                | n      | n n n    |                               |          |          |     | 1 -        |     |       |         | 00002490                                                                                                 |
| SECTAR I -                                                                               | . 1    | 0 0 0    |                               |          |          |     |            |     |       |         | 00002500                                                                                                 |
| SECTAD 0                                                                                 | i      |          |                               |          |          |     |            |     |       |         | 00002510                                                                                                 |
| SECTOR 0                                                                                 | 'n     |          |                               |          |          |     |            |     |       |         | 00002510                                                                                                 |
| SECTOR U                                                                                 | D      | -1 0 0   |                               |          |          |     |            |     |       |         | 00002020                                                                                                 |
| SECTOR U                                                                                 | U      |          |                               |          |          |     |            |     |       |         | 00002330                                                                                                 |
| SECTOR 0                                                                                 | U      | 0 -1 0   |                               |          |          |     |            |     |       |         | 00002540                                                                                                 |
| RFOCK 5                                                                                  |        | 2 1      |                               |          |          |     |            |     |       |         | 00002550                                                                                                 |

| MEDIA     |     | 4,    |     | 5,  |     | 5, | 6. | 1000, | 7,  | 1000, | 1000 | 00002560 |
|-----------|-----|-------|-----|-----|-----|----|----|-------|-----|-------|------|----------|
| SURFACES  |     | 3,    |     | 4,  |     | 6, | 7, | 18,   | 9,  | 12    |      | 00002570 |
| SECTOR I  | 1   | 0 0   | 0   | 0   | 0   |    |    |       |     |       |      | 00002580 |
| SECTOR D  | - 1 | -1 0  | n   | 0   | 0   |    |    |       |     |       |      | 00002590 |
| SECTOR -1 | D   | -1 0  | 0   | 0   | 0   |    |    |       |     |       |      | 00002600 |
| SECTOR D  | 0   | 1 -1  | п   | 0   | C   |    |    |       |     |       |      | 00002610 |
| SECTOR D  | Ō   | 0 1   | Ω   | 0   | - 1 |    |    |       |     |       |      | 00002620 |
| SECTOR D  | n   | u u   | 1   | ī   | Ť.  |    |    |       |     |       |      | 00002630 |
| SECTOR D  | ñ   | 0 0   | - 1 | 0   | n   |    |    |       |     |       |      | 00002640 |
| SECTOR 0  | n   | 0 0   | n   | - 1 | ñ   |    |    |       |     |       |      | 00002650 |
| BLACK     | 3   | 2     | Ĩ   |     | C   |    |    |       |     |       |      | 00002660 |
| MEDIA     | 9   | 4.    | ,   | 5.  |     | 5. | 6, | 1000, | 7   |       |      | 00002670 |
| SURFACES  |     | 3.    |     | 4,  |     | 6. | 7, | 12    |     |       |      | 00002680 |
| SECTOR I  | T   | 0 0   | n   |     |     |    |    |       |     |       |      | 00002690 |
| SECTOR D  | -1  | -1 0  | n   |     |     |    |    |       |     |       |      | 00002700 |
| SECTOR -1 | n   | -1 0  | ñ   |     |     |    |    |       |     |       |      | 00002710 |
| SECTOR D  | Ô   | 1 -1  | n   |     |     |    |    |       |     |       |      | 00002720 |
| SECTOR 0  | n   | 0 1   | - 1 |     |     |    |    |       |     |       |      | 00002730 |
| SECTOR D  | D   | ם מ   | j   |     |     |    |    |       |     |       |      | 00002740 |
| BLACK     | 4   | 2     | i   |     |     |    |    |       |     |       |      | 00002750 |
| MEDIA     |     | 4.    |     | 5,  |     | 5, | 6, | 1000, | 7   |       |      | 00002760 |
| SURFACES  |     | 2.    |     | 5.  |     | 6. | 7, | 12    |     |       |      | 00002770 |
| SECTOR -1 | - 1 | n n   | n   |     |     |    |    |       |     |       |      | 00002780 |
| SECTOR 0  | i   | -1 0  | n   |     |     |    |    |       |     |       |      | 00002790 |
| SECTOR I  | Ó   | -1 0  | Π   |     |     |    |    |       |     |       |      | 0002800  |
| SECTOR D  | D   | 1 -1  | Π   |     |     |    |    |       |     |       |      | 00002810 |
| SECTOR 0  | 0   | 0 i   | -1  |     |     |    |    |       |     |       |      | 00002820 |
| SECTOR D  | 0   | 0 0   | i   |     |     |    |    |       |     |       |      | 00002830 |
| BLACK     | 5   | 2     | i   |     |     |    |    |       |     |       |      | 00002840 |
| MEDIA     |     | 4,    |     | 5,  |     | 5, | 6, | 1000, | 7,  | 1000, | 1000 | 00002850 |
| SURFACES  |     | 2,    |     | 5,  |     | 6, | 7, | 19,   | 11, | 12    |      | 00002860 |
| SECTOR -1 | - 1 | 0 0   | 0   | 0   | 0   |    |    |       |     |       |      | 00002870 |
| SECTOR 0  | 1   | -1 0  | 0   | 0   | D   |    |    |       |     |       |      | 00002880 |
| SECTOR I  | 0   | -1 0  | 0   | 0   | 0   |    |    |       |     |       |      | 00002890 |
| SECTOR D  | 0   | 1 = 1 | 0   | 0   | 0   |    |    |       |     |       |      | 0002900  |
| SECTOR D  | 0   | U I   | 0   | D   | - 1 |    |    |       |     |       |      | 00002910 |
| SECTOR D  | 0   | 0 0   | -   | -   | 1   |    |    |       |     |       |      | 00002920 |
|           |     |       |     |     |     |    |    |       |     |       |      |          |

.

•

|           |     |        |     |    | -        |     |       |      |         |   |       |    | 0        |
|-----------|-----|--------|-----|----|----------|-----|-------|------|---------|---|-------|----|----------|
| SECTOR D  | 0   | 0 0    | 1   | 0  | 0        |     |       |      |         |   |       |    | 00002930 |
| SECTOR D  | 0   | 0 0    | n   | 1  | 0        |     |       |      |         |   |       |    | 00002940 |
| BLOCK     | 6   | 2      | 1   |    |          |     |       |      |         |   |       |    | 00002950 |
| MEDIA     |     | 5,     |     | 6, | 1000,    | 7,  | 1000, | 1000 |         |   |       |    | 00002960 |
| SURFACES  |     | έ,     |     | 7, | 19,      | 11, | 12    |      |         |   |       |    | 00002970 |
| SECTOR -1 | 0   | 0 0    | 0   |    |          |     |       |      |         |   |       |    | 00002980 |
| SECTOR I  | - 1 | 0 0    | 0   |    |          |     |       |      |         |   |       |    | 00002990 |
| SECTOR D  | 1   | 0 0    | -1  |    |          |     |       |      |         |   |       |    | 00003000 |
| SECTER 0  | n   | -1 -1  | í   |    |          |     |       |      |         |   |       |    | 00003010 |
| SECTOR D  | D   | I D    | 'n  |    |          |     |       |      |         |   |       |    | 00003020 |
| SECTOR D  | Q   | 0 1    | 0   |    |          |     |       |      |         |   |       |    | 00003030 |
| BLOCK     | 1   | 1      | 1   |    |          |     |       |      |         |   |       |    | 00003040 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003050 |
| BLOCK     | 2   | 1      | 1   |    |          |     |       |      |         |   |       |    | 00003060 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003070 |
| BLOCK     | 3   | 1      | 1   |    |          |     |       |      |         |   |       |    | 00003080 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003090 |
| BLOCK     | 4   | 1      | 1   |    |          |     |       |      |         |   |       |    | 00003100 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003110 |
| BLOCK     | 5   | 1      | 1   |    |          |     |       |      |         |   |       |    | 00003120 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003130 |
| BLOCK     | 6   | 1      | 1   |    |          |     |       |      |         |   |       |    | 00003140 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003150 |
| BLOCK     | 1   | 3      |     |    |          |     |       |      |         |   |       |    | 00003160 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003170 |
| BLOCK     | 2   | 3      | 1   |    |          |     |       |      |         |   |       |    | 00003180 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003190 |
| BLOCK     | 3   | 3      | 1   |    |          |     |       |      |         |   |       |    | 00003200 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003210 |
| BLOCK     | 4   | 3      | 1   |    |          |     |       |      |         |   |       |    | 00003220 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003230 |
| BLOCK     | 5   | 3      | 1   |    |          |     |       |      |         |   |       |    | 00003240 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003250 |
| BLOCK     | 6   | 3      | 1   |    |          |     |       |      |         |   |       |    | 00003260 |
| MEDIA     |     | 1000   |     |    |          |     |       |      |         |   |       |    | 00003270 |
| ZONE      | 1   | 1      | 6   |    |          |     |       |      |         |   |       |    | 00003280 |
| XBLOCK    |     | -16.35 | 25, |    | -9,7337, | ,   | 0.1   | ),   | 9.7337, | 1 | 6.352 | 25 | 00003290 |

Y BLACK -23,5055, 23.5055 ZBLOCK -4.0, -2.5146 BLOCK MEDIA 5, 6, 1000 SURFACES 6, 13 SECTOR -1 0 SECTOR I -1 SECTOR 0 1 BLOCK 2 1 1 ε, MEDIA 9, 9, 6, 1000 SURFACES 3, 4, 6. 13 SECTOR I I 0 0 SECTOR D -1 -1 0 SECTOR -1 0 -1 Π SECTOR 0 0 -SECTOR 0 0 0 1 BLOCK 3 1 MEDIA 8, 9, 9, 6, 1000 SURFACES 2, 5, 13 6, SECTOR -1 -1 0 0 SECTOR 0 | - | U SECTOR 0 -1 1 0 SECTOR 0 Q 1 -1 SECTOR D 0 0 - 1 BLOCK 4 1 MEDIA 9, 6, 1000 έ, SURFACES 13 SECTOR -1 0 SECTOR 1 -1 SECTOR 0 1 ZONE 1 1 7 -16.3525, X BLOCK 16.3525 Y BLOCK -23,5055, 23.5055 Z BLOCK -2.5146. 1.471 BLOCK 1 MEDIA 6, 6, 10, 1000, 1000 6, SURFACES 13, 14, 15

| SECTOR<br>SECTOR<br>SECTOR<br>SECTOR<br>SECTOR |        | U<br>I<br>I<br>I<br>- I | - I<br>I<br>U   |                |          | 00003670<br>00003680<br>00003690<br>00003700<br>00003700 |
|------------------------------------------------|--------|-------------------------|-----------------|----------------|----------|----------------------------------------------------------|
| 19                                             | QUADR  | IC                      | SURFACES, DRUMS | CUT 3D DEGREES |          | 00003720                                                 |
| 1                                              | . DXSQ |                         | 1.0YSQ          | -130,55782     | \$       | 00003730                                                 |
| 1                                              | . 0 X  |                         | -1.73205Y       | -19,4672       | \$       | 00003740                                                 |
| 1                                              | . 0 X  |                         | 1,73205Y        | 19,4672        | \$       | 00003750                                                 |
| 1                                              | . O X  |                         | -1,73205Y       | 19,4672        | \$       | 00003760                                                 |
| 1                                              | . 0 X  |                         | 1,73205Y        | -19,4672       | \$       | 00003770                                                 |
| 1                                              | . DXSQ |                         | 1.0YS0          | -127.04108     | \$       | 00003780                                                 |
| 1                                              | . OXSQ |                         | I, DYSQ         | -129.92010     | \$       | 00003790                                                 |
| 1                                              | . 0 X  |                         | .26794Y         | 14.4186        | \$       | 00003800                                                 |
| 1                                              | . 0 X  |                         | -1.0Y           | 23,52820       | \$       | 00003810                                                 |
| 1                                              | . 0 X  |                         | ,26794Y         | -14,4186       | \$       | 00003820                                                 |
| 1                                              | • O X  |                         | -1,DY           | -23.52820      | \$       | 00003830                                                 |
| 1                                              | . OXSQ |                         | I. DYSO         | -133,74044     | \$       | 00003840                                                 |
| 1                                              | . OXSQ |                         | I.DYSO          | = 134,29913    | \$       | 00003850                                                 |
| 1                                              | . OXSQ |                         | 1.0YSQ          | I. DZSQ        | -93.98Z  | \$<br>00003860                                           |
| 1                                              | . OXSO |                         | 1.0YSQ          | I.DZSQ         | -93.982  | 00003870                                                 |
| +29,939                                        | 46     | \$                      |                 |                |          | 00003880                                                 |
| 1                                              | . OXSQ |                         | I. DYSQ         | =29.16X        | =28,916Y | 00003890                                                 |
| 339,75                                         | 29     | \$                      |                 |                |          | 00003900                                                 |
| 1                                              | . OXSQ |                         | I.DYSO          | 29.16X         | 28,916Y  | 00003910                                                 |
| 339,75                                         | 29     | \$                      |                 |                |          | 00003920                                                 |
| 1                                              | • 0 X  |                         | 1. DY           | 23,5282        | \$       | 00003930                                                 |
| 1                                              | , 0 X  |                         | 1. DY           | -23,5282       | \$       | 00003940                                                 |

А

| 26000 | 30 |   |   |   | .012167   | 300   | 8  |
|-------|----|---|---|---|-----------|-------|----|
| 28000 | Ĩ  | 2 |   |   | 004786    | 300   | 9  |
| 28000 | 30 |   |   |   | 004786    | 3D I  | 0  |
| 15    | 64 |   |   |   |           | 4C    |    |
| 1001  | 1  | 2 |   |   | ,049956   | 4D0   | 1  |
| 4000  | 1  | 2 |   |   | .008147   | 4D 0  | 2  |
| 4000  | 46 |   |   |   | 008147    | 400   | 3  |
| 11000 | 1  | 2 |   |   | .0005311  | 4 D O | 5  |
| 11000 | 30 |   |   |   | .0005311  | 400   | 6  |
| 9000  | 1  | 2 |   |   | ,001107   | 4 D 0 | 7  |
| 19000 | 30 |   |   |   | .001107   | 4D0   | 8  |
| 28000 | 1  | 2 |   |   | 003635    | 4 D 0 | 9  |
| 28000 | 30 |   |   |   | 003635    | 4 D I | 0  |
| 40000 | 1  | 2 |   |   | ,027150   | 4D I  | 1  |
| 40000 | 30 |   |   |   | ,027150   | 4D I  | 2  |
| 40000 | 46 |   |   |   | ,027150   | 4D I  | 3  |
| 92235 | 1  | 2 | 5 |   | .0010964  | 4 D I | 4  |
| 92235 | 3  |   |   |   | ,0010964  | 4 D I | 5  |
| 92238 | 1  | 2 | 3 | 5 | ,00008247 | 4 D I | 6  |
| 6     | 64 |   |   |   |           | 5C    |    |
| 4000  | 1  | 2 |   |   | ,113480   | 500   | 11 |
| 4000  | 46 |   |   |   | .113480   | 500   | 2  |
| 11000 | 1  | 2 |   |   | .0002742  | 500   | 4  |
| 11000 | 30 |   |   |   | .0002742  | 500   | 5  |
| 9000  | 1  | 2 |   |   | ,0005717  | 500   | 6  |
| 9000  | 30 |   |   |   | ,0005717  | 500   | 7  |
| 6     | 64 |   |   |   |           | 6C    |    |
| 24000 | 1  | 2 |   |   | ,016740   | 600   | 1  |
| 24000 | 30 |   |   |   | ,016740   | 600   | 2  |
| 26000 | 1  | 2 |   |   | ,063159   | 600   | 3  |
| 26000 | 30 |   |   |   | ,063159   | 600   | 4  |
| 28000 | 1  | 2 |   |   | ,008651   | 600   | 5  |
| 28000 | 30 |   |   |   | 008651    | 600   | 6  |
| 2     | 64 |   |   |   |           | 7 C   |    |
| 4000  | 1  | 2 |   |   | ,120140   | 700   | 1  |
| 4000  | 46 |   |   |   | ,120140   | 700   | 2  |
| 0     | 64 |   |   |   |           | 8C    |    |

| 11000 | 1  | 2 | .0U2967 | 8001  |
|-------|----|---|---------|-------|
| 11000 | 30 |   | 002967  | 8D02  |
| 19000 | 1  | 2 | 006186  | 8D03  |
| 19000 | 30 |   | ,006186 | 8D04  |
| 24000 | 1  | 2 | 005163  | 8D05  |
| 24000 | 30 |   | 005163  | 8006  |
| 26000 | 1  | 2 | 018267  | 8007  |
| 26000 | 30 |   | 018267  | 8D08  |
| 28000 | 1  | 2 | 010930  | 8009  |
| 28000 | 30 |   | ,010930 | 8D10  |
| 10    | 64 |   |         | 90    |
| 11000 | 1  | 2 | ,001712 | 9001  |
| 11000 | 30 |   | 001712  | 9002  |
| 19000 | 1  | 2 | 003570  | 9D03  |
| 19000 | 30 |   | 003570  | 9D04  |
| 24000 | 1  | 2 | 010270  | 9005  |
| 24000 | 30 |   | 010270  | 9D06  |
| 26000 | 1  | 2 | .039610 | 9007  |
| 26000 | 30 |   | 039610  | 9008  |
| 28000 | 1  | 2 | 006740  | 9009  |
| 28000 | 30 |   | ,006740 | 9010  |
| 4     | 64 |   |         | 100   |
| 11000 | 1  | 2 | ,004945 | 10001 |
| 11000 | 30 |   | ,004945 | 10002 |
| 19000 | 1  | 2 | ,010310 | 10003 |
| 19000 | 30 |   | .010310 | 10004 |
| 0     |    |   |         | E     |
| 4000  | 64 |   |         | FDI   |
| 11000 | 64 |   |         | F 0 2 |
| 19000 | 64 |   |         | F 0 3 |
| 24000 | 64 |   |         | F 0 4 |
| 26000 | 64 |   |         | F 0 5 |
| 28000 | 64 |   |         | F 0 6 |
| 40000 | 64 |   |         | F 0 7 |
| 92235 | 64 |   |         | FOB   |
| 92238 | 64 |   |         | F 0 9 |
| 4001  | 64 |   |         | FIO   |

2. CODE 8 Input Listing

| CODE 8 | 8 10  | 14     |       |      |     |      |        |    |    |     |    |    |    |     |
|--------|-------|--------|-------|------|-----|------|--------|----|----|-----|----|----|----|-----|
| SNAP.  | TSF R | EACTOR | PHI   | TAPE | FOR | CORE | LEAKAG | GE |    |     |    |    |    | A   |
| 9      | 8     | 8      | 8     | 8    | 8   | 8    | 8      | 6  | 8  | 8   |    |    |    | В   |
|        | .8+7  | 4.     | 0 - 1 | 32   | 32  | 32   | 32     | 32 | 32 | 32  | 32 | 32 |    | С   |
| 4000   | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 |    |     |    |    |    | DOI |
| 11000  | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 |    |     |    |    |    | D02 |
| 19000  | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 |    |     |    |    |    | D03 |
| 24000  | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 |    |     |    |    |    | D04 |
| 26000  | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 |    |     |    |    |    | D05 |
| 28000  | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 |    |     |    |    |    | D06 |
| 40000  | 71    | 72     | 73    | 74   | 75  | 76   |        |    |    |     |    |    |    | D07 |
| 92235  | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 | 79 | 80  | 81 | 82 | 83 | D08 |
| 92238  | 71    | 72     | 73    | 74   | 75  | 76   | 77     | 78 | 79 | 8 0 | 81 | 82 | 83 | DID |

## APPENDIX D

# 05R INPUT LISTINGS

1. 05R Input for Fission Distribution Calculation

| SNAP-TSF RE | ACTOR POWER | DISTRIBL | JTICN           |               |               |              | A          |
|-------------|-------------|----------|-----------------|---------------|---------------|--------------|------------|
| 800 1000    | 4           | 4,0-1    | 1               |               |               |              | в          |
| 10 12       | 13          |          |                 |               |               |              | С          |
| 2 0         | 3 0         | 4 0      | 5 Q             | 6 0           |               |              | 1D         |
| 22,99       | -22,99      | 39.1     | <b>39</b> .1    | 52,0          | -52,0         | 55,85        | IEDI       |
| -55.85      | 58,71       | -58.71   |                 |               |               |              | IE02       |
| 1,3025      | ,85613      | 0.0      |                 |               |               |              | 11         |
| 2 0         | 3 0         | 4 0      | 5 0             | 6 0           |               | <b>FF</b> 01 | 20         |
| 22,99       | -22,99      | 39.1     | = 39,1          | 52.0          | -52.0         | 55,85        | 2601       |
| -55,85      | 58,71       | -58,71   |                 |               |               |              | SEDS       |
| 1.8396      | .85789      | 0.0      |                 |               |               |              | 21         |
| 2 0         | 3 0         | 4 0      | 5 0             | 6 0           |               |              | 30         |
| 22,99       | -22,99      | 39.1     | = 39,1          | 52.0          | -52.0         | 55,85        | 3601       |
| -55,85      | 58,71       | -58.71   |                 |               |               |              | SEUZ       |
| 3,2821      | ,80416      | 0.0      |                 |               |               |              | 31         |
| 0 1         | 0 2         | 0 3      | 0 6             | 0 /           | 0 0           | 8 0          | 9 4001     |
| 1.00814     | 9.012       | -9,012   | 22,99           | -22.99        | 39.1          | = 39 + 1     | 4501       |
| 58,71       | -58,71      | 91.22    | =91 <u>+</u> 22 | -91,22        | 235.0         | #235.U       | 4602       |
| 238.0       | N 2         |          |                 |               |               |              | 4603       |
| .27432      | .89166      | ,20781   |                 |               |               |              | 41         |
| 1 0         | 2 0         | 3 0      |                 | -             | 70            |              | 2 U<br>5 C |
| 9.012       | -9.012      | 22,99    | -22,99          | 39.1          | -39.1         |              | 25         |
| 1,4834      | ,998057     | 0.0      |                 |               |               |              | 2F<br>6 D  |
| 4 0         | 5 0         | 6 0      | 55 A.5          | 50 <b>7</b> ( | <b>50 3</b> 1 |              | 60         |
| 52.0        | -52.0       | 55,85    | - 22,82         | 28.71         | = 58 . / 1    |              | 66         |
| .99001      | .85730      | 0,0      |                 |               |               |              | 70         |
| 1 0         |             |          |                 |               |               |              | 70         |
| 9.012       | -9.012      |          |                 |               |               |              | 75         |
| 1.40713     | ,999098     | 0.0      |                 |               |               |              | en         |
| 2 0         | 3 0         | 4 0      | 5 0             | 6 0           | 50 0          | 55 85        | 8501       |
| 22,99       | -22.99      | 39.1     | = 3 Y .         | 52.0          | = 7 2 , 0     | 22,02        | 9501       |
| -55,85      | 58,71       | -58.71   |                 |               |               |              | 0002       |
| 2.0463      | ,85440      | 0.0      |                 |               |               |              | OF         |

| 2           |         | D     | 3   | 0    |      | 4     | 0     | 5     | 0    | 6   |     | 0  |       |   |       | <b>9</b> D |
|-------------|---------|-------|-----|------|------|-------|-------|-------|------|-----|-----|----|-------|---|-------|------------|
| _           | 22.9    | 9     | -22 | .99  |      | 39.   | 1     | .39   | . 1  |     | 52. | 0  | -52.0 | 0 | 55,85 | 9E0        |
| -           | 55.8    | 5     | 58  | .71  |      | -58.7 | 71    |       | • •  |     |     |    |       |   |       | 9E02       |
| 1           | . 473   | 8     | .85 | 558  |      | Ο.    | . n   |       |      |     |     |    |       |   |       | 9 F        |
| 2           | •       | n     | 3   | n    |      |       |       |       |      |     |     |    |       |   |       | IDD        |
|             | 22.9    | å i   | -22 | . 99 |      | 39.   | 1     | = 39  | . 1  |     |     |    |       |   |       | IDE        |
| 19          | 509     | 0     | .75 | 092  |      | 0.    | n     |       | • •  |     |     |    |       |   |       | IOF        |
| 1.          | , - U - | n     |     | 0 0  |      | 0     | n     | 0     | . በ  |     | 1.  | п  |       |   |       | G          |
|             | 0       | n     |     | 0.0  | - 1  | 9.557 | 5     |       | 4    |     |     | ĩ  |       |   |       | н          |
| 1           | 0.      | 3     | 11  | 100  | nii  | niiii | 00011 | nnnıı | nini | nnu | nnn | nn | nIn   |   |       | II         |
| 00003       | 4327    | 72446 | 15  | 100  | 0111 |       | 0.001 |       | 0101 |     | 000 | 90 |       |   |       | J          |
| ουουο.<br>π | 1021    | 1     | 1   | 1    |      |       |       |       |      |     |     |    |       |   |       | ĸ          |
| о<br>П      |         | 0     | 'n  | 'n   |      | n     | 0     | 1     | . 0  | 5   | 0-  | 3  | 1.0-  | 1 |       | MOL        |
| - 1         |         | U     | 0   | 0    |      | 0     | 0     | ,     | • •  | ~   | • 0 | •  |       | , |       | MD2        |
|             |         | 4     |     |      |      |       |       |       |      |     |     |    |       |   |       | N          |
| ,           |         | ~     |     |      |      |       |       |       |      |     |     |    |       |   |       | A          |
| -           | 1.      | U     |     |      |      |       |       |       |      |     |     |    |       |   |       | 0          |
| υ           |         | U     |     |      |      |       |       |       |      |     |     |    |       |   |       | F          |

2. 05R Input for the Shield Source Problem

| SNAP TSF LE | AKAGE (XNU | FROM FOR  | NARC ADJOIN      | T)               |          |                    | A          |
|-------------|------------|-----------|------------------|------------------|----------|--------------------|------------|
|             | 13         | 1,049     | U                |                  |          |                    | c          |
| -2 0        | -3 0       | -4 0      | <b>*</b> 5 0     | -6 0             |          |                    | ID         |
| 22 99       | -22.99     | 39.1      | = 39.1           | 52.0             | -52.0    | 55.85              | IEOI       |
| -55 85      | 58.71      | -58.71    |                  | ~ 2 • 0          |          |                    | IE02       |
| =2 0        | -3 0       | -4 N      | <del>=</del> 5 0 | -6 0             |          |                    | 2D         |
| 22.99       | -22.99     | 39.1      | # 39.1           | 52.0             | -52.0    | 55.85              | 2E01       |
| -55.85      | 58.71      | -28.71    |                  |                  |          | SS 11 <b>7</b> (S) | 2E02       |
| ,2 0        | -3 0       | = 4 N     | <b>≂</b> 5 0     | <del>•</del> 6 0 |          |                    | 3 D        |
| 22.99       | -22.99     | 39.1      | = 39.1           | 52.0             | -52.0    | 55,85              | 3601       |
| -55.85      | 58.71      | -58.71    |                  |                  |          |                    | 3E02       |
| 0 -1        | 0 -2       | n -3      | đ <del>-</del> 6 | 0 -7             | 0 0      | -8 0               | -9 4D      |
| 1.00814     | 9.012      | -9.012    | 22,99            | -22.99           | 39.1     | -39,1              | 4 E O I    |
| 58.71       | -58,71     | 91.22     | -91,22           | -91.22           | 235.0    | -235.0             | 4E02       |
| 238.0       |            |           |                  |                  |          |                    | 4E03       |
| - 1 0       | -2 0       | -3 0      |                  |                  |          |                    | 5D         |
| 9.012       | -9.012     | 22.99     | -22,99           | 39.1             | -39,1    |                    | 5E         |
| -4 0        | -5 0       | -6 0      |                  |                  |          |                    | 6 D        |
| 52.0        | -52.0      | 55.85     | - 55,85          | 58.71            | -58,71   |                    | 6E         |
| -1 0        |            |           |                  |                  |          |                    | <b>7</b> D |
| 9.012       | -9,012     |           | _                |                  |          |                    | 76         |
| -2 0        | -3 0       | -4 0      | =5 0             | -6 0             | 50 0     | 0                  | 80         |
| 22,99       | -22,99     | 39.1      | = 39,1           | 52.0             | -52.0    | 55,85              | 8601       |
| -55,85      | 58,71      | -28.71    | -                | <i>.</i>         |          |                    | BEDZ       |
| -2 0        | -3 0       | -4 0      | =5 0             | -6 0             | E0 0     | 6 <b>6 9</b> 5     | 90         |
| 22.99       | -22,99     | 39.1      | #3 <b>7</b> • 1  | 52.0             | = 22 , U | 22,02              | 9501       |
| - 55,85     | 58,71      | =28./1    |                  |                  |          |                    | 9602       |
| = 2 U       | -3 0       | 70        | - 30 1           |                  |          |                    | 100        |
| 22.99       | -22,99     | 39.1      |                  |                  |          |                    |            |
| 0.0         | 0,0        | -10 5575  | u . U            | 1.0              |          |                    | U U        |
| 0.0         |            |           |                  | 000000000        | 000100   | 000                | 12         |
| 1 3         | 110001     | 111111000 |                  |                  |          |                    |            |

| 17 | 73607 | 23654 | 3075 |   |
|----|-------|-------|------|---|
|    | 0     | 0     | 0    | 0 |
|    | 0     | 0     |      |   |
|    | 14    | 0     |      |   |

フメンク

| SNAP-TSF LE | AKAGE RE | ACTOR CALY | ACJOINT                                  | SN BLAS      |        |                  | A     |
|-------------|----------|------------|------------------------------------------|--------------|--------|------------------|-------|
| 800 800     | 60       | 1.0+5      | 0                                        |              |        |                  | В     |
| 10 12       | 13       |            |                                          |              |        |                  | С     |
| -2 0        | -3 0     | - 4 🛛 🖸    | <b>=</b> 5 0                             | -6 0         |        |                  | I D   |
| 22.99       | -22.99   | 39.1       | =39.I                                    | 52.0         | -52.0  | 55,85            | IEDI  |
| +55,85      | 58.71    | -58.71     |                                          |              |        |                  | 1602  |
| -2 0        | -3 0     | -4 0       | -5 0                                     | -6 0         |        | 11 Nov 18 20     | 20    |
| 22.99       | -22.99   | 39.1       | =39.I                                    | 52.0         | -52.0  | 55,85            | 2601  |
| -55.85      | 58.71    | -58.71     |                                          |              |        |                  | 2E02  |
| -2 0        | -3 0     | -4 0       | -5 0                                     | -6 0         |        |                  | 3 D   |
| 22.99       | -22.99   | 39.1       | = 39,1                                   | 52.0         | -52.0  | 55,85            | 3E01  |
| -55.85      | 58.71    | -58.71     |                                          |              |        |                  | 3E02  |
| 0 -1        | 0 -2     | n = 3      | 0 -6                                     | 0 -7         | 0 0    | <del>-</del> 8 0 | -9 4D |
| 1.00814     | 9.012    | -9.012     | 22,99                                    | -22.99       | 39.1   | -39.1            | 4E01  |
| 58.71       | -58.71   | 91.22      | .91.22                                   | -91.22       | 235.0  | -235.0           | 4E02  |
| 238 0       |          |            | 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              |        |                  | 4E03  |
| =1 0        | -2 0     | -3 D       |                                          |              |        |                  | 5D    |
| 9.012       | -9.012   | 22.99      | -22,99                                   | 39.1         | -39.1  |                  | 5E    |
| -4 0        | -5 0     | -6 0       |                                          |              |        |                  | 6D    |
| 52 0        | -52.0    | 55.85      | -55,85                                   | 58.71        | -58.71 |                  | 6E    |
| -1 0        |          |            |                                          |              |        |                  | 70    |
| 9.012       | -9.012   |            |                                          |              |        |                  | 7E    |
| -2 0        | -3 0     | -4 D       | =5 0                                     | -6 0         |        |                  | 8 D   |
| 22.99       | -22.99   | 39.1       | =39.I                                    | 52.0         | -52.0  | 55,85            | 8E0   |
| -55.85      | 58.71    | -58.71     |                                          |              |        |                  | 8E02  |
| -2 0        | -3 0     | -4 0       | -5 0                                     | -6 0         |        |                  | 9 D   |
| 22.99       | -22.99   | 39.1       | = 39.1                                   | 52.0         | -52.0  | 55,85            | 9E 0  |
| -55.85      | 58.71    | -58.71     |                                          |              |        |                  | 9E02  |
| -2 N        | -3 0     |            |                                          |              |        |                  | IDD   |
| 22.99       | -22.99   | 39.1       | -39.1                                    |              |        |                  | IDE   |
| n.n         | 0.0      | 0.0        | 0.0                                      | 1.0          |        |                  | G     |
| 0.0         | 0.0      | -19,5575   | 4                                        | 1            |        |                  | н     |
| 1 3         |          | 1111111000 | 10001101                                 | 000000000000 | 11010  | 0000             | 12    |

| 531 | 71 | 761 | 203 | 0555 |   |
|-----|----|-----|-----|------|---|
|     | 0  |     | 0   | 0    | 0 |
|     | 0  |     | 0   |      |   |
| 1   | 4  |     | 0   |      |   |

KZP

### APPENDIX E

05R SOURCE ROUTINE LISTINGS

```
1. 05R Subroutines SOURCE, DATAIN, SPACE, and VECTOR
SUBROUTINE SOURCE (SPDSQ,U,V,W,X,Y,Z,WATE,N,NMEM,NMED,NREG)
      COMMON / SELRCE / ANG(9,40), BONE, BTHRE, BTWO, CONE, CTHRE,
          CTWO, NANG, NOOP, NOPT, NOR, NOZ, NOZE, PROBR(25),
     A
          PR0BRB(25), PR0BZ(30), PR0BZB(30), RPR(25), ZE(9), ZEE(30),
     B
     С
          RR, WT3, IBASE, RRR2(25)
      COMMAN/ESIF/IE(10), GE(9)
      COMMON/XNU/XNU(10,6), EXNU(7), NXNU
      DATA (NO=0)
      IF(NA) 20, 10, 20
   10 CALL DATAIN
      N0 = 1
      READ (50,1000)(IE(K),K=1,10),KFIZ
 1000 FORMAT(1115)
      READ (50, 1001) (QE(K), K=1, KFIZ)
 1001 FORMAT(6E12.2)
      READ (50,1000) KREG,KEG
      READ (50,1001) (EXNU(K),K=1,KEG)
      KEG=KEG=1
      READ (50, | col)((XNU(Kl, K), K=l, KEG), Kl=l, KREG)
   20 CALL FISESN (S02, WT)
      SPDS0=S02
      CALL SPACE (X,Y,Z,WTI,NMEM)
      CALL VECTOR (U,V,W,Z,WT2)
      WATE=WT*WTI*WT2
      1F (WATE) 700,701,701
  700 PRINT 702, WT, WTI, WT2, X, Y, Z, U, V, W
 702 FORMAT (1H1,9E10.2,11H WT,WT1,WT2)
      CALL EXIT
  701 CONTINUE
      RETURN
      END SOURCE
```

```
SUBROUTINE DATAIN
C
      COMMON / SCURCE / ANG(9,40), BONE, BTHRE, BTWO, CONE. CTHRE,
     A
          CTWO, NANG. NOOP. NOPT, NOR, NOZ, NOZF. PROBR(25).
          PROBRB(25), PROBZ(30), PROBZB(30), RRR(25), ZE(9), ZEE(30),
     B
     C
          RR, WT3, IBASE, RRR2(25)
      DIMENSION CUM ( 30 )
C
      READ INPUT TAPE 50, 10, NOOP, NOR, NOZ
   10 FORMAT (SILO)
C
C
      NOOP IS POWER DISTRIBUTION OPTION. DISTRIBUTION IS ACTUAL
C
      IF NOOP = 1, BIASED IF NOOP = 2..
C
      NOR IS NUMBER OF RADIAL DIVISION BOUNDARIES.
      NOT IS NUMEER OF AXIAL DIVISION BOUNDARIES.
C
      K = |
C
      TEST NOZ AND NOR FOR DIMENSION STORAGE
      IF (NOZ = 30) 20, 20, 30
   20 IF (NOR - 25) 50, 50, 30
   30 PRINT 40
   40 FORMAT (58F NOZ OR NOR EXCEEDS STORAGE DIMENSION IN SUBROUTINE SOU
     IRCE)
      K = K + I
   50 READ INPUT TAPE 50,60, (RRR(J), J = 1.NOR)
C
      RRR(J) IS THE RADIAL BOUNDARY VALUES (CM)
   60 FORMAT (6FID.0)
     TEST RRR(J) FOR ASCENDING ORDER.
C
      DA 90 J = 2.NAR
      RRR2(J)=RRF(J)**2
      IF(RRR(J)=RRR(J=1)) 70, 70, 90
   70 PRINT 80
   80 FORMAT (52F RRR(J) NOT IN ASCENDING ORDER IN SUBROUTINE SOURCE )
      K = K + I
   90 CONTINUE
```

RRR2(1)=RRF(1)\*\*2

```
READ INPUT TAPE 50,60, (PRCBR(J), J = 1, NAR)
C
      PROBR(J) ARE THE ACTUAL RADIAL POWER DISTRIBUTION PROBABILITIES.
C
      TEST NOOP. IF I, THE DISTRIBUTION IS ASSUMED TO BE OF THE
C
      NORMALIZED, CUMULATIVE FORM. IF 2, NORMALIZE AS FOLLOWS -
C
      PROBR(J) = PROBR(J) /(INTEGRAL ( PROBR (R) R DR ) FROM D.O TO
C
      RRR (NOR) ).
      IF (NOOP = 2)
                     230, 160, 160
  160 NORI = NOR - 1
      TOTAL = 0.0
      DØ 161 I = 1, NOR1
      CUM (I) = ( ( RRR (I+I) - RRR (I) ) * ( ( PROBR (I) * ( RRR (I+I))
     A
               + 2. * RRR (1))) + ( PROBR (1+1) * ( 2. * RRR (1+1))
              + RRR (1) ) ) ) / 6.
     B
      TOTAL = TOTAL + CUM (I)
  161 CONTINUE
      DØ 162 I = 1, NOR
  162 \text{ PROBR}(I) = \text{PROBR}(I) / \text{TOTAL}
C
      CALCULATE THE BIASED RADIAL DISTRIBUTION.
      DØ 163 I = 1, NORI
  163 PRABRE (I) = 2. / ( FLOATF (NOR - 1) * ( ( RRR (I+1) ) **2
                 -(RRR(1))**2)
     A
  230 BONE = 2. * SINF ( 1.0471976 )
      CONE = RRR (NOR) * BONE
      BTWG = 0.0
      CTWO = RRR (NOR) * SINF ( 1.0471976 )
      BTHRE = - ECNE
      CTHRE = CONE
C
      BONE, CONE, BTWO, CIWO, BTHRE, CTHRE ARE COEFFICIENTS OF
C
      QUADRATICS DEFINING THE CORE HEXAGONAL BOUNDARIES.
      READ INPUT TAPE 50, 60, (ZEE(J), J = 1, N07)
      ZEE(J) IS THE AXIAL BOUNDARY VALUES (CM)
C
C
      TEST ZEE(J) FOR ASCENDING ORDER
      D0 260 J = 2, NOZ
      IF (7EE(J)+ZFE(J-1)) 240, 240, 260
  240 PRINT 250
  250 FORMAT (52F ZEE(J) NOT IN ASCENDING ORDER IN SUBROUTINE SOURCE )
      K = K + J
```

```
260 CONTINUE
      READ INPUT TAPE 50,00, (PROBZ(J), J = 1, NOT)
C
      PROBZ(J) ARE THE ACTUAL AXIAL POWER DISTRIBUTION PROBABILITIES.
C
      TEST NOOP. IF I, THE DISTRIBUTION IS ASSUMED TO BE OF THE
      NORMALIZED, CUMULATIVE FORM. IF 2, NORMALIZE AS FOLLOWS -
C
C
      PROBZ(J) = PROBZ(J) / ( INTEGRAL ( PROBZ(Z) DZ ) FROM ZI TO ZMAX).
      IF (NOOP = 2)
                     400, 330, 330
  330 NO71 = NOZ - 1
      TOTAL = 0.0
      DØ 331 I = 1, NOZI
      CUM(I) = ((7EE(I+1) - 7EE(I)) * (PR0B7(I+1) + PR0B7(I)))
     A
                1 2.
      TOTAL = TOTAL + CUM (I)
  331 CANTINUE
      DØ 332 I = I, NØZ
  332 PROBZ (I) = PROBZ (I) / TOTAL
C
      CALCULATE THE RIASED AXIAL DISTRIBUTION.
      DO 333 I=1,NOZI
  333 PROBZE (I) = 1, / ( FLOATF (NOZ = 1) * ( ZEE (I+1) - ZEE (I) ) )
C
  ADD AT END OF DATAIN
      RMIN = SQRTF(3.)/2.*RRR(NOR)
      SIXOPI = 6./3.1415926535
      D0 1013 J=1,NOR
      J\theta = J
      IF (RRR(J+1)=RMIN) 1013,1013,1014
 1013 CONTINUE
 1014 JS = J0 + 1
      NORI = NOR - I
     TRIB = 1.0-SIX0PI*PROBRB(J0)*(ACOSF(RMIN/RRR(JS))/2.*RRR(JS)**2
     T = RMIN/2, *RRR(JS) *SQRTF(|.=(RMIN/RRR(JS)) **2))
      De 1015 J= S.NARI
 1015 TRIB = TRIE-SIXUPI*PROBRB(J)*(ACOSF(RMIN/RRR(J+I))/2.*RRR(J+I)**2
     T =ACOSF(RMIN/RRR(J))/2.*RRR(J)**2 = RMIN/2.*(RRR(J+1)*SQRTF(1.*
     T (RMIN/RRR(J+1))**2)-RRR(J)*SQRTF(1,-(RMIN/RRR(J))**2)))
      RS=RRR(JS)
      DEL = (PROER(JS) - PROBR(JO))/(RRR(JS) - RRR(JO))
      EPS = (RRR(JS)*PROBR(JO)*RRR(JO)*PROBR(JS))/(RRR(JS)*RRR(JO))
```

-134
```
TRI= |.0+SIXAPI*((DEL/3.*RRR(JS)+EPS/2.)*RRR(JS)**2*ACOSF(RMIN/RS)
     T = (DEL/6.*RRR(JS)+EPS/2.)*RMIN*RRR(JS)*SORTF(1.=(RMIN/RS)**2)
     T + DEL/6.*FMIN**3*L0GF(RS/RMIN*(1.-SQRTF(1.-(RMIN/RS)**2))))
      D0 1016 J= S, NARI
      QD=RRR(J+1)-RRR(J)
      DEL=(PROBR(J+1)=PROBR(J))/RD
      EPS=(RRR(J+1)*PROBR(J)*RRR(J)*PROBR(J+1))/RD
      RJ=RMIN/RRF(J)
      RJI=RMIN/RFR(J+1)
      RR.J=RRR(J)
      RRJI=RRR(J+1)
      SQJ=SQRTF(1.=RJ**2)
      SQJI=SQRTF(1.-RJI**2)
 1016 TRI = TRI - SIX0PI*((DEL/3.*RRJI+EPS/2.)*RRJI**2*AC0SF(RJI)
     T =(DEL/3.*FRJ+EPS/2.)*RRJ**2*AC0SF(RJ) =(DEL/6.*RRJI+EPS/2.)*
     T RRJI*RMIN*SQJI + (DEL/6.*RRJ+EPS/2.)*RRJ*RMIN*SQJ + DEL/6.*
     T RMIN**3*LCGF(RRJ1/RRJ*(SQJ1+1.)/(SQJ+1.)))
      DØ 390 I = 1, NOR1
      PRABR (I) = PRABR (I) / TRI
  390 \text{ PROBRB} (I) = PROBRB (I) / TRIB
      PROBR (NOR) = PROBR (NOR) / TRI
  400 READ INPUT TAPE 50, 10, NOPT, NOZE, NANG
      NOPT IS ANGULAR DISTRIBUTION OPTION. FOR NOPT = 1. DISTRIBUTION
C
C
      IS ISOTROPIC ALL SOURCE POINTS. FOR NOPT = 2. DISTRIBUTION IS
C
      ANISCTROPIC. *** NOZE IS NUMBER OF Z BOUNDARIES DEFINING CORE
C
      DIVISIONS FOR APPLICATION OF ANISOTROPIC ANGULAR DISTRIBUTIONS.
C
      NANG IS THE NUMBER OF COSINE THETA VALUES DESCRIBING THE
С
      ANISOTROPIC ANGULAR DISTRIBUTION. NANG MUST BE THE SAME IN EACH
C
      CORE DIVISION.
      IF (NOPT - 2)
                                     445, 405, 405
  405 READ INPUT TAPE 50, 60, (ZE(J), J = 1, NOZE)
C
      ZE(J) ARE THE ROUNDARIES OF THE CORE DIVISIONS USED FOR THE
C
      APPLICATION OF ANISOTROPIC ANGULAR DISTRIBUTIONS.
C
      TEST ZE(J) FOR ASCENDING URDER
      DO 430 J = 2, NOZE
      IF (7E(J)=7E(J=1)) 410, 410, 430
  410 PRINT 420
```

```
420 FORMAT(51H ZF(J) NOT IN ASCENDING ORDER IN SUBROUTINE SOURCE )
      K = K + I
  430 CONTINUE
C
      READ IN ANG(L, J)
      NO7EI = NOZE - I
      D0 440 L = 1,NOZEI
      READ INPUT TAPE 50,60, (ANG(L,J), J = I, NANG)
  440 CONTINUE
C
     TEST K
                 450, 460, 450
  445 IF (K-1)
  450 CALL EXIT
  460 RETURN
      END DATAIN
      SUBROUTINE SPACE (X,Y,Z,WTI,NMEM)
C
      SUBROUTINE TO CALCULATE SOURCE POINT LOCATION.
      COMMON / SCURCE / ANG(9,40), BONE, BTHRE, BTWO, CONE, CTHRE,
          CTWO, NANG, NOOP, NOPT, NOR, NOZ, NOZE, PROBR(25),
     A
     B
          PROBRB(25), PROBZ(30), PROBZB(30), RRR(25), ZE(9), ZEE(30),
          RR, WT3, IBASE, RRR2(25)
     C
      DATA ( NMEMI = 0 ), ( NREJECT = 0 ), ( PI = 3.1415927 )
     NMEMI = NMEMI + 1
     TEST OPTION (NOOP). IF NOOP = 1, THEN INPUT POWER DISTRIBUTION
C
C
      IS ACTUAL. IF NOOP = 2, THEN DISTRIBUTION IS BIASED.
      IF (NOOP - 2) 10, 100, 100
    9 NREJECT = NREJECT + 1
   10 \text{ RN} = \text{FLTRNF(DUMMY)}
      D0 20 J = 1, N0R
      IF (RN - PROBR(J)) 30, 20, 20
  20 CONTINUE
  30 RR=SQRTF(RFR2(J=1)+((RN+PR0BR(J=1))/(PR0BR(J)=PR0BR(J=1)))*(RRR2(J
     |) = RRR2(J = |))
C
     THE USE OF LINEAR INTERPOLATION ABOVE ASSUMES THAT THE RADIAL
C
     PROBABILITY DENSITY FUNCTION VARIES AS I/R IN EACH INTERVAL.
```

136

```
40 \text{ RN} = \text{FLTRNF(DUMMY)}
      THETA = 6.28318 * RN
      XTRY = RR * COSF (THETA)
      YTRY = RR * SINF (THETA)
С
      TEST XIRY AND YIRY FOR LOCATION. REJECT IF OUTSIDE
C
      HEXAGONAL CORE.
      IF ( ABSF ( XTRY + BONE * YTRY ) + ABSF ( CONE ) ) 50, 50, 9
   50 IF ( ABSF ( XTRY + BTWH * YTRY ) - ABSF ( CTWO ) ) 6n, 60, 9
   60 IF ( ABSF ( XTRY + BTHRE * YTRY ) - ABSF ( CTHRE ) ) 70, 70, 9
   70 X = XTRY
      Y = YTRY
C
      CALCULATE Z
      RN = FLTRNF(DUMMY)
      D0 80 J = 1, N0Z
      IF (RN - PROBZ(J)) 90, 80, 80
   80 CONTINUE
   90 z = ZEE(J=1) + ((RN - PROBZ(J=1)) / (PROBZ(J) - PROBZ(J=1)))
                    * (ZEE(J) = ZEE(J=1))
     1
C
      THE USE OF LINEAR INTERPOLATION ABOVE ASSUMES THAT THE AXIAL
C
      PROBALITY CENSITY FUNCTION IS A HISTOGRAM.
C
      CALCULATE NTI
      WTI = 1.0
      GO TO 190
C
      CALCULATE X, Y, Z AND WTI FOR NOOP = 2.
  100 \text{ RN} = \text{FLTRNF}(\text{DUMMY})
      WNOZ = NOZ - I
      J = RN * WNCZ
      FJ = J
      J = J + I
      7 = ZEE(J) + (RN * WN0Z = FJ) * (ZEE(J+I) = ZEE(J))
      IMPLIES THE ASSUMPTION THAT THE BIASED AXIAL POWER DISTRIBUTION IS
C
      CONSTANT IN EACH INTERVAL.
C
      FIND A PROEZ AND PROBZE CORRESPONDING TO Z ..
C
  102 GOMP = (Z - ZEF(J)) / (ZEE(J+1) - ZEE(J))
C
      PZ = PROBZ
C
      PZB= PROBZE
      PZ = PROBZ(J) + GOOP * (PROBZ(J+1) - PROBZ(J))
```

```
PZB = PR0B2B (J)
      PP = PZ/PZE
      GO TO 150
  149 NREJECT = NREJECT + 1
C
      CALCULATE X AND Y
  150 \text{ RN} = \text{FLTRNF(DUMMY)}
      WNOR = NOR - I
      D0 | 30 J = 2, NOR
      IF (RN - (FLGATF ((J-1)) / WNOR )) 140, 130, 130
  130 CONTINUE
      J = NOR
  140 \text{ RN} = \text{FLTRNF(DUMMY)}
      RR = SQRTF(RER2(J=1)+RN*(RRR2(J)+RRR2(J+1)))
      THE USE OF R**2 INTERPOLATION ABOVE ASSUMES THAT THE RADIAL POWER
C
C
      DISTRIBUTION IS CONSTANT IN EACH INTERVAL.
      RN = FLTRNF(DUMMY)
      THETA = 6.28318 * RN
      XTRY = RR * COSF (THFTA)
      YTRY = RR * SINF (THFTA)
C
      TEST XTRY AND YTRY FOR LOCATION. REJECT IF OUTSIDE
C
      HEXAGONAL CORE.
      TF ( ABSF ( XTRY + BONE * YTRY ) - ABSF ( CONE ) ) 160, 160, 149
  160 IF ( ABSF ( XTRY + BTW0 * YTRY ) - ABSF ( CTW0 ) ) 170, 170, 149
  170 IF ( ABSF ( XTRY + BTHRE * YTRY ) - ABSF ( CTHRE ) ) 180, 180, 149
  180 \times = \times TRY
      Y = YTRY
      EARP = (RR - RRR(J-1)) / (RRR(J) - RRR(J-1))
      FIND A PROER AND PROBRB CORRESPONDING TO RR.
C
C
      PR = PROBR, PRB = PROBRB
      PR = PROBR(J=1) + EARP + (PROBR(J) - PROBR(J=1))
C
      THE USE OF LINEAR INTERPOLATION ABOVE ASSUMES THAT THE RADIAL
C
      POWER DISTRIBUTION IS LINEAR IN EACH INTERVAL.
      PRB = PROBRE (J-1)
      RP = PR / FRB
      WTI = PP * RP
  190 IF ( NMEM .NE. 0 ) 193, 191
```

191 PRINT 192, NMEMI, NHEJECT

```
192 FORMAT (IHC,5X, 24HSOURCE HAS BEEN CALLED ,18,7H TIMES/

A IH ,5X,5HAND ,18,4X,49HREJECTS OCCURRED IN THE RADIAL SAM

BPLING PROCEDURE)

193 RETURN

END SPACE
```

```
SUBROUTINE VECTOR (U,V,W,Z,WT2)
C
     SUBROUTINE TO CALCULATE DIRECTION COSINES.
     COMMON / SCURCE / ANG(9,40), BONE, BTHRE, BTWO, CONE, CTHRE,
     A CTWO, NANG, NOOP, NOPT, NOR, NOZ, NOZE, PROBR(25),
     H
         PR0BRB(25), PR0BZ(30), PR0BZB(30), RRR(25), ZE(9), ZEE(30),
     C
         RR, WT3, IBASE, RRH2(25)
     TEST OPTION (NOPT)
C
     IF (NOPT - 2)
                         10, 20, 20
   ID CALL GTISC (U,V,W)
     WT2 = 1.0
     WT3 = WT2
     GO TO 70
  20 DO 30 J = 2,NOZE
     IF (Z = ZE(J))
                        40, 3n, 30
   30 CONTINUE
   40 J = J = 1
     WNANG = NANG - 1
     RN = FLTRNF(DUMMY)
     I = RN * WNANG
     FI = I
     1 = 1 + 1
     ANG| = ANG(J,I) + (WNANG * RN = FI) * (ANG(J,I+I) = ANG(J,I))
     WT2 = WNANG * (ANG(J,I) = ANG(J,I+I)) / 2.0
     WT3 = WT2
     RN = FLTRNF(DUMMY)
     PHI = 6.28318 * RN
     PINT = SQRTF (1.- (ANG|**2))
     U = COSF (FHI) * PINT
```

V = SINF (FHI) \* PINT W = ANGI 70 RETURN END VECTOR 2. 05R Subroutines FISESN and FISSN

```
SUBROUTINE FISESN(S02,WT)
    COMMAN/FISC/ENER(38), FE(38), ALPN(10)
    DIMENSION WONWOR(10)
    COMMON/ESIF/IE(10), GE(9)
    DATA(IST=D)
    IF(IST)2,1,2
  I CONTINUE
    WTS=1.
    ISPEC=38
    IST=1
    WRITE(51,201)(ALPN(L),L=1,10),(ENER(L),FF(L),L=1,ISPEC)
201 FORMAT( HO15X24HENERGY DISTRIBUTION FROMINA8//
   13(11X8HE IN MEV 5X4HF(E))/(6E 9.4))
    OS=D.
   D0 5 L=1,10
    OS=QS+QE(L)
    WONWOR(L)=ENER(IE(L))
    IF(QS-,999999)5,6,6
 5 CONTINUE
    WRITE(51,202)
    CALL EXIT
202 FORMAT(IH0//29H SUM OF QE(I) IS LESS THAN I.)
  6 WONWOR(L+1) = ENER(1E(L+1))
    WRITE(5|, 203)(WONWOR(L|), QE(L|), L|=|,L), WONWOR(L+|)
203 FORMAT (36Hr
                  ENERGY
                               BIASED DISTRIBUTION/(E12.4/20X
  IE12.4))
 2 WT=WTS
    R=FLTRNF(R)
    SUM=0.
    J=0
50 J=J+1
    SUM=SUM+QE(_)
    IF(R-SUM)60,60,50
```

| 60  | KJ=IE(J)                           |
|-----|------------------------------------|
|     | KL=IE(J+I)                         |
| 150 | PROBUL=FE(KJ)-FE(KL)               |
|     | WT=WT*PROB_L/QE(J)                 |
|     | S=PROBJL*FLTRNF(RI)                |
|     | T=S+FE(KL)                         |
|     | I = K L - I                        |
| 155 | IF(T-FE(I))180,170,160             |
| 160 | I = I + I                          |
|     | GO TA 155                          |
| 170 | E=ENER(I)                          |
|     | GO TO 200                          |
| 180 | TEMP=(T=FE(I))/(FE(I+I)=FE(I))     |
|     | E=ENFR(I)+TEMP*(ENER(I+1)=ENER(I)) |
| 200 | S02=E*1,91322E+18                  |
|     | RETURN                             |
|     | END                                |

|      | IDENT  | FISSN    |
|------|--------|----------|
| FISD | BLOCK  | 86       |
|      | CAMMON | ENER(38) |
|      | CAMMON | FE(38)   |
|      | CAMMON | ALPN(10) |
|      | ORGR   | ENER     |
| ENER | BSS    | 0        |
|      | DEC    | Ο.       |
|      | DEC    | 0.111    |
|      | DEC    | 0,25     |
|      | DEC    | 0,407    |
|      | DEC    | 0,608    |
|      | DEC    | 0.907    |
|      | DEC    | 1.11     |
|      | DEC    | 1,35     |
|      | DEC    | 1.65     |

FE

| DEC | 1.8    |
|-----|--------|
| DEC | 2 46   |
| DEC | 3 01   |
| DEC | 3 68   |
| DEC | 4 00   |
| DEC | 4 50   |
| DEC | 5 00   |
| DEC | 5 40   |
| DEC | 6 0.0  |
| DEC | 6 30   |
| DEC | 6 7    |
| DEC | 2 00   |
| DEC | 7.50   |
| DEC | 8 19   |
| DEC | 8 6 7  |
| DEC | 0.JU   |
| DEC | 0 50   |
| DEC |        |
| DEC | 10.00  |
| DEC | 11.0   |
| DEC | 11.5   |
| DEC | 10.0   |
| DEC | 12.0   |
| DEC |        |
| DEC | 14,0   |
| DEC | 12.0   |
| DEC |        |
| DEC | 1/0    |
| DEC | 10+0   |
| 000 |        |
| DEC | n 983n |
| DEC | n 948  |
| DEC | n 990  |
| DEC |        |
|     | n 700  |
| DEC | 0.653  |
| DCU |        |

t

-----

.

|          | DEC | 0,573     |          |
|----------|-----|-----------|----------|
|          | DEC | 0,484     |          |
|          | DEC | 0.443     |          |
|          | DEC | 0,390     |          |
|          | DEC | 0.296     |          |
|          | DEC | 0.2065    |          |
|          | DEC | 0,132     |          |
|          | DEC | 0.1050    |          |
|          | DEC | 0,0736    |          |
|          | DEC | 0.0512    |          |
|          | DEC | 0.03575   |          |
|          | DEC | 0.02439   |          |
|          | DEC | 0.01967   |          |
|          | DEC | 0.01457   |          |
|          | DEC | 0.01138   |          |
|          | DEC | 7.72E-3   |          |
|          | DEC | 4.55E-3   |          |
|          | DEC | 3,52E-3   |          |
|          | DEC | 2.364E-3  |          |
|          | DEC | 1,583E=3  |          |
|          | DEC | 1.058E=3  |          |
|          | DEC | 7.05E-4   |          |
|          | DEC | 4,686E-4  |          |
|          | DEC | 3.108E-4  |          |
|          | DEC | 1.795E-4  |          |
|          | DEC | 8.97E-5   |          |
|          | DEC | 3.88E-5   |          |
|          | DEC | .67E-5    |          |
|          | DEC | 7.10E-6   |          |
|          | DEC | 3,00E-6   |          |
|          | DEC | 0,0       |          |
| ALPN     | BSS | 0         |          |
| <b>1</b> | BCD | 5 FISSION | SPECTRUM |
|          | BCD | 5         |          |
|          | END |           |          |

### APPENDIX F

# INPUT INSTRUCTIONS FOR SOURCE ROUTINES AND INPUT FOR THE FISSION DISTRIBUTION PROBLEM, THE SHIELD SOURCE PROBLEM, AND THE CORE-MAPPING PROBLEM

1. Input Instructions

The source input cards, given below, follow the geometry input for O5R. Card 1. Format (3I10)

- a. N $\phi\phi$ P: spatial bias control parameter; N $\phi\phi$ P = 1 for no spatial biasing, N $\phi\phi$ P = 2 to bias both axial and radial selection of source coordinates.
- b. NØR: number of radial boundaries including the smallest radius (normally the center) at which the radial source distribution will be specified; NØR < 25.
- c. NØZ: number of axial boundaries at which the axial source distribution will be specified; NØZ < 30.

Card 2. Format (6F10.0)

a. RRR(J), J = 1, NØR: radial boundary values (normally including 0.0), in cm; if NØØP = 2, the biasing is determined by the size of the radial intervals; neutrons are selected with equal probability from each interval: RRR(J-1) < RRR(J). Within each interval the biased power distribution is taken to be constant.</p>

Card 3. Format (6F10.0)

a. PRØBR(J), J = 1, NØR: if NØØP = 1, PROBR(J) is the normalized cumulative radial power distribution and is assumed to be linear in the radial interval, PRØBR(NØR) = 1.0; if NØØP = 2, PRØBR(J) is the unnormalized radial power distribution and is assumed to be linear in the radial interval.

Card 4. Format (6F10.0)

a. ZEE(J), J = 1, NØZ: axial boundary values, in cm; if NØØP = 2, the biasing is determined by the size of the axial intervals; neutrons are selected with equal probability from each interval and uniformly within the interval ZEE(J-1) < ZEE(J). This corresponds to a constant biased power distribution within each interval.

```
Card 5. Format (6F10.0)
```

a. PRØBZ(J), J = 1, NØZ: if NØØP = 1, PRØBZ(j) is the normalized cumulative axial power distribution and is assumed to be linear in the axial interval, PRØBZ(NØZ) = 1.0; if NØØP = 2, PRØBZ(J) is the unnormalized axial power distribution and is assumed to be linear in the axial interval.

Card 6. Format (3110)

| a. | NØP'I': | angular bias control parameter;                            |
|----|---------|------------------------------------------------------------|
|    |         | NØPT = 1 for unbiased isotropic source,                    |
|    |         | $N \not O PT = 2$ for biased isotropic source.             |
| b. | NØZE:   | number of axial boundaries for axial regions in which      |
|    |         | different angular biasing will be applied. NØZE $\leq 9$ . |
| с. | NANG:   | number of cosine values for boundary angles describing the |
|    |         | biased angular distributions; NANG $< 40$ .                |

Cards 7 and 8 are omitted if NØPT = 1

Card 7. Format (6F10.0)

a. ZE(J), J = 1, NØZE: the axial boundaries, in cm, for regions in which different angular biasing will be applied. ZE(J-1) < ZE(J).

Card 8. Format (6F10.0)

a. ((ANG(L,J), J = 1, NANG), L = 1, NØZE-1)): the cosine of the angles describing the biased angular distributions;
(ANG(L,J-1) > ANG(L,J); within an axial region, specified by L, neutron Z-axis direction cosines are picked with

equal probability from each angular interval. The azimuthal angle is picked isotropically. The real source angular distribution is assumed to be isotropic.

Card 9. Format (1115)

a. IE(K), K = 1, 10: Energy group boundary indices from subroutine FISSN; up to 10 values may be given for the specification of source energy biasing. See table below. Within a group, energy is selected from the <sup>235</sup>U fission spectrum.
b. KFIZ: number of QE values associated with the energy groups defined by the IE's, also, the number of energy groups. See card 10 for QE definition. KFIZ < 9.</li>

FISSN ENERGY GROUP STRUCTURE

| IE               | Energy (MeV)                   |
|------------------|--------------------------------|
| 1<br>2<br>3<br>4 | 0.00<br>0.111<br>0.25<br>0.407 |
| 5                | 0.608                          |
| 7                | 1.11                           |
| 8                | 1.35<br>1.65                   |
| 10               | 1.8                            |
| 11               | 2.02                           |
| 13               | 3.01                           |
| 15               | 4.0                            |
| 16               | 4.5                            |
| 18               | 5.49                           |
| 19<br>20         | 6.0                            |
| 21               | 6.7                            |
| 22<br>23         | 7.0<br>7.5                     |
| 24               | 8.18                           |
| 25               | 9.0                            |
| 27               | 9.5                            |
| 29               | 10.5                           |
| 30               | 11.0                           |

| IE       | Energy (MeV) |
|----------|--------------|
| 31       | 11 5         |
| 32       | 12.2         |
| 33       | 13.0         |
| 34       | 14.0         |
| 35<br>36 | 15.0         |
| 37       | 17.0         |
| 38       | 18.0         |

Card 10. Format (6E12.2)

a. QE(K), K = 1, KFIZ: Biased probability that the source neutron energy will be picked from the IE(K) to IE(K+1) energy interval. Within the interval the energy is selected from the <sup>235</sup>U fission spectrum.  $\Sigma_{K}QE(K) = 1.0$ .

The following cards are for the specification of parameters required for the track length selection using exponential transform (track length stretching). The parameters are region- (05R regions) and energy-dependent. Card 11. Format (215)

- a. KREG: number of 05R regions for the specification of different XNU's (defined on card 13). KREG < 10.
- b. KEG: number of energy group boundaries, EXNU (card 12), for the specification of XNU's by energy group.
- Card 12. Format (6E12.2)
  - a. EXNU(K), K = 1, KEG: energy group boundaries, in MeV, from high to low energy for the specification of XNU's by energy group.

Card 13. Format (6E12.2)

$$B = \frac{1}{1 - (XNU) \cdot \gamma}$$
, but  $B \ge 0.6$ ,

and

$$\mathbb{P}(\Sigma_{\mathrm{T}}\ell) = \frac{1}{\mathrm{B}} e^{-\Sigma_{\mathrm{T}}\ell/\mathrm{B}} ,$$

where

- $\gamma$  = Z-axis direction cosine,
- l = track length,
- $\boldsymbol{\Sigma}_{\mathrm{T}}$  = total macroscopic cross section,
- $\dot{P}$  = biased track length distribution.

2. O5R Subroutine Source Input for the Fission Distribution Problem

|           |           | 2         | 1         |           |           |
|-----------|-----------|-----------|-----------|-----------|-----------|
| 0.0       | 1,1239    | 2.2478    | 3,3717    | 4.4956    | 5,6195    |
| 6,7434    | 7,8673    | 8.9912    | 10,1151   | 11,2390   |           |
| 0.0       | .014084   | ,055882   | .123659   | ,215103   | .326098   |
| .452755   | ,589835   | .869795   | 1.0       |           |           |
| -35,115   | -33.55925 | -32,00350 | -30,44775 | -28,89200 | -27.33625 |
| -25,78151 | -24,22475 | -22.66900 | -21,11325 | -19,55750 | -18,00175 |
| -16.44600 | -14,89025 | -13.33450 | -11,77875 | -10,22300 | -8,66725  |
| -7,11150  | -5,55575  | -4.0000   |           |           |           |
| n.0       | .030200   | .066231   | . 07650   | . 154121  | ,204865   |
| 259216    | .316788   | .376527   | ,437930   | ,50000    | ,562069   |
| 623472    | .683211   | ,740783   | ,795134   | ,845879   | ,892350   |
| .933769   | ,969799   | 1.0       |           |           |           |
|           |           |           |           |           |           |

| 2        | 11       | 21       |                |           |          |       |
|----------|----------|----------|----------------|-----------|----------|-------|
| 0        | 3.5541   | 5.0262   | 6.1559         | 7.1082    | 7,9472   |       |
| 8.7057   | 9,4032   | 10.0525  | 10.6623        | 11.2390   |          |       |
| 1.000000 | .949679  | .900245  | .851680        | .803880   | ,756963  |       |
| .710841  | 665529   | .620992  | .577270        | .534380   |          |       |
| -35,1150 | -23.2133 | -20.0671 | -17,9773       | -16,4148  | -15.1481 |       |
| -14.0609 | -13.0696 | -12.1937 | -11.3809       | -10,6249  | -9.9066  |       |
| -9.2312  | -8,5633  | -7,9333  | =7.3034        | -6.6740   | -6.0448  |       |
| -5.3998  | -4,6999  | -4,0000  |                |           |          |       |
| ,217090  | .949678  | .998644  | ,990243        | .962496   | ,927140  |       |
| .887831  | ,844954  | .801775  | ,757673        | .713271   | ,668210  |       |
| ,623427  | .577031  | .531493  | ,484384        | .435881   | .386105  |       |
| ,333877  | ,275973  | .217090  |                |           |          |       |
| 2        | 2        | 11       |                |           |          |       |
| -35,1150 | -4,0000  |          | 101 March 1001 |           |          |       |
| 1,000000 | ,957927  | .918913  | ,880743        | .839117   | ,775810  |       |
| ,712504  | ,630228  | ,524818  | ,351618        | -1,000000 |          |       |
| 7 12     | 14 16    | 18 21    | 24 28          | 32 38     | 9        |       |
| .0072    | • 1      | 0313     | .043           | .0797     | .1287    | , 187 |
| ,2102    | 2.       | 1795     | .1334          |           |          |       |
| 2 7      |          |          | 5 40           | 7         |          |       |
| 18.0     | ) 8      | 3, 18    | 5,49           | 3,01      | 1.35     | ,40/  |
| . [ ] ]  | 7        | 704      | 0 4 7          | 61 A -=   | 015      | 774   |
| ./2/     |          | 704      | .040           | ,043      | .065     | ,//0  |
| .754     | +        | 108      | , 129          | .000      | ,063     | ,/05  |

3. O5R Subroutine Source Input for the Shield Source Problem

4. 05R Subroutine Source Input for the Core-Mapping Problem

| 2        | 11       | 21       |          |            |                                           |       |     |
|----------|----------|----------|----------|------------|-------------------------------------------|-------|-----|
| 0        | 3.5541   | 5.0262   | 6.1559   | 7.1082     | 7,9472                                    |       |     |
| 8.7057   | 9.4032   | 10.0525  | 10.6623  | 11.2390    |                                           |       |     |
| 1.000000 | .949679  | .900245  | .851680  | .803880    | .756963                                   |       |     |
| 710841   | .665529  | .620992  | .577270  | .534380    |                                           |       |     |
| -35.1150 | -19.3483 | -16.4308 | -14.6577 | -13.2966   | -12,2599                                  |       |     |
| -11.3509 | -10.5525 | -9.8507  | -9.2167  | -8.5981    | -8,0790                                   |       |     |
| -7.5599  | -7.0499  | -6,5973  | -6.1447  | -5.6921    | -5.2618                                   |       |     |
| -4.8412  | -4.4206  | -4.0000  |          | , -, -, -, |                                           |       |     |
| .217090  | .999443  | .962873  | .910659  | .855469    | .805214                                   |       |     |
| ,755987  | ,708920  | .664638  | .622449  | .579482    | .542195                                   |       |     |
| .503929  | 465076   | .429858  | .394170  | .357643    | .322493                                   |       |     |
| 287788   | .252476  | .217090  |          |            | ,                                         |       |     |
| 2        | 5        | 11       |          |            |                                           |       |     |
| -35,1150 | -24.2250 | -16,4460 | .8,6670  | -4.0000    |                                           |       |     |
| 1,000000 | .949557  | .895898  | .842228  | .774077    | .704751                                   |       |     |
| 611731   | ,506629  | .339123  | 019763   | -1.000000  |                                           |       |     |
| 1.000000 | .943056  | .883712  | .821359  | .749103    | .6750ĪI                                   |       |     |
| .573246  | ,455743  | .285995  | -,041101 | -1.000000  | , , , , , ,                               |       |     |
| 1.000000 | ,931528  | .861541  | 785151   | .705558    | .610992                                   |       |     |
| .509876  | .371070  | .183987  | -,175798 | -1.000000  | 54 (* 1951) j. 1975                       |       |     |
| 1.000000 | ,909689  | .817622  | ,721452  | .618734    | .511330                                   |       |     |
| ,384659  | ,236128  | . 126786 | -,336458 | -1.000000  | came (into inter the inter-intervisional) |       |     |
| 4 6      | 8 9      | 11 12    | 14 18    | 24 38      | 9                                         |       | 091 |
| .0685    | ō , I    | 108      | .0876    | .1084      | .1224                                     | .2417 | 101 |
| .1773    | 3.1      | 1708     | .0125    |            |                                           |       | 102 |
| 4 7      |          |          |          |            |                                           |       | 111 |
| 18.0     | 3 (      | 3.18     | 4,5      | 2.02       | 1.35                                      | ,608  | 121 |
| ,4076    | 5        |          |          |            |                                           |       | 122 |
| .6246    | 5,7      | 056      | ,7624    | ,7885      | .8191                                     | ,8713 | 131 |
| ,5534    | 4.6      | 350      | ,6990    | ,7342      | .7825                                     | ,8657 | 132 |
| .4023    | .4       | 847      | .5526    | ,5938      | ,6706                                     | ,8253 | 133 |
| . 3432   | 2 .2     | 307      | .2526    | .2857      | .3034                                     | .4613 | 134 |

### APPENDIX G

# INPUT INSTRUCTIONS AND LISTING FOR PROGRAM NNPCOM

1. Input Instructions

Card 1. Format (A2, 3X, I2, 3XA2, 2XI3, 2XA3)

- a. NAMECOM: two alphanumeric characters to identify the COMMON,
- b. NSIGS: number of energy levels,
- c. NSIGSLFT: number of energy levels, left adjusted,
- d. NØEPTS: number of energy points at which cross sections for each level are defined (same energy points for all levels),
- e. NEPTSLFT: same as NØEPTS but left adjusted.

Card 2 and Card 3 are repeated for each energy level, J.

Card 2. Format (315, 5X, F10.7, 5A8, A2)

- a. TITLE(I), I=1, 3: Element identifier Cross section identifier Interpolation index
- b. QS(J): Energy, in MeV, of Jth level
- c. REF1(J), REF2(J), (TITLE(I), I=4, 7): 42 alphanumeric characters.

Card 3 is repeated for each energy point I=1, NØEPTS

Card 3. Format (2E15.9, 2A8)

- EPT(I): energy, MeV, high to low, at which cross sections are specified,
- b. XXSECT(I,J): inelastic cross section for Jth level,
- c. REFPT1(I,J), REFPT2(I,J): sixteen alphanumeric characters.

When XXSECT(I,J) = 0 then follow card 3 set with a blank card. For levels 2 or greater the energy EPT may be omitted from card 3. 2. Program NNPCOM Listing

```
PRAGRAM NNFCAM
      DIMENSION EPT(100), XXSECT(100,16), SUM(100), PROB(100,16), IDENT(15),
     IOS(15), TITLE(10), REFPT+(100, 15), REFPT2(100, 15), REF1(15), REF2(15)
      EQUIVALENCE (NOEPTI, NOEPTSI)
      DATA(BLANK1=20202020202020202020)
    8 READ(50,102) NAMCOM, NSIGS, NSIGSLFT, NOEPTS, NEPTSLFT
  102 FORMAT(A2, 3x, 12, 3XA2, 2X13, 2XA3)
      NOEPTI=NOEFTS=1
      NSIGSI=NSIGS+1
C
      INITIALIZE ARRAYS
      DO 9 J=2, NCEPTS
      SUM(J)=0.
      DO 9 I=1,NSIGSI
      REFPTI(J,I)=BLANKI
      REFPT2(J,I)=BLANKI
      PRAB(J,1)=0.
    9 XXSECT(J.1)=0.
C
      INPUT LOOP FOR ADDITIONS TO MASTER TAPE
      DO 30 J=1,NSIGS
      10=0
      READ(50,103) (TITLE(1),1=1,3),QS(J),
     |REF|(J), REF2(J), (TITLE(I), I=4,7)
  103 FORMAT(315,5X,F10.7,5A8,A2)
      WRITE(51,205)(TITLE(1), [=],3),QS(J),
     |REF|(J), REF2(J), (TITLE(T), I=4,7)
  205 FORMAT(1H0,315,5X,F10.5,5A8,A2)
  11 10=10+1
      IHI=NCEPTS=IC+1
      IF(J-1) 1003,1004,1003
 1004 READ(50,104)EPT(IHI),XXSECT(IHI,J),REFPT((IHI,J),REFPT2(IHI,J)
 104 FORMAT(2E15.9,2A8)
      Ge TO 1005
 1003 READ(50,1006)XXSECT(IHI,J),REFPTI(IHI,J),REFPT2(IHI,J)
```

```
1006 FARMAT(15X, E15.9.248)
 1005 SUM(IHI)=SUM(IHI)+XXSECT(IHI,J)
      IF(XXSECT(IH1, J)) 11, 29, 11
   29 READ(50,105)BLANK
  105 FORMAT(A8)
   30 CONTINUE
C
      CALCULATE FRABABILITIES
      D0 3003 1=2, NOFPTS
      J=0
 3000 J=J+1
      IF(XXSECT(1, J+1)) 3002,3004,3002
 3002 PRAB(1, J)=XXSECT(1, J)/SUM(1)
      Ge te 3000
 3004 PROB(1, J)=1.
      J2=J-1
      IF(J2) 3003,3003,3006
 3006 DØ 3005 JØ=1, J2
 3005 \text{ PRAB}(I,J) = \text{FRAB}(I,J) = \text{PRAB}(I,Je)
 3003 CONTINUE
   10 De 15 J=1, NSIGS
   15 OS(J)=OS(J)*1.91322E+18
      De 1501=1, NCEPTS
  150 EPT(I)=EPT(I)*1,91322E+12
      NOSTORI=NOEPTSI*NSIGS
      NOSTOR=NOSTORI+NOEPISI+NSIGS+2
      WRITE(52,2000) NAMCOM
 2000 FORMAT(14H
                           IDEN15x, A2, 6HNNPCOM)
      IF(NOSTOR-10) 2003,2004,2004
 2004 IF(NASTOR-100) 2005,2006,2006
 2006 [F(NASTOR-1000) 2007,2008,2008
 2003 WRITE(52,2500) NAMCOM, NOSTER
 2500 FORMAT(A2, 3HNNP, 4X, 5HBLOCK, 5X, II)
      GO TA 2025
 2005 WRITE(52,2501) NAMCOM, NUSTER
 2501 FORMAT(A2, 3HNNP, 4X, 5HBLOCK, 5X, 12)
      Ge Te 2025
```

2007 WRITE(52,2502) NAMCOM, NOSTOR

```
2502 FORMAT(A2, 3+NNP, 4X, 5HBLOCK, 5X, 13)
     Ge TH 2025
2008 WRITE(52,2503) NAMCOM, NOSTER
2503 FORMAT(A2, 3HNNP, 4%, 5HBLOCK, 5%, 14)
2025 WRITE(52,2504)NAMCOM
                         COMMON4XIEN, A2, 6HEPT(1))
2504 FORMAT(15H
     WRITE(52,2505)NAMCOM
                         COMMON.4XIHN, A2, 4HO(1))
2505 FORMAT(15H
     WRITE(52,2506)NAMCOM,NOEPTI
                         COMMON, 4X, 3HSM2, A2, IH(, I3, IH))
2506 FORMAT(15H
     WRITE(52,2507)NAMCOM,NSIGS
                         COMMON, 4X, IHQ, A2, IH(, I2, IH))
2507 FORMAT(15H
     WRITE(52,2508)NAMCOM,NOSTORI
                         COMMON, 4X, 4HPROB, A2, IH(, I4, IH))
2508 FORMAT(15H
     WRITE(52,2509)NAMCOM
2509 FORMAT(13H
                         URGR, 6X, IFN, A2, 3HEPT)
     WRITE(52,2510)NAMCOM
                         REM7XIHNA2, 3HEPT)
2510 FORMAT(12H
     WRITE(52,2511)NEPTSLFT
2511 FORMAT(12H
                         DEC7XA2)
     WRITE(52,2512) NAMCOM
2512 FORMAT(12H
                         REM7XIHNA2, 1HQ)
     WRITE(52,2513)NSIGSLFT
2513 FORMAT(12H
                         DEC7XA4)
     WRITE(52,2514) NAMCOM
2514 FORMAT(12H
                         REM7X3HSM2, A2)
     WRITE(52,2515) (EPT(1),1=2,NCEPTS)
2515 FORMAT(12H
                         DEC6XE(5.8)
     WRITE(52,2516) NAMCOM
2516 FORMAT(12H
                         REM7XIHG, A2)
     WRITE(52,2517) (QS(I), REF1(I), REF2(I), I, I=1, NSIGS)
2517 FORMAT(12H
                         DEC6XE(5.8,7X,2A8,15)
     WRITE(52,2518) NAMCOM
                         REM7X, 4HPROB, A2)
2518 FORMAT(12H
     DO 2519 K=1,NSIGS
2519 WRITE(52,2520)(PRUB(J,K),REFPTI(J,K),REFPT2(J,K),J,K,J=2,NCEPTS)
2520 FORMAT(12H
                         DEC6XE17.10,7X,2A8,15,1H,,12)
```

156

WRITE(52,2521)

- 2521 FORMAT(12H END) WRITE(52,2522)NAMCOM,NAMCOM,NAMCOM,NOEPTSI,NAMCOM,NSIGS,NAM ICOM,NOEPTSI,NSIGS
- 2522 FORMAT(6X,7+COMMON/A2,5HNNP/N,A2,5HEPT,N,A2,5HQ,SM2,A2,1H(I3,3H),Q 1,A2,1H(I2,6H),PROB,A2,1H(I3,1H,,I2,1H))
  - GO TO 8

END

# APPENDIX H

с с

1

05R INELASTIC SUBROUTINES

1. 05R Subroutine NONELAS Listing

|     | SUBROUTINE NONELAS                                                             | 10  |
|-----|--------------------------------------------------------------------------------|-----|
|     | COMMON/SINGLES/BLZON, EBOT, ECUT, EGROUP, EINC, EMONO, ESOUR,                  |     |
|     | IETAPE, ETA, ETATH, ETAUSD, ETOP, FONE, FTOTL, FWATE, ITERS, ITSTR,            |     |
|     | 2LELEM, LF, MARK, MAXGP, MEDIA, MGEREG, MFISTP, MXREG, N, NCOLPR,              |     |
|     | 3NWPCGL,NCGNTL,NCGNT2,NCGNTP,NEWNM,NFISH,NFANE,NFPT,NGEOM.                     |     |
|     | ANGRAUP.NGWT.NHISMX.NHISTR.NINC.NFINC.NPINC.NITS.NKILL.                        |     |
| 6   | SNLAST, NGLAST, NSIGL, NPLAST, NLEFT, NMEM, NMOST, NOEL, NPCOF,                |     |
|     | 6NPTAPE, NOUIT, NROOM, NSOUR, NSPLT, NSTAPE, NSTRT, NTHERM, NTHRML.            |     |
|     | ZNTYPE ALDWI PSTE SPOLD, THETM, TNUC, UINP, UCLD, VINP, VALD.                  |     |
|     | 8WATEF, WINP, WALD, WTAVR, WTHIR, WTI DR, WTRED, WTSTRT, XALD, XSTRT,          |     |
| (   | 9YALD.YSTRT.ZALD.ZSTRT.UNUSED(10)                                              |     |
|     | COMMON/NANNE/NNAEPT, NNAD, SM2NA(38), QNA(5), PROBNA(38,5)                     | 20  |
|     | COMMON/KNNE/NKEPT, NKQ, SM2K(30), QK(4), PROBK(30,4)                           | 30  |
|     | COMMON/U235NNP/NU235FPT.NU235Q,SM2U235(1).0U235(1).PROBU235(1.1)               | 4 0 |
|     | CAMMAN/FENNE/NFEEPT, NFED, SM2FE(35), DFE(6), PRABEE(35.6)                     | 50  |
|     | Camman/CRNNP/NCREPT, NCRO, SM2CR(10), OCR(2), PRABCR(10,2)                     | 60  |
|     | COMMON/NINP/NNIEPT, NNIQ, SM2NI(9), ONI(2), PROBNI(9,2)                        | 70  |
|     | COMMON/ZRNNP/NZREPT,NZRQ,SM2ZR( 4).QZR(1).PROBZR( 4.1)                         | 90  |
|     | COMMON/NEUTRON/NAME, NAMEX.SPCSQ.U.V.W.X.Y.7.WATE.NMED.NREG.BLZNT              | 200 |
|     | ISA=n. LEGENDRE DIST                                                           | 300 |
|     | ISA=1. ISATRAPIC DIST                                                          | 310 |
|     | ISA=1                                                                          | 320 |
|     | GO TO (1,1,1,2,3,4,5,1,1,6) NMED                                               | 330 |
| Ĭ.  | GO TO (10.20.10.30.10.60.10.50.10.70) LELEM                                    | 340 |
| 2   | GG TA (10,10,81, 10,20,10,30,10,70,10,90,91,10,40,10) LELEM                    | 350 |
| 3   | GO TO (10,81, 10,20,10,30) LELEM                                               | 360 |
| 4   | G0 T0 (10,60,10,50,10,70) LELEM                                                | 370 |
| 5   | GO TO (10,81 ) LELEM                                                           | 380 |
| 6   | GO TO (10,20,10,30) LELEM                                                      | 390 |
| 10  | WRITE(51,1000) NMED/LELEM                                                      | 400 |
| 000 | FORMAT(1H1,5HNMED=, 15,3X,6HLELEM=, 15)                                        | 410 |
|     | CALL EXIT                                                                      | 420 |
| 20  | CALL INELAS (NNAEPT, NNAQ, SM2NA, QNA, PROBNA, SPDSQ, U, V, W, WATE, NMED, LEL | 430 |
|     |                                                                                |     |

| IEM, ISC)                                                                         | 440 |
|-----------------------------------------------------------------------------------|-----|
| 100 RETURN                                                                        | 450 |
| 30 CALL INELAS(NKEPT, NKQ, SM2K, QK, PROBK, SPDSQ, U, V, W, WATE, NMED, LELEM, IS | 460 |
|                                                                                   | 470 |
| GO TO IDD                                                                         | 480 |
| 40 CALL INELAS(NU235EPT,NU235G,SM2U235,QU235,PROBU235,SPDSQ,U,V,W,WAT             | 490 |
| IF, NMED, LELEM, ISO)                                                             | 500 |
| G8 T8 100                                                                         | 510 |
| 50 GALL INELAS(NFEEPT,NFEQ,SM2FE,QFE,PROBFE,SPDSQ,U,V,W,WATE,NMED,LEL             | 520 |
| IEM. ISO)                                                                         | 530 |
| GO TO IOU                                                                         | 540 |
| 60 GALL INELAS(NCREPT,NCRO,SM2CR,QCR,PROBCR,SPDSQ,U.V,W,WATE,NMED,LEL             | 550 |
| IEM, 190)                                                                         | 560 |
| GO TO LOD                                                                         | 570 |
| 70 GALL INELAS(NNIEPT, NNIQ, SM2NI, QNI, PROBNI, SPDSQ, U, V, W, WATE, NMED, LEL  | 580 |
| IEM, ISO)                                                                         | 590 |
| GØ TØ 100                                                                         | 600 |
| 90 CALL INELAS(NZREPT,NZRO,SM2ZR,QZR,PR0BZR,SPDSQ,U,V,W,WATE,NMED,LEL             | 640 |
| (EM, ISO)                                                                         | 650 |
| GO TO 100                                                                         | 660 |
| 81 CALL BEN2N(U,V,W,SPDSQ,WATE)                                                   | 670 |
| GO TO IDO                                                                         | 680 |
| 91 CALL ZRN2N(U,V,W,SPDSQ,WATE)                                                   | 690 |
| GO TO 100                                                                         | 700 |
| END                                                                               | 710 |

2. 05R Subroutine BEN2N (UO, VO, WO, SO2, WTO) Listing

```
SUBROUTINE BEN2N(U0,V0,W0,S02,WT0)
   01==2.46*1.91322E+18
   Q2=.79*1.91322E+18
   T=S02+Q1/.9
   IF(T)|0,20,20
10 WRITE(51,12)502,Q1
12 FORMAT(1H0,4HS02=E18.8,3X,3HC1=E18.8,3X,23HINCOMING ENERGY TOO LOW
  1)
   RETURN
20 ROATI=SQRTF(T)
   CALL GTISO(EX, EY, EZ)
   IF(FLTRNF(F1)-.5)30,30,40
30 SPI=.9*R00TI
   U0=. | *U0+SF | *EX
   V0= . | * V0+SF | * EY
   W0=. | *W0+SF | *EZ
   Ge Te 50
40 SP2=. |*R001|
   ROAT2=SQRTF (02/.888889)
   SP3=.9*R0012
   CALL GTISO(EU, EV, EW)
   U0=.1*U0=SF2*EX+SP3*EU
   V0=. 1 * V0 + SF2 * EY + SP3 * EV
   W0=. 1 *W0=SF2*EZ+SP3*EW
50 S02=U0*U0+V0*V0+W0*W0
   WT0=WT0*2.
   RETURN
   END
```

APPENDIX I

O5R SUBROUTINE GETETA LISTING

```
SUBROUTINE GETETA
     COMMON/SINGLES/BLZON, EBOT, ECUT, EGROUP, EINC, EMONO, ESOUR,
    IETAPE, ETA, ETATH, ETAUSD, ETOP, FONE, FTOTL, FWATE, ITERS, ITSTR,
    2LELEM, LF, MARK, MAXGP, MEDIA, MGPREG, MFISTP, MXREG, N, NCOLPR,
    3NWPCAL, NCONTI, NCONT2, NCONTP, NEWNM, NFISH, NFONE, NFPT, NGEOM,
    4NGROUP, NGWT, NHISMX, NHISTR, NINC, NFINC, NPINC, NITS, NKILL,
    5NLAST, NGLAST, NSIGL, NPLAST, NLEFT, NMEM, NMOST, NOEL, NPCOF,
    6NPTAPE, NQUIT, NROOM, NSUUR, NSPLT, NSTAPE, NSTRT, NTHERM, NTHRML,
    7NTYPE, 0LDWT, PSIE, SP0LD, THETM, TNUC, UINP, U0LD, VINP, V0LD,
    8WATEF,WINP,WALD,WTAVR,WTHIR,WTLUR,WTRED,WTSTRT,XALD,XSTRT,
    9YOLD, YSTRT, 20LD, ZSTRT, UNUSED(10)
     COMMON/NEUTRON/NAME, NAMEX, SPCSQ, U, V, W, X, Y, Z, WATE, NMED, NREG, BLZNT
     COMMON/XNU/XNU(10,6), EXNU(7), NXNU
     COMMON/GLOFI/GLOP
     DATA(IST=0)
     IF(IST)3,4,3
4 WRITE(51,100)
100 FORMAT(IHD, 26HDIRECT NEUTRONS TOWARD +Z.)
     DØ 77 I=1,7
  77 EXNU(I)=1.91322E+18*EXNU(I)
     IST = 1
   3 T=SQRTF(SPESQ)
     DIR=W/T
     DØ 78 NXNU=1.6
     IF (SPDSQ=FXNU(NXNU+1)) 78,79,79
  78 CONTINUE
     NXNU=6
  79 CONTINUE
     BIAS=1./(I.-XNU(NREG, NXNU)*DIR)
     IF(BIAS-.6)1,2,2
     BIAS = .6
 1
 2 ETA = BIAS*EXPRNF(X)
     GLOP=BIAS*EXPF(-ETA*(1.-1./BIAS))
```

WATE≠WATE\*GL#P Return End APPENDIX J

LISTINGS FOR PROGRAMS ANALYSIS (FISSION DISTRIBUTION) AND POWPOW

#### 1. Program ANALYSIS Listing

```
PROGRAM ANALYSIS
     COMMON/ASINGLES/NSTRT,NITS.NEIN,NETAPE,ETOP,EBOT.ECUT,NXTAPE,NYTAP
    IE, NFTAPEI, NFTAPE2, NFTAPEP, MECIA, NHISTR, NHISMX, NWPCOL, NSGP, NCOLPR, N
    2ANISMEL, NDSGP, NLAST, KTH, NGROUP, LBATCH, NVAR, NF, NL, IB, NCPSB2, NCPNGP.
    3NCPELEM, NCFMFD, NTYPE, DASE, NRSUM, NZRO, NBSUM, NYTABLE, NGEOM, NM, MGZ, NO
    4NEUT, NYSUM, NZR, IVAR
     COMMAN/CPLIST/NDUMMY(128)
     COMMON/EXTRA9/IRSH
     CALL FIXINFLT
     NCALPH=8
 60 NPARITY=0
     LBATCH=0
  I LBATCH=LBATCH+I
IDI CALL STBATCH
  4 CALL BERREAD
    IF(NTYPE)5,19,15
  5 NPARITY=NPARITY+1
     WRITE(51,7)
  7 FORMAT(34HCPARITY ERROR IN READING COLL TAPE)
     IF (NPARITY-7)4,4,9
  9 LBATCH=LBATCH=I
     IF(LBATCH) |0, |4, |0
  10 CALL ENDRUN
     PRINT 1000, INSH
IDDD FORMAT (IHC////IH , I12,50H CELLISIONS HAVE OCCURRED IN THE FISSION
    IABLE MEDIA)
  14 CALL EXIT
 15 IF(NTYPE-2) 17,9,9
 17 CONTINUE
     IF(LBATCH-NITS)|, 10, 10
  19 DO 41 KTH=1, NCALPR
     ICAL=NDUMMY(KTH)
     IF (ICOL) 4,4,25
```

|      | END                                                                              |
|------|----------------------------------------------------------------------------------|
|      |                                                                                  |
|      |                                                                                  |
|      |                                                                                  |
|      | CHEDRATINE CTRATCH                                                               |
|      | SUDREDITING STRATON                                                              |
|      | COMMON/ASINGLES/NSTRI, NITS, NEIN, NETAPE, ETOP, EBOT, ECUT, NATAPE, NTTAP       |
|      | TE, NF TAPET, NF TAPEZ, NF TAPEP, MEETA, NHISTR, NHISMX, NWPCOL, NSGP, NCOLPR, N |
|      | 2ANISMEL, NDSGP, NLAST, KIH, NGROLP, LBATCH, NVAR, NF, NL, IB, NCPSB2, NCPNGP,   |
| 1    | SNCPELEM, NCFMED, NTYPE, DOSE, NRSUM, NZRO, NBSUM, NYTABLE, NGEOM, NM, MGZ, NO   |
|      | 4NEUT, NYSUM, NZR, IVAR                                                          |
|      | COMMON/CPLIST/NCOLL(8),NAME(8),S12(8),X1(8),Y1(8),Z1(8),WT1(8),                  |
|      | <pre>IS02(8),U0(8),V0(8),W0(8),NGRP(8),NELEM(8),NMED(8),WATEF(8),</pre>          |
|      | 2DUMMY(8)                                                                        |
|      | DATA(IJK=D)                                                                      |
|      | TF(TJK)  ,5,1                                                                    |
| 5    | CALL OSRSET(NHISTR, NHISMX, NREC, NTYPE, NCOLL, NAME, SI2, XI, YI, ZI,           |
|      | INTI, S02, UO, VO, WO, NGKP, NELEM, NMED, WATEF)                                 |
|      | IJK=1                                                                            |
| 11   | CONTINUE                                                                         |
| 1.15 |                                                                                  |

RETURN

IDENT 05RTAPE ENTRY 05RREAD READS ENTRY 05RSET REWINDS AND SETS ARGUMENTS 164

## 25 GO TA (31,32,41,33) ICAL 31 CALL SDATA GO TA 41 32 CALL RELCOL GO TA 41 33 CALL ESCAPE 41 CONTINUE GO TA 4

|        | EXT<br>EXT<br>EXT<br>EXT |        | QAQHUNCH<br>QAQINGCT<br>QAQGOTTY<br>QAQENGCT | IF(UNIT,I)NI<br>WRITE |
|--------|--------------------------|--------|----------------------------------------------|-----------------------|
|        | EXT                      |        | QAQINBFI<br>COOPEULD                         | DELTND                |
|        | EXI                      |        |                                              | REWIND                |
| AFROTT | EXI                      |        |                                              | BACKSPACE             |
| DAKPEI | SLU                      | 4      |                                              |                       |
|        | SIL                      | с<br>Б | SAVEOS                                       |                       |
|        | SIU                      | -      | SAVEDS                                       |                       |
|        | ENI                      | 2      |                                              |                       |
|        |                          | 6      | USKSEI                                       |                       |
|        | CAL                      | C      |                                              | UUU NHISIK UI         |
|        | ADC                      |        | AND ISMA                                     |                       |
|        | CAL                      |        |                                              |                       |
|        | TNI                      | 6      | ANNISIN                                      |                       |
|        |                          | 6      | 0                                            | DOD NEED DO           |
|        | SAL                      | ×.     | NTYPE                                        |                       |
|        | ADS                      |        | 24                                           |                       |
|        | SAL                      |        | NREC                                         |                       |
|        | SAL                      |        | 6(1)                                         |                       |
| MARE   | INI                      | 6      |                                              |                       |
|        | i no                     | F      | n                                            |                       |
|        | ENA                      |        | 0                                            |                       |
|        | LLS                      |        | 6                                            |                       |
|        | AJP                      | N      | ENDLEFT                                      |                       |
|        | LLS                      |        | 18                                           |                       |
|        | SAL                      | 5      | ARGS                                         |                       |
|        | INI                      | E.     | 1                                            |                       |
|        | ENA                      |        | 0                                            |                       |
|        | LLS                      |        | 6                                            |                       |
|        | AJP                      | N      | ENDRIGHT                                     |                       |
|        | LLS                      |        | 18                                           |                       |
|        | SAL                      | L,     | ARGS                                         |                       |
|        | INI                      | 5      |                                              |                       |
|        | SLJ                      |        | MARE                                         |                       |

.

,N2,N3,N4

# 00 NHISMX

NTYPE

| ENDRIGHT        | INI | 6    | I<br>Evit  |                                      |
|-----------------|-----|------|------------|--------------------------------------|
| ANHISTR         |     |      | **         |                                      |
| A.C. 1010       | SAL |      | TAPENUM    | TAPE NUMBER OF HISTORY TAPE          |
|                 | STA |      | =SNHISTR   |                                      |
|                 | SIL | 5    | AI         |                                      |
|                 | RTJ |      | GROREWND   | REWIND NHISTR                        |
| +               | SIL | 5    | NWPCOL     | WORDS PER COLLISION                  |
| •               | ENA |      | 125        |                                      |
|                 | ENQ |      | 0          |                                      |
|                 | DVI |      | NUPCOL     |                                      |
|                 | INA |      | -1         |                                      |
|                 | SAU |      | AZ         |                                      |
|                 | RTJ |      | CKUNIT     |                                      |
| +               | ENA |      | 1          |                                      |
|                 | STA |      | =SNCHECK   |                                      |
|                 | LDA |      | AT         |                                      |
|                 | STA | 5    | ARGS       |                                      |
|                 | LDA |      | A2         |                                      |
|                 | STA | 5    | ARGS+1     |                                      |
|                 | LDA |      | A3         |                                      |
|                 | STA | 11.1 | ARGS+2     |                                      |
| ANHISMX         | LDA |      | **         |                                      |
|                 | INA |      | 1          |                                      |
|                 | STA |      | = SNHISMX  |                                      |
|                 | RTJ |      | BUFFER     |                                      |
| SAVE65          | ENI | 1.7  | **         |                                      |
|                 | ENI | 6    | **         |                                      |
| <b>#5</b> RREAD | SLJ |      | OSRREAD    | ENTRY FOR READING                    |
|                 | SIU | 5    | SAVE65     |                                      |
|                 | SIL | 6    | SAVE65     | SAVE INDEX REGISTERS 5 AND 6         |
|                 | LDA |      | NCHECK     |                                      |
|                 | AJP | N    | ON         | TRANSFER IF TAPE NEEDS TO BE CHECKED |
|                 | RTJ |      | BUFFER     |                                      |
| ON              | RTJ |      | CKUNIT     |                                      |
| +               | AJP | F    | <u>G</u> K |                                      |
|                 | ENA |      | 0          |                                      |

|      | STA<br>Slj |            | NCHECK<br>Save65 |
|------|------------|------------|------------------|
| 0 K  | LDA        |            | A + 1            |
|      | STA        | 7          | NREC             |
|      | LDA        |            | A+2              |
|      | STA        | 7          | NTYPE            |
|      | AJP        | N          | NSKIP            |
|      | SIU        | 6          | IA               |
|      | SIL        | 5          | 16               |
|      | ENI        | e          | 3                |
|      | ENI        | 5          | 0                |
| ARGS | LDA        | 6          | A                |
|      | STA        | 5          | * *              |
|      | LDA        | 6          | A+1              |
|      | STA        | 5          | * *              |
|      | LDA        | 6          | A+2              |
|      | STA        | E.         | * *              |
|      | LDA        | 6          | A+3              |
|      | STA        | 5          | * *              |
|      | LDA        | 6          | A + 4            |
|      | STA        | 53         | * *              |
|      | LDA        | 6          | A+5              |
|      | STA        | 131        | * *              |
|      | LDA        | E          | A+6              |
|      | STA        | 5          | * *              |
|      | LDA        | $\epsilon$ | A + 7            |
|      | STA        | 5          | * *              |
|      | LDA        | 6          | A+8              |
|      | STA        | 5          | * *              |
|      | LDA        | 6          | A+9              |
|      | STA        | 5          | **               |
|      | LDA        | 6          | A+10             |
|      | STA        | 5          | * *              |
|      | LDA        | 6          | A+11             |
|      | STA        | 10         | * *              |
|      | LDA        | 6          | A+12             |
|      | STA        | 5          | **               |

6

A INDEX

| LUA   | 6      | A+13     |
|-------|--------|----------|
| STA   | 5      | * *      |
| LDA   | e      | A+14     |
| STA   | 5      | **       |
| LUA   | E      | A+15     |
| STA   | 5      | * *      |
| LDA   | E      | A+16     |
| STA   | 5      | **       |
| LDA   | 6      | A+17     |
| STA   | 5      | **       |
| I DA  | 6      | A+18     |
| STA   | Ξ      | **       |
| I DA  | E      | A+19     |
| STA   | 5      | **       |
|       | F      | 4+20     |
| STA   | F      | **       |
|       | 6      | 4+21     |
| STA   | F      | **       |
|       | F      | A+22     |
| STA   | 5      | **       |
|       | F      | 4+23     |
| STA   | 5      | **       |
|       | 4      | A . '3 A |
| C T A | 5      | **       |
| 514   | ž      | 4.05     |
| LUA   | 5      | A+20     |
| SIA   | -      | A . O .  |
| LUA   | C<br>E | A+20     |
| STA   | 2      |          |
| LUA   | с<br>с | A+2/     |
| STA   | 2      | **       |
| LUA   | c      | A+28     |
| STA   | 5      | **       |
| LDA   | 6      | A+29     |
| STA   | 11     | **       |
| LDA   | 6      | A+30     |
| STA   | 5      | **       |
| LDA   | 6      | A+31     |

|           | STA  | 5   | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | LDA  | 6   | A+32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  | C 1 | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | LDA  | 6   | A+33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  | 5   | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | LDA  | E   | A+34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  | 5   | * •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | LDA  | E   | A+35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  | 5   | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AI        | INI  | E   | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WORDS PER COLLISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A2        | ISK  | 5   | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COLLISIANS PER RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -         | SLJ  |     | ARGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A 3       | SLJ  |     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16        | ENI  | E   | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •         | ENI  | 5   | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | RTJ  |     | BUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| +         | ENA  |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  |     | NCHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | SLJ  |     | EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NSKIP     | INA  |     | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | AJP  | Ν   | SKIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EOFILE    | 1 DA |     | TAPENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | INA  |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| +         | THS  |     | NHISMX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | IDA  |     | NHISTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  |     | TAPENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | RTJ  |     | GROREWND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REWIND TAPENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| +         | RTJ  |     | HUFFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| +         | SLJ  |     | C NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SKIP      | ENA  |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  |     | NCHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | SIJ  |     | EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CKUNIT    | SLJ  |     | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| anger e l | ENA  |     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | STA  |     | =SPARERRCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| WAIT      | I DA |     | TAPENUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ****      | RTJ  |     | QRQHUNCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IF (UNIT. TAPENUM) WAIT, CKUNIT, EOFILE, P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |      |     | Contraction of the second states of the second stat | and the state of the second seco |

s ,

.

.

169

# PER RECORD

| +        | AJP | M | WAIT                      |                          |
|----------|-----|---|---------------------------|--------------------------|
|          | AJP |   | CKUNIT                    |                          |
|          | QJP | F | ENFILE                    |                          |
| PARITY   | RSC |   | PARERRCT                  |                          |
|          | AJP | r | SFT                       |                          |
|          | LDA |   | TAPENUM                   |                          |
|          | RTJ |   | QRQBACKS                  | BACKSPACE TAPENUM        |
| +        | RTJ |   | BUFFER                    |                          |
| +        | SLJ |   | ΤΙΔW                      |                          |
| SET      | ENA |   | 51                        |                          |
|          | ENQ |   | 5                         |                          |
| +        | RTJ |   | GRQINGOT                  |                          |
|          | 0   |   | 0                         |                          |
| +        | RTJ |   | GRÜGUTTY                  |                          |
|          | 0   |   | RET                       |                          |
| C())     | 0   |   | 0                         |                          |
|          | 01  |   | * *                       | NREC                     |
|          | 0   |   | 0                         |                          |
|          | 01  |   | TAPENUM                   | TAPENUM                  |
| RET      | RTJ |   | GRGENGOT                  |                          |
| +        | ENA |   | - 1                       |                          |
|          | STA | 7 | NTYPE                     |                          |
|          | SLJ |   | CKUNIT                    |                          |
| • • 5    | BCD |   | 4(28HOTAPE ERROR FOL      | LOWING RECORD            |
|          | вср |   | 4, I5, 5X, I   HTAPE NUMB | IER, 15)                 |
| BUFFER   | SLJ |   |                           |                          |
|          | LUA |   | TAPENUM                   |                          |
|          | ENG |   |                           |                          |
|          | RTJ |   | GRUINBFI                  | RUFFER IN(TAPENUM, I)(A, |
| •        | 0   |   | A                         |                          |
|          | U   |   | A+127                     |                          |
| *        | SLJ |   | BUFFER<br>AFROTAD         |                          |
|          | ACT |   | OSAREAD                   |                          |
| TADENIIM | ACT |   | 0                         |                          |
| NDEC     | ACT |   | 0                         |                          |
| NTYOF    | ACT |   | 0                         |                          |
| NITEC    |     |   | U                         |                          |
|     | SUBROUTINE RELCOL                                                              | 40  |
|-----|--------------------------------------------------------------------------------|-----|
|     | COMMON/CPLIST/NCOLL(8),NAME(8),S12(8),X1(8),Y1(8),Z1(8),WT1(8),                | 50  |
|     | [S02(8),U0(E),V0(8),W0(8),NGRF(8),NELEM(8),NMED(8),WATEF(8),                   | 60  |
|     | 2DUMMY(8)                                                                      | 70  |
|     | COMMANZASINGLESZNSTRT,NITS,NEIN,NETAPE,ETOP,EBOT,ECUT,NXTAPE,NYTAP             | 80  |
|     | IE, NFTAPEI, NFTAPE2, NFTAPEP, MECIA, NHISTR, NHISMX, NWPCOL, NSGP, NCOLPR, N  | 90  |
|     | 2ANISMEL, NDSGP, NLAST, KTH, NGROLP, LBATCH, NVAR, NF, NL, IB, NCPSB2, NCPNGP, | 100 |
| ,   | 3NCPELEM, NCFMFD, NTYPE, D9SE, NRSUM, NZRO, NBSUM, NYTABLE, NGEOM, NM, MGZ, NO | 110 |
|     | 4NEUT, NYSUM, NZR, IVAR                                                        | 120 |
|     | COMMON/EXTRAI/ZZZ(31), RRR(25), KR, KZ, FWT(25, 30, 20), KZZ, RRR2(25), KR     | 130 |
|     | IR,LBAT,LBATC,BCDID(I2),VAR(25,30),FWTAVE(25,30),KZI                           | 140 |
|     | COMMON/EXTRA9/IRSH                                                             | 141 |
|     | IF (LBATCH-LBAT) 100,100,101                                                   | 150 |
| 100 | RETURN                                                                         | 160 |
| 101 | LBATM=LBATCH-LBAT                                                              | 170 |
|     | 00   KZZ=2,KZ                                                                  | 200 |
|     | LRSH=1                                                                         | 201 |
|     |                                                                                |     |

| SUBRAUTINE | SDATA | 10 |
|------------|-------|----|
| RETURN     |       | 20 |
| END        |       | 30 |

| SUBROUTINE | ESCAPE |
|------------|--------|
| RETURN     |        |
| END        |        |

BSS END 128 Α

1

.

|   | IF (ZZZ(KZZ)=Z](KTH)) 1,2,2                      | 210 |
|---|--------------------------------------------------|-----|
| ١ | CONTINUE                                         | 220 |
|   | KZZ=KZ                                           | 230 |
|   | IRSH=IRSH-I                                      | 231 |
|   | LRSH=0                                           | 232 |
| 2 | KZ7=KZ7=1                                        | 240 |
|   | IRSH=IRSH+I                                      | 241 |
|   | RSQ=X1(KTH)**2+Y1(KTH)**2                        | 250 |
|   | DØ 3 KRR=1,KR                                    | 260 |
|   | IF (RRR2(KFR)-PSQ) 3,4,4                         | 270 |
| 3 | CONTINUE                                         | 280 |
|   | KRR=KR                                           | 290 |
|   | IRSH=IRSH-LESH                                   | 291 |
|   | FWT(KRR,KZZ,LBATO)=FWT(KRR,KZZ,LBATO)+WATEF(KTH) | 310 |
|   | G0 T4 100                                        | 320 |
|   | END                                              | 330 |

|    | SUBROUTINE ENDRUN                                                          | 400 |
|----|----------------------------------------------------------------------------|-----|
|    | COMMON/EXTRA1/ZZZ(31), RRR(25), KR, KZ, FWT(25, 30, 20), KZZ, RRR2(25), KR | 410 |
|    | IR, LBAT, LBATC, BCDID(12), VAR(25, 30), FWTAVE(25, 30), KZ1               | 420 |
|    | DO 20 I = I * KB                                                           | 500 |
|    | DØ 20 K=1,K21                                                              | 510 |
|    | FWTSUM=0.0                                                                 | 520 |
|    | VARK=0.0                                                                   | 530 |
|    | FNITS=LBATC                                                                | 540 |
|    | DO 8 J=I,LEATO                                                             | 550 |
|    | FWTSUM=FWTSUM+FWT(I+K+J)                                                   | 560 |
|    | VARK=VARK+FxT(I,K,J) **2                                                   | 570 |
| 8  | CONTINUE                                                                   | 580 |
|    | FWTAVE(I,K)=FWTSUM/FNITS                                                   | 590 |
|    | VARK=VARK/FNITS                                                            | 600 |
|    | VAR(I,K)=SCRTF((VARK-FWTAVE(I,K)**2)/(FNITS-I.D))                          | 610 |
| 20 | CUNTINUE                                                                   | 620 |
|    | DØ 30 I=1,KR                                                               | 630 |
|    |                                                                            |     |

|      | DO 30 K=1, KZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 640 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | IF (FWTAVE(I,K)) 31,31,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 650 |
| 31   | VAR(I,K)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 660 |
|      | G0 T0 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 670 |
| 32   | VAR(I,K) = IE(I, I) + VAR(I,K) / FWTAVE(I,K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 680 |
| 30   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 690 |
|      | DA 700 I=1.KP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|      | IF (I=1) 772.201.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 701  | RP=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 101  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 702  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 703  | ADD = 3 + 4 + 5 + (DDRO(1) - RP) + (777(K+1) - 777(K))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 700  | $E_{L} L_{L} L L L L L L L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 100  | rwinverijojerwinverijoj/aka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 601 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 603 |
| 4.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700 |
| 40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700 |
| 99   | RETURN<br>ROINT LOOD (RODID(I) I-1 IC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 701 |
| 1000 | $[a_{\text{PA}}] = [a_{\text{PA}}] = $ | 102 |
| 1000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 710 |
| 1001 | FRINT 1001, LEATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120 |
| 1001 | FORMAT (THU, 34H FISSION DISTRIBUTION FOR THE LAST, 13, 9H BATCHES,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /30 |
| 1005 | FORMAL (IND, 29X, 37HOUTER BOUNDARY OF RADIAL INTERVAL, CM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 740 |
|      | PRINT TUU2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150 |
|      | IF (KH-LPHINT) 43,44,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 760 |
| 42   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 770 |
|      | G0 T0 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 780 |
| 43   | LPRINEKR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 790 |
| 444  | PRINT 1003, (PRR(I), I=KPRINT, LPRIN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 800 |
| 1003 | FORMAT (1H ,7X, 4E22.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 810 |
|      | PRINT 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 820 |
| 1004 | FORMAT (IH ,27x,7HPERCENT,15x,7HPERCENT,15x,7HPERCENT,15x,7HPERCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 830 |
| 1    | T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 840 |
|      | PRINT 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 850 |
| 1005 | FORMAT (IH , 12H LOWER Z, CM, 5X, 16HFISSION WT DEV, 6X, 16HFISSION W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 860 |
| 1    | T DEV, 6X, 16HFISSION WT DEV, 6X, 16HFISSION WT DEV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 870 |
|      | DØ 44 K=1,KZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 880 |

1

.

| 44   | PRINT IOU6,222(K),(FWTAVE(I,K),VAR(I,K),I=KPRINT,LPRIN) | 890 |
|------|---------------------------------------------------------|-----|
| 1006 | FORMAT(IH , E12.3,4(3X, E12.3,0P1F7.1))                 | 900 |
|      | PRINT 1007,272(KZ)                                      | 910 |
| 1007 | FORMAT (IH , EI2.3)                                     | 920 |
|      | KPRINT=KPRINT+4                                         | 930 |
|      | LPRINT=LPRINT+4                                         | 940 |
|      | GC TA 40                                                | 950 |
|      | END                                                     | 960 |

|      | SUBRAUTINE FIXINPUT                                                            | 1000 |
|------|--------------------------------------------------------------------------------|------|
|      | COMMON/ASINGLES/NSTRT,NITS,NEIN,NETAPE,ETOP,EBOT,ECUT,NXTAPE,NYTAP             | 1010 |
|      | IE,NFTAPEI,NFTAPE2,NFTAPEP,MECIA,NHISTR,NHISMX,NWPCOL,NSGP,NCOLPR,N            | 1020 |
|      | 2ANISMEL, NDSGP, NLAST, KTH, NGROLP, LBATCH, NVAR, NF, NL, IB, NCPSB2, NCPNGP, | 1030 |
|      | 3NCPELEM, NCFMFD, NTYPE, DOSE, NRSUM, NZRO, NBSUM, NYTABLE, NGEOM, NM, MGZ, NO | 1040 |
|      | 4NEUT, NYSUM, NZR, IVAR                                                        | 1050 |
|      | COMMON/EXTFA1/222(31), RRR(25), KR, KZ, FWT(25, 30, 20), KZZ, RRR2(25), KR     | 1060 |
|      | R,LBAT,LBATC,BCDID( 2),VAR(25,30),FWTAVE(25,30),KZ                             | 1070 |
|      | COMMON/EXTEA9/1RSH                                                             | 1071 |
|      | READ (50,1000) (BCD1D(1),1=1,12)                                               | 1080 |
| 00   | D FORMAT (1246)                                                                | 1090 |
|      | READ (50, [COI) NHISTR, NHISMX, NITS, LHAT, KR, KZ                             | 1100 |
|      | KZ1=KZ-1                                                                       | 1110 |
|      | DØ  0 I=1,25                                                                   | 1120 |
|      | DØ  0 J=1,30                                                                   | 1130 |
|      | DØ   D K=1,20                                                                  | 1140 |
| 11   | 0 FWT(1,J,K)=0.0                                                               | 1150 |
|      | READ (50,1002) (RRR(I),I=1,KR)                                                 | 1160 |
|      | READ (50,1002) (ZZZ(1),1=1,KZ)                                                 | 1170 |
| 00   | I FORMAT (6112)                                                                | 1180 |
| 1001 | 2 FORMAT (6612.4)                                                              | 1190 |
|      | DO II I=I,KR                                                                   | 1200 |
| 1    | RRP2(1)=RRF(1)**2                                                              | 1510 |
|      | IRSH=0                                                                         | 1511 |
|      | RETURN                                                                         | 1550 |

2. Program POWPOW Listing

```
PRAGRAM POLPAW
  COMMAN/MAIN/R(25),
                            Z(31), AR(25), AS(25), AC(25), P(25, 30), F(25),
 IPOW(30),121,122,R2(25),DR2(25)
  DATA (X=9.73325), (IX=22)
  READ (50,1000) R
  READ (50,1000) Z
  READ (50, 1000)((P(1, J), J=1, 30), 1=1, 25)
  De 4 I=IX,25
  AR(I)=3,14159*(R(I)+R(I-1))*(R(I)-R(I-1))/6.0
  AS(I)=(3,|4|59*R(I)**2/2.0)+X*SQRTF(R(I)**2+X**2)+R(I)**2*ASINF(X/
 |R(I))
 IF (I=IX) 2,1,2
| AS(I-1)=0.0
2 \text{ AC(I)} = \text{AR(I)} + \text{AS(I-I)} = \text{AS(I)}
4 F(I) = AR(I) / AC(I)
 ne 5 J=1,30
  DØ 5 1=1X,25
5 P(I,J) = P(I,J) * F(I)
  CON2=R(9)**2-R(8)**2
  CON1=R(8)**2-R(7)**2
  CON=CONI+CEN2
  D0 6 J=1,3C
6 P(9, J) = (P(5, J) * CON2+P(8, J) * CON1)/CON
  CON2=R(7)**2-R(6)**2
  CONI=R(6)**2-R(5)**2
  CON=CONI+CON2
  De 7 J=1,30
7 P(8, J)=(P(7, J)*CON2+P(6, J)*CCNI)/CON
  CON5=R(5)**2=R(4)**2
  CON4=R(4)**2-R(3)**2
  CON3=R(3)**2-R(2)**2
  CON2=R(2)**2-R(1)**2
  CONI=R(1)**2
```

```
CON=CON5+CEN4+CON3+CON2+CON1
   De 8 J=1.30
 8 P(7, J)=(P(5, J)*CON5+P(4, J)*CON4+P(3, J)*CON3+P(2, J)*CON2+P(1, J)*CON
  11)/CAN
   R(8)=R(7)
   R(7)=R(5)
   R(6) = 0.0
   IZ1=1
   IZ2=5
   ILCOP=1
 9 FI=172-121+1
   De 11 1=7,25
   GLAP=0.0
   DO 10 J=121,122
10 GLep=GLep+F(I,J)
|| POW(I)=GLOF/FI
   CALL PRINTERI
  GO TO (21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),1L00P
21 IZ1=6
   IZ2=9
   ILCOP=2
   GO TO 9
22 IZI=10
   122=12
   ILMOP=3
   GO TO 9
23 IZI=13
   122=15
   ILCOP=4
   GO TO 9
24 IZI=16
   IZ2=18
   ILCOP=5
   GO TO 9
25 IZ1=19
   122=21
   ILAOP=6
```

| 26 | Gđ ta 9<br>IZI=22<br>IZ2=25             |
|----|-----------------------------------------|
| 27 | IL00P=7<br>G0 T0 9<br>IZ1=26            |
| 28 | IL00P=8<br>G0 T0 9<br>IZI=1             |
| 20 | IZ2=9<br>ILMOP=9<br>G0 T0 9             |
| 29 | 121=10<br>122=15<br>1L00P=10<br>60 T0 9 |
| 30 | IZI=16<br>IZ2=21<br>IL00P=11            |
| 31 | G0 T0 9<br>IZI=22<br>IZ2=30<br>IL00P=12 |
| 32 | GØ TØ 9<br>IZI=1<br>IZ2=15              |
| 33 | ILAOP=13<br>GO TO 9<br>IZI=16<br>IZ2=30 |
| 34 | ILMOP=14<br>Go TM 9<br>IZI=1            |
|    | 122=30<br>IL00P=15<br>G0 T0 9           |

· ·

```
35 CONTINUE
    De 36 I=6,25
  36 R2(I)=R(I)**2
     DØ 37 1=7,25
 37 DR2(1)=R2(1)-R2(1-1)
    171=7
    IZ2=9
     ILOOP=1
 39 CONTINUE
1000 FORMAT(6E12.5)
    De 42 J=1,30
    F1=0.0
    GLOP=0.0
    De 41 I=121,122
     F_{I=F_{I+DR2(I)}
 41 GL0P=GL0P+F(1, J)*DR2(1)
 42 POW(J)=GLOF/FI
    CALL PRINTERS
    Ge Te (51,52,53,54,55,56,57,58,59,60,61),1LOAP
 51 IZ1=10
    122=13
    ILOOP=2
    Ge Te 39
 52 1Z1=14
    122=17
    ILAOP=3
    GO TO 39
 53 IZI=18
    122=21
    ILAOP=4
    GO TO 39
  54 IZ1=22
    122=25
     ILMOP=5
    GO TA 39
 55 IZ1=7
    122=13
```

178

ILAOP=6 GO TO 39 56 IZI=14 122=19 ILAGP=7 GO TH 39 57 IZI=20 122=25 ILAAP=8 60 TH 39 58 IZ1=7 122=16 ILCOP=9 GO TO 39 59 IZI=17 122=25 ILPOP=10 GO TO 39 60 IZ1=7 172=25 ILAGP=11 GO TO 39 61 CONTINUE CALL EXIT

END

```
SUBROUTINE PRINTERI

COMMON/MAIN/R(25),Z(31),AR(25),AS(25),AC(25),P(25,30),F(25),

IPOW(30),IZI,IZ2,R2(25),DR2(25)

PRINT 1000,Z(IZI),Z(IZ2+1)

1000 FORMAT (IHI,7SNAP-TSF FISSION DISTRIBUTION PROGRAM POWPOW7//IH,

I7RADIAL DISTRIBUTION FOR Z INTERVAL7,F8.3,3H T0,F8.3//IH,

270UTER RADIUS OF FISSION WEIGHT7/IH,7INTERVAL, CM7,6X,

37PERVOLUME7)
```

```
PRINT 1001,(R(I),POW(I),I=7,25)

1001 FORMAT (IH ,FI3.3,EI6.3)

GLOP=0,0

D0 | I=7,25

I GLOP=GLOP+FOW(I)*(R(I)**2=R(I=I)**2)

D0 2 I=7,25

2 POW(I)=POW(I)/GLOP

PRINT 1000,2(IZI),Z(IZ2+I)

PRINT 2000

2000 FORMAT (IH ,7********NORMALIZED*******7)

PRINT 1001,(R(I),POW(I),I=7,25)

RETURN

END PRINTEFI
```

```
SUBROUTINE PRINTER2
    COMMON/MAIN/R(25),Z(31),AR(25),AS(25),AC(25),P(25,30),F(25),
   |POW(30), IZ1, IZ2, R2(25), DR2(25)
    PRINT 1000, R(IZI=1), R(IZ2)
1000 FORMAT(1H1,7SNAP=TSF FISSION DISTRIBUTION PROGRAM POWPOW7//1H ,
   ITAXIAL DISTRIBUTION FOR R INTERVALT.F8.3.3H TO.F8.3//IH .
   27LOWER Z OF7,8X,7FISSION WEIGHT7/IH ,7INTERVAL, CM7,6X;
   37PERVOLUME7)
    PRINT 1001, (Z(1), POW(1), I=1,30)
    PRINT 1002,2(31)
1001 FORMAT (1H ,F13,3,E16.3)
1002 FORMAT (1H .F13.3)
    GLOP=0.0
    DO | 1=2,31
   I GLep = GLep + Few(1 = 1) * (Z(1) = Z(1 = 1))
    De 2 1=1,30
  2 POW(I)=POW(I)/GLOP
    PRINT 1000, R(IZ|-1), R(IZ2)
    PRINT 2000
```

PRINT |00|.(Z(I),P0w(I),I=1.30) PRINT |002,Z(31) RETURN END PRINTEF2

### APPENDIX K

# INPUT INSTRUCTIONS FOR PROGRAM ANALYSIS (OF FISSION DISTRIBUTION) AND FOR POWPOW; SNAP-TSF DATA FOR PROGRAM ANALYSIS

1. Input Instructions - ANALYSIS

Card 1. Format (12A6)

a. BCDID(I), I = 1, 12: Seventy-two alphanumeric characters.

Card 2. Format (6I12)

a. NHISTR: The logical number assigned to the first collision tape.

b. NHISMX: The highest logical number a collision tape may be assigned.

c. NITS: The number of batches (  $\leq 20$ ).

d. LBAT: The first LBAT batches will be omitted in the calculations of power distribution and reactivity.

e. KR: Number of radial boundaries, excluding the center, for intervals defining the radial fission distribution (KR < 25).

f. KZ: Number of axial boundaries for intervals defining the axial fission distribution (KZ < 31).

Card 3. Format (6E12.4)

a. RRR(I), I=1, KR: Radial boundaries, in cm, excluding the center, for intervals defining the radial fission distribution.

Card 4. Format (6E12.4)

a. ZZZ(I), I=1, KZ: Axial boundaries, in cm, for intervals defining the axial fission distribution (ZZZ(I-1) < ZZZ(I)).

This program assumes that the O5R run, which generated the collision tapes, uses specific values of NBIND and NC $\phi$ LLS that were given in the O5R input for the fission distribution (Appendix D).

Non-standard tapes required: NHISTR through NHISMX.

### 2. Input Instructions - POWPOW

- multiplies the fission weight in each interval by the ratio of the radial ring area to the area of the core hexagon within that ring;
- combines radial intervals 8 and 9 into one interval and calls it interval 9;
- c. combines radial intervals 6 and 7 into one interval and calls it interval 8;
- combines radial intervals 1 through 5 into one interval and calls it interval 7.

Items b, c, and d were required because of poor statistics in the core center due to the smaller ring area resulting in fewer neutrons selected there.

PØWPØW then proceeds to average the radial fission distribution over larger axial intervals and to average the axial fission distribution over larger radial intervals. The size of the larger intervals is built into the program. The results are printed.

For all cards: Format (6E12.5); use as many cards as necessary.

Card 1. R(I), I=1, 25: the radial interval boundaries, in cm, excluding the center.

Card 2. Z(I), I=1, 31: the axial interval boundaries, in cm.

Card 3. ((P(I,J), J=1, 30), I=1, 25): the fission distribution as printed from program ANALYSIS; axial values from 1 to 30 are read for each radial interval. 3. ANALYSIS (of Fission Distribution) Input

| SNAP-TSF F | ISSION | DISTRIBUTI | ON TAPES | X=39 4,3899, | 3854,3890,35 | 97,3897-89 | 10 |
|------------|--------|------------|----------|--------------|--------------|------------|----|
|            | 1      | 7          | 14       | 5            | 25           | 31         | 20 |
| • 4        | 45     | ,90        | 1.35     | 1,80         | 2.25         | 2.70       | 31 |
| 3,         | 15     | 3.60       | 4,05     | 4,50         | 4,95         | 5.40       | 32 |
| 5,8        | 35     | 6.30       | 6,75     | 7,20         | 7.65         | 8.10       | 33 |
| 8.5        | 55     | 9.00       | 9,45     | 9.90         | 10,35        | 10.80      | 34 |
| 11.23      | 39     |            |          |              |              |            | 35 |
| -35.11     | 15     | -34.073    | -33.036  | -31,999      | -30.962      | -29,925    | 4  |
| =28,88     | 38 -   | -27,851    | -26,814  | -25,777      | -24.740      | -23,703    | 42 |
| -22,60     | 56     | -21,629    | -20,592  | -19.555      | -18,518      | -17,481    | 43 |
| -16.44     | 14     | -15.407    | -14,370  | -13,333      | -12,296      | -11,259    | 44 |
| -10,22     | 22     | -9,185     | -8,  48  | -7,111       | -6.074       | -5,037     | 45 |
| -4.00      | 0 0    |            |          |              |              |            | 46 |

We walk a second

#### APPENDIX L

# INPUT INSTRUCTIONS AND PROGRAM LISTINGS FOR PROGRAMS BIASOR AND IMPORT

1. Input Instructions - BIASOR

Card 1. Format (9A8)

a. BCDID(I), I=1,9: 72 alphanumeric characters.

Card 2. Format (4I12)

- a. INTSTRT: starting  $S_n$  interval index in the core (INTSTRT < 40).
- b. INTEND: final  $S_n$  interval index in core (INTESTRT < INTEND < 40).
- c. IGPSTRT: starting S energy group index (lowest energy of interest) (IGPSTRT  $\leq 27$ ).
- d. IGPEND; final  $S_n$  energy group index (highest energy of interest) (IGPEND < 27).

Card 3. Format (6E12.5)

Note: One set of cards for each S<sub>n</sub> interval, J=INTSTRT, INTEND

a. FLUX(I,J), I=IGPSTRT, IGPEND: The adjoint S flux from the lowest energy group to the highest energy group of interest.

Card 4. Format (6E12.4)

a. Z(J), J=INISTRT, INTEND: the lower axial boundary for each space interval.

Card 5. Format (6E12.5)

a. P(J), J=INTSTRT, INTEND: the power distribution at each space interval.

Card 6. Format (6E12.5)

a. F(I), I=IGPSTRT, IGPEND: the fraction of the fission neutrons produced in energy group I.

Card 7. Format (6E12.5)

a. E(I), I=IGPSTRT, IGPEND: the lower energy boundary, in MeV, for each energy group.

2. Input Instructions - IMPORT

This program calculates the XNU's using adjoint  $S_n$  flux data. A region of constant cross section may be divided into several broad Z intervals containing two or more of the  $S_n$  intervals. The flux is then input as a function of energy at each of these broad interval boundaries. Since the adjoint flux is an average value for the  $S_n$  interval, the broad interval boundary should be a midpoint of a  $S_n$  interval. Either the total flux or the angular flux for any angular interval may be input. As many regions of constant cross section as desired may be input. The following card set is for a region of constant cross section.

Card 1. Format (9A8)

a. BCDID(I), I=1,9: 72 alphanumeric characters.

Card 2. Format (3I12)

a. NEGP: number of energy groups to be processed (NEGP  $\leq 27$ ) energy runs from low to high values.

b. NINTZ: number of broad Z intervals over which XNU is to be averaged (NINTZ < 10).

c. NSTRTGP: starting energy group S<sub>n</sub> index (NSTRTGP  $\leq 27$ ).

Card 3. Format (6E12.5)

a. Z(I),I=1,NINTZ+1: Z boundaries, in cm. of broad Z intervals; should be the midpoints of S<sub>n</sub> intervals [Z(I) < Z(I+1)].

Card 4. Format (6E12.5)

Note: One set of cards for each boundary of the broad Z intervals (I=1,NINTZ+1).

a. PHI(N,I), N=1, NEGP: adjoint S flux for each energy group.

Card 5. Format (6El2.5)

-

a. CRØSS(N),N=1,NEGP: total macroscopic cross section for each energy group.

#### 3. Program BIASOR Listing

```
PRAGRAM BIASAR
     COMMON/FIRST/FLUX(27,40), BCDID(9), P(4n), F(27), INTSTRT, INTEND, IGPST
    IRT, IGPEND, IPAWER, FLUXE(27), GE(27), FLUXZ(4n), FLUXZZ(4n), Z(41), E(28)
     DIMENSION NE(27)
   I READ (50,1000) BCDID
1000 FORMAT (9A8)
     READ (50, [CO]) INTSTRT, INTENC, IGPSTRT, IGPEND
1001 FORMAT (6112)
     DØ 2 J=INTSTRT, INTEND
   2 READ (50,1002) (FLUX(1,J), I=1GPSTRT, IGPEND)
1002 FORMAT (6E12.5)
     READ (50, 1002) (Z(J), J=INTSTRT, INTEND)
   3 READ (50,1002) (P(J), J=INTSTRT, INTEND)
   4 READ (50,1002) (F(I), I=1GPSTRT, IGPEND)
     READ (50, 1002) (E(I), I=IGPSTRT, IGPEND)
   5 DO 6 I=IGPSTRT, IGPEND
     FLUXE(I)=0.0
     DØ 7 J=INTSTRT, INTEND
   7 FLUXE(I)=FLUXE(I)+P(J)*FLUX(I,J)
   6 QE(I)=FLUXE(I)*F(I)
     GL0P=0.0
     DØ 8 I=IGPSTRT, IGPEND
   8 GLOP=GLOP+GE(I)
     DØ 9 I=IGPSTRT, IGPEND
   9 QE(1)=QE(1)/GL0P
  10 DØ 11 J=INTSTRT, INTEND
     FLUX7(J)=0.0
     DO 12 I=IGFSTRT, IGPEND
  12 FLUXZ(J) = FLUXZ(J) + F(I) + FLUX(I,J)
  II FLUXZZ(J)=FLUXZ(J)*P(J)
     GLOP=0.0
     DO 13 J=INTSTRT, INTEND
  13 GLOP=GLOP+FLUXZZ(J)
```

```
DØ 14 J=INTSTRT, INTEND
```

- 14 FLUXZZ(J)=FLUXZZ(J)/GLOP
- 15 PRINT 2000, BCDID
- 2000 FORMAT (IHI,9A8) PRINT 2001,(J,Z(J),P(J),FLUXZ(J),FLUXZZ(J),J=INTSTRT,INTEND)
- 2001 FORMAT (IH0,7BIASED POWER DISTRIBUTION CALCULATION7//IH ,2HSN,8X,5 IHLOWER,6X,6HACTUAL,7X,8HSPECTRUM,7X,6HBIASED/9H INTERVAL,3H Z,10X 2,5HPOWER,8X,8HAVERAGED,7X,5HFOWER/7H NUMBER,4X,8HBOUNDARY,3X, 37DISTRIBUTION ADJOINT FLUX DISTRIBUTION7/(I6,1X,2F12,6,E15,4,F13 4,6))
- 20 PRINT 2000,BCDID PRINT 2002,(1,E(1),F(I),FLUXE(I),QE(I),I=IGPSTRT,IGPEND)
- 2002 FORMAT (IH0,7SOURCE ENERGY SELECTION PARAMETER QE7//IH ;2HSN,8X, I5HLOWER,6X,7HFISSION,6X,I3HPOWER (SPACE)/7H ENERGY,4X,6HENERGY,5X, 26HSOURCE,7X,8HAVERAGED,7X,I0HNORMALIZED/6H INDEX,5X,3HMEV,8X, 38H(FISESN),5X,7ADJOINT FLUX QE7/(I6,IX,2FI2.6,EI5.4,F9.4)) DO 21 I=IGFSTRT,IGPEND OE(I)=10000.0\*QE(I)
  - 21 NE(I)=QE(I) NGLOP=0 DO 22 I=IGFSTRT,IGPEND
  - 22 NGLOP=NGLOF+NE(I) GLOP=NGLOP GLOP=GLOP/10000.0 PRINT 2003,GLOP
- 2003 FORMAT (IHC,39X,5HTOTAL,FI0.4) GO TA I END BIASOR

4. Program IMPORT Listing

```
PREGRAM IMPORT
     DIMENSION FHI(27, 11), Z(11), DELZ(10), BCDID(9), DLAM(27, 10), CROSS(27)
    1,XNU(27,10)
 100 READ (50,1000) BCDID
1000 FORMAT (9A8)
INDI FORMAT (IHI, 9A8)
     READ (50,1002) NEGP, NINTZ, NSTRTGP
1002 FORMAT(6112)
     NINTZI=NINTZ+1
     READ (50,1003) (Z(I),I=1,NINTZI)
1003 FORMAT (6E12.5)
     DO I I=I,NINTZI
   I READ (50,1003) (PHI(N,I),N=1,NEGP)
     DO 2 I=2,NINTZI
     DELZ(I=1)=Z(I)-Z(I=1)
     DO 2 N=1.NEGP
   2 DLAM(N, I-I)=LOGF(PHI(N, I)/PHI(N, I-I))/DELZ(I-I)
     READ (50,1003) (CRASS(N), N=1, NEGP)
     DO 3 I=2.NINTZI
     DO 3 N=1, NEGP
   3 \times NU(N, I-I) = DLAM(N, I-I)/CRUSS(N)
     DO 4 I=I,NINTZ
     PRINT IDDI, BCDID
     PRINT 1004, Z(1), Z(1+1)
1004 FORMAT (IHC, 28X, 7Z BOUNDARIES7/F8.2, 4H TO , F8.2/11X, 2HGP, 3X, 5HCROS
    IS, 5x, 6HLAMEDA, 3X, 3HXNU)
     DO 4 N=1, NEGP
     NI=NSTRTGP+N=1
     PRINT 1005,NI,CROSS(N ),DLAM(N,I),XNU(N,I)
1005 FORMAT (1H ,10X,12,F11.6,2F8.4)
   4 CONTINUE
     G0 TA 100
     END
```

06T

#### APPENDIX M

### INPUT INSTRUCTIONS AND PROGRAM LISTING FOR PROGRAM SORSPREP

### 1. Input Instructions

SØRSPREP points and punches input cards required by the O5R source routines when the biasing options are desired. On cards 2, 13, and 17 described below, the values should be the same as those desired in the source routine input. If NØØP = 2, source routine cards 1 through 5 will be punched. If NØPT = 2, source routine cards 6 through 8 will be punched (see Appendix F for source routine card descriptions).

Card 1. Format (9A8)

a. BCDID(I), I=1,9: 72 alphanumeric characters.

Card 2. Format (3I12)

- a. N $\phi\phi$ P: spatial bias control parameter; N $\phi\phi$ P = 1 specifies no spatial biasing, N $\phi\phi$ P = 2 specifies bias for both the axial and radial selection of source coordinates.
- b. NØR: number of radial boundaries including the center at which the radial source distribution will be specified  $(N\emptyset R \le 25)$ .
- c. N $\phi$ Z: number of axial boundaries at which the axial source distribution will be specified (N $\phi$ Z < 30).

Omit cards 3 through 12 if  $N\phi\phi P = 1$ 

- Card 3. Format (2I12)
  - a. KR: number of radial boundaries including the center defining the radial biased source distribution histogram (KR < 51).
  - b. KZ: number of axial boundaries defining the axial biased source distribution histogram (KZ < 51).
- Note: input radial and axial biased distributions may have different interval specifications than the desired output distributions.

Card 4. Format (6E12.5)

a. RRB(K),K=1,KR: radial boundaries, in cm, for the radial biased source distribution histogram (including the smallest value).

Card 5. Format (6E12.5)

a. PRØBRB(K), K=1, KR-1: radial biased source distribution histogram.

Card 6. Format (6E12.5)

a. ZZZ(K),K=1,KZ: axial boundaries, in cm, for the axial biased source distribution histogram.

Card 7. Format (6E12.5)

a. PRØBZB (K), K=1, KZ-1: axial biased source distribution histogram.

Card 8. Format (2112)

- a. NR: number of radial boundaries including the center defining the actual radial source distribution (NR  $\leq$  51).
- b. NZ: number of axial boundaries defining the actual axial source distribution (NZ < 51).

Note: input actual radial and axial distributions are specified at the interval boundaries and are assumed to be linear over the interval; they may have different interval specifications than the input biased distributions and the desired output distributions.

Card 9. Format (6E12.5)

a. RACT(K), K=1, NR: radial boundaries, in cm, for the actual radial source distribution (including the smallest value).

Card 10. Format (6E12.5)

 a. PRØBRA(K),K=1,NR: actual radial source distribution at each radial boundary; distribution is assumed to be linear between boundaries.

Card 11. Format (6E12.5)

a. ZACT(K), K=1, NZ: axial boundaries, in cm, for the actual axial source distribution.

Card 12. Format (6E12.5)

a. PRØBZA(K), K=1, NZ: actual axial source distribution at each axial boundary; the distribution is assumed to be linear between boundaries.

Card 13. Format (3I12)

- a. NØPT: angular bias control parameter; NØPT=1, unbiased isotropic source; NØPT=2, biased isotropic source.
- b. NØZE: number of axial boundaries for axial regions in which different angular biasing will be applied (NØZE < 9).
- c. NANG: number of cosine values for boundary angles describing the biased angular distributions.

# Omit cards 14 through 17 if NØPT = 1

Card 14. Format (I12)

a. KANG: number of cosine values to be read in for the angle boundaries defining the biased angular distribution (KANG < 51).

Card 15. Format (6E12.5)

a. CMU(K),K=1,KANG: cosine value from -1.0 to +1.0 for the angle boundaries defining the biased angular distribution.

Card 16. Format (6E12.5)

- Note: One set of cards for each of the N $\phi$ ZE-l axial regions (see card 13). I=l,N $\phi$ ZE-l.
  - a. PRØBMU(I,K),K=1,KANG-1: biased source angular distribution histogram.

Card 17. Format (6E12.5)

a. ZE(I),I=l,N $\phi$ ZE: the axial boundaries, in cm, for regions in which different angular biasing will be applied {ZE(I-1) < ZE(I)}. 2. Program SORSPREP Listing

```
PRAGRAM SOFSPREP
      COMMON/MAIN/BCDID(9),NOOP,NOF,NOZ,KR,KZ,KRI,KZI,PROBRB(50),PROBZB(
     150), NORI, NEZI, ZZZ(51), RRB(51), NRI, NZI, RACT(51), PROBRA(51), NR, NZ,
     2ZACT(51), PROBZA(51), NOPT, NOZE, NANG, NOZE, KANG, KANG, CMU(51), PROBMU
     3(8,50)
                ,RRR(25),ZEE(30),ZE(9),C(50),PR0RR(25),PR0PZ(3n),NANG()
     4ANG(8,41)
C
      THIS PROGRAM PREPARES INPUT FOR THE BIASING OPTIONS IN SUBROUTINE
C
      SOURCE.
      READ (50, 1000) BCDID
 1000 FORMAT (9AE)
      READ (50, 1001) NOOP, NOR, NOZ
      IF (NOOP-1) 1,2,1
    I READ (50,1001) KR,KZ
      KRI=KR-I
      KZI=KZ-I
 1001 FORMAT (6112)
      READ (50,1002) (RRB(K),K=1,KR)
 1002 FORMAT(6E12.5)
      READ (50,1002) (PROBRB(K),K=1,KR1)
      READ (50,1002) (ZZZ(K),K=1,KZ)
      READ (50,1002) (PROBZB(K), K=1, KZ1)
      READ (50, [001) NR, NZ
      NRI=NR=1
      NZI=NZ=1
      READ (50,1002)(RACT(K),K=1,NR)
      READ (50, 1002) (PROBRA(K), K=1, NR)
      READ (50,1002)(ZACT(K),K=1,NZ)
      READ (50, 1002) (PROBZA(K), K=1, NZ)
      NORI=NOR-I
      NOZI=NOZ-I
    2 READ (50, ICOI) NOPT, NOZE, NANG
      NOZEI=NOZE-I
      IF (NOPT-1) 3,5,3
```

```
3 READ (50, ICOI) KANG
   KANGI=KANG-I
   READ (50,1002)(CMU(K),K=1,KANG)
   DO 4 I=1,NCZEL
 4 READ (50, ICO2) (PROBMU(I,K), K=I, KANGI)
   READ (50, 1002) (ZE(1), I=1, NOZE)
 5 CONTINUE
   IF (NOOP-1) 91,150,91
91 GLAP=0.0
   DO 6 K=1,KFI
 6 GLOP=GLOP+FROURB(K)*(RRB(K+1)**2-RRB(K)**2)/2.0
   DO 7 K=1,KF1
   PROBRB(K)=FROBRB(K)/GLOP
 7 C(K)=PROBRE(K)*(RRB(K+1)**2#RRB(K)**2)/2.0
   FINT=NORI
   FINT=1.0/FINT
   RRR(1)=RRB(1)
   K=1
   DO 20 I=1,NCRI
   CPRIME=PROERB(K)*(RRB(K+1)**2=RRR(1)**2)/2.0
   IF (CPRIME-FINT) 10,9,9
 9 RRR(1+1)=SCRTF(RRR(1)**2+2,0*FINT/PROBRB(K))
   GO TA 20
10 DØ 15 L=1,50
   KAL=K+L
   IF (KAL-KRI) 99,99,90
90 KAL=KAL-I
   GO TA II
99 CPRIME=CPRIME+C(KAL)
   L=L
   IF (CPRIME-FINT) 15,11,11
II CPRIME=CPRIME=C(KAL)
12 RRR(I+I)=SGRTF(RRB(KAL)**2+2.0*(FINT-CPRIME)/PROBRB(KAL))
   K=KAL
   GO TO 20
15 CONTINUE
```

```
20 CONTINUE
```

```
PROBR(1)=PFCBRA(1)
     PROBR(NOR)=PROBRA(NR)
     DO 30 N=2, NCRI
     DO 25 NI=2, NR
     IF (RRR(N)=RACT(NI)) 23,24,25
  23 PROBR(N)=PFOBRA(NI-I)+(PROBRA(NI)-PROBRA(NI-I))*(RRR(N)=RACT(NI-I))
    1)/(RACT(NI)-RACT(NI=I))
     GO TO 30
  24 PROBR(N) = PFORRA(NI)
     GO TO 30
  25 CONTINUE
  30 CONTINUE
     PUNCH 2000, NOOP, NOR, NOZ
2000 FORMAT(3110)
     PUNCH 2001, (RRR(J), J=1, NOR)
2001 FORMAT(6FIC.4)
     PUNCH 2002, (PROBR(J), J=1, NCR)
2002 FORMAT(6FIC.6)
     PRINT 3000, ECDID
3000 FORMAT (1H1,9A8)
     PRINT 3001, NOCP, NOR, NOZ
3001 FORMAT (1HC, 3110)
     PRINT 3002, (RRR(J), J=1, NOR)
3002 FORMAT (1H0,6F10.4/(6F10.4))
     PRINT 3003, (PROBR(J), J=1, NOR)
3003 FORMAT (1HC, 6F10.6/(6F10.6))
     GLAP=0.0
     DO 106 K=1,KZ1
106 GLAP=GLOP+FROBZB(K)*(ZZZ(K+1)=ZZZ(K))
     DO 107 K=1,KZ1
     PROBZB(K) = FROBZB(K)/GLOP
107 C(K)=PROBZE(K)*(ZZZ(K+1)=ZZZ(K))
     FINT=NOZI
     FINT=1.0/FINT
     ZEE(1)=ZZZ(1)
```

- K=1
- D0 120 I=1,N021

```
CPRIME=PROEZB(K)*(ZZZ(K+1)-ZEE(I))
    IF (CPRIME-FINT) 110,109,109
109 ZEE(I+I)=ZEE(I)+FINT/PROBZE(K)
    GO TO 120
110 DO 115 L=1,50
    KAI = K+L
    IF (KAL-KZI) 199,199,190
190 KAL=KAL-I
    GO TO III
199 CPRIME=CPRIME+C(KAL)
    IF (CPRIME-FINT) 115,111,111
III CPRIME=CPRIME=C(KAL)
112 ZEE(I+1)=ZZZ(KAL)+(FINT-CPRIME)/PROBZB(KAL)
    K=KAL
    GO TO 120
115 CONTINUE
120 CONTINUE
    PROBZ(1) = PFOBZA(1)
    PROBZ(NOZ) = PROBZA(NZ)
   DO 130 N=2, NAZI
```

123 PROBZ(N)=PFCBZA(NI+I)+(PROBZA(NI)-PROBZA(NI-I))\*(ZEE(N)-ZACT(NI-I)

L=L

DO 125 NI=2,NZ

124 PROBZ(N) = PROBZA(NI)

150 IF (NOPT-1) 151,400,151

GO TO 130

GO TA 130 125 CONTINUE 130 CONTINUE

151 NANGI=NANG-1 FINT=NANGI

1)/(ZACT(NI)-ZACT(NI-I))

PUNCH 2001, (ZEE(J), J=1, NOZ) PUNCH 2002, (PROBZ(J), J=1, NCZ) PRINT 3002, (ZEE(J), J=1, NOZ) PRINT 3003, (PROBZ(J), J=1, NCZ)

IF (7EE(N)-ZACT(NI)) 123,124,125

```
FINT=1.0/FINT
    D0 300 M=1, NAZEI
    GLAP=0.0
    10 206 K=1, KANG1
206 GLOP=GLOP+FROBMU(M,K)*(CMU(K+1)=CMU(K))
    D0 207 K=1, KANG1
    PRABMU(M,K) = PRABMU(M,K)/GLOP
207 C(K) = PROBML(M,K) * (CMU(K+1) - CMU(K))
    ANG(M, I) = CNU(I)
    K=1
    D0 220 I=1, NANG1
    CPRIME=PROEMU(M,K)*(CMU(K+1)-ANG(M,1))
    IF (CPRIME-FINT) 210,209,209
209 ANG(M, I+1) = ANG(M, I) + FINT/PROEMU(M, K)
    GO TO 220
210 DO 215 L=1,50
    KAL=K+L
    IF (KAL-KANGI) 299,299,290
290 KAI = KAL - 1
    GO TO 211
299 CPRIME=CPRIME+C(KAL)
    1 =1
    IF (CPRIME-FINT) 215,211,211
211 CPRIME=CPRIME=C(KAL)
212 ANG(M, I+1)=CMU(KAL)+(FINT=CPRIME)/PROBMU(M, KAL)
    K=KAL
    GO TO 220
215 CONTINUE
220 CONTINUE
300 CONTINUE
    PUNCH 2000, NOPT, NOZE, NANG
    PRINT 3001, NAPT, NOZE, NANG
    PUNCH 2001, (ZE(J), J=1, NUZE)
    PRINT 3002, (ZE(J), J=1, NHZE)
    DO JOIMEL, NOZEL
    NONG=NANG/2
```

```
D0 302 N=1, NHNG
```

STAR=ANG(M,N) NUT=NANG=N+1 ANG(M,N)=ANG(M,NUT) 302 ANG(M,NUT)=STOR PUNCH 2002,(ANG(M,N),N=1,NANG)

.

301 PRINT 3003, (ANG(M,N), N=1, NANG)

- 400 CONTINUE
  - CALL EXIT

#### APPENDIX N

# INPUT INSTRUCTIONS, FLOW DIAGRAM, AND LISTINGS FOR PROGRAM SNARLS; LISTINGS FOR PROGRAM CKSOURTP AND SUBROUTINE SNEUT(X,Y,Z,A,B,C,W,E,NTAPE,NSKIP)

### 1. Input Instructions for Program SNARLS

The following SNARLS input instructions use nomenclature based on the following geometrical configuration. The reactor system is enclosed by a cylinder whose axis is the Z axis and by two planes parallel to the X,Y plane. Since the Z direction runs from the top to the bottom of the reactor system, the "top" plane (located at or above the reactor system) is at a smaller Z location than the "bottom" plane (located at or below the reactor system). The "bottom" plane is at the reactor-shield interface. Neutrons leaking from one or two of these three leakage surfaces may be used to prepare a leakage source tape.

SNARLS was written with the assumption that the  $\phi$ 5R problem which prepared the collision tape would have data for NC $\phi$ LL=4 and the following NBIND values (see reference 2 for variable definitions):

11100011111111000100011010000000000.

Card 1. Format (9A8)

- a. BCDID(I), I=1,9: 72 columns alphanumeric characters.
- Card 2. Format (6I12)
  - a. NHISTR: logical number, first 05R collision tape
  - b. NHISMX\*: highest logical number for an O5R collision tape
  - c. NSØR\*\*: logical number intermediate source tape; if NSØR=0, there will be no source tape preparation.
  - d. NSØR1\*\*: logical number, final source tape.
  - e. NBAT: omit first NBAT batches on the first 05R collision tape.
  - f. NITS: number of batches to be processed from the O5R collision tapes including the first NBAT batches.

\*Collision tape logical numbers will be from NHISTR through NHISMX. \*\*Logical numbers NSØR+1 and NSØR1+1 may also be used if reels on NSØR or NSØR1 are filled. Card 3. Format (6112)

- a. NATS: not used; leave blank
- b. NSTRT: not used; leave blank
- c. IGRP: number of energy groups for both angular flux results and weight standards input; IGRP < 10.
- d. JTYPE1: first JTYPE to be considered for source tape preparation.
- e. JTYPE2: second JTYPE to be considered for source tape preparation (JTYPE1 may equal JTYPE2).
- f. NCRS: logical number, scratch tape.

JTYPE LEAKAGE CRITERIA FOR SOURCE TAPE

- 1 leakage from bottom plane, positive Z direction cosine
- 2 leakage from cylinder, positive Z direction cosine
- 3 leakage from cylinder, negative Z direction cosine

4 leakage from top plane, negative Z direction cosine

Card 4. Format (6112)

- a. NFLUXZ: number of axial intervals for calculation of angular leakage flux from the cylinder; if NFLUXZ=0, the calculation is omitted (NFLUXZ  $\leq 20$ ).
- b. NFLUXR: number of radial intervals for calculation of angular leakage flux from the bottom plane; if NFLUXR=0, the calculation is omitted (NFLUXR < 10).</p>
- c. NMUZ: number of equal cosine of the polar angle intervals on 0. to 1.0 for calculation of angular leakage flux from the cylinder (polar direction is outward normal to cylinder (NMUZ < 5).
- d. NMUR: same as NMUZ but for the bottom plane (polar direction is Z direction) (NMUR < 5).
- e. NPHIZ: number of equal azimuthal angle intervals on 0. to  $2\pi$  for calculation of the angular leakage flux from the cylinder (NPHIZ  $\leq 6$ ).
- f. NPHIR: same as NPHIZ but for the bottom plane (NPHIR < 6).

Card 5. Format (5E12.4)

a. ZTØP: not used, leave blank.

- b. ZBØT: not used, leave blank.
- c. ZTØPNEW: The top leakage plane, in cm, ZTØPNEW should be smaller than any Z in the reactor system.

d. ZBØTNEW: the bottom leakage plane, in cm, ZBØTNEW should be equal to or greater than the largest Z in the reactor system (ZBØTNEW > ZTØPNEW).

e. RCYLIN: the radius, in cm, of the leakage cylinder with axis coinciding with Z axis. The reactor system should lie within this cylinder.

Card 6. Format (6E12.4)

a. ERUS(I), I=1, IGRP: energy group boundaries, in MeV, from high to low energy with the highest boundary omitted; used to specify weight standards as well as tabulating angular flux results.

Card 7. Format (6E12.4)

a. CØSTHETA(I), I=1, IGRP: cosine of the angle  $\theta$  for which  $\gamma \ge \cos\theta$ ( $\gamma = Z$  direction cosine) neutrons are biased differently than  $\gamma < \cos\theta$  neutrons. If  $\cos\theta = -1.0$ , there will be the same biasing for all  $\gamma$ 's;  $\cos\theta$  defines two angular groups for each energy group at which different weight standards may be applied.

Card 8. Format (6E12.4)

a. WK(I),I=1,IGRP: Russian roulette weight standard factor by energy group applied to neutrons with γ ≥ COSTHETA(I); when neutron weight, W, is less than WK(I)\*WBAR(I,JTYPE) (see cards 14 and 16), the survival fraction is W/(WK(I)\*WBAR(I,JTYPE)); surviving neutrons are given the weight, WK(I)\*WBAR(I,JTYPE).

Card 9. Format (6E12.4)

 a. WKl(I),I=l,IGRP: Russian roulette weight standard factor by energy group applied to neutrons with γ < COSTHETA(I); when neutron weight, W, is less than WKl(I)\*WMAX(I, JTYPE) (see cards 15 and 17), the survival fraction is W/(WKl(I)\*WMAX(I,JTYPE)); surviving neutrons are given the weight WKl(I)\*WMAX(I,JTYPE).

Card 10. Format (6E12.4)

- a. SWK(I), I=1, IGRP: Splitting weight standard factor by energy group
  - 1. for neutrons with γ ≥ COSTHETA(I) and weight, W, greater than SWK(I)\*WBAR(I,JTYPE) (see cards 14 and 16), the neutron is split W/(SWK(I)\*WBAR(I,JTYPE))+1 times;
  - for γ < COSTHETA(I) and weight, W, greater than SWK(I)\*WMAX(I,JTYPE) (see cards 15 and 17), the neutron is split W/(SWK(I)\*WMAX(I,JTYPE))+1 times.

Card 11. Format (6E12.4)

Omit this card if NFLUXZ=0 (on card 4)

a. ZZZ(N),N=1,NFLUXZ+1: the axial boundaries, in cm, for the calculation of angular leakage flux from the cylinder; ZZZ(1) ZTØPNEW;(ZZZ(NFLUXZ+1) ZBOTNEW).

Card 12. Format (6E12.4)

- Omit this card if NFLUXR=0 (on card 4)
  - a. RRR(N),N=1,NFLUXR: the radial boundaries, in cm, zero center omitted for the calculation of angular leakage flux from the bottom plane; RRR(NFLUXR)=RCYLIN.

Omit the remaining cards if  $NS\phi R=0$  (on card 2)

Card 13. Format (\$16,18)

- a. RANDOM: the starting random number
- b. NREAD: must be 1

Card 14. Format (6E12.4)

a. WBAR(I,JTYPE1), I=1, IGRP: the optimum weight by energy group for important neutrons with  $\gamma \geq \text{COSTHETA}(I)$ ; given for leakage criterion JTYPE1 (on card 3). Card 15. Format (6E12.4)

a. WMAX(I,JTYPEl),I=l,IGRP: the optimum weight by energy group for important neutrons with  $\gamma < \text{COSTHETA}(I)$ ; given for leakage criterion JTYPEL (on card 3).

Card 16. Format (6E12.4)

a. WBAR(I,JTYPE2),I=1,IGRP: same as card 14 but for leakage criterion JTYPE2 (on card 3).

Card 17. Format (6E12.4)

a. WMAX(I,JTYPE2),I=1,IGRP: same as card 15 but for leakage criterion JTYPE2 (on card 3).







Program SNARLS, Page 2


3. Program SNARLS Listing

|   |     | PRAGRAM SNARLS                                                                | 01000101 |
|---|-----|-------------------------------------------------------------------------------|----------|
|   |     | COMMANZNAINZKTH,LBATO,LBATCH,NTYPE,NHISTR,NHISMX,NSOR,                        | 01006201 |
|   |     | INBAT, NITS, NELUXZI, NELUXRI                                                 | 01000202 |
|   |     | COMMON/SIXTE/ALP(50), BET(50), COSTHETA(10), ERUS(10),                        | 01000213 |
|   |     | IGAM(50), IGEP, JTYPE1, JTYPE2, JTY(50), LBATER(50),                          | 01000214 |
|   |     | 2NSARI, NAMO, NAMT, SENGSQ(50), WAITER(50), X0(50), Y0(50), Z0(50)            | 01000215 |
|   |     | COMMAN/CPLIST/NCALL(8), NAME(8), S12(8), X1(8), Y1(8), Z1(8),                 | 01000222 |
|   |     | <pre>IWTI(8),S62(8),U0(8),V0(8),W0(8),6LDWT(8),NGRP(8),NELEM(8),NMED(8)</pre> | 01006223 |
|   | 1   | 2, DUMMY(8)                                                                   |          |
|   |     | CALL FIXINFLT                                                                 | 01000301 |
|   |     | NAMT=0                                                                        | 01000301 |
|   |     | NAMSTOR=0                                                                     | 01000301 |
|   |     | NCALPR=8                                                                      | 01000302 |
|   |     | MPARITY=0                                                                     | 01000303 |
|   |     | L BATCH=0                                                                     | 01000304 |
|   | 1   | LBATCH=LBATCH+I                                                               | 01000305 |
|   |     | CALL STBATCH                                                                  | 01000306 |
|   | 4   | CALL OSRREAD                                                                  | 01000307 |
|   |     | IF (NTYPE) 5,19,15                                                            | 01000308 |
| С | 19  | NORMAL RECERD FROM COLLISION TAPP.                                            | 01000309 |
|   | 19  | DO 41 KTH=1, CALPR                                                            | 01000310 |
|   |     | ICAL=NCOLL(KTH)                                                               | 01000311 |
|   |     | IF (ICOL) 4,4,25                                                              | 01000312 |
|   | 25  | IF (ICOL-4) 41,33,41                                                          | 01000313 |
|   | 33  | CALL ESCAPE                                                                   | 01000314 |
|   | 41  | NAMSTOR=NAME(KTH)                                                             | 01000315 |
|   |     | GC TA 4                                                                       | 01000316 |
| C | 15  | TEST END OF PUN OR END OF BATCH.                                              | 01000317 |
|   | 15  | IF (NTYPE=2) 17,9,9                                                           | 01000318 |
| C | 9   | END OF RUN.                                                                   | 01000319 |
|   | 9   | IF (NSOR) 91,900,91                                                           | 01000320 |
|   | 91  | CALL SURSET                                                                   | 01000321 |
|   | 900 | LBATØ=LBATC+I                                                                 | 01000321 |

|   |     | NAMT=NAMT+NAMSTOR                                       | 01000321 |
|---|-----|---------------------------------------------------------|----------|
|   | 90  | CALL SCRACHIT                                           | 01000322 |
|   | 92  | LBATCH=LBATCH-I                                         | 01000323 |
|   |     | IF (LEATCH) 10,14,10                                    | 01000324 |
|   | 10  | CALL ENDRUN                                             | 01000325 |
|   | 14  | CALL EXIT                                               | 01000401 |
| C | 17  | END OF BATCH.                                           | 01000402 |
|   | 17  | IF (NBAT-LEATCH) 93,944,944                             | 01000403 |
|   | 944 | NAMO=NAMO+NAMSTOR                                       | 01000403 |
|   |     | NAMT=NAMT+NAMSTOR                                       | 01000403 |
|   |     | G0 T0 94                                                | 01000403 |
|   | 93  | LBAT0=LBATC+I                                           | 01000404 |
|   |     | NAMT=NAMT+NAMSTOR                                       | 01000404 |
|   |     | CALL SCRACFIT                                           | 01000405 |
|   | 94  | IF (LEATCH-NITS) 1,95,95                                | 01000406 |
|   | 95  | IF (NSOR) 97,10,97                                      | 01000407 |
|   | 97  | CALL SORSET                                             | 01000408 |
|   |     | GO TO ID                                                | 01000409 |
| C | 5   | ERROR IN READING COLLISION TAPE,                        | 01000410 |
|   | 5   | NPARITY=NPARITY+I                                       | 01000411 |
|   |     | WRITE(51,1000)NPARITY                                   | 01000412 |
| 1 | non | FORMATCIHI, 70 ARITY ERROR IN READING COLLISION TAPE.7, | 01000413 |
|   |     | 17 NPARITY=7,12)                                        | 01000414 |
|   |     | IF (NPARITY=20)4,4,92                                   | 01000415 |
|   |     | END                                                     | 01000416 |

| SUBROUTINE FIXINPUT                                                | 02000101 |
|--------------------------------------------------------------------|----------|
| COMMMN/MAIN/KTH, LBATC, LBATCH, NTYPE, NHISTR, NHISMX, NSOR,       | 02000201 |
| INBAT, NITS, NELUXZI, NELUXRI                                      | 02000202 |
| COMMON/SECEND/ALPHAI, BETAI, CMU, CMUD, FNPHIR, FNPHIZ, FNMUR,     | 02000203 |
| IFNMUZ, GAMMAI, IANGL, NMUZ, NMUR, NPHIZ, NPHIR, PHI,              | 02000204 |
| 2PHICOS, PHISIN, P                                                 | 02000205 |
| COMMON/THIFD/NCRS, NFLUXZ, NFLLXR, NESCAPE(10,4),                  | 02000206 |
| IRANGFLUX(IC, 20, 30), WBAR(I0, 4), ZANGFLUX(I0, 20, 30), BCDID(9) | 02000207 |

| COMMAN/FARTE/ALPHA(50),BETA(50),GAMMA(50),IEGPI(50),               | 02000208 |
|--------------------------------------------------------------------|----------|
| IJTYPER(50),LRATY(50),NCOLS(50),SENG2(50),WAIT(50),                | 02000209 |
| 2×S(50),YS(50),ZS(50)                                              | 02000210 |
| COMMON/FIFTH/JTYPE, HCYLIN, ZTCP, ZBOT, ZTOPNEW,                   | 02000211 |
| ZBOTNEW                                                            | 02000212 |
| COMMON/SIXTE/ALP(50),BET(50),COSTHETA(10),ERUS(10),                | 02000213 |
| IGAM(50), IGFF, JTYPE1, JTYPE2, JTY(50), LBATER(50),               | 02000214 |
| 2NSARI, NAMO, NAMT, SENGSQ(50), WAITER(50), X0(50), Y0(50), 70(50) | 02000215 |
| COMMMN/SEVENTH/NFLUXZ2,NRITE,RRR(10),WMAX(10,4),                   | 02000216 |
| WTHETAI(10,4), WTHETA2(10,4), ZZZ(21)                              | 02000217 |
| COMMON/EIGETH/NATS, NSTRT, SWK(10), WK(10), WK(10)                 | 02000218 |
| COMMMN/GOODY/NESCAPEI(10,4),NESCAPE2(10,4)                         | 02 229   |
| READ(50, LOCO) PODID                                               | 02000301 |
| IDDD FORMAT(9A8)                                                   | 02000302 |
| PRINT 2000, RCDID                                                  | 02000303 |
| 2000 FORMAT(IHI, 9Ab)                                              | 02000304 |
| READ(50, 10(1) NHISTR, NHISMX, NSOR, NSOR, NRAT, NITS              | 02000305 |
| READ(50, 10(1) NATS, NSTRI, IGRE, JTYPEL, JTYPE2, NCRS             | 02000306 |
| NATS=NSOR                                                          | 02000306 |
| PEAD(50, 10(1) MFLUX2, NFLUXR, NMUZ, NMUR, NPHIZ, NPHIR            | 02000307 |
| IDDI FORMAT(6112)                                                  | 02000308 |
| PRINT 2001, MHISTR, NHISMX, NSCR, NSCRI, NEAT, NITS,               | 02000309 |
| INATS, NSTRT, IGRP, JTYPEI, JTYPE2, NORS,                          | 02000310 |
| 2NFLUXZ, NFLUXR, NMUZ, NMUR, NPHIZ, NPHIR                          | 02000311 |
| 2001 FORMAT(1H0,7NHISTR=7,13,3X,7NHISMX=7,13,5X,                   | 02000312 |
| 7NSOR=7, 13, 4X, 7NSOR =7, 13, 4X, 7NBAT=7, 14, 4X,                | 02000313 |
| 27NITS=7,14,3x,7NATS=7,14,3x,7NSTRT=7,14/3H                        | 02000314 |
| 37IGRP=7,13,3x,7JTYPE1=7,12,4x,7JTYPE2=7,12,6X,                    | 02000315 |
| 47NCRS=7,13,24,7NFLUXZ=7,13,3X,7NFLUXR=713,6X,                     | 02000316 |
| 57NMUZ=7,12,4x,7NMUR=7,12/2H ,7NPH1Z=7,12,5x,                      | 02000317 |
| 67NPHIR=7,12)                                                      | 02000318 |
| READ(50,10[2) ZTOP,ZROT,ZTOPNEW,ZBOTNEW,RCYLIN                     | 02000319 |
| 1002 FORMAT(6E12.4)                                                | 02000320 |
| READ(50, 10(2) (ERUS(1), 1=1, IGRP)                                | 02000321 |
| C INDEX I=1,IGPP RUNS FROM HIGH TO LOW ENERGY.                     | 02000322 |
| C ENERGY, ERLS(I), IS IN MEV.                                      | 02000323 |
| $READ(50, IOC2)  (COSTHETA(\mathbf{I}), \mathbf{I=I, IGRP})$       | 02000324 |

,

.

|      | READ(50,1002) (WK(I),I=(,IGRF)                                   | 02000325 |
|------|------------------------------------------------------------------|----------|
|      | READ(50, 1002) (wKI(I), I=1, IGRP)                               | 02000401 |
|      | PEAD(50, 10C2) (SWK(I), I=1, IGFP)                               | 02000402 |
|      | PRINT 2002, ZTAP, ZROT, ZTOPNEK, ZBOTNEW, RCYLIN                 | 02000403 |
| 2002 | FORMAT(4H0 ,72T0P=7,E12,4,6X,72801=7,E12,4/1H,                   | 02000404 |
|      | 172TOPNEW=7, E12.4, 3X, 7ZROTNEW=7, E12.4, 3X, 7RCYLIN=7, E12.4) | 02000405 |
|      | PRINT 2102, (ERUS(1), 1=1, 1GRF)                                 | 02000406 |
|      | PRINT 2202, (CASTHETA(I), 1=1, IGRP)                             | 02000407 |
|      | PRINT 2302, (WK(1), 1=1, IGRP)                                   | 02000408 |
|      | PRINT 2402, (WKI(1), I=1, IGRP)                                  | 02000409 |
|      | PRINT 2502, (SWK(1), J=1, IGRP)                                  | 02000410 |
| 2102 | FORMAT(1HD,7FHUS(1),1=1,1GRP7/1H ,(8E12.4))                      | 02000411 |
| 5505 | FORMAT(IH0,7COSTHETA(I),I=1,IGRP7/IH ,(8E12.4))                  | 02000412 |
| 2302 | FORMAT(1H0,7HK(1),1=1,1GRP7/1H ,(8E12.4))                        | 02000413 |
| 2402 | FORMAT(1H0,7%K1(1),1=1,1GRP7/1H ,(8E12.4))                       | 02000414 |
| 2502 | FORMAT(1H0,7SWK(1),1=1,1GRP7/1H ,(8E12.4))                       | 02000415 |
|      | IF (NFLUXZ) 11,11,10                                             | 02000416 |
| 10   | NFLUYZ2=NFLLYZ+1                                                 | 02000417 |
|      | READ(50,10(2) (ZZZ(N),N=1,NFLUXZ2)                               | 02000418 |
|      | PRINT 2602, (ZZZ(N),N=I,NFLUXZ2)                                 | 02000419 |
| 2602 | FORMAT(1H0,7727(N),N=1,NFLUX2+17/1H ,(8E12.4))                   | 02000420 |
| 11   | 1F (NFLUXR) 13, 13, 12                                           | 02000421 |
| 12   | PEAD(50,1002) (RRR(N),N=1,NFLUXR)                                | 02000422 |
|      | PRINT 2702, (RRR(N),N=1,NFLUXR)                                  | 02000423 |
| 2702 | FORMAT(IHD,7RRP(N),N=1,NFLUXE7/IH ,(8E12.4))                     | 02000424 |
| 13   | FNMUZ=NMUZ                                                       | 02000425 |
|      | FNMUR=NMUR                                                       | 02000501 |
|      | FNPHIZ=NPHIZ                                                     | 02000502 |
|      | FNPHIR=NPHIR                                                     | 02000503 |
|      | REWIND NORS                                                      | 02000507 |
|      | IF (NSOR) 15,15,14                                               | 02000504 |
| 14   | REWIND NSCFI                                                     | 02000505 |
|      | REWIND NSOF                                                      | 02000506 |
| 15   | D0201=1,10                                                       | 02000508 |
|      | D016J=1,4                                                        | 02000509 |
|      | WBAR(I,J)=C,0                                                    | 02000510 |
|      | 9. 3 = (L.I) XAMW                                                | 02000511 |

| 16         | WTHETAI(I,,)=0.0<br>WTHETA2(I,,)=0.0<br>D017N=1,20<br>D017K=1,30<br>ZANGELUX(I,N,K)=0.0 | 02000512<br>02000513<br>02000514<br>02000515 |
|------------|-----------------------------------------------------------------------------------------|----------------------------------------------|
| 17         | RANGFLUX(I,N,K)=0.0                                                                     | 02000517                                     |
| 20         | CONTINUE                                                                                | 02000518                                     |
|            | 002/1=1,10                                                                              | 02000519                                     |
|            | D02 J=1,4                                                                               | 02000520                                     |
|            | NESCAPEI(I,J)=n                                                                         | 02 520                                       |
| <b>.</b> . | NESCAPE2(I, J)=n                                                                        | 02 520                                       |
| 21         | NESCAPE(I, )=0                                                                          | 02000521                                     |
|            |                                                                                         | 02000522                                     |
|            |                                                                                         | 02000523                                     |
|            |                                                                                         | 02000524                                     |
|            |                                                                                         | 02000525                                     |
|            |                                                                                         | 02000001                                     |
|            |                                                                                         | 02000602                                     |
|            | YS(1)=0.0                                                                               | 020000404                                    |
|            | 78(1)=0.0                                                                               | 020000405                                    |
|            | AI PHA(T) = 0.0                                                                         | 020000000                                    |
|            | BETA(I)=0.C                                                                             | 02000600                                     |
|            | GAMMA(I)=0.0                                                                            | 02000000                                     |
|            | SENG2(I) = 0.0                                                                          | 020000009                                    |
| 22         | WAIT(I)=U.C                                                                             | 02000610                                     |
|            | D0231=1,IGFF                                                                            | 02000611                                     |
| 23         | ERUS(I)=1.91322E+18*ERUS(I)                                                             | 02000612                                     |
|            | NAMO=0                                                                                  | 02000612                                     |
|            | LBAT9=0                                                                                 | 02000612                                     |
|            | RETURN                                                                                  | 02000613                                     |
|            | END FIXINPLT                                                                            | 02000614                                     |

SUBRAUTINE STUATCH

, ,

| COMMON/MAIN/KTH,LBATO,LBATCH,NTYPE,NHISTR,NHISMX,NSOR,<br>INBAT,NITS,NFLUYZI,NFLUXRI<br>COMMON/CPLIST/NCOLL(8),NAME(8),SI2(8),XI(8),YI(8),ZI(8),<br>IWTI(8),SO2(8),UO(8),VO(8),WO(8),OLDWT(8),NGRP(8),NELEM(8),NMED(8<br>2.DUMMY(8) | 03000201<br>03000202<br>03000222<br>03000223             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| DATA(IJK=0)<br>IF (IJK)   ,5,1]<br>5 CALL 05RSET(NHISTR,NHISMX,NREC,NTYPE,NCOLL,NAME,<br>ISI2,XI,YI,ZI,WTI,S02,U0,V0,W0,0LDWT,NGRP,NELEM,                                                                                           | 03000301<br>03000302<br>03000303<br>03000304<br>03000304 |
| IJK=I<br>II CONTINUE<br>RETURN<br>END STBATCH                                                                                                                                                                                       | 03000306<br>03000307<br>03000308<br>03000308             |

| SUBROUTINE ESCAPE                                                  | 04000101 |
|--------------------------------------------------------------------|----------|
| COMMON/MAIN/KTH, LBATO, LBATCH, NTYPE, NHISTR, NHISMX, NSOR,       | 04000201 |
| INBAT, NITS, NFLUXZI, NFLUXRI                                      | 04000202 |
| COMMON/SECCND/ALPHAL, BETAL, CMU, CMUD, FNPHIR, FNPHIZ, FNMUR,     | 04000203 |
| IFNMUZ, GAMMAI, IANGL, NMUZ, NMUR, NPHIZ, NPHIR, PHI,              | 04000204 |
| 2PHICAS, PHISIN, P                                                 | 04000205 |
| COMMON/THIFD/NCRS,NFLUXZ,NFLUXR,NESCAPE(10,4),                     | 04000206 |
| IRANGFLUX(IC,20,30), WBAR(I0,4), ZANGFLUX(I0,20,30), BCDID(9)      | 04000207 |
| COMMON/FORTH/ALPHA(50),BETA(50),GAMMA(50),IEGPI(50),               | 04000208 |
| <pre>JJTYPER(50),LBATY(50),NCOLS(50),SENG2(50),WAIT(50),</pre>     | 0400209  |
| 2×S(50),YS(50),ZS(50)                                              | 04000210 |
| COMMON/FIFTH/JTYPE,RCYLIN,ZTCP,ZBOT,ZTCPNEW,                       | 04000211 |
| ZBOTNEW                                                            | 04000212 |
| COMMON/SIXTH/ALP(50),BET(50),COSTHETA(10),ERUS(10),                | 04000213 |
| IGAM(50), IGEP, JTYPEI, JTYPE2, JTY(50), LBATER(50),               | 04000214 |
| 2NSORI, NAMO, NAMT, SENGSQ(50), WAITER(50), X0(50), Y0(50), 20(50) | 04000215 |
| COMMON/SEVENTH/NFLUXZ2, NRITE, RRR(10), WMAX(10,4),                | 04000216 |
| INTHETAI(10,4), WTHETA2(10,4), ZZZ(21)                             | 04000217 |
| COMMON/CPLIST/NCOLL(8),NAME(8),S12(8),X1(8),Y1(8),Z1(8),           | 04000222 |

|     | INTI(8), SA2(8), UU(8), VO(8), WU(8), ALDWT(8), NGRP(8), NELEM(8), NMED(8) | 04000223 |
|-----|----------------------------------------------------------------------------|----------|
|     | 2, DUMMY(8)                                                                |          |
|     | COMMAN/GOOEER/NGOOD                                                        | 04000228 |
|     | COMMON/GOOLY/NESCAPEI(10,4),NESCAPE2(10,4)                                 | 04 229   |
|     | IF (NHAT-LEATCH) 2,1,1                                                     | 04000301 |
| 1   | CONTINUE                                                                   | 04000302 |
|     | RETURN                                                                     | 04000303 |
| 5   | SO=SORTF(SC2(KTH))                                                         | 04000304 |
|     | ALPHAI=U8(KTH)/S8                                                          | 04000305 |
|     | BETAL=VO(KTH)/SO                                                           | 04000306 |
|     | GAMMAI=WO(KTH)/SO                                                          | 04000307 |
|     | CALL TRACER                                                                | 04000308 |
|     | IF (NG00D) 30,333,30                                                       | 04000309 |
| 333 | CONTINUE                                                                   | 04000309 |
|     | DØ 3 I=I,IGRP                                                              | 04000309 |
|     | IF (S12(KTF)=ERUS(I)) 3,4,4                                                | 04000310 |
| 3   | CONTINUE                                                                   | 04000311 |
|     | RETURN                                                                     | 04000312 |
| 4   | IEGP=I                                                                     | 04000313 |
|     | WBAR(IEGP, TYPE)=WBAR(IEGP, JTYPE)+0LDWT(KTH)                              | 04000314 |
|     | NESCAPE(IEGF, JTYPE)=NESCAPE(IEGP, JTYPE)+I                                | 04000315 |
|     | WMAX(IEGP; TYPE)=MAX(F(WMAX(IEGP,JTYPE); 0LDWT(KTH))                       | 04000316 |
|     | IF (GAMMAI+CRSTHETA(IEGP)) 6,5,5                                           | 04000317 |
| 5   | WTHETAI(IEGP,JTYPE)=WTHETAI(IEGP,JTYPE)+OLDWT(KTH)                         | 04000318 |
|     | NESCAPEI(IEGP, JTYPE)=NESCAPEI(IEGP, JTYPE)+)                              | 04 318   |
|     | GO TO 7                                                                    | 04000319 |
| 6   | WTHETA2(IEGF,JTYPE)=WTHETA2(IEGP,JTYPE)+0LDWT(KTH)                         | 04000320 |
|     | NESCAPE2(IEGP, JTYPE)=NESCAPE2(IEGP, JTYPE)+1                              | 04 320   |
| 7   | IF (NSOR) E,9,8                                                            | 04000321 |
| 8   | NRITE=NRITE+I                                                              | 04000322 |
|     | NCOLS(NRITE)=NCOLL(KTH)                                                    | 04000323 |
|     | XS(NRITE)=XI(KTH)                                                          | 04000324 |
|     | YS(NRITE)=YI(KTH)                                                          | 04000325 |
|     | 2S(NRITE)=2I(KTH)                                                          | 04000401 |
|     | ALPHA(NRITE) = ALPHAL                                                      | 04000402 |
|     | BETA(NRITE)=BETAI                                                          | 04000403 |
|     | GAMMA (NRITE) = GAMMAI                                                     | 04000404 |

, ,

.

|      | SENG2(NRITE)=S02(KTH)                                                             | 04000405 |
|------|-----------------------------------------------------------------------------------|----------|
|      | WAIT(NRITE)=OLDWT(KTH)                                                            | 04000406 |
|      | IEGPI(NRITE)=IFGP                                                                 | 04000407 |
|      | JTYPER(NRITE)=JTYPE                                                               | 04000408 |
|      | LBATY(NRITE)=LBAT0+1                                                              | 04000409 |
|      | TF (NRITE=50)9.10.10                                                              | 04000410 |
| In   | NRITE=0                                                                           | 04000411 |
| 1 12 | CALL SORSET                                                                       | 04000412 |
|      |                                                                                   | 04000413 |
|      | NCO(S(I)=0                                                                        | 04000410 |
|      |                                                                                   | 04000419 |
|      | XS(17=0+0                                                                         | 04000415 |
|      | 75(1)=0.0                                                                         | 04000410 |
|      |                                                                                   | 04000417 |
|      |                                                                                   | 04000410 |
|      |                                                                                   | 04000419 |
|      |                                                                                   | 04000420 |
|      |                                                                                   | 04000422 |
|      |                                                                                   | 04000422 |
|      |                                                                                   | 04000423 |
| 1.5  |                                                                                   | 04000424 |
| 11   |                                                                                   | 04000429 |
| 9    |                                                                                   |          |
| 10   |                                                                                   | 04000202 |
| 12   | IF (NELUXR) SUJUTO                                                                | 04000503 |
| 10   | CALL POSR                                                                         | 04000204 |
|      | LALL RANGL                                                                        | 04000909 |
| 4.0  |                                                                                   |          |
| 40   | UDNTINUE<br>DANAELUMATECE DELUMET, INNOLA-BANGELUMATECA AELUMET, IANGLANDE DUTAKI | 04000504 |
|      | RANGELUX(IEGE, MELUXE) IANGLJERANGELUX(IEGE, NELUXE) IANGLJEGLUWI(KI              | 04000200 |
|      |                                                                                   | 04000207 |
| 00   |                                                                                   | 04000508 |
| 20   | IF (NFLUXZ) SU,SU,ZI                                                              | 04000509 |
| 21   | CALL POSZ                                                                         | 04000510 |
|      | CALL ZANGL                                                                        | 04000511 |
|      | IF (CMU=,UUI) 30,41,41                                                            |          |
| 41   | CONTINUE                                                                          |          |
|      | ZANGFLUX(IEGP,MFLUX4 ,IANGL)=ZANGFLUX(IEGP,NFLUXZ ,IANGL)+0LDWT(K1                | 04000512 |

| SURPOUTINE SCRACHIT                                                | 06000101 |
|--------------------------------------------------------------------|----------|
| COMMON/MAIN/KTH, LBATO, LBATCH, NTYPE, NHISTR, NHISMX, NSOR,       | 06000201 |
| INBAT.NITS.NELUXZI.NELUXRI                                         | 06000202 |
| COMMAN/SECCND/ALPHAI, BETAI, CNU, CMUD, FNPHIR, FNPHIZ, FNMUR,     | 06000203 |
| IENMUZ, GAMMAI, IANGL, NMUZ, NMUR, NPHIZ, NPHIR, PHI,              | 06000204 |
| 2PHICOS, PHISIN, R                                                 | 06000205 |
| COMMON/THIRD/NCRS, NFLUXZ, NFLUXR, NESCAPE(10,4),                  | 06000206 |
| IRANGFLUX(IC, 20, 30), WBAR(10, 4), ZANGFLUX(10, 20, 30), BCDID(9) | 06000207 |

| SUBROUTINE SERSET                                            | 05000101 |
|--------------------------------------------------------------|----------|
| COMMON/MAIN/KTH, LBATA, LBATCH, NTYPE, NHISTR, NHISMX, NSOR, | 05000201 |
| INBAT, NITS, NFLUXZI, NFLUXRI                                | 05000202 |
| COMMAN/FARTH/ALPHA(50), BETA(50), GAMMA(50), IEGPI(50),      | 05000208 |
| IJTYPER(50), LBATY(50), NCOLS(50), SENG2(50), WAIT(50),      | 05000209 |
| 2XS(50), YS(50), ZS(50)                                      | 05000210 |
| 703 WRITE (NSOF) NCOLS, XS, YS, ZS, ALPHA, BETA, GAMMA,      | 05000301 |
| ISENG2, WAIT, IFGPI, JTYPER, LBATY                           | 05000302 |
| IF (E0F, NSCR) 701,702                                       | 05000302 |
| 701 END FILE NSCR                                            | 05000302 |
| REWIND NSOF                                                  | 05000302 |
| NSOR=NSOR+1                                                  | 05000302 |
| REWIND NSOR                                                  | 05000302 |
| G0 T0 703                                                    | 05000302 |
| 702 END FILE NSCR                                            | 05000303 |
| BACKSPACE NSAR                                               | 05000304 |
| RETURN                                                       | 05000305 |
| END SORSET                                                   | 05000306 |

| H)/CMU     | 04000513 |
|------------|----------|
| 30 RETURN  | 04000514 |
| END ESCAPE | 04000515 |

.

|      | COMMON/FIFTF/JTYPE, HCYLIN, ZTCP, ZROT, ZTOPNEW,                   | 06000211 |
|------|--------------------------------------------------------------------|----------|
|      | IZBATNEW                                                           | 06000212 |
|      | COMMAN/SIXTE/ALP(50),BET(50),COSTHETA(10),ERUS(10),                | 06000213 |
|      | IGAM(50), IGRP, JTYPEI, JTYPE2, JTY(50), LBATER(50),               | 06000214 |
|      | 2NSOR1, NAMO, NAMT, SENGSQ(50), WAITER(50), X0(50), Y0(50), Z0(50) | 06000215 |
|      | COMMAN/SEVENTH/NFLUXZ2, NRITE, RRR(10), WMAX(10,4),                | 06000216 |
|      | IWTHETAI(10,4), WTHETA2(10,4), ZZZ(21)                             | 06000217 |
|      | COMMON/GOODY/NESCAPEI(10,4),NESCAPE2(10,4)                         | 06 229   |
|      | PRINT 1000, PCDID                                                  | 06000301 |
| 1000 | FORMAT(1H1, SAG)                                                   | 06000302 |
|      | PRINT LODI, LEATO                                                  | 06000303 |
| 1001 | FORMAT(1H ,7PESULTS FOR BATCH NUMBER7,13)                          | 06000304 |
|      | MORZ=NMUZ*NFHI7                                                    | 06000305 |
|      | MOCR=NMUR*NPHIR                                                    | 06000306 |
|      | IF (NFLUXZ) 10,10,1                                                | 06000307 |
| 1    | DO 9 N=1,NFLUXZ                                                    | 06000308 |
|      | N   = N +                                                          | 06000309 |
|      | DELZ=ZZZ(NI)=ZZZ(N)                                                | 06000310 |
|      | AREA=6,28318*DFLZ*RCYLIN                                           | 06000311 |
|      | DØ 2 I=I,IGRP                                                      | 06000312 |
|      | DO 2 K=I,MCCZ                                                      | 06000313 |
| 2    | ZANGFLUX(I, N, K)=ZANGFLUX(I, N, K)/AREA                           | 06000314 |
|      | PRINT 1002, N,722(N),222(N1),(1,1=1,1GRP)                          | 06000315 |
| 1002 | FORMAT(IH0,26X,7ZANGFLUX (WEIGHT/AREA) FOR INTERVAL NO.7           | 06000316 |
|      | 1,13/34X,7Z= 7,E12.4,7 TO 7,E12,4//7 ANGLE7,38X,                   | 06000317 |
|      | 27ENERGY INDEX7,17 INDEX7,15,91101                                 | 06000318 |
|      | DO 3 K=I,MCCZ                                                      | 06000319 |
| 3    | PRINT 10U3, K, (ZANGFLUX(I,N,K),I=I,IGRP)                          | 06000320 |
| 1003 | FORMAT(IH ,13,3X,10±10.2)                                          | 06000321 |
|      | DO 4 I=1,IGRP                                                      | 06000322 |
|      | DO 4 K=I.Meez                                                      | 06000323 |
| 4    | ZANGFLUX(I,N,K)=ZANGFLUX(I,N,K)*AREA                               | 06000324 |
|      | PRINT 1000, BCNID                                                  | 06000325 |
|      | PRINT LOOI, LEATO                                                  | 06000401 |
| 9    | CONTINUE                                                           | 06000402 |
| 10   | IF (NFLUXR) 20,20,11                                               | 06000403 |
| 11   | DØ 19 NELINFLUXR                                                   | 06000404 |

06000412 06000414 06000415 06000416 06000424 06000425 06000513 06000405 06006406 06000408 06000410 06000506 06000508 06000407 06000409 06000417 06000418 06000419 06000423 06000502 06000503 06000504 06000505 06000507 06000509 01200090 06000514 06000515 06000516 06000411 06000420 06000422 06000511 06000421 06000501 1004 FORMATCIHD.24X,7RANGFLUX (WEIGHT/AREA) FOR INTERVAL NO.7 33/X, 7WTHETAZ, WEIGHT WITH GAMMA LESS THAN CUSTHETA7) FORMAT(IHO, 30X, 780TTOM OF REACTOR (POSITIVE GAMMA)7) I3IX,7%BAR, TATAL ESCAPE WEIGHT7/31X, 27WTHETAL, %EIGHT WI'H GAMMA GREATER THAN CASTHETA7/ FORMATCIHU, 30X, 7SIDE OF REACTOR (POSITIVE GAMMA)7) FORMATCIHO, SUX, 7SIDE OF REACTOR (NEGATIVE GAMMA)7) 1,13/34X,7H= 7,F12.4.7 TO 7,E12.4//7 ANGLE7,38X, 1005 FORMATCIND. JUX, ZNESCAPE, NUMBER OF ESCAPES7/ PRINT 1003. K, (HANGFLUX(I, N, K), I=1, IGHP) PRINT 1004, N. PRRI, FRR(N), (1, 1=1, 16RP) DO 17 K=1, PCMR RANGFLUX(1, N, K)=RANGFLUX(1, N, K)\*AREA RANGFLUX(I.N.K)=RANGFLUX(I.N.K)/ARFA 27ENERGY INCEX7/7 INDEX7, 15,9110) AREA=3.14159\*(RKR(N) \*\*2-R442) GO TO (21,22,23,24).J PRINT 1000. ACPID 13, 12, 13 RRP2=RRR(N=1) \*\*2 PRINT 1001 .LATC DO 16 K=1, VCCK 00 15 I=1,16PP 00 |7 I=1,1GPP 70 15 KHI. MCCH DO 40 J=1,4 20 PRINT 1005 PRINT 1007 PRINT 1006 PRINT 1008 IF (N-1) CONTINUE GO TA 25 GO TA 25 RR2=0.0 RR |= 0.0 GO TR 14 1007 5 3 008 6 000 2 n i M) 4 7 N 0

|       | Ge TH 25                                          | 06000517 |
|-------|---------------------------------------------------|----------|
| 24    | PRINT 1009                                        | 06000518 |
| 1009  | FARMAT(1HD.30X.7TUP OF REACTOR (NEGATIVE GAMMA)7) | 06000519 |
| 25    | PRINT LOLD. (I.I=I.IGRP)                          | 06000520 |
|       | FORMAT(1H .7FNFRGY7/7 INDEX7,4X,13,9110)          | 06000521 |
| 101%  | PRINT IDII. (NESCAPE(I,J), I=1, IGRP)             | 06000522 |
| 1011  | FARMAT(1H ,7NESCAPE7,3X,17,9110)                  | 06000523 |
| 1011  | PRINT $IDI2$ , (WRAR(I,J), I=1, IGRP)             | 06000524 |
| 1012  | FORMAT(1H , 7 NHAR7, $4X$ , IOEID, 2)             | 06000525 |
|       | IF (J=1) 40,26,40                                 | 06000601 |
| 26    | PRINT 1013, (CASTHETA(I), 1=1, IGRP)              | 06000602 |
| 1013  | FORMAT(IH , 700STHETA7, 10E10,2)                  | 06000603 |
| 1 1   | PRINT 1014, (WTHETAI(1, J), 1=1, IGRP)            | 06000604 |
| 1014  | FORMAT(IH ,7WTHETAI7, IX, IDE10.2)                | 06000605 |
| 1 2 1 | PRINT 1015, (WTHFTA2(1, J), I=1, IGRP)            | 06000606 |
| 1015  | FORMATCIH , 70THETA27, 1X, IDE10, 2)              | 06000607 |
|       | PRINT 1016, (MESCAPEI(I, J), I=1, IGRP)           | 06 607   |
| 016   | FORMAT(IH , 7MESCAPE17, 2X, 17, 9110)             | 06 607   |
|       | PRINT 1017, (NESCAPE2(I, J), I=1, IGRP)           | 06 607   |
| 1017  | FORMAT(IH ,7NESCAPE27,2X,17,9IIU)                 | 06 607   |
| 40    | CONTINUE                                          | 06000608 |
|       | IF (NFLUXZ+NFLUXR) 32,32,31                       | 06000609 |
| 31    | WRITE (NCRS) ZANGFLUX                             | 06000610 |
|       | WRITE (NCRS) RANGFLUX                             | 06000611 |
|       | END FILE NCRS                                     | 06000612 |
|       | BACKSPACE NERS                                    | 06000613 |
|       | 00 35 I=1,10                                      | 06000614 |
|       | DØ 35 N=1,20                                      | 06000615 |
|       | De 35 K=1,30                                      | 06000616 |
|       | ZANGFLUX(I,N,K)=0.0                               |          |
| 35    | RANGFLUX(I,N,K)=0.0                               |          |
| 32    | CONTINUE                                          | 06000619 |
|       | RETURN                                            |          |
|       | END SCRACHIT                                      | 00000051 |

| SUBROUTINE FASR                                                | 08000101 |
|----------------------------------------------------------------|----------|
| COMMON/MAIN/KTH, LBATO, LBATCH, NTYPE, NHISTR, NHISMX, NSOR,   | 08000201 |
| INBAT, NITS, NFLUXZI, NFLUXRI                                  | 08000505 |
| COMMON/SECCND/ALPHAL, BETAL, CMU, CMUD, FNPHIR, FNPHIZ, FNMUR, | 08000203 |
| IFNMUZ, GAMMAI, IANGL, NMUZ, NMUR, NPHIZ, NPHIR, PHI,          | 08000204 |
| 2PHICAS, PHISIN, R                                             | 08000205 |
| COMMON/THIFE/NORS, NFLUXZ, NFLUXR, NESCAPE(10,4),              | 08000206 |
| IRANGFLUX(IC,20,30), WBAR(10,4), ZANGFLUX(10,20,30), BCD1D(9)  | 08000207 |
| COMMON/SEVENTH/NFLUXZ2,NRITE,RRR(10),WMAX(10,4),               | 08000216 |
| WTHETA ( 0,4),WTHETA2( 0,4),ZZZ(2 )                            | 08000217 |

| SUBROUTINE PASZ<br>COMMONZMAINZKTH,LBATO,LBATCH,NTYPE,NHISTR,NHISMX,NSOR,<br>INBAT,NITS,NFLUXZI,NFLUXRI<br>COMMONZSECCNDZALPHAI,BETAI,CMU,CMUD,FNPHIR,FNPHIZ,FNMUR,<br>IFNMUZ,GAMMAI,IANGL,NMUZ,NMUR,NPHIZ,NPHIR,PHI,<br>2PHICOS,PHISIN,R<br>COMMONZTHIFUZNORS,NFLUXZ,NFLUXR,NESCAPE(10,4),<br>IRANGFLUX(IC,20,30),WRAR(10,4),ZANGFLUX(10,20,30),BCDID(9)<br>COMMONZSEVENTHZNFLUXZ2,NRITE,RRR(10),WMAX(10,4),<br>IPTHETAI(10,4),WTHETA2(10,4),ZZZ(21)<br>COMMONZCPLISTZNCOLL(8),NAME(8),SI2(8),XI(8),YI(8),ZI(8),<br>IWTI(8),SO2(6),WO(8),VO(8),WO(8),ORP(8),NELEM(8),NMED(8) | 07000101<br>07000202<br>07000203<br>07000204<br>07000205<br>07000205<br>07000206<br>07000207<br>07000216<br>07000217<br>07000217 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 2, DUMMY(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07000301                                                                                                                         |
| D0  0 N=2, NFLUXZ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07000302                                                                                                                         |
| IF (ZI(KTH)-7ZZ(N)) 20,20,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07000303                                                                                                                         |
| IN CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07000304                                                                                                                         |
| NFLUXZI=NFLLXZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07000305                                                                                                                         |
| G0 T0 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07000306                                                                                                                         |
| 20 NFLUXZI=N=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07000306                                                                                                                         |
| 30 R=SQRTF(X](KTH)**2+Y](KTH)**2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07000308                                                                                                                         |
| RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 07000308                                                                                                                         |
| END POSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07000308                                                                                                                         |

\$

|    | SUBROUTINE ZANGL                                                           | 09000101 |
|----|----------------------------------------------------------------------------|----------|
|    | COMMON/MAIN/KTH, LBATC, LBATCH, NTYPE, NHISTR, NHISMX, NSOR,               | 09000201 |
|    | INBAT, NITS, NELUXZI, NELUXRI                                              | 09000202 |
|    | COMMON/SECEND/ALPHAI, BETAI, CMU, CMUD, FNPHIR, FNPHIZ, FNMUR,             | 09000203 |
|    | IFNMUZ, GAMMAI, IANGL, NMUZ, NMUR, NPHIZ, NPHIR, PHI,                      | 09000204 |
|    | 2PHICOS, PHISIN, R                                                         | 09000205 |
|    | COMMON/CPLIST/NCOLL(8),NAME(8),S12(8),X1(8),Y1(8),Z1(8),                   | 09000555 |
|    | [WTI(8), S02(8), U0(8), V0(8), W0(8), 0LDWT(8), NGRP(8), NELEM(8), NMED(8) | 09000223 |
|    | 2, DUMMY(8)                                                                |          |
|    | AO=XI(KTH)/R                                                               | 09000301 |
|    | BO=YI(KTH)/R                                                               | 09000302 |
|    | CMU=ALPHAI*A0+RETAI*RO                                                     | 09000303 |
|    | CMUD=SQRTF(1,û=CMU**2)                                                     | 09000304 |
|    | IF (CMU-1.C) 20,10,10                                                      | 09000305 |
| 10 | PHICOS=1.0                                                                 | 09000306 |
|    | PHISIN=0.0                                                                 | 09000307 |
|    | G0 TA 60                                                                   | 09000308 |
| 20 | IF (B0) 40,30,40                                                           | 09000309 |
| 30 | PHISIN=(BETAI-RU*CMU)/(AO*CMUD)                                            | 09000310 |
|    | GO TO 50                                                                   | 09000311 |
| 40 | PHISIN=(A0*CMU-ALPHA))/(B0*CMUD)                                           | 09000312 |

|    | COMMON/CPLIST/NCOLL(8),NAME(8),SI2(8),XI(8),YI(8),ZI(8),<br>IWTI(8),SO2(8),UO(8),VO(8),WO(8),OLDWT(8),NGRP(8),NELEM(8),NMED(8) | 08000222<br>08000223 |
|----|--------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    |                                                                                                                                | 0000201              |
|    | $R=SDR[F(X)(K H)^{-1}\mathcal{Z}+F(K H)^{-1}\mathcal{Z})$                                                                      | 08000301             |
|    | DO JO NEL/NFLUXR                                                                                                               | 08000302             |
|    | IF (R-RRR(N)) 20,20,10                                                                                                         | 08000303             |
| Ŋ  | CONTIAUE                                                                                                                       | 08000304             |
|    | NFLUXRI=NFLUXR                                                                                                                 | 08000305             |
|    | GO TO 30                                                                                                                       | 08000306             |
| 20 | NFLUXRI=N                                                                                                                      | 08000307             |
| 30 | RETURN                                                                                                                         | 08000308             |
|    | END POSR                                                                                                                       | 08000309             |
|    |                                                                                                                                |                      |

| 50 | PHICAS=GAMMAI/CMUD                                      | 09000313 |
|----|---------------------------------------------------------|----------|
| 60 | PHI=ACMSF(FFICMS)                                       | 09000314 |
|    | IF (PHISIN) 70,80,80                                    | 09000315 |
| 70 | PHI=6.28318-PHI                                         | 09000316 |
| 80 | CALL ANGLO(NMUZ, FNMUZ, NPHIZ, FNPHIZ, IANGL, CMU, PHI) | 09000317 |
|    | RETURN                                                  | 09000318 |
|    | END ZANGL                                               | 09000319 |

1 ,

-

|                | SUBRAUTINE HANGL<br>GOMMAN/MAIN/KTH,LBATA,LBATCH,NTYPE,NHISTR,NHISMX,NSOR,<br>INBAT,NITS,NFLUXZI,NFLUXRI<br>COMMAN/SECOND/ALPHAI,BETAI,CMU,CMUD,FNPHIR,FNPHIZ,FNMUR,<br>IFNMUZ,GAMMAI,IANGL,NMUZ,NMUR,NPHIZ,NPHIR,PHI,<br>2PHICAS,PHISIN,R<br>COMMAN/CPLIST/NCALL(8),NAME(8),SI2(8),XI(8),YI(8),ZI(8),<br>INTI(8),SA2(8),UA(8),VO(8),WO(8),GLDWT(8),NGRP(8),NELEM(8),NMED(8)<br>2.DUMMY(8) | 10000101<br>10000202<br>10000203<br>10000204<br>10000204<br>10000205<br>10000222<br>10000223 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <b>1</b> 0     | IF (GAMMAI-1.3) 20,10,10<br>PHICOS=1.0<br>PHISIN=0.0<br>GO TO 30<br>CMU=GAMMAI                                                                                                                                                                                                                                                                                                             | 000030 <br> 0000302<br> 0000303<br> 0000304<br> 0000305                                      |
|                | CMUD=SORTF(1.0=CMU**2)<br>AX=(ALPHA *X (KTH)+BETA *Y (KTH))/R<br>BX=(BETA *X (KTH)=ALPHA *Y (KTH))/R<br>ALPHA =AX<br>BETA =BX<br>PHICOS=ALPFA /CMUD<br>PHICOS=ALPFA /CMUD                                                                                                                                                                                                                  | 10000306<br>10000307<br>10000308<br>10000309<br>10000310<br>10000311                         |
| 30<br>40<br>50 | PHISIN=BETATZUMUU<br>PHI=ACOSF(FFICOS)<br>IF (PHISIN) 40,50,50<br>PHI=6,283[8=PHI<br>CALL ANGLO(NMUR,FNMUR,NPHIR,FNPHIR,IANGL,CMU,PHI)<br>RETURN                                                                                                                                                                                                                                           | 10000312<br>10000313<br>10000314<br>10000315<br>10000316<br>10000317                         |

END RANGL

SURROUTINE APGLO(NMUA, FNMUA, NPHIA, FNPHIA, IANGLA, CMUA, PHIA) 10000101 CCMU=1.0 11000301 DO IO NEL, NMUA 11000302 CCMU=CCMU=I. N/FNMUA 11000303 IF (CMUA-CCMU) 10,20,20 11000304 11000305 ID CONTINUE IMU=NMUA 11000306 GO TA 30 11000307 20 IMUEN 11000308 30 PPH1=0.0 11000309 11000310 DO 40 N=1,NPHIA PPHI=PPHI+6.28318/FNPHIA 11000311 IF (PHIA-PFFI) 50,50,40 11000312 40 CONTINUE 11000313 IPHI=NPHIA 11000314 GO TO 60 11000315 50 IPHI=N 11000316 60 IANGLA=(IML-I)\*NPHIA+IPHI 11000317 11000318 RETURN END ANGLO 11000319

| SUBRAUTINE ENDRUN                                                        | 12000101 |
|--------------------------------------------------------------------------|----------|
| COMMON/MAIN/KTH, LBATO, LBATCH, NTYPE, NHISTR, NHISMX, NSOR,             | 12000201 |
| INBAT, NITS, NFLUXZI, NFLUXRI                                            | 15000505 |
| COMMON/SECEND/ALPHAI, BETAI, CMU, CMUD, FNPHIR, FNPHIZ, FNMUR,           | 12000203 |
| IFNMUZ, GAMMAI, IANGL, NMUZ, NMUR, NPHIZ, NPHIR, PHI,                    | 12000204 |
| 2PHICOS, PHISIN, R                                                       | 12000205 |
| COMMAN/THIRE/NCRS, NFLUXZ, NFLLXR, NESCAPE(10,4),                        | 12000206 |
| <pre>IRANGFLUX(10,20,30), WBAR(10,4), ZANGFLUX(10,20,30), BCD1D(9)</pre> | 12000207 |

| COMMON/FORTH/ALPHA(50),BETA(50),GAMMA(50),TEGPI(50),        | 12000208 |
|-------------------------------------------------------------|----------|
| LITYPER(50), PATY(50), NCOLS(50), SENG2(50), WAIT(50),      | 12000209 |
| 2XS(50),YS(50),7S(50)                                       | 12000210 |
| COMMON/FIFTH/JTYPE, RCYLIN, ZTCP, ZROT, ZTOPNEW,            | 12000211 |
| IZBATNEW                                                    | 12000212 |
| COMMON/SIXTE/ALP(50).BET(50).COSTHETA(10).ERUS(10).         | 12000213 |
| IGAM(50), IGEP. JTYPEL, JTYPE2, JTY(50), LBATER(50),        | 12000214 |
| 2NSCRI.NAMC.NAMT.SENGSQ(50).WAITER(50).XO(50).YO(50).70(50) | 12000215 |
| CAMMAN/SEVENTH/NFLUX72.NRITE.RRR(10).WMAX(10.4).            | 12000216 |
| INTHETAL(10.4).WTHETA2(10.4).7ZZ(21)                        | 12000217 |
| CAMMAN/FIGETH/NATS.NSTRT.SWK(10).WK(10).WK1(10)             | 12000218 |
| DIMENSION SAGEA( $(0)$ , VAR( $(0, 20, 30)$ , ZAREA( $20$ ) | 12000225 |
| CAMMAN/NINTE/NTAT(30).WTAT(30).LBATA                        | 12000226 |
| 9FWIND NCRS                                                 | 12000302 |
|                                                             | 12000303 |
| 1 = ERUS(1) = ERUS(1)/1 = 91322E + 18                       | 12000304 |
| NAMP=NAMT-NAMP                                              | 12000305 |
|                                                             | 12000306 |
|                                                             | 12000307 |
| IF (NESCAPE(1.1)) 3.4.3                                     | 12000308 |
| 3 $MBAR(1,J) = hRAR(1,J)/NESCAPE(1,J)$                      | 12000309 |
| GA TA 2                                                     | 12000310 |
| 4  MBAR(I, I) = [ -1]                                       | 12000311 |
| 2 CONTINUE                                                  | 12000312 |
| PRINT LOUD, BCDID                                           | 12000313 |
| DOD FORMAT(INI. SAN)                                        | 12000314 |
| PRINT LODI. LHAID.NITS.NAMR.NAMT                            | 12000315 |
| DOL FORMAT(1H0.41X 7ENDRUN RESULTS7/28X.7LAST7.             | 12000316 |
| 113.7 RATCHES RET. 13.7 RATCHES WERE REACESSED. 7/          | 12000317 |
| 204 714ST7.17.7 NEUTRANS AF7.17.7 WERE PRACESSED.7)         | 12000318 |
| DO2 FORMATCIND. 414 7ENDRUN SESULTS7)                       | 12000319 |
|                                                             | 12000320 |
|                                                             | 12000321 |
| PDINT (0.03.(1.1=0.4))                                      | 12000322 |
| ANT FARMATCHAN, 201 7 ITYPE=1, ESCAPE FRAM REACTAR 7.       | 12000323 |
| IZRATTAM (PRSITIVE CAMMA)7/231.7.ITYPE=2. ESCAPE 7.         | 12000324 |
| 27EDAM REACTED CIDES, PASITIVE GAMMA7/231.                  | 12000325 |
| CLUDE CRUMING STREAM LOBITING AUDIOLICANS                   | 16000000 |

|     | 37JTYPE=3, ESCAPE FROM REACTOR SIDES, 7,              |   | 12000401 |
|-----|-------------------------------------------------------|---|----------|
|     | 47NEGATIVE GAMMA7/23×,7JTYPE=4, ESCAPE FROM 7,        |   | 12000402 |
|     | 57REACTOR TOP, NEGATIVE GAMMA7//53X,7JTYPE7/          |   | 12000403 |
|     | 622X,11,21X,11,21X,11,21X,11/7 LOWER NUMBER 7,        |   | 12000404 |
|     | 770F AVERAGE NUMBER OF AVERAGE NUMBER 7,              |   | 12000405 |
|     | 870F AVERAGE NUMBER OF AVERAGE7/7 ENERGY 7,           |   | 12000406 |
|     | 97MEV ESCAPES WEIGHT ESCAPES WEIGHT ESCAPES           | 7 | 12000407 |
|     | 17WEIGHT FSCAPES WEIGHT7)                             |   | 12000408 |
|     | DO 5 I=I,ICRP                                         |   | 12000409 |
| 5   | PRINT 1004, FRUS(I), (NESCAPE(I,J), WBAR(I,J), J=1,4) |   | 12000410 |
| 004 | FORMAT(IH , EII, 3, 4(17, E12, 3, 3X))                |   | 12000411 |
|     | IF (NFLUXZ+NFLUXR) 6,100,6                            |   | 12000412 |
| 6   | DØ 7 I=I,IC                                           |   | 12000413 |
|     | DØ 7 N=1,2C                                           |   | 12000414 |
|     | DØ 7 K=1,30                                           |   | 12000415 |
|     | ZANGFLUX(I,K,K)=0.0                                   |   | 12000416 |
|     | RANGFLUX(I,N,K)=0.0                                   |   | 12000417 |
| 7   | VAR(I,N,K)=0.0                                        |   | 12000418 |
|     | FBATCELBATC                                           |   | 12000419 |
|     | IF (NFLUXZ) R, 10,8                                   |   | 12000420 |
| 8   | D0 9 N=2.NFL11XZ2                                     |   | 12000421 |
| 9   | ZAREA(N-1)=6.28318*RCYLIN*(ZZZ(N)-ZZZ(N-1))           |   | 12000422 |
|     | DOMEGAZ=6,28318/(FNPHIZ*FNMUZ)                        |   | 2000423  |
| 10  | IF (NFLUXR) II, 15, II                                |   | 12000424 |
| 11  | DO 14 NELANFLUXR                                      |   | 12000425 |
|     | IF(N-1) 13,12,13                                      |   | 12000501 |
| 12  | RRR2=0.0                                              |   | 2000502  |
|     | G0 T0 14                                              |   | 12000503 |
| 13  | RRR2=RRR(N=1)**2                                      |   | 12000504 |
| 14  | RAREA(N) = 3.14159*(RRR(N)**2-FRR2)                   |   | 12000505 |
|     | DOMEGAR=6,28318/(FNPHIR*FNMUR)                        |   | 2000506  |
| 15  | IF (NFLUXZ) 16,30,10                                  |   | 15000201 |
| 16  | MOMZ=NMUZ*NFHIZ                                       |   | 12000508 |
|     | UO IS LEI, LEATA                                      |   | 12000509 |
|     | READ (NCRS) PANGFLUX                                  |   | 12000510 |
|     | READ (NURS)                                           |   | 12000511 |
|     | UO  / 1=1,168P                                        |   | 15000215 |

I

|     |                                                                        | 10000517  |
|-----|------------------------------------------------------------------------|-----------|
|     | DO IZ NELOXZ                                                           | 12000513  |
|     | DO 17 K=1, MCAZ                                                        | 12000514  |
|     | ZANGFLUX(I,N,K)=ZANGFLUX(I,N,K)+RANGFLUX(I,N,K)                        | 12000515  |
| 17  | VAR(I,N,K)=VAR(I,N,K)+RANGFLLX(I,N,K)**2                               | 12000516  |
| 18  | CONTINUE                                                               | 12000517  |
|     | REWIND NORS                                                            | 12000518  |
|     | DO 19 I=1, IGPP                                                        | 12000519  |
|     | DO 19 N=1, NFLUXZ                                                      | 12000520  |
|     | DO 19 K=1. MORZ                                                        | 12000521  |
|     | ZANGELUX(I.N.K)=ZANGELUX(I.N.K)/FBATO                                  | 12000522  |
|     | VAP(I.N.K)=VAR(I.N.K)/FRATE                                            | 12000523  |
|     | VAR(I,N,K)=SORTF((VAR(I,N,K)-ZANGFLUX(I,N,K)**2)/                      | 12000524  |
|     | 1(FRAT0-1.0))                                                          | 12000525  |
|     | IE (7ANGELLX(I.N.K)) 20.20.21                                          | 12000601  |
| 20  | VAP(1, N, K) = 0                                                       | 12000602  |
| 60  |                                                                        | 12000603  |
| 21  | VAP(I, N, K) = VAP(I, N, K) * IDD 0/7ANOFI UZ(I, N, K)                 | 12000604  |
| 10  | 7 ANGEL HY (1, A) $X$ = $7$ ANGEL HY (1, N, K) / (7 AREA(N) + DAMEGA7) | 120006004 |
| 12  | DA DA NEL NEL NEL NEL NY                                               | 12000000  |
|     |                                                                        | 120000008 |
|     | IC / ICOD_51 22.22.23                                                  | 12000000  |
| 20  |                                                                        | 12000610  |
| 60  |                                                                        |           |
| 27  | 60 10 24<br>10-5                                                       | 12000611  |
| 20  |                                                                        | 12000012  |
| 24  | PRINT LUUU, RCDIU                                                      | 12000613  |
|     | PRINT LUUZ                                                             | 12000014  |
|     | PRINT 1000, /2/(N),2/2(N+1),(1,1=11,12)                                | 12000615  |
| 005 | FORMAT(1H0,34%,/NEUTRON FLUX PER CM**2 PER /,                          | 12000616  |
|     | TSTERADIAN//328,7FOR Z INTERVAL FROM/,                                 | 1500001   |
|     | 2E10.2.3H TC, FIN.2/1H0.47X, 7ENERGY INDEX7/                           | 12000618  |
|     | 3117,4120)                                                             | 12000619  |
|     | PRINT 1006                                                             | 12000620  |
| 006 | FORMAT(IH ,7ANGLE7, 12X, 7PERCENT7, 13X, 7PERCENT7                     | 12000621  |
|     | 1, 13X, 7PERCENT7, 13X, 7PERCENT7, 13X, 7PERCENT7/                     | 12000622  |
|     | 27 INDEX FLLY7,9X,7DEV FLLX7,9X,7DEV FLUX7,                            | 12000623  |
|     | 39X,7DEV FLUX7,9X,7DEV FLUX7,9X,7DEV7)                                 | 12000624  |
|     | DO 25 K=1.MCO7                                                         | 12000625  |

,

| 25  | PRINT 1007, K, (ZANGELUX(I,N,K),VAR(I,N,K),I=11,I2)     | 12000701 |
|-----|---------------------------------------------------------|----------|
| 007 | FORMAT(1H , 14, 5(1X, E11.3, F8.2))                     | 12000702 |
|     | IF (12-1GRF) 26,28,26                                   | 12000703 |
| 26  | 11=12+1                                                 | 12000704 |
|     | 12=1GRP                                                 | 12000705 |
|     | G0 T0 24                                                | 12000706 |
| 28  | CONTINUE                                                | 12000707 |
|     | De 29 I=1,10                                            | 12000708 |
|     | DO 29 N=1,20                                            | 12000709 |
|     | DO 29 K=1,30                                            | 12000710 |
|     | ZANGFLUX(I,N,K)=0.0                                     | 12000711 |
|     | RANGFLUX(I, N, K)=0.0                                   | 12000712 |
| 29  | VAR(1,N,K)=0.0                                          | 12000713 |
| 30  | IF (NFLUXR) 31,100,31                                   | 12000714 |
| 31  | MOOR=NMUR*NFHIR                                         | 12000715 |
|     | DO 33 L=1,LBATO                                         | 12000716 |
|     | READ (NCRS)                                             | 12000717 |
|     | READ (NCRS) ZANGFLUX                                    | 12000718 |
|     | DO 32 I=I,IGPP                                          | 12000719 |
|     | DO 32 N=1,NFLUXR                                        | 12000720 |
|     | DO 32 K=I,MOMR                                          | 12000721 |
|     | RANGFLUX(I,N,K)=RANGFLUX(I,N,K)+ZANGFLUX(I,N,K)         | 12000722 |
| 32  | VAR(I,N,K)=VAR(I,N,K)+ZANGFLLX(I,N,K)**2                | 12000723 |
| 33  | CONTINUE                                                | 12000724 |
|     | REWIND NCRS                                             | 12000725 |
|     | DO 34 I=I,IGRP                                          | 12000801 |
|     | DO 34 NELANFLUXA                                        | 12000802 |
|     | DO 34 KEI, MORR                                         | 12000803 |
|     | RANGFLUX(I,N,K)=RANGFLUX(I,N,K)/FBATO                   | 12000804 |
|     | VAR(I,N,K)=VAR(I,N,K)/FBATC                             | 12000805 |
|     | VAR(I,N,K)=SORTF((VAR(I,N,K)-RANGFLUX(I,N,K)**2)/       | 12000806 |
|     | (FBAT0-1.0))                                            | 2000807  |
|     | IF (RANGFLUX(I,N,K))36,35,36                            | 12000808 |
| 35  | VAR(I,N,K)=0.0                                          | 12000809 |
|     | GO TO 34                                                | 2000810  |
| 36  | VAR(I,N,K)=VAR(I,N,K)*100.0/RANGFLUX(I,N,K)             | 2000811  |
| 34  | RANGFLUX(I, N, K)=RANGFLUX(I, N, K)/(RAREA(N) *DOMEGAR) | 12000812 |

|      |                                                        | 10000017 |
|------|--------------------------------------------------------|----------|
|      | DO 45 NELVXK                                           | 12000813 |
|      | []=]                                                   | 12000814 |
|      | IF (IGRP-5) 37,37,38                                   | 12000815 |
| 37   | I2=IGRP                                                | 12000816 |
|      | GO TO 39                                               | 12000817 |
| 38   | 12=5                                                   | 12000818 |
| 39   | PRINT 1000, PCDID                                      | 12000819 |
|      | PRINT 1002                                             | 12000820 |
|      | IF (N-1) 41,40,41                                      | 12000821 |
| 4 0  | RRR1=0.0                                               | 12000822 |
|      | G0 T0 42                                               | 12000823 |
| 41   | RRR = RRR (N=1)                                        | 12000824 |
| 42   | PRINT 1105, PRRI, RRK(N), (1, I=11,12)                 | 12000825 |
| 1105 | FORMAT(1H0,34X.7NEUTRON FLUX PER CM**2 PER 7,          | 12000901 |
| 1.0. | 17STERADIAN7/32X, 7FOR R INTERVAL FROM7,               | 12000902 |
|      | 2FID. 2.3H TC.FID. 2/1HD. 47X.7ENERGY INDEX7/          | 12000903 |
|      | 3117.4120)                                             | 12000904 |
|      | PRINT LODG                                             | 12000905 |
|      | De 43 K=1, Meek                                        | 12000906 |
| 43   | PRINT IND7. K. (RANGELUX(I.N.K), VAR(I.N.K), I=11, 12) | 12000907 |
| 1.5  | IF (12=IGRE) 44,45,44                                  | 12000908 |
| 44   | 11=12+1                                                | 12000909 |
| • •  | 12-16PP                                                | 12000910 |
|      | GA TA 39                                               | 12000911 |
| 45   | CONTINUE                                               | 12000912 |
| 100  | CONTINUE                                               | 12000913 |
| 100  | TE (NSAP) 101. TOL. 102                                | 1200014  |
| 101  |                                                        | 12000915 |
| 101  |                                                        | 12000016 |
| 102  |                                                        | 12000017 |
|      |                                                        |          |
|      |                                                        | 12000010 |
|      | YO(])=0.0                                              |          |
|      | Z □ ( ] 7 = U + U<br>AL D 4 T > = 0                    | 12000001 |
|      | ALP(1)=0.0                                             | 12000921 |
|      | HET(I)=0.0                                             |          |
|      | GAM(I)=U.U                                             | 12000923 |
|      | SENGSQ(I)=C.B                                          | 12000924 |

,

|      | WAITER(I)=C.h                                      | 12000925 |
|------|----------------------------------------------------|----------|
| 103  | LBATER(I)=0                                        | 12001001 |
|      | REWIND NSOF                                        | 12000301 |
|      | NSAR=NATS                                          | 12000301 |
| 104  | READ (NSOR) HCALS, XS, YS, ZS, ALPHA, BETA, GAMMA, | 12001002 |
|      | ISENG2, WAIT, IFGPI, JTYPER, LBATY                 | 12001003 |
|      | IF (E0F, NSCR) 701,702                             | 12001003 |
| 701  | REWIND NSOF                                        | 12001003 |
|      | NSOR=NSOR+1                                        | 12001003 |
|      | REWIND NSOF                                        | 12001003 |
|      | GO TA 104                                          | 12001003 |
| 702  | DØ 150 I=1,50                                      | 12001004 |
|      | IF (NCOLS(I)) 200,200,105                          | 12001005 |
| 105  | IF (JTYPEI-JTYPER(I)) 106,107,106                  | 12001006 |
| 106  | IF (JTYPE2-JTYPER(1)) 150,107,150                  | 12001007 |
| 107  | NCRS=I                                             | 12001008 |
|      | CALL BIASEF                                        | 12001008 |
| 150  | CONTINUE                                           | 12001009 |
|      | 60 TA 104                                          | 12001010 |
| 200  | WRITE (NSOFI) JTY, X0, Y0, Z0, ALP, BET, GAM,      | 12001011 |
|      | ISENGSG, WAITER, LBATER                            | 12001012 |
|      | IF (EOF, NSCRI) 703,704                            | 12001012 |
| 703  | END FILE NSCRI                                     | 12001012 |
|      | REWIND NSOFI                                       | 12001012 |
|      | NSORI=NSORI+I                                      | 15001015 |
|      | REWIND NSORI                                       | 12001012 |
|      | Ge Te 200                                          | 12001012 |
| 704  | END FILE NSERI                                     | 12001013 |
|      | REWIND NSOFI                                       | 12001014 |
|      | REWIND NSOF                                        | 12001015 |
|      | PRINT 1000, PCDID                                  | 12001016 |
|      | PRINT 2000, NSARI                                  | 12001017 |
| 2000 | FORMAT(1HQ,7SOURCE TAPE7,13,7WAS WRITTEN.7)        | 12001018 |
|      | PRINT 2001, (I, NTOT(I), WTOT(I), I=1, LBATA)      | 12001019 |
| 2001 | FORMATCIHD, 7PATCH NUMBER NUMBER OF NEUTRONS7      | 15001050 |
|      | 1.7 TOTAL WEIGHT7/(111,117,9X,E12,3))              | 12001021 |
|      | RETURN                                             | 12001022 |

|     | SUBROUTINE EIASER                                                  | 13000101 |
|-----|--------------------------------------------------------------------|----------|
|     | COMMON/THIRE/NCRS,NFLUXZ,NFLUXR,NESCAPE(10,4),                     | 13000206 |
|     | PANGFLUX(10,20,30), #BAR(10,4), ZANGFLUX(10,20,30), BCDID(9)       | 13000207 |
|     | COMMAN/FORTH/ALPHA(50),BETA(50),GAMMA(50),TEGPI(50),               | 13000208 |
|     | IJTYPER(50), LRATY(50), NCULS(50), SENG2(50), WAIT(50),            | 13000209 |
| ć   | 2XS(50),YS(50),ZS(50)                                              | 13000210 |
|     | COMMON/SIXTE/ALP(50), BET(50), COSTHETA(10), ERUS(10),             | 13000213 |
|     | GAM(50), IGRP, JTYPEI, JTYPE2, JTY(50), LBATER(50),                | 13000214 |
|     | 2NSORI, NAMO, NAMT, SENGSQ(50), WAITER(50), X0(50), Y0(50), 70(50) | 13000215 |
|     | COMMON/SEVENTH/NFLUXZ2, NRITE, RRR(10), WMAX(10,4),                | 13000216 |
|     | WTHETAI(10,4), WTHETA2(10,4), ZZZ(21)                              | 13000217 |
|     | COMMON/EIGHTH/NATS, NSTRT, SWK(10), WK(10), WKI(10)                | 13000218 |
|     | COMMON/NINTH/NTOT(30), WTOT(30), LBATA                             | 13000226 |
|     | COMMAN/RANDOM/RANDOM, GENERA                                       | 13000227 |
|     | DATA(NCNT=C), (NENTER=3)                                           | 13000299 |
|     | IF (NENTER) 3,1,3                                                  | 13000300 |
| 1   | NENTER=1                                                           | 13000301 |
|     | READ (50,1000) RANDOM,NREAD                                        | 13 302   |
| 000 | FORMAT (016,18)                                                    | 13 303   |
|     | IF (NREAD) 701,700,701                                             | 13 303   |
| 701 | READ (50,1001) (WBAR(J,JTYPEI),J=1,IGRP)                           | 13 303   |
|     | READ (50, [COI) (WMAX(J, JTYPEI), J=1, IGRP)                       | 13 303   |
| 001 | FORMAT (6E12.4)                                                    | 13 303   |
|     | IF (JTYPEI-JTYPE2) /02,700,702                                     | 13 303   |
| 702 | READ (50,1001) (WBAR(J,JTYPE2),J=1,1GRP)                           | 13 303   |
|     | READ (50,1001) (WMAX(J,JTYPE2),J=1,IGRP)                           | 13 303   |
| 700 | CONTINUE                                                           | 13 303   |
|     | De 2 J=1,30                                                        | 13000304 |
|     | 0=(L)TMT4                                                          | 13000305 |
| 2   | WT0T(J)=0,0                                                        | 13000306 |
| 3   | I=NCRS                                                             | 13000307 |
|     | IEGP=IEGP((I)                                                      | 13000308 |

END ENDRUN

|     |                                                                   | 13000309 |
|-----|-------------------------------------------------------------------|----------|
|     | IF (GAMMA(I)-CASTHETA(IEGP)) 300,4,4                              | 13000310 |
| 4   | IF (WAIT(I)-UK(IEGP)*WBAR(IEGP,JTYPE)) 100,5,5                    | 13000311 |
| 5   | IF (WAIT(I)-SWK(IEGP)*WBAR(IEGP,JTYPE)) 6,6,200                   | 13000312 |
| 6   | NSPL = I                                                          | 13000313 |
|     | G0 T0 400                                                         | 13000314 |
| 100 | IF (FLTRNF(NARG)*WK(IEGP)*WBAR(IEGP,JTYPE)=WALT(I))               | 13000315 |
|     | 102,102,101                                                       | 13000316 |
| 101 | RETURN                                                            | 13000317 |
| 102 | WAIT(I)=WK(IEGP)*WBAR(IEGP,JTYPE)                                 | 13000318 |
|     | NSPL=1                                                            | 13000319 |
|     | GO TO 400                                                         | 13000320 |
| 200 | FOG=WAIT(I)/(SWK(IEGP)*WBAR(IEGP,JTYPE))                          | 3 321    |
| 201 | NSPL=F00+1.0                                                      | 13 322   |
|     | FOR=NSPL                                                          | 13 322   |
|     | #0A=1,0/F00                                                       | 13 322   |
|     | WAIT(I)=FOC*WAIT(I)                                               | 13 322   |
|     | GO TA 400                                                         | 13000323 |
| 300 | IF (WAIT(I)=WKI(IEGP)*WMAX(IEGP,JTYPE)) 600,305,305               | 13 324   |
| 305 | IF (WAIT(I)-SWK(IEGP)*WMAX(IEGP,JTYPE)) 6,6,800                   | 13 325   |
| 600 | IF (FLTRNF(NARG)*WKI(IEGP)*WMAX(IEGP, JTYPE)-WAIT(I)) 602,602,101 | 13 326   |
| 602 | WAIT(I)=WKI(IEGP)*WMAX(IEGPJJTYPE)                                | 13 327   |
|     | GO TO 6                                                           | 13 328   |
| 800 | FOG=WAIT(I)/(SWK(IEGP)*WMAX(IEGP,JTYPE))                          | 13 401   |
|     | GO TO 201                                                         | 13 402   |
| 400 |                                                                   | 13000403 |
|     | NTAT(LBATA)=NTAT(LBATA)+1                                         | 13000404 |
|     | WTOT(LBATA)=WTOT(LBATA)+WAIT(I)                                   | 13000405 |
|     | NCNT=NCNT+1                                                       | 13000406 |
|     | JTY(NCNT)=_TYPER(I)                                               | 13000407 |
|     | XO(NCNT) = XS(T)                                                  | 13000408 |
|     | YO(NCNT)=YS(1)                                                    | 13000409 |
|     | ZO(NCNT)=ZS(I)                                                    | 13000410 |
|     | ALP(NCNT)=ALPHA(I)                                                | 13000411 |
|     | BET(NCNT)=EETA(1)                                                 | 13000412 |
|     | GAM(NCNT)=GAMMA(I)                                                | 13000413 |
|     | SENGSQ(NCNT)=SENG2(I)                                             | 13000414 |

|     | WAITER(NCNT)=WAIT(I)                     | 13000415 |
|-----|------------------------------------------|----------|
|     | LBATER(NONT)=LBATY(I)                    | 13000416 |
|     | IF (NCNT-5c) 402,401,401                 | 13000417 |
| 401 | WRITE (NSCFI) JTY, XC, YA, ZO, ALP, BET, | 13000418 |
|     | IGAM, SENGSQ, KAITER, LBATER             | 13000419 |
|     | IF (ECF, NSCHI) 903,904                  | 13000419 |
| 903 | END FILE NSCRI                           | 13000419 |
|     | REWIND NSOR!                             | 13000419 |
|     | *SARI=NSARI+I                            | 13000419 |
|     | REWIND NSORI                             | 13000419 |
|     | GØ TØ 401                                | 13000419 |
| 904 | END FILE NSCRI                           | 13000420 |
|     | BACKSPACE NSORI                          | 13000421 |
|     | NCNT=0                                   | 13000422 |
|     | D0 500 J=1,50                            | 13000422 |
| 500 | 0=(L)YTL                                 | 13000422 |
| 402 | NSPL=NSPL=1                              | 13000423 |
|     | IF (NSPL) 403,403,400                    | 13000424 |
| 403 | RETURN                                   | 13000425 |
|     | END BLASER                               | 13000501 |
|     |                                          |          |

, .

| SUBRAUTINE TRACER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14000101 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| COMMON MAIN ATTALL BATCH, DATCH, NTYPE, NHISTR, NHISMY, NSOD,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14000201 |
| our and the second s | 14000201 |
| INBAT, NITS, NELUXZI, NELUXRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14000202 |
| COMMAN/SECEND/ALPHAI, BETAI, CMU, CMUD, FNPHIR, FNPHIZ, FNMUR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14000203 |
| FNMUZ, GAMMAI, IANGL, NMUZ, NMUR, NPHIZ, NPHIR, PHI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14000204 |
| 2PHICOS, PHISIN, R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14000205 |
| COMMON/FIFTH/JTYPE, RCYLIN, ZTCP, ZBOT, ZTOPNEW,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14000211 |
| ZBATNEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14000212 |
| COMMON/CPLIST/MCOLL(8),NAME(8),S12(8),X1(8),Y1(8),Z1(8),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14000222 |
| IWTI(8), S42(8), U0(8), V0(8), W0(8), 0LDWT(8), NGRP(8), NELEM(8), NMED(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14000223 |
| 2, DUMMY(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| COMMON/GOOLER/NGOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14000228 |
| DATA (IJK=C),(NOMIT=D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14000301 |

| C ZBATNEW MUST BE GREATER THAN ZTOPNEW.           | 14000302 |
|---------------------------------------------------|----------|
| IF (IJK) 2,1,2                                    | 14000303 |
| I IJK=I                                           | 14000304 |
| RCYLIN2=RCYLIN**2                                 | 14000305 |
| 2 IF (NOMIT-10) 4,3,3                             | 14000306 |
| 3 PRINT 1000, MOMIT                               | 14000307 |
| 1000 FORMATCIHI, 13,7 NEUTRONS COULD NOT BE7,     | 14000308 |
| 17 TRACED TO THE SOURCE CYLINDER7)                | 4000309  |
| CALL EXIT                                         | 14000310 |
| 4 IF (ZI(KTH)-ZBMTNEW) 100,5,5                    | 14000311 |
| 5 IF (GAMMAL) 6,6,7                               | 14000312 |
| 6 NOMIT=NOMIT+1                                   | 14000313 |
| PRINT 1001, XI(KTH), YI(KTH), ZI(KTH), ALPHAI,    | 14000314 |
| IBETAL, GAMMAL, NAMIT                             | 14000315 |
| 1001 FORMATCIHI, 7UNSUCCESSFUL TRACE TO SOURCE.7, | 14000316 |
| 17 COORDINATES AND DIRECTION COSINES ARE7/        | 14000317 |
| 26E12,4/1H ,7FRROR NUMBER7,13)                    | 14000318 |
| GØ TØ 900                                         | 14000319 |
| 7 $T = (Z   (KTH) = Z R CTNEW) / GAMMAI$          | 14000320 |
| X = X   (KTH) = A L P H A   *T                    | 14000321 |
| Y=YI(KTH) #EETAI *T                               | 4000322  |
| Z=ZBOTNEW                                         | 14000323 |
| IF (X**2+Y**2-RCYLIN2) 8,8,9                      | 14000325 |
| 8 JTYPE=1                                         | 4000401  |
| GO TO 800                                         | 4000402  |
| 9 NPLACE=1                                        | 14000403 |
| Cl=XI(KTH)**2+YI(KTH)**2=RCYLIN2                  | 14000324 |
| GO TO 998                                         | 4000404  |
| 901 CONTINUE                                      | 4000405  |
| IF (TI) 10,10,6                                   | 4000406  |
| 0 IF (T2) 11,11,6                                 | 4000407  |
| 11 GO TO 999                                      | 14000408 |
| 910 CONTINUE                                      | 14000409 |
| IF (Z=ZTOPNEW) 6, 12, 12                          | 4000410  |
| 12 JTYPE=2                                        | 4000411  |
| IF (Z=ZBOTNEW) 911,911,6                          | 4000411  |
| 911 CONTINUE                                      | 14000411 |

|     | GO TO 800                        | 4000412  |
|-----|----------------------------------|----------|
| 100 | IF (Z (KTH)-ZTMPNEW)  3, 3,200   | 14000413 |
| 13  | IF (GAMMAI) 14,6,6               | 14000414 |
| 14  | T=(Z (KTH)-ZTCPNEW)/GAMMA        | 14000415 |
|     | X=XI(KTH)=ALPHAI*T               | 14000416 |
|     | Y=Y (KTH)-EETA *T                | 14000417 |
|     | Z=ZTOPNEW                        | 14000418 |
|     | IF (X**2+Y**2-RCYLIN2) 15,15,16  | 14000420 |
| 15  | JTYPE=4                          | 14000421 |
|     | 60 TO 800                        | 14000422 |
| 16  | NPLACE=2                         | 14000423 |
|     | C =X (KTH)**2+Y (KTH)**2=RCYLIN2 | 14000419 |
|     | GØ TØ 998                        | 14000424 |
| 902 | CONTINUE                         | 14000425 |
|     | IF (T1) 17,17,6                  | 14000501 |
| 17  | IF (T2) 18,18,6                  | 14000502 |
| 18  | GO TO 999                        | 14000503 |
| 920 | CONTINUE                         | 14000504 |
|     | IF (Z-ZBOTNEW) 19,19,6           | 14000505 |
| 19  | JTYPE=3                          | 14000506 |
|     | IF (Z-ZTOPNEW) 6,921,921         | 14000506 |
| 921 | CONTINUE                         | 14000506 |
|     | GO TA 800                        | 14000507 |
| 200 | IF (GAMMA) 300,22,20             | 14000508 |
| 20  | T=(ZBOTNEW=ZI(KTH))/GAMMA)       | 14000511 |
|     | X=XI(KTH)+ALPHAI*T               | 14000512 |
|     | Y=YI(KTH)+EETAI*T                | 14000513 |
|     | Z=ZBOTNEW                        | 14000514 |
|     | IF (X**2+Y**2-RCYLIN2) 21,21,22  | 14000516 |
| 21  | JTYPE=I                          | 14000517 |
|     | GO TA 800                        | 14000518 |
| 22  | NPLACE=3                         | 14000519 |
|     | C =X (KTH)**2+Y (KTH)**2=RCYLIN2 | 14000515 |
|     | GO TO 998                        | 14000520 |
| 903 | CONTINUE                         | 4000521  |
|     | GO TA 999                        | 14000522 |
| 930 | CONTINUE                         | 14000523 |

•

|      | IF (Z-ZBOTNEW) 931,931,6               | 14000523 |
|------|----------------------------------------|----------|
| 931  | CONTINUE                               | 14000523 |
|      | JTYPE=2                                | 14000524 |
|      | GG TG 800                              | 14000525 |
| 300  | T=(7TOPNEW-ZI(KTH))/GAMMAI             | 1400001  |
| -    | X=XI(KTH)+ALPHAI*T                     | 14000602 |
|      | Y=YI(KTH)+EETAI*T                      | 14000603 |
|      | Z=ZTOPNEW                              | 14000604 |
|      | IF (X**2+Y**2-RCYLIN2) 23,23,24        | 14000606 |
| 23   | JTYPE=4                                | 14000607 |
|      | GO TO 800                              | 14000608 |
| 24   | NPLACE=4                               | 14000609 |
|      | CI=XI(KTH) * * 2+YI(KTH) * * 2=RCYLIN2 | 14000605 |
|      | GO TO 998                              | 14000610 |
| 904  | CONTINUE                               | 14000611 |
|      | G0 T0 999                              | 14000612 |
| 940  | CONTINUE                               | 14000613 |
|      | IF (Z-ZTOPNEW) 6,941,941               | 14000613 |
| 941  | CONTINUE                               | 14000613 |
|      | JTYPE=3                                | 14000614 |
| 800  | X   (KTH)=X                            | 14000615 |
|      | YI(KTH)=Y                              | 14000616 |
|      | ZI(KTH)=Z                              | 14000617 |
|      | NGCOD=0                                | 14000618 |
| 801  | RETURN                                 | 14000619 |
| 90 n | NGOD=I                                 | 14000620 |
|      | GO TA 801                              | 14000621 |
| 998  | A=1,0-GAMMA1**2                        | 14000622 |
|      | IF (A) 6,6,997                         | 14000622 |
| 997  | CONTINUE                               | 14000622 |
|      | B=2.0*(ALPFAI*XI(KTH)+BETAI*YI(KTH))   | 14000623 |
|      | BZ=B**2                                | 14000624 |
|      | D=BZ-4,0*A*C1                          | 14000625 |
|      | IF (D) 6,91,91                         | 4000701  |
| 91   | 0 = SQRTF(D)                           | 4000702  |
|      | T = (-B+D)/(2, 0*A)                    | 4000703  |
|      | T2=(-B-D)/(2.0*A)                      | 14000704 |

| GO TO (901,902,903,904),NPLACE | 4000705  |
|--------------------------------|----------|
| 999 TI=MAXIF(TI,T2)            | 14000706 |
| X=X (KTH)+ALPHA *T             | 4000707  |
| Y=YI(KTH)+EETAI*TI             | 14000708 |
| 7=ZJ(KTH)+CAMMAI*TJ            | 14000709 |
| GO TO (910,920,930,940),NPLACE | 14000710 |
| END TRACER                     | 14000711 |

Subroutine OSRTAPE can be found in Appendix J, Part 1.

4. Program CKSOURTP Listing

```
PRAGRAM CKSEURTP
    COMMON/MAINE/JTY(50),X0(50),Y0(50),Z0(50),
   IALP(50), BET(50), GAM(50), SENGSQ(50), WAITER(50), LBATER(50)
    COMMON/MAINP/I, INDEX(59)
    DIMENSION E(9), WI(9), W2(9), NI(9), N2(9)
    DATA(IJK=0), (NCNT=0)
    CMU=.7
    E(1)=.1
    E(2)=2.02
    E(3)=3.68
    E(4)=4.5
    E(5)=5.49
    E(6)=6.70
    E(7)=8.18
    E(8)=10.0
    E(9)=12.2
    De 700 I=1,9
    WI(I)=0.0
    W2(1)=0.0
    N|(1)=0
700 N2(I)=0
  I READ (5) JTY, XA, YO, ZA, ALP, BET, GAM, SENGSQ,
   INAITER, LBATER
    00 2 1=1,50
    1F (JTY(1))3,4,3
  3 SENGSQ(I)=SENGSQ(I)/1.91322E+18
    DO 701 N=1,8
    IF (SENGSQ(1)-E(N+1)) 702,702,701
701 CONTINUE
    N=9
702 IF (GAM(I)-CMU) 704,703,703
703 WI(N)=WI(N)+WAITER(1)
    N|(N)=N|(N)+1
```

```
GO TO 705
704 W2(N)=W2(N)+WAITER(1)
     N2(N)=N2(N)+1
705 CONTINUE
   2 INDEX(1)=I+NGNT
    1=51
   4 I=I-1
     IF (IJK) 6,5,6
   5 IJK=1
     PRINT 1000
IDOD FORMATCIHI, 7CHECKOUL OF SOURCE TAPE 7
    1,7PREPARED BY PROGRAM SNARLS.7)
   6 PRINT 1001
1001 FORMAT(1H0,71,EAKAGE7,18x,7COCRDINATES7,10x,
    I7DIRECTION COSINES7, 6X, 7ENERGY7/2X,
    27INDEX JTYPE RATCH X7,7X,1HY,7X,1HZ,7X,3HALP,
    35X, 3HBET, 5X, 3HGAM, 5X, 3HMEV, 5X, 6HWEIGHT)
1002 FORMAT(1H ,316,3F8.3,3F8.4,F8.3,E12.3)
     IF (1) 7,100,7
   7 PRINT 1002, (INDEX(J), JTY(J), LBATER(J), X0(J), Y0(J),
    IZO(J), ALP(,), BET(J), GAM(J), SENGSQ(J), WAITER(J),
    2J=1,1)
     IF (1-50) 100,8,100
   8 NCNT=INDEX(I)
     GOTOI
 100 PRINT 1003, (F(N), N=1,9), (WI(N), N=1,9), (NI(N), N=1,9), (W2(N), N=1,9),
    1(N2(N), N=1, 9)
                                                             ,9110/
1003 FORMAT (8HI F, MEV,9EID.2/8H WI
                                           ,9E10.2/8H NI
               ,9Eln.2/8H N2 ,9IID)
    ISH WS
     CALL EXIT
     END
```

5. Subroutine SNEUT(X,Y,Z,A,B,C,W,E,NTAPE,NSKIP) Listing

```
SUBROUTINE SNEUT(X.Y.Z.A.B.C.W.E.NTAPE,NSKIP)
      DIMENSION _TY(50),X0(50),Y0(50),Z0(50),ALP(50),BET(50),GAM(50),
                                                                                 2
                                                                                  3
     ISENGSQ(50), WAITER(50), LRATER(50)
                                                                                  4
     DATA (NCNT=0), (NGO=1), (JTY(50)=1)
     NSKIP IS THE NUMBER OF RECORDS OF 50 NEUTRONS TO BE SKIPPED.
                                                                                  5
C
     NTAPE IS THE LAGICAL NUMBER OF THE SOURCE TAPE.
                                                                                  6
C
     IF THIS ROLTING RETURNS NTAPE=O, THERE ARE NO MORE NEUTRONS ON
                                                                                  7
C
     CUPRENT TAFE. CALLING PROGRAM MAY RESET NTAPE AND SKIP NSKIP REC.
                                                                                  8
C
                                                                                  9
      GO TO (1.3.2.14), NGC
                                                                                 10
   14 NCNT=0
      JTY(50)=1
                                                                                 11
                                                                                 12
   I REWIND NTAFE
                                                                                13
   16 NCNT=NCNT+1
                                                                                 14
      IF (JTY(50)) 8,8,4
    4 READ (NTAPE) JTY, X0, Y0, Z0, ALF, BET, GAM, SENGSQ, WAITER, LBATER
                                                                                15
                                                                                 16
      IF (EOF, NTAPE) 701,702
  701 GO TO (8,8,10,8),NGO
                                                                                 17
                                                                                 18
  702 GO TO (12,12,13,12),NGO
  12 IF (NCNT-NEKIP) 16,16,2
                                                                                 19
                                                                                 20
    2 NREC=0
                                                                                 21
     NGM=2
                                                                                 22
    3 NREC=NREC+1
                                                                                 23
      X=XA(NREC)
                                                                                 24
      Y=YO(NREC)
                                                                                 25
      Z=ZO(NREC)
                                                                                 26
      A=ALP(NREC)
                                                                                 27
      B=BET(NREC)
      C=GAM(NREC)
                                                                                 28
                                                                                 29
      W=WAITER(NREC)
      E=SENGSQ(NEEC)
     1F (NREC-50) 9,5,5
                                                                                 30
                                                                                 31
    5 NG8=3
                                                                                 32
      GO TO 4
```

| 13   | IF (JTY(1)) 11,10,11<br>Print 1000,nont                            | 33<br>34 |
|------|--------------------------------------------------------------------|----------|
| 1000 | FORMAT (IHI,7THO MANY RECORDS,7,16,7,WERE SKIPPED ON SOURCE TAPE7) | 35       |
|      | REWIND NTAFE                                                       | 36       |
|      | GØ TØ 15                                                           | 37       |
| 9    | IF (JTY(NREC+1)) 11,0,11                                           | 38       |
| 10   | REWIND NTAFE                                                       | 39       |
|      | NGA =4                                                             | 4 D      |
|      | NTAPE=0                                                            | 41       |
| 11   | RETURN                                                             | 42       |
| 15   | CALL EXIT                                                          | 45       |
|      | END SNEUT                                                          | 46       |

.

# APPENDIX O

# SNARLS INPUT DATA FOR THE SNAP-TSF REACTOR

1. SNARLS Input Data for the Shield Source Tape Preparation

| SNARLS FULL  | ADJEINT SN BIAS | 5 50 BATCHES | OF 800 NEUTS | . SOURCE T | APE BIAS | ł   |
|--------------|-----------------|--------------|--------------|------------|----------|-----|
| 1            | 1               | 3            | 5            | 0          | 50       | 2   |
|              |                 | 9            | 1            | 1          | 7        | 3   |
| Q            | 2               | 1            | 4            | 1          | 1        | 4   |
|              |                 | -40,0        | 1,48         | 60.96      |          | 5   |
| 12.2         | 10.0            | 8,18         | 6.70         | 5.49       | 4.5      | 61  |
| 3,68         | 2.02            | . 1          |              |            |          | 62  |
| .7           | . 7             | . 7          | • 7          | . 7        | , 7      | 71  |
| .7           | • 7             | , 7          |              |            |          | 72  |
| .333         | .333            | .333         | .333         | .333       | .333     | 81  |
| , 333        | .333            | .333         |              |            |          | 82  |
| , 333        | . 333           | , 333        | .333         | .333       | , 333    | 91  |
| , 333        | .333            | .333         |              |            |          | 92  |
| 3.0          | 3.0             | 3.0          | 3.0          | 3.0        | 3.0      | 101 |
| 3.0          | 3.0             | 3.0          |              |            |          | 102 |
| 11.239       | 61.96           |              |              |            |          | 121 |
| 173607236543 | 075             |              |              |            |          | 13  |
| .789-4       | 2.61-4          | 8.15-4       | 2.40-3       | 6.63-3     | 1,71-2   | 141 |
| 4.34-2       | 1.73-1          | 4.64+0       |              |            |          | 142 |
| 2.77-4       | .917-3          | 2.86-3       | 8.42-3       | 2.33-2     | 6,00-2   | 151 |
| 1.52-1       | 6.07-1          | 16.3+0       |              |            |          | 152 |

| SNARLS | FULL | ADJEINT SN | BIAS 60 | BATCHES | ØF | 800 NEUTS. | ANG FLUX |      | 1   |
|--------|------|------------|---------|---------|----|------------|----------|------|-----|
|        | 1    | 3          |         | 0       |    | 0          | 0        | 60   | 2   |
|        |      |            |         | 3       |    | 1          | 1        | 7    | 3   |
|        | 0    | 2          |         | 1       |    | 5          | 1        | 1    | 4   |
|        |      |            |         | -40,0   |    | 1,48       | 18.135   |      | 5   |
|        | 4.00 | 2.00       |         | .4076   |    |            |          |      |     |
|        | .7   | ,7         |         | .7      |    | .7         | . 7      | • 7  | 71  |
|        | .333 | .333       |         | ,333    |    | .333       | .333     | .333 | 81  |
|        | .333 | .333       |         | .333    |    | .333       | .333     | .333 | 91  |
|        | 3,0  | 3.0        |         | 3.0     |    | 3.0        | 3.0      | 3.0  | 101 |
| 1      | .239 | 18,135     |         |         |    |            |          |      | 121 |

2. SNARLS Input Data for the Calculation of Angular Flux (SNAP-TSF Reactor Bottom)

3. SNARLS Input Data for the Leakage Flux Radial Distribution (SNAP-TSF Reactor Bottom)

| SNARLS | FULL | ADJEINT | SN  | BIAS | 60 | BATCHES | ØF | 800   | NEUTS. | RADIAL | DISTRIB. |     |     |
|--------|------|---------|-----|------|----|---------|----|-------|--------|--------|----------|-----|-----|
|        | 1    |         | 17  | 3    |    | 0       |    |       | D      | 0      |          | 60  | 2   |
|        |      |         |     |      |    | 3       |    |       | 1      | 1      |          | 7   | 3   |
|        | Ũ    |         | 10  | 0    |    | 1       |    |       | 1      | 1      |          | 1   | 4   |
|        |      |         |     |      |    | 40.0    |    | 1.4   | 48     | 18.135 |          |     | 5   |
|        | 4,0  |         | 2.1 | 0    |    | 4076    |    |       |        |        |          |     |     |
|        | .7   |         | • 7 | 7    |    | .7      |    | ,     | . 7    | .7     |          | .7  | 71  |
|        | .333 |         | 33. | 3    |    | .333    |    | .3:   | 33     | .333   |          | 333 | 81  |
|        | ,333 |         | 33. | 3    |    | ,333    |    | .3.   | 33     | .333   |          | 333 | 91  |
|        | 3.0  |         | 3.1 | 0    |    | 3,0     |    | 3.    | . 0    | 3.0    |          | 3.0 | 101 |
|        | 1.5  |         | 3.1 | 0    |    | 4.5     |    | 6     | • 0    | 7.5    |          | 9.0 |     |
|        | 10.1 | 11.     | 239 | 9    |    | 14.0    |    | 18.13 | 35     |        |          |     |     |
4. SNARLS Input Data for the Leakage Flux Spectrum (SNAP-TSF Reactor Bottom)

• '

.

| SNARLS | FULL | ADJEINT SN BLAS | 60 BATCHES | OF 800 NEUTS. | SPECTRUM |      | 1   |
|--------|------|-----------------|------------|---------------|----------|------|-----|
|        | 1    | 3               | 0          | ٥             | a        | 60   | 2   |
|        |      |                 | 10         | Î             | 1        | 7    | 3   |
|        | U    | 2               | 1          | 1             | 1        | 1    | 4   |
|        |      |                 | -40.0      | 1.48          | 18,135   |      | 5   |
|        | 10.0 | 7.0             | 5.0        | 4.0           | 3.0      | 2.5  |     |
|        | 2.0  | 1.5             | 1.0        | .4076         |          |      |     |
|        | . 7  | . 7             | . 7        | • 7           | . 7      | , 7  | 71  |
|        | .7   | . 7             | , 7        | • 7           |          |      |     |
|        | .333 | . 333           | , 333      | .333          | .333     | .333 | 81  |
|        | .333 | . 3.3.3         | , 333      | .333          |          |      |     |
|        | .333 | . 333           | , 333      | .333          | .333     | .333 | 91  |
|        | ,333 | .333            | ,333       | .333          |          |      |     |
|        | 3.0  | 3.0             | 3,0        | 3.0           | 3.0      | 3.0  | 101 |
|        | 3.0  | 3.0             | 3.0        | 3.0           |          |      |     |
| 11     | .239 | 18,135          |            |               |          |      |     |

## APPENDIX P

INPUT DATA FOR THE CORE-MAPPING PROBLEM

1. Input Data for the Total Cross Section Tape Preparation

| CODE 4  | 10   | 20    |       |        |     |       |     |    |    |   |   | 001 |
|---------|------|-------|-------|--------|-----|-------|-----|----|----|---|---|-----|
| 76001   | 1    |       |       |        |     |       |     |    |    |   |   | 002 |
| 76002   | 1    |       |       |        |     |       |     |    |    |   |   | 003 |
| 76003   | 1    |       |       |        |     |       |     |    |    |   |   | 004 |
| 76004   | i    |       |       |        |     |       |     |    |    |   |   | 005 |
| 76005   | i    |       |       |        |     |       |     |    |    |   |   | 006 |
| 76006   | i    |       |       |        |     |       |     |    |    |   |   | 007 |
| 77001   | í    |       |       |        |     |       |     |    |    |   |   | 008 |
| 77002   | 1    |       |       |        |     |       |     |    |    |   |   | 009 |
| 77003   | 1    |       |       |        |     |       |     |    |    |   |   | 010 |
| 77004   | Ì    |       |       |        |     |       |     |    |    |   |   | 011 |
| 77005   | i    |       |       |        |     |       |     |    |    |   |   | 012 |
| 77006   | i    |       |       |        |     |       |     |    |    |   |   | 013 |
| 77007   | 1    |       |       |        |     |       |     |    |    |   |   | 014 |
|         |      |       |       |        |     |       |     |    |    |   |   | 015 |
| CODE 5  | 10   | 20    |       |        |     |       |     |    |    |   |   | 016 |
| SIGMA T | ATAL | CORE  | INT   | ERMEDI | ATE | CALCI | ULA | TI | ØN |   |   | 017 |
| 1001    | ļ    | .0459 | 956 4 | 000    | 1   | .00   | 814 | 17 | 0  | 0 | 3 | 018 |
| 76001   | 1    | 0     |       |        |     |       |     |    |    |   |   | 019 |
| CODE 5  | 10   | 20    |       |        |     |       |     |    |    |   |   | 020 |
| INTERME | DIA  | ΓĒ    |       |        |     |       |     |    |    |   |   | 021 |
| 11000   | 1    | .0005 | 31176 | 001    | 1   |       | ١.  | 0  | D  | 0 | 3 | 022 |
| 76002   | 1    | 0     |       |        |     |       |     |    |    |   |   | 023 |
| CODE 5  | 10   | 20    |       |        |     |       |     |    |    |   |   | 024 |
| INTERME | DIA  | TE    |       |        |     |       |     |    |    |   |   | 025 |
| 19000   | 1    | .001  | 11776 | 002    | 1   |       | 1.  | 0  | 0  | 0 | 3 | 026 |
| 76003   | 1    | 0     |       |        |     |       |     |    |    |   |   | 027 |
| CODE 5  | 10   | 20    |       |        |     |       |     |    |    |   |   | 028 |
| INTERME | DIA  | Έ     |       |        |     |       |     |    |    |   |   | 029 |
| 28000   | 1    | .0030 | 63576 | 003    | 1   |       | 1.  | 0  | D  | ŋ | 3 | 030 |
| 76004   | 1    | Q     |       |        |     |       |     |    |    |   |   | 031 |
| CODE 5  | 10   | 20    |       |        |     |       |     |    |    |   |   | 032 |
| INTERME | DIA  | ΓE    |       |        |     |       |     |    |    |   |   | 033 |

40000 1 .02715076004 1 1.0 0 0 3 76005 1 0 CODE 5 IN 20 INTERMEDIATE 92235 1 .001096475005 1 1.0 0 0 3 76006 1 0 CODE 5 10 20 SIGMA TOTAL CORE FINAL CALCULATION 92238 1.0000824776006 1 1.0 0 0 3 77001 I U CORE SIGMA TOTAL CODE 4 IN 20 76001 76002 1 76003 76004 76005 76006 1 CODE 5 10 20 SIGMA TOTAL INTERNAL BE REF. INTERMEDIATE CALCULATION 4000 1 .11348011000 1 .0002742 0 0 3 76001 0 CODE 5 IN 20 SIGMA TATAL INTERNAL BE REF. FINAL CALCULATION 19000 | .000571776001 | 1.0 0 0 3 77002 | 0 INTERNAL BE REF SIG TOT CODE 5 10 20 SIGMA TATAL VESSEL INTERMEDIATE CALCULATION 24000 1 .01674026300 1 .063159 0 0 3 76002 1 0 CODE 5 IN 20 SIGMA TOTAL VESSEL FINAL CALCULATION 28000 | .00265176002 | |.0 0 3 n 77003 J U VESSEL SIG TOT CODE 5 10 20 SIGMA TOTAL EXTERNAL BE FINAL CALCULATION 4000 1 .120140 4000 2 0.0 0 0 3

245

034

035

036

038

**n4n** 

741

042

243

044

146

047

049 050

051

053

054

056

157

058

159

060

062

363

064

065

n66

067 068

069

| CODE 5 10 20<br>SIGMA TATAL BATTEM GRID HEX INTERMEDIATE CALCULATION<br>11000 1 .00294779000 1 .006186 0 0 3<br>76003 0 0<br>CODE 5 10 20<br>INTERMEDIATE<br>24000 1 .00516376003 1 1.0 0 0 3<br>76004 1 0<br>CODE 5 10 20<br>INTERMEDIATE<br>26000 1 .01526776004 1 1.0 0 0 3<br>76005 1 0 20<br>SIGMA TATAL BATTEM GRID HEX FINAL CALCULATION<br>28000 1 .0153076005 1 1.0 0 0 3<br>77005 1 0 86T GRID HEX SIG TOT<br>CODE 4 10 20<br>76001 1<br>76002 1<br>76004 1<br>76005 1<br>76006 1<br>76006 1<br>76006 1<br>76006 1<br>76000 1 .0071279000 1 .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIGMA THTAL BUTTEM GRID HEX INTERMEDIATE CALCULATION         11000       .002967[9000       .006186       0       3         CODE 5       10       20       .006186       0       3         INTERMEDIATE       24000       .00516376003       1       1.0       0       3         CODE 5       10       20       .00516376003       1       1.0       0       3         CODE 5       10       20       .01626776004       1       1.0       0       3         CODE 5       10       20       .01626776004       1       1.0       0       3         CODE 5       10       20       .01626776004       1       1.0       0       3         SIGMA THTAL BUTTEM GRID HEX       FINAL CALCULATION       28000       1       0       0       3         SIGMA THTAL BUTTEM GRID HEX       FINAL CALCULATION       20       0       3         CODE 4       10       20       .00       3       3         CODE 5       10       20       .00       .00       3         CODE 5       10       20       .00       .00       3         CODE 5       10       20       .00       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IIDOD I .00294779000 I .006186 0 0 3<br>76003 I 0<br>CODE 5 IO 20<br>INTERMEDIATE<br>24000 I .00516376003 I I.0 0 0 3<br>76004 I 0<br>CODE 5 IO 20<br>INTERMEDIATE<br>26000 I .01626776004 I I.0 0 0 3<br>76005 I 0<br>CODE 5 IO 20<br>SIGMA TOTAL BOTICM GRID HEX FINAL CALCULATION<br>28000 I .01693076005 I I.0 0 0 3<br>77005 I 0 BOT GRID HEX SIG TOT<br>CODE 4 IO 20<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76004 I<br>76004 I<br>76004 I<br>76005 I<br>76004 I<br>76005 I<br>76004 I<br>76005 I<br>76004 I<br>76005 I<br>76004 I<br>76005 I<br>76005 I<br>76004 I<br>76005 I<br>76004 I<br>76005 I<br>76004 I<br>76005 I           |
| 76003   0<br>CODE 5 10 20<br>INTERMEDIATE<br>24000   .00516376003   1.0 0 0 3<br>76004   0<br>CODE 5 10 20<br>INTERMEDIATE<br>26000   .01626776004   1.0 0 0 3<br>76005   0<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID HEX FINAL CALCULATION<br>28000   .01093076005   1.0 0 0 3<br>77005   0 80T GRID HEX SIG TOT<br>CODE 4 10 20<br>76001  <br>76004  <br>76005  <br>76004  <br>76005  <br>76004  <br>76005  <br>76004  <br>76004  <br>76004  <br>76004  <br>76004  <br>76004  <br>76005  <br>76004  <br>76004  <br>76005  <br>76 |
| CODE 5       10       20         INTERMEDIATE       24000       1       00516376003       1       1.0       0       3         CODE 5       10       20       INTERMEDIATE       2000       INTERMEDIATE         26000       1       01626776004       1       1.0       0       3         CODE 5       10       20       INTERMEDIATE       20       3         CODE 5       10       20       1       1.0       0       3         CODE 5       10       20       1       1.0       0       3         SIGMA TOTAL BOTTOM GRID HEX       FINAL CALCULATION       3       3       3         28000       1       01053076005       1       1.0       0       3         28000       1       01053076005       1       1.0       0       3         26001       1       0       20       86T GRID HEX SIG TOT       3         76002       1       76004       1       1       76005       1         76004       1       1       70035       1       0       3         76004       1       1       003570       0       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| INTERMEDIATE<br>24000   .00516376003   I.0 0 0 3<br>76004   0<br>CODE 5 10 20<br>INTERMEDIATE<br>26000   .01826776004   I.0 0 0 3<br>76005   0<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID HEX FINAL CALCULATION<br>28000   .01093076005   I.0 0 0 3<br>77005   0 80T GRID HEX SIG TOT<br>CODE 4 10 20<br>76001  <br>76002  <br>76004  <br>76006  <br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .00171279000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 24000 1 .00516376003 1 1.0 0 0 3<br>76004 1 0<br>CODE 5 10 20<br>INTERMEDIATE<br>26000 1 .01626776004 1 1.0 0 0 3<br>76005 1 0<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID HEX FINAL CALCULATION<br>28000 1 .01053076005 1 1.0 0 0 3<br>77005 1 0 86T GRID HEX SIG TOT<br>CODE 4 10 20<br>76001 1<br>76002 1<br>76004 1<br>76004 1<br>76004 1<br>76006 1<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>1000 1 .00171219000 1 .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 76004   0<br>CODE 5 10 20<br>INTERMEDIATE<br>26000   .01826776004   1.0 0 0 3<br>76005   0<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID HEX FINAL CALCULATION<br>28000   .01093076005   1.0 0 0 3<br>77005   0 86T GRID HEX SIG TOT<br>CODE 4 10 20<br>76004   1<br>76004   1<br>76005   1<br>76006   1<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .001712T9000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CODE 5       10       20         INTERMEDIATE       26000       1       01826776004       1       1.0       0       3         26000       1       01826776004       1       1.0       0       3         26000       1       01826776005       1       1.0       0       3         26000       1       01053076005       1       1.0       0       3         26000       1       01053076005       1       1.0       0       3         26000       1       01053076005       1       1.0       0       3         26000       1       01053076005       1       1.0       0       3         27005       1       0       86T GRID HEX SIG TOT       3         26002       1       76004       1         76004       1       76006       1       3         26006       1       00171219000       1       003570       0       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| INTERMEDIATE<br>26000   .01826776004   1.0 0 0 3<br>76005   0<br>CODE 5  0 20<br>SIGMA TOTAL BOTICM GRID HEX FINAL CALCULATION<br>28000   .01093076005   1.0 0 0 3<br>77005   0 BOT GRID HEX SIG TOT<br>CODE 4  0 20<br>76001  <br>76002  <br>76004  <br>76006  <br>CODE 5  0 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .00171219000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 26000   .01826776004   1.0 0 0 3<br>76005   0<br>CODE 5 10 20<br>SIGMA TOTAL BOTICM GRID HEX FINAL CALCULATION<br>28000   .01093076005   1.0 0 0 3<br>77005   0 BOT GRID HEX SIG TOT<br>CODE 4 10 20<br>76001  <br>76002  <br>76004  <br>76006  <br>CODE 5 10 20<br>SIGMA TOTAL BOTTCM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .001712T9000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 76005 1 0<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID HEX FINAL CALCULATION<br>28000 1 .01093076005 1 1.0 0 3<br>77005 1 0 BOT GRID HEX SIG TOT<br>CODE 4 10 20<br>76001 1<br>76002 1<br>76004 1<br>76005 1<br>76006 1<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000 1 .001712T9000 1 .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CODE 5       10       20         SIGMA TOTAL BOTICH GRID HEX       FINAL CALCULATION         28000       1       01093076005         100       0       3         77005       0       BOT GRID HEX SIG TOT         CODE 4       10       20         76001       1         76002       1         76003       1         76004       1         76005       1         76006       1         CODE 5       10         20       SIGMA TOTAL BOTTEM GRID EDGE         SIGMA TOTAL BOTTEM GRID EDGE       INTERMEDIATE CALCULATION         11000       1       001712T9000       1         0       0       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SIGMA TOTAL BOTION GRID HEX FINAL CALCULATION         28000       1.01093076005       1.0       0       3         77005       0       BOT GRID HEX SIG TOT       0       0       3         7005       1       0       BOT GRID HEX SIG TOT       0       0       3         76004       1       76005       1       76005       1       76005       1         76005       1       76006       1       76006       1       76006       1         CODE 5       10       20       SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION       3         SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION       11000       1.00171219000       1.003570       0       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 28000   .01093076005   .000 3<br>77005   0 BOT GRID HEX SIG TOT<br>CODE 4 10 20<br>76001  <br>76002  <br>76004  <br>76005  <br>76006  <br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .00171219000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 77005   0 BOT GRID HEX SIG TOT<br>CODE 4 10 20<br>76001  <br>76002  <br>76004  <br>76005  <br>76006  <br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .00171219000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CODE 4 10 20<br>76001 1<br>76002 1<br>76003 1<br>76004 1<br>76005 1<br>76006 1<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000 1 .00171219000 1 .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76001 1<br>76002 1<br>76003 1<br>76004 1<br>76005 1<br>76006 1<br>CODE 5 10 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000 1 .001712T9000 1 .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 76002  <br>76003  <br>76004  <br>76005  <br>76006  <br>CODE 5  0 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .001712T9000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 76003  <br>76004  <br>76005  <br>76006  <br>CODE 5  0 20<br>SIGMA TOTAL BOTTEM GRID EDGE INTERMEDIATE CALCULATION<br>1000   .001712T9000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 76004  <br>76005  <br>76006  <br>CODE 5  0 20<br>SIGMA TOTAL BOTTEM GRID EDGE INTERMEDIATE CALCULATION<br> 1000   .001712T9000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 76005  <br>76006  <br>CODE 5  0 20<br>SIGMA TOTAL BOTTEM GRID EDGE INTERMEDIATE CALCULATION<br>1000   .001712T9000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 76006  <br>CODE 5  0 20<br>SIGMA TOTAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>1000   .00171279000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CODE 5 10 20<br>SIGMA TATAL BOTTOM GRID EDGE INTERMEDIATE CALCULATION<br>11000 1 .00171219000 1 .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SIGMA TATAL BOTTEM GRID EDGE INTERMEDIATE CALCULATION<br>11000   .00171279000   .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11000 1 .00171219000 1 .003570 0 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11000 1 •001/1219000 1 •0000/0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24000 I 0 I VOUDI I I•U 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| CODE 5 10 20                                   | 108     |
|------------------------------------------------|---------|
| SIGMA TOTAL BOTTOM GRID EDGE FINAL CALCULATION | 109     |
| 28000   .006/4076003    .0 0 0                 | 3 110   |
| 77006 I U BCT GRID EDGE SIG 1                  | let ill |
| CODE 5 10 20                                   | 112     |
| SIGMA TATAL NAK FINAL CALCULATION              | 113     |
| 11000 I .00494519000 I .Cl0310 0 0             | ] 3   4 |
| 77007   0 NAK SIG TOT                          | 115     |
| CODE 4 10 20                                   | 116     |
| 76001                                          | 117     |
| 76002                                          | 118     |
| 76003                                          | 119     |
|                                                | 120     |
| CODE 7 IO IS                                   | 151     |
| SIG TOTAL TAPE FER SNAP-ISF, 7 MEEIA           | 122     |
| 7 64 1.8+7 .1+6                                | 123     |
| 77001 1 64                                     | 124     |
| 77002   64                                     | 125     |
| 77003   64                                     | 126     |
| 77004 64                                       | 127     |
| 77005   64                                     | 128     |
| 7/006   64                                     | 129     |
| 77007   64                                     | 130     |

2. Input Data for the F Tape Preparation

| CODE 7 | 10  | 16        |   |       |            | 13  | 31       |
|--------|-----|-----------|---|-------|------------|-----|----------|
| F TAPE | FOR | SNAP-TSF, | 9 | ANISO | SCATTERERS | 13  | 32       |
| 82     | 32  | 1.8+7     |   | .1+6  |            | 13  | 33       |
| 4000   | 71  |           |   |       |            | 13  | 34       |
| 4000   | 72  |           |   |       |            | 13  | 35       |
| 4000   | 73  |           |   |       |            | 13  | 36       |
| 4000   | 74  |           |   |       |            |     | 37       |
| 4000   | 75  |           |   |       |            | 13  | 38       |
| 4000   | 76  |           |   |       |            | 13  | 39       |
| 4000   | 77  |           |   |       |            | 14  | 4 n      |
| 4000   | 78  |           |   |       |            | 4   | 41       |
| 11000  | 71  |           |   |       |            | 14  | 42       |
| 11000  | 72  |           |   |       |            | 14  | 43       |
| 11000  | 73  |           |   |       |            |     | 44       |
| 11000  | 74  |           |   |       |            |     | 45       |
| 11000  | 75  |           |   |       |            | 14  | 46       |
| 11000  | 76  |           |   |       |            |     | 47       |
| 11000  | 77  |           |   |       |            |     | 18       |
| 11000  | 78  |           |   |       |            |     | 19       |
| 19000  | 71  |           |   |       |            | F   | 50       |
| 19000  | 72  |           |   |       |            |     | 51       |
| 19000  | 73  |           |   |       |            |     | 52       |
| 19000  | 74  |           |   |       |            |     | 53       |
| 19000  | 75  |           |   |       |            | F   | 54       |
| 19000  | 76  |           |   |       |            |     | 55       |
| 19000  | 77  |           |   |       |            | 5   | 56       |
| 19000  | 78  |           |   |       |            | 1   | 57       |
| 24000  | 71  |           |   |       |            |     | 58       |
| 24000  | 72  |           |   |       |            | 1.6 | 50       |
| 24000  | 73  |           |   |       |            |     | 50       |
| 24000  | 74  |           |   |       |            |     | 50<br>51 |
| 24000  | 75  |           |   |       |            |     | \$2      |
| 24000  | 76  |           |   |       |            |     | 3        |
|        | · • |           |   |       |            | 16  | 20       |

| 24000 | 77 | 164 |
|-------|----|-----|
| 24000 | 78 | 165 |
| 26000 | 7  | 166 |
| 26000 | 72 | 167 |
| 26000 | 73 | 168 |
| 26000 | 74 | 169 |
| 26000 | 75 | 170 |
| 26000 | 76 | 17[ |
| 26000 | 77 | 172 |
| 26000 | 78 | 173 |
| 28000 | 71 | 174 |
| 28000 | 72 | 175 |
| 28000 | 73 | 176 |
| 28000 | 74 | 177 |
| 28000 | 75 | 178 |
| 28000 | 76 | 179 |
| 28000 | 77 | 180 |
| 28000 | 78 | 181 |
| 40000 | 71 | 182 |
| 40000 | 72 | 183 |
| 40000 | 73 | 184 |
| 40000 | 74 | 185 |
| 40000 | 75 | 186 |
| 40000 | 76 | 187 |
| 92235 | 71 | 188 |
| 92235 | 72 | 189 |
| 92235 | 73 | 190 |
| 92235 | 74 | 191 |
| 92235 | 75 | 192 |
| 92235 | 76 | 193 |
| 92235 | 77 | 194 |
| 92235 | 78 | 195 |
| 92235 | 79 | 196 |
| 92235 | 80 | 197 |
| 92235 | 81 | 198 |
| 92235 | 82 | 199 |
| 92235 | 83 | 200 |
|       |    |     |

| 92235 | 84 | 201 |
|-------|----|-----|
| 92238 | 71 | 202 |
| 92238 | 72 | 203 |
| 92238 | 73 | 214 |
| 92238 | 74 | 205 |
| 92238 | 75 | 206 |
| 92238 | 76 | 207 |
| 92238 | 77 | 208 |
| 92238 | 78 | 209 |
| 92238 | 79 | 210 |
| 92238 | 80 | 211 |
| 92238 | 81 | 212 |
| 92238 | 82 | 213 |
| 92238 | 83 | 214 |
| 92238 | 84 | 215 |

3. ACTIFK Input Data

.

-,

.

| SNAP-TSF RE  | ACTOR MAPP                            | ING PER          | FECT CALLIM | ATION  |         |                                   | 100  |
|--------------|---------------------------------------|------------------|-------------|--------|---------|-----------------------------------|------|
| 000034327724 | 4615                                  |                  |             |        |         |                                   | 200  |
| 800 27 8     | 8000 65                               | 1.8+7            | .5+6        |        |         |                                   | 300  |
| 15 7 16 16   | 7 15 6                                | 6 2 10           | in 4        |        |         |                                   | 400  |
|              | n -2                                  | 0 = 3            | n =6        |        |         |                                   | 1511 |
| 0 -7         | n n                                   | -8 0             | + G         |        |         |                                   | 1512 |
| 1 00814      | 9 012                                 | -9-012           | 22.99       | -22.99 | 39.1    | -39.1                             | 1611 |
|              | -58 71                                | 91.22            | -91.22      | -91,22 | 235.0   | -235.0                            | 1612 |
| 20./]        | -JC •/1                               | 1.66             |             |        |         | CALIFORNIA CONTRACTORIAL PROPERTY | 1613 |
| 200,0        | - C - C                               | -7 0             |             |        |         |                                   | 2521 |
| =1 0         | = 2 0                                 | 20 00            | -22.00      | 30 1   | -39.1   |                                   | 2621 |
| 9.012        | · · · · · · · · · · · · · · · · · · · |                  | - 6 6 9 7 7 | 0.7.1  |         |                                   | 3531 |
| -4 0         | • 2 U                                 | -0 U             | - 55 95     | 58 71  | -58.71  |                                   | 3631 |
| 52,0         | =25.0                                 | 22.02            |             | 20.71  |         |                                   | 4541 |
| -1 0         | 0 010                                 |                  |             |        |         |                                   | 4641 |
| 9.012        | -9.012                                |                  | - E 0       |        |         |                                   | 5551 |
| -2 0         | -3 0                                  | <del>7</del> 4 U | ep U        |        |         |                                   | 5552 |
| <b>-</b> 6 D |                                       |                  | - 30 1      | 50 0   | -52 0   | 55.85                             | 5651 |
| 22.99        | -22.99                                | 37,1             | -07.1       | 22.0   | - 7 - 0 | A                                 | 5652 |
| -55,85       | 56.71                                 | =28+/1           | <b>F A</b>  |        |         |                                   | 6561 |
| -2 0         | -3 0                                  | <del>-</del> 4 0 | => U        |        |         |                                   | 6562 |
| -6 0         |                                       | 70               | - 70 -      | 50 0   | -52 0   | 55.85                             | 6661 |
| 22,99        | -22.99                                | 37.1             | -09.1       | 22.0   | - 72.0  | 22.002                            | 6662 |
| -55.85       | 58,71                                 | -28.71           |             |        |         |                                   | 7571 |
| -2 0         | -3 0                                  | - 0              | 30          |        |         |                                   | 7671 |
| 22.99        | -22,99                                | 39,1             | = 39,1      |        |         |                                   | 8700 |
| 1 3          | 15 8                                  |                  |             |        |         |                                   | 8800 |
| 1011100011   |                                       | 000110100        | 0000000000  |        |         |                                   | 8000 |
| 98           | 8 8                                   | 8 8              | 8 6         | 14 14  |         |                                   | 0000 |
| 6            |                                       |                  |             |        | -       |                                   | 9000 |
| 1            | 1.0-3                                 | 1                | 1,5-3       | 7 2.5  | - 5     |                                   | 9101 |
| 4            | 2.0-2                                 | 4                | 1.0-1       | 1 5.0  | - 1     |                                   | 4102 |

| 2 MA        | LE                  |           |         |          | 0000000   |
|-------------|---------------------|-----------|---------|----------|-----------|
| X ZONE      | -16.3525, 16.3525   |           |         |          | 00000020  |
| Y ZONE      | -16,8656, 16,8656   |           |         |          | 0000030   |
| ZONE        | -39,7455, -36,9794, | =35.1150, | -4.0,   | -2.5146, | 00000040  |
| 1.471       |                     |           |         |          | 0000050   |
| ZONE        |                     |           |         |          | 00000060  |
| X BLOCK     | -16.3525, 16.3525   |           |         |          | 0000070   |
| Y BLOCK     | -16.8656, 16.8656   |           |         |          | 00000080  |
| Z BLOCK     | -39.7455, -36.9794  |           |         |          | 00000090  |
| BLOCK I     |                     |           |         |          | 000000000 |
| MEDIA       | 5, 500              |           |         |          | 00000110  |
| SURFACES    | 1                   |           |         |          | 00000120  |
| SECTOR -1   |                     |           |         |          | 00000130  |
| SECTOR I    |                     |           |         |          | 00000140  |
| ZONE        | 1 2                 |           |         |          | 00000150  |
| X BLECK     | -16.3525, -9.73370, | 0.0.      | 9,7337, | 16.3525  | 00000160  |
| Y BLOCK     | -16.8656, 16.8656   |           |         |          | 00000170  |
| Z BLOCK     | -36,9794, -35,1150  |           |         |          | 00000180  |
| BLOCK I     |                     |           |         |          | 00000190  |
| MEDIA       | e, 3, 500           |           |         |          | 00000200  |
| SURFACES    | c, /                |           |         |          | 00000210  |
| SECTOR -1 0 |                     |           |         |          | 00000550  |
| SECTOR I -I |                     |           |         |          | 00006230  |
| SECTOR U I  |                     |           |         |          | 00000240  |
| BLOCK Z     |                     | 7 500     |         |          | 00000220  |
| MEDIA       | 5, 0, 6,            | 3, 200    |         |          | 0000200   |
| SURFACES    | c, 4, 0,            | /         |         |          | 00000270  |
| SECTOR I I  |                     |           |         |          | 00000280  |
| SECTOR U -I |                     |           |         |          |           |
| SECTOR TO D |                     |           |         |          |           |
| SECTOD 0 0  | 0 1                 |           |         |          | 000000000 |
|             |                     |           |         |          | 00000320  |
|             |                     |           |         |          | 000000000 |

| MEDIA<br>SURFACES<br>SECTOR - I - I<br>SECTOR 0 I<br>SECTOR 1 0<br>SECTOR 0 0<br>SECTOR 0 0<br>RLOCK 4<br>MEDIA<br>SURFACES<br>SECTOR - I 0<br>SECTOR I - I<br>SECTOR 0 I | 5, 6,<br>2, 5,<br>-1 0<br>-1 0<br>1 -1<br>0 1<br>-1 0<br>1 -1<br>0 1<br>-1 0<br>-1 0 | 6,<br>6,<br>500 | 3, 5 | 500   |    |      |         | $\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 8 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 0 \\ \end{array}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------|------|-------|----|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZONE I                                                                                                                                                                    | 3                                                                                    |                 | ,    |       |    |      | (       | 00000470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X BLACK                                                                                                                                                                   | -16,3525,                                                                            | -9.7337,        | -0,  | 6599, |    | υ.υ. | 6,0599, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9,100/1                                                                                                                                                                   | -16 8656.                                                                            | 16.8656         |      |       |    |      |         | 00000490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7 BLOCK                                                                                                                                                                   | -35 1150.                                                                            | =4.0            |      |       |    |      |         | 00000510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DIACK I                                                                                                                                                                   | -02.11203                                                                            |                 |      |       |    |      |         | 000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                           | 2 3                                                                                  | 500             | 4.   | n.    | 0  |      |         | 00000520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CUDENCES                                                                                                                                                                  | £, 0,                                                                                | 2001            | c .  | 12    | 0  |      |         | 00000540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTAR -1 0                                                                                                                                                               | n n n                                                                                | 0,              |      | 12    |    |      |         | 00000510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTAR I -I                                                                                                                                                               |                                                                                      |                 |      |       |    |      |         | 00000560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTAR D I                                                                                                                                                                |                                                                                      |                 |      |       |    |      |         | 0000570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SECTAD D D                                                                                                                                                                |                                                                                      |                 |      |       |    |      |         | 00000580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTOR 0 0                                                                                                                                                                | -1 0 0                                                                               |                 |      |       |    |      |         | 00000590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTOR 0 0                                                                                                                                                                |                                                                                      |                 |      |       |    |      |         | 00000600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BLACK 2                                                                                                                                                                   |                                                                                      |                 |      |       |    |      |         | 00000610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MEDIA                                                                                                                                                                     | 1. 2.                                                                                | 2.              | 3, 5 | inn.  | 4. | Π,   | n       | 00000620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SURFACES                                                                                                                                                                  | 3, 4,                                                                                | 6.              | 7,   | 8,    | 9. | 12   | 12      | 00000630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTAR 1 1                                                                                                                                                                | o n n o                                                                              | n               |      |       |    |      |         | 00000640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTAR D -L                                                                                                                                                               | -1 0 0 0                                                                             | n               |      |       |    |      |         | 00000650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTER -1 D                                                                                                                                                               | -1 0 0 D                                                                             | Ő               |      |       |    |      |         | 00000660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTOR D D                                                                                                                                                                | I-I 0 0                                                                              | n               |      |       |    |      |         | 00000670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTOR D D                                                                                                                                                                | 0 1 0 0                                                                              | -1              |      |       |    |      |         | 00000680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTOR 0 0                                                                                                                                                                |                                                                                      | 1               |      |       |    |      |         | 00000690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SECTOR 0 0                                                                                                                                                                | 0 0 -1 0                                                                             | Ō               |      |       |    |      |         | 00000700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

.

| SECTOR D<br>BLOCK<br>MEDIA<br>SURFACES<br>SECTOR I<br>SECTOR D                                      | 3                | 00<br> <br> ,<br>3,<br>00    |                   | -1<br>2,<br>4,                    | 0<br>2,<br>6,         | 3,<br>7,   | 500,<br> 2  | 4         |    |   |  |
|-----------------------------------------------------------------------------------------------------|------------------|------------------------------|-------------------|-----------------------------------|-----------------------|------------|-------------|-----------|----|---|--|
| SECTOR -I<br>SECTOR D<br>SECTOR D<br>SECTOR D<br>BLOCK<br>MEDIA                                     | 0<br>0<br>0<br>4 | -  0<br>  - <br>0  <br> <br> | 0<br>0<br>-  <br> | 2,                                | 2,                    | 3,         | 500,        | 4         |    |   |  |
| SURFACES<br>SECTOR -I<br>SECTOR 0<br>SECTOR 1<br>SECTOR 0<br>SECTOR 0<br>SECTOR 0                   |                  |                              |                   | 5,                                | 6,                    | 7,         | 12          |           |    |   |  |
| MEDIA<br>SURFACES<br>SECTOR -I<br>SECTOR 0<br>SECTOR 0<br>SECTOR 0<br>SECTOR 0                      |                  |                              | 0000              | 2,<br>5,<br>0<br>0<br>0<br>0<br>0 | - I<br>0<br>- I<br>1  | 3 #<br>7 # | 500,<br>10, | 4,<br>  , | 12 | ŋ |  |
| SECTOR O<br>SECTOR O<br>BLOCK<br>MEDIA<br>SURFACES<br>SECTOR -I<br>SECTOR I<br>SECTOR O<br>SECTOR O | 6<br>            |                              |                   | 0<br> <br>3,<br>7,                | 0<br>0<br>500,<br>10, | 4,         | 0,<br>12    | D         |    |   |  |

| SECTOR D  | 0        | I Ü O     |          |     |      |         |         | 00001080 |
|-----------|----------|-----------|----------|-----|------|---------|---------|----------|
| SECTOR D  | 0        | Q I D     |          |     |      |         |         | 00001090 |
| ZONE      | 1        | 4         |          |     |      |         |         | 00001100 |
| XBLOCK    |          | -16.3525, | -9.7337, | ,   | 0.0. | 9,7337, | 16.3525 | 00001110 |
| YBLOCK    |          | -16.8656, | 16.8656  |     |      |         |         | 00001120 |
| ZBLOCK    |          | -4,0,     | -2.5146  |     |      |         |         | 00001130 |
| BLOCK     | 1        | 1 1       |          |     |      |         |         | 00001140 |
| MEDIA     |          | 6, 3,     | 500      |     |      |         |         | 00001150 |
| SURFACES  |          | 6, 13     |          |     |      |         |         | 00001160 |
| SECTOR -1 | 0        |           |          |     |      |         |         | 00001170 |
| SECTOR I  | -1       |           |          |     |      |         |         | 00001180 |
| SECTOR D  | i        |           |          |     |      |         |         | 00001190 |
| BLOCK     | 2        | 1 1       |          |     |      |         |         | 00001200 |
| MEDIA     | -        | 5. 6.     | 6.       | 3,  | 500  |         |         | 00001210 |
| SUPFACES  |          | 3. 4.     | 6.       | 13  |      |         |         | 00001220 |
| SECTOR 1  | 1        | 0 0       |          | 10  |      |         |         | 00001220 |
| SECTOR 0  | -1       | -1 0      |          |     |      |         |         | 00001200 |
| SECTOR -1 | D        | -1 0      |          |     |      |         |         | 00001240 |
| SECTOR D  | n        | 1 -1      |          |     |      |         |         | 00001260 |
| SECTOR 0  | ñ        | 0 1       |          |     |      |         |         | 00001200 |
| BLACK     | 3        |           |          |     |      |         |         | 00001270 |
| MEDIA     | <u> </u> | 5. 6.     | 6.       | .7. | 500  |         |         | 00001200 |
| SURFACES  |          | 2. 5.     | 6.       | 13  | 200  |         |         | 00001200 |
| SECTOR -1 | - 1      | 0 0       |          | 1 - |      |         |         | 00001310 |
| SECTAR D  | i        | -1 0      |          |     |      |         |         | 00001320 |
| SECTAR I  | n        | - 1 0     |          |     |      |         |         | 00001020 |
| SECTAR D  | ň        | 1 -1      |          |     |      |         |         | 00001340 |
| SECTOR D  | n        | n i       |          |     |      |         |         |          |
| RIACK     | 4        |           |          |     |      |         |         | 00001360 |
| MEDIA     |          | 6. 3.     | 500      |     |      |         |         | 00001370 |
| SUBFACES  |          | 6. 13     | 200      |     |      |         |         | 00001380 |
| SECTAD -1 | n        |           |          |     |      |         |         | 00001000 |
| SECTAD I  | - 1      |           |          |     |      |         |         |          |
| SECTAD O  |          |           |          |     |      |         |         |          |
|           | 1        | 1 5       |          |     |      |         |         |          |
| VALACY    | 1        | -16 3525  | 16 7525  |     |      |         |         |          |
|           |          | -16 8656  | 16 9454  |     |      |         |         | 00001430 |
| T DLOUN   |          | -10,00000 | 10.00.00 |     |      |         |         | 00001440 |

| Z BLOCK -2<br>BLOCK I<br>MEDIA<br>SURFACES<br>SECTOR I -1 0<br>SECTOR 0 -1 1<br>SECTOR 0 1 1<br>SECTOR 0 0 -1 | 2,5 46,  ,47<br>   <br>3, 3, 7,<br>6,  3,  4,<br> <br>- <br> <br>0 | 500, 500<br>15 |      |         |    | 00001450<br>00001460<br>00001470<br>00001480<br>00001490<br>00001500<br>00001510<br>00001520<br>00001530 |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------|------|---------|----|----------------------------------------------------------------------------------------------------------|
| 15 QUADRIC                                                                                                    | SURFACES, DRUMS                                                    | IN             |      |         |    | 00001540                                                                                                 |
| I.DXSQ                                                                                                        | I. DYSO                                                            | -130.55782     | \$   |         |    | 00001550                                                                                                 |
| 1.DX                                                                                                          | -1.73205Y                                                          | -19,4672       | \$   |         |    | 00001560                                                                                                 |
| 1. DX                                                                                                         | 1.73205Y                                                           | 19.4672        | \$   |         |    | 00001570                                                                                                 |
| 1.0X                                                                                                          | -1.73205Y                                                          | 19.4672        | \$   |         |    | 00001580                                                                                                 |
| I. DX                                                                                                         | 1.73205Y                                                           | -19.4672       | \$   |         |    | 00001590                                                                                                 |
| I.DXSQ                                                                                                        | I. DYSO                                                            | -127.04108     | 5    |         |    | 00001600                                                                                                 |
| I. DXSQ                                                                                                       | I. DYSO                                                            | -129.92010     | \$   |         |    | 00001610                                                                                                 |
| 1.DX                                                                                                          | 1. DY                                                              | 23.52820       | \$   |         |    | 00001620                                                                                                 |
| 1. DX                                                                                                         | -1.0Y                                                              | 23.52820       | S.   |         |    | 00001620                                                                                                 |
| I. NX                                                                                                         | I. DY                                                              | =23.52820      | s.   |         |    | 00001640                                                                                                 |
| 1 . DX                                                                                                        | = I . DY                                                           | -23.52820      | ¢,   |         |    | 00001650                                                                                                 |
| 1.0×50                                                                                                        | 1.0750                                                             | -133.74044     | \$   |         |    | 00001660                                                                                                 |
| I AXSO                                                                                                        | L DYSO                                                             | -134,20013     | SC C |         |    | 00001000                                                                                                 |
| 1.0150                                                                                                        | L. DYSO                                                            | 1.0750         | .u   | -93 087 | ¢  | 00001070                                                                                                 |
|                                                                                                               | L DYSO                                                             | 1.0250         |      | -03 087 | .v |                                                                                                          |
| -29,93946                                                                                                     | 1.0100                                                             | 1.0230         |      | 10.702  |    |                                                                                                          |

# 5. STBATCH Input Data

.

| 8<br>0.0<br>124,4563<br>86603<br>0.0<br>5.923<br>0.0<br>143.48<br>-1.0<br>0.0<br>82.846<br>5<br>72.48 | 0.0<br>0.0<br>-45.5<br>99876<br>46.98<br>0.0<br>0.0<br>11.846<br>.99876<br>80.2887<br>0.0<br>0.0<br>0.0<br>9.06547 | 43,48<br>- .0<br>0.0<br>= 22,9763<br>.86603<br> 43,48<br>- .0<br>0.0<br>-59. 54<br>.5<br> 24.4563<br>-,86603<br>0.0 | 0.0<br>,99876<br>80.2887<br>0.0<br>5,923<br>.99876<br>92,48<br>0.0<br>0.0<br>57.346<br>,99876<br>46.98 | 0.0<br>-71.0<br>.5<br>72.48<br>5<br>0.0<br>11.846<br>0.0<br>124.4563<br>86603<br>0.0<br>134.8223<br>86603 | 92.48<br>0.0<br>0.0<br>-78.8087<br>.99876<br>92.48<br>0.0<br>0.0<br>-33.654<br>.99876<br>80.2887<br>0.0 |                                                                        |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 72.48<br>-,5<br>12<br>.5<br>3,5<br>10                                                                 | 90,6547<br>.99876<br>I.0<br>4.0<br>4                                                                               | 0,0<br> ,5<br>5,0<br> 0                                                                                             | 46,98<br>2.0<br>6.0<br>15                                                                              | -,86603<br>2,5<br>10.0<br>25                                                                              | 3.0<br> 8.0<br> 29                                                                                      | 0     3<br>  0     4<br>  0 2 0 0<br>  0 3 0  <br>  0 3 0 2<br>  0 4 0 |

257

\*

### APPENDIX Q

### INPUT INSTRUCTIONS FOR ACTIFK AND ACTIFK USER SUBROUTINE STBATCH

1. Input Instructions - ACTIFK

- Card 1. Format (10A8)
  - a. 80 alphanumeric characters.
- Card 2. Format (\$16)
  - a. RAND: Octal, starting random number ending in 3 or 5.

Card 3. Format (415,2210.5)

- a. NSTRT: number of neutrons per batch
- b. NITS: number of batches
- c. NBIN: NSTRT\*NVAR (see card 8 for NVAR)
- d. NETAPE: power of two of highest supergroup energy containing ETØP
- e. ETØP: highest neutron energy, in eV, must be less than or equal to ETØP on the cross-section tape
- f. EBØT: lowest neutron energy, in eV, must be greater than or equal to EBØT on the cross-section tape
- Card 4. Format (2313)
  - a. NXTAPE: logical number, cross-section tape; NXTAPE = 0 if none.
  - b. NYTAPE: logical number statistical tape (scratch tape); NYTAPE = 0 if full analysis of statistics is not desired.
  - c. NFTAPE1: logical number, F tape; NFTAPE1 = 0, if none.
  - d. NFTAPE2: logical number, F tape copy; if no copy is to be used, NFTAPE2 = NFTAPE1.
  - e. MEDIA: number of media in the system; MEDIA < 8.
  - f. LMAX(M),M=1,MEDIA: total number of scatterers per medium M; LMAX(M) < 32.</p>

<u>Omit Cards 5 and 6 if MEDIA = 0; Cards 5 and 6 are repeated for each</u> media, M=1,MEDIA.

Card 5. Format (815)

- a. LF1(IM,M),IM=1,IMAX(M): The type of angular scattering distribution for the LMth scatterer of medium M. The order of scatterers on this card must be the same as the order on the O5R systems data tape.
  LF1 = 0, isotropic,
  LF1 = -N, anisotropic, use the data for the Nth scatterer on the F tape,
  LF1 = +N, treatment written by user in subroutine PMUELAS if elastic or subroutine PMQ if inelastic; use the data for the Nth scatterer on the F tape.
- Card 6. Format (7E10.5)
  - a. MASSES(IM,M),IM=1,IMAX(M): the mass of the LMth scatterer in medium M; MASSES ≥ 0, elastic; MASSES < 0, nonelastic.

Card 7. Format (415)

- a. NHISTR: logical tape number of the first collision tape.
- b. NHISMX: logical tape number of the last collision tape; logical numbers of collision tapes will assume values from NHISTR through NHISMX.
- c. NWPC $\phi$ L: number of collision parameters per neutron collision (NWPC $\phi$ L  $\leq$  36).
- d. NSGP: number of supergroups on the total cross-section tape.

Card 8. Format (13,3611)

- a. NVAR: number of quantities to be calculated in the problem such as the number of detectors, bins, etc.; includes only those for which the full analysis of statistics is desired.
- b. NBIND(I), I=1,36: collision parameter; NBIND(I)=0 means that the Ith collision parameter is not on the collision tape; NBIND(I)=1 means that the Ith collision parameter is on the collision tape.

# Omit Card 9 if NFTAPE1 = 0

Card 9. Format (1415)

a. NANISØEL: number of anisotropic scatterers on the F tape; NANISØEL < 20.

b. NFCØF(L), L=1, NANISØEL: number of Legendre coefficients for the Lth scatterer on the F tape.

Omit Cards 10 and 11 when NYTAPE = 0

Card 10. Format (I6)

a. KX: number of distinct interval widths;  $KX \ge 1$ ; intervals of to 1.0 for the full analysis of statistics.

Card ll. Format (3(I6,E12.6)) (I(N),W(N),N=1,KX)

a. I(N): number of subintervals occurring successively with width W(N).

b. W(N): subinterval width  $\sum_{N=1}^{KX} I(N) W(N) = 1.0$   $\sum_{N=1}^{KX} I(N) \leq 100.$ 

The geometry input is next; it is identical to that for 05R except that internal voids must be medium number 500 instead of 1000.

2. Input Instructions - ACTIFK User Subroutine STBATCH

This input is for the analysis of O5R collision tapes prepared for the SNAP-TSF core-mapping problem. The space-energy detector index is defined by the Card 5 instructions.

This input follows the ACTIFK geometry input.

Card 1. Format (I12)

a. NØDET: the number of detector spatial locations (NØDET  $\leq$  10).

Card 2. Format (6E12.5) for I=1,NØDET

a. XD(I): detector X coordinate,

b. YD(I): detector Y coordinate,

c. ZD(I): detector Z coordinate,

d. XPT(I): collimator cone vertex X coordinate,

e. YPT(I): collimator cone vertex Y coordinate,

f. ZPT(I): collimator cone vertex Z coordinate,

- g. APT(I): collimator cone axis direction cosine  $\alpha$ ,\*
- h. BPT(I): collimator cone axis direction cosine  $\beta$ ,\*
- i. CPT(I): collimator cone axis direction cosine  $\gamma$ ,\*
- j. CMU(I): cosine of collimator cone half angle.

Card 3. Format (I12)

a. NESPEC: number of energy group boundaries for all detectors; NESPEC < 20.

Card 4. Format (6E12.5)

 a. ESPEC(I), I=1, NESPEC: energy group boundaries, in MeV, from low to high energy.

Card 5. Format (6I12)

- a. NRSH: number of space-energy detectors for the full analysis of statistics (NRSH < 10).
- b. NRSH1(I),I=1,NRSH: the space-energy detector index for the full analysis of statistics; the maximum value for NRSH1(I) is NØDET\*(NESPEC-1); if II is the space detector index and JJ is the energy index, then NRSH1(I)=(NESPEC-1)\*(II-1)+JJ.

\*Directions are from collimator cone vertex to the bottom of the reactor.

# APPENDIX R FLOW DIAGRAMS FOR ACTIFK USER SUBROUTINES



5

Subroutine STBATCH



CALCULATE CONTRIBUTION TO THE DETECTOR

RETURN

CALL

SCORE

Subroutine SCORE (IDET, IDOS, CONT, VA2)









Subroutine RELCOL, Page 2



# Subroutine NBATCH



Subroutine OUTPUT



Subroutine NONELAS (COSLB, VA2, FMU), Page 1



Subroutine NONELAS(COSLB, VA2, FMU). Page 2



Subroutine NONELAS(COSLB, VA2, FMU), Page 3



| SUBROUTINE STWATCH<br>COMMON/UNCCL/UNCFLUX(190),FLUX(190),FLUX1(190),VAR(190),FBAT,FBAT1<br>COMMON/COLL/YPT(10),YPT(10),ZPT(10),APT(10),RPT(10),CPT(10),<br>ICMU(10)<br>COMMON/SPEC/MESPEC,NESPEC1,ESPEC(20),NRSH,NRSH1(10)<br>COMMON/DET/NHDET,XD(10),YD(10),ZD(10)                                                                                                                                                                                                                                  | 6<br>6<br>6 | 0   0<br>0 2 0<br>0 3 0<br>0 4 0                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|
| COMMON/CPLIST/NCOLL(8),NAME(8),S12(8),X(8),Y(8),Z(8),WATE(8),SPOLD<br>1(8),UOLD(8),VOLD(8),WOLD(8),CLDWT(8),NGRP(8),LELEM(8),NMED(8),<br>2DUM(8)<br>COMMON/ASINGLES/NSTRT,NITS,NEIN,NETAPE,ETOP,EBOT,ECUT,NXTAPE,NYTAP<br>1E,NFTAPE1,NFTAPE2,NFTAPEP,MEDIA,NHISTR,NHISMX,NWPCOL,NSGP,NCOLPR,N<br>2ANISMEL,NDSGP,NLAST,KTH,NGROLP,LBATCH,NVAR,NF,NL,IB,NCPSB2,NCPNGP,<br>3NCPELEM,NCFMED,NTYPE,DOSE,NRSUM,NZRO,NBSUM,NYTABLE,NGEOM,NM,MGZ,NO<br>4NEUT,NYSUM,NZR,IVAR<br>DATA(IFIRST=0)<br>1E(IFIRST=0) | 6           | 070<br>080                                           |
| <pre>IF(IFIRST) (), i, z I IFIRST=  CALL 05RSET(NHISTR, NHISMX, NREC, NTYPE, NC0LL, NAME, S 2, X, Y, 7, WATE, SP0 ILD, U0LD, V0LD, WALD, 0LDWT, NGRP, LELEM, NMED) PEAD  00, NCDET, (XD(I), YD(1), ZD(I), XPT(I), YPT(I), ZPT(I), APT(I), BPT( I), CPT(I), CMU(I), I=1, N0DET) I00 FORMAT(I12/(6E12.5)) PRINT101, NCDE1, (XD(I), YD(I), ZD(I), I=1, N0DET) I01 FORMAT(24HCTME N0 0F DETECTORS IS, I5/37H0THE X, Y, Z C00RDINATES AR IE AS FOLLOWSZLH Z(IH +3(E12.5, 3X)))</pre>                       | 6<br>6<br>6 | 200<br>210<br>220                                    |
| PRINT 102,(XPT(I),YPT(I),ZPT(I),APT(I),BPT(I),CPT(I),CMU(I),I=1,N0<br>(DET)<br>102 FORMAT(1H0,7CONE VERTEX COORD., CONE AXIS DIR. COS., AND COS OF 7,<br>(7CONE HALF ANGLE7//(1H ,6(E)2.5,3X)))<br>READ 100,NESPEC,(ESPEC(I),I=1,NESPEC)<br>ESPEC VALUES FROM LOW TO HIGH ENERGY, MEV<br>PRINT 104, (ESPEC(I),I=1,NESFEC)<br>104 FORMAT (1HC,70FTECTOR ENERGY BOUNDARIES, MEV7//(1H ,8E12.3))                                                                                                         | 66666666    | 260<br>270<br>280<br>290<br>300<br>310<br>320<br>330 |

ACTIFK USER SUBROUTINE LISTINGS

APPENDIX S

C

.

| SUBROUTINE SDATA                                                               |   |     |
|--------------------------------------------------------------------------------|---|-----|
| COMMON/CPLIST/MCOLL(8),MAME(8),SI2(8),X(8),Y(8),Z(8),WATE(8),SPOLD             |   |     |
| 1(8), UCLD(8), VCLD(8), WCLD(8), CLDWT(8), NGRP(8), LELEM(8), NMFD(8),         | 4 | 010 |
| 2DUM(8)                                                                        | 4 | 020 |
| COMMON/COLL/YPT(IO), YPT(IO), ZPT(IO), APT(IO), BPT(IO), CPT(IO),              | 4 | 030 |
| ICMU(ID)                                                                       | 4 | 040 |
| COMMON/DET/NODET,XDET(10),YDET(10),ZDET(10)                                    |   |     |
| COMMON/ASINGLES/NSTRT, NITS, NEIN, NETAPE, ETOP, EBOT, ECUT, NXTAPE, NYTAP     |   |     |
| IE, NFTAPEI, NFTAPE2, NFTAPEP, MERIA, NHISTR, NHISMX, NWPCOL, NSGP, NCOLPR, N  |   |     |
| 2ANISGEL, NDSGP, NLAST, KTH, NGROLP, LBATCH, NVAR, NF, NL, IB, NCPSB2, NCPNGP, |   |     |
| 3NCPELEM, NCFNED, NTYPE, DASE, NRSUM, NZRO, NRSUM, NYTABLE, NGEOM, NM, MGZ, NO |   |     |
| 4NEUT, NYSUM, N7R, IVAR                                                        |   |     |
| NMED(KTH)=NMED(KTH)=3                                                          | 4 | 070 |
| SPD2=SI2(KTH)                                                                  |   |     |

|     | MESPECI=NESPEC=I                                                    | 6   | 340 |
|-----|---------------------------------------------------------------------|-----|-----|
|     | PRINT 105, NESPECI                                                  | 6   | 350 |
| 105 | FORMAT (IHC, 7NUMBER OF DETECTOR ENERGY BINS7//IH , [12]            | 6   | 360 |
|     | DO 20 I=1.NESPEC                                                    | 6   | 370 |
| 20  | ESPEC(1)=1,91322E+18*ESPEC(1)                                       | 6   | 380 |
|     | READ 106, NESH, (NRSHI(I), I=1, NRSH)                               | 6   | 390 |
| 106 | FORMAT (6112)                                                       | 6   | 400 |
|     | PRINT   D7, (NRSHI(I), I=I, NRSH)                                   | 6   | 410 |
| 107 | FORMAT (IHE, 7DFTECTUR-ENERGY INDEX FOR STATISTICAL ANALYSIS7//IH . | , 6 | 420 |
|     | 1016)                                                               | 6   | 430 |
|     | D0 19 I=1,190                                                       | 6   | 440 |
|     | FLUX(I)=0.0                                                         | 6   | 450 |
|     | FLUXI(I)=0.0                                                        | 6   | 460 |
|     | VAR(1)=0.0                                                          | 6   | 470 |
| 19  | UNCFLUX(I)=0.0                                                      | 6   | 480 |
|     | FBAT=0.0                                                            | 6   | 490 |
| 2   | CONTINUE                                                            |     |     |
|     | RETURN                                                              |     |     |
|     | END                                                                 |     |     |
|     |                                                                     |     |     |

.

.

•

|   |    | IF(SPD2-ECLT) 2,1,1                                         |   |      |
|---|----|-------------------------------------------------------------|---|------|
|   | 1  | XA=X(KTH)                                                   |   |      |
|   |    | YA=Y(KTH)                                                   |   |      |
|   |    | ZA=Z(KTH)                                                   |   |      |
|   |    | DO 19 I=1, NEDET                                            |   |      |
|   |    | XD = XA - XPT(I)                                            | 4 | 100  |
|   |    | YD = YA - YPT(1)                                            | 4 | 110  |
|   |    | ZD = ZA = ZPT(I)                                            | 4 | 120  |
|   |    | SD = SQRTF(XE * XD + YD * YD + ZD * ZD)                     | 4 | 130  |
|   |    | CCMU = (XD * AFT(I) + YD * BPT(I) + ZD * CPT(I)) / SD       | 4 | 140  |
|   |    | IF (CCMU-CML(1)) 19,3,3                                     | 4 | 150  |
|   | 3  | CONTINUE                                                    | 4 | 160  |
|   |    | $x_D = x_D \in T(I)$                                        |   | 1.50 |
|   |    | YD=YDET(I)                                                  |   |      |
|   |    | ZD=ZDET(I)                                                  |   |      |
|   |    | A = X D - X A                                               |   |      |
|   |    | B=YD-YA                                                     |   |      |
|   |    | C=ZD=ZA                                                     |   |      |
|   |    | SD2=A*A+B*E+C*C                                             |   |      |
|   |    | SD=SQRTF(SE2)                                               |   |      |
|   |    | CALL EUCLIC(XA,YA,ZA,XD,YD,ZC,SD,SPD2,ARG,D)                | 4 | 260  |
| C |    | .07957753=1.0/(4.0*3.14159)                                 | 4 | 270  |
|   |    | IDET=1                                                      | 4 | 280  |
|   |    | CONT=WATE(KTH)*EXPF(ARG)*COLF(CCMU,SPD2,IDET)*.07957753/SD2 | 4 | 290  |
|   |    | IDOS=0                                                      | 4 | 300  |
|   |    | CALL SCORE(IDET, IDOS, CONT, SPE2)                          | 4 | 310  |
|   | 19 | CONTINUE                                                    | 4 | 320  |
|   | 5  | RETURN                                                      |   |      |

END

FUNCTION COLF (C,V,I) COLF=1.0 RETURN END COLF

|    | SUBROUTINE SCERE(IDET, IDOS, CONT, VA2)                                        | 3  | 010 |
|----|--------------------------------------------------------------------------------|----|-----|
|    | COMMON/UNCEL/UNCFLUX(190),FLUX(190),FLUX1(190),VAR(190),FBAT,FBAT1             | 3  | 020 |
|    | COMMON/SPEC/NESPFC, NESPEC(, ESPEC(20), NRSH, NRSH)(10)                        | 3  | 030 |
|    | COMMON STOFAG(1)                                                               | 3  | 040 |
|    | COMMON/ASINGLES/NSTRT, NITS, NEIN, NETAPE, ETOP, EUOT, ECUT, NXTAPE, NYTAP     | 3  | 051 |
|    | IF, NFTAPEI, NFTAPE2, NFTAPEP, MECIA, NHISTR, NHISMX, NWPCOL, NSGP, NCOLPR, N  | 3  | 052 |
|    | ZANISHEL, NDSGP, NLAST, KTH, NGROLP, LRATCH, NVAR, NF, NL, IB, NCPSH2, NCPNGP, | 3  | 053 |
|    | JNCPELEM, NCFMEE, NTYPE, DASE, NRSUM, NZRO, NBSUM, NYTABLE, NREOM, NM, MGZ, NO | .5 | 054 |
|    | 4NEUT, NYSUM, NZH, IVAR                                                        | 3  | 055 |
|    | COMMON/CPLIST/MCOLL(8), NAME(8), S12(8), X(8), Y(8), Z(8), WATE(8), SPOLD      | 3  | 060 |
|    | 1(8), UOLD(8), VCLD(8), WOLD(8), CLDWT(8), NGRP(8), LELEM(8), NMED(8),         | 3  | 070 |
|    | 2DUM(8)                                                                        | 3  | 080 |
|    | NN=NAME(KTH)                                                                   | 3  | 090 |
|    | DO 10 J=1, NESPECI                                                             | 3  | 100 |
|    | IF (VA2-ESFER(J+1)) 11,11,10                                                   | 3  | 110 |
| 10 | CONTINUE                                                                       | 3  | 120 |
|    | J=NESPEC1                                                                      | 3  | 130 |
| 11 | IRSH=NESPECI*(IDET-I)+J                                                        | 3  | 140 |
|    | DO 12 N=1, NRSH                                                                | 3  | 150 |
|    | IF (IRSH-NESHI(N)) 12.13.12                                                    | 3  | 160 |
| 12 | CONTINUE                                                                       | 3  | 170 |
|    | 60 10 15                                                                       | 3  | 180 |
| 13 | NINC=NYTABLE+(N-I)*NSTRT+NN-I                                                  | 3  | 190 |
|    | STORAG(NINC)=STURAG(NINC)+CONT                                                 | 3  | 500 |
| 15 | IF (IDOS) 16,16,17                                                             | 3  | 510 |
| 16 | UNCFLUX(IRSE)=UNCFLUX(IRSH)+CONT                                               | 3  | 550 |
| 17 | FLUX(IRSH)=FLUY(IRSH)+CONT                                                     | 3  | 230 |
|    | RETURN                                                                         | 3  | 240 |
|    | END SCORE                                                                      | 3  | 250 |

|   | SUBROUTINE RELCOL                                                              |   |      |
|---|--------------------------------------------------------------------------------|---|------|
|   | COMMAN/CPLIST/NCALL(8), NAME(8), S12(8), X(8), Y(8), Z(8), WATE(8), SPOLD      |   |      |
|   | (8), HOLD(8), VOLD(8), WOLD(8), CLDWT(8), NGRP(8), LELEM(8), NMED(8),          | 5 | 030  |
|   | 2DUM(8)                                                                        | 5 | 040  |
|   | COMMAN/COLL/YPT(IO),YPT(IO),2PT(IO),APT(IO), BPT(IO),CPT(IO),                  | 5 | 050  |
|   | I G M U ( 1 9 )                                                                | 5 | 060  |
|   | COMMON STORAG()                                                                |   |      |
|   | COMMON/DET/NADET, XDET(10), YDET(10), ZDET(10)                                 |   |      |
|   | COMMON/AMELEIEM/ALFA(32.8), BETA(32.8), ALFABETA(32.8).                        |   |      |
|   | 11F1(32,8), ASSES(32,8)                                                        |   |      |
|   | COMMON/ASINGLES/NSTRT.NITS.NEIN,NETAPE.ETAP.EBOT.ECUT.NXTAPE.NYTAP             |   |      |
|   | IE.NETAPEL.NETAPE2.NETAPEP.METIA, NHISTR.NHISMX, NWPCOL.NSGP, NCOLPR, N        |   |      |
|   | 2ANISGEL, NDSGP, NLAST, KTH, NGROLP, LBATCH, NVAR, NF, NL, IB, NCPSB2, NCPNGP. |   |      |
|   | JNCPELEM, NCEMED, NTYPE, DASE, NRSUM, NZRO, NRSUM, NYTABLE, NGEUM, NM, MGZ, NO |   |      |
|   | ANELIT . NYSIM . A 79 . IVAR                                                   |   |      |
|   | NMED/KTH)=NMED/KTH)=3                                                          | 5 | 151  |
|   |                                                                                | 5 | 152  |
| 1 |                                                                                | 5 | 153  |
| 1 | NN+NANE (KTL)                                                                  | - | 1.20 |
|   |                                                                                |   |      |
|   |                                                                                |   |      |
|   |                                                                                |   |      |
|   |                                                                                |   |      |
|   | SDESURIE (SECULIATED)                                                          |   |      |
|   | UELEMBLELEN (NIN)                                                              |   |      |
|   |                                                                                |   |      |
|   | WITEWATE(VIE)                                                                  |   |      |
|   | XMASSEASSESULELEMINED/                                                         |   |      |
|   |                                                                                | G | 260  |
|   | X D = X A = X P I (1)                                                          | 2 | 200  |
|   | YD=YA-YP1(1)                                                                   | 2 | 210  |
|   |                                                                                | 2 | 200  |
|   | SD=SDRTF(XL + XL + TL + TL + TL + ZL + ZL)                                     | 2 | 290  |
|   | GCMU = (XU + A + 1(1) + U + B + 1(1) + 2U + C + 1(1))/SU                       | 2 | 300  |
| _ | IF (UUMUMUMU(I)) 180,3,3                                                       | 2 | 310  |
| 3 | GUNTINUE                                                                       | 7 | 020  |
|   | xD=xD=T(1)                                                                     |   |      |
|   | YD=YNET(I)                                                                     |   |      |

|     | ZD=ZDET(I)                                            |   |     |
|-----|-------------------------------------------------------|---|-----|
|     | A = X D - X A                                         |   |     |
|     | B=YD-YA                                               |   |     |
|     | C=ZD-ZA                                               |   |     |
|     | SD2=A*A+B*E+C*C                                       |   |     |
|     | SD=SORTF(SE2)                                         |   |     |
|     | COSLB=(A*UCLD(KTH)+b*VOLD(KTF)+C*WOLD(KTH))/(SD*SB)   |   |     |
|     | IF(ABSF(XMASS)-1.008(40) 20,20,25                     |   |     |
| 20  | IF(COSLB) 100,25,25                                   |   |     |
| 25  | IF(XMASS) 35,35,30                                    |   |     |
| 30  | CALL ELAS(COSLR, VA2, FMU)                            |   |     |
|     | G0 T0 45                                              |   |     |
| 35  | CALL NONELAS(COSLB, VA2, FMU)                         |   |     |
| 40  | IF(FMU) 180,180,45                                    |   |     |
| 45  | IF(VA2-ECUT) 180,50,50                                |   |     |
| 50  | CALL EUCLIE (XA, YA, ZA, XD, YD, ZE, SD, VA2, APG, D) | 5 | 500 |
|     | IDET=I                                                | 5 | 510 |
|     | CONT=WTI*EXFF(ARG)*FMU*COLF(CCMU,VA2,IDET)/SD2        | 5 | 520 |
|     | IDes=                                                 | 5 | 530 |
|     | CALL SCORE(INET, ID05, CONT, VA2)                     | 5 | 540 |
| 181 | CONTINUE                                              |   |     |
| 2   | CONTINUE                                              | 5 | 560 |
|     | RETURN                                                |   |     |
|     |                                                       |   |     |

| END | F | N | D |  |  |
|-----|---|---|---|--|--|
|-----|---|---|---|--|--|

.

.

| SUBROUTINE REATCH                                                        | 2 | 010 |
|--------------------------------------------------------------------------|---|-----|
| COMMMON/UNCEL/UNCELUX(190), FLLX(190), FLUX1(190), VAR(190), FBAT, FSATI | 2 | 020 |
| COMMAN/DET/NOUFT,XDET(10),YDET(10),ZDET(10)                              | 2 | 030 |
| COMMAN/SPEC/NESPEC,NESPEC(,ESPEC(20),NRSH,NRSH((10)                      | 2 | 040 |
| JRSH=NØDET*NFSPECI                                                       | 2 | 050 |
| FBAT=FBAT+1.0                                                            | 5 | 060 |
| FBATI=FBAT-1.0                                                           | 2 | 070 |
| DØ I J≃IJRSH                                                             | 2 | 080 |
| FLUXI(J)=FLUXI(J)+FLUX(J)                                                | 2 | 090 |

| 1    | VAR(J)=VAR(J)+FLUX(J)**2                                            | 2 | 100 |
|------|---------------------------------------------------------------------|---|-----|
|      | []=]                                                                | 2 | 110 |
|      | 12=JRSH-NESFECI+I                                                   | 2 | 120 |
|      | PRINT 1000, FRAT, (J, J=1, NODET)                                   | 2 | 130 |
| 1000 | FORMAT (IHI,9X,7UNCOLLIDED FLUX FOR BATCH NUMBER7,F5,1//IH ,        | 2 | 140 |
|      | TENERGY7, 34x, /DETECTOR LOCATION INDEX7/TH ,7INDEX7, 15,9111)      | 2 | 150 |
|      | DO 2 J=I.NESPECI                                                    | 2 | 160 |
|      | PRINT IOUL, J, (UNCFLUX(I), I=IL, I2, NESPECI)                      | 2 | 170 |
| 1001 | FORMAT (1H ,14,2X,10E11.3)                                          | 2 | 180 |
|      | 15=15+1                                                             | 2 | 190 |
| 2    | I   = I   +                                                         | 2 | 200 |
|      | []=]                                                                | S | 210 |
|      | I2=JRSH-NESPECI+I                                                   | 5 | 220 |
|      | PRINT 1002, FRAT, (J, J=1, NODET)                                   | 2 | 230 |
| 1005 | FORMAT (IHI,9X, 7TOTAL FLUX FOR BATCH NUMBER7, F5, 1//IH , 7ENERGY7 | 2 | 240 |
|      | 1,34x,7DETECTAR LOCATION INDEX7/IH ,7INDEX7,15,9III)                | 2 | 250 |
|      | DØ 3 J=1.NESPECI                                                    | 2 | 260 |
|      | PRINT  OU , J, (FLUX(1), I=I , I2, NESPEC )                         | 2 | 270 |
|      | 12=12+1                                                             | 2 | 280 |
| 3    | I =I *                                                              | 2 | 290 |
|      | DØ 4 J=I.JRSH                                                       | 2 | 300 |
|      | FLUX(J)=0,0                                                         | 2 | 310 |
| 4    | UNGFLUX(J)=0.0                                                      | 5 | 320 |
|      | RETURN                                                              | 2 | 330 |
|      | END NBATCH                                                          | 2 | 340 |

| SUBROUTINE CUTPUT                                                       | 1 | 010 |
|-------------------------------------------------------------------------|---|-----|
| COMMON/UNCEL/UNCFLUX(190), FLUX(190), FLUX1(190), VAR(190), FBAT, FBATI | 1 | 020 |
| COMMAN/DET/KADET,XDET(10),YDET(10),ZDET(10)                             | 1 | 030 |
| COMMON/SPEC/NESPEC, NESPECI, ESPEC(20), NRSH, NRSHI(10)                 | 1 | 040 |
| JRSH=NODET*NESPECI                                                      | 1 | 050 |
| DO 4 J=I, JFSH                                                          | L | 060 |
| FLUX(J)=FLLXI(J)/FBAT                                                   | 1 | 070 |
| VAR(J)=SQRTF((VAR(J)-FLUXI(J)**2/FBAT)/(FBAT*FBATI))                    | 1 | 080 |
|      | IF (FLUX(J)) 2,1,2                                                   | 1 | 090 |
|------|----------------------------------------------------------------------|---|-----|
| 1    | VAR(J)=0.0                                                           | 1 | 100 |
|      | GO TO 4                                                              | 1 | 110 |
| 2    | VAR(J) = 100.0*VAR(J)/FLUX(J)                                        | 1 | 120 |
| 4    | CONTINUE                                                             | 1 | 130 |
|      | []=]                                                                 | 1 | 140 |
|      | 12=JRSH-NESPFC1+1                                                    | 1 | 150 |
|      | PRINT 1000, FRAT, (J, J=1, NODET)                                    | 1 | 160 |
| 1000 | FORMAT (IHI, 9X7BATCH AVERAGE TOTAL FLUX FOR7, F5.1,7 BATCHES.7//IH  | 1 | 170 |
| 1    | 1,7ENERGY7,34x,7DETECTOR LOCATION INDEX7/1H ,7INDEX7,15,9111)        | 1 | 180 |
|      | DO 5 J=1,NESPECI                                                     | 1 | 190 |
|      | PRINT IOUL, J, (FLUX(I), I=I, 12, NESPECI)                           | 1 | 200 |
| 1001 | FORMAT (1H ,14,2X,10F11.3)                                           | 1 | 210 |
|      | 15=15+1                                                              | 1 | 220 |
| 5    | I   = I   +                                                          | 1 | 230 |
|      | I ( = )                                                              | 1 | 240 |
|      | I2=JRSH-NESPFCI+I                                                    | 1 | 250 |
|      | PRINT 1002, FRAT, (J, J=1, NODET)                                    | 1 | 260 |
| 1002 | FORMAT (IHI,9X, 7PERCENT STANEARD DEVIATION OF TOTAL FLUX FOR7, F5.) | 1 | 270 |
|      | 1,7BATCHES.7//IH ,7ENFRGY7,34X,7DETECTOR LOCATION INDEX7/IH ,        | 1 | 280 |
|      | 27INDEX7,19,9111)                                                    | 1 | 290 |
|      | DØ 6 J=I.NESPERI                                                     | 1 | 300 |
|      | PRINT 1003, ., (VAR(1), 1=11, 12, NESPEC1)                           | 1 | 310 |
| 1003 | FORMAT (1H ,14,2X,10F11,2)                                           | 1 | 320 |
|      | 12=12+1                                                              | 1 | 330 |
| 6    | I   = I   +                                                          | 1 | 340 |
|      | RETURN                                                               | 1 | 350 |
|      | END BUTPUT                                                           | 1 | 360 |

ŧ

SUBRAUTINE NANELAS(CASLB,VA2,FMU) COMMAN/CPLIST/NCOLL(8),NAME(8),SI2(8),X(8),Y(8),Z(8),WATE(8),SPULD I(8),UOLD(8),VOLD(8),WOLD(8),CLDWT(8),NGRP(8),NELEM(8),NMED(8),7030 2DUM(8) COMMAN/ASINGLES/NSTRT,NITS,NEIN,NETAPE,ETOP,EBOT,ECUT,NXTAPE,NYTAP

|      | IE, NFTAPEI, NFTAPE2, NFTAPEP, MECIA, NHISTR, NHISMX, NWPCOL, NSGP, NCOLPR, N  |   |     |
|------|--------------------------------------------------------------------------------|---|-----|
|      | 2ANISMEL, NDSGP, NLAST, KTH, NGROLP, LBATCH, NVAR, NF, NL, IB, NCPSB2, NCPNGP, |   |     |
|      | 3NCPELEM, NCFMFD, NTYPE, DASE, NRSUM, NZRO, NBSUM, NYTABLE, NGEOM, NM, MGZ, NO |   |     |
|      | 4NEUT, NYSUM, NZR, IVAR                                                        |   |     |
|      | COMMON/NANNF/NNAEPT, NNAQ, SM2NA(38), QNA(5), PROBNA(38,5)                     |   | 20  |
|      | COMMON/KNNF/NKEPT,NKQ,SM2K(30),UK(4),PROBK(30,4)                               |   | 30  |
|      | COMMON/U235AMP/NU235EPT,NU235Q,SM2U235(1),OU235(1),PROBU235(1,1)               |   | 40  |
|      | COMMON/FENNP/NFEEPT,NFEQ,SM2FE(35),QFE(6),PROBFE(35,6)                         |   | 50  |
|      | COMMON/CRNNF/NCREPT,NCRQ,SM2CR(10),QCR(2),PROBCR(10,2)                         |   | 60  |
|      | COMMON/NINNF/NNIEPT, NNIQ, SM2NI(9), QNI(2), PROBNI(9,2)                       |   | 70  |
|      | COMMON/ZRNAP/NZREPT, NZRU, SM2ZR( 4), QZR(1), PROBZR( 4,1)                     |   | 90  |
|      | LELEM=NELEM(KTH)                                                               | 7 | 110 |
|      | MED=NMED(KTH)                                                                  | 7 | 120 |
|      | G0 T0 (2,3,4,5,1,1,6), MED                                                     | 7 | 130 |
| 1    | GØ TA (10,20,10,30,10,60,10,50,10,70) LELEM                                    |   | 340 |
| 2    | GO TO (10,10,81) 10,20,10,30,10,70,10,90,91,10,40,10) LELEM                    |   | 350 |
| 3    | GO TO (10,81, 10,20,10,30) LELEM                                               |   | 360 |
| 4    | GO TA (10,60,10,50,10,70) LELEM                                                |   | 370 |
| 5    | GO TO (10,81 ) LELEM                                                           |   | 380 |
| 6    | GO TO (10,20,10,30) LELEM                                                      |   | 390 |
| 10   | WRITE(51,1000) NMED,LELEM                                                      |   | 400 |
| 000  | FORMAT(IHI, 5HNMED=, 15, 3X, 6HLELEM=, 15)                                     |   | 410 |
|      | CALL EXIT                                                                      |   | 420 |
| 20   | CALL INELAS (NNAEPT, NNAQ, SM2NA, QNA, PROBNA, COSLB, VA2, FMU)                | 7 | 140 |
| 001  | RETURN                                                                         |   | 450 |
| 30   | CALL INELAS(NKEPT, NKR, SM2K, QK, PROBK, COSLB, VA2, FMU)                      | 7 | 160 |
|      | GØ TØ 100                                                                      |   | 480 |
| 4 () | CALL INELAS (NU235EP1, NU235G, SM2U235, RU235, PROBU235, CCSLB, VA2, FMU)      | 7 | 180 |
|      | G6 T4 100                                                                      |   | 510 |
| 50   | CALL INELAS (NEEPT, NEED, SM2FE, GEE, PROBEE, COSLU, VA2, FMU)                 | 1 | 200 |
| 10   | GO TO LOU                                                                      | - | 540 |
| 0 Ü  | CALL INELAS (NUREPT, NCRO, SM2CH, QUR, PROBER, COSLE, VA2, FMU)                | 1 | 550 |
| 7 0  | 50 TO IUU<br>China Inflaction (CDT Anto Chong Obt Operand, group) has finite   | - | 570 |
| 10   | CATE INCEAS(MNICHI'NNIN'SWSNI'MNI'LKORNI'COSEA'AS'LWO)                         | / | 240 |
| 0.0  | GO TE TUU<br>Call Inclassa 2060t N7Do Snote 07D Duadte Gaste Van Enun          | 7 | 000 |
| 20   | CALL INCLASINGACTIINGAN, SM22KINGAKITAUKEK, UUSLDIVA2/1MU/                     | / | 200 |
|      |                                                                                |   | 000 |

.

| 81 | VAI=SPOLD(KIH)                   |   |     |
|----|----------------------------------|---|-----|
|    | CALL BENZN(CASLB, VA2, FMU, VAL) | 7 |     |
|    | GO TO 100                        |   | 680 |
| 91 | GØ TM 90                         | 7 | 300 |
|    | END                              |   | 710 |

\$

•

•

1

|            | SUBROUTINE BEN2N(COSLB,VA2,FMU,VAI)                                 | 8 | 010 |
|------------|---------------------------------------------------------------------|---|-----|
|            | PATA (IJK=E)                                                        | 8 | 020 |
|            | 1F (1JK) 2,1,2                                                      | 8 | 030 |
| 1          | 1 J K = 1                                                           | 8 | 040 |
|            | 01==2.46*1.91322E+18                                                | 8 | 050 |
|            | 02=.79*1.91322E+18                                                  | 8 | 060 |
| 2          | T=VAI+1.125*01                                                      | 8 | 070 |
|            | IF (T) 10,20,20                                                     | 8 | 080 |
| 10         | WRITE (51,1000) VAL.01                                              | 8 | 090 |
| 000        | FORMAT(IHD, 4HVAI=EI8,8,3X,3HCI=EI8,8,3X,23HINCOMING ENERGY TOO LOW | 8 | 100 |
|            | 1)                                                                  | 8 | 110 |
|            | FM(1=0,0                                                            | 8 | 120 |
|            | VA2=VAI                                                             | 8 | 130 |
| 50         | RETURN                                                              | 8 | 140 |
| 20         | IF (FLTRNF(RI)-,5) 30,30,40                                         | 8 | 150 |
| 30         | AEFF=S0RTF((90.0*0 +81.0*VAI)/VAI)                                  | 8 | 160 |
|            | VA2=VA1*(SCETF(AEFF**2+COSLB**2=1.0)+COSLB)**2/100.0                | 8 | 170 |
|            | FMU=SQRTF(CCSLR**2+AEFF**2-1.U)                                     | 8 | 180 |
|            | FMU=(2.0*CCSLB +(FMU+COSLB**2/FMU))/AEFF                            | 8 | 190 |
|            | FMU=FMU/12,5604                                                     | 8 | 200 |
|            | GO TA 50                                                            | 8 | 210 |
| <b>4</b> n | VA2=02                                                              | 8 | 220 |
|            | FMU=1.0712,5664                                                     | 8 | 230 |
|            | GO TO 50                                                            | 8 | 240 |
|            | END                                                                 |   |     |

281

Blank Page

ORNL TM-1666

## INTERNAL DISTRIBUTION

| 1-3. | L. | s. | Abbott              | 13.    | B. C. Diven (consultant)      |  |  |  |
|------|----|----|---------------------|--------|-------------------------------|--|--|--|
| 4.   | V. | R. | Cain                | 14.    | W. N. Hess (consultant)       |  |  |  |
| 5.   | С. | E. | Clifford            | 15.    | M. H. Kalos (consultant)      |  |  |  |
| 6.   | J. | Le | win                 | 16.    | L. V. Spencer (consultant)    |  |  |  |
| 7-8. | F. | С. | Maienschein         | 17-18. | Central Research Libray       |  |  |  |
| 9.   | F. | J. | Muckenthaler        | 19.    | Document Reference Section    |  |  |  |
| 10.  | E. | Α. | Straker             | 20-49. | Laboratory Records Department |  |  |  |
| 11.  | D. | Κ. | Trubey              | 50.    | Laboratory Records ORNL RC    |  |  |  |
| 12.  | G. | De | ssauer (consultant) | 51.    | ORNL Patent Office            |  |  |  |
|      |    |    |                     |        |                               |  |  |  |

## EXTERNAL DISTRIBUTION

| 52-1 | 71. | L. | s. | Mims, | Atomics | International, | Canoga | Park, | California |  |
|------|-----|----|----|-------|---------|----------------|--------|-------|------------|--|
|------|-----|----|----|-------|---------|----------------|--------|-------|------------|--|

- 72-74. R. S. Hubner, Atomics International, Canoga Park, California
  - 75. P. B. Hemmig, Division of Reactor Development and Technology,
    - U. S. Atomic Energy Commission, Washington, D. C. 20545
  - 76. I. F. Zartman, Reactor Development, U. S. Atomic Energy Commission, Washington, D. C. 20545
- 77-78. C. P. McCallum, Division of Space Nuclear Systems, U. S. Atomic Energy Commission, Washington, D. C. 20545
- 79-93. Division of Technical Information Extension (DTIE)
  - 94. Division of Reactor Development (ORO)

283