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a

c

C

m
cp

[C]

CD (CL)

CDj (CLj)

C% (CL)

C ,C ., C

C
Cv

D

Dh

DE

E.

EpIp, EI

f

ff

fs

f

ffq

fvj

F

g

gj

g

NOMENCLATURE

Amplitude of harmonic oscillations

Velocity of sound

Added mass coefficient

Phase velocity

Damping matrix

Steady drag (lift) coefficient

Steady drag (lift) coefficient for jth cylinder

Periodic fluctuating drag (lift) coefficient

Periodic fluctuating drag (lift) coefficient for jth
cylinder

Viscous damping coefficient of a structure

Viscous damping coefficient

Diameter of a cylinder (= 2R)

Hydraulic diameter

Diameter of outer cylinder (= 2R)

Modulus of elasticity

Modulus of elasticity for shell j

Flexural rigidity of cylinder

Oscillation frequency

Natural frequency in fluid

Frequency of vortex shedding

Natural frequency in vacuum

Natural frequency of qth mode in fluid

Natural frequency of jth cylinder in vacuum

Generalized force

Fluid force component

Fluid-force component in the x direction of jth cylinder

Fluctuating fluid-force component in the x direction of jti
cylinder

Force per unit length
gsp

G

h

h.
J

hJ

i

I

k

ks

ksj

kf

K

Kc

[K]

R

m

m

p

ma

[M}

Md

M
c

tmp

Mk

N

p

P

Generalized force or gap

Shell thickness

Fluid-force component in the y direction of jth cylinder or
the wall thickness of the jth shell

Fluctuating fluid-force component in the y direction of jth
cylinder

Moment of inertia

Wave number (= o/c)

Spring constant

Spring constant for cylinder j

Fluid stiffness

Bulk modulus of fluid

Keulegan-Carpenter parameter

Stiffness matrix

Length or axial wave length

Cylinder mass per unit length

m + ma

Cylinder mass per unit length of cylinder j

= m. for j =1 to N and mp for p = N +1 to 2N

Added mass

Mass matrix

Displaced mass of fluid or mass of fluid inside a tube

Mach number

Displaced mass of fluid per unit length of cylinder j

Kinetic Mach number

Number of cylinders in an array

Fluid pressure

Pitch
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{Q}

r, ,z

r

R

R.
J

Re

Rk

R

St

t

T

TI

u

u

u'

U.
J

generalized coordinates

Cylindrical coordinates

Position vector

Radius of cylinder (= D/2) or radius of curved pipes

Radius of cylinder j or shell j

Reynolds number

Kinetic Reynolds number

Radius of outer cylinder

Strouhal number

Tire

Period, axial tension, transverse pitch

Turbulence intensity

Cylinder displacement or shell displacement in the axial
direction

Velocity vector

Fluctuating velocity component

Cylinder displacement of jth cylinder in the x direction or
axial displacement of jth shell

- u. for p = 1 to N and v for = N + 1 to 2N

Flow speed

Mean flow velocity

Flow velocity (= u , u

Reduced flow velocity
ic 0.5 M . 5

-' U or R c'r shell displacement in the

tangential direction

Cylinder displacement 0f ith cylinder in the v direction or
circunferential displace.ent f the j th shell

Volume

Cartesian coordinates

Shell displacent'nt in the r:d i a direction

f

r-v

fq

vj

uip

u's

v

Vc

V.

vJ

p

ps

Pj

K

T

WA

w.

cxe

ajk'0 jk' ajk'Tijk

a , '. , '. ,T'
jk jk jk jk

a. ,f3,e . i
,Q jk 

Jk jk jk 3

ak' k,' j.k, T.k
Jk jk Jk 3k

k, jk ak Tjk

Ypq

6S

Radial displacement of the jth shell

Void fraction

Added mass coefficients

Fluid damping coefficients

Fluid stiffness coefficients

Added mass matrices

Fluid damping matrices

Fluid stiffness matrices

Added mass matrix

Scruton's number (mass-damping parameter)

Damping ratio

Modal damping ratio of the nth mode

Damping ratio in fluid or fluid damping

Damping ratio in vacuum

Damping ratio of qth mode in fluid

Damping ratio of jth cylinder

Viscosity

Eigenval.ue of added mass matrix

Structural damping coefficient

Kinematic viscosity or Poisson's ratio

Dimensionless propagation constant

Poisson's ratio of the jth shell

Fluid density

Structure density

Density of shell j

Complex wave number

Dimensionless axial tension

Velocity potential function

Circular frequency (= 2irf)

DU

U

U

U

Ur

v

v.
J

V

x,y,z

w

.sx_ iJ4 :i}.

,,'
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Ulf

vpn

('f p

(f pn

fqj

%D(11L)

*Dj Lj)

*n (z)

i

Subscripts

D (L)

f

j,k

m,n,

N

p,9

v

Natural frequency in radian in fluid (= 2if )

Natural frequency in radian in vacuum (= 2nfv)

Natural frequency in radian of jth cylinder in vacuum

Natural frequency in radian of nth mode of pth cylinder in
vacuum

Natural frequency in radian of pth mode in fluid

Natural frequency in radian of coupled mode in fluid

Natural frequency in radian of uncoupled mode of j cylinder

Circular frequency associated with the drag (lift) forces

Circular frequency associated with parameter in the drag
(lift) direction

Dimensionless natural frequency of nth mode

Flow velocity potential

Phase angle associated with parameter in the drag (lift)
direction

Orthonormal function of nth mode

Flow velocity distribution function

Denote drag (lift) direction

Denote parameters related to fluid

Denote cylinder number j,k (j,k = 1 to N)21

0, 1, 2, ...

Number of cylinders

1 to 2N

Denote parameters related to structure

Denote parameters measured in vacuum
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FIUN-INDUCED VIBRATION OF
CIRCULAR CYLINDRICAL STRUCTURES

by

Shoei-sheng Chen

ABSTRACT

Significant progress has been made in the understanding of

vibration of circular cylinders subjected to flow, including

development of analysis techniques and experiments on fluid

forces, damping, stability boundary, and general structural

response. This report summarizes the flow-induced vibration of

circular cylinders in quiescent fluid, axial flow, and crossf low,

and applications of the analytical methods and experimental data
in design evaluation of various system components consisting of

circular cylinders.

The information is organized into five general topic areas:
Introduction: Chapter 1 presents an overview of flow-induced

vibration of circular cylinders. It includes examples of flow-
induced vibration, various fluid force components, and nondimen-

sional parameters as well as different excitation mechanisms. The
general principles are applicable in different flow conditions.

Quiescent Fluid: Fluid inertia and fluid damping are discussed in

Chapters 2, 3 and 4. Various flow theories are applied in

different situations. The main results are the characterization

of fluid effects on structural response. Emphasis is placed on

isolated cylinders, multiple cylinders and circular cylindrical

shells. Axial Flow: Axial flow can cause subcritical vibration

and instability. Chapter 5 summarizes the results for internal

flow, while Chapter 6 considers the external flow. Both

theoretical results and experimental data are examined.
Crosaflow: Different excitation mechanisms can be dominant in

different conditions for crossflow. Those include turbulent

buffeting, acoustic resonance, vortex excitation, and dynamic

instabili ty. Appropriate excitation mechanisms are presented for

a single cylinder, twin cylinders, and a group of cylinders.

Design Considerations: Applications of the general methods of

analysis in the design evaluation of system components are

described and various techniques to avoid detrimental vibration

are presented. In addition, available design guides on this

subject are discussed.

The results presented in this repor'.. are expected to be useful
not only to designers but also researchers in this field.
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1. INTRODUCTION

Flow-induced vibration is a term to denote those phenomena associated

with the response of structures placed in or conveying fluid flow. More

specifically, the term covers those cases in which an interaction develops

between fluid-dynamic forces and the inertia, damping or elastic forces in the

structures. The study of these phenomena draws on three disciplines: (1)

structural mechanics, (2) mechanical vibration, and (3) fluid dynamics.

The vibration of circular cylinders subject to flow has been known to man

since ancient times; the vibration of a wire at its natural frequency in

response to vortex shedding was known in ancient Greece as aeolian tones. But

systematic studies of the problem were not made until a century ago when

Strouhal established the relationship between vortex shedding frequency and

flow velocity for a given cylinder diameter. The early research in this area

has been summarized by Zdravkovich (1985) and Goldstein (1965).

Flow-induced structural vibration has been experienced in numerous

fields, including the aerospace industry, power generation/transmission

(turbine blades, heat exchanger tubes, nuclear reactor components), civil

engineering (bridges, building, smoke stacks), and undersea technology. The

problems have usually been encountered or created accidentally through

improper design. In most cases, a structural or mechanical component,

designed to meet specific objectives, develops problems when the undesired

effects of flow field have not been accounted for in the design. When a flow-

induced vibration problem is noted in the design stage, the engineer has

different options to eliminate the detrimental vibration. Unfortunately, in

many situations, the problems occur after the components are already in

operation; the "fix" usually is very costly.

Flow-induced vibration comprises complex and diverse phenomena;

subcritical vibration of nuclear fuel assemblies, galloping of transmission

lines, flutter of pipes conveying fluid, and whirling of heat exchanger tube

banks are typical examples. Recently, flow-induced vibration has been studied

extensively for several reasons. First, with the use of high-strength

materials, structures become more slender and more susceptible to vibration.

Second, the development of advanced nuclear power reactors requires high-

velocity fluid flowing through components, which can cause detrimental

vibrations. Third, the dynamic interaction of structure and fluid is one of

the most fascinating problems in engineering mechanics. The increasing study

is evidenced by many conferences directed to this subject and numerous

publications, including reviews and books (see Additional References at the

end of this section).

In a broad sense, flow-induced vibration encompasses all topics on the

dynamic responses of structures submerged in fluid, containing fluid, or
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subjected to external flow. In this report, discussions focus on circular

cylindrical structures with emphasis on nuclear reactor system components.

1.1 EXAMPLES OF FLO-INDUCED VIBRATION PROBLEMS

The power reactor industry has had a history of flow-induced vibration

problems; Table 1.1 contains a list of field experiences. A large number of

different reactor components have been identified. In all cases, the

vibrations led to component failure, resulting in plant downtime and/or

operation at reduced power.

It is important to note that flow-induced vibrations have persisted to

the present. This can be attributed to two reasons:

" In the past, flow-induced vibration has not been considered an

integral part of nuclear plant design as have reactor physics

and thermohydraulics, which are considered the prime parame-

ters. A deficiency in the prime parameters may mean that the

plant will not work at all, while problems in the secondary

parameters, such as flow-induced vibration problems, may simply

mean that reliable operations will be short-lived.

* The state-of-the-art is such that, in many cases, it cannot

predict flow-induced vibration problems with sufficient

accuracy. Because of generally complicated geometries and high

Reynolds numbers, it is extremely difficult to predict fluid-

force components; therefore, it is difficult to predict the

reliability of a particular component without extensive tests.

Let us consider two typical examples--the first and the last listed in

Table 1.1. The first example is associated with a liquid-metal-cooled breeder

reactor, the Enrico Fermi Atomic Power Plant (Smith et al. 1964; Shin and

Wambsganss 1977). It has three parallel intermediate heat exchangers. The

steam generators are vertical, single-wall-tube, once-through-type heat

exchangers, with water and steam inside the tubes and sodium on the shell

side. In preoperating testing, after 13 days of operation, six tubes had

failed, all in front of the sodium inlet nozzle. As part of the

investigation, system operation was continued for 42 days. Testing showed

that 39 additional tubes were leaking. Figure 1.1 shows typical tube damage

caused by wear due to vibration and the tubes impacting against each other and

their supports. The vibration was induced by the sodium flow.

Most recently, leakage of a steam generator after only 3000 effective

full-power hours of operation has attracted much attention (Reisch 1982;

Christopher 1982). The leakage was caused by the so-called "shake and break"

phenomenon. Dozens of the steam generator tubes at the Ringhals 3 reactor in

Sweden were found to have worn down to only 10% of their original thickness.

The leakage signaled the beginning of a troublesome period for a series of
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Table 1.1 U.S. Power Reactor
*

Field Experience with Flow-induced Vibration

Year Reactor Type Component/Structure

1962

1962-63

1964-65

Before 1965

1968-72

1969

1970-77

1971-75

1972

1972

1972-77

1973

1974

1974-75

1976

1980-82

1981-84

LMFBR

BWR

BWR

PWR

PWR

BWR

PWR

PWR

PWR

BWR

BWR

PWR

BWR

BWR

PWR

PWR

PWR

Steam generator tubes

Guide tube bolts

Core thermal shield

Control rod blade

Thermal shield

Jet pump assembly

Steam generator tubes/antivibration bars

Fuel rod--corner fuel assemblies

In-core instrument nozzles and guide tubes

Jet pump holddown

Feedwater spargers

Core barrel support

Jet pump restrainer

In-core instrument tubes/fuel channels

Steam generator tube

Fuel pins

Steam generator tubes--preheat section

*
Provided by Dr. M. W. Wambsganss, Argonne National Laboratory.
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Fig. 1.1. Steam Generator Tube Bank Damaged by Vibration

(Shin and Wambsganss 1977) (ANL Neg. Nos. 113-84-
88 and 113-84-89)
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other reactor plants with similar design. The clear source of the problem is

flow-induced vibration.

These two examples, as well as some other spectacular failures

(Paidoussis 1980), show that flow-induced vibration can lead to economic,

maintenance, safety, and operational problems. Therefore, reactor designers

can no longer consider the flow-induced vibration problem as always being a

secondary design parameter.

1.2 NONDIMENSIONAL PARAMETERS

Fluid-force components and system responses depend on different system

parameters under different conditions. Frequently used parameters are

discussed in this section.

Geometry: The geometry of a circular cylinder in an infinite fluid can

be specified by its length-to-diameter ratio:

R length

D ~diameter*

In a confined region, such as a circular cylinder enclosed by a larger

circular shell, a second nondimensional parameter, the diameter ratio, is

needed:

Do _ shell diameter
D cylinder diameter

In a group of circular cylinders, the arrangement of the cylinders is

important. For example, different cylinder arrays (see Fig. 1.2) are

specified by the pitch-to-diameter ratio:

P pitch

D diameter

In addition, cylinder surface conditions, such as for finned tubes, specified

by the ratio of surface roughness to cylinder diameter, are also important.

Mass ratio: The ratio of cylinder mass to the displaced mass of fluid is

proportional to:

m_ mass per unit length of cylinder

pD2  fluid density x cylinder diameter2

The mass ratio provides a measure for different fluid-force components. For

example, a small mass ratio indicates that the role of the fluid inertia is

important.

Reynolds number (Re): It is a dimensionless number that is significant

in the design of a model of any system in which the effect of viscosity is
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important in controlling the velocities or the flow pattern of a fluid; it is

equal to the density of a fluid, times its velocity, times a characteristic

length, divided by the fluid viscosity. It can be shown that the Reynolds

number is also equal to the ratio of inertia force to viscous force in the

fluid:

UD inertia force
v = viscous force '

where v is the kinematic viscosity of the fluid, and is equal to the absfolute

viscosity (u) divided by the fluid density. The Reynolds numbers give a

measure of transition from laminar to turbulent flow, boundary layer

thickness, and fluid field across the cylinder.

Kinetic Reynolds number (Rk): In a quiescent fluid or oscillating flow,

the fluid force is a function of kinetic Reynolds number, which is given by

wD2

where w is the circular frequency of oscillations. The role of the kinetic

Reynolds number in quiescent fluid or oscillating flow is similar to the

Reynolds number in a steady flow.

Mach number (Me): The Mach number is equal to the ratio of flow velocity

to the speed of sound:

M = -
c c

Mach number is a measure of the compressibility of the fluid. In the problems

discussed in this report, the Mach number is generally small.

Kinetic Mach number (Mk): In a structure oscillating in a compressible

quiescent fluid, the kinetic Mach number, given by

Mk-WD

is important. For small kinetic numbers, the fluid compressibility is

insignificant.

Reduced flow velocity (Ur): The reduced flow velocity is given by

U =U
r fD'

where f is the frequency of oscillations. The fluid force is a function of

the reduced flow velocity.
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Strouhal number (St): The inverse of the reduced flow velocity is called

the Strouhal number, provided that the frequency is the frequency associated

with flow field, such as the vortex shedding. The Strouhal number is related

to the oscillation frequency of periodic motion of a flow.

Keulegan-Carpenter parameter (Kc): In a harmonic flow, the Keulegan-

Carpenter parameter is defined as follows:

K UT
c D

where U is the flow velocity amplitude and T is the period. In a harmonic
flow, Kc is an important parameter.

For a cylinder oscillating in a quiescent fluid, U = aw and T = 2w,

where w is the circular frequency of the cylinder oscillation and a is the

cylinder displacement; i.e.,

K = -.

c D

Therefore, the Keulegan-Carpenter parameter for a cylinder oscillating in a

quiescent fluid corresponds to the amplitude ratio.

Damping ratio (r): Damping is the dissipation of energy with time or

distance. When the viscous damping is equal to the minimum value that will

allow a displaced system to return to its initial position without oscilla-

tion, it is called critical damping. Damping ratio for a system with viscous

damping is the ratio of actual damping coefficient Cv to the critical damping

coefficient.

For a linear, viscously damped structure, 2iC (called the log decrement)

is equal to the natural logarithm of the ratio of the amplitudes of any two

successive cycles of a lightly dmped structure in free decay. If the energy

input to a structure is less than the energy dissipated in damping, the

oscillation will diminish.

Mass-damping parameter (Scruton's number os): The product of mass ratio

m/pD and log decrement 2gu is called the mass-damping ratio:

pD

This parameter appears frequently in flow-induced vibration problems.

1.3 FLUID-FORCE COMPONENTS

A structural component moving at a constant velocity in an infinite ideal

fluid encounters no resistance. This phenomenon is commonly referred to as

D'Alembert's paradox. In contrast, a body moving at a variable velocity, even



1-9

in a condition of potential flow, experiences resistance; the body behaves as

though an added mass of fluid were rigidly attached to and moving with it.

When the body is subjected to excitation, not only must the mass of the body

be accelerated, but also that of the added fluid mass. The additional force

required to accelerate the body is given by

2
g = -ma 

.u
a 2

at

where 32u/at2 is the acceleration of the body and ma is referred to as added

mass. Note that the force component ma(a2u/at2), in phase with the structural

acceleration, arises because the fluid moves as the body oscillates. Every

fluid element, even those far away from the cylinder, experiences acceleration

when the cylinder oscillates; the added mass is the integrated effect of the

fluid surrounding the cylinder. The added mass is proportional to the fluid

density p and the body volume V, and is given by

ma = pV Cm (1.2)

where Cm is the added mass coefficient.

Equation 1.1 is valid for an ideal incompressible fluid. In this case,

the fluid responds instantaneously to the structural motion such that there is

no phase difference between the structural acceleration and fluid

acceleration. In contrast, when a structure oscillates in a viscous fluid or

compressible fluid, in some conditions, the fluid at various locations does

not necessarily respond instantaneously to the structural motion; i.e., there

is a phase difference between structural motion and fluid motion. In this

situation, there are two fluid force components:

(1) ma(a 2u/at2 ), in phase with the structural acceleration, arises

because the fluid moves as the body oscillates.

(2) Cv(au/at), opposing the movement of the structure, results

from the phase difference and is attributed to fluid viscosity

and/or fluid compressibility.

Therefore, the resultant fluid force is

2
a 2 v at

at

where Cv is the fluid damping coefficient.

Equation 1.1 or 1.3 is applicable for a quiescent fluid. When the fluid

is flowing with respect to a structure, in addition to the fluid inertial

force ma(32u/at2 ) and fluid damping force Cv(au/at), there are two other fluid

force components:

(1) Fluid Excitation Force - When the structure is stationary in

flow, it disturbs the flow field; therefore, different fluid
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pressure and shear stress will act on the structure surface.

The resultant effect of fluid pressure and shear stress is

called fluid excitation force; these fluid forces are

independent of structural motion.

(2) Fluid Stiffness Force (kfu) - Because of structural displace-

ment, the structure will be subjected to fluid force that is

proportional to the structural displacement. This fluid force

component is called fluid stiffness force.

Fluid inertia force, fluid damping force, and fluid stiffness force are

functions of structural motion. They do not exist if the structure is

stationary; therefore, those force components are called motion-dependent

fluid forces. On the other hand, fluid excitation forces are independent of

structural motion. In many practical cases, fluid forces can be divided into

these two groups.

So far we have discussed the case of a single structural component

oscillating in a particular direction. For a structure that may oscillate in

different directions or a group of structural elements in which each element

may oscillate independently, the fluid surrounding the structure or inside the

structure may introduce additional coupling. In these circumstances, the

interaction of fluid and structural elements become much more complicated.

Without loss of generality, consider an array of N circular cylinders

oscillating in a flow as shown in Fig. 1.3. The axes of the cylinders are

parallel to the z axis. The subscript j is used to denote variables

associated with cylinder j. The displacement components of cylinder j are uj

and vj and the fluid force components are gj and h . Mathematically, these

fluid force components can be divided into two groups (Chen 1978): motion-

dependent fluid forces and fluid excitation forces.

Motion-dependent Fluid Forces

Ng= -32auk +k auk+ uk [ avk

jk1 jk 2+ jk at + kuk+ jk 2ka1 3t2at

av
-, k-
jk at + ajkvk]}

and (1.4)
2 2

N - auk - auk - a vk
hj - - I[Tjk 2 + Tjk at + Tjkuk] +[ jk 2

k=1 at at

+ k +jk at + 8kvk] }
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Note that ~aij, aij, ~Tij, and aijj are added mass matrices; tij, 1ij, ~jj, and

ai are damping matrices; and aj , j ,T , and 5 are fluid stiffness

matrices.

Fluid Excitation Forces

g. = 2 pU DCDj.+2 pU DC'.sin(O .t + * .) + g'j D 2 Dj Dj Dj j
(1.5)

1 2 1 2
h. = - pU DCL. + - pU DC'.sin(L .t + * .) + h!

j 2 J 2 LJ Lj J J

where CDj (CLj) is the steady drag (lift) coefficient, C' (C' ) is the

fluctuating drag (lift) coefficient, Dj (j) is the circular frequency of

periodic flow excitation in the drag (lift) direction, *Dj ( Lj) is the

corresponding phase angle, and g' (h) is the other fluctuating drag (lift)

force.

The various coefficients in Eqs. 1.1 to 1.5, in general, depend on

structural displacement, velocity, and acceleration in addition to flow

veiuci.ty. The characterizations of these force components are still

incomplete. At present it is generally impossible to solve analytically those

force components using the fundamental principles in fluid mechanics.

1.4 MECHANISMS OF FLOM-INDUCED VIBRATION

When an elastic structure is either immersed in a flowing fluid or

conveying fluid, it experiences a distributed force that is exerted on it by

the fluid. The structure responds to the flow in different manners; the

structure may (1) deflect statically, (2) become unstable by divergence in

flow, (3) resonate with periodic excitation of the flow, (4) respond to random

fluid excitation, or (5) be subjected to dynamic instability by flutter. The

types of response can be classified according to excitation mechanisms.

Different mathematical models have been developeK to predict structural

responses to different excitation sources. From a practical point of view,

one is more interested in quantifying the system parameters at which large

displacements (instability) occur or the structural response in subcritical

flow velocity ranges. Let structural displacement components be defined as a

column vector {Q} consisting of u1 and v. (j = 1 to N; see Eqs. 1.4 and 1.5);

(Q} and {Q} are the generalized structural velocity and acceleration,

respectively. The dynamic structural/fluid interaction is described by the

following equations:

[M]{Q} + [C]{Q} + [K]{Q} = {G} (1.6)
or
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[Ms + Mf]{Q} + [CS + Cf]{Q} + [Ks + Kf]{Q} = {G} , (1.7)

where [M] is the mass matrix, including structural mass [Ms] and added mass

[M f]; [C] is the damping matrix, including structural damping [Cs] and fluid

damping [Cf]; [K] is the stiffness matrix, including structural stiffness [K]
and fluid stiffness [Kf]; and {G} is the other excitation forces, including

vortex shedding, turbulence, acoustic noises, etc. Note that the fluid

matrices [M f], [Cf], and [Kf] are related to the matrices given in Eq. 1.4:

ij ji, a , j j, ij' ij' '1 j j' ij, and .

In general, M, C, K, and G are functions of Q, Q and Q; therefore, a

complete solution is rather difficult to obtain. Fortunately, in many

practical situations, one can ignore all nonlinear terms such that M, C, K,

and Q are independent of structural displacements.

By premultiplying {Q}T and forming the symmetric and antisymmetric

components of the matrices thus--

[M1 ] = 2 ([M] + [M]T) , [M2 ] I ([M] - [M]T)

[C1] = 2 ([C] + [C]T) [C21 ([C] - [C]T) , (1.8)

and

[K1] = 2 ([K] + [KIT) , [K2 ] = 2 ([K] - [K]T)

we can separate terms, giving

{Q} [M1]{Q} + {Q}T[C2]{Q} + {Q} [K1 ]{Q}

= -({Q}T [M2]{} + {Q}T[C1]{Q} + {Q}T[K2 J{Q}) + {Q}T {G} . (1.9)

Equation 1.9 equates rates of work. Those terms on the right side produce a

network resultant when integrated over a closed path through the space {Q},
the magnitude depending on the path taken. The forces corresponding to the

matrices [M2], [C1 ], and [K2] appearing on the right side are thus by

definition the nonconservative parts of the forces represented by [M], [C] and

[K]. Similarly, the terms on the left side can be shown to give rise to a

zero work resultant over any closed path, and therefore together are the sum

of the rates of work from the potential forces and the rate of change of

kinetic energy. Equation 1.9 is useful in discussing the different flow-

induced vibration mechanisms.

In solving Eq. 1.6, either of two objectives will be sought: the

instability threshold or the response of the structure. The solution

procedures are straight rward. Based on Eq. 1.6, the parameters governing

different phenomena are given in Table 1.2 and discussed below.



Parameters in Flow-induced Vibration

Structural Fluid Dynamic Parameters: Structural Fluid Structural

Response Excitation Mass (M , Mf), Stiffness Stiffness Deformation

(G) Damping ICs, Cf) (Ks) (Kf) (Q)

Static displacement " " " "

Static instability
(divergence) " " "

Dynamic response
(forced vibration) " " " " "

Dynamic instability " "

Combination of any
of the above 0"0

.

Table 1.2.
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Static Behavior

Static displacement: Static structural deformations can be induced by

steady-state fluid forces, whose frequency is much lower than the structural

natural frequency. Structural displacements are calculated by

{Q} [K]- 1{G} . (1.10)

Static instability (divergence): Static instability is caused by fluid

stiffness force. The critical-flow-velocity boundaries that specify the

regions of large structural displacements can be calculated from the following

equation:

Det( [Ks] + [Kf]) = 0. (1.11)

Buckling of an elastic tube conveying steady fluid is a typical example of

static instability.

Dynamic Behavior

Dynamic response: Structures are subjected to various excitations,

either periodic, such as vortex shedding, or random, such as turbulence. Once

the excitation is known, structural responses can be calculated in a straight-

forward manner.

Dynamic instability: Dynamic instability can be caused by high-velocity

flow. Typical examples are whirling instability of tube arrays subjected to

crossflow and flutter of pipes conveying fluid. Different types of dynamic

instability can be classified according to the dominant terms in Eq. 1.9.

" Fluid-damping-controlled instability (single mode flutter): The

dominant terms are associated with the symmetric damping matrix [C1 ]. The

flutter arises because the fluid dynamic forces create negative damping.

* Fluid-stiffness-controlled instability (coupled-mode flutter): The

dominant terms are associated with the antisymmetric stiffness matrix [K2].

It is called coupled mode flutter because a minimum of two modes are required

to produce it.

Corresponding to the single-mode flutter and coupled-mode flutter, there

may exist parametric resonance and combination resonance if the flow is a

periodic function of time.

" Parametric resonance: When the period of the flow is a multiple of

one of the natural frequencies of the cylinder, the cylinder may be

dynamically unstable.

" Combination resonance: When the period of the flow is equal to the

sum or difference divided by an integer of the natural frequency of the

cylinder, the cylinder may also be subjected to dynamic instability.

In practical applications, two or more mechanisms may interact with one

another and Eq. 1.7, in general, is applicable for most cases.
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2. A SUAGLE CYLINDER IN QUIESCENT FLUID

2.1 INTRODUCTION

When a structural component oscillates in a quiescent fluid, the fluid

excitation force is zero and the motion-dependent fluid forces are the inertia

and damping terms given in Eq. 1.3. Those force components depend on the

following parameters: k/D, D/D, Rk, Mk and KC'

A real fluid is viscous and compressible. In many cases, however, the

effects of viscosity and the variation of density are so small that they can

be neglected. A nonviscous and incompressible fluid is called a perfect

fluid. In a perfect fluid, the damping term of the fluid is zero; therefore,

for a structure oscillating in a quiescent perfect fluid, the only fluid-force

component is associated with the fluid inertia, called the added mass.

In a compressible inviscid fluid, fluid damping may arise. In a confined

region, enclosed by rigid walls, the energy cannot propagate out of the

region; therefore, no damping will result from fluid oscillations. The only

motion-dependent fluid force is attributed to fluid inertia. However, in an

infinite region, energy can be carried away by the outgoing waves. The

motion-dependent fluid forces will consist of inertia and damping.

In this section, added mass and fluid damping for a single circular

cylinder are discussed based on different flow theories.

2.2 A SIMPLE EXAMPLE--A SINGLE CIRCULAR CYLINDER OSCILLATING
IN AN INFINITE PERFECT FLUID

Consider an infinitely long circular cylinder supported by an elastic

spring, as shown in Fig. 2.1. Its mass per unit length is m and the spring

constant is ks. When the cylinder oscillates in vacuum, the equation of

motion is

d2 u
md2+ k u = 0 . (2.1)

dt2  s

The natural frequency in vacuum, fv, is given by

f = . (.2v 2n m 8 (2.2)

When the cylinder is submerged in a perfect fluid, the motion of the cylinder

disturbs the surrounding fluid. The two-dimensional equation of motion based

on the perfect fluid is given by (see Appendix B)
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u= a exp (iwt)

R

Fig. 2.1. A Circular Cylinder Oscillating in an Infinite Perfect Fluid

do
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V2 (rOt) - 0 (2.3)

where t is the flow velocity potential and V2 is the Laplacian operator. The

flow velocity and fluid pressure are given by

+ +

U = vt

and (2.4)

p = -p at

At infinity, the fluid

cylinder and fluid, the

cylinder:

ur = 0

is not disturbed and at the interface between the

normal velocity of the fluid is equal to that of the

at r = co,
(2.5)

ur =u cosO, atr=R.

Let

u = a exp(iwt) ,

(r,A,t) Fr(r)Fe(o)exp(iwt)

Substituting Eq. 2.6 into Eq. 2.3 and separating the variables yields

dF 2

dr dr drr - 2 Fr = 0
r

d2F

2 + n 2Fe-=0 ,
a

(2.7)

n = 0, 1, 2, ... , a .

The solutions of Eq. 2.7 are

Fr = Alr-n + A2rn

and (2.8)

Fe = asin nO + a2 cos nO .

(2.6)
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Based on the boundary condition, Eq. 2.5, n must be equal to 1; therefore

*(r,O,t) = cosO exp(it) . (2.9)
r

Using Eqs. 2.4-2.6 and 2.9 yields

= -R2a

(2.10)and

2
cosO exp(iwt)

r

The fluid force acting on the cylinder is

2n

g = -1 p(r,O,t)
0 r=R

R cosOdO . (2.11)

Using Eqs. 2.4, 2.10, and 2.11 yields

2
g = -m ;

a dt2
m = pR2
a

This is the most simple case, in which the added mass of fluid is equal to the

mass of the displaced fluid. ma is called the added mass, hydrodynamic mass

or apparent mass. In many cases, a coefficient Cm, called the added mass

coefficient, is introduced such that the added mass is equal to the mass of

the displaced fluid multiplied by the added mass coefficient. In this

example, the added mass coefficient is equal to one.

Now, let us return to the vibration of the cylinder in a perfect fluid.

Because of the added mass, the equation of motion for the cylinder in a fluid

is given by

2
(d2 + m ) (+ k u = 0 .

a dt
(2.13)

Therefore, the natural frequency of the cylinder oscillating in a fluid is

(2.12)
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k
f/ .-m s . (2.14)
f 2ir m+ m

a

Comparing Eqs. 2.2 and 2.14 yields

= m .(2.15)
f m + m
v a

The effect of the fluid is to reduce the natural frequency. In a perfect

fluid, reducing the natural frequency is the only effect.

Based on this simple example, it is obvious that, for a single structural

component oscillating in a perfect fluid, the key element is the added mass

coefficient. As long as Cm is known, the natural frequency as well as the

structural response can be calculated routinely.

2.3 A CIRCULAR CYLINDER NEAR A WALL

The added mass for a circular cylinder near a parallel wall is

independent of the direction of motion in an ideal fluid; cm is given (Mazur

1966) by

-3j a
C = 1+ 4 sinh2a e
m . sinh(ja)j=1

where (2.16)

S 2 2
a = ln (R + G + /(R + G)2- R

R

Values of Cm are presented in Fig. 2.2.

When the fluid surrounding the cylinder contains other structures or is

confined by a pipe, the added mass increases, because the fluid elements in

the region between the cylinder and the adjacent structures experience

enhanced motion. Any additional confinement of the fluid results in an

increase in the added mass.
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2.4 A CIRCULAR CYLINDER IN AN ANNULAR REGION OF
CWIPRESSIBLE INVISCID FLUID

Consider an infinitely long cylinder with diameter D, oscillating in a
compressible inviscid fluid annular region with diameter Do, its displacement

being u in the x direction shown in Fig. 2.3 (Chen and Wambsganss 1972). The

fluid velocity and pressure based on the two-dimensional theory can be

evaluated as follows (see Appendix B):

+ +

U =v

(2.17)and

p = -p,
=heat

where

= ip(r, O)exp(iwt)

v2 + k2 = ,

The wall is not allowed to move; therefore, the boundary conditions are

ur = 0 at r = Do/2

and

ur =at cosO at r = D/2

The solution of Eq. 2.18 is

* = Fr(r)F (O)

where

Fr(r) = A Jn(kr) + A2 n(kr)

and

F 0) = a sinn + a2 cos nO, n = 0, 1, 2, 3, ... .

Jn and Yn are Bessel functions of the first and second kind, respectively, of

and

k2= w/c.

(2.18)

(2.19)

(2.20)

(2.21)
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COMPR ESSIBLE F LUID

Fig. 2.3. A Circular Cylinder Vibrating in a Compressible Fluid Annulus
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order n. Substituting Eq. 2.20 into Eqs. 2.18 and 2.17, we can determine the

functions Fr(r) and Fe(9), using Eqs. 2.19. Finally, the resulting

expressions for and p are

and

kD kD

Y (-j2 1)J1(kr) - J (-2 )Y1 (kr) cosO exp(iwt)

S=ia kD kcD c x~m)
yt(- Q) jv(i) - J(j Q)y' (_)

kD kD

2 Y;( 2)J 1 (kr) - J{(7
2 )Y1 (kr)

p = w pa cosO exp(it),

Y1( O)Ji(2D) - J1( )Yj(y)

(2.22)

(2.23)

where the prime denotes differentiation with respect to r, and u = a exp(iwt).

The net reaction force of the fluid on the cylinder in the direction of

its motion is equal to the hydrodynamic force associated with the added mass;

i.e.,

2 2w

m = D-j pcosOa d9.
a t2 0 2

Let

2
m = p C

a 4 m

where Cm is the added mass coefficient. From Eqs. 2.22, 2.23, 2.24, and 2.25,

C0=[OY 0(0)-Y 1 (6)][acJ 0 (a)-J1 (ca)j - ISJ (8)-J1(8)][ciY (z)-Y (c()2
(2.26)

where

(2.27)

0 0

(2.24)

(2.25)

and
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Inspection of Eq. 2.26 shows that the added mass coefficient Cm depends

on the oscillation frequency w, velocity of sound c, and the diameters of the

cylinder and the outer wall D and D. These parameters can be grouped into

two parameters, kinetic Mach number Mk (= wD/c) and diameter ratio D/Do. The

added mass coefficients depend on these two parameters.

In practical cases, kinetic Mach number is very small. Table 2.1 shows

the values of Cm for several Mk as a function of diameter ratio D/D. It is

noted that Cm is insensitive to Mk for small Mk; therefore, in many practical

applications, the fluid can be considered incompressible.

Note that the added mass coefficient given in Eq. 2.26 may vary from --

to o if it is not restricted to small values of Mk. For example, Fig. 2.4

shows the values of Cm as a function of Mk for a diameter ratio of 2.0. The

physical explanation of different values of Cm is as follows:

" When Cm is a positive value, the surrounding fluid provides a

resistance to structural oscillations. In this case, the

dominant motion is associated with the structure.

" When the resultant fluid force acting on the structure is equal

to zero, Cm = 0 and the fluid does not affect structural

oscillations.

* When Cm = 0, the structure corresponds to a rigid structure;

i.e., it is associated with an acoustic mode.

* When Cm is a negative value, the motion is associated with an

acoustoelastic mode; structural oscillations and fluid motion

are coupled.

2.5 A CIRCULAR CYLINDER IN AN INFINITE COMPRESSIBLE INVISCID FLUID

Consider a uniform circular cylinder of radius R and mass per unit length

m submerged in a compressible inviscid fluid (Lin and Chen 1977). The purpose

is to find the response of the cylinder subjected to a plane wave traveling in

the x direction, as shown in Fig. 2.5. The equation of motion of the rod is

ma2u/at2 + C au/at + k x = g(t) , (2.28)
s s

where Cs is the structural damping coefficient, ks is the spring constant, and

g is the resultant force acting on the cylinder. g is obtained from

2w
g(t) = - f pR cosO dO , (2.29)

0

where p is the fluid pressure on the cylinder surface. The incident plane

wave is
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Table 2.1. Added Mass Coefficient (CM) for Various
Cylinder/Wall Diameter Ratios (D /D)

Mk 0.00002 0.002 0.2
Do/D

1.02

1.04

1.06

1.08

1.10

1.2

1.4

1.6

1.8

2.0

4.0

6.0

8.0

10.0

50.50873

25.51164

17.18247

13.02014

10.52454

5.54548

3.08334

2.28206

1.89287

1.66667

1.13333

1.05714

1.03175

1.02020

50.50894

25. 51169

17.18247

13.02013

10.52456

5.54549

3.08335

2.28206

1.89287

1.66667

1.13334

1.05715

1.03175

1.02021

51.03145

25.77994

17.36652

13.16222

10.64147

5.54615

3.12611

2.28241

1.92497

1.69715

1.16431

1.09265

1.07267

1.06807
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Pr = Poeik(r cos O - ct) (2.30)

where p0 is the amplitude and k is the wave number, which is related to the

circular frequency w and the wave speed c by k = w/c. Equation 2.30 can be

written in terms of cylindrical waves:

P = p E (i)nJn(kr)cos(nO)e , e =r o n=0 n n n 2,

n= 0
(2.31)

n # 0.

Here i = 1T , and Jn(kr) is the Bessel function of the first kind of order

n. The radial velocity ur corresponding to Fpr is

U
r

p c(1l(kr) + in+1  n+(kr) - Jn-1(kr)]cos(n9)}e-iwt

n=1
. (2.32)

Since the cylinder is submersed in an infinite medium, there exists an out-

going wave pr:

p = A H ()(kr)cos(n)e-iwt
= n=0 nn

(2.33)

where Hl')(kr) is the Hankel function of the first kind of order n, and An is

a coefficient to be determined. The radial velocity ur corresponding to Pr is

ur(=.){AH() [H( + kr) - H l1(kr)]cos(nO)}eiot. 2.34)

The total field intensity is given by the sum of incident wave, Eq. 2.31, and

the scattered and radiated wave, Eq. 2.33; i.e.,

p = p + p = [po n e inJn(kr) +
r r n=0 n

A H 1 )(kr)]cos(nO)e-i wt
n=0 n n

. (2.35)

Equation 2.35 must satisfy the boundary conditions imposed by the structure;

i.e., the radial fluid velocity at the interface of fluid and solid must equal

the normal velocity of the structure and g(t) must be equal to the resultant

fluid pressure. These boundary conditions can be stated mathematically as



(r + u )r r irR
- (au/at)coso

R cosO dO .
2w

g(t) = -f O (r + p =I
r r=rR

Substituting Eqs. 2.32 and 2.34 into Eq. 2.36 yields

{ipJ1 (kR) + p :1 n+1 n+1(kR) -

m=1
Jn-1(kR)]cos(nO) + iA H 1 (kR)

+ i 2 [Hl1 (kR) - H (kR)]cos(n9)}(P)e

n=l 1 nip
= cosO . (2.38)

at

The steady-state solution of the cylinder displacement can be expressed as

u = a exp(-iwt) . (2.39)

Substituting Eq. 2.39 into eq. 2.28 yields

(-w2m- iC + k )aeiWt- -2w(_r + p
0sr rR

Substituting Eq. 2.35 into Eq. 2.40 gives

R cosy dO .

a = [-i2iRp0J1 (kR) - A1iRH 
1)(kR)]/(ks - iwCs - wpm)

The coefficient A1 in Eq. 2.41 can be determined by multiplying both sides of

Eq. 2.38 by cosO and then integrating from 0 to 2w, thus,

Al= -2{ip0[J2 (kR) - J0(kR)] + pcwa}/[HR1)(kR) - H4)(kR)]

Note that Eq. 2.41 contains the coefficient A1 only. This is due to the fact

that a single cylinder subjected to a plane wave can excite only a one-

2-15

and

(2.36)

(2.37)

(2.40)

(2.41)

(2.42)
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component scattered and radiated wave; therefore, all the coefficients except
A have vanished. From Eqs. 2.41 and 2.42 it follows that

2H1(kR)
{k - iwC - w m - 2 RpcL [ ( ]} a

sH'(kR) - H (kR)

H (kR)
= 12rRp {-J1(kR) + [J2 (kR) - J0(kR)] [ (1) }(1) 1 . (2.43)

H2 (kR) - Ho (kR)

Since

1 )(kR) J1 (kR) + iY1 (kR)+ 2

H2 (kR) - (kR) [J(kR) + iY 2(kR)J - [J(kR) + iY (kR)] A

where Yn(kR) is the Bessel function of the second kind of order n, and

A = [J2 (() - J0 (a)]2 + [Y 2(a) - Y o()]2

Al = J1 ()[J 2 (a) - J(a] + Y1 (c[Y 2 (a) - Y0 (a)] ,

(2.45)

A2 1 (a)[J 2 (2) - J(cz)] - J () [Y2 () - Y0o()]

and

a = kR -==Mc/2

Eq. 2.41 becomes

2rRpo J2 G(a) - Jo ()(A 2/A) + i[J1 ( - 2 o( l
a m= ( ){ }f,

' (w/w )2 + i2(wm/w )(rs + ~) - 1 (2. 46)

where
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M' = m + Cm(a)Md - virtual mass ,

Md = pR2 - displaced mass of fluid

Cm(a) - (2/a)(A1/A) - added mass coefficient ,

2A
Cv = Mdw(Td-) = fluid damping coefficient , (2.47)

W = /k /m' = undamped natural frequency ,
0 5

s = Cs/2w m' = structural damping , and

5 00

_=(w/w )Md 2 = fluid damping.
f o maA + 2MdA1

Equations 2.39 and 2.46 provide the complete solution for the response of a

circular cylinder subjected to a plane wave excitation in an acoustic medium.

The added mass coefficient Cm is a function of Mk only; i.e., for a given

system, Cm is dependent on the wave number k only. Figure 2.6 shows the

variation of Cm and Cv versus Mk. Note that for Mk + 0, Cm + 1 and Cv + 0,

and both Cm and Cv approach zero when Mk + . The maximum Cm occurs at Mk v

0.9 and the maximum Cv occurs at Mk $ 2.0. For Mk > 4, the fluid inertia

effect on structural vibration is almost negligible.

At resonance, the radiation damping is a function of kinetic Mach number

and mass ratio Md/m. Figure 2.7 shows the relationship between and Mk for

various values of Md/m. It can be seen that;c + 0 for Mk + 0 and (a. The

peak value of f occurs at Mk slightly greater than 2. The larger the values

of Md/m, the bigger the values of qg. This is understandable because the

radiation is more important in a dense medium than in a rarified medium.

Therefore, in a lightly damped system, acoustic radiation can be important in

removing the energy from a vibrating system; it is also responsible for the

eventual decay of free vibration and is of primary importance in controlling

steady-state responses.

2.6 A CIRCULAR CYLINDER IN A CONCENTRIC ANNULAR
INCONPRESSIBLE VISCOUS FLUID

Consider the same problem given in Fig. 2.3 except that the fluid is

incompressible viscous fluid (Chen et al. 1976). For small amplitudes, the

equation of state and motion can be linearized; the equations of motion for
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the fluid are (see Appendix B)

4 13 2
V V- -v = 0 ,

' vat
(2.48)

where v is kinematic viscosity of the fluid. The velocity components of fluid
in the r and 0 directions are given by ur and u9:

r r30'
(2.49)U =h.

0 ar

The velocity of the fluid at the cylinder surface must be in the direction of

oscillation, so that the conditions to be satisfied by ur and u0 on the

cylinders are

ur = a cosO exp(iwt)

and (2.50)

u0 = -a sinO exp(iwt) .

At r = Do/2, the fluid velocity is zero; thus

U = u8 =0.r 0 (2.51)

Equations 2.48-2.51 are the complete mathematical statement of the problem.

Equation 2.48 can easily be solved; the solution is

2
$ [A1 () + A2r + A3DI1(ar) + A4DK1(ar)lsin8 exp(iwt) , (2.52)

where

and A1 , A2 , A3, and A are arbitrary constants. Using Eqs. 2.49-2.52, A1 , A2 ,

A3 , and A4 can be determined. The results are as follows:
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A1  -CaL2[(a)K ( 1) I( )K (a)J + 2ad(a)K ( ) +I (6)Kl~a)

- 2aY[I0(a)K1 (6) + I1 (6)K (a)] + 4y[I1(a)K1 (R) - I1(B)Kl(a) D ,

A2 = {2ay[I 1 (8)K0 (8) + I0(8)K1 (6)J + a2y2 [10(a)K0(8) - I0( )K (a)]

- 2aY2 [Ii (a)K (B) + I (B)K1(a)])/A ,

A3 = {-2aK (O)

A4 = {-2aI ()

- 4yK () + Y 2 [2aK,(a) + 4K 1 (a)]}/AD,

+ 4yI1 (S) + y2[2aI,(a) - 4I1(a)}/A

a = XD/2

= XD%/2 ,

y = Do/D

and

A = a2(l -
2)[II(a)K(R) - Io()K(a)]

+ 2ay[i0(a)K1 (8) - I1 (6)K0 (6) + I (C)K0o(a)

+ 2ay2[I0( )K1 (a) - I0(a)K1 (a) + I1 (a)K0(g) - I1(a)K0 (a)] (2.54)

The resultant force per unit length of cylinder can be calculated in a

straightforward fashion:

g = Mdaw[Re(H)sinwt + Im(H)coswt] . (2.55)

In the steady-state oscillations, Eq. 2.55 can be written

g-Cmd

2

dt2 v dt

and

(2.53)

where

- I (R)K1( ]
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where

Cm = Re(H)

Cv = -MdwIm(H)

Md = pirR2

and

H = {2a 2 [10 (a)K0 (0)- I (O)K (a)] - 4a[II(a)K( ) + I (O)K(a)]

+ 4ay[I0(ca)K1(R) + I1( )K (a)] - 8Y[I1 (a)K1() W - I1(O)K1(a)]}

{a 2(l - Y2) [I (a)K() - I0 (S)K 0 (a)] + 2ay[I0 (a)K 1(B)

- I1 (a)K0(s) +I1 (O)K0 (a) - I (O)K1 (O)] + 2ay 2 [I0 (a)Kj(a)

- I (a)K1(a) - Ii(a)K0()- I(a)K0 (a)]} - 1 . (2.56)

Two forces are associated with the fluid motion:

(1) Mda Re(H)sinwt, in phase with the acceleration, arises because

the fluid is necessarily moved as the cylinder vibrates.

(2) MdawIm(H)coswt, opposing the movement of the cylinder, is

related to damping mechanism.

It is seen that H depends on a and in a very complicated way. However,

simplified results can be obtained in special cases:

(1) Do/D~ o , v = 0,

H1 ; (2.57)

(2) v=0 ,

2 2
D + D

H 2 2 (2.58)
D - D
0

(3) Do/D ~. o ,

4K 1()

H =1 + 1 ; (2.59)
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(4) a and a are large,

H = {[a2(1 + D/D2) - 8D0/D]sinh(o - a)

+ 2a(2 - D/D + D2/D 2 )cosh($ - a) - 2D/D 2 /a8 - 2a(D /D) 1 .5}

+ [a2(1 - D0/D2)sinh( - a) - 2aD0/D(1 + D /D)cosh($ - a)

+ 2D/D 2 /a0 + 2a(D0 /D) 1 . 5] . (2.60)

The values of Cm and Cv depend on H, which, in turn, is a function of the

diameter ratio D/D and kinetic Reynolds number Rk(= wD2 /v). The values of

Re(H) and -Im(H) are given in Figs. 2.8 and 2.9, respectively. The

corresponding values of H for a circular cylinder vibrating in an infinite

viscous fluid is given in Fig. 2.10 (Chen 1983).

Based on the boundary-layer approximation, approximate expressions for Cm

and Cv were developed (Sinyavaskii et al. 1980):

D2 + D2 1/2
C0=0 + 4(h2_)m D2 - D2 D W

0

and (2.61)

Cv = 2uD [D + D3D]

/E 2D - 27

where /w/2v is the viscous penetration depth. Note that Eq. 2.61 is similar

to Eq. 2.60; it is applicable for wD2/4v >> 1. In many practical applica-

tions, Eq. 2.61 can be employed. Several additional approximate solutions for

Cm and Cv also are given in Section 3.7.

The theoretical results and experimental data agree well for a cylinder

oscillating in both an infinite fluid (Williams and Hussey 1972) and an

annular region (Chen et al. 1976; Sinyavaskii et al. 1980). However, the

linear theory is applicable only for small-amplitude oscillations (see Section

2.10 for discussion).

For a uniform cylinder with mass per unit length m, the modal damping

ratio attributed to fluid viscosity can easily be obtained:
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M

2-(C Mdd+ m Im(H) . (2.62)
m d

The analytical results for cf were verified using several viscous fluids (Chen

et al. 1976); the agreement between theory and experiment is good.

2.7 A CIRCULAR CYLINDER IN AN ECCENTRIC ANNULAR
INCOMPRESSIBLE VISCOUS FLUID

Closed form solution for this case is not available. However, added mass

and viscous damping can be obtained using a finite-element method (Yang and

Moran 1979). A system of discretized equations is obtained from the

appropriate two-dimensional Navier-Stokes and continuity equations through

Galerkin's process. The basic unknowns are velocity and pressure. The added

mass and viscous damping coefficients are obtained through a line integration

of stress and pressure around the circumference of the cylinder.

Typical results are given in Fig. 2.11. Both Cm and Cv increase with

eccentricity.

2.8 A CIRCULAR CYLINDER IN A CONCENTRIC ANNULAR TWO-PHASE FLOW

There are varying flow regimes in two-phase flows, depending on the ratio

of gas to liquid in the mixture. This ratio is generally called the void

fraction ae. ae =0 and me = 1 correspond to pure liquid and gas flows,

respectively. The added mass and damping depend on ae.

A circular cylinder vibrating in a confined two-phase flow was studied

experimentally by several investigators (Carlucci 1980; Schumann 1981;

Carlucci and Brown 1982; Hara and Kolgo 1982). The inertial and damping

forces can be written

g=-CM du Cdu
md dt2 vdt

(2.63)

C = C' + Cv v t

The fluid viscous damping coefficient Cv consists of two parts: C' is

attributed to fluid viscosity and Ct is called two-phase flow damping.

The added mass coefficient Cm and viscous damping coefficient C' are not

the same as those for a single-phase flow. Based on the limited experimental

data, and on analytical results, Cm can be calculated based on Eq. 2.56 except

that the effective density should be used. The ratio of effective density pe
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to that of the single-phase flow p is given in Fig. 2.12, which includes

experimental data and analytical results. The theoretical values pe of the

effective density are given by

(1) Pe - (1 - a )p + aeP',

(2) Pe = p(1 - ae)/(2a + 1), (2.64)

(3) Pe= P(1 - e)(1 + 2ae)/1+ 4ae - 2ae),

where p and p' are the densities of the two fluids. The first equation of Eq.

2.64 is applicable for small ace; at large ae, it predicts much larger Pe than

the experimental data. The last two equations in Eq. 2.64 correlate better

with the experimental data at high values of ae and are applicable in that

range.

The coefficient C' in Eq. 2.63 for two-phase flow is calculated following

the same method as Cv for a single-phase flow described in Section 2.6.

However, the effective density Pe given in Eq. 2.64 and the mixture kinetic

viscosity based on McAdams' definition (Collier 1972) should be used. The

mixture viscosity according to McAdams is given by the following equation:

a (1 - a)
= + e (2.65)

mixture vapor liquid

There is no analytical expression for Ct. The most complete experimental

data are those by Carlucci and Brown (1982); these data are given in

Fig. 2.13. With Fig. 2.13, the two-phase damping coefficient Ct can be

calculated based on C'.

The added mass and damping of circular cylinders vibrating in a two-phase

flow are still not well understood. More theoretical and experimental studies

are needed.

2.9 FREE VIBRATION OF A CIRCULAR CYLINDER SUPPORTED AT BOTH ENDS
IN A FLUID

Once the added mass and damping coefficients are obtained, the analysis

of a cylinder in fluid is relatively simple. For example, consider a circular

rod submerged in a fluid (Fig. 2.14). The equation of motion for free

vibration is as follows:

4 2
EI + (Cs + Cv) + (m + ma)- = 0 , (2.66)

az at
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97-

Fig. 2.14. A Circular Cylinder Vibrating in a Fluid
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where EI is the flexural rigidity. The natural frequencies and modal damping
ratios are

A2 1/2Xn EI 1/

ff 2 Cm + ma

and (2.67)

Cs + Cv

f s4w(m + ma)f

where An is a dimensionless parameter that is a function of the boundary

conditions (see Appendix C).

When the rod is oscillating in a vacuum, Cv = ma = 0. The corresponding

natural frequencies and modal damping ratio are

X2 .1/2

2xfv 2 /m

and (2.68)

C

v 4irmf
v

Using Eqs. 2.67 and 2.68 yields

f 1/2

4 Cm +m) (2.69)
v a

and

Cf C +C 1/2

C V)m+m ) . (2.70)
v s a

In most practical applications, ma is positive; therefore, the added mass is

to reduce the natural frequencies. From Eq. 2.69,

2
f

ma - m( - 1) . (2.71)

ff

By measuring the natural frequencies in vacuum and in a fluid, the added mass,
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ma, can be calculated. In fact, Eq. 2.71 has been used extensively in tests

to determine the added mass.

The ratio of modal damping values in vacuum and in fluid given by Eq.

2.70 consists of two factors; the first ratio is always larger than 1, while

the second factor is smaller than 1 in most cases. Theoretically, 4f can be

smaller or larger than {v. However, in most practical cases, Cf is slightly

smaller than 4v. Equation 2.70 can also be employed to determine the fluid

viscous damping coefficient Cv:

m + m 0.5 c

C = m :a) _f - 1]C 5 . (2.72)
v

Measuring the damping values in vacuum and in fluid, the fluid viscous damping

can be obtained from Eq. 2.72.

2.10 NONLINEAR EFFECTS OF A CIRCULAR CYLINDER OSCILLATING
IN AN INFINITE FLUID

The results presented in Sections 2.2 through 2.9 are applicable to

small-amplitude oscillations; i.e., the cylinder displacement must be much

smaller than a characteristic length, such as cylinder diameter, or the

clearance between the cylinder and its surrounding structures. When the

displacement becomes large, nonlinear effects become important.

The added mass and damping of a circular cylinder were studied

experimentally in detail by Skop et al. (1976). The added mass coefficient Cm
is essentially equal to 1, as predicted by linear theory. For Kc(- 2a/D)

larger than 2.51, the fluid damping contains both linear and velocity-squared

components. The viscous damping coefficient Cv to account for the large

amplitude oscillations is given as follows:

0.5 K K

Cv = Md (L)[ 1 8 + 0.91 R0.5 (KK - 0. 4) H( - 0.4) J,(2.73)v Rk . ( 0.)(j.-

where H is the Heaviside unit step function. Equation 2.73 was determined

from experimental data obtained for 920 < Rk < 2.1 x 104.

For large-amplitude vibrations, the results obtained from the linear

theory are not strictly applicable, and there are very few data available for

large-amplitude oscillations. Fortunately, in most practical applications,

one is more interested in small-amplitude oscillations, since large-amplitude

vibration is not acceptable in general. In addition, linear theory is also

valid to determine the stability-instability boundary.
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2.11 THREE-DIMENSIONAL EFFECT ON A CIRCULAR CYLINDER OSCILLATING IN FLUID

In the analysis presented in Sections 2.2 through 2.10, it has been

assumed that the flow field can be considered as two-dimensional, although the

motion of a cylinder may produce a three-dimensional flow field. To

understand the three-dimensional effect of the flow field on Cm, let us

consider the cylinder given in Fig. 2.3, in which the fluid is a perfect
fluid.

Let the cylinder displacement be u(z,t).

is governed by the Laplace equation

The fluid in the annular region

V2(r,,z,t) - 0,

+ +

U =V

p = -pt

The boundary conditions are

U =0
r

D
at r = ,

2'

(2.75)

au
Ur atcose

D
at r=2.

The transverse load acting on the cylinder is

2n
g = -R f p(r,O,z,t)I

o r=R
cosOdO - (2.76)

A traveling wave solution is sought for the cylinder:

u = a cos~exp[12w(cPt - z)t] , (2.77)

(2.74)

where cp is the phase velocity, is the axial wave length, and a is an

arbitrary constant. Similarly, the potential * may be defined by the
following expression:

* = Fr(r)cos~exp[i2(cpt - z)/R] . (2.78)

Substituting Eq. 2.78 into 2.74 gives the following form of Bessel's equation

and
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d d dF 2

d (r ) 1r [ + -F = 0 . (2.79)
r dr dr r2 2.,

The solution of Eq. 2.79 is

Fr(r) = A1 I1 (R- r) + A2K1 (2w r) (2.80)

Using Eqs. 2.74-2.80, the added mass coefficient Cm can be easily obtained:

irD irD

I(D)Ki ) - (2K.81)

Cm D rD.(2.81)

Ii( -)Ki( )- I1 ( .)K 1 ( D)

When D/9 + 0, from Eq. 2.81, it can be shown that

D2 + D2
C = 0 . (2.82)mID/ 9 +0 D - D2

0

This is consistent with the results given in Eq. 2.58. The values of Cm are

given in Fig. 2.15 for several values of irD/R. Cm decreases with increasing

a. Therefore, the values of Cm calculated based on the two-dimensional theory

is the upper bound for Cm based on the three-dimensional theory. In general,

if R is much larger than D, the two-dimensional theory is applicable. If D is

of the same order as R, three-dimensional effect should be considered.

2.12 A CIRCULAR CYLINDER IN A FINITE-LENGTH ANNULAR VISCOUS REGION

When the length of the annular region is small (see Fig. 2.16; L is the

same order of magnitude as D), the three-dimensional effect becomes

significant. An approximate solution for this case was obtained by Mulcahy

(1980). It is based on the linearized Navier-Stokes equations and the

assumption that the gap clearance is much less than the cylinder radius D/2.

The fluid force acting on the cylinder is given by
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g=-CM -C-
m d at2 vat'

cosh(2z/D )

Cm= D -D)Re(H)[l - cosh(2L/D)'
00

cosh(2z/D )
Cv d(D D- D)wIm(H)[1 - cosh(2L/D )' (2.83)

00

H_= asinha
(2+casinha- 2cosh a)

and

/w(D -D)2
S=(l +i) o .(.4

2 2v (2.84)

The theoretical values of Re(H) and -Im(H) are given in Fig. 2.17. Experi-

mental data are shown to agree well with the theory. The solution is valid

for (D - D)/D << 1 and the viscous penetration depth /w/2v on the order of
1 0
S(D - D).

Note that Eq. 2.84 is applicable for transverse motion within the gap.

The damping associated with the rotational motion is, in general, much smaller

and can be ignored.

2.13 EXAMPLES OF APPLICATIONS

Consider a simply supported tube with a baffle plate at midspan (see

Fig. 2.18). The tube is a stainless tube submerged in water (70F). Tube

properties are given as follows:

Tube OD (D) = 1 in.,

Tube wall thickness = 1/8 in.,

Tube length R = 48 in.,

Baffle-plate-hole diameter (Do) = 1.02 in., and

Baffle plate thickness (2L) = 1.5 in.

We wish to calculate the fluid damping with and without the baffle plate.
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No Baffle Plate

For the case of a tube vibrating in an infinite fluid, the modal damping

ratio attributed to fluid can be calculated from Eq. 2.62:

(2.85)
= - (C ;d )Im(H)

m d

Note that the natural frequency of the fundamental mode is given by

2 0.5

fl 2 C Md + m

and that

E = 30 x 106 lb/in.,

(2.86)

u 4 4 4 4
I - (1.0 - 0.75 )in. = 0.0336 in.

w (2 2 -4 2 2
m = (12 -0.75 )-7.5 x 10 lb-sec /in. = 2.58

Md = x 0.935 x 10 x 1.02 lb-sec2/in. = 0.734

(2.87)

-4 2 2
x 10 lb-sec /in.,

x 10-4 lb-sec in.2

The effect of fluid viscosity on Cm is small; Cm is assumed to be 1.

Substituting these values into Eq. 2.86 yields

Wfl = 236.3 rad/sec

and

2

S= fl = 3 6.3 x12-3.76x104.
4v 4 x 0.00157

From Fig. 2.10, Re(H) = 1 and -Im(H) = 0.0105 . Therefore,

Efl = (.734+2.58) x 0.0105 - 0.116%.

The modal damping attributed to fluid is small.

and
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With Baffle Plate

The equation of motion of the tube is given as follows:

4 2
EI + Cg 6 L- + (m + CmMd) au ,(2.88)

az at

where EI = flexural rigidity, u - tube displacement, t = time, 6 = delta

function, m = tube mass per unit length, and CmMd = added mass per unit

length. The second term is the damping associated with the fluid in the

annular region of the baffle plate; all other damping and excitation forces

are neglected in Eq. 2.88. Since the tube is hinged at both ends, let

u = q(t)sin n . (2.89)

Using Eqs. 2.88 and 2.89 yields

2
+ 2cw Aj m2 =02 fn fndt+ fnq=

dt

n2=2 EI 0.5
Of n 2 Cm + CmMd

(2.90)
C

;fn (m + CMd)Xfwn , n = odd

=0, n=even.

The damping coefficient C is given by

L
Cg = f Cdz , (2.91)

S-L

where CV is given in Eq. 2.83,

cosh(2z/D )

Cv d D D- D)wfnlm(H)[{l- cosh(2L/D)] -(2.92)

Substituting Eq. 2.92 into 2.91 yields



2-44

and

Cg = 2LA(D - D)wn[-Im(H)]

S= 1 - tanh 2L ).
=1- D1

Substituting Eq. 2.93 into 2.90 yields

n = d (dDC- D)[-Im(H)] (m+2CM )t , n -odd
m d

=0 n = even . (2.94)

When n is an odd number, the tube vibrates within the gap (see Fig. 2.19); the

fluid in the annular contributes to damping. When n is even, the tube

vibrates against the baffle plate, the midspan at the baffle plate is a nodal

point, and the damping attributed to the fluid at the baffle plate is zero.

In Eq. 2.94, the function H depends on the oscillation frequency;

therefore, the modal damping for different modes are different. Based on

Eq. 2.94 and Fig. 2.17 the modal damping for the fundamental mode is

calculated as follows:

2 D 2 1 2 x 0.001570.5

D 0 - D w f 0.01 236.3

From Fig. 2.17, -Im(H) = 0.82,

A = 1 - tanh ( )

= 1 - 0.75-tanh (0-75) - 0.397 ,

= 0.365 .

(2.93)

Cfl = 0.397 x 0.734 x 107 4(0.) x 0.82
1.5

(2.58 + 0.734) x 10~4 x 48

= 11.27%

Therefore, the total fluid damping is equal to
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(I) TUBE VIBRATING WITHIN THE GAP
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Fig. 2.19. Different Modes for a Tube with Motion-limiting Gap
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;l = 0.116% + 11.27% = 11.39% .

Results of an experimental study of damping and natural frequency as functions

of tube/tube-support-plate diametral clearance and plate thickness are

reported by Jendrzejczyk (1985). The theoretical values and experimental data

agree reasonably well.

2.14 CLOSING REMARKS

The effect of quiescent fluid on the oscillations of a single cylinder

can be accounted for by using the motion-dependent fluid force given in

Eq. 1.3. In this chapter, the values of added mass and fluid damping are

presented for various cases. Most of these results are given for small

motion; i.e., for small Keulegan-Carpenter parameter Kc, the linearized

equation for the fluid force is applicable. When Kc is large, the linearized

equation is no longer applicable, as illustrated in Section 2.10. In most

applications for quiescent fluid, Kc is small; therefore, the results

presented in this chapter are useful. However, when Kc is large, the

nonlinear effect must be considered. The value of Kc separating the linear

and nonlinear effect based on a single cylinder oscillating in a quiescent

flow is about 2.5 (see Section 2.10). For additional discussions on the

nonlinear effect, an extensive list of publications is available (e.g.,

Keulegan and Carpenter 1958; Sarpkaya and Isaacson 1981).

The effect of fluid on structural oscillation depends of structural

geometries and fluid properties. For small Kc, added mass and fluid damping

depend on fluid compressibility and viscosity.

" Incompressible Inviscid Fluid - The fluid damping is always

zero and added mass is always a positive value.

" Compressible Inviscid Fluid - In a confined region, the energy

cannot be carried away; therefore, there is no radiation

damping. In an unconfined region, fluid damping attributed to

radiation may be important. In a compressible fluid, there

are acoustoelastic modes; thus, the added mass may be positive

or negative.

" Viscous Fluid - Both added mass and fluid damping always

exist. The damping is associated with fluid viscosity in

addition to the radiation damping attributed to fluid

compressibility.

In this chapter, only circular cylinders are considered. The fluid

effects on other structural geometries are similar. In fact, the same method

of solution can be applied to other geometries. In addition, there is an

extensive amount of literature available for other geometries (Muga and Wilson

1970; Blevins 1977).
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3. MULTIPLE CYLINDERS IN QUIESCENT FLUID

3.1 INTRODUCTION

For a single cylinder oscillating in a fluid, frequently a single added

mass and a single viscous damping coefficient are sufficient in characterizing

the effect of fluid on the structural response. However, for a multiple-

cylinder component, the motion of a cylinder excites the surrounding cylinders

through the fluid. Therefore all cylinders are coupled by the fluid. The

fluid dynamic effects on multiple cylinders are much more complex. Lift

forces may be generated that tend to act perpendicularly to the direction of

motion; therefore, fluid inertia and damping forces are no longer necessarily

in line with the direction of motion, and the added mass and fluid damping

become matrices. The parameters affecting the added mass and damping matrices

are the same as those for a single cylinder except that additional parameters

are needed to characterize the cylinder arrangement, such as the pitch to

diameter ratio, P/D.

In addition to nuclear fuel bundles, a range of other structural

components consisting of a group of circular cylinders--such as heat exchanger

tubes, piles, parallel pipelines, bundled transmission lines and rocket

engines--frequently experience flow-induced vibrations. Since 1960, many

investigators have studied the dynamics of various types of structural

components consisting of multiple cylinders. These include two parallel

cylinders (Livesey and Dye 1962; Wilson and Caldwell 1971; Chen 1975a), two

cylinders located concentrically and separated by a fluid (Chen 1972; Cesari

and Curioni 1973; Chen 1974; Chen and Rosenberg 1975), a row of cylinders

(Livesey and Dye 1962; Roberts 1966; Connors 1970), and a group of cylinders

(Laird and Warren 1963; Chen 1968; Shimogo and Inui 1971). Despite the

progress being made on the dynamics of multiple cylinders in a liquid, a

general method of analysis was not available until about 10 years ago. With

the development of an analytical method to acount for the inertia coupling

(Chen 1975b), the dynamics characteristics of multiple cylinders oscillating

in a fluid began to receive more attention. The same method has been used for

a group of cylinders in different flow conditions (Paidoussis et al. 1977;

Paidoussis and Besancon 1981; Chen 1983). In addition, other numerical

methods have been developed for studying the dynamic response of a group of

cylinders (Yang and Moran 1979; Loeber 1984).

In this chapter, the general characteristics of a group of cylinders

oscillating in quiescent fluid are discussed, primarily based on the ideal

fluid. The role of fluid viscosity and compressibility is also considered.

Understanding of the dynamics of multiple cylinders in quiescent fluid is

important for investigations of cylinders in flow.
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3.2 A SIMPLE EXAMPLE--TWO PARALLEL CIRCULAR CYLINDERS OSCILLATING
IN AN INFINITE PERFECT FLUID

3.2.1 Equations of Motion

Two infinitely long parallel circular cylinders with a pitch P, desig-

nated 1 and 2, are immersed in a perfect fluid, as illustrated in Fig. 3.1.

Cylinder motions consist of out-of-plane displacements u1 and u2 along the
x axis and in-plane displacements v1 and v2 along the y axis. The equations

of motion can be written

d2U.

m dt2 + k u. = g.

2
d u

. + Jk .u. = h.,
J dt2 sj j j

(3.1)

j = 1, 2

where m. is the mass per unit length and k is the spring constant of

cylinder j in both directions.

The fluid forces associated with two vibrating cylinders were considered

by Mazur (1966), using a two-dimensional theory (a general method of solution

is given in Section 3.3):

2a2u1 R + R2 2

at2 '( 2 L2

and

g2 = -M2 a 22

2
a u2
2

at

R1 + R 2 2

~ n 2 12

for out-of-plane motion, and

h1 = -Mlall

and

a2

2

2
at

R1 + R 2 2

+ 2 R 12

Rl + R2 2

+ pn ( 2 12

a2

2at

a2

ate

(3.2)

2

at 2

2
at

at

(3.3)

for in-plane motion. M1 and M 2 are the displaced masses of fluid by the two

cylinders, and R1 and R2 are cylinder radii. The added mass coefficients all,

1 = -M1 all

h2 = -M2 a22
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0$

O y2 P 2

Two Parallel Circular Cylinders Vibrating in a FluidFig. 3.1.



3-4

a22 and a1 2 are given by (Mazur 1966):

P - 2P2( + R )
'1 2

+ (R - R )
all

22
RoR2

a coth(na)exp(-2na))

n=1

4R2R2

[2 12
P (R1 + R2 )

P2 R2 R
S = 1 2

a nj 2RR2

P - R2 - R2 2

+ [ 2R1R2 2

1/2

- 1] 1

P2 + R - R2

a1 = 2An{ 2PR

P -R + R2
a2 =1 2

2PR

P2 -R2 22

2PR

+ 2 - R + R2 2

+R[ 2PR2

= 1 +
P2R2P

co exp[-n(a + aI

= n sinh(na)
n=1

4 2 2 2 2 22
P - 2P (R1 + R2) + (R2 - R1 )

2 2
P R2

exp[-n(a + a2
2

n sinh(na)
n=1

4 2 2 2 2 2 2
P -2P(R 1 + R2 ) + (R2 - R1 )

+

a2 2 = 1 +

and

a1 2 = [1

(3.4)

where

and

1/2

-1]/

1/2

- 1] } 0
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values of a1 1 , a1 2 and a2 2 depend on the dimensionless parameters R2/R1

P/R1 .

Substituting Eqs. 3.2 and 3.3 into 3.1 yields

(i 1 + a1M1)
d2

dt2

2
d2u2

(in 2 + a2 2 M 2 ) d 2

dt

R + R2 2

+ pw( 2 a1 2

R + R2 2
+ p( 12 2) a1 2

2d u2-7 +
dt

2
d u1

2+
dt

kslu 1 = 0

(3.5)

ks2 u2 =0

for out-of-plane motion, and

d 2v

(m 1 + a1 1 M1 ) 2
dt

(m 2 + a2 2 M 2 )

2
d v2

dt2

R +R 2

pr( 12 2)a12

Rl + R2 2

p( 2 2) a12

d 2v22

dt2

2
d vl

dt2

+ kslvl = 0

(3.6)

+ks 2v2 =0

for in-plane motion.

3.2.2 Free Vibration

Equations 3.5 and 3.6 can be solved easily. Let

u = Rjijexp(iwt) j = 1, 2

Substituting Eq. 3.7 into Eq. 3.5 yields

(m 1 + a 1 1 M 1 )w
2 

- ksl

+ R 2 2 2

L p ( 2 c 2 

R + R 2 2
1 2 -

2~f ) a w u 0( 2 2-

(m2 + a2 2M 2 )w - k82 u2 0

From Eq. 3.8, the natural frequencies under different situations can be

calculated.

Natural Frequencies in Vacuum

In this case, p = 0; therefore

The

and

(3.7)

(3.8)
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k 0.5

mvj=(m ) , j = 1, 2 . (3.9)

Natural Frequencies of Uncoupled Vibration in Fluid

When only one of the cylinders is movable and all others are held rigid,

the motion of the elastic cylinder is called uncoupled vibration. When

Cylinder 2 is held rigid, the natural frequency of Cylinder 1 is given by

k 0.5

Wf=( +)11M1  . (3.10)

Similarly, the natural frequency of uncoupled vibration for Cylinder 2 is

k 0.5

f2 = + s2 )(3.11)
f2 m2 +22M2

Coupled Vibration in Fluid

For a coupled vibration in fluid (Chen 1975a), from Eq. 3.8, the

frequency equation is

4 -2 -2 2 -2 -2
(1 - S1S2) - (f 1 + Wf2 )W + Wf1(&f2 = 0

R1 + R2 2

and

02 R1 R2  2 a1 2 / (m2 + a22 M2 )

Therefore, the coupled natural frequencies are given by

-22-2 - -2 2 -22 0.5
f2 2(-+f2 fl f2 )102 Wf l f2

Wfl - 2(1 - $162)

and 2 0.5 (3.13)

2 fl f2 fl 2 1 2 flf2
'f2 = 2(1 - )
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The amplitude ratio u1/u2 is given by

-l = f 2 fq

u2 B2wfq
q = 1, 2 . (3.14)

(3.15)

From Eq. 3.12, it is easily shown that if

0102 < 1

the following relations are satisfied:

Wfl < afl Wf 2
and

Wf 2 > of l "f 2*

(3.16)

Equation 3.15 is found to be satisfied in all cases. Thus, the natural

frequencies of the coupled modes may be lower or higher than those of the

uncoupled modes.

When the two cylinders are identical, f 1 = Wf 2 and = 2; therefore

Eqs. 3.13 and 3.14 are reduced to

and

wvl
fl= /1 +

1

Evl
=/1 - S

u1

_ -1
u2U 2

u1

-=I2

u2

(3.17)

Equation 3.17 shows that the natural frequencies of the coupled vibration are

proportional to the natural frequency in vacuum. Equ.'tion 3.17 can also be

written

and

fv l +0.5
Wf- ml + Ml l+ p12)

v 1 0.5

'f2 a 11m11 + M 1( - a1 2 )

(3.18)

0
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For coupled vibration, the added masses given in Eq. 3.18 areM1(a + al2)
and Ml(a - a1 2), respectively. These are called the effective added masses

of coupled modes. They are the eigenvalues of added mass matrix (see Section

3.3 for details).

For two identical cylinders oscillating out of plane, the first mode is

associated with the in-phase motion and the second mode is associated with the

out-of-phase motion. It is straightforward to show that the natural

frequencies of coupled modes for in-plane motion (Eqs. 3.6) are the same as

those of out-of-plane motion. However, the first mode is associated with the

out-of-phase motion and the second mode is associated with the in-phase

motion. These four different modes are given in Fig. 3.2.

3.3 ADDED MASS MATRICES FOR A GROUP OF CYLINDERS OSCILLATING IN A FLUID
BASED ON THE TWO-DIMENSIONAL POTENTIAL FLOW THEORY

3.3.1 Formulation and Solution

Consider a group of N circular cylinders vibrating in a perfect fluid as

shown in Fig. 3.3. The axes of the cylinders are perpendicular to the x-y

plane. Let R. be the radius of cylinder j and (x, ,y) be the local

coordinates associated with cylinder j.

The velocity potential associated with the motion of cylinder j, assuming

all other cylinders are stationary, can be written (Chen 1975b)

n+l
R.

= (---)(a. cos n6. + b. sin nO.) , (3.19)
n=l r n

J

where r. ann 6. are cylindrical coordinates referred to as cylinder j, and a.
J J J

and b. are arbitrary constants to be determined. The total field at a point

in the fluid consists of the partial fields generated by all cylinders, i.e.,

N
0 = 1 0. . (3.20)

j=l j

All 0 can be written in terms of the local coordinates associated with

cylinder k using the following relationships (Chen 1975c):

m
cos n6. m (n + m - 1)!rk

n ( 1 )n ( - n+m cos[mOk - (m + n)4jk] , (3.21)
r. m=0 m!(n - 1)!R.k

and

sin nOi n+l (n + m - 1)!r

n (-l)mnn sin[mek - (m + n)*jk] , (3.22)
rj =0 m!(n - 1)!Rk
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IN-PLANE MOTION

OUT-OF-PHASE MODE

I

IN-PHASE MODE

OUT-OF-PLANE MOTION

Four Normal Modes of Two Identical Cylinders Vibrating
(Chen 1975a)

in a Fluid

to to

Fig. 3.2.

O 0
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where Rik is the distance between the centers of cylinders j and k, and *jk is

the angle between the x axis and the vector from the center of cylinder j to

that of cylinder k. Let the superscript k denote the variable written in

terms of the local coordinates associated with cylinder k. Therefore,

N
k N= + ,"(3.23)

j=l

where denotes the summation for j from 1ito N except j = k. Using Eqs.

3.19, 3.21, and 3.22 gives

k (-1)n(n + m - 1)!Rn+m

n+m k{ajncos[mk - (m + njkI
n=l m=0 m!(n - 1)!Rjk

- bjnsin[mOk - Cm + n)(jk]} . 3.24)

The velocity components of cylinder k in the x and y directions are

auk/at and avk/at, respectively. The fluid velocity component in the r

direction is ur. In terms of the local coordinates of cylinder k,

ul = a0k/ark. (3.25)

At the interface of the cylinders and fluid, the following conditions must be

satisfied:

u4r = (auk/at)cosok + (avk/at)sinok

rk=R(3.26)

k = 1, 2, 3, ... , N

Substituting Eq. 3.25 into 3.26 and using Eqs. 3.23 and 3.24, akn and bkn are

determined as follows:

N au av

akn nt + Ykna

and (3.27)

N au av

bkn = L- (knla( + knat
9=1
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where akn& knL' kn&' and 6knL are solutions of the following equations:

N ce (n + m - 1)! Rn-l Rm+1

-i*k m
=11ak( -+(n+m --1)j =l m=l (n - 1)1C(m - 1)!iR Jk

S{ajmcos[(m + n)$ jk] + 6j msin[(m + n)$I]jk] = 6nlkt

N o (n + m - 1) ! Rn-1i m+i
(-n)6kn + (nm- )!Rk R.1m

j=1 m=1 (n - 1)! (m - 1)IRjk

* {casin[(m + n)ijk] - 6jm cos[(m

N+ * (n +
yknZ j=1 m=1 (n -

+ n)*jk} =

m - 1)IRn-1R +1(.)n-i m i

1)1(m - n)lR

* {Ymcos[(m + n)1p3k] + Smt sin[(m

N (n + m - 1)!Rn-R.+1
(-n) + *( m

j=l m=l (n - 1)!(m - 1)!R(jk

{Yjmtsin[ (m + n)Ijk] - 8jmfcos[ (m +

k, .= 1, 2, 3, ... , N , n = 1, 2, 3, ... ,o

The fluid forces acting on the cylinders can

pressure p:

(3.28)

+ n)Ijk]} = 0

n) *jkl 1= 6nl6 kR '

be calculated from fluid

p = p(3/t) , (3.29)

where p is the fluid density. The two components of fluid force acting on

cylinder j in the x and y directions are g and hj, respectively;

2n

g = -jpi R cos91 d6 ,

0 ri =R

2ir4
h2=nO p R R sing d8O .

h JO r =R i 3

Using Eqs. 3.23, 3.24, 3.27, 3.29, and 3.30 gives

(3.30)

.



g N (R. + R2

2,=2

and

N
h" = -p i

3 R=1

R + R 2

' 2 J

where

4R2

a. = 9 {-a.
= (R + R )2 3L

J
k= =

k=1 n=l

Rkn+ l

(jk (-1)n

n(akncos[(n + 1)4'jk] + 6 kn sin[(n + 1)4jk1 '

4R.2

= 1. 2 { j1L
(R + R )J

N =0

k=l n1=1

Rk n+l

jk

n

9 n(Ykntsin[ (n + 1 )yjk' - Okn cos[(n + 1)i jk])}

2

(4R. 2
(R~ + RL)

(3.32)
k1n=1Rk n+l

k=l n=l jk

n(Yknzcos[(n + 1)4jk] + Sknsin[(n + 1)* jk])l

4R2

(R + RL)

k=1n=1 .k n+

k=l n=l jk

" n(akntsin[(. + 1) jk] - 6knRcos[(n + 1)i jk])}

in which aiR) , , Za and are called added mass coefficients. a , S. ,

Qjj and 1 are self-added mass coefficients that are proportional to the

hydrodynamic force acting on cylinder j due to its own acceleration, while the

others are mutual-added mass coefficients that are proportional to the

hydrodynamic force acting on a cylinder due to the acceleration of another

cylinder.

3-13

2

at2

2
Sau

a t2

av

at2

2
S av

+ *Lat

(3.31)



3-14

3.3.2 Reciprocal Relations

Consider the case where, in a group of N cylinders, cylinder j is moving

with a velocity (auJ /at)eJ, where e is a unit vector, and all other cylinders

are stationary. The mathematical solution for the fluid velocity potential is

given by

4 = J(au /at)J ,

where *. is the solution to

v2+ = 0 , V . -i = 30/an = = jnon js,

(3.34)

V$ -n*= 0 on all S (" A j) ,

(3.33)

and certain infinity conditions, where n is a unit vector normal to the

cylinder surface and S. is the surface of cylinder j. The hydrodynamic force
J d

acting on cylinder Y. in the direction of et, is given by

F = ( JPJ p. n dS t)(32u./3t2 .a

Similarly, consider the case where all cylinders are stationary except

cylinder R moving in the direction of a with a velocity au R/at. The fluid

velocity potential is

= (au /at)4 ,$

where is the solution of the following problem:

D24 = 0 V -i = as /an = 9 *j = n

(3.36)

on 5 ,

(3.37)

V4o .it = 0 on all S (i # )

The hydrodynamic force acting on cylinder j in the direction of e is

F = (I ff
po n dS )(32u /at2) . (3.38)

(3.35)
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Using Eqs. 3.34, 3.35, 3.37, and 3.38 gives

F R = -Y (a 2 u /at 2 ),

a..

JR S !Zan j'

J

y = -p f
S

Note that $ and Z are two harmonic functions. According to Green's theorem,

ff j any o=

0 S0

a+.
- d S

9 an 0

holds for any surface S0 enclosing a region in which NV2 . and V2$ are zero.

Consider the region between the surface Sr enclosing I. S.- and apply Eq. 3.41

to the functions and .

ff
jas n R 'SIf *R n dS. = f I (.anR-

r

Let Sr go to infinity. The integral over Sr must vanish.

I d =

a( .

ere )dSr

Therefore,

*Ran d S
.

J

It follows from Eqs. 3.40 and 3.43 that

Yj R = Yej-

uje1 = u ex and u, = u9 = , (3.45)

then from Eqs. 3.31 and 3.39, Eq. 3.44 is reduced to

a& Tz =0 .

where

F = = -Y (32U /at 2 , (3.39)

n dS . (3.40)

(3.41)

(3.42)

(3.43)

Let

(3.44)

bx b
0

(3.46)
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Similarly, let ujgj and u & be equal to other components of the cylinder

displacements. It is shown that

ag = a and S = Oi. (3.47)

Eqs. 3.46 and 3.47 are the reciprocal relations. Physically, these mean that

the hydrodynamic force acting on cylinder j in the e. direction due to a unit

acceleration of cylinder R in the e direction is equal to the hydrodynamic

force acting on cylinder R in the eR direction due to a unit acceleration of

cylinder j in the e. direction.

The added mass coefficients aj, O , a.,, and r can be combined into a

single added mass matrix ypq, where

1 R +R 2 Ai R +R 2

pit( 2 R)jR ( 2. ) jR

Y = -(3.48)
R. +R 2 I R.+ R 2

, 

.2N 

x 2N pw( 
2 R 

2

for cylinders with different radius, or

[y ] = pR2 [X ] = pR2  (3.49)
pq pq

for cylinders with the same radius.

Since Ypq is symmetric, for a group of N cylinders, there are N(2N + 1)

independent added mass components. It is possible to find a group of 2N

principal axes such that

Ypq= 0  forp#q . (3.50)

Let the eigenvalues and eigenvectors of [Y ] be p and (a } (p = 1, 2, 3,
pq p p

... , 2N), respectively, one has the relation

[Ypq]{ap} = pp{ap} . (3.51)

As an example, consider the case of two cylinders with the same radius

R. Assume that the cylinders are located on the x axis. In this case, it is

found that (Chen 1975a)
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aj0 = = 0 all = a 2 2 = al = 022 9
(3.52)

a1 2 = a2 1 = X12 = ~21 *

Hence, the added mass matrix can be written

[Y 1 = prR2
pq

It is found that the prince al values of the added-mass matrix are

11 = pR2 (a 11 + a1 2)

u3 = pnR 2 (a 1 - a1 2 )

P2 = piR2 (al 1 + a(1 2 )

P4 = pwR2 (al - a1 2 )

Those values can be considered as effective added masses for a group of

cylinders; they agree with the results presented in Section 3.2.

3.3.3 Coordination Transformation

Equations 3.31 show the hydrodynamic forces in the x and yldirection due

to cylinder motion in these directions. The hydrodynamic force? in the other

directions, x' and y', can be calculated as follows (see Fig. 3.4):

u = u'cosi - v sin,

vj = u'sin4i + v'cos,

(3.55)

gJ= g'cos4 - h sin$i

and

hj = gjsin 4 + h'cos ,

where u! and v are displacement components in the x' and y' directions for

cylinder j. Su stituting Eqs. 3.55 into 3.31, one can solve for g' and h'

1 2

01

0

0

0

a1l

a1 2

0
01
a12
a1

(3.53)

(3.54)

-al

12

0

..0
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N

g. = -pi
R=1

N
hl= -pi

i R-1

R + R 2

2

a2u'

2

ate

a v'

at

2
a v'

+ ) ,
at

where

S = 2os2 + sin2 +( + T )sin cos'

Q = a cos2 -2sing + - a )sin4'cos4',

' sin2  +T .cos 2  + ( -a .)sin4'cos4',
= J JaJc a + J

S =a. sin2 + S cos 2 - + T. )sink cos*

(3.57)

Equations 3.57 define the transformation of the hydrodynamic mass

coefficients. Once the hydrodynamic mass coefficients in a coordinate system

are obtained, their values with respect to any other coordinate system can be

calculated. Naturally, the symmetric properties are still preserved; i.e.,

0jR = a , ' = Rj ,
and a' = T ..

J (3.58)

Note that a', 5 ,Q. , and T! vary with 4. It is straightforward to findB'19 JZ JR
the 4, at which these coefficients are maximum or minimum. The axes

corresponding to these are given by

t= an
1 2 O. -

J J

(3.59)for aB or and

2 tan i , B

and (3.56)

and
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for aIR, or tJ. Thus,

tan(24 1 )tan(24 2 ) = 1 . (3.60)

3.3.4 Composite Notion of Cylinder Array

In addition to the individual cylinder motion, the whole array may

respond as a rigid body. This involves translational motions in the x and y

directions and torsional oscillations.

3.3.4.1 Translational Notion

Consider the translational motion in the x and y directions.

composite motion,

and

ui = Ul

vi = U2

For

(3.61)

(i = 1, 2, 3, ... , N)

The resultant force acting on the whole cylinder array can be resolved into

components G and H in the x and y directions:

N
G = f

i=1

(3.62)and

N
H = gi .

i=1

Substituting Eqs. 3.31 into 3.62 and using 3.61 yields

G = -piR2 (a11

and

H = -piR2(a21

where

a2u
a 1

at 2

a u
1

at 2

a 2 u
at

82U

22 at

(3.63)



N N
a =

11 =1 dal

N N
a 2 =

j=1 R=1

N N
a =
21

N N
a =
22 =j=1 L=1

R +R 2

2R 
a.

2R R2

R + R 2

2R ja

R. +R 2

2R j

R. + R 2

2R j

N
R

R=1
N

Since a = 1 ,

a1 2 = a21

The symmetry of the hydrodynamic mass coefficients for composite motion is

similar to that of individual motion. The transformation of the hydrodynamic

mass coefficients is also similar:

all = a1 cos 2 4 + a2 2sin 2 + (a 1 2 +
a2 1 )sin cos4 ,

a' = a21 cos
2 - a2 1sin 2 * + (a 2 2 - a11 )sin cose

a21 = -a1 2sin
2 4, + a2 1 cos 24, + (a22 - a1)sing cos,

a2 = a sin2 , + a2 cos 2 , - (a1 + a2 )sin$ cos22.

(3.66)

3.3.4.2 Rotational Notion

Assume that the cylinder array rotates around the z axis with an angular

velocity . The cylinder accelerations associated with the rotation are as

follows:

3-21

and

(3.64)

(3.65)

and

.
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2au. 
20

at = -r sineat

and (3.67)

a v =. 2

at2 j j at

where rj is the distance from the center of the cylinder to the z axis, and 9

is the angle between the x axis and the position vector rj. The torque is

given by

N
S= [-g.r.sinO. + h.r .cosO.] . (3.68)

j=l 2 2 2 2 2

Substituting Eq. 3.31 into Eq. 3.68 and using Eq. 3.67 yields

42
= -piR4y , (3.69)

at

where

N N R. + R 2

Y=I G( 2 ) (r r ).

j=1t=1 2R

(ajRsinQ sinO - a sinG cosO - T cosO sine

+ 8acose cosGe) . (3.70)

Therefore, pwR4y is the added-mass moment of inertia.

3.3.5 Numerical Examples

A computer program based on the analysis (AMASS; see Appendix D) is

available for calculating added-mass coefficients. The program can be used to

*A generic phrase, "added mass," is used to refer to both hydrodynamic mass

and hydrodynamic moment of inertia.
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calculate all elements of added-mass matrix coefficients for a group of

cylinders in which the cylinders may have different diameters and may be

arranged in an arbitrary pattern.

Added-mass coefficients are in terms of series solutions. A finite

number of undetermined coefficients is determined by inverting the matrix

formed by truncating the infinite sets of Eqs. 3.28. In most practical

applications, only a few terms (say, n = 5) are sufficient to obtain results

with sufficient accuracy.

In many practical applications, cylinder arrays consisting of identical

cylinders are arranged in rectangular or triangular patterns. The self-added-

mass coefficient for the central element is of particular interest. Figure

3.5 shows the values of the coefficient as a function of the pitch-to-diameter

ratio as well as the experimental mass obtained by Moretti and Lowery

(1976). In both cases, all= T = 0. Oll is always equal to all in a

triangular array and 01l is equal to all for P/D = T/D in a rectangular

array. Analytical results and experimental data agree well over the range of

parameters tested.

Figure 3.6 shows a tube array arranged in a hexagonal pattern. The

added-mass coefficients a11 , al' a12 and 012 are computed for three arrays

consisting of 7, 19, and 37 cylinders. Figure 3.7 shows the variation of

these coefficients with P/D. a11 and 011 are equal and approach one as P/D

becomes very large. 012 is not equal to a1 2 and they approach zero as P/D

becomes infinite.

Figure 3.8 shows the upper and lower bounds of the added-mass matrix

[Ypq], p, as a function of P/D. For a group of N cylinders, there are 2N

eigenvalues distributed between the upper and lower bounds. All yp's approach

one as P/D is increased, while the upper bound increases and lower bound

decreases as P/D is reduced.

From Figs. 3.7 and 3.8, it is seen that as the number of cylinders

increases, the absolute values of the added mass coefficients and their

eigenvalues increase. The results for Cylinders 1 and 2 obtained from 19

cylinders and 37 cylinders do not differ significantly. The implication is

that the coupling between a cylinder and other cylinders not immediately

surrounding it can be neglected. For example, in the hexagonal arrangement,

only the effects of the six cylinders surrounding the central cylinder must be

considered if the motion of the central cylinder is of interest.

3.4 DYNAMICS OF A GROUP OF CYLINDERS IN A PERFECT FLUID

3.4.1 Equations of Motion

A cylinder array consisting of N cylinders whose axes are parallel to the

z axis is shown in Fig. 3.9. Let u and uj+N designate the displacement

component of cylinder j in the x and y directions, respectively. The equation
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of motion is

34a 4u
E I

p p 4az

au

sp at p

32
au

at 2
2N

q-l

a2u

YPQ ate2 s (3.71)

The variables with subscript p (or q) from 1 to N are associated with motion

in the x direction and from N + 1 to 2N in the y direction.

The added-mass matrix yPQ developed in Section 3.3 is based on the two-

dimensional flow theory. The vibration of a group of cylinders causes three-

dimensional flow; however, for long cylinders, the two-dimensional theory for

Ypq will provide reasonable accuracy in many practical cases.

The boundary conditions at z = 0 and I must be specified:

For simply-supported cylinders,

z = 0 and R,

2u

az

for fixed-free cylinders,

z = 0 ,

z =L

au
u - - =0 , and
p az

32 33a2 a3

Z2 aZ3

(3.72)

and for fixed-fixed cylinders,

z = 0 and ,
au

p az

where it is the length of the cylinders. Without loss of generality, the
initial state of the cylinders can be assumed as:

up(zt)| It"0= u0 (z)

(3.73)

au (z,t)

at t-o
- v (z).

op
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Equations 3.71 through 3.73 are the complete mathematical statement of the

problem.

3.4.2 Free Vibration

Let

u (z,t) = Iq * (z) , (3.74)

n=1 pnn

where *n(z) is the nth orthonormal function of cylinders in vacuum, i.e.,

If m(z)n(z)dz = Sn . (3.75)
0

Using Eqs. 3.71 through 3.75 yields

[M]{Q} + [c]{Q} + [K]{Q} = {G}

and

{Q}t=0 = {A} , (3.76)

{Qlt=o = {B}

where [M], [C], and [K] are symmetric matrices with elements mpq, cpq, and

knpq and (G}, {A} and {B} are generalized force, initial displacement, and

initial velocity with elements qnp, anp, bnp, in which

mpq = mp6pq +ypq

cpq Csp pq

knpq mp2pn6apq
(3.77)

12.
gnp =jf gp $ndz

0

12.
a p u ondz

and np 0op

b 1 .v $dznpjfoVop nd
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where vpn is the natural frequency of cylinder p of the nth mode in vacuum.

Note that Eqs. 3.76 can be applied to all values of n. For each n there are

2N equations that are coupled. However, there is no coupling among the

equations for different n. This is true for a group of cylinders with the

same type of boundary conditions and of the same length.

For free vibration, neglect the damping and forcing terms and let

{Q} = {Q} exp(ict) . (3.78)

Natural frequencies and mode shapes can be calculated from the undamped

homogeneous equations:

[K]{Q} = w2[M1{Q} . (3.79)

For a given value of n, 2N natural frequencies can be calculated from

Eq. 3.79; these frequencies are denoted by Wfnp (n = 1, 2, ... , =; p = 1, 2,

... , 2N). The mode shape can also be calculated from Eq. 3.79.

Let [E] be the weighted modal matrix formed from the columns of

eigenvectors. It is easily shown that

[ETME] = [I] and [ETKE] = [A] (3.80)

where [I] is an identity matrix and [A] is a diagonal matrix formed from the

eigenvalue fpn*

When all cylinders are identical, and have the same properties in the x

and y directions,

Ovpn =Wvn and mp = m . (3.81)

In this case, Eq. 3.79 can be reduced to

[ypq]{qq} = w2qq)

where (3.82)

-2= 2 2 2
2 = ~wyn- w2)/w2

Equation 3.82 is identical to Eq. 3.51; i.e., the eigenvectors of the added

mass matrix are the same as the mode shapes of the coupled modes and the

eigenvalues of the added-mass matrix are related to the natural frequencies of

coupled modes. Corresponding to each eigenvalue's zp, the natural frequency
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of the coupled mode is

Wfpn = [mI(m + pp)]0.5W . (3.83)

Equation 3.83 shows that the natural frequency of the coupled moae is reduced

in proportion to [m/(m + p 10.5. This is similar to that for a single

structure in a liquid; therefore, y, is the effective added mass. The role of

up for a group of cylinders is the same as ma for an isolated cylinder.

In the case of a group of N identical cylinders, there are 2N natural

frequencies corresponding to a single frequency for a solitary cylinder.

These 2N frequencies are distributed near the frequency of a solitary

cylinder. More precisely, the distribution of the natural frequencies of a

group of cylinders in liquid can be presented in Fig. 3.10 for a group of

simply supported cylinders. wfn (n = 1, 2, ... , co) are the natural

frequencies of a solitary cylinder in an infinite fluid. Note that

0.5
= m ) .(3.84)f m +M d vn

Corresponding to each wfn, there is a frequency band with the lower and upper

bounding frequencies fn and 4n, which are given by

m + M 0.5

w =n(m + d fn and
p1max

(3.85)

u m + Md 0.5

wfn m+ d) fn

ypj and uI denote the maximum and minimum values of the effective added

masses. The natural frequencies of the coupled modes are distributed in

the frequency band from 4 n to wfn'

The mode shapes associated with each natural frequency are, of course,

different. For example, consider a group of cylinders simply supported at

both ends. The axial variations of the motion are shown in Fig. 3.10. In the

nth frequency band, the mode shapes associated with the axial variations are

the same as the nth mode of a solitary cylinder.

Corresponding to each coupled mode, the cylinders are moving in different

directions. For example, consider the following numerical examples: steel

tubes whose outside radius is 1.27 cm, wall thickness 0.156 cm, and length
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1.27 m and simply supported at both ends (Chen 1975b). In each group of tubes

under consideration it is assumed that all tubes are identical. Figure 3.11

shows the normal modes in water of two groups of cylinders consisting of three

and four cylinders for n = 1 when P/D - 1.05, and T/D = 1.075. For each n,

there are 2N normal modes for a group of N cylinders. Figure 3.12 shows the

frequencies of three tubes as a function of P/D. As the spacing decreases,

the natural frequencies of lower modes decreases while those of the higher

modes increase. When the spacing increases, all frequencies approach that of

a solitary tube in an infinite fluid. Note that there are two repeated

frequencies in Fig. 3.12. Corresponding to the second and third frequencies,

there are two modes. The modes presented in the figure are orthogonal to each

other. However, this set is not the only set of solutions for repeated

frequencies; a linear combination of the two modes of the set also satisfies

the conditions of orthogonality.

3.4.3 Forced Vibration

The response to an excitation can be calculated from Eqs. 3.76. For many

practical situations, the damping matrix [C] can be assumed to be proportional

to the stiffness matrix [K]. In this case, Eq. 3.76 can be reduced to a set

of 2N uncoupled modal equations by letting

{Q} = [E]{W} (3.86)

and premultiplying Eq. 3.76 by the transpose [E]T, the result being

[ETME]{W} [E CE] {W} + [E KE]{W} = [ET]{G} (3.87)

Based on the results given in Eq. 3.80, the square matrices on the left side

are diagonal matrices. Thus, each equation reduces to that of a single

oscillator and has the form

2N
t' + 2C w w +wo w = e g , (3.88)
pn fpnfpn pn fpn pn=ql pqn qn

where ;fpn is the modal damping ratio of coupled modes in fluid. Equation

3.88 is easily solved and the displacement and other qualities of interest can

be calculated from Eq. 3.74.

If [C] is not proportional to the stiffness matrix, a damped vibration

mode superposition method, as shown in Appendix A, can be used.

Figure 3.13 shows the response of seven tubes subjected to two step loads

with the same magnitude--one applied to Tube 2 in the x direction and the
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other applied to Tube 1 in the opposite direction (Chen 1977). The magnifica-

tion factor is defined as the ratio of the displacement at midspan to that of

the deflection of Tube 2 in the x direction to a static load of the same

magnitude. Because of symmetry, Tubes 1, 2, and 5 respond in the x direction

only and the displacements of Tubes 6 and 7 are the same as those of Tubes 4

and 3 except that they are oscillating in the opposite direction.

Figure 3.14 shows the response of a row of five tubes to a sinusoidal

excitation to Tube 5 in the y direction (Chen and Jendrzejczyk 1978). In this

case, in the first frequency band there are 10 coupled modes. However, the

x direction motion and y direction motion are uncoupled. When Tube 5 is

subjected to an excitation in the y direction, all tubes respond in the y

direction only. The tube accelerations given in Fig. 3.14 are in the y

direction and there are five resonant peaks. The theoretical results and

experimental data agree very well.

3.5 NATURAL FREQUENCIES OF A GROUP OF IDENTICAL CONTINUOUS
CYLINDERS VIBRATING IN A FLUID

3.5.1 Natural Frequencies of a Cylinder on Multiple Supports with Equal Spans

Several methods of analysis can be used to study the frequency of

continuous cylinders: the finite-element method, the transfer-matrix

technique, the Rayleigh-Ritz procedure, the wave-propagation approach, the

iterative procedure, and the conventional method of solving the equation of

motion directly. In this section, the frequencies of multispan cylinders are

obtained using the dynamic three-moment equation, which has several advantages

over the other methods.

Consider a continuous cylinder, as shown in Fig. 3.15. The intermediate

supports are assumed to prevent vertical deflection. The bending moment at

the a support is denoted by Ma. The dynamic three-moment equation, which can

be derived using the equation of motion and boundary conditions, relates the

bending moments at three supports of any two consecutive spans. In an

infinite periodically supported cylinder, the bending moment Ma at the a

support is related to the moment at the preceding support a-l by

M = M exp(iv ) , (3.89)

where vc is a dimensionless propagation constant (Gupta 1970). The real part

Re(vc) represents the phase difference between moments at adjacent supports,

and the imaginary part Im(vc) represents the exponential decay rate of the

bending wave as it propagates from one support to the next. The propagation

constant Vc depends on the frequency parameter X and the dimensionless axial

tension t, which are related to natural frequency and axial tension of the

cylinder by
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Fig. 3.15. A Continuous Cylinder with Intermediate Supports
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1/2

fv C tR2 Cm

and (3.90)

T2
T El

Figure 3.16 shows values of vc for T = 0 and 4. When Im(vc) is zero, bending

waves can propagate without attenuation; these regions are called propagation

bands. When Im(v ) is not zero, bending waves cannot propagate without

attenuation; these regions are called stop bands. There exist alternate bands

of free propagation and attenuation.

In a finite structure, natural frequencies are in the propagation

bands. In calculating the frequency, only the real part of Vc is of interest;

Re(vc) is zero or it in the stop band, and is between 0 and 'n in the

propagation band. Values of pc c = IRe(vc)I/i) are given in Fig. 3.17 for

the first and second propagation bands and for various values of T.

The pc-A curves are used to find the frequency of a finite structure.

Consider a K span periodically supported beam. At the two extreme ends, the

supports may be hinged/hinged, hinged/clamped or clamped/clamped. Use of the

theory of determinants (Chen 1975d), or the concept of wave propagation (Gupta

1970), yields an extremely simple graphical method to calculate the

frequency. The procedure is summarized as follows:

" For a continuous beam with K spans and hinged at two extreme ends,

divide the ordinate over the range 0 to 1 into K equal parts, and draw

horizontal lines separating the parts. The projections on the abscissa (A

axis) of the points of intersection of the pc-A curve and horizontal lines

corresponding to a = 1, 2, ... , K (odd-numbered propagation bands) or a = 0,

1, 2, ... , K-1 (even-numbered propagation bands) will give the frequency

factors.

" For a continuous beam with K spans and hinged at one extreme end and

clamped at the other, divide the ordinate over the range 0 to 1 into 2K equal

parts, and draw horizontal lines separating the parts. The projections on the

abscissa of the points of intersection of the pc-A curve and the horizontal

lines corresponding to a = 1, 3, 5, ... , 2K-1 will give the frequency factors.

" For a continuous beam with K spans and clamped at two extreme ends,

divide the ordinate over the range 0 to 1 into K equal parts, and draw

horizontal lines separating the parts. The projections on the abscissa of the

points of intersection of the pc-A curve and horizontal lines corresponding to
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a = 0, 1, 2, ... , K-1 (odd-numbered bands) or a = 1, 2, 3, ... , K (even-

numbered propagation bands) give the frequency factors.

Figure 3.18 illustrates the graphical method used to find the frequency

factors for a four-span beam hinged at the two extreme ends. Having the

frequency factor Xna, the frequency can be calculated by substiuting Xa in

Eq. 3.90 for X.

Based on these results, we can summarize the natural frequencies of a

cylinder as follows:

" For a single-span cylinder, the natural frequencies are

_ 1 I1/2

f =1 ( ) Y_ ) , n = 1, 2, 3, ... , (3.91)

where the Xn's are given in Appendix D.

" For a periodically supported single cylinder, the natural frequencies

are

a 1/2

vna 2w 2 '

n = 1, 2, 3, ... , C (3.92)

and

a= 1, 2, ... , K.

3.5.2 Natural Frequencies of an Array of Cylinders on Multiple Supports in
Fluid

The natural frequencies of coupled modes are presented in Section 3.4.2

for single-span cylinders. The same method can be applied to multispan

cylinders. This can be demonstrated using Eq. 3.74. If *n(z) is taken to be

the nth orthonormal function of the multispan cylinders, the results obtained

for multispan cylinders will be similar to that for single-span cylinders.

More specifically, if one follows through the same type of analysis for

periodically supported cylinder arrays, it can be shown that the natural

frequencies of coupled modes can be calculated as follows:

" Natural Frequencies of Periodically Supported Cylinder in Vacuum -

Using the method given in Section 3.5.1 or other techniques, one can find the
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natural frequency of a periodically supported cylinder in vacuum Wvna, where n

(= 1, 2, ... , w) denotes the nth propagation band and a (= 1, 2, ... , K)

denote the ath frequency in the nth band.

" Eigenvalues of the Added Mass Matrix - Since the added mass matrix is

symmetric for a group of N cylinders, there are 2N eigenvalues which are

denoted by up, p = 1, 2, ... , 2N.

" Natural Frequencies of Periodically Supported Cylinder Arrays - The

natural frequencies of a continuous cylinder array are then given by wf p:

f
f - vncz .

fpna -= 0.5

(1 + )

n = 1, 2, ... , w (3.93)

a = 1, 2, ... , K , and

p = 1, 2, ... , 2N

It is seen that from Eq. 3.93 that corresponding to a single frequency for a

solitary cylinder with a single span, there are 2KN natural frequencies of

coupled modes for a group of N cylinders with K spans vibrating in a liquid.

Then, it is not difficult to imagine that in many cases a multispan cylinder

array will respond like anything but a narrow band filter.

3.6 TWO COAXIAL CYLINDERS COUPLED BY A PERFECT FLUID

The coupled vibration of multiple cylinders has been studied based on the

two-dimensional flow theory. In this section, the three-dimensional effect is

considered.

3.6.1 Statement of the Problem

Consider a fluid/structural system that consists of a cylindrical rod and

a cylindrical shell located concentrically (Chen 1972). The annular region is

filled with incompressible frictionless fluid (see Fig. 3.19). The rod radius

is RI and the inside radius of the shell is R2. The rod and shell have the

same length, R, which is much larger than R2. The beam-like vibration is

studied: i.e., the rod and the outer shell are considered as Euler-Bernoulli

beams.

The governing equations of motion are
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4 2
24u a8u

E I 4 + m 82 jaz S t2 g
and

(3.94)

j = 1, 2,

where E I is the flexural rigidity, u is the transverse displacement, z is
the axial coordinate, t is the time, m. is the mass per unit length, and g is

the resultant force per unit length of fluid acting on the structures. As an

example, simply supported conditions are considered; thus

a u

u. = = 0
az2

at x = 0, !L,

The force gj is attributed to fluid motion; therefore, the motion of

fluid in the annular region must be studied. The fluid motion is governed by

Eq. 2.74. The fluid boundaries are the rod surface and shell inner surface;

thus

aUr ~ at Cosa

u 2
Ur ~ at Cosa

at r = R1 ,

at r = R2 .

and

(3.96)

At the two ends, either fluid pressure or fluid velocity has

specified. As an example, the ends are taken to be stationary; thus

at x = 0 and L.

to be

(3.97)

Finally, the forces component g1 and g2 are given by

2n
g1 (z,t) = -R1 I

0

2w

g2 (z,t) = R2 J
0

p(z,r,O,t) frRcos d8

p(z,r,Ot)fcosO d.

r=R2 
o d

j = 1, 2 . (3.95)

uz = 0

and (3.98)
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3.6.2 Frequency Equation

For free vibration, let

uj(zt) :- *1(z)exp(iwt) and

(3.99)
g(z,t) = TiY(z)exp(iwt) .

Substituting Eqs. 3.99 into Eqs. 3.94 and 3.95,

d4
E.I - m w2. = 'V.(z) and

dz

(3.100)
2

d 4.
4. = 2 =0 at z=0and R

3 dz2

O (z) are modal functions of the rod and shell with fluid coupling. In

general they are different from those without fluid coupling. In this

analysis, 4'(z) are represented in the series form as superposition of the

uncoupled rod and shell modal function; i.e.,

(z) = a. * (z) . (3.101)
n=1 jnjn

Here, *jn(z)'s are orthonormal modal functions of the rod and shell in vacuum;

i.e.,

2
d.2

E.I. d-n = 2m . and

i J dz 4  j vjn jn

(3.102)

1 R

0 jn jmdz = 6nm

Next, consider the fluid field. The solution of the Laplace equation is

taken as

* = Fr(r)F 0 (O)Fz(z)exp(iwt) , (3.103)

where Fr r), F0(G), and Fz(z) are solutions of the following equations
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Fr(r) = A In(kr) + A2Kn(kr) ,

F0 (9) = B sin(nO) + B2cos(n6) and

Fz(z) = C1sin(kz) + C2cos(kz) ,

where n, k, A1 , A2 , B1 , B2, C1 and C2.are to be determined.

To satisfy Eq. 3.97,

C1 = 0 k = m = 0, 1, 3, ... , 0c

Introducing the axial modal function for the fluid 4m(z), such that

1 2f i (z)dz = 1 , m = 0, 1, ... , to
S0m

for the present case, we have

m = 0 , m(Z) = 1 ,

m ) 1 , 4m(z) = I5 cos(k z)
m m

k =m.
m R

Therefore, Eq. 3.103 can be written as

* = D 4 (z)F (r)F (9)exp(iwt) .
m=0 m m r 0

To satisfy Eq. 3.96,

B1 = 0

n = 1 ,

0

Dm4m(z)F'(R ) - iW (z),

m=0 j j
j - 1, 2 .

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)
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The prime denotes differentiation with respect to r. From Eqs. 3.104, 3.108,

and 3.109, 0 can be written as

0

* = 1 [G I (k r) + H K (k r)]$ (z)cosO exp(iwt)
- ml1 m ml m m

where Gn and Hn are determined from the following equations:

nn
G I'(k R) + H K(kR) =iw T. a
ml m j ml m j n=l jmn jn

and

(3.110)

(3.111)

Tjmn = R f 0 4*m(z) jn (z)dz

The fluid pressure is obtained from Eqs. 2.74 and 3.108:

0

p = -ipw 2 {[G I (k r) + H K (k r)]$ (z)}cosA exp(iwt)

Substituting Eq. 3.112 into 3.98 yields

(3.112)

and

i(z) = pnw 2 {[am
ma0
0

2(z) = pwR2w
2

L {[T
m=O

Sal + m Y2mnan]$ (z)}
n=1 mn=1

Go 0

n lmna2n m nY2mna2ni n(z)}
n=l n=l

where

m = [-1I1(kmR1)K (kmR2 )

am = [-Ii(kmR )K (kmR )

Tm = [-Ii(kmR2 )K1 (kmR2 )

Tm=[-I 1(kmR2 )K{(kmRl)
and

Am = I(kmR )K (k R2) -

+ Ii(kmR2)K1 (kmRi)]/Am

+ I1 (kmR1 )K{(kmR)]/Am

+ 1 (kmR2)Kj(kmR2)]/Am

+ I(kmR)K(kmR
2)]/A

(3.113)

(3.114)
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With Eqs. 3.102, subsitution of Eqs. 3.113 into Eqs. 3.100 gives

n=1

pw2
2 pni

S2)alnln(z) =
1

m2 n 1 a
Jo= m n=1 ln

+ m 2mna2nln(z)}
n=1

2
pawR

w2)a2n 
2nz)=m 

2 2

2
m Ylmna1n

n=1

+~m n Y2mna2nI$2n(z)}
n=1

Multiplying the first equation by 4im(z) and the second equation by *2m(z) in

Eq. 3.115 and integrating with respect to z from 0 to R yields

2 2
v [(in )s1 p R1 0 Y1 nYn]an

n= 12 )nm 1 ml 0 n linan
2

~ m R Y2Zn T Yna2n= 0n=1 2 R=0

(3.116)and

m R :12 nTLYltnaln +
2 n=1 2 =0

2 2
rov2n -Wo

n=1 2 )nm

2
pirR2 1
m y Tl ]an =0.m R2X=0l n z 2Ltn 2n

Equations 3.116 consist of an infinite number of ordinary equations.

only a finite number of equations are taken in any particular case,

to the desired accuracy.

However,

according

In this example, the boundary conditions of the two cylinders are

identical and the two cylinders are of the same length. Therefore, the

natural modes of uncoupled vibration are also identical. However, once the

two cylinders are coupled by the.fluid, the natural modes of coupled vibration

are not the same as the natural modes of uncoupled vibration. In other words,

the natural frequency and natural modes cannot be predicted using the simple

and

(n v2n -

(3.115)

Jo



3-53

factor of added mass. Because the mode shapes depend on fluid coupling, the

concept of added mass is not as useful as in the case where the natural modes

do not change with fluid coupling.

For a general case in which the cylinders may be of different length, the

natural modes of coupled vibration are not the same as the uncoupled

vibration. Only under special conditions will the mode shapes of coupled and

uncoupled vibration be identical. Two conditions must be satisfied:

" The natural modes of uncoupled vibration of the cylinders are

identical.

* The modal function of the fluid Im(z) is the same as the modal

function of the cylinders *j(z).

If these two conditions are satisfied, Eq. 3.116 can be reduced to m sets of

equations, each set containing two equations and no coupling among different

sets of equations.

From Eqs. 3.116, the frequency equation can be written

F(w, Avln ',v2nmi,m2 ,R1,R2 ,Li p) = 0 . (3.117)

As an example, consider two simply supported cylinders:

2
pwR1

= 0.5

2
prR2

= 1.0
m2

R2/R1 = 2 (3.118)

R/R2 = 10 , and

E2 I in1
E221
E I =

With these nondimensional parameters, the dimensionless frequencies (A) of

coupled modes can be calculated:

L 0.5 2

= ( ) . w 2 .(3.119)
1 1
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The frequency equation is solved numerically. Table 3.1 shows the values of A

obtained from the frequency equation for various approximations in which n

terms are included for an n-mode approximation. For an n mode approximation,

the frequency equation is a polynomial equation of 2n order; therefore, 2n

frequencies can be obtained. From Table 3.1, it is seen that the rate of

convergence is fast. In general, if n frequencies are of interest, an

(n + 1)-mode approximation will yield results with sufficient accuracy. In

particular, if only the fundamental frequency is needed, a two-mode

approximation will be acceptable.

Figure 3.20 shows the first five frequencies as function of the uncoupled

frequency ratio E2I2m1 /E1 I1 m2. The mode shapes for five frequencies at

E2 Ilm1 /E1 I1 m2 = 2, those circled on Fig. 3.20, are shown in Fig. 3.21. There

exist in-phase and out-of-phase modes. When the motions of the two cylinders

are out of phase, the fluid in between has to be displaced; thus, the fluid

inertia's effect is very large. On the other hand, when the two structures

are in phase, the coupling effect of the fluid inertia is reduced.

3.7 TWO COAXIAL CIRCULAR CYLINDERS SEPARATED BY VISCOUS FLUID

3.7.1 Added Mass and Fluid Damping Matrices

Consider the same problem as that given in Fig. 3.19 with the following

two exceptions:

" The cylinder is infinitely long and the two-dimensional flow

theory is applicable.

" The fluid is a viscous fluid.

For small amplitude oscillations, the equations of motion of the fluid are the

same as those given in Section 2.6. The fluid forces acting on the two

cylinders can be analyzed using the same techniques as those given in Section

2.6. The fluid forces acting on the two cylinders are obtained as follows

(Yeh and Chen 1978):

2 _- a2uk auk

j 1 ajkt2 + 'k at '
k=1 at

jk = pfR RkRe(ajk) ,

k = p1RJRkwIm(-ajk)

al1 = -(1 + 2b) ,1 (3.120)



3-55

Table 3.1. Frequencies Obtained from Various Approximations

Approximations

Frequencies One-mode Two-mode Three-mode Four-mode Five-mode

A1  7.364 7.052 7.052 7.044 7.044

A 2  14.443 14.023 14.023 14.012 14.012

A3  30.581 28.933 28.933 28.872

A4  59.178 56.762 56.760 56.660

A5 71.194 67.345 67.345

A6  136.201 128.620 124.072

A7  130.684 129.962

X8  248.020 210.160

19 236.188

'10 397.176
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a1 2 = a21 = 2yb = -y(1 + all) ,

a2 2 = 1 - 2y2a = 1 + Y (1 + a11 )

b = (-i /v) 0 . 5 R,

Y = Rl/R2

and

1

0
b = - 2

0

1

1

2

2

F1(b )

YF (b 2 )

b1F0(b1 )

b1F (b2)

G1(bl) 1

1fGl(b2) 2

b1G0 (b1 ) 0

b1Go(b2) 0

where Fn and Gn are the nth-order Bessel functions. They can be either the

first- and second-kind Bessel functions, Jn and Y , or the Hankel functions,

H(1) and (2). The selection of the functions mainly depends on computational

considerations.

The coefficients aij and ~ depend on the Rk(= 4wr2/v) and y in a very

complicated way. Approximate solutions can be obtained in special cases:

Viscous fluid and very large radius ratio (e.g., y < 0.1, Rk > 1):

For y + 0 and 1b21 >1,

al1  1 - 4Hf2) (b1)/b1 H 2)(b1 )

Furthermore, if 1b1  >> 1

1

(3.121)

(3.122)

(3.120)

(Contd.)

1

1

2

2

F1(b )

YF1 (b2 )

b1 Fo(b1 )

b1 Fo(b 2 )

G1 (b )

YG l(b2

b1G (b1 )
b1G0(b2 )
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Viscous fluid and large value of Rk (e.g., k > 104):

al = -1 + {[16b2 - (73 - 578y + 9y2)/8]sin(gbl)

- 2b1(1 - Y)(16 + 1y)cos(sb1 )}

+ {(1 - Y2)[8bi - (9 + 30y + 9y2)/16]sin(Sb1 )

+ b1(1 + y)(1 + 14y + y2)cos(gb1 ) - 32b1vy}

and

S = (1 - y)/y .

Rk >> 1 and WRk << 1:

al1 = -31/a 3 Rk .

Rk 1 and moderate gap (e.g., B > 0.01 and Rk > 104)

b1 (1 + Y2)sin(ab1 ) - 2(2 - y + Y2)cos(Sb ) + 46y

a11 = b1(1 - y2 )sin( b1 ) + 2y(1 + y)cos(Sb1 ) - 46y

Rk 1 and 2k >> 1 (e.g., Rk > 104, and gBk > 104)

al = [b 1(1 + Y2) - i2(2 - y + Y2)]/[b1 (1 - y2) + i2y(1 + y)].

Rk > 11,a k 1 and << 1 (e.g., Rk > 107, 2Rk > 104

end B < 0.05):

1+2

a11  2
1 - Y

2/2 
8/2).

Sk Rk

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

.0
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v +0, Rk * *

2
a1  = 1 + Y(3.128)

Although the general form of ajk is very complicated, many practical

applications belong to one of the special cases (Eqs. 3.121 through 3.128)

discussed above. Because the typical value of Rk is usually larger than 104,

Eqs. 3.125 and 3.126 are often used.

It is noted that Eqs. 3.121 is the same as that in Eq. 2.59 and Eq. 3.123

is slightly different from Eq. 2.60; the latter is not accurate for 0 + 0.

However, for most applications, both equations given practically the same

results.

Equation 3.120 shows that the added-mass matrix ajk and fluid-damping

matrix ajk are symmetric because a1 2 = a21 . This result is similar to those

of an ideal fluid. Physically, these mean the hydrodynamic force acting on

cylinder j in the e. direction due to a unit acceleration (velocity) of

cylinder k in the ek direction is equal to the hydrodynamic force acting on

the cylinder k in the ek direction due to a unit acceleration (velocity) of

cylinder j in the ej direction. Thus, the rec)Lprocal relations are valid for

both perfect and viscous fluids.

3.7.2 Vibration of Two Coaxial Tubes

The equations of motion for two tubes coupled by viscous fluid are

a u au. 2 C auk 2 , uk 32u
E.l + C . +a + j 2 +m 2 =g ,(3.129)

Saz4 k=1 =jk 1 kl ak at2  j at2

j = 1, 2 .

The method of analysis presented in Section 3.4 can be used for this case.

Equation 3.129 can be reduced to

[M]{Q} + [C]{Q} + [K]{Q} = {G} , (3.130)

where
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mjk m Sjk +jk

cjk = csj6jk + jk

knjk = mJ vjn jk , and

gn =-j g * dz.gnp = R 0gap nd

Note that the matrices [M], [C], and [K] are symmetric because ajk and 01k are

symmetric.

For free vibration, the natural frequencies, modal damping ratio and mode

shapes can be calculated in a straightforward manner based on Eq. 3.130. For

forced vibration, depending on the damping matrix, different methods can be

used.

If the damping matrix [C] is proportional to the stiffness matrix [K] or

the mass matrix [M], the procedure given in Section 3.4.3 can be used.

However, if the damping matrix [C] is proportional to neither [K] nor [M], the

procedure given in Appendix A can be used.

For specific numerical examples, consider two concentric steel circular

cylindrical tubes separated by water at room temperature. The dimensional

valus are shown in Table 3.2. The fluid gap, a = (R2 - R1 )/R1, is varied from

0.01 to 10. The tubes are assumed to be simply supported at both ends.

Calculations are performed both with and without structural damping. The

frequencies of the system depend on the axial mode number n. Unless

specified, only the data associated with the lowest axial mode number (ie..,

n = 1) are given.

For comparison, calculations are included for several related cases:

1 - inner tube in vacuo; 2 - outer tube in vacuo; 3 - an uncoupled tube system

with rigid outer tube; 4 - an uncoupled tube system with rigid inner tube; and

5 - a coupled cylindrical tube system.

Both the exact and approximate methods are used in calculations. It is

found that the results obtained by these methods are practically identical

except at the very small fluid gap region where the fluid viscosity effect and

so the fluid damping are very large. For most practical applications, the

approximate solution is as good as the exact one. Fig. 3.22 shows the system

natural frequency as a function of fluid gap for cvl = ;v2 = 0.

The lower natural frequency is associated with the mode in which two

tubes move out-of-phase, while the higher frequency is associated with the in-

phase mode. The frequencies of the uncoupled modes (indicated by cases 3 and

4) are always in between those of the coupled modes (case 5). The out-of-
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Table 3.2. Dimensional Values of the Numerical Examples for
Two Coaxial Tubes

Parameter Value

Inner interface radius

Wall thickness to tube radius ratios
Inner tube
Outer tube

Steel mass density

Young's modulus

Rod length

Structural modal damping ratio (4s),
two cases

Water density (p)

Kinematic viscosity of water (v)

Fluid gap, $ = (R2 - R1)/R1

End condition

R1 = 5 cm

0.125
0.10

p = P2 = 7.47 x 103 kg/m3

E1 _E 2 = 1.93 x 10 1 1 Pa

I=150 cm

vl = rv2 = 0.01

Cvl = v2 = 0

1 x 103 kg/m3

1 x 10-6 m2/s

0.01 < a <10

Simple-simple
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phase natural frequency is lower than either of the coupled modes; while the

in-phase natural frequency is always higher than either of the uncoupled

modes. This is similar to the results for two tubes in an ideal fluid (see

Section 3.2).

As the fluid gap, S, increases, the effect of the existence of fluid

decreases. Also the natural frequency of the out-of-phase mode approaches

that of the uncoupled mode of a tube in an infinite fluid, and the frequency

of the in-phase mode approaches that of the uncoupled mode of a tube

containing a fluid.

As expected the fluid affects significantly both the out-of-phase modal

frequency and the uncoupled modal frequencies as the fluid gap decreases.

However, the in-phase modal frequency is practically unchanged as the fluid

gap decreases.

Figures 3.23(a) and (b) show the system damping ratios as a function of

fluid gap for cvl =v2 = 0.01 and cvl = 4v2 = 0 respectively. Except for the

in-phase mode, the annulus fluid contributes significant damping to the system

for all the cases especially at small fluid gaps. The in-phase modal damping

ratio is not shown in Fig. 3.23 because it is too small. When Cvl = v2 = 0,

the modal damping ratios for coupled modes are higher (out-of-phase mode) or

lower (in-phase mode) than either of the uncoupled modes. Usually the system

damping ratio due to the fluid viscosity decreases as fluid gap increases as

shown in Fig. 3.23(b). It is also interesting to point out that the total

system damping ratio f 1 has a local minimum as Fig. 3.23 shows.

Figure 3.24 shows the effect of scale model on the system properties.

For comparison, the data for a four-time scale and for potential flow solution

are also included. The potential flow solution can be interpreted as that of

an infinite-time scale model. Figure 3.24 shows that the natural frequency

ratios (or added mass effect) are practically independent of the modal

scale. However, the modal damping ratios are significantly different. This

is because the fluid viscosity, v or the kinetic Reynolds number, Rk, has a

small effect on ig and has a large effect on ajj. The change of natural

frequency is due to fluid inertia effect while the increase in damping is

mainly attributed to fluid drag. The total system damping ratio consists of

structural and fluid damping. Usually structural damping will decrease and

fluid damping will increase as fluid gap decreases. Therefore the value of

gfj could be an increasing function or a decreasing function of the gap

depending on the values of structural damping and fluid damping.

Except for the potential flow solution in which the damping ratio always

decreases as the gap decreases, all other cases in Fig. 3.24(b) show that

there are local minimum values of damping ratio at some values of 1. This

behavior of minimum damping ratio seems to disappear as the modal scale

decreases.
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3.8 ADDED MASS AND DAMPING OF AN ARRAY OF CYLINDERS IN A COMPRESSIBLE
INVISCID FLUID

Consider a group of N circular cylinders vibrating in a compressible

inviscid fluid as shown in Fig. 3.3 (Lin and Chen 1981). The two-dimensional

flow field associated with the motion of the cylinders can be solved using a

similar procedure as given in Section 3.3.1.

The velocity potential of disturbances caused by the cylinders is

composed of the partial fields due to the oscillation of each cylinder, namely

N

j=l 3

(1)
N0 (r , 9,t) = (a. cos n 1 + b. sin nO.)Hn ( cKr )exp(-iot)

n=0

(3. 131)

in which 141 (KrGj) is the Hankel function of the first kind of order n with

argument Kr.(K = w/c). This form of solution satisfies the radiation condi-

tion and includes all possible radiation and scattering of the acoustic fields

generated by the oscillating cylinders.

With reference to Fig. 3.3, for a field point p the following relations

between angles are established:

X= n k + 4jk (3.132)

If point p is at the circumference of cylinder j, then Rjk will be always

greater than r and 0 < lxi i/2. According to Graf's formula (Watson 1944),

the addition theorem for cylinder functions is

C (Kr )exp(inX) = c (KR .)J (Kr )exp(ima)
n k m n+m kj m k

(3.133)

where C denotes J, Y, H() and H( and K is any complex number.
the expressions for a and X into Eq. 1.133, we obtain

cos nO J cos[mO

Cn(KYk) = Cn+m (KR J.k)J (Kr.)

sin n k sin[m9.
J

The velocity components of cylinder j in the

-wujexp(-iwt) and -iw.exp(-iit), respectively,

displacement amplitudes. The corresponding boundary

are

- (m+n)41jkJ

- (m+n)*jkI

Substituting

(3(1) n

(3. 134)

x and y directions are

where U. and v. are
J J

conditions at cylinder j

Cl = 6j - j k ,
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(3.135)= -iw(u cosQ + v sine.)exp(-iwt) ,

Note that the cylinder displacement is so small compared with the gaps between

and the radii of cylinders that the boundary condition is applied on the rest

position boundary of the cylinder.

Using Eqs. 3.131-3.135, one can determine the unknown coefficients ajm
and b. in terms of the cylinder displacements

N
akn =-ic y (akn 2 + kn2 v)R ,

N

bkn =k-ic (T + knv)R,
k=R1

and

(3. 136)

where the dimensionless coefficients akn&' akn&' rkn2. and 8kn are solutions

of the following equations:

H' l)(KRk) +
N 1

j =1

TJ2jmL

am
jm2,

m=0

a ma

m=0 -
jmZ

m= j m2

cos(m + n)

sin(m + n)Ikj (-l)mH (KRk)J'G(cRk)

ajmt

rjmt

cos(m - n) k +

j m

j mL

~jmR

sin(m - n)qrkj (3.137)

3r .Rj r.=R.
3

'cnt

akn,

Tkn

kn2

+

,j=1
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m (1) ~ 1
(-1) Hm-n (Icj)J(KR,) R

RD

dk i ln
0

0

akt61n

(3. 137)
(Contd.)

The problem has been reduced to an infinite set of algebraic equations for the

unknown coefficients of the expansions.

The fluid force components are obtained using (see Eqs. 3.30)

2w
g. = -J p3

3 0 r.=R.
J J

2w
h. = -J p3

3 0 r.=R.
J J

R cosadOi,
j ii$

and

(3.138)

R.sing.dO.
J JJ3

Using the equations for the fluid pressure

P =P at

we obtain

g. = -pir
J

N R. + R 2 82u

S(12 Z)(aj a
R.= at2

N
- pir

; =1

R + R 2 au
(i 7 JL) (&' jA

N R. + R 2 32u
h. = -pR ( 2 jA3 t=l at

N

p.=i

R + R 2 au

2 CTj Rat

a2v

av
+ c' )

jR at'

a v

+0

at

av

+ X at

(3.139)

(3.140)

*0
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where

= Re(& ) ,

= Re(a ) ,
= R (a= 

Re(T 

) ,

= Re(Is ) ,
= ,d

a1 R Tit) and

-4R R

= " R 2
(R~ + R )

ci.

IJ it

Tji

o'jit

N

H i) (cR) +
k=1 n=0

sin(n + 1) rjk (- in+ (KR )J1(KR )

k=i n=0 O

'nt
akl

Tknt

Okn t

cos(n - )C +

Tknt

aknt

cknt

O3knt

sin(n - 1)1k1 .

(-1) ng pKRkjIJ 1 KRk) .4

a1

Ti t

and

and 6jk,

Im(a. ) ,
J~t

Im(. ) ,

Im(T )

Im(S t)

given by

a' =

a =

=t

Q1 =

jt are

01 knt

aknf

-Tknt

~knt

cos(n - 1) jk

+

Tkn

knt

cknt

akn.

(3.141)
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Equations 3.140 are similar to those of Eqs. 3.31 with the exception that

there are fluid damping terms.

Following the same procedure given in Section 3.3.2, we can show that

= g' = '(3.142)

These equations prove that the principle of reciprocity exists for the added

mass and radiation damping.

Added mass and damping given in Eqs. 3.140 and 3.141 are obtained with

respect to a particular coordinate system and are dependent on the location

and orientation of the coordinate axis. Following the same procedure, we can

derive the transformation formula for the added mass and damping; these

transformation equations are exactly the same as Eqs. 3.57 for both added mass

and damping.

Both added mass and damping depend on the arrangement of cylinders and

wave numbers KR. For an array of cylinders with the same diameter, a single

wave number KR (R. = R, j = 1 to N) can be used to characterize the

characteristics. For infinitesimal wavenumber KR (e.g., KR < 0.05), the added

mass coefficients are close to those obtained from incompressible flow theory,

and the acoustic radiation damping coefficients are practically zero. This

implies that if the radius of the cylinders is very small compared with the

wave length, which is typical in many practical cases, the added mass is

dominant and values of the added mass obtained from the incompressible

potential flow theory can be used as a valid approximation. As the wavenumber

increases, the absolute values of both added mass and damping coefficients

increase, reach their maxima, and then decrease rapidly when the wavenumber is

increased further. For KR > 1, the values of these coefficients are generally

small. The damping effect dominates over the added mass effect in the range

of large wavenumbers.

The peculiar variation of the added mass and damping coefficient with

wavenumber is due to the general characteristics of waves. When the

wavelength is large compared with the size of the cylinders, the wave does not

pay much attention to the existence of the cylinder and in effect travels

"through" it. When the wavelength is small compared with the size of the

cylinders, the wave behaves like a particle impacting on and reflecting off

the cylinder. The acoustic wave radiated by the motion of one cylinder is

reflected and diffracted by other cylinders; the reflecting and diffracting

waves will, in turn, be reflected and diffracted again. The process of
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reflecting and diffracting continues over and over to cause ultimately an

appropriate shadow to be formed around each cylinder. The pressure amplitude

inside the shadow is vanishingly small so that both the integrated pressure

around the cylinder and hence the force coefficients are very small.

3.9 ADDED MASS AND DAMPING OF AN ARRAY OF CYLINDERS IN AN INCOMPRESSIBLE
VISCOUS FLUID

}

The flow field U is given by

U = V4 + Vxi . (3.143)

* and j are solutions of Laplace and Helmholtz equations:

724 = 0,

(3.144)

(v2 _ a) = 0

The solution for this problem can be obtained following the procedures given

in Sections 3.3 and 3.8. The detailed development of the analysis has not

been published.

The fluid force components obtained

those for compressible inviscid fluid:

N R. + R 2 au

gj I ( 2 ) 2
JZ=1l 3kat2

R +R 2 au

2 j a t

2N R.+ R2 a u

~2 a t

R + R 2 au

( 2 j)( Ra +

for this problem are the same as

82v

+ a 8t2av

jR at

a8v

+ 
8 . atA)

(3. 145)

av

j y at

The added mass and damping coefficient depend on P/D and Rk.,

There are several experimental studies on the damping of multiple

cylinders. Shimogo et al. (1975) present the results of two cylinders

vibrating in a viscous fluid. The effects of fluid viscosity on tube motions

are studied. A series of experiments to study the diagonal terms, a13 and SQ

is reported by Chen et al. (1977).

N

- 1

h = -pT

N
p=

R,=1
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The added mass coefficients of a cylinder array vibrating in a perfect

fluid and the added mass coefficients and damping coefficients in a

compressible inviscid fluid are symmetric. Such symmetric properties for

linear incompressible viscous flow theory have not been proved theoretically

for general cylinder arrays. However, numerical results based on a finite

element calculation show that both coefficients are symmetric. It also has

been shown in Section 3.7 for two coaxial cylinders, they are symmetric.

3.10 CLOSING REARKS

The dyn: mics of a group of circular cylinders in a fluid is complex.

Corresponding to a single natural frequency for an isolated single cylinder,

there are 2N natural frequencies in a group of N cylinders. When an array o

cylinders is subjected to an excitation, its response characteristics are

different from those of a single cylinder. In the past, it was common to use

a single cylinder as the model for a group of cylinders. Because of the

difference between single and multiple cylinders, care has to be exercised in

making such an assumption.

As in the case of a single cylinder, in most practical applications, the

added mass matrix can be calculated based on the two-dimensional potential

flow thoery. When the motion is relatively large, the nonlinear effect

becomes important. There is very limited data for multiple cylinders

oscillating with large amplitudes. A systematic study to quantify the

nonlinear effect of a group of cylinders is needed.

When the cylinders are relatively close to each other, fluid viscous

effect is more important. The added mass and damping matrices can be solved

in principle based on the linearized Navier-Stokes equation; however, no

comprehensive theoretical results are available. To evaluate the added mass

and damping given in Eqs. 3.145, an efficient technique for calculating

Bessel's functions with complex argument is required. It is expected that

continuing investigations on this subject will be conducted because of its

practical applications for nuclear fuel bundles.

The general method of analysis presented in this Chapter is useful for

studying the dynamic response of multiple cylinders. The same method is also

applicable in different applications. For example, it can be applied to

scattering and transmission of acoustic wave across an array of cylinders,

vibration of perforated plates, and other engineering problems involving

multiple circular cylindrical regions.
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4. CIRCULAR CYLINDRICAL SHELLS CONTAINING FLUID

4.1 INTRODUCTION

The dynamic characteristics of circular cylindrical shells containing

fluid have been studied for a century. Earlier work was found on the response

of rigid circular tanks to seismic loads. Subsequently, because of the

interest in the dynamic behavior of rockets with liquid propellants, rapid

advances were made in the analysis of elastic shells containing fluids

(Abramson and Kana 1967). Most recently, the development of nuclear reactor

system components has prompted further studies on this subject. In this

chapter, general characteristics of shell/fluid systems are presented with the

objective of illustrating the effect of fluid on shell response.

4.2 FREE VIBRATION OF CIRCULAR CYLINDRICAL SHELLS IN AIR

Let the displacement components of the mid-plane of the shell be u, v,

and w in the axial, tangential, and radial directions. The motion of the

shell is described by the following FlUgge's shell equations (FlUgge 1960):

2 2 h2  2 2
a2 + 1-+ v a u+1+ v a2v
2 2 l2 2 2R 3zao

az 2r 12R a

Sv h2 a3 (1 -v)h2  3 pS(1l-v) 2u
+a- + 3 2 w - E2Eat2 0az 24R Ez 2a

1+vau +[l +L 1 2-v (1+h ) a v
2R aza8 2 ae2 2 k 2( 2

R ao 4R az
2

+-a(3 - h2a33S" 0(2]w 1s E
R 24R aoaz at

and

r h2  a3 +va a(1 -v)h2 33(3- v)h2 a3 +1
Li2R 3 +R az + 3 2 ju 1[ 2 2 + 2a ~v

az 24R 3 aza 24R 33z R

+ (-+ h2 + h2 4 2 4 h2 4 h2 2

R2 12R4 z 6R az2 12R a 6R ao

2
psl- v) g2

+ E 2
at
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where r, 9, and z are cylindrical coordinates, t is the time, and the physical

characteristics of the shells are defined by the mean radius R, wall thickness

h, density ps, Young's modulus E, and Poisson's ratio v.

A traveling wave solution is sought for the shell;

u = u cos no exp[i2w(cpt - z)/9]

and

(4.2)v = v sin nO exp[i2w(cpt - z)/9] ,

W = w cos nO exp[i2w(cPt - z)/Z] ,

where u, v,

of motion.

homogeneous

al 1

a2 1

a31

and w are arbitrary constants to be determined from the equations

Substitution of Eqs. 4.2 into Eq. 4.1 gives three linear algebraic

equations for u, v, and w:

a12

a22

a32

a13 u 0

a2 3  v = 0

a33 w 0

(4.3)

where

a 2 1 - V)( 1

a12 = a 2 1
C+ V

2 3 62 2
a1 3 =1 a 31 =-i[va + 1 -a 4(1 - v)an ]

a 22 =n 2+ ( 2 ) + + 2 ) a - 2

2 2
2 2

62 2 22 2 2
a 1 2+a1+(a2+n) -2n2 2
33 12

(4.4)

2

+ )2 n2 + S2
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and

2irR

a - a

h

(4.4)

p (1 - v2  1/2 (Contd.)
= RW[ )

n=a E I , and

w = 2xcp/tR.

For a nontrivial solution of these simultaneous equations, the determinant of

the coefficients of the unknowns should vanish. The resulting determinantal

equation is the frequency equation

laiji = 0 . (4.5)

Alternatively, the frequency equation can be written in the functional form:

F(2,a,n,6,v) = 0 . (4.6)

The shell, undergoing free vibration, can be defined in a variety of ways, as

shown in Fig. 4.1. The vibration of the shell can consist of a number of

waves distributed around the circumference as shown in Fig. 4.1 for n = 2, 3,

and 4. In the axial direction, the deformation of the shell consists of a

number of waves distributed along the length of a generator, as shown in

Fig. 4.1 for 1/2 k, , and 3/2 R.

For a given shell, v and 6 are fixed. The natural frequency Q depends on

a and n only. Two special cases are considered:

" Circumferential Modes: Consider those modes of oscillations of the

shell that are independent of the axial coordinate z; i.e., those modes having

frequencies corresponding to an infinite phase velocity. The equations for

those modes are obtained by setting a = 0 in Eq. 4.6; i.e.,

S22=(1 6+ )(1 - v)n2 and

(4.7)

12+12
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" Symmetric Modes: For n - 0, Eq. 4.6 can be written

2 - ( 1 +2)(1 v ) 2-= 0  and

2 2 462 3 2 (4.8)
(2 -_ 2) 1 2 - 1 - 1 (1 + n ) ] - (va + 12 )2a(4.8

4.3 FREE VIBRATION OF CIRCULAR CYLINDRICAL SHELLS CONTAINING
CWIPRESSIBILE INVISCID FLUID

The equations of motion for a cylindrical shell containing compressible

inviscid fluid are the same as those given in Eqs. 4.1 except that the

additional fluid pressure is acting on the radial direction; therefore, the

right side of the third equation zero is replaced by (1 - v2)p/Eh. p is

determined as follows:

r=R

22
V2 - 1 =0, and (4.9)

cr at

Dr r=R=at

The potential " can be defined by

* = ~(r)cos n9 exp[12w(c t - z)/R] . (4.10)

Using Eqs. 4.9, 4.10, and 4.2 yields

2irc F (r)

F(r) w (4.11)
n

where
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2 1/2

Fn(r) - Inj (j1 - ) if c > cp and
c

(4.12)
2 1/2

Fn(r) = Jnt{i - 1) } if a < c
Cp

Therefore,

2 Fn(R)
p 2 cp F (R) w . (4.13)

9. n

The results for a cylindrical shell containing fluid are identical to those

given in Eqs. 4.3 and 4.4 expect that the element a3 3 is given as follows:

2 2 p R
a3 3 -1 + 6  [1 + (a2 + n2) 2 21 +p c

and 2 1/2
I (8) p (1-v )

Cm =Ik for ya > S (Y = c[ s E { ) (4.14)

n

J (S)
a for Ya < S.

n

The frequency spectra for n = 0 and 1 for empty and fluid-filled shell

are given in Figs. 4.2 and 4.3 for 6 = 0.01 and y = 0.257. We will use a

system of suffixes, calling a mode Mnm. The first suffix indicates the

circumferential wave number. The second number indicates the order of the

mode. The first seven modes are given in each case. The torsional mode,

denoted by T, is not affected by the fluid. For the purpose of understanding

the shell motions, the amplitude ratios for the first three modes of the

fluid-filled shell are given in Fig. 4.4.

In Fig. 4.2, M01 and M02 are the two modes of propagation that are not

evanescent at low frequency ranges; all other coupled fluid/shell modes are

evanescent. In M01 mode, the tangential displacement u is much smaller than

w, especially for large a; therefore, the displacement of this mode

corresponds to predominantly radial vibration. When the shell is rigid, this

mode becomes nondispersive. In M0 2, the shell motion is predominantly axial

vibration for a < 1.0 and radial vibration for a > 1.0. For a near 1.0, axial
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and radial motions are strongly coupled. In M0 3 mode, the shell motion is

predominantly axial vibration for 0.5 < a < 1.6 and radial vibration for other

values of a. Comparing the spectra given in Figs. 4.2 (a and b), note that

each mode of coupled fluid/shell system except M01 mode has a portion of the

branch aligned in the vicinity of the corresponding empty shell mode. In

these regions, the shell motion is predominantly axial vibration. All other

portions of the branch correspond to predominantly radial vibration.

Figure 4.3 shows the frequency spectra for n = 1. Only M1 1 mode is not

evanescent. The frequency of this mode is considerably reduced by the fluid

loading. In other modes, the motion may be predominantly axial, radial, or

torsional, depending on the wavelength.

In practical applications, vibrations in the low-frequency range are of

interest. These correspond to waves whose length is great compared with the

shell radius R. Two cases are considered--water hammer waves and approximate

bending equations.

Water-Hainr Waves (n - 0)

For small 9 and a, from the frequency equation, it can be shown that

2 pR p 22 pR

2

- (1 + - v2)y2 =0. (4.15)

Equation 4.15 gives four values of cp, accounted for as c 1, -c 1 , cp2, and

-cp2. These phase velocities are associated with two waves: one is the usual

water hammer wave and the other is an extensional wave primarily in the shell

wall.

When the phase velocities of the usual water hammer wave and extensional

wave are not close to each other, simplified expressions for the phase

velocity are obtainable. Neglecting the torsional motion and axial inertia of

the shell, and using the frequency equation, we obtain

2 2 1/2
1 + 12- y

+ycpl - 2 2p R Y . (4.16)

1 + 1 - v2+h 2
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Furthermore, for a thin shell (6 is small) the water hammer wave velocity

reduced from Eq. 4.16 in terms of the real physical quantities is

Water-hammer wave velocity = + c (4.17)

where K is the bulk modulus of the fluid. This is the equation derived ly

Joukowsky in 1898 (Skalak 1956).

Similarly, neglecting the radial and torsional inertias of the shell, we

obtain the extensional wave velocity

2 0.5
+ cp2 1- pR 2 *(4.18)

62 _2- Y
1 12 2

1 - Y

Approximate Bending Equations (n ' 0)

As suggested by Reissner (1955.), if the axial and tangential inertias of

the shell are disregarded, the coupled fluid/shell equations yield the

following frequency equation:

psR 2 2)4

(1p+ hCm)2 1 2 + 2 + 2 22 '(4.19)

In many practical situations, the fluid can be considered as incompressible in

the study of bending motion. In this case Cm is independent of S and Eq. 4.19

becomes

62 2 2 ( 2 ) 4 1/2

12(a+ )+ 2 2 2

+ a2 + n ) . (4.20)

l ph Cm

The error of Eq. 4.20 is <5%. Moreover, the error decreases as |aj decreases,

and is negligible for large wavelengths.

From Eq. 4.20, it is seen that due to the fluid loading, the frequency is

lowered in proportion to 1 / 1 + psR Cm / ph . The concept of the added
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mass to the fluid/shell system is useful to us. In terms of real physical

quantities, from Eq. 4.20 it is easily shown that the frequency of the fluid-

filled shell is equal to that of the empty shell, whose density has been

replaced by p':

p'=p5 +g- C . (4.21)

The values of the added mass coefficient for n = 1-5 are given in Fig. 4.5.

For small n, Cm is highly dependent on the wave number. As n increases, Cm is

almost independent of the wave number; the influence of the fluid on the

reduction in the shell frequencies is more pronounced for those modes with

lower circumferential wave numbers.

The effect of fluid on finite shells containing fluid is similar to that

on an infinite shell. However, if there is a free surface, such as a liquid

storage tank, in addition to the coupled shell/fluid mode, sloshing response

of the liquid may be important. Extensive studies on the circular cylindrical

tanks have been published (e.g., Clough et al. 1979; Fujita 1982; Haroun

1983).

4.4 DYNAMICS OF TWO SHELLS COUPLED BY A CMPRESSIBLE INVISCID FLUID

One set of problems including nominally circular cylindrical shells

coupled to other shells through a fluid is of great concern in the development

of some system components such as nuclear reactor system components. Consider

two concentric circular cylindrical shells separated by an acoustic medium as

shown in Fig. 4.6. The motion of the shells is described by the FlUgge's

shell equations (Fl(Igge 1960):

22
1-v. h. a2  1+v .a2v

[z + (2R 2  )( + 12 22) j + 2R. azae

2 2 2 2
V.a h 3 (1 - v )h. a3 p (1 - v)a2u

+ [R13 - 1R 3] Iw E
Rj az 24R aza2 j Et

1+ v a2u 1- v h2  2

2R aza+ 2 2 2 (1 +j)]v
j R. ao 4R az

2 3 2 2(3 - v )h a3 p (1 - V.) a v
+[ -- j 0 12(4.22)

R24RY az j jt
J J
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and

2 3 v (l - v )h2  3 (3-v)h 2

j2R 3 jA z 24R z3ao2 24R2
ji

+ 2 ]vj +
R

62 a2

+ j )w
jR 32 j

1

(
R3

2
h

+

12R4

h2
h a4

+l2 4+
az

2 2
p (1 - v1 ) a w

+ E2
Ej at

h2

6R2

a4

2 2az ao

h 4

+ 4
12R ae

(1 -

Eh j'

where the index j denotes the variables associated with the inner shell

(J - 1) and outer shell (i - 2); u , v and w are the displacement components

of the shell middle surface and p1 is the radial surface loading component per

unit area. The physical characteristics of the shells are defined by the mean

radius R , wall thickness hi, density pj, Young's modulus E j, and Poisson's

ratio v1 .

The governing fluid field equation is

2 -1 2 -a

V2 2
c at

U=v , and (4.23)

p= at

The interference conditions are

awl
- and

(4.24)

a3

aoaz2

(4.22)
(Contd.)

ur

ur

r-R2

a t
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and the surface loading pj is given by

pl = PIr=R1  and

(4.25)

P2 = PIR=R2 "

Solutions of the following form are assumed:

uj = u cos no exp{i2ir(c t - z)/R}

vj = rsin no exp{i2w(c t - z)/R}

(4.26)
= cos no exp{i2wr(c t - z)/R} , and

* = *(r)cos no exp{i2w(cpt - z)/R}.

Substituting Eq. 4.26 into 4.23 gives the following form of Bessel's equation

1d d n 2 + 2 c2

r R2

Integrating Eq. 4.27 and applying the interface conditions at r = R1 and R2,

Eq. 4.27 yields

i2ir(c /)

3(r) = {[G' 2 R 2 )F 2n(r)
F' (R )G (R2) -F (R2)G2n(R)

- F2n(R2)G 2(r)]w1 + [Fg(R1 )G 2n(r) - G(R 1 )F2 (r)]w 2}

where

c 1/2
Fjn (r) = In[ (1 - ) r] for c >cp (4.28)

c 1/2
=Jn[j (2-1) r] for c<c

and
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c 1/2
G. (r) = K -_)

c 1/2

= Jn[21T p- 1)

r] for c > c
p

r] for c < c.
P

(4.28)

(Contd.)

Introduce the following dimensionless variables:

21TR

2 1/2
p(1 - v.)

y =E.

(4.29)
h

j R.

pR.

J p.h.
J J

and the dimensionless frequency S which is related to the circular frequency

of vibration w by

2 1/2
P. v.)

j E
(4.30)

Substituting Eqs. 4.26 into 4.27 and using Eqs. 4.23, 4.25, 4.28, and 4.29

gives six linear algebraic homogeneous equations:

a11

a1 2

a12 a13

a14 a15

0 0 0

o 0 0

a1 3  a15 a16 0 0 a1 7

0 0 0 a21 a22 a 23

0 0 0 a22 a24 a25

vl

U2

2

W2

0

0

0

0

0

a27 a23 a25 a2 6

(4.31)

0 0 LU
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where

1 - v6
2 v, 

2
a a . + n .ji +a a -( 2 )(1 + 2 )n2 + 23,

1 + v.
aJ2 -1f( )
aj2 2 ajn

2 2
6. 6.

j3ja j 12 j 24 ( j *j)

22a12 n 4i J .

aj 5 = n2 + ( -v+)na2
24

2
a = 1 +1(
16 1

a1 7 = iCm41

a2

a2 6 =1+ (--
27 12

a27 2 m3SI2

2 *2 2 2 2 2
2n + (al + n )I l cls

2n2 + (a2 + n2)2} 2 C 2 ,2 2 2 u 2 

A = FM(R 1 )G'(R2 ) - F'n(R2 )GI(R) ,

C = (1/A){G2n(R 2 )F 2 n(R 1 ) - F2n(R2 )G2n(R1 )}

Cm2 = (1/A){F' (R1)G (R2) - G2n(R)F2n(R2)

C = (1/A)(R1 /R2 ){G2n(R2 )F2n(R2) - F2n(R 2)G2(R2 )}

Cm4 (1/A)( 2/Rl){F (R )G (R1) - Ggn(R1 )F2 n(R1 )}

(4.32)

and

and

(4.33)

and
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The frequency equation is obtained by setting the determinant of the coeffi-

cient matrix in Eq. 4.31 equal to zero; it can be written as

F(Sg,ajdpgv ,pY ,gpln) = 0 . (4.34)

Several limiting cases can be deduced from Eq. 4.34:

(a) For p = 0, the equation gives the frequency for two empty shells.

(b) For n = 0, the equation gives the dispersion relation for axially

symmetric modes.

(c) aj = 0 yields the frequency equation of the circumferential motions.

(d) When either one of the shells is rigid, the equation becomes the

frequency equation of the other shell.

It is little trouble to obtain the roots of the exact frequency equation

(4.34). However, it is still interesting to examine approximations to the low

frequency for possible implications that may be reduced for the system.

Deleting the in-plane inertias of the shells, assuming that the fluid

are incompressible, and using the Donell's shell equations (obtained by

deleting all terms in Eq. 4.20 multiplied by 6?, except the term
2 2 )

(6I/12)(ai + n2)2 in a1 6  and a2 6 ), it can be shown that the radial
displacements Eg and R2 are given by

[2 2vl -c 1S1
2

c 3Q1

where
2

2 61 2
vl1 12 al

62
2 = 2 2
v2 12 2

C= 1 + p C

c 2s'1 w1 0

2 c 2 ) -( =v2 - 4 1 w2

2 4
2 2

+n) + 2 2 2
Cal + n )

2a4
2 2 (1-v2)2

+ n ) + 2 2 2
(a2 + n )

(4.35)

(4.36)
c3 =u 2 Cm3021 ,

(1 + 

8 =~ R [P2 El( l -v ) /

R1 p1E2 (l - v1 )

c2 Pi Em4 ,'

C4 = (1 +u2Cm2)Bg2. 0
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Consider two special cases:

1. The outer shell is rigid, which corresponds to a shell submerged in a

fluid annulus, and

2. The inner shell is rigid, which corresponds to a shell containing

fluid and a rigid cylinder.

The frequencies for these two cases are denoted by a1 and Q2, respectively.

From Eqs. 4.35 and 4.36, it can be shown that

2
1 +vlC

1 +l
and

2 Q__ __ ___2

v2

2 (1 + 2 2
(4.37)

It is cbv{ ous that both frequencies are reduced due to the fluid

loading. In terms of dimensional quantities, from Eq. 4.37 it can be shown

that the frequency of the shell with fluid is equal to that of the empty shell

whose density has been replaced by the shell density and the added mass. The

added masses are

pR1  pR2
padded h Cfim for case 1; padded p2h2 Cm2 for case 2.Pi 1 lmC2o cse2

(4.38)

Cml and Cm2 are the added mass coefficients, which are functions

R2 /R 1 . For a = 0, Eq. 4.33 gives

(R/RA)n+ 1
Cm1 =C = n [n1.

ml m2 n (R2/R )n - 1

of n, aJ, and

(4.39)

Next, return to Eq. 4.35 concerning the coupling system. In this case,

the frequency equation is

(clc4 + c2 c4 )A - (c1 Z2v2 + c4 vi2 1)a
2 + 2vl v2 =0 . (4.40)

Equation 4.40 gives two frequencies: the smaller one %o is associated with the

out-of-phase motion and the larger one ni is associated with the in-phase

motion of the two shells. Mathematically, it can readily be shown that if
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c2c3/c c < 1 , (4.41)

then

%o < l, 52 and A > 21, 02 . (4.42)

Physically, this means that the frequency of the out-of-phase mode is always

less than those of the uncoupled system, while the frequency of the in-phase

mode is always larger than those of the uncoupled system provided that

(1 + p2Cm 2 )[l + y1Cm1] > I1 2C 3Cm 4  (4.43)

Equation 4.43 can be replaced by

CmlCm2 >Cm3Cm4 ' (444)

Note that the coefficients Cml and Cm2 are proportional to the fluid pressure

acting on the inner and outer shells due to the motion of the inner and outer

shells, respectively, while the coefficients C and Cm are proportional to

the fluid pressure acting on the outer and inner shells due to the motion of

the inner and outer shells, respectively. Equation 4.44 is satisfied in all

cases. This is similar to Eq. 3.15 in Section 3.2.

Consider a specific numerical example: R= 86.86 cm, R2 = 87.95 cm, h =

0.64 cm, h2 = 1.59 cm, v1 = v 2 = 0.27,3 E = E2 = 18.95 x 1010 Pascals, p =

P2 = 0.008 kg/cm , p = 0.000924 kg/cm , and 9 = 104 cm. The fluid is
considered incompressible and the shell is assumed to be simply supported at

both ends. The frequencies of this finite shell system can be obtained using

the frequency equation (Eq. 4.34). The frequencies of the system depend on

the axial wave and circumferential wave numbers; the lowest frequency is

associated with the lowest axial wave number; i.e., the shell length is equal

to the half wavelength. The frequencies of the out-of-phase and in-phase

modes for this case have been computed and are presented in Fig. 4.7. For

comparison, Fig. 4.7 also shows the frequencies for four related cases.

1. The inner shell in vacuo,

2. The outer shell in vacuo,

3. The shell system with rigid outer shell, and
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4. The shell system with rigid inner shell.

This example illustrates the dynamic characteristics of a coupled

shell/fluid system as discussed previously. Another characteristic exhibited

in this figure is that the circumferential wave number associated with the

lowest frequency for a coupled shell/fluid system, in general, is different

from that of an empty shell. As shown in the figure, this circumferential

wave number of the inner shell changes from 7 to 6, while that of the outer

shell does not change. In the case of the double shell system, the lowest

frequency of the out-of-phase mode is associated with n = 6, while the in-

phase mode is associated with n = 5. This behavior is attributed to the fact

that the distribution of stretching energy and bending energy of the

shell/fluid system is different from that of an empty shell.

Experimental studies on the coupled shell/fluid systems were reported by

Chu and Brown (1981) and Chung et al. (1981). The analytical and experimental

results agree reasonably well.

Shells of finite lengths and of different lengths are considered by

Au-Yang (1976), Horvay and Bowers (1975) and Brown and Lieb (1980). In this

case, then, because of the end conditions, the solution given in Eq. 4.26

generally cannot be applied. Instead, the similar procedure, as given in

Section 3.6, can be employed to shell problems. The development of the

analytical procedure was presented in detail by Au-Yang (1976).

4.5 TWO SHELLS COUPLED BY VISCOUS FLUID

Consider two concentric circular cylindrical shells separated by a

viscous fluid as shown in Fig. 4.6 (Yeh and Chen 1977). The equations of

motion for the shells are the same as those given in Eq. 4.22 with the

following exceptions:

2
1 - v.

" The right side of the first equation is replaced by - - p
E.h. zj

1-2
1 - v.

" The right side of the second equation is replaced by - 1 p
E.h. Qj
J J

1 - v2

" The right side of the third equation is replaced by -- p
EH r

p., pj and prj are the surface-loading components per unit area due to

fluid.
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For a nonsteady, small-amplitude oscillatory motion, the equation of

motion for the viscous fluid can be expresed as follows (Landau and Lifshitz

1959):

+pv"6 = 0

- = - VP + v + v')0(V"U) - v VxVx , at p3 000
and (4.45)

3_ 2=c ,

where p0 and p are the mean and instantaneous fluid mass densities, v0 and v'

are the kinetic and second viscosities of the fluid, c is the speed of sound

in fluid, p is fluid pressure, and U is fluid velocity vector.

At the interfaces between the shells and fluid, the following conditions

must be satisfied:

u

Z r=R

uj

u

r 'r=R

au

at

av

at

aw

=a at

and (4.46)

j = 1, 2.

The surface loading acting on the shells is given by

11 =rtr=R(.

(4.47)

pL2  TrtI
r-R2

R - z , r ,

where Trr' trO and Trz are the fluid stresses.
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au
r

Trr - +2Uar '

a u 9 1aur

r9 Br r r ae
and

au au
rz z 3r

Here u is fluid viscosity.

Letting U +=Vx + vt and inserting it into Eqs. 4.45 yields:

( - vov2) *= o

P = Po- po at

[(1 + Wa)02
0oat

4 2
+ (3 o0 + v') *,

2
_ l .1 -)*= 0 ,

c2 a 2 "

and

2
c

0 4Vo + V'
3 0 0

(4.52)

Equation 4.50 shows that the fluid pressure is not affected by the waves

produced from the vector potential 9, which is associated with the fluid

viscosity.

In cylindrical coordinates, Eq. 4.49 yields

-l 2 2 = 0

1 3 _2 _ _ .2 a*r
vate 2 2 0,

0 r r (4.53)

and

1 a 2 *r 2 a*
(--- V )* +.j+Z--- -=o.

v atr 2 2 0
0 r r

(4.48)

(4.49)

where

(4.50)

(4.51)
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Solutions of the following form are assumed for the shells:

uj = iujcos(n8)exp[i(wt - kz)]

vj = v sin(nQ)exp[i(wt - kz)] , and (4.54)

wj = wjcos(nO)exp[i(t - kz)] ,

where i = , n is the circumferential wave number, w is the circular

frequency, k is the axial wave number, and iu , 0, and w are arbitrary

constants to be determined.

Similarly, the fluid velocity potential can be assumed as follows:

* = p(r)cos(n6)exp[i((t - kz)] ,

*z = iz(r)sin(nQ)exp[i(wt - kz)]

(4.55)

= i p(r)cos(nO)exp[i(wt - kz)]

'ir = r(r)sin(nO)exp[i(wt - kz)]

Substituting Eqs. 4.55 into 4.51 and 4.53 gives the following forms of

Bessel's equations:

2

[ apr(ri) + (k2 _2) ]_- = 0
r

2

[" (re) + (k2 _ _n_)Y), =
r 3r 3r k2 n2) z = '

r
(4.56)

a r ~ ) + (k2 - n2r + )_r =

r r
and

2

!la (r A- ~r) + (k2 _ n + 1r + - 0
r ar (r*r22 r 2 6 '

where
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2 2 1/2
2 ) /C

k = (-k2 + 1 + iwm()m

k2 = (-k2 - i(/v)1/20

The general solutions of Eqs. 4.56 are

p(r) = iw[A 1Fn(klr) + A2Gn(klr)]

z(r) = iw[A3F (k2r) + A4Gn(k 2r)]

and

(4.57)

and (4.58)

*r(r)= -he(r) = w[A5Fn+1(k2r) + A6Gn+1(k2r)]

where Ap are arbitrary constants and F and G are the nth-order Bessel

functions. Fn and Gn can be either The first- and second-kind Bessel

functions, Jn and Yn, or the Hankel functions H1) and (2). The selection of
n ,n n% Teslcino

the functions depends mainly on the computational consideration.

Substituting Eqs. 4.54, 4.55, and 4.58 into the interface conditions,

Eq. 4.46, gives six linear algebraic equations

6

L aA = r u ,
q=1

p = 1 - 6 ,

rp =R

U 1 = u,

for p = 1 - 3 ,

u 2 =1,

rp = R2 for p = 4 - 6 ,

u3 -w 1 , u4 =u2 , u 5 = v 2

and u 6 = 2

and the expression of apq is given as follows:

where

(4.59)
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al1 = -a1F (y1 )

a 1 5 =-.01Fn(o1)

a2 2 = -nGn(y 1)

a1 2 = -aG (Y1)

a 1 6 =-01Gn(a1)

a1 3 =a 14=0,

a2 1 = -nF(y1 )

a2 3 = 01Fn+ 1(a 1 ) - nFn(8 1) I

a24 = 01G+1(01) - nGn1) , a2 5 = a3 5 = 1Fn+ 1(01) ,

a26 = a36 1Gn+1 01)
a3 1 = nFn(y ) - y1Fn+1(y1

a32 = nGn(y)-y1Gn+1 (y) , a33 = nFn()

a34 = nGn( 1) and a = kR.
J J '

a = k2 R.
J J '

Y. = k1R.J =k

The expressions of apq for p = 4-6 are similar to those for p = 1-3 and can be

obtained by replacing cx 1, , and y1 by a2, 02, and y2.

Now we are in a position to calculate the loading stresses on

surfaces. Here only the dynamic quantity is of interest, so the
pressure p0 will not be considered. Equation 4.48 is used to obtain

stresses. Define the new variables pzj, ej , and prj as follows:

Pzj iPow'Pzjcos(nO)exp[i(Gt - kz)] ,

Pei - Pomw2psin(nA)exp[i(wt - kz)]

the shell

reference
the fluid

(4.61)

and

Prj - Po 2 Prjcos(n)exp[i(wt - kz)]

Substituting Eq. 4.61 into 4.47 and using 4.55 and 4.58 yields another

six linear algebraic equations:

(4.60)
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6

q=1

h A =P p = 1-6 ,

where

P1 Pzl p2 =161 =3 Prl

P6 = Pr2

and the expression of h is given as follows:

h = 2S F (y - ---

h2 = 2S a[G (y) -=

S2a2n

=3S F(- )n, a

h15 22 n 1 1

h16 S2[(0

2S n

h21 Y1

2S n

h2 T2 Y1

[F+ 1( 1)

[Gn ( 1)

14
S2 2n

h1 = - 9 G (1),

1 1

- 1)G n+1 01) + G ( G)

-n -i
Y Fn( )

n-i 1
- 1 G (Y1)

1 n

h23 s2 2n2-
S1

h = -S 2n(n -1

24 21 2 - 1)

B1

- 1]Fn( 1) + F (1
1

- 1]G 1) Gn (1 )}

(4.62)

4 z2 p5 =

(4.63)

Fn 1I)
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h25 _ S2a2 [F (s - 2(n F0i1 n+l 1 ]

h2 6  S2 a2 [iG (s) - 2(n + 1) Gn+1 1

2S n(n - 1) 2S
h31 [ 2 - (2S + + i(/ ))]Fn (y) + Fn+i(Yi)

1 i1l n
2S n(n - 1) 2S

h32 L 2 -(2S1 + 1 + /))]GCn 1) + Gn+1 C1
Ti 1 1

23 S S F(n)-

2S 1n

3 2S n -fl n 1 1

1 1 G( 1 ) -

Fn+1 1 

(4.63)
(Contd.)

h3 5 = 2S 2a2[F (81 ) - ni+ 1 Fn+1 1

n1 Gn+1 1

4wR 2 2wR

Rk v c *
0

Q01 = a 1/ 1 , a2 = a2/ 01

i2

S -= =
2 2 R k

0

v'Mk 4 v
- ( o

Rk o9

Using Eqs. 4.59 and 4.62 gives the surface loading expressed in terms of

the interface radii and the shell displacement as

A

p

6

q=1

A A

a r u
Pq q q

p = 1-6 (4.64)

where

(4.65){a } - {h }{a }_

and

2
S = i
1 R

,I

.0
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The coefficient app is proportional to the dynamic fluid stress acting on

a shell surface due to its own movement; while the others, apq for p # q, are

proportional to the dynamic fluid stresses acting on a shell surface in one

direction due to the movement in another direction.

The fluid stresses acting on the shells are linear functions of shell

motions. In general, the coefficients apq are complex. The fluid stress can

be separated into two components: one, proportional to Re(apq), is in phase

with the shell accelerations and is related to the added mass effect; the

other, proportional to Im(a ), is opposing to the movement of the shells and

is related to damping mechanism. If the fluid is inviscid, the second

component of the stress opposing shell motion will be zero.

The dynamic fluid-stress coefficient matrix apq is a function of the

radius ratio R2/R1 , the circumferential wave number n, the axial wave number

al, the Mach number Mk, the Reynolds number Rk, and the ratio of the fluid

viscosities v'/v0. It should be noted that the circular frequency w and so

Mach number Mk and Reynolds number Rk are in general complex numbers. The

Mach number Mk is considered to include the compressibility effects of the

fluid. However, the analysis is valid for a small compressible effect or a

small Mach number Mk. The Reynolds number Rk and viscosity ratio v'/v are

the additional function parameters associated with fluid viscosity.

For the case of potential flow where vo = 0, and v' = 0, the Reynolds

number Rk and viscous ratio v'/vo are no longer defined and the coefficient is

a function of R2/R1 , n, al, and Mk only. Furthermore, all the elements of the

coefficient matrix are zero except the real parts of the four elements:

Re ( 331, Re{cz36}, Re{a63}, and Re{066 }, and no damping is introduced to the

system by the incompressible ideal fluid.

With respect to fluid shell interaction, substituting Eqs. 4.54, 4.61,

and 4.64 into the shell equations gives six linear algebraic homogeneous

equations:

6 A

b u =0 , p = 1-6 , (4.66)
q=1pq q

where

b = C - g2(6 + viap) for p,q= 1-3
pq pq 1 pq p

= -nii(R2/R1)apq for p = 1-3 and q = 4-6

= -n2(2R1/R 2 )apq for p =4-6 and q =1-3

(4.67)

-Cy -P4 ( 1 2,,q , for p,q=-4-6
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(1 -v 2 1/2

j = Rj E.
j

6 = 1 for p =q,

p R

j j

otherwise 6pg - 0 ,

and the expression Cpq is given as follows:

C a2+ (1- v1 )n
2 (1 + 4 ,

1
012 =021 =2 +1))

C =n2+ 1(1- v + 2a,
22 2 1 1)(1 1

1 3 2 1 2 2
C13 =0C31 alv + yj clai -lja1(1 -v1)61n

C n 1 a23 2n
023= 032= n + (3 - v1)6n,

C33=1 + 621- 2n2 + +n22

= h /R .

The frequency equation of the coupled fluid/shell system is obtained by

setting the determinant of the coefficient matrix bpq in Eq. 4.66 equal to

zero; it can be written as jbpql = 0 or in the function form as

F(a, R 2/R, Mk, R v'/v, jn , 6 , U)-0.

In contrast with the incompressible potential flow theory, the stress

coefficient for a given physical condition is a function of the frequency

parameter w, which in general is a complex number. Therefore, in order to

determine the natural frequency and the damping ratio of the coupled system,

an iteration procedure generally is required.

(4.67)
(Contd.)

(4.68)

(4.69)
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It should be noted that, for the case of an incompressible viscous fluid,

the dynamic fluid stress is not only a function of n, R2/R1 , and al but also a

function of the kinetic Reynolds number Rk. This additional parameter Rk

makes the simulation of a scaled model test for a coupled viscous fluid/shell

system very difficult when fluid viscosity effect is important. In a reduced-

scale model test, the geometrical simulation commonly employed tends to

overestimate the fluid damping; thus the test result may not be conservative.

4.6 CLOSING REMARKS

The general characteristics of coupled shell/fluid systems are discussed

in this chapter for infinite shells. A closed-form solution is obtainable

based on the linear theory. For a finite shell, either an approximate

analytical solution (Au-Yang 1977) or a numerical solution can be obtained:

These are not considered here; however, the role of fluid on shell response is

similar.

One important problem is the storage tanks, which are basically a finite

circular cylindrical shell containing fluid with free surface. The response

of the tanks due to seismic excitation is of particular interest. A summary

of this problem is available (ASCE 1984).

The effect of fluid on shell vibration is much more complicated than that

on a circular cylinder. In general, the fluid added mass and damping depend

on mode shapes; therefore, it is necessary to solve the coupled problem. The

concept of added mass is not as useful as for a circular cylinder.
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5. PIPES CONVEYING FLUID

5.1 INTRODUCTION

In the last three decades, we have witnessed a great surge of interest in

the dynamic behavior of pipes conveying fluid, largely for two reasons:

" The dynamic behavior of pipes conveying fluid is of considerable

importance; oscillations have been observed in oil pipelines,

various elements of high-performance launch vehicles, missiles,

moving wire and belts, nuclear reactor system components, etc.

" Pipes conveying fluid is one of the few physically realizable

cases of nonconservative systems; the problem is of great

academic interest.

According to a historical search by Paidoussis and Issid (1974), the

first publication on this subject was by Bourrieres (1939). Bourrieres

derived the equation of motion and examined theoretically and experimentally

the dynamic instability of a cantilevered pipe conveying fluid.

In the 1950s, interest in the subject was motivated by vibration problems

encountered in the transport of crude oil in pipes (Ashley and Haviland 1950;

Feodos'ev 1951; Housner 1952; Niordson 1953). Since then no fewer than a

hundred papers and reports have been published on this subject; see reviews by

Chen (1974) and Paidoussis and Issid (1974).

5.2 HAMILTON'S PRINCIPLE FOR PIPES CONVEYING FLUID

Hamilton's principle usually is formulated for a system composed of the

same particles or a system with material moving through it but maintaining

constant mass and with no net energy transfer between the moving medium and

the system. In a pipe conveying fluid, because of pipe deformation the

constituent particles change with time and there may be net energy transfer

between the pipe and fluid. Therefore, a more general form of Hamilton's

principle is needed for this problem.

There have been several attempts to extend the Hamilton's principle for

systems of changing mass with the specific objective of dealing with pipes

conveying fluid (Housner 1952; Benjamin 1961; McIver 1973). The following

discussion is based on the work of McIver, who presented the extended Hamilton

Principle, which is applicable to a wide range of problems.

Consider a continuous material system of particles of fixed identity

contained within a moving region of space R (t) bounded by the surface B c(t)
c ,

across which there is no mass transport at any point. At position r at

time t, the particle density is p and the velocity ui, where the system is

subjected to a virtual displacement 6r = 6i(r,t). The principle of virtual

work for the system is
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6sC+ 6W -. g fff p(u.r)dV = 0 , (5.1)
R (t)
C

where is the Lagrangian of the system in the closed region Rc(t), SW is the

virtual work performed by the generalized forces undergoing the generalized

virtual displacements, and D/Dt is the material derivative following a

particle or a specific collection of particles; then =u Dr/Dt.

Hamilton's principle for a "closed" system, in which the constituent

elements of the system are the same for all time, is obtained by integrating

Eq. 5.1 with respect to time between two instants t1 and t2, when the system

configur tion is prescribed (8r = 0); i.e.,

6 ft2 dt+ ft2 6Wdt=0. (5. )
t ti

A general statement of Hamilton's principle that is appropriate for

"open" systems of changing mass can be obtained based on the open control

volume (see Fig. 5.1), which is partly open across the surface B (t) and

partly closed over the surface Bc(t). Bc(t), across which mass is

transported, Is moving with an arbitrary normal velocity Uen ; n is the unit

outward normal vector to the open part of the system. At all instants t the

system is defined as the collection of particles inhabiting the open control

volume R0 (t). Note that the system does not possess a constant mass or, if it

does, the mass need not consist always of the same set of particles. The

region Rc(t) is a closed system bounded by Bc(t) if Un = un

If at the instant it is considered the open control volume R(t)

coincides with the closed control volume Rc(t), the general transport theorem

is

d at fff ( )dt =Dfff ( )dv
Ro(t) R c(t)

o c

+ ff ( )(U - u).ndS . (5.3)

B (t)
0

Since the notation D( )/Dt is employed for a closed control volume, it is

permissible to write

Dt !Iff ( )dv -=D ff ( )dv . (5.4)

Ra(t) R (t)
co
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OPEN SYSTEM Ro(t)

Be (t) Bo(t)

CLOSED SYSTEM Re(t)

OPEN SYSTEM R (t+dt)

Bo(t+dt)

BBt(t+dt)

(U-u)-n dt

CLOSED SYSTEM RC(t+dt)

Fig. 5.1. Definition of Control Volume R under Specified Conditions.
At time t the open system coincides with a fictitious closed
system and at time t + dt, there is momentum transport across
the surface B (t).
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Employing Eqs. 5.1 and 5.4 yields

aJ2 + 6W + f f
B (t)

0

d
dt ff

p(u- r)(U- u).indS

p(u-i .r)dV = 0
R0 (t)

Integrating Eq. 5.5 with respect to time from t1 to t2 , when the system

configuration is prescribed, yields the Hamilton's principle for a system of

changing mass:

t2

f 2 dt +
tl

t

Wdt +ff
tl B(t)

1 0

p(u r)(i- u)-ndS = 0

The last integral is the virtual momentum transport across the surface

B (t). The statement given in Eq. 5.6 is very general and is applicable for a

system with changing mass.

Now the general principle given in Eq. 5.6 can be applied to pipes

conveying fluid. The system is open with the control volume surface

coinciding with the exterior surface of the pipe and the pipe inlet and exit

(Fig. 5.2). Si(t) and Se(t) are the open control surfaces at the pipe inlet

and exit respectively. The pipe is fixed so there can be no virtual work

contribution from the force and moment of reaction. The fluid velocity at the

pipe exit is u = R + Ut and the normal velocity relative to the control

surface S0(t) is (u - U)9+ = U. Thus, the last term in Eq. 5.6 becomes

6H = ff p(u dr)(U - u)"ndS
S (t)
e

= -MdU(R + U-t)-6R (5.7)

when Md is the mass of fluid per unit length. Therefore

6f dt + ft2 6Wdt -
tl t1

ft2 MdU(R + ut).6iRdt = 0
ti

(5.5)

(5.6)

(5.8)
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Bc (i)

Se (t)IR
Fig. 5.2. A Cantilevered Pipe Conveying Fluid
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Equation 5.8 is useful in deriving the equation of motion and boundary

conditions for pipes conveying fluid and characterization of different systems

and their stability characteristics.

Equation 5.8 is the same as that developed by Benjamin (1961) for a

cantilevered pipe conveying fluid. However, it is different from the one

applied by Housner (1952), who studied a pipe hinged at both ends, using

Eq. 5.2. For a pipe not allowed to move at both ends, such as a hinged-hinged

pipe, the last term in Eq. 5.8 is zero. Therefore, the conventional

Hamilton's principle, Eq. 5.2, can be successfully applied.

5.3 STRAIGHT PIPES CONVEYING FLUID

5.3.1 Equations of Motion

The equation of motion is derived based on the following assumptions:

" Fluid is inviscid and incompressible.

" All motions are small.

" Rotary inertia and shear deformation of the pipe are neglected.

* The gravity and material damping are neglected.

Consider a pipe of length 9, mass per unit length m, and flexural

rigidity EI, conveying fluid of mass per unit length Md and flowing axially at

velocity U. The pipe axis is in the z direction and its displacement is u.

The equation of motion can be derived based on the Hamilton's principle

(Eq. 5.8) or equilibrium method.

The Lagrangian is given by

=T +T -V - V. (5.9)
5 f 5 f

Here T. and Vs are the kinetic and potential energies associated with the

pipe, and T and Vf are the corresponding quantities for the fluid. The

potential and kinetic energies for the pipes are

Vs =2 EI J (u")2dz and
0

(5.10)

T -- mf (i) dz ,
2

0

where the prime denotes differentiation with respect to z and the dot denotes
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differentiation with respect to time. Since the fluid is assumed to be

incompressible, the potential energy of the fluid is zero; i.e.,

Vf - 0. (5.11)

Next, consider

deformed condition

inextensible. Let

The flow velocity U

fluid flow kinetics. An element dz of the pipe in the

is shown in Fig. 5.3. The pipe is assumed to be

e and 9Z be the unit vectors in the y and z direction.

is

+ + 1 2 - +e -
U= ezU(l - u' ) - C] + e (u +Uu')Z 2 y

C = f (u')2dz
2

0

Therefore,

Tf = Md 2 + 2Uuu' + U2 - 20U)dz
0

and

(5.12)

(5.13)

The motion of the pipe at the downstream end depends on the support. Consider

the case of a cantilevered pipe, in which the downstream end is free (see

Fig. 5.2). The position vector R and the unit vector T tangential to the pipe

are

+' 4' +
R = -e C + e u ,

zZ yL
(5.14)

w = eZ+eu ,

where

CL = C u = u u' =au
it azL

Substituting Eqs. 5.9-5.14 into Eq. 5.8 yields
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2
U(I-1/2u' )

-_- _~- _ _~- -_ -_~ - ~_ ~
dz

Fig. 5.3. A Pipe Conveying Fluid
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6 f2 {(Md + Ng2 + MU(u' + Uu 2 - - u zt

ty 0

t2
- f MdU(u + Uuj)6u dt - .

ti

From Eq. 5.15, we obtain

4 2 2 2
EIu+ M U2 3+2M U - -- + (M + m) -= 0

4 d 2 d azat d a2az az S
3 I

EI --- u u - 0 ,

aZ3 O

and

(5.15)

(5.16)

2u
EI au' = 0 .21

az o

Therefore, the equations of motion and boundary conditions for cantilevered

pipes are

4 2 2
EI + M U2  + 2d U 2 + (Md4 d 2 d azat daz az

z 0

z -= L,

u ( -r U' = 0 ,

2
+ m) = 0

a2

(5.17)

u" m 0 , u''' = 0.

Similarly, consider the case of a

allowed to move only in the z direction:

R = -ezC

eZ y 
+ ur

pipe, in which the downstream end is

and

(5.18)

Substituting Eqs. 5.9-5.13, and 5.18 into 5.8 gives
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aZd

2 2u

2 + 2MdU zat +
az
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2
(Md.+ m) 2= ,

at

tMdU(u + Uu') + EIu'''}6y = 0
0

and (5.19)

E Iu" Su' = 0

Therefore the boundary conditions are as follows:

Hinged-hinged pipes:

z = 0 and R , u = 0 , U"' = 0 . (5.20)

Fixed-fixed pipes:

z = 0 and , u = 0 , U' = 0 . (5.21)

Fixed-hinged pipes:

z = 0 ,

z = RZ,

u = 0,

u a 0 ,

u' = 0 ,

u" = 0

(5.22)

If the downstream end is not allowed to move axially, the cross-sectional
1 2

area is reduced by a factor of (1 - - u' ) to maintain the fluid volume and

the fluid velocity relative to the pipe increases to U(1 + u'2 ) to

maintain locally the rate of mass flow. The fluid kinetic energy in this case

is

Tf -2 Md f [(d + Uu')2 + U]dz
0

(5.23)

Based on Eq. 5.23 and R being zero at the downstream end, the same set of

equations of motion and boundary conditions are obtained for fixed-fixed,

fixed-hinged, and hinged-hinged pipes.
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The equation of motion can also be derived using the equilibrium method

(Gregory and Paidoussis 1966; Paidoussis 1970; Paidoussis and Issid 1974).

Consider the specific case of a pipe hanging vertically, so that the z axis is

in the direction of the gravity (Fig. 5.4). Without loss of generality, the

motion of the pipe is assumed to take place in the x-z plane. The cross-

sectional flow area is A and the fluid pressure is p. The flow velocity is a

function of time.

Consider elements 6z of the pipe and the enclosed fluid, subjected to a

small lateral motion u(z,t), as shown in Fig. 5.4. The acceleration of a

f luid particle in the x and z directions are Md -and [(- -+ U- -)2Iu to
the first order in the small displacement u and its derivatives. For the

fluid element, force balances in the x and z direction yield

A + qS - Mdg - F = 0 and (5.24)

F + Md(at + U a)2 u + Aa (p ) + qS au = 0 , (5.25)

where q is the shear stress on the internal surface of the pipe and F is the

transverse force per unit length between pipe wall and fluid.

Similarly, for the pipe element,

aT S
-+ qS - mg - F --- = 0 , (5.26)

+ F - m + (Ta) + qS = 0 , and (5.27)az t2 az az azat

3
Q = - = -El9 , (5.28)

az a2

where T is the longitudinal tension, Q is the transverse shear force in the

pipe and M is the bending moment. Using Eqs. 5.25, 5.27, and 5.28 yields

4 2 2
El + [(pA - T) au + M( + U -) u + m =0 . (5.29)

az at

Using Eqs. 5.24 and 5.26 gives
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zIu

(a)

Md (a + U )2

pA

Md ( )Sz

\ qS8z

u8z -- m

FSz ez x

Mdgsz\A(p+ $z)

2

T

qS8z FsZ

gZQ T+arsz

mg8z

M + M8$za=
(b)

(a) A Vertical Pipe Conveying Fluid and (b) Forces and
Moments Acting on Elements of the Fluid and Pipe

Fig. 5.4.

l9

-X
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(T-pA) + (Md + m)g -. Md.at(5.30)

Integrating Eq. 5.30 from z to & gives

(T - pA) = (T - pA) + [(Md + m)g - M ai(& - z) (5.31)

If the pipe is horizontal, and flow velocity is a constant, (T - pA) will be

equal to that at the downstream end. Furthermore, if the fluid pressure and

axial tension are zero at the downstream end, Eq. 5.29 will be reduced to

Eq. 5.17.

The system response characteristics depend on the support condition.

Without loss of generality, it is assumed that the upstream end is not allowed

to move axially or transversely. Physically, this means that the flow getting

into the pipe does not vary with the pipe motion; i.e., the fluid energy

supply to the pipe is at a constant rate. Depending on the downstream end

condition, all pipes can be divided into two groups.

" Nonconservative Systems - If the energy loss at the exit is not equal

to the energy gain at the inlet, the system is a nonconservative system.

* Gyroscopic Conservative Systems - If the energy loss at the exit is

equal to the energy gain at the inlet, it is a gyroscopic conservative

system. (It is called gyroscopic because of the existence of the Coriolis

force, which is discussed in Sec. 5.3.3.3).

Figure 5.5 shows typical examples of the two groups. In the nonconserva-

tive systems, the free end is allowed to move and rotate; therefore, the flow

velocity at the outlet is not necessarily the same as U. However, in the

gyroscopic conservative systems, the downstream end is constrained in the

transverse direction. Therefore, the flow velocity at the exit is always

equal to U.

5.3.2 Free Vibration and Stability Analysis

It is more convenient to use dimensionless terms by introducing the

following quantities:

w - u/R,

- z/t , 

(

(5.32)
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(a) NONCONSERVATIVE
SYSTEMS

(b) GYROSCOPIC CONSERVATIVE
SYSTEMS

Uy

UJ

uj9 U"T

U T 33 3-

y

4,,

Fig. 5.5. Nonconservative and Gyroscopic Conservative Systems

_ .

U
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M

S m + H d

M 0.5
v = (EI) U R , and (5.32)

(Contd.)

SEI 0.5
T=( +M ) t

d 2

Using Eq. 5.32, Eqs. 5.17 become

4 2 2 2
aw+ v2 + 200.5v 2w+ = 0

V ,2 2 3aa3T 2

=0 , w=0, w' =0 , (5.33)

1 , w" =0', W''' = 0 .

Equations 5.33 describe the motion for a cantilevered pipe. Pipes with other

end conditions can be similarly nondimensionalized.

Many different techniques have been used to analyze the pipe system.

Those different technique can be divided into two groups: exact solution and

approximate solution. Either can be applied to a nonconservative or gyro-

scopic system.

First, consider the exact solution. Let

w( ,T) = (t)exp(iaT) . (5.34)

S is the dimensionless frequency of oscillation of the pipe. Substituting

Eq. 5.34 into 5.33 yields

+ v2 + 1200.5v - =0. (5.35)
dt d&2,d

Let

4
C- Cexp(iX )) ,(5.36)

j -1
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where a 's are solution of the following equation:

X4 - v2 2 - 200.5vQ - 92 = 0 . (5.37)

Substituting Eq. 5.36 into the boundary conditions in 5.33 yields a set of

simultaneous equations to determine the constants C (i = 1 to 4). These

equations can be written

[ajk]{Ck} = (0} , j,k - 1 to 4 . (5.38)

The element aik's are given in Table 5.1 for four boundary conditions.

Setting the determinant of coefficients i: Eq. 5.38 equal to zero gives

the frequency equation. The frequency depends on the system parameters, 6,

and v; therefore, the frequency equation can be written

F(0,av) = 0 . (5.39)

Natural frequencies and mode shapes can be calculated numerically using

Eq. 5.38, Table 5.1, and Eq. 5.39 for various boundary conditions.

Alternatively, an approximate solution can be obtained. Let

w( ,T) = I g(T) n(F) , (5.40)
n=1

where the qn(T) are unknown time-dependent functions and +n(t) are space-

dependent functions forming a complete set. The +n(g) are chosen as mode-

shape functions of the free vibrations at zero flow velocity; more precisely,

they are the eigenfunctions of the system of Eq. 5.33, neglecting the flow-

velocity dependent terms,

4a2 0 . (5.41)
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Table 5.1. Boundary Conditions and Elements ajk's

End Conditions

Fixed-Fixed Fixed-Hinged Hinged-Hinged Fixed-Free

w=-0 w= 0 w=0 w= 0
(=0

2
Boundary - a00 aw 0 = 0

Conditions n{2 35
2

w 0 w = 0 w=0 -= 0

( =1 32=

2 2 3
- =0 a-w w = = 0

2 2 3

alk 1 1 1 1

a2k Xk Xk kk
Elements

ajk
a k exp(ia pX) exp(iX. ) k~exp(iak)a3kkk k k k

a4k k k k k k k k
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It can be shown that Eq. 5.41 and any sets of boundary conditions given in

Table 5.1 are self-adjoint. Such a system has a complete set of real

orthogonal eigenfunctions. The eigenfunctions and natural frequencies can be

obtained by conventional methods.

Having an orthonormal set of functions, the orthogonality condition is

used to obtain the function qn. On substituting Eq. 5.40 into 5.33,

multiplying through by *n, and integrating over 0 < F < 1, we find that

+E e a q +v 2
nrn m

m m

1 d+
a =f
bm f n d d .

d2
b

nmn 2d.

2
b q +2q =0,
nmm n n

and

q n = nexp(iQT) .

Substitution of Eq. 5.43 into Eq. 5.42 leads to the algebraic equations

(2 2 +ie aq +v2 bq 0,(9n)q nmqm m nmq m-0

m,n = 1, 2, ... , .

Natural frequencies can be calculated from the following equation:

( - 2 2)6nm + iean + v2bnml - 0 .

Calculations of the frequency from Eq. 5.39 or 5.45 are relatively easy.

(5.42)

Let

(5.43)

(5.44)

(5.45)

E = 2 B0.5v
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Because of the existence of the mixed derivative term, the system

possesses several interesting characteristics. Other techniques have also

been used to analyze the problem; see Li and DiMaggio (1964), Jones and

Goodwin (1971), Mote (1971), Kornecki (1971).

5.3.3 Frequency Characteristics

The frequency characteristics of the pipes vary with support conditions,

mass ratio 0, and flow velocity v. However, it is the support condition that

determines the major characteristics.

5.3.3.1 Gyroscopic Conservative System

Figure 5.6 shows the real and imaginary parts of the dimensionless

frequency n of the lowest three modes of a fixed--iixed pipe (3 = 0.1) as

functions of v (Paidoussis 1975). For v = 0, the S are real and equal to the
dimensionless natural frequencies of a fixed-fixed beam, namely S = 22.373,

61.673, 120.903, .... As the flow velocity increases, the real part of S

decreases with v and the imaginary part is zero. As the flow increases to 2n,

the first-mode frequency vanishes altogether; this corresponds to the

divergence of the pipe. Beyond the critical point of v = 2, the first-mode

frequ¬.icy becomes wholly imaginary. If the flow velocity is increased

further, divergence in the second mode occurs at v - 8.99. However, at a

slightly higher flow velocity, the frequencies of the first and second modes

coalesce and the frequencies become complex conjugates. This indicates the

onset of coupled-mode flutter.

In Fig. 5.6 the threshold of coupled mode flutter is associated with

Re(S1) = 0. For higher a, however, this is not the case, as shown in Fig. 5.7,

where the onset of coupled-mode flutter is preceded by a region of stability

(8.99 < v < 9.61). In this case the critical flow velocity, v = 8.99, no

longer corresponds to divergence associated with the second mode, but rather

to the point where the system regains stability in its first mode. As the

flow velocity is increased further, the system is briefly restabilized, and is

subsequently subject to divergence once again, at v = 47, followed by coupled-

mode flutter involving the third mode at v = 13.1.

The results given in Figs. 5.6 and 5.7 are for a pipe fixed at both ends,

but similar results are obtained for other gyroscopic conservative systems.

The general characteristics can be summarized as follows:

" For flow velocity less than the first divergence flow velocity, the

imaginary part of S is zero; i.e., the fluid flow does not contribute to

damping. As the flow velocity increases, the real part of n decreases with

flow.

" The pipe loses stability first by divergence. It is the same as that
2of a pipe subjected to an axial compression of magnitude v . Because the
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divergence is a static phenomenon, the critical flow velocity for divergence

is independent of 0.

" For small values of 0, the system buckles in both the first and second

modes before thc onset of flutter. For large values of 5, the system does not

buckle in the second mode prior to the onset of flutter.

Based on the linear theory, a gyroscopic conservative system may be

subjected to coupled-mode flutter for flow velocity higher than the lowest

divergence flow velocity. This is probably of academic interest only. Once

the pipe buckles, relatively large deformations occur and the nonlinear terms

become more important. In fact, the nonlinear theory shows that a pipe

supported at both ends cannot flutter (Holmes 1978).

5.3.3.2 Nonconservative System

Figures 5.8 and 5.9 show the dimensionless complex frequency of a pipe

fixed at the upstream end and at the other supported by a spring whose

constant is ks (d= - ks 3 /EI) (Chen 1971a). All roots of the frequency

equation are located in the upper half of the complex plane when v is small,

and the system performs damped oscillation in all modes. The effects of the

flowing fluid are to reduce the natural frequencies and to contribute to

damping. As the flow velocity increases, the imaginary part of SZ becomes

negative, and the system loses stability by buckling for Re(G) - 0 and by

flutter for Re(SZ) 0.

In the case of a = 10 and S = 0.2 (Fig. 5.8), for increasing v, the locus

of the first mode bifurcates on the Im(Q)-axis. It approaches the origin on

the Im()-axis, but then moves away from it without crossing to the unstable
region; accordingly, buckling-type instability does not occur in this case.

The second-mode locus crosses to the lower half of the complex plane at

v - 6.27; it corresponds to the flutter-type instability.

Consider Fig. 5.9, where a = 100 and S = 0.6. One branch of the first-

mode locus crosses the origin at v w 4.7, which is the theshold for the

buckling-type instability. With increasing flow velocity, the negative branch

of the first-mode locus eventually becomes positive at v w 7.2; thus, the

pipe regains stability. But at still higher flow velocity, the pipe stability

is lost again, the instability this time being a flutter mode. The locus of

the second mode is very similar to that of the first mode, but its locus on

the imaginary axis does not cross the origin. The buckling-type instability

is impossible in the second mode. Although there is no buckling instability,

the second mode also loses stability by flutter as che flow velocity

increases. The third and fourth modes are always stable for the low-velocity

ranges investigated. Although they might lose stability at higher velocities,

those velocities will be higher than those associated with the lower modes and

therefore do not have practical significance.
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In contrast to gyroscopic conservative system, the pipe may lose

stability by divergence or single-mode flutter, depending on the system

parameters. The frequency is normally a complex number; at low flow velocity,

the motion is damped.

5.3.3.3 The Role of the Coriolis Force

The two force components that dominate the response characteristics are

the centrifugal force MdU2(a2u/3z2) or v2 (a2 w/2) and the Coriolis force

2MdU(a2u/zat) or 200.5v(a2w/a3at) . The centrifugal force is the same as an

axial compression for a gyroscopic conservative system and a compressive

follower force for a nonconservative system. The centrifugal force can cause

buckling-type instability in a conservative system, but can cause buckling and

flutter types of instability in a nonconservative system. The role of the

Coriolis force also depends on the support conditions. Consider the

coefficient an in Eq. 5.42:

1 d4 d4
a + fa =f ( -n)d

nm mn n d + m d

= (l)O (1) + * (0)0 (0) . (5.46)

For any gyroscopic conservative system in which the pipe is not allowed to

move transversely at the end, the right side of Eq. 5.46 vanishes; therefore

a =-an . (5.47)
nm m

For a conservative system, the Coriolis force does not dissipate or supply any

energy; i.e., it is not a resistant force or an energy source. However, for a

nonconservative system,

1 2
ann = - () , (5.48)

ann is always positive. From Eq. 5.42, it is seen that the Coriolis force is

a damping mechanism for a nonconservative system.

The role of the Coriolis force can also be understood by considering the

two typical examples shown in Fig. 5.10--a conservative pipe and a non-

conservative pipe. Figure 5.10a shows a pipe hinged at both ends conveying a

fluid with a constant flow velocity U. At a particular instant, assume that

its deflected shape u(z,t) is symmetric with respect to the midspan. The

Coriolis force acting on the pipe is antisymmetric with respect to the
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midspan. Therefore, the symmetric displacement u(z,t) will result in

antisymmetric Coriolis force. The total work done by the Coriolis force on

the pipe from z = 0 to R is zero; the Coriolis force does not supply or

dissipate any energy. However, the motions associated with the symmetric

modes will produce the Coriolis force, which will induce the motion of

antisymmetric modes. This is the reason that in pipes conveying fluid, there

are no classical normal modes.

The role of the Coriolis force in a nonconservative system, such as a

cantilevered pipe, is quite different. The pipe in Fig. 5.10b is assumed to

deflect in the first mode. The Coriolis force is in the direction against the

motion along the whole pipe. This tends to decay the oscillations. There-

fore, the Coriolis force is a damping mechanism. This is the reason that at

low flow velocity, all modes of a nonconservative pipe are damped.

Because of the Coriolis force, no simple harmonic free vibrations

(classical normal modes) can occur. The natural vibration of a finite pipe

can be regarded as standing waves produced by traveling waves of equal

wavelength and amplitude, proceeding in opposite directions. Only when waves

of equal length travel in opposite directions at the same velocity can such

standing waves occur. The flowing fluid tends to accelerate the positive

waves along the flow and retard the negative ones. Mathematically, this can

be seen from Eq. 5.42, which can be written in matrix form:

[M]{Q} + [C]{Q} + [K]{Q} = {0} . (5.49)

The necessary and sufficient condition for the existence of a classical normal.

mode is that given in Eq. A.5. For pipes conveying fluid, this condition is

not satisfied for U # 0. Therefore, no classical normal modes exist in pipes

conveying fluid.

Figure 5.11 shows the variation of amplitudes of the fundamental mode

and second mode for a pipe hinged at both ends at different flow velocities

during a period of oscillation (Chen and Rosenberg 1971). At v = 0, various

parts of the pipe pass through the equilibrium at the same instant of time;

therefore, they belong to the classical normal modes. However, when v # 0,
the Coriolis force causes distortion of the different modes.

5.3.4 Stability Boundaries

The frequencies calculated from Eq. 5.39 can be used to establish the

stability boundaries. The critical flow velocity at which the pipe loses

stability is designated by vcr, and the corresponding frequency by acr'
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In a gyroscopic conservative system, the pipe loses stability by

divergence; i.e., at the critical flow velocity Scr = 0. Divergence is a

static phenomenon; therefore, the time-dependent terms do not affect the

critical flow velocity. For example, Fig. 5.12 shows the frequency ratio S2/0

(9o is S2 at zero flow velocity) as a function of v for a simply supported pipe

for different 0. The fundamental natural frequency varies with 8, as do the
frequencies of the higher modes. However, these frequencies for different 8

vanish at the same flow velocity; i.e., the critical flow velocity is

independent of 8. In this case the dimensionless critical flow velocity is

equal to ir, which corresponds to a pipe subjected to an axial compressive

force of rr2 EI/9,2.

As long as the system is a gyroscopic conservative system, the critical

flow velocity for divergence can be calculated rather easily. The method to

determine the critical flow velocity is the same as that for divergence

subjected to axial compressive force. The dimensionless critical flow

velocities for different support conditions are:

Fixed-fixed pipes: 2ir

Hinged-hinged pipes: it
3

Fixed-hinged pipes: 2ji

When the pipes have become unstable by divergence, the nonlinear effects

associated with relatively large tube displacement become important. The

linear theory is not expected to be applicable beyond the critical flow

velocity associated with the divergence. Based on the nonlinear theory, it

has been shown that a pipe in a gyroscopic conservative configuration cannot

flutter. Although flutter can occur in other structures, such as plates and

shells submerged in flow, the gyroscopic conservative system consisting of a

pipe conveying fluid apparently does not lose stability by flutter.

In contrast to a gyroscopic conservative system, a nonconservative system

may be subjected to flutter and/or divergence types of instability.

Figures 5.13 and 5.14 show the critical flow velocities and the corresponding

oscillation frequencies for a cantilevered pipe conveying fluid, a system in

which stability is lost only by flutter. Rather irregular behavior of the vcr
and er curves is noted in the vicinity of 8 = 0.3, 0.6, and 0.9. Further

increases in flow velocity cause the pipe to regain stability and to become

stable again. The real component of frequency is shown in Fig. 5.14 for

parameters that produce neutral stability. The real part of the frequency

does not go to zero at the onset of instability, as for divergence of a

gyroscopic conservative pipe. The cantilevered pipe does not buckle if the

flow velocity exceeds a critical value, as in the case of the hinged-hinged

pipe. Instead, the pipe oscillates violently, as shown in Fig. 5.15 for one

cycle of oscillation. Note that the pipe becomes unstable in the second mode

and the free end of the pipe slopes backward to the direction of motion for
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the greater part of the cycle. This "dragging" motion can be interpreted

using the energy transfer between the pipe and flow. Based on Eq. 5.8, the

energy gained by the pipe is

t 22 .
&W = f 2 -MdU(i + it.)dt . (5.50)

ti

If the system is to excite vibrations of constant amplitude about equilibrium,

the average energy transfer to the pipes must be zero, so the quantity given

by Eq. 5.50 must vanish when the integration extends over one cycle. When U

is small, Eq. 5.50 shows that vibrations about stable equilibrium are always

damped, since the first term in the integrand predominates and therefore makes

AW negative. The first term is always negative, buj amplified vibrations

(AW> 0) are possible when U is large, provided i and i are sufficiently out

of phase that t.j has a negative value. This is why the pipe must slope

backward.

5.3.5 Effects of Various Parameters

5.3.5.1 Fluid Pressure

The pressure term az (pA a) in Eq. 5.29 arises because the radial

component of the pressure is acting over a larger area on the tensile side of

the neutral axis than on the compressive side (Naguleswaran and Williams 1968;

Stein and Tobriner 1970). If the pipe ends are closed, and the hydrostatic

pressure is thereby transmitted to the pipe, then the two pressure terms would

exactly cancel one another and there would be no net effect of internal

pressure. However, in the case of pipes conveying fluid, the ends are open;

the action of the pressure term on the pipe is equivalent to an axial

compressive load of magnitude pA. The presence of the pressure term affects

appreciably the natural frequency of a pipe and its effect is the same order

of magnitude as that due to flow.

5.3.5.2 Gravity

The effect of fluid gravity on pipe vibration can be analyzed using

Eqs. 5.29 and 5.31. The combined effects of gravity and flow are different

for different support conditions. Its effect on the cantilevered pipe is of

particular interest (Paidoussis 1970).

* Hanging cantilevers - Gravity does not affect the fundamental

instability mechanism of flutter. Divergence-type instability is not possible

even with the effect of gravity.

* Standing cantilevers - A standing cantilever, if it is long enough, can

become unstable by buckling under its own weight. Therefore, a standing



5-35

cantilevered pipe conveying fluid may be subjected to buckling in addition to

flutter-type instability. The lowest critical flow velocity may be associated

with flutter or divergence, depending on the system parameters.

In the gyroscopic conservative system, the gravity force is not expected

to change the fundamental stability characteristics. Therefore, flutte-type

instability is not expected to be associated with the lowest critical flow

velocity.

5.3.5.3 Damping Forces

In the course of pipe motion, energy will be dissipated by friction

between the pipe and the surrounding fluid medium, by internal friction within

the material of the tube and by the friction at the supports. In general,

these dissipation effects can be accounted for adding the viscous damping term
au5 4

C - or structural damping term y EI(a u/ataz ) added to the equation ofa ats
motion. The analysis of the equation of motion including these additional

terms remained the same.

The effects of those dissipation forces on nonconservative systems are

complex; they may stabilize the pipe or destabilize it (Paidoussis 1970;

Gregory and Paidoussis 1966). The destabilizing effect of dissipative forces

on nonconservative systems, which was discovered by Ziegler (Herrmann 1967),

is a feature of a nonconservative system (Herrmann and Jong 1965; Nemat-Nasser

et al. 1966). In contrast to flutter instability, the dissipative forces do

not affect the divergence boundary.

5.3.5.4 Elastic Springs

A pipe, fixed at the upstream end and supported by a rotational spring

and a displacement spring with spring constants kr and ks, respectively, is of

particular interest in demonstrating the transition of instability mechanisms

(see Fig. 5.16) (Lin and Chen 1976; Noah and Hopkins 1980). Two dimensionless
- 3

constants, a = k Z /EI and I = k /EI , are introduced. The analysis of
s r

this problem is similar to those described in Sec. 5.3.2.

The pipe may lose its stability by divergence, flutter, or both,

depending on the magnitudes of the springs a and J. Figure 5.17 shows the

stability map in the v2 - a plane for 8 = 0 and three values of 3. In

Fig. 5.17(a), a buckling-type instability will not occur for a < a2. At

a = al, the critical flow velocities for the first flutter instability and

second buckling instability coincide. For a2 < N < a, there are multiple

stable and unstable ranges of flow velocity. For 3 > a, the system may lose

stability by buckling and flutter, but the lowest critical flow velocity is

associated with buckling. In Fig. 5.17(b), no buckling instability exists for

a3 < a < a2, multiple stable and unstable regions exist for a < a3 and

a2 < a < a, and for a > a1, the lowest critical flow velocity is attributed

to buckling. Figure 5.17(c) has the same implication except that at a = a1



5-36

kr

U

ks2

Fig. 5.16. Pipe Fixed at Upstream End and Supported by Rotational
Spring and Displacement Spring at Downstream End



5-37

60

50- 50 INSTABILIT Y

(FLUTTER)
40 - /-INSTABILIT Y

(BUCKLING)

30-

20
S (a) j0

10

50 INSTABILITY
(FLUTTER)

INSTABILIT Y

40-(BUCKLING)

30 -INSTABILITY
(BUCKLING)

20 - (b)B=10

7a 3  Ia 2  a
10

INSTABILITY50 (FLUTTER) INSTABILITY
(BUCKLING)

40

INSTABILITY
30 (BUCKLING

20 -g(c) :30

a4  ,a3 a2 ,al

IC '
0 10 20 30 40 50 60 70 80 90 100

Fig. 5.17. Stability Maps in a - v2 plane (Lin and Chen 1976)



5-38

and a4, the flutter-type instabilities coincide with the values of buckling

type. We have not extended the investigation beyond a1 for flutter-type

instability because the system is unlikely to survive to that region after the

two lowest buckling loads. Based on the results presented in Fig. 5.17 and

similar results for other values of , Fig. 5.18 is the stability map in the

a - i plane. The numbers in the figure indicate the square of the lowest

critical flow velocity; solid lines are for buckling type and dashed lines are

for flutter type. The region bounded by the two dotted lines does not have

buckling-type instabilities; therefore only flutter-type instability exists

there. Outside the region bounded by the dotted lines, the lowest critical

flow velocity of flutter type is always higher than those of buckling type;

thus only buckling-type critical flow velocities are shown there. Note that

on the left side of the flutter region, for a given S, increasing a tends to

increase the buckling flow velocity, while on the right side, increasing a
tends to reduce the critical flow velocity. On the other hand, for a given a,

increasing i tends to destabilize the system on the left side and stabilize

the system on the right side of the flutter region. For large values of a or

, the lowest critical flow velocities are associated with buckling.

5.3.5.5 Pulsating Flow

When the flow is a periodic function of time, e.g.,

U(z,t) = U (1 + ycoswt) , (5.51)

two additional types of dynamic instability can occur--parametric resonance

and combination resonance.

" Parametric resonance occurs over specific ranges of the

oscillating frequency of the flow w in the vicinity of 2wn/m,

n,m = 1, 2, 3, ... Go, where own's are the characteristic

frequency of the pipe. The ranges of w vary with p. For a

conservative system, the Coriolis force is not a damping

mechanism; as p + 0, parametric resonance occurs at w + 2 n/m.

For nonconservative systems, generally there is a minimum p

below which parametric resonance is impossible.

* Combination resonance occurs in the neighborhood of w = (wm

in)/q, m # n, and m,n,q = 1, 2, 3, ... . The frequency ranges

of combination resonance depend on the steady flow component Uo,

excitation parameter p, and pipe support condition.

These two.. types of instability have been discussed extensively by several

investigators, e.g., Hopkins (1969), Chen (1971b), Ginsberg (1973), Bohn and

Herrmann (1974a), Paidoussis and Sundararajan (1975), Singh and Mallik (1978),
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Ahmadi and Satter (1978), Singh and Mallik (1979), and Noah and Hopkins

(1980).

5.3.5.6 Two-Phase Flow

When the fluid passing through the pipe is in two-phase flow, the time-

varying density of the two-phase flow may cause parametric resonance and

combination resonance. Therefore, the effects of two-phase flow are

characteristically similar to those of pulsating flow. A series of studies

was published by Hara (1973, 1977) and by Hara et al. (1972). He f ound a

significant relation between piping system fundamental natural frequency and

dominant frequency of water slug arLival in the two-phase flow, their ratios

being 1/2, 1/1, 3/2, and so on, where strong vibration occurred. The

theoretical characteristics of two-phase flow in a pipe are very complex, even

without pipe oscillations. Further study of this problem is needed.

5.3.5.7 Nonlinear Effect

Nonlinear analyses of pipes conveying fluid have been done by Thurman and

Mote (1969), Holmes (1978), Lundgren, Sethna, and Bajaj (1979), Bajaj, Sethna,

and Lundgren (1980), Rousselet and Herrmann (1981), and Edelstein, Chen, and

Jendrzejczyk (1986). These studies were performed to evaluate the applicable

range of the linear theory, and response in the postcritical flow velocity

range. Based on the nonlinear theory and experimental data, the linear theory

is generally applicable at subcritical flow velocities if the nonlinear effect

is not important. For example, for a cantilevered pipe, the linear theory

predicts that the natural frequency and mode shape very well up to the criti-

cal flow velocity. Even at the critical flow velocity, the linear theory

predicts correct flutter mode shape except for magnitude. However, for those

cases in which the nonlinear effect caused by the flow is important (e.g., for

the tension induced in a fixed-fixed pipe), the linear theory is not

applicable for flow velocity larger than about 60% of the lowest critical flow

velocity.

5.3.6 Experimental Studies

Table 5.2 lists experimental investigations of pipes conveying fluid.

Most experiments focus on instability. A successful test of the instability

of pipes conveying fluid is by no means trivial. Such testing generally

requires a high-pressure loop for metal pipes with high flexural rigidity,

while for a low-pressure loop, pipes of rubber, plastic, or other materials

with very low flexural rigidity are required. In some experiments, no

instability is observed because of the limitations of the available

equipment. A high-pressure loop may be more expensive, but for a low-pressure

loop, the material properties are much more difficult to control and the

initial imperfection may affect the instability boundaries. One way to



Table 5.2. Experimental Studies of Pipes Conveying Fluid

Support Tube Measured Instability
Authors Tube Material Fluid Condition Orientation Instrumentation Parameters Type Comment

Long (1955)

Dodds and
Runyan (1965)

Steel tubes

Aluminum alloy

Gregory and Rubber tubes
Paidoussis Metal tubes
(1966)

Greenwald and Elastomeric and
Dugundji polyethylene
(1967) tubes

Naguleswaran Neoprene tube
and Williams
(1968)

Paidoussis Rubber tubes
(1970)

Hill and Latex surgical
Swanson tubes
(1970)

Liu and Mote Aluminum
(1974)

Paidoussis Silicon rubber
and Issid tubes
(1976)

Becker and Plastic
Hauger (1978) drinking straws

Hannoyer and Silicon rubber
Paidoussis tubes
(1979)

Shilling and PVC pipes
Lou (1980)

Jendrzejczyk Polyethylene
and Chen and acrylic
(1983)

Water

Water (high-
pressure)

Water and air,
oil (high-
pressure)

Water

Water

Air or water

Water

Oil (high-
pressure)

Water

Air

Water

Water

Water Six different Vertically Optical
supports tracker

Flow velocity low;
no instability.

Hinged-hinged, Horizontal Strain gauges Damping,
Fixed-free, frequency
Fixed-fixed

Hinged-hinged Horizontal Strain gauges Tube displace- Divergence
meant, critical
flow velocity,
tube frequency,
and damping.

Fixed-free Horizontal Camera Critical flow Flutter
velocity, fre-
quency and mode
at instability.

Fixed-free Hanging Strain gauges Critical flow Flutter
Fixed- vertically velocity, fre- Divergence
hinged quency and mode

at instability.

Fixed-fixed Horizontal Capacitance Frequency
pickups

Fixed-free Standing Fiber optics Critical flow Divergence
and hanging velocity, fre- and flutter
vertically quency and mode

at instability.

Fixed-free Critical flow
velocity,
frequency at
instability.

Fixed-free, Hanging Strain gauges Natural fre-
Fixed-fixed, vertically and acceler- quency, static
Fixed-hinged ometers displacement.

Fixed-free, Hanging Boundaries of Parametric
Fixed-fixed vertically parametric resonance

resonance.

Fixed-free Stroboscope Critical flow Flutter
velocity, fre-
quency and mode
at instability.

Fixed-free Hanging Flow velocity Flutter
vertically and oscillation

frequency at
instability.

Fixed-free Hanging Accelerometers Frequency and
vertically tube response

spectra to
forced excita-
tion.

Frequency, Divergence, Techniques for control
static deforma- flutter stability are studied.
tion, and RMS
displacement.

Nozzle attached to
free end in some
cases.

No buckling observed
because of nonlinear
effects.

Lumped masses attached
to tubes.

No instability
observed because of
nonlinear effects.

Tubes conveying
pulsating flow.

Tapered tubes.

No instability
observed because of
limitations of
equipment availability;
lumped masses attached
to tubes.

V,
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alleviate the problem is to use articulated pipes (Benjamin 1961; Bohn and

Herrmann 1974b; Rousselet and Herrmann 1978). However, the characteristics of

an articulated pipe are not necessarily the same as those of a continuous pipe

(Paidoussis and Deksnis 1970).

Figure 5.19 shows a series of static deformation shapes for a pipe fixed

at the upstream end and a spring at the downstream end. The static deforma-

tion increases with flow velocity; it is caused by fluid centrifugal force.

As the flow velocity is increased to a value close to the critical one, static

deformation increases more rapidly. The dominant oscillation frequency is

associated with the fundamental mode. Based on the linear theory, the pipe

fundamental frequency will become zero and the pipe will lose stability by

divergence. However, the theoretical results of the divergence behavior based

on a linear analysis are physically unrealistic since nonlinear effects

dominate the behavior under these conditions. Difficulty was experienced

experimentally in obtaining values of frequency at flow speeds greater than

about 60% of the theoretically predicted divergence speeds. A condition of

zero frequency was never achieved (Liu and Mote 1974; Jendrzejczyk and Chen

1983).

Based on the linear theory, the critical flow velocity is independent of

initial disturbance. In experiment, the flutter can be initiated by transient

excitation. If the tube is not excited with a mechanical excitation other

than the flow in the pipe, the pipe loses stability by flutter spontaneously

when the flow velocity is increased to a critical value. This flow velocity

is called the critical flow velocity for intrinsic flutter. If the tube is

excited by mechanical excitation, the pipe may lose stability at a different

flow velocity; this flow velocity is called the critical flow velocity for

excited flutter. The critical flow velocity for excited flutter due to

transient excitation is smaller than that for intrinsic flutter. Typical

responses of a cantilevered pipe for the two different types of flutter are

given in Figs. 5.20 and 5.21, in which the pipe displacement and dominant

frequency are given as functions of flow velocity for increasing and

decreasing flow velocity (Chen and Jendrzejczyk 1984).

Excited Flutter: The pipe in Fig. 5.20 is excited at different flow

velocities. Once the flow velocity is increased to the excited flutter

velocity, large pipe oscillations occur. With the increase of flow velocity,

pipe displacement and dominant response frequency continue to increase with

the flow velocity. When the flow velocity is reduced, pipe displacement and

dominant response frequency follow the same trends as those for increasing

flow velocity.

Intrinsic Flutter: In Fig. 5.21, no excitation is given to the pipe.

The pipe becomes unstable by intrinsic flutter at about 23.8 m/s. There is a

significant jump in response amplitude at the intrinsic flutter velocity.
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(b) 9.75 rn/s

(e) 17.07 m/s (f) 23.16 m/s

Fig. 5.19.

(d) 14.94 rn/s

(g) 24.69 m/s (h) 27.13 m/s

Static Deformation Shapes for a Polyethylene Tube 60.96 cm long
with 1.27 cm OD and 0.16 cm Wall Thickness, and a Spring Support
at the End with Spring Constant 0.876 N/cm (Jendrzejczyk and
Chen 1983) (ANL Neg. No. 113-83-4)

(a) 0 m/s (c) 12.80 m/s
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With the increase in flow velocity in the intrinsic flutter region, pipe

displacement and response frequency increase with the flow velocity. When the

flow velocity is decreased, large oscillations continue in the excited flutter

region. Finally, the pipe regains stability at about 22.2 m/s, which is the

excited flutter velocity.

A series of tubes fixed at the upstream end and a knife-edge support

movable along the tube were tested by Chen and Jendrzejczyk (1984) to study

the transition of two types of instability. The tubes were polyethylene,

68.58 cm long with 0.16 cm wall thickness. The critical flow velocities for

the tube with 1.27 cm OD as a function of the knife-edge support location are

given in Fig. 5.22. The stability of the tube can be divided into two

regions, t1/t > Rt and t,/t < Rt.

tl/t > Rt: At low flow velocities, the natural frequencies can be

measured. At high flow velocities, the tube natural frequencies are not

easily obtained. When the flow velocity is increased to the critical flow

velocity, the tube buckles. Figure 5.23 shows the tube deformation at various

flow velocities for ,1/t = 0.82. Note that when the flow velocity is

increased to the critical value, the overhung portion is straight. This is

consistent with the results obtained from the linear theory.

tl/t < Rt: At low flow velocities, the tube displacement is small; tube

displacement is caused by the turbulent flow. As the flow velocity increases,

the modal damping value increases because of the Coriolis force. In the

higher flow velocity region, the tube is overdamped. As the flow velocity is

increased to the critical value, the tube loses stability by flutter.

Figure 5.24 shows the flutter modes for 91/t - 0 and 0.24. These pictures are

taken for flow velocity a little higher than the intrinsic flutter flow

velocity. The instability is associated with the second mode.

Figure 5.25 shows time histories of tube oscillations at various floss

velocities with tl/t = 0.25. The response characteristics are noted below:

" At 0 flow, the tube is damped; its natural frequency is less than

3 Hz.

" As the flow velocity is increased, the tube is overdamped (see

Figs. 5.25b and c). Any disturbance to the tube does not cause the tube to

oscillate.

" With further increase in flow velocity, the tube damping becomes

smaller again (see Figs. 5.25d and e).

" At 25.2 m/s (see Fig. 5.25), the flow velocity is about equal to the

critical value.

* For the flow velocity above the critical value (see Figs. 5.25g-i),

the tube loses stability by flutter. It takes only a few cycles of

oscillations for it to reach the limit cycle.
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(b) 13.35 m/s

A

(d) 19.84 m/s (e) 21.75 m/s (f) 23.66 m/s

Fig. 5.23. Static Deformation Shapes for a Polyethylene Tube 68.58 cm long with 0.95 cm OD

and 0.16 cm Wall Thickness for R1/k = 0.82 (Chen and Jendrzejczyk 1984)
(ANL Neg. No. 113-83-220)

(a) 0 m/s (c) 18.82 m/s
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(b) I/L = 0.24

Fig. 5.24. Flutter Modes of a Polyethylene Tube 68.58 cm long with 0.95 cm OD and

0.16 cm Wall Thickness (Chen and Jendrzejczyk 1984) (ANL Neg. No. 113-83-222)
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Fig. 5.25. Time History of Tube Oscillations at Various Velocities for

a Polyethylene Tube 68.58 cm long with 0.95 cm OD and 0.16 cm

Wall Thickness (Chen and Jendrzejczyk 1984)
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At 9,/l = Rt, the critical flow velocities for divergence and flutter are

identical. Theoretically, the tube can buckle and flutter simultaneously.

However, in experiment, this phenomenon is difficult to demonstrate. There is

a suggestion that the interaction of different types of instability mechanisms

may be one of the mechanisms to cause "chaotic motions" (Dowell 1982).

5.4 CURVED PIPES

The dynamics of curved pipes conveying fluid has been studied theoreti-

cally by several investigators (Springfield 1970; Unny et al. 1970; Chen 1972a

and b; Chen 1973; Hill and Davis 1974; Doll and Mote 1976;. Chen and Bert

1977). Apparently, no experimental work has been published on this subject.

In this section, analysis will be presented based on the linear theory.

5.4.1 Equations of Notion

The system under consideration consists of a uniformly curved pipe

conveying fluid (Fig. 5.26). The pipe has a radius of curvature R, internal

cross-sectional area A, mass per unit length m, flexural rigidity EI,

torsional rigidity GJ, and subtended angle a. The fluid density is p and the

fluid is flowing with a constant velocity U; thus the mass flowrate is pAU.

The following assumptions are made in deriving the equations of motion:

" The effects of gravity and material damping are negligible.

" The pipe is inextensible.

" The rotatory inertia and shear deformation are negligible.

" The small-scale details of fluid motions--for example, turbulence and

secondary flow--are neglected.

" All motions are small.

The equations of motion can be derived from the equilibrium of a pipe/fluid

element or from Hamilton's principle (Eq. 5.8). The initially unstressed

state of the pipe is in the x-y plane (Fig. 5.26). In the stressed state,

pipe deformations consist of radial displacement u along the N axis, trans-

verse displacement v along the z axis, axial displacement w along the T axis,

and the twist angle 0. The potential and kinetic energies of the pipe are

2 2 2
a MN M MT

v f {-j +-jEy+- J} R d9
0

and (5.52)

T)2 2 2) R d ,
0
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6a

0

(o) UNSTRESSED STATE

Fig. 5.26. Definition of Coordinates and Displacements of a Uniformly
Curved Pipe Conveying Fluid
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where

MN - (R* - ) ,
R2

El u+)aw
z R2 2 0R a (5.53)

and

GJ h v
MT - R C Be+ .TR

Because the pipe is taken to be inextensible, it is required that

u - . (5.54)

Next, consider fluid flow kinematics. The position vector of a point on

the center line of the deformed pipe is

= [(R - u)cosO - w sin]e

+ [(R - u)sinO + w cosO]Jy + vz, (5.55)

where e ,y, and ez are unit vectors along the x, y, and z axes. The unit

vector t tangential to the tube center line can be obtained from Eq. 5.55;

i.e.,

=[-sine - R 3u6+ w)cos] ex

+ [oss -R(a+ w)sin6]e + e . (5.56)

Because the pipe is assumed inextensible and the fluid incompressible, the

enclosed volume of the fluid is constant and the relative velocity of the

fluid with respect to the tube is always equal to UT. For neglecting the

effect of the twisting motion on the fluid, the absolute flow velocity is

A- + U t . (5.57)
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Substitution of Eqs. 5.55 and 5.56 into Eq. 5.57 yields

U =[-au - au + w)acosw - (U + )sine} +

+ {(u + )cos - [a +R( + w)]sine}e

at RyR z

Therefore, the kinetic energy of the enclosed volume of fluid is

T =d d U2+ 2 2 2 +2Ua
f 2 fat at22atat

0

+ + a) 2Uavav (U2  +w2+ R aeo t R ae at 2 ao'

2 2

+ U (86) ] R d6 .(5.59)
R

Because the fluid is assumed incompressible, the potential energy of the fluid

is zero; i.e.,

Vf = 0 . (5.60)

Substituting for (= Vs + Ts + Vf + Tf), R, and T into Eq. 5.8, we obtain the

resulting Euler-Lagrange equations

2

( 3 w+ 2 3 +4 + Md ( 4w+ 2 a w)

R 3 a6 36 e26 R 3a ae

4 2 4 2
+ 2MdU 3 w +2t + R(m + Md 2w 22) = 0 , (5.61)

ao3 at ) ae2at at
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E 4 2
E__ - R ) -
R30 ao 32

2
+2dU aoat+

2
R

ao2

R(m + Md)
a2

ate

M U2 2
+d a v

R 9a2

-0

and

El 2 2 2-(R$ - )- (R -- + )= o .
R 2 a R a 2 ae

The associated boundary conditions are

5
El a

3
2 3+

+2MU aw +
30 at

MU2  3

a ) + ae ( + )

33
MM2ao

'Hat 

2

+ (MdU AM+ MdU)6w 0,

-E +a-) + U w + w)a2 w d 2
R 30 30 30

2 2

+ MdU 30 t]6(i) + [MdU 3wt

M U2 2

E 30 aw

R3 (a3+3)6( ) = 0 ,

Swr

0

(5.64)

=0,

(5.62)

(5.63)
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RI - 3V) + (R-U + ) -
R ao3 R 3 a36)

2

- MU ]6vI+ (MdU- + MdU

MdUd av
R ae

aV)6v
ae =a

=0

E (R
R

and

(5.65)

-(R- + -)64 = 0R2 ae +aoRo

Equations 5.61 and 5.64 pertain to the in-plane displacements, while Eqs.

5.62, 5.63, and 5.65 are associated with the out-of-plane displacements and

twist. There is no coupling between in-plane motion and out-of-plane motion;

therefore, in-plane motion and out-of-plane motion can be studied inde-

pendently. Equations 5.64 and 5.65 display all admissible end conditions for

the system under consideration; the most-often-assumed end conditions are

free, pinned, and clamped.

5.4.2 Out-of-Plane Vibration and Stability Analysis

Out-of-plane flexural-twist motions are governed by Eqs. 5.62, 5.63, and

5.65. With the following nondimensional parameters,

Md

S=v/R M
~m+Mdd

M 1/2 El 1 /2  2
v= ( RU, t=() t/R

d

GJ
EI

Equations 5.62 and 5.63 become

4 2 2 2 2

4 2  2 2 2ao ae ao ao ao

2 2

a 2

(5.66)

(5.67)

ae2 00
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and

2 2

-e - + x(
(5.68)

2
+ )

ao

Let

and

Substitution of Eqs. 5.69 into 5.67 and 5.68 yields

4

de

d2 d2

dO2 dO2

2
+)

d62

2
2 d

d2

+ 1200.5v2 d 2s = 0
dO-

and

2 A2
dO dO

2

dO

Elimination of q from Eqs. 5.70 and 5.71 gives

4

(2+ 2) +
dO

0.5 +

dO3

2
- i2 v0. + 4- = 0 . (5.72)

The solution of Eq. 5.72 is

6 ix 6

3'= C e n .(5.73)
j=1

(5.69)

(5.70)

6
+

d

(5.71)

2)

(1 - -K 2

2

dO

,(e, ) = n(e)einT

i
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where Cn's are some constants to be evaluated by using the boundary conditions

and an's are the six roots of the equation

(2 + v2 ) 4 - 200.5 %3 + (1 - -2 22X2
K

0.5 a2
- 2 0.5 vcZX - = 0

K

Integrating Eq. 5.71 twice, we have

1
= 1+ K ~ l 4dQe- K4),

(5.74)

(5.75)

in which the two integration constants, in general, are zero. Substitution of

Eq. 5.73 into 5.75 yields

6

1 +j x..C.( + K) e (5.76)

The coefficient C. 's are determined from the equations obtained by

substituting Eqs. 5.73 and 5.76 into the boundary conditions at 0 = 0 and

6 = a. The equations to determine C. can be written

[a.k]{Ck} = {0} ; j,k = 1, 2, 3, 4, 5, 6 .

The element aik's are given in Table 5.3 for four boundary conditions.

Setting the determinant of coefficients in Eq. 5.77 equal to zero gives the

frequency equation. The frequency depends on the system parameters v, K, a,

and 0; therefore, the frequency equation can be written

(5.78)

(5.77)

F(c2,v, K, aS) = 0 .
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Table 5.3. Boundary Conditions and Elements ajk's

End Conditions Clamped-Clamped Clamped-Pinned Pinned-Pinned Clamped-Free

=-0-0 E-0 t=-0

e - 0 -- 0 - 0 -+ - 02- - 0
38 38 38 38 38

2
S-0 $ - 0 1- +=-0 -0

38

Boundary
conditions -0 - 0 -0 + 0

38 38 38 38 38 6

2 3

* -0 - 2- -0 -338
38 38 38

-+k -+ k

al k Xk k Xk

2

a2k + k)+ k) XkA k-lk

Akkk Xk

kak

Elements 2

kjk 1+ k 1 + k 12 k (k ek

a~ ) e( k) e2( A22

k k k k

2 2

a~k Ak 2+ k) (. k ) -(A) (12 k

k Akk k k e

86k e k ( - ika Aka Ak (- -1 eka
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With these qualitative results, we can evaluate the frequency numerically

from Eq. 5.78. The frequency depends on the stiffness ratio K; for a circular

pipe,

K , (5.79)=1 + v'

where v is Poisson's ratio of the pipe. The natural frequencies of a

conservative system and a nonconservative system for v = 0.3 and a = n are

shown in Figs. 5.27 and 5.28 (Chen 1973).

Figure 5.27 shows the frequencies of a clamped-clamped pipe as functions

of the flow velocity v. With no flow, the pipe behaves as an incomplete

ring. As the flow velocity increases, the frequency becomes smaller. With

further increase in flow velocity, some frequencies become zero and the system

loses stability by buckling. We observe that for increasing a the first

frequency decreases while the others increase for conservative systems. This

characteristic is the same as that of straight pipes.

Figure 5.28 shows the complex frequencies of the first four modes of a

cantilevered pipe. The numbers in the figure indicate the values of flow

velocity v. When v is small, all roots of Eq. 5.78 for the cantilevered tube

are located in the upper half of the complex PI plane and system oscillations

are damped in all modes. The effects of the flowing fluid are to reduce the

natural frequencies and to contribute to the damping; the damping effect is

due to the Coriolis acceleration. As the flow velocity increases, some roots

cross the Re(S) axis, and the system loses stability by flutter. For the

example shown in Fig. 5.28, the first, third, and fourth modes are always

stable in the ranges of flow velocity considered. The frequency of the second

mode crosses the Re(A) axis at v = 1.5, 1.85, and 2.2; thus the system loses

stability at v = 1.5, regains stability at v = 1.85, and loses stability again

at v = 2.2. The other modes may also become unstable if the flow velocity is

increased further; however, these flow velocities will be higher than that of

the second mode and have no practical significance.

The stability of gyroscopic nonconservative systems can be studied only

by the dynamic method. Therefore, the critical flow velocity of a clamped-

free pipe is obtained from Eq. 5.78. The critical flow velocity for conserva-

tive systems is a function of the subtended angle a and Poisson's ratio v.

The results for v = 0.3 are given in Figs. 5.29-5.31. For nonconservative

systems, the critical flow velocity depends on the mass ratio a in addition to
a and v. The instability boundaries are obtained from Eq. 5.78; the results

are shown in Fig. 5.32 for v = 0.3 and a = w/2, 3/4, and n as functions of 3.
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As can be seen from Figs. 5.29 and 5.30, the clamped-clamped and pinned-

pinned pipes can lose stability in the symmetric and asymmetric modes. The

lowest critical flow velocity of the clamped-clamped pipe is associated with

the first symmetric mode for K (= a/2,r) smaller than 1.46. But for K larger

than 1.46, the lowest critical flow velocity is alternatively associated with

the first asymmetric and first symmetric modes. For the pinned-pinned pipe,

the first symmetric mode is a pendulum motion with zero strain energy and is

always unstable; therefore, the lowest critical flow velocity is zero. The

first critical flow velocity shown in Fig. 5.30 is in the first asymmetric

mode. When K is an integer, the first asymmetric mode is also unstable for

any small flow velocity.

The stability map for a nonconservative system is shown in Fig. 5.32; the

system is stable for values of v lying below the curve with the appropriate

value of a, and unstable above it. The instability of nonconservative systems

is of the fluttering type and depends strongly on the mass ratio 0.

Increasing the value of $ tends to stabilize the system. For certain ranges

of $, the system possesses multiple stable and unstable ranges of flow

velocity. For example, consider the case for a = ir and 1 = 0.75. The tube

loses stability at v = 1.50, regains stability at v = 1.85, and loses

stability again at v - 2.20. This phenomenon is easily understood from

Fig. 5.29 and is similar to that of a straight tube.

5.4.3 In-Plane Vibration and Stability

In-plane motion is governed by Eqs. 5.54, 5.61, and 5.64. Upon

introducing the dimensionless parameters given in Eq. 5.66 and

n = u/R , = w/R , (5.80)

the equation of motion becomes

6 4 2
+ (2 + v2) + (1 + 2v2) + v2

ao6  3 ae 2

+ 20/2v + 261/2v + LL 2 - = 0.-- -2 a2-2 =0.(5.81)
arao aae 3ta a T

The boundary conditions to be satisfied are as follows:
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* For fixed-fixed tubes,

(,T) - 0

n(,T)- 0 at 0 - 0 and at -a.

an(, - 0

30

* For fixed-hinged tubes,

F(0,t) = 0

r(9,t) = 0 at 0 0;

a3(6,r) = 0
30

((0,T) = 0

r(0,t) = 0

3

303

at 0 - a."

0

" For hinged-hinged tubes,

(e, T)= 0

n(0,') = 0 at 0 = 0 and 0 = a

3ae

* For clamped-free pipes,

F(0,r) = 0

n(ET) = 0 at 6 = 0

3r0(0,) = 0
30

(5.82)

(5.83)

(5.84)

(5.85)
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a3 e )+ - -- - 0ao3  ae

as % e + 3 2 - 2 /v[a t +

42

ao5 3 a 2-o/23

+ 33Et ) + v2 (.
aaT

(5.85)
(Contd.)

at = a,

where a is the total angle of the curved tube.

The solution can be obtained following the same procedure as that for the

out-of-plane motion:

6 ix j
= Re[(I C.e J ) ei)T

j-1

6 is e
Re[( i C e )e ]

j1l

and

(5.86)

where Xj's are the solution of the equation

a6- (2+v2X4 -

+ 200. 5vslx-

280 .5vS X 3 + (1 +

S2 - v2 = 0 .

2v2 -s2)2

(5.87)

The constants C 's are determined by

Cl

C2  0

C3  0 ,0

C4  0

C5  0

C6 U

(5.88)

a1 1

a21

a31

a41

a 5 1

a61

a1 2

a.2

a3 2

a42

a5 2

a6 2

a13

a2 3

a33

a43

a5 3

a63

a14

a24

a3 4

a4 4

a54

a6 4

a1 5

a25

a3 5

a45

a5 5

a65

a1 6

a26

a3 6

a46

a 5 6

a66 -
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where

alk = 1

a2k=Xk

a3k = -k for fixed-fixed and fixed-hinged tubes,k

- -i a3 , for hinged-hinged tubes,

a4k =

i
e

a5k = iAk l

a 6k 2 iakaa6k ke , for fixed-fixed tubes,

= -ik3e , for fixed-hinged and hinged-hinged tubes,

k = 1, 2, 3, 4, 5, 6.

and

= 0 , for fixed-fixed, fixed-hinged and hinged-hinged pipes

= v2 , for for fixed-free pipe.

The frequency equation is obtained by setting the determinant of coefficients

in Eqs. 5.88 equal to zero. It is a functional relation between the frequency

G and system parameters, such as the total angle a, mass ratio S, and flow

velocity v. Therefore, the frequency equat .on can be written as

F(Q, a, S,v) = 0 . (5.90)

The critical flow velocity depends on the subtended angle a. The

stability map ror fixed-fixed pipe is given in Fig. 5.33; the mode shapes at

instability for four modes, identified as A, B, C, and D in Fig. 5.33, are

shown in Fig. 5.34.

(5.89)
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The static deformation caused by the fluid centrifugal force on the pipe

has not been included in the analysis. If these initial forces are included,

they stabilize the pipe and the pipe does not buckle (Hill and Davis 1974).

Apparently, there are no experimental results available to confirm these

predictions.

5.5 CIRCULAR CYLINDRICAL SHELLS CONVEYING FLUID

In Sections 5.3 and 5.4, the pipes were analyzed by using beam theory and

slug flow. If the pipe wall is thin and its length-to-radius ratio is not

large, the pipe cannot be considered a beam. Analyses according to the

cylindrical shell theory have been made by Niordson (1953), Clinch (1970),

Paidoussis and Denise (1972), Weaver and Myklatun (1973), Chen and Rosenberg

(1974), and Weaver and Paidoussis (1977).

The dynamic characteristics can be predicted using the thin shell and

potential flow theories. The equations of motion for a circular cylindrical

shell conveying an ideal fluid are the same as those given in Eqs. 4.1 except

that there is an additional fluid pressure acting on the shell in the radial

direction; i.e., the right side of the third equation zero is replaced by

(1 - v2)p/Eh. p is internal fluid pressure, which is given by

p = -p( + U 4.(5.91)
r=R

Here U is the flow velocity and 4 is the velocity potential. * satisfies the

Laplace equation

v2 = 0

and (5.92)

= + Uar r=R at 3z

Using Eqs. 4.1, 5.91, and 5.92, and following the procedure given in

Section 4.3, we can analyze the shell response in a straightforward manner

[see Niorsdon (1953), Paidoussis and Denise (1972), and Chen and Rosenberg

(1974), for details].

The general behavior of circular cylindrical shell conveying fluid is not

much different from that of a pipe conveying fluid. Its instability charac-

teristics also depend on the boundary conditions. For a cantilevered shell,

the lower modes are damped by low flow velocities; with increasing flow

velocity, the system eventually loses stability by flutter. The lowest
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critial flow velocity may be associated with different circumferential wave

number n, depending on the physical and geometrical characteristics of the

system.

The behavior with increasing flow of cylindrical shells with both ends

clamped or hinged is also similar to a gyroscopically conservative pipe using

a beam theory. Increasing the flow velocity reduces the natural frequen-

cies. At sufficiently high flow velocity, each frequency vanishes, which

corresponds to the onset of divergence-type instability in that mode.

However, coupled-mode flutter usually follows at a flow velocity a little

higher than the divergence critical flow velocity. Thus, the system is

subject to divergence instabilities followed by flutter. In experiments,

flutter was observed but divergence was not (Paidoussis and Denise 1972),

probably due to the difficulty in determining the divergence. Because

flutter-type instability is a more violent oscillation, it is much easier to

demonstrate.

The subcritical vibration of circular cylindrical shell has also been

studied theoretically and experimentally. The complete analysis is

complicated, but the general theory is simple. Details are given by Clinch

(1970), Lakis and Paidoussis (1972), and Au-Yang (1975).

5.6 CLOSING REMARKS

More than 100 publications on the dynamic response of pipes conveying

fluid have been published in the last three decades. Most of these discuss

pipe response based on linear theories; only a few studies are based on

nonlinear theory in an effort to understand nonlinear behavior at postcritical

flow velocities. A more systematic study of nonlinear behavior is needed for

understanding of the nonlinear characteristics of a typical nonconservative

system.

For practical system components, the critical flow velocity is usually

very high. Thus, instability is unlikely except for structural coponents with

very low rigidity and high velocity flow. To the contrary, subcritical

vibration always exists and may be important. To predict subcritical

response, we can use the general theory presented in this chapter. For

response to turbulent pressure fluctuations, the technique to be discussed in

Chapter 6 can be applied.

Another important aspect of pipes conveying fluid is the transient

response of pipe and fluid, which is generally called fluid transients in

pipes or waterhammer. This is not covered in this report; see Streeter and

Wylie (1967) and Chaudhry (1979) for details.
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6. CIRCULAR CYLINDERS IN AXIAL FLON

6.1 INTRODUCTION

The study of the dynamics of circular cylinders in axial flow is

relatively new. The original focus of fluidelastic studies on circular

cylinders was the stability problem--in particular, flutter of a flexible

rod. Generally, the instability flow velocity for practical sytem components

occurs at relatively high flow, which is unlikely to be encountered. The

recent development of the subject is in connection with the design and

development of nuclear reactor cores because the vibration of fuel rods can

promote anomalous behavior, as exhibited in neutron flux oscillations

(Williams 1970; Pazsit et al. 1984) and fretting and wear (Wambsganss 1967;

Kinsel 1975; Pickman 1975; Schmugar 1975).

Starting in the late 1950s, each of the earlier studies had one or more

of the following objectives:

" Assessing the significance of fluidelastic instability of fuel

rods,

" Measuring the amplitude of vibration in a simulated model,

* Mathematical modeling of flow-induced vibration,

" Identifying the damping mechanism, and

" Identifying the forcing function.

The studies have yielded several expressions that offer guidance to reactor

designers on the order of magnitude of vibration.

6.2 EQUATION OF MOTION OF A CIRCULAR CYLINDER IN AXIAL FLOW

Consider a circular cylinder immersed in a fluid flowing at velocity U

parallel to the z axis (Fig. 6.1). The cylinder has linear density (mass per

unit length) m, flexural rigidity EI, and total length 2. All motions of the

cylinder are to be confined in the y-z plane. Conventionally, the equation of

motion is derived by "slender body" theory, which is based on studies of flow

about ships in the early 1920s (Hawthorne 1961).

Consider a small element Sz of the cylinder, as shown in Fig. 6.2, where

T is the tension, Q is the shear force, M is the bending moment, m(a 2u/at 2)sz

is the inertial force of the rod, g6z is the external force acting on the

cylinder surface, FD6 z is the viscous damping force, and FN and FL are the

drag forces per unit length in the transverse and longitudinal directions.

F1 , which represents the lateral force per unit length acting on the rod, is

given by the change in momentum of the lateral flow about the cylinder

(Lighthill 1960):
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Fig. 6.1. Circular Cylinder in Axial Flow



6-3

(o

2
m -8z + F1Bz

M Fz

g8z

M+F 8

azz

FT+a 

z
N~z
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2
F ma(+U ) u. (6.1)

Here, ma is the added mass of the cylinder, which is given by (see Chapter 2)

rD2
m =-pC
a 4 m

(6.2)

The differential equations for translatory motions in z and y directions

of the element are

+ F = 0
az L

and

(6.3)

2
--m - F

at

If rotatory inertia

the y-z plane is

- FN FD + FL az + q = 0 (6.4)

is neglected, the equation of rotational equilibrium in

aM _-y_-- Q + T = 0. (6.5)

The cylinder material is postulated to obey a stress-strain relationship of

the Kelvin type, i.e.,

= Ee + pe (6.6)

where E is Young's modulus of elasticity, u is the internal damping

coefficient, a and e are the stress and strain, and the dot denotes

differentiation with respect to time. Classical beam theory is employed, and

the stress and scL. in are

Mx.

and

(6.7)
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e = -x a2  (6.8)

az

where x is the distance of each fiber to the neutral axis. Substituting

Eqs. 6.7 and 6.8 into 6.6 gives

2 3

M = -E(I -1 + ) . (6.9)
az ataz

From Eqs. 6.1, 6.3, 6.4, 6.5, and 6.9, we obtain a single partial differential

equation of motion for the transverse displacement:

4 5 2

EI 31u4+ P 3 ua a+ m -- + U a 2  u + FN +F
az az at

2 2
- Ta +m 2u= g . (6.10)

2 2 g
az at

Next, consider the drag forces FN and FL, damping force FD, and tensile

force T. The forces acting on a rod set obliquely to a stream of fluid are

discussed by Taylor (1952). For rough cylinders,

FN 2 pDU (CDsin 6 + Cfsin 6) (6.11)

and

1 2
FL = pDU Cfcos 6 , (6.12)

where CD and Cf are the drag coefficients due to pressure and shear forces,

and 6 is the angle of incidence, which is related to the normal and axial

components of flow velocity by

6 = sin1[U( + Ua)] . (6.13)

For small cylinder motion, 0 is small; therefore, Eqs. 6.11 and 6.12 are

approximated by
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F = U2CIUu-2+ U --) (6.14)
N 2 D N~t

and

FL = tU2 CT, (6.15)

where

4C

C =T C=- . (6.16)N TirC
m

Here, CN and CT will be considered not necessarily equal. Typically,

Cf = 0.01 to 0.03 for Re > 10

The longitudinal tension consists of externally applied tension and

tension arising from fluid friction. For a cylinder supported at both ends,

the initial axial tension is taken as T0 when U = 0; and as U increases, no

further motion of the supports is allowed. For a cylinder with one end free,

the initial axial tension is zero for U = 0, but as U increases, the free end

is subjected to a tensile force

1 2
T(R,,t) = -CT maU , (6.17)

where CT is the form drag coefficient at the free end. Thus, on substituting

Eq. 6.15 into Eq. 6.3, integrating the resulting equation and then using the

assumption stated above, we find that the axial tension is

T(z,t) = yT0 + CT mU2 [1- 2Y) - Z] + 2 (1 - Y)C U2 , (6.18)

where y = 1 if the downstream end is supported such that the displacement is

zero, and y = 0 if it is unsupported or elastically supported.

The force representing the viscous damping effect can be expressed as

F c C -- (6.19)
FD vat '

where C, is an effective viscous damping coefficient.
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Finally, on substituting Eqs. 6.14, 6.15, 6.18, and 6.19 into Eq. 6.10,

we obtain*

4 5 2 2
EI yI 4 + m UayT

az ataz az az
A B C D

2m U2 l 2 ul2

- Ca [(l )L]-z(l)(C- WC aU
az az

E F

2

_2u 1 maU au 1 maU au
a azat 2 CN D lz-+ N D at

G H I

+ C a+(m + ma)a- =g(x,t) . (6.20)
v at a at 2

J K

Equation 6.20 is the equation of motion for a flexible, cylindrical rod

in nominally axial flow and can be used for studies of both stability and

response problems. The equation is complicated and an exact solution is

difficult to obtain; however, it can be simplified in many cases.

Table 6.1 is a summary of equations of motion and forcing functions

employed in earlier studies. Most of the studies were based on the classical

Bernoulli-Euler beam equations, and the equations of motion contain parts of

the terms given in Eq. 6.20.

The appropriate boundary conditions associated with the equation of

motion are:

For z = 0,

3
k1u + EI = 0

az

and

c -EI 2 =0; (6.21)
lazz

The capital letters identify terms in equations of motion employed by
investigators listed in Table 6.1.
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Table 6.1 Mathematical Models and Forcing Functions Used by Various Investigators

Investigator Mathematical Model Forcing Function (g) Comments

Burgreen et al.

(1958)

Quinn (1962)

Paidoussis
(1966a, 1966b)

Reavis (1969)

Gorman (1969,
1970)

Basile et al.
(1968)

Kanazawa (1969)

A, J, K

A, C, J, K

A, C, D, E, F,
C, H, I, K

A, J, K

A, J, K

A, K

A, C, J, K

CFpdhU2

No forcing function (the
system motion is con-
sidered as self-excited
vibration)

1 2 V V
2i pDU [CD(1) 

+ C,2)
U D[%j) + Cf(YJ)]

Turbulent-boundary-layer
pressure fluctuation

Turbulent-boundary-layer
pressure fluctuation

Turbulence of the
coolant flow

Turbulent-boundary-layer
pressure fluctuation

dh is the hydraulic diameter
and Cf is a proportional
constant.

The sign of C was minus,
which is believed to be
wrong.

V - cross-flow component
of U. No solution was
given for the suggested
forcing function.

The coefficient C was
evaluated from drag force
and Coriolis force.
(Note: It is incorrect to
consider Coriolis force as a
damping mechanism for a
simply supported rod.)

Addae and Fenech
(1970)

Namatame (1969)

Knudson and Smith
(1970a, 1970b)

Chen and Weber
(1970)

Chen and Wambsganss
(1970,1972)

A, C, G, K

A, C, K

A, J, K

A, C, E, I, K

Turbulent-boundary-layer
pressure fluctuation

Turbulent-boundary-layer
pressure fluctuation

Support excitation

None (the motion is
considered as parametric
resonance)

A, B, C, E, F, Turbulent-boundary-layer
G, H, I, J, K pressure fluctuation
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and for z =,

3

k u -HI - 0 ,

az

and

2
c + EIa-E = 0
2 a z2

(6.21)

(Contd.)

where cl and c2 are torsional spring constants, and kl and k2 are displacement

spring constants (see Fig. 6.1). If the downstream end is free, depending on

the end geometries, the boundary conditions at z = 9 are (Paidoussis 1966b).

EI33+ KaU ( + U ) (m + KMa 2 = 0

az 3
and (6.22)

2
= 0.

32

It is assumed that the downstream end tapers smoothly from a cross-sectional

area S to zero in a distance L (L << ), where zR = (f S(z)dz) / S . The

parameter K is a measure of departures from thedeal slender case

(0 ( < ( 1). For a blunt free end, K = 0 and zg, = 0.

In this section, the dynamic response of a single

presented. The interaction of multiple cylinders is given in

The general method of analysis can be applied to both single

cylinders.

cylinder is

Section 6.9.

and multiple

6.3 ANALYSIS FOR A SINGLE CYLINDER YN AXIAL FLOW

For the purpose of analysis, it is more convenient to use dimensionless

parameters; accordingly, we let

= z

w = u/,

m 1/2

EI)

_ =

= [E(m + m)] 1/2

ma

m + ma
(6.23)
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3
G = aL

EI

= (m ma 1/2
a

El

a1 k 1

_ El
a =E
2 3'

k2

C R

[EI(mr + m )2

t/R2 r = T0t2/EI

m + m

S= ( El a~ ,2

b =E
1 ct& '

1

and

b El
2 c22.

On substituting Eqs. 6.23 into Eqs. 6.20, 6.21, and 6.22, we obtain

4
3w

4

5w

a aT

21

yr + v2{[i - 4eC(1 - 4 - - 4(1+2Nl+2 U 32 1 0.5 3

+ 8w

(6.24)

cN } + 200.5u 2. +- eCN 0.5 3u

2w
+ -- = G ,, T )

2

The boundary conditions are

3
w + a 3--

1  33

aw
2

b1  2
a2

3 2
a3w aw a3w

w- a2 - + b2 2- 0

(6.23)

(Contd.)

and

at = 0 ,

(6.25)

-y)C ]
a2
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or

a3w + 42+w + 41/2 a -w1 + (K - 1) 2}z - w = 0 (6.25)
3 aE at T 2 2

(Contd.)

at F = 1 .

An exact solution to the mathematical problem specified by Eqs. 6.24 and 6.25

is difficult to obtain because

" The system does not possess classical normal modes,

" The problem is of a non-self-adjoint type,

" The equation of motion has a term with a variable coefficient.

In the text following, an approximate solution is presented.

We shall use a modal expansion technique with Galerkin's method to solve

the system shown in Fig. 6.1; i.e, the displacement is taken in the form

w( , = I q (t)$ (,) , (6.26)
n=1 n

where $n(F) is the nth normal mode, and qn(t) is the time coordinate.

Generally, "n(,) is chosen as the undamped nth classical normal mode. Since

classical normal modes do not exist in the present case, we employ the modal

functions, which satisfy the following sytem:

+ X - = 0

3 2
S+ a -U - b d--= 0 at F = 0 ,1 d,3 d, 1 d,2

and (6.27)

3 2

-a -=-d + =0 at2 3 dF, 2 d2

where
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X = v2 [1 - 1 eCT(1 --ky) -2 (1 - y)CT] -yr

and A is the eigenvalue to be determined. Equations 6.27 are obtained by

neglecting the Coriolis force term, the variable coefficient term, the damping

terms, and the terms associated with 8w/a8 in Eq. 6.24, and then applying a

separation-of-variables technique to the resulting equation and Eqs. 6.25. As

shown in Appendix C, the adjoint system to Eqs. 6.27 is

4 2

+ X - 4 = 0

3 2
+ +aa + a -- = blab + - d+ 1 2 = at = 0 , (6.28)

d d

and

, - a a - a2 = b 2++.41+ b2 = 0 at = 1.
2 de 2 d

The eigenvalue problem is non-self-adjoint because the boundary conditions for

the two sytems are different.

It is well known that if an is an eigenvalue of Eqs. 6.27, it is also an

eigenvalue of its adjoint system, Eqs. 6.28. Moreover, the sets of

eigenfunctions {fn} and {fin} are biorthogonal; that is, each function of

either set is orthogonal to every member of the other set except the one

belonging to the same eigenvalue, i.e.,

1 M , n = m
(< ,4, > = f * = n , (6.29)

m 0 n 0 , n m

where < > is used to denote the scalar product.

The eigenvalues and eigenfunctions of Eqs. 6.27 and Eqs. 6.28 are

analyzed by conventional methods (see Appendix C). Having two complete sets

of biorthogonal eigenfunctions, we substitute Eq. 6.26 into Eq. 6.24, multiply

the resulting equation by 4,m, and then integrate with respect to from 0 to

1; these operations yield the following equation:
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%+ a qanm + E 1 qnm + (e2 + 6)n + e3  cnm
m m

+ E3 bnm m n+ n n n '
m

where

E1 = 20v

E2 =2ECNOv

E3 =j2 ECNv , (6.30)

4
ad $

nmmbn = <de , *n / Mn

d(

b ~ de

nm= d

2

c = < 2 n> / Mn
nmndt

and

Qn = <Q n> / Mn

Therefore, Eq. 6.30 can be written in the matrix form

[M]{Q} + [C]{Q} + [K]{Q} = {G} . (6.31)

In this case [M] is an identity matrix and [C] and [K] are usually not

symmetric.

Alternatively, in Eq. 6.26, *n(F) can be taken as the orthonormal

functions for x - 0; i.e., n's are the solution of Eq. 6.27 for X - 0. In
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this case, Eq. 6.27 are self-adjoint; therefore, On's are an orthogonal set of

function. Using the same procedure, we also obtain Eq. 6.31.

Based on Eq. 6.31, the natural frequencies of the cylinder can be

calculated as functions of flow velocity. In addition, the critical flow

velocity associated with flutter or divergence can be calculated routinely.

For forced vibration, the technique outlined in Appendix A can be

employed. In practical applications, the dimensionless flow velocity v

usually is very small. The following approximate method can be used. We can

make the following simplifications:

" Internal damping of the structures such as nuclear fuel rods is

small; therefore, damping coupling is neglected.

" The terms generated by the Coriolis force, el )Ibnmgm>
contribute to damping and mode coupling. When the flowmvelocity

is relatively small with respect to the critical flow velocity,

the effects of the off-diagonal terms are very small and are

neglected.

" The parameters E3 and E2 are small; therefore, the off-diagonal

terms associated with these two parameters are neglected.

With these simplifications, the equations decouple and we obtain

n + 2c n4 + c 2 qngn gn , (6.32)

where

n +3c + bnn

and (6.33)

1
n 2 =2 (Xann + E1ibnn + E2 + 6) .

n

Recall that the dimensionless generalized force gn(T) is random with

time. From Eqs. 6.30,

gn T) = iM f G(,9T)4n(E)d,
n 0

and (6.34)

1 1
g (t + 'r ) - -- ~,T+1) nd
m 0 Mz 0 oG(nT+ r) (r)d1m m 0 m
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The correlation of the generalized force is defined by

T

R (T ) - lim
gng 0 T.W 2 -T

Using Eqs. 6.34 and interchanging the order of integration, we have

Rg (t )=Mgg MM
n m n m

I 1

I I *n(01m(n)RGG"' 'io)dFdi
0 0

where RGG is the correlation of the random pressure; i.e.,

I

RG lim~-
2T

G(,,T)G(,i T + To)dT

Further define the power spectra

cc iAT

GG (9)wf R e.00 G
0 d

0

- 10i:
(c) -= f R e

ngm -Go ngm

di.
0

Taking the Fourier transform of Eq. 6.36 yields

1
( ) = i f1M n ( a GG( ,,nA)d td n (6.39)

Similarly, we can obtain the correlation and power spectrum of displacement

from Eq. 6.26. These are

R (,,nrT )ww 0 axx
n m

and

* (F,n, T) - x I mn m
nma

qq ( n
n m

qCn q n((a) f n

(6.35)

(6.36)

(6.37)

and (6.38)

(6.40)

gn a 1m~ + T )dT .
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From Eq. 6.32 it is known that

qnq(S2) = |Hn(0)Hm gngm(n) , (6.41)

where

Hn () = - Q2) + i2Cnan *]1. (6.42)

Finally, subsituting Eq. 6.39 into Eq. 6.41 and then into Eq. 6.40, we obtain

as the power spectral density of displacement

S( =GG(n= ) (Hn(a)Hmln m m() (6.43)
n m

where

J2 m MM 1 RG n m(n)d~d .(6.44)
n m 0

Jnm is called the cross acceptance if n & m, and the joint acceptance if

n = m. The mean-square displacement w2 is given by

w2ww2)=f *(I )~i(6.45)
0

These results are similar to those obtained by Powell (1958) for a beam. The

difference is the acceptances, which, in the present case, are in terms of

adjoint eigenfunctions. If the system possesses orthogonal eigenfunctions,

Eq. 6.64 is reduced to the classical results. The problems remaining are to

characterize the acceptances and power spectral density of the pressure field

and to compute the acceptances.

6.4 DYNAMIC BEHAVIOR

In addition to the fluid centrifugal force, Coriolis force, and inertia

force, as in the case of pipes conveying fluid, there are several frictional

force components for a cylinder in axial flow. However, the overall behavior

is not very much different from that of a pipe conveying fluid.

The frequency Q, which can be calculated based on Eq. 6.31, depends on
the end conditions. For cylinders not allowed to move at the ends, the
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dominant fluid force component is the fluid centrifugal force; therefore, as

the flow velocity increases, the natural frequencies decrease with flow

velocity. The damping at small flow velocity increases with flow because of

the fluid frictional force components. As the flow velocity is increased to a

certain value, the cylinder loses stability by divergence. The effect of

fluid frictional force on the divergencE flow velocity usually is small.

Therefore, the critical flow velocity can be estimated based on the buckling

load of the corresponding beam subjected to axial compression. With further

increase in flow velocity, the cylinder may be subjected to flutter.

Figure 6.3 shows the complex frequencies associated with the first three

modes of a hinged-hinged cylinder as a function of flow velocity for a = 6 = 0

(Paidoussis 1973). This is a typical case, illustrating the behavior of such

a system. At zero flow, the frequencies are real and correspond to Re(2) =

n2, 42 and 9w2. As the flow velocity increases, Re(S2) decreases while Ini( )
increases. As the flow velocity increases further, the first mode ceases

being oscillatory at v about 3.1 and is subject to divergence at v ~ 3.14. At

higher flow velocities the second mode becomes unstable by divergence at

v ~ 6.3. At a slightly larger flow velocity of 6.5, the cylinder becomes

unstable by the coupled-mode flutter.

For cylinders allowed to move at the ends, at low flow velocities, the

free motions are damped. The damping is associated with the Coriolis force

and frictional force. As the flow velocity increases, the cylinder may become

unstable by divergence and flutter. Figure 6.4 shows the complex frequency

for a cantilevered cylinder with a streamlined end. With the increase in flow

velocity, the cylinder loses stability by divergence at v ~ 2.0 and is

followed by flutter associated with the second and third modes at v = 5.2 and

8.2.

The dynamic behavior in cylinders subjected to axial flow is not the same

for all cases. There are many parameters, such as e, 0, 6, r, a1, a2, b, b2,

CN, and CT, that can affect response characteristics. It is imperative to

analyze each case separately.

The dynamic behavior of the cylinder at high and low flow velocities

predicted by the linear theory agrees reasonably well with experimental

data. Using a rubber cylinder, either clamped or pinned at the upstream end

and free at the other, or pinned at both ends, Paidoussis (1966a) has shown

that both buckling and flutter instability are possible (see Fig. 6.5).

In practical system components the critical flow velocities for

divergence and flutter usually are very large. The high flow velocity is not

likely to be encountered in practice. Therefore, the stability of a cylinder

in axial flow is more of academic interest.

For small flow velocities, the modal damping ratio can be obtained from

Eq. 6.33:



22

6312 12

6-312
_I2

4 6-344 -22

7-25
7.0

645 6-5
Ist

6-297 9-445

To

I st mode

and 2nd mode

:Volues o tV
9-375 9g

6 544q'2
2 -Z&

O

2nd rnode 3rd mode
A 

%W

V
CO

16-437 -32

6-25 421

S52

6-5 1st and 2nd mode (coupied-mode flutter)

6-75

l2 22 32 42 52 62 72 82 92 102

Re(Q)

Complex Frequencies S of the First Three Modes of a Hinged-Hinged Cylinder in Axial Flow,

as a Function of v, for 3 = 0.1, cCN = SCT = 1, and r = 0 (from Paidoussis 1973, with
permission--see Credits)

52

42

6-445
3I2

S i . 344
JE- T

,

3144

3 s4

9-46

I

u6-0
9-6

I-a

Fig. 6.3.

Lo

4

T

qmm - - - owwo- 3v Iff --- tdb-+-

1 1 s

)

1

AkL-
3

0



0

60

50

40

2-0

1-0

51

0

2.5

5"5

4-0 1

10 20

5-25

4
I st mode

'.5

5-25

5 I 5- w

8-25

5
8-5

30 40 50

Re (Q)

Fig. 6.4. Complex Frequencies S of the First Three Modes of a Cantilevered Cylinder in Axial Flow,

as a Function of v, for S = 0.5, ECN = ECT = 1 (from Paidoussis 1973, with permission--

see Credits)

r

0

-20 -5
3-0

-3-0

8 81

8-688

2nd

2
8-625

70
1

60

T

7 6

4

mode 3rd mode

8 2

Ir-

-- -L

I I I I

0'

'.0

1

81

I I



6-20

(a)

Fig. 6.5. Second-mode Flutter of (a) Fixed-Free Cylinder and
(b) Pinned-Pinned Cylinder in Axial Flow (flow is
from left to right) (from Paidoussis 1966b, with
permission--see Credits)
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=n + ;n+ c , (6.46)

where

e= (aann + 6)
n

d _eCN u
4d N

n 1(6.47)

and

b $u
c nn
n = n

n

In Eqs. 6.47, 4n is the damping associated with external viscous effects and

the internal viscoelastic effect; ;n is the damping induced by the normal drag

force, and increases with increasing flow velocity; and j is attributed to

the Coriolis force and also increases with increasing flow velocity.

The values of 4 is highly dependent on end conditions. For a rod that

is not allowed to move at the ends, i.e., k1 = k2 = o, or a1 = a2 = 0, the

eigenvalue problem specified by Eqs. 6.27 is self-adjoint. In this case,

*n " 4n, and the value of ;n is zero, since, from Eqs. 6.30,

b n = M j n 'd,= 0 . (6.48)
nn0 

di, n
nMn 0

For a rod elastically supported at both ends or unsupported at one end, the

value of c can be quite large. The physical reason for the difference is

that the energy dissipated by the Coriolis force from time to to t1 is

AW = -ft m a(t) 2 dt + ft maU[ut) 2dt . (6.49)
t t

0 0

Thus if there is no displacement at the ends, the Coriolis force is gyroscopic

and does not dissipate any energy.

From Eq. 6.46, we can conclude the following:

0 Modal damping increases with increasing flow velocity.
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" For cylinders that are not allowed to move at the ends, the Coriolis

force does not contribute damping. Therefore, any increase in damping with

flow velocity is attributed to the normal drag force.

for cylinders that are allowed to move at the ends (e.g., cantilever

cylinders), the Coriolis force acts as a strong damping mechanism. Thus,

damping of elastically supported rods generally is larger than that of rods

without end displacement.

The effect of small flow velocities on the dynamics of cylinders in axial

flow was tested by Chen and Wambsganss (1972). The related parameters of two

cylinders with fixed-fixed and fixed-free conditions are given in Table 6.2.

Theoretical values of the fundamental natural frequency were computed

from Eqs. 6.33; the results are compared with experimental values in Figs. 6.6

and 6.7. For fixed-fixed cylinders, the frequency decreases with increasing

flow velocity; this is because the centrifugal fluid force acts as a

compressive axial force on the cylinder. For cantilevered cylinders, the

fundamental frequency increases with increasing flow velocity; this is due to

the centrifugal fluid force and the normal drag force. In this case, the

centrifugal fluid force acts as a follower force on the free end; thus, the

fundamental frequency increases while the others decrease with increasing flow

velocity.

The corresponding modal damping ratios for fixed-fixed and cantilevered

rods are plotted in Figs. 6.8 and 6.9. In both instances, the calculated

values agree well with the experimental results, attesting to the adequacy of

the mathematical model, Eq. 6.46.

6.5 NEARFIELD FLOW NOISE

A cylinder located in a closed-loop flow circuit is exposed to flow

noise, consisting of far-field and near-field components, and to structural-

borne excitation. The near-field components are pressure fluctuations

incurred by the adjacent fluid; boundary-layer turbulence is the most

important near-field noise. The far-field components comprise all sytem-

dependent noises that propagate at the speed of sound. Sources of far-field

noise include flow pulsations, vortex shedding over the submerged objects,

turbulence generated by bends, cavitation, and the like.

Boundary layer noise is always present if the flow is turbulent; however,

the strength of far-field noise depends on system design. In the following,

only the excitation due to near-field noise is considered.

Corcos (1963) proposed a phenomenological model to describe the cross-

spectral-density of the wall pressure field (see Fig. 6.10)

p(w,z1,z2,A1,,2 0 pp(w)A Z) B(c )exp(i c/Uc) (6.50)



Table 6.2. Properties and Related Parameters of Test Elements (Circular Cylinders)

m, ma'

2 2
lb-sec lb-sec

2 2
ft ft

0.0224 0.00264

0.0224 0.00330

0.0224 0.00436

0.0224 0.00264

D,

in.

0.5

0.5

0.5

0.5

A,'

in.

46.875

46.875

46.875

26.50

EI,

lb-f t2

330

330

330

330

dh

in.

1.5

1.0

0.5

1.5

8

0.3249

0.3582

0.4034

0.3249

6

0.146

0.267

0.267

0.025

E

93.750

93.750

93.750

53.0

r

7.25

8.0

6.75

0

CT

0.011

0.011

0.011

0.019

CN

0.101

0.103

0.044

0.10

a1

0

0

0

0

a2

0

0

0

Go

b

0

0

02

0.266

b2

0

0

0

2-B+ 0.0224 0.00330 0.5 26.50 330 1.0 0.3582 0.025 53.0 0 0.019 0.056 0 c 0.236 a

2-C+ 0.0224 0.00436 0.5 26.50 330 0.5 0.4034 0.025 53.0 0 0.019 0 0 G 0.240 c

3# 0.00553 0.00264 0.5 40.875 270 1.5 0.5685 0.145 81.75 0 0.012 0.025 0 0 0 0

Rod material

Brass

Brass

Steel (hollow)

End conditions

Fixed-fixed

Fixed-free

Fixed-fixed

Test

No.

1-A

1-B

*
1-C

2-A+

*

+

)

_

_ .
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Fig. 6.10. Circular Cylinder Subject to Turbulent Pressure Fluctuations
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where 'Y (w) is the wall pressure power spectral density at a point; z =

1z2 - z11 and x -|01 - 92 2 are separation distances in the longitudinal and

circumferential directions, respectively; A and B are spatial functions

describing the axial and circumferential decay of the correlation; and Uc is

the convection velocity. Corcos' model, as given in Eq. 6.50, assumes a

spatially homogeneous field; the model is a function of the separation

distances z and 0, and the wall pressure PSD *pp(w) is the same at every point

on the surface.

Although many investigators have published experimental data for Uc'

A(wz/Uc), B(w/Uc and 0pp(w), most of the data pertain to turbulent pipe

flows (Corcos 1964; Clinch 1969) or turbulent boundary layers on flat plates

(Skudrzyk and Haddle 1960; Willmarth and Wooldridge 1962). Only a few

experiments have been performed in water tunnels and for bodies of revolution

(Gorman 1969; Wambsganss and Zaleski 1970; Bakewell 1968). The experimental

results for Uc, A(.), B(.), and * () obtained by Bakewell (1968) and other

investigators (Schloemer 1967; Clinch 1969; Skudrzyk Pnd Haddle 1960;

Willmarth and Wooldridge 1962) are replotted in Figs. 6.11-6.14, where 6* is

the boundary-layer displacement thickness and 0 p(G) has been plotted

logarithmically.

The convection velocity Uc is a weak function of frequency. It is higher

for low frequencies and lower for high frequencies. In the calculations, it

will be taken as

U
= 0.6 + 0.4 exp[-2.2(w6*/U)] . (6.51)

This expression correlates the data of Bakewell (1968) and Schloemer (1967)

quite well. The expressions selected to represent the A and B functions are

A(uiZ/Uc) = exp(-0.10|w!/Uc|) and

(6.52)

B(dw/Uc = exp(-0.55|cu/UcI)

which are shown in Figs. 6.12 and 6.13. In these two figures, Willmarth and

Wooldridge's data (1962) are also included for comparison.

Plots of Opp are shown in Fig. 6.12; these were obtained by Clinch

(1969), Skudrzyk and Haddle (1960), Willmarth and Wooldridge (1962), and

Bakewell (1968). The values agree well at the higher frequencies, but the
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low-frequency spectra vary widely. Yet this is precisely the range of

interest in the study of flow-induced vibration of fuel rods, as indicated by

"effective range."

The power spectral density based on the assumed value given in Fig. 6.14

has been used in the prediction of cylinder response (Chen and Wambsganss

1972). Because the data in the low-frequency range are not reliable,

experimental data (Wambsganss and Zaleski 1970) specifically measured for

tests given in Table 6.2 are used here. The spectral density is given in

Fig. 6.15, where dh is hydraulic diameter. For computational convenience, the

normalized power spectra of the pressure field are represented by

0.272/S0.25 S < 5

' =(f) _(6.53)PP 22.75/S3 S > 5 ,(.3

where

PP(f) = (f)/p2U 3 dh

S = wdh/U,

(6.54)
and

f = w/2nr

Having the cross-spectral density 'Ipp(w,!,9), we can compute the

nondimensional spectrum 0GGG ) and dimensionless longitudinal correlation

RGG( ,n,S ). Both are required to perform the integration in Eq. 6.45, and are

given by Chen and Wambsganss (1972).

16 - 2 3-2

4GG ~ 2 Od v X20ppfA)

and (6.55)

RGG( ,nA) = exp(-0.1oI|-n|)cos(-I-nI) ,

where
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-2 1Lv( - 2__2
2(1 + v2 1 + v

v = 0.275(U) = 0.275(7) ,
c

U - - , (6.56)
U sv

c

dh

The analytical model for estimating rms response to axial flow excitation

assumes the wall pressure field to be spatially homogeneous and use Corcos'

(1963) phenomenological model to describe the convecting random pressure

field. Application of the analytical models requires knowledge of the

statistics of the wall pressure fluctuations. Analytical prediction of the

wall pressure fluctuations is presently not feasible; consequently, experi-

ments and tests are needed for a description of the pressure field.

6.6 CYLINDER RESPONSE TO NEARFIELD FLOW NOISE

The mean-square value of the cylinder can be calculated from Eq. 6.45

From the mathematical model and pressure field, the following conclusions can

be drawn:

" The response of the first mode 'dominates; the contribution from higher

modes is small at low flow velocities. A one-mode approximation will give

sufficient accuracy in many practical situations.

" With the magnitude of the power spectral density of the pressure field

proportional to the axial flow cubed, as indicated by available experimental

results (Figs. 6.14 and 6.15), the rms cylinder displacement is proportional

to flow velocity to the 1.5 to 3.0 power. The lower value is for a system

with a low fundamental natural frequency; hence low S(= fdh/U), while the

higher value is associated with higher S. As an approximation, we can write

W av1.5 , S<0.2 ,

Sev2 .0 , 0.2 < S < 3.5 , (6.57)

- 3.0,C.
w a v 3.5 j \s .
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This is based on the assumption that ~2 (Eq. 6.56) and the joint acceptance

(Eq. 6.44) are constants. These two parameters are actually functions of the

frequency; therefore, the exact power will depend on the parameter involved.

The important aspect of the problem is that the power spectra of the

pressure at lower values of S are not known accurately. The power spectra

measured by various workers differ widely at low S (Fig. 6.14). This is due

to the spurious disturLances arising in the test channels as acoustic waves.

It is precisely this lower range of S that is important in practical

applications. This suggests the pressing necessity of making power-spectra

measurements in this range of S.

We turn now to specific numerical examples. Figures 6.16 and 6.17 show
the rms displacements at the midpoint for fixed-fixed rods, and at x = 2 ft

for cantilevered rods (see Table 6.2 for details). At low flow velocity, the

predicted displacements are much smaller than the experimenal values. This

may be due to the far-field noises, which are not accounted for in the theory;

or the larger experimental values may be the result of structural-borne

vibration. As the flow velocity increases, the turbulent-boundary-layer

pressure fluctuations become more important and the theory sucessfully

predicts the essential trends of rms response.

As can be seen from Figs. 6.16 and 6.17, the effect of hydraulic diameter

in significant. Experimental rms values for Tests 1-C and 2-C are much lower

than corresponding values from the other tests. The theoretical values, in

turn, are much larger than the experimental results. The reason for this

discrepancy is that the power spectral density of pressure used in the model

is based on measurements on a cylindrical rod with a hydraulic diameter of

1.0 in. (Wambsganss and Zaleski 1970). In Tests 1-C and 2-C, the hydraulic

diameter is 0.5 in. As the hydraulic diameter decreases, the intensity of

turbulence also decreases and rms response is less. It also follows that

using PSD data from tests with a larger hydraulic diameter to compute rms

displacement would give results that are larger than experimental

measurements.

Absolute values of amplitude are meaningless because we are dealing with

a random vibration phenomenon. Therefore, we have developed a relationship to

predict the rms displacement response. Although this information is useful, a

complete description of the random signal requires knowledge of the proba-

bility law describing the amplitude distribution. Based on the displacement-

time histories from a number of different flow tests, the shapes of the curves

obtained suggest a normal or Gaussian distribution. As shown in Fig. 6.18,

which is a typical probability density representation of vibration amplitude,

the normal probability law approximates the data quite well.

Based on this agreement, we can assume a normal distribution for the

distribution of vibration amplitude in a given direction, and write the
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Fig. 6.18. Typical Probability Density Representation of Displacement of
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probability law as

2

p8(a) = - exp[- 1 () I , (6.58)

which implies a mean value of zero (a is the standard deviation, and for a

zero mean value is equal to the rms value). The probability that an observed

value of displacement will range between -a0 and a is determined by the

integration

P[a(a(]= 0 1 a0  1
P[-a a 0 <a] = pa(a)da - -a exp[- j( ) da . (6.59) 0- 0 -a 2 a-a

0 o

The normal probability integral has been evaluated and is tabulated in various

sources. Several of these values are listed below:

n P[-n < a S n]

0.5 0.383

1.0 0.683

1.5 0.866

2.0 0.954

2.5 0.988

3.0 0.997

Observe the probability of 0.997 that the absolute vibration amplitude will be

less than 3a, that is, 99.7% of the time the amplitude can be expected to be

less than 3a, or 3arms' Such information is useful in fatigue and wear

studies and in determining if impact with adjacent components or support

members may occur.

6.7 EMPIRICAL COIREITIONS FOR SUBCRITICAL VIBRATION

A number of nuclear reactor system components are beam-like members

exposed to fluid flows that are nominally parallel to their long axis. These

components include the fuel rod, control rods, control rod guide tubes,

instrumentation guide tubes, shroud tubes, heat exchanger tubes, etc. With

exposure to highly turbulent flow fields, these components are prone to

subcritical vibration, and, in some cases, fluidelastic instability.
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Empirical correlations have been proposed to predict component response to

subcritical flow excitations. A brief discussion of the various correlations

is given here. Further information can be obtained from the references cited.

Burgreen's Correlation

The equation derived by Burgreen et al. (1958) was the first attempt to

correlate test data of subcritical vibration and it is the simplest

correlation. From a dimensional anlysis, the vibration amplitude is found to

be a function of three dimensionless parameters: pU2 4/EI, pU2/yw, and Re (see

Nomenclature):

1.3-1 2 4 2

D) =0.83x 10- OU ( ) (U) , (6.60)
h

where K is the end fixity factor (K = 5 for simply supported rods) and a is

the peak-to-peak amplitude.

When this correlation was developed, the excitation mechanism was still

not well understood. In comparison with test data, the discrepancies can be

up to two orders of magnitude (Paidoussis 1965; Pavlica and Marshall 1966).

Reavis' Correlation

Reavis (1969) develops the correlation for the response amplitude based

on the random vibration theory for turbulent excitation:

D 0.5
a = CdD%n 1.5 0.5 Upv . (6.61)

mf c

nD' nh' and n are scale factors and are functions of fD/U, fDh/U, and ft/U;

the other symbols are listed in the Nomenclature. The forcing function is

based on that by Bakewell's measurements (Bakewell 1964) for turbulent wall

pressure fluctuations in pipe flow. When compared with available experimental

data, the purely theoretical prediction is found to underestimate measured

maximum displacements by a factor ranging from 3.5 to 240. Therefore, a

disparity ratio Cj is introduced in the correlation.

Paidoussis' Correlation

Paidoussis (1969) postulates that vibration arises from departures from

purely axial steady uniform flow:
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amax -4 v1.6s1.8 0.25 Dh 0.4 2/3 -4 (6.62)
D 1 l[ +v2  [1+4,] [5x 10 KI

1+

where v, e , and D are defined in Section 6.3. amax is the maximum

amplitude, i is the dimensionless first-mode eigenvalue of the cylnder, Re is

the Reynolds number based on the hydraulic diameter, Dh is the hydraulic

diameter, and K represents a measure of departures from axial, steady and

uniform flow conditions and of mechanically transmitted vibration. K = 1

corresponds to conditions for low upstream disturbance and low mechanically

transmitted vibration level. On the other hand, for realistic industrial

environments K = 5.

The "maximum" amplitude in this correlation is not precisely defined.

For practical purposes, it is the maximum displacement from equilibrium to be

expected if one were to scan an oscillograph record of cylinder vibration

about 5 ft long. A more precise definition would be the probability of amax,
because the vibration is random.

Figure 6.19 compares the empirical expression with the experimental

data. The agreement is reasonable. A large discrepancy exists at low flow

velocities. This is due to the mechanically transmitted vibration and to

other system characteristics, which are overshadowed at higher flow

velocities. A similar discrepancy occurs at a low flow velocity in other

tests (Fig. 6.16).

Chen and Weber Correlations

Chen and Weber (1970) consider that the excitation of the cylinder is

attributable to parametric excitation. Introducing a sinusoidally varying

velocity fluctuation into the equation of motion, they determine the critical

buckling velocity Ucr, the velocity at which the cylinder buckles:

Ucr = (ir /)EI 0.5 , (6.63)
f In

C pRD + ma

where Cf is the surface drag coefficient. Chen and Weber propose an empirical

correlation:

D-= [1 - ( U2-KU 2)(6.64)
h cr cr

where K is an initial turbulence factor ranging from 0.5 for ideally quiet

flow to 2 for poor flow condition.
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Wambsganss and Chen Correlation

Wambsganss and Chen (1971) derive a theoretical relationship for

calculating the rms displacement of a rod in nominally axial flow as follows:

0.018 KD1. D.5U2(Z)

arms(z,U)= - 0.5 1.5 , (6.65)
(m +a

where K = 2.56 x 10-3 (lb)(sec) 2 . 5 /f t5 .5 , *(z) is the modal function and other

symbols are given in the Nomenclature. Equation 6.65 gives rms displace-

ment. It is recommended that this correlation be used to obtain a lower bound

on the actual displacement, the lowest rms response to be expected.

Surmary

The empirical models have generally been developed using dimensional

analysis and test results. The empirical correlations have the advantage of

correlating actual test data. However, the scatter in reported data may be

large, so that often a correlation factor is introduced into the models. In

application, there is uncertainty as to what value of correction factor to

assume. Additionally, an empirical correlation is valid only for the ranges

of parameters that are included in the test area used in developing the

correlation. Extrapolation of the correlation to predict response of

components with flow and structural characterizing parameters outside the

ranges for which test data are available is fraught with uncertainty.

6.8 EFFECTS OF DIFFERENT FLOW CONDITIONS

6.8.1 Fluid Compressibility

The effect of fluid compressibility on the dynamic behavior of the

cylinder and, especially, on its stability is studied theoretically by

Paidoussis and Ostoja-Starzewski (1981). The effect of compressibility is

shown to be rather weak. This can be predicted on physical grounds. The

dominant effect is associated with the fluid centrifugal force and Coriolis

force, which do not depend on the fluid compressibility significantly.

6.8.2 Towed Cylinders

A towed slender flexible cylinder is related to a towed ship, and yawing

of airships moored to a mast. The theory presented in Section 6.2 is

applicable to this case, but the boundary conditions at the two ends are

different. Proper boundary conditions can be developed for different end

shapes (Paidoussis 1968). In this case, the body may be subject to divergence
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and flutter. At small U, the instability may be associated with the rigid-

body motion. At higher U, the system may be subject to the instabilities of a

cylinder in axial flow.

6.C.3 Pulsating Flow

Since the basic characteristics of a cylinder in axial flow are similar

to those of a pipe conveying fluid (see Chapter 5), parametric and combination

resonances are possible. Because of the complexity of the fluid forces acting

on the system, its dynamic behavior is considerably more intricate than that

of a conventional dynamic system, such as a column subjected to an oscillating

axial load.

TIe equation of motion for pulsating flow can be derived using the

techniques given in Section 6.2 (Paidoussis 1975; Paidoussis et al. 1980). In

the published literature, only parametric resonance has been studied

theoretically and experimentally; combination resonance apparently has not

been considered experimentally.

6.8.4 Combined Internal and External Flows

When a tubular cylinder is subjected simultaneously to internal and

external flow, both the fluid inside and the fluid outside affect the dynamic

characteristics (Hannoyer and Paidoussis 1978). The analysis of this case can

be done by combining Eqs. 5.29 and 6.20; therefore, the characteristics of the

system can be inferred from knowledge of its state when subjected separately

to internal and external flows. The stability characteristics of the cylinder

supported at both ends are similar to those of a cylinder subjected to an

external flow. Increasing the internal or external flow velocity or both

results in the system eventually losing stability by divergence; its

subsequent behavior with increasing flows involves a succession of flutter and

buckling instabilities. In the case of cantilevered tubes, the system

behavior is much more complex; it depends on the values of internal and

external flow velocities and the flow conditions at the downstream end.

6.8.5 Confined Region

The effect of lateral confinement of the flow is to increase the added

mass ma; therefore, the cylinder may lose stability at a lower flow velocity

than if it were in effectively unbounded flow. The general characteristics

are not much different from those for infinite fluid. One of the interesting

results (Paidoussis and Pettigrew 1979) is the demonstration of succession of

instabilities. As flow velocity is increased, there is an essentially

continuous succession of instabilities of increasingly complex modal shape.

In an unbounded fluid, at the first instability flow velocity, the cylinder

displacement increases drastically. In the confined region, the instability
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of a particular mode may be eliminated because of the change of boundary

conditions; therefore, it is possible to induce higher-mode instability.

6.8.6 Two-Phase Flow

The analytical and experimental techniques for single-phase flow can be

used for two-phase flow. An analytical and experimental investigation of

cylinders in two-phase flow has been done by Gorman (1971). Good agreement is

found between measured and predicted vibration amplitudes. For a given mass

flow, the rms amplitude depends on quality factor. With the increase in

quality factor, rms displacement rises rapidly and peaks at a quality factor

of '12% before falling off fairly rapidly. The main cause for the higher

amplitude of vibration in two-phase flow lies in the much higher peripheral

spatial correlation of the pressure fluctuations on the surface of the

cylinder. Other response characteristics in two-phase flow are that:

" The modal damping attributed to two-phase flow is larger than

that for a liquid flow,

* The analytical model for single phase flow is applicable for a

two-phase flow but with different empirical constants, and

" The excitation is the time-varying random pressure fluctuations

on the surface of the cylinder.

In contrast to Gorman's conclusion regarding the excitation mechanism,

Hara (1975a, 1975b) shows that there are two excitation sources--an external

force due to two-phase pressure fluctuations, and a periodic change of fluid

mass in the vibration system coming from periodic water-slug conveyance in the

two-phase flow. The former excitation is a forced vibration, while the latter

is a parametric or combination resonance.

There is no systematic characterization of the pressure field for two-

phase flow. Theories developed for two-phase flow face difficulties. The

two-phase flow data are considered preliminary in nature; much more integrated

theoretical and exerimental investigations are needed.

6.9 MULTIPLE CYLINDERS IN AXIAL FLOW

In addition to nuclear fuel bundles, other structural components

consisting of a group of circular cylinders--such as heat exchanger tubes,

piles, parallel pipelines, and bundled transmission lines--may be subjected to

axial flow. Many investigators have studied the dynamics of various types of

structural components consisting of multiple cylinders. Those include two

parallel cylinders, two cylinders located concentrically and separated by a

fluid, a row of cylinders and a group of cylinders. These studies have

revealed some complex fluid/structure interaction characteristics. Despite

the progress being made or the dynamics of multiple cylinders, the prediction

of cylinder response in axial flow remains a difficult task.
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6.9.1 Equations of Motion of a Group of Circular Cylinders in Axial Flow

The equations of motion for a group of cylinders can be derived following

the same method as that for a single cylinder, as given in Section 6.2. The

details are not presented here; see Chen (1975).

A cylinder array consisting of N cylinders whose axes are parallel to the

z axis is shown in Fig. 3.9. The cylinders are immersed in a fluid flowing at

a constant velocity U parallel to the z axis. For convenience, a subscript p

is used to denote variables associated with cylinder p in the x-z plane, while

p + N denotes the y-z plane. For example, up(z,t), EpIp, Cvp, and g' are the

displacement, flexural rigidity, damping coefficient, and excitation in the x

direction, and corresponding quantities in the y direction are uN+p, EN+pIN+p'

Cv,N+p, and gN+p. The equations of motion for a group of N cylinders are as

follows:

a4 u a5u 2N 2
EpIp 4 +up Ip-- 4+ Ypqa t z+ U ) uq

az ataz 1=1

2
a u

- [T (Z) - (mpg - pRUCf )(R - z) + pAp] -2
az

ac au

- (m g +-- A ) --- + PR UCf(- U-
p az A az tapzfp at

au a2u
+ C --_R+m 2= g

vp at p at 2  p'

p,q = 1, 2, 3, ... , 2k , (6.66)

where y is the structural damping, y is the added mass matrix, T (z) is the
ppq p

tension at the downstream end, g the gravity, p is the fluid pressure, m is

cylinder mass per unit length, Cfp is the drag coefficient, and Cvp is the

viscous damping coefficient. Equations 6.66 are derived based on several

important assumptions:

" The added mass matrix is based on the two-dimensional potential

flow theory presented in Section 3.3.

" The fluid pressure p is constant along the cylinders.

" The flow velocity is constant.

" The fluid damping attributed to viscous coupling (see Eq. 3.145)

is not included.
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The essential characteristics of cylinder arrays in axial flow can be

studied using Eqs. 6.66.

6.9.2 Dynamic Characteristics of an Array of Cylinders in Axial Flow

The analysis of a group of cylinders in axial flow is the same as that

for cylinders in quiescent fluid (see Sec. 3.4). With the equations of motion

and boundary conditions, the dynamics of an array of cylinders can be reduced

to the standard form:

[M]{Q} + [C]{Q} + [K]{Q} = {G} . (6.67)

If the potential flow theory is used for the added mass Ypq, M is symmetric.

However, C and K are generally not symmetric.

The general characteristics of cylinder arrays in axial flow can also be

inferred from those of a group of cylinders in quiescent fluid, as discussed

in Chapter 3, and a single cylinder in axial flow (Sections 6.4 and 6.6).

One of the most notable characteristics is the coupling of all cylinders

so that the different modes of the system are characterized not only by the

axial modal shapes of each cylinder, but also the cross-sectional patterns of

motion involving all cylinders in an array corresponding to a single frequency

for a single cylinder. There are 2N frequencies for 2N different cross-

sectional patterns; i.e, there are 2N frequencies located in a frequency band

close to that for a single cylinder. These characteristics are the same as

those for quiescent fluid.

At subcritical flow velocities, the random vibration of the cylinders

occurs in a frequency band, in contrast to a single frequency for a single

cylinder. As the flow velocity increases, the rms amplitude increases. At

the same time, the frequency band broadens. This is attributed to the fact

that the fluid centrifugal force tends to lower the frequencies of coupled

modes and its effect is more significant for lower frequency modes (Paidoussis

et al. 1982).

As the flow velocity is further increased, the cylinders are subject to

divergence and flutter. The precise mechanism or sequence of instabilities

depends on boundary conditions and flow conditions. For example, Fig. 6.20

shows some buckling modes of three and four cylinders; Figs. 6.20a to e are

for a hinged-hinged end, while 6.20f to j show cylinders clamped at both ends
(Paidoussis 1979). With increasing flow, the instability modes may change and

a different instability mechanism such as flutter may become dominant.

The basic characteristics of cylinder response can be characterized.

Analytical and experimental data show reasonable agreement (Paidoussis 1979;

Paidoussis et al. 1982). However, a more detailed prediction of cylinder
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(a) (b)

( f ) (g)

(c) (d)

(h ) ( i )

Fig. 6.20. Buckling Modes of Four- and Three-cylinder Systems: a-e Hinged
at Both Ends, f-j Fixed at Both Ends but Free to Slide Axially
(from Paidoussis 1979, with permission--see Credits)

(e)

( j )
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response in axial flow will require a more refined representation of the fluid

forces;. These are the subjects of current research. Efforts have been made

to measure the wall pressure fluctuations withn a cylinder array (Lin et al.

1981) and to characterize cylinder responses in fuel bundles (Hayes 1981).

6.10 LEAKAGE FLOW-INDUCED VIBRATION

Self-excited vibrations of components employing slip joints and seals

have been encountered on various system components (Miller 1970; Thomann 1976;

Denton and Hutton 1978; Torres 1980). The cause of these vibrations has been

the fluidelastic mechanism, involving a leakage flow across a restrictor with

a large pressure drop. Because of the complexity of the flow field and the

geometry involved, attempts to study these phenomena experimentally and

analytically have faced difficulty. A recent survey on this subject is

presented by Mulcahy (1983).

One of the instability mechanisms can be demonstrated using a two-

dimensional model, as shown in Fig. 6.21 (Miller 1970). Assume that

" The flow restrictor is a rigid blade with a flow restricting

enlargement at one end,

" The blade is constrained to have translation across the flow

channel only (no rotation),

" The effect of blade motion on pressure loss is neglected, and

* The pressure drop across the flow restrictor is very large

compared with the pressure difference from the right end of a

channel to the flow restrictor.

If the blade has a small upward velocity au/at while the fluid flow is from

left to right, the flow velocity between the flow restrictor and the channel

walls remains essentially the same above and below the flow restrictor.

Because of the reduction of the clearance between the blade and the upper

channel wall, the total flow past the upper side decreases with time. The

opposite situation exists with respect to the flow between the blade and lower

channel wall. Because of the flow velocity redistribution, the resulting

distribution of static pressure acts on the blade, as shown in Fig. 6.21. The

net fluid forces on the blade are upward; i.e., the movement of the blade

induces a fluid force acting on the blade in the same direction as the

motion. Under this condition, the flow restrictor and blade interact with the

fluid to produce a damping-controlled type of instability. A similar

reasoning shows that, if the flow is from right to left, the flow will provide

a damping mechanism.

Figure 6.21 illustrates the instability mechanism for translational

motion only. In most practical situations of typical flow paths, as shown in

Fig. 6.22, the central body can be excited into a rotational motion as well as
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at FLOW FROM RIGHT TO LEFT

UPPER CHANNEL

LOWER CHANNEL

Fig. 6.21. Generation of Positive and Negative Damping in Leakage Flow

(Miller 1970)
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translational motion. .In this case, both the fluid-damping-controlled and

fluid-stiffness-controlled types of instability are possible.

Another fluid-damping-controlled instability can be created in a

diverging leakage flow path (Fig. 6.22c). If the flow effeciency of the

diverging section increases as the central body motion increases the throat

size, a fluid-damping controlled instability is possible. This is

specifically associated with diffuser efficiency variations.

An interesting experiment was conducted by Mulcahy (1984) using a

cantilevered tube conveying water with leakage flow through a slip joint,

which was formed by inserting a smaller rigid tube into the free end of the

cantilevered tube. The three lower modes are shown in Fig. 6.23. The orbital

paths of the tube at various flowrates are shown in Fig. 6.24. The unstable

motion of the end of the upper tube occurs at a very small flowrate in a

nearly one-dimensional translation, which is the dominant motion of the

fundamental mode. As the flow velocity is increased, the tube begins to orbit

in an elliptic path. With further increase in flow velocity, the orbit is

nearly circular at 4 GPM. At 7 GPM the tube impacts the inner tube once

during each cycle, but at 8 GPM, there are two contact points, resulting in

precision of oscillations. At higher flowrates, more points of contact result

in chaotic motion. The unstable motion in the fundamental mode is nonlinear

in that a limit cycle of oscillations occurs at a constant flow, even before

tube-to-tube impact. The fundamental frequency increases with flowrate. When

the flowrate is increased to 15-25 GPM, where the second hinged mode frequency

(see Fig. 6.23b) becomes a superharmonic of the fundamental frequency, the

response switches intermittently between the first two modes. At 25 GPM, the

second mode becomes dominant. The switch to the second mode indicates the

significance of rotation.

The development of analytical methods to predict leakage-flow-induced

vibration is still in its infancy. Efforts have been made to predict the

stability-instability boundary using the unsteady flow theory (Hobson 1982;

Mateescu and Paidoussis 1984). However, the stability associated with the

leakage flow mechanism depends on the detailed geometries of the restrictor

and its response is nonlinear. Significant research remains to be done in

this area.

6.11 CLOSING REMARKS

Circular cylinders, either isolated one or in an array, that are subject

to axial flow may become unstable by divergence or flutter. When the

instability occurs, relatively large displacement develops until nonlinear

effects become important. In practice, instability is generally unacceptable

and therefore should be avoided. Based on 'sting analytical techniques, the

critical flow velocity can be calculated with reasonable accuracy. An
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exception is leakage flow. Because this problem depends critically on the

detailed geometries, no analytical methods are currently available to model

the details of the restrictor in a leakage flow problem.

Instability can be avoided; however, subcritical vibration always

exists. At any flow velocity, a cylinder in axial flow vibrates because of

flow excitation. Determining the effect of subcritical vibration is

difficult. A 10 mil displacement may be acceptable for one component but

totally unacceptable in another. Thus, subcritical vibration is difficult to

predict precisely, and its effect is difficult to evaluate, as well. To solve

this problem, two critical areas remain to be studied:

* Systematic measurements as well as theoretical work are needed

to quantify flow excitations in the subcritical flow velocity

region, and

" The effects of small vibrations on the cylinder, such as wear
and fatigue due to flow, are not well known.

Because of the complicated geometries in most practical system compo-

nents, it is difficult to predict dynamic behavior precisely. In design

evaluation, model tests are frequently used. It is expected that the new

designs will continue to rely on model tests for detailed evaluation.
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7. A SINGLE CYLINDER IN CROSSFLOW

7.1 INTRODUCTION

Flow past a circular cylinder and its effect on cylinder response have

been the subject of research for more than a century. Many hundreds of papers

have been published and recently several reviews have been written, e.g.,

Marris (1964), Morkovin (1964), Mair and Maull (1971), Berger and Wille

(1972), Parkinson (1974), King (1977a), Sarpkaya (1979a), and Bearman (1984).

The interest in :his subject is attributed to two reasons:

* It is relevant to various problem areas, such as dynamics of

stacks, piles, trashracks, wires, periscopes, cables, etc. For

example, oscillations excited by vortex shedding can lead to

amplitudes as large as two cylinder diameters, which is not

acceptable in most engineering applications.

" There are many fascinating phenomena in the interaction of the

flow and cylinder.

Flow past a circular cylinder is probably one of the most extensively studied

subjects, but its effects still are not fully understood.

7.2 FLOW REGIMES

The flow characteristics depend on Reynolds number (Re). Figure 7.1

shows the major identifiable regions presented by Lienhard (1966). (A

comparison of the many terminologies proposed by investigators, as summarized

by Farell (1981), is presented in Fig. 7.2 and Table 7.1.) At low Reynolds

numbers, the flow does not separate. As Re is increased, the flow separates

to form a pair of recirculating eddies on each side of the cylinder. As Re is

further increased, the shedding eddies become elongated in the flow direction;

their length increases linearly with Reynolds number until the flow becomes

unstable at Re ~ 4.0. The vortices then break away; consequently, a periodic,

staggered-vortex street is formed. At Reynolds up to ~150, the vortex street

grows in width downstream for some diameters. The initially spreading wake

develops into two parallel rows of staggered vortices. Von Karman's inviscid

theory shows the street to be stable when the ratio of width to streamwise

spacing is 0.28. In this region, the vortex street is laminar. At a Re of

300, the boundary layer is laminar over the front part of the cylinder; the

layer separates and breaks up into a turbulent wake. The separate points move

forward as the Reynolds number is increased. At a Re of about 3 x 105

depending on free stream turbulence and surface roughness, the flow separation

point moves backward, the drag drops sharply, and the vortex shedding is

disorganized. At higher Re, the vortex streets are reestablished. Reviews of

the fluid dynamics of this problem can be found in Morkovin (1964), Marris

(1964), Mair and Maull (1971), and Berger and Wille (1972).
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Table 7.1. Terminology According to Various Authors for Ranges Defined in Fig. 7.1*

RANGE

AUIHOvr1

ROSHKO (1961)

ACHENBACH (1968)

ACHENBACH (1975)

GUVEN et al(1980)

BEARMAN (1969)

SZECHENYI (1975)

SACHS (1978)

FARELL (1981)

-L

A B, B C, C 2  D E

TRANSITION
SSUBCRITICAL RANGE SUPERCRITICAL - - -

(LOWER TRANSITION)

CRITICAL -- +-

+ SUBCRITICAL CRITICAL SUPERCRITICAL- ---- -

+ SUBCRITICAL --- -- CRITICAL -a 1 SUPERCRI1

U- SUBCRITICAL CRITICAL SUPERCRITICAL

- SUBCRITICAL TRANSCRITICAL - m

muSUBCRITICAL - -- -SUPERCRITICAL

TRANSITION
- SUBCRITICAL RANGE SUPERCRITICAL

(LOWER TRANSITION)
UPPER

TRANSITION
RANGE

I I

F

TRANSCRITICAL -

SUPERCRITICAL

TRANSCRITICAL

TICAL TRANSCRIT-

TRANSCRITICAL

SUPERCRITICAL

ULTRACRITICAL N.-
POSTCRITICAL

(ULTRACRITICAL)

K ULTIMATE ---

*
with permission--see Credits.

i
l 1
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The many experimental measurements of vortex shedding at subcritical

Reynolds numbers are in fairly good agreement, but at higher Reynolds numbers,

there is little agreement. One reason is the sensitivity of the flow to small

perturbations. The flow characteristics at high Reynolds numbers are

discussed in Section 7.11.

As pointed out by Farell (1981), defining different flow-regime

terminology can be very confusing. Most investigators appear to prefer their

own versions of the terminology for two major reasons:

" Different people have different interpretations of the flow

phenomena, and

" Existing measurements are still not unambiguous.

Under these circumstances it is probably best to leave existing nomenclature

alone as much as possible. In this report, the terminology proposed by Farell

will be used.

7.3 STROUHAL NUMBER

The Karman vortex street and other vortex patterns have been observed and

studied for centuries. The earliest recorded observation of the phenomenon of

vortex shedding can be traced back to the sixteenth century when Leonardo da

Vinci made drawings of the surface pattern of the flow past an obstacle.

Remarkable similarities have been found in these complex fluid dynamic flow

patterns over many orders of magnitude in the nondimensional Reynolds numbers

that characterize them, as illustrated by Griffin (1982) in Table 7.2.

Figure 7.3 shows the typical traces and a close-up view of a Karman vortex

street behind a cylinder at Re = 80; Fig. 7.4 shows the vortex pattern in the

clouds downstream from the Island of Guadalupe for Re at 1010. Distinctive
flow patterns are observed in laboratory tests at small Re and in naturally

occurring phenomena.

The frequency of vortex shedding (fs) from a single cylinder in a uniform

flow is related to the cylinder diameter D and flow velocity U through the

nondimensional Strouhal number St:

f D
St = - . (7.1)

U

St is known as the Strouhal number after the Czech physicist Vincenz Strouhal

(1850-1922), who, in 1878, first investigated the "singing" of wire. The

Strouhal number for a circular cylinder is a function of Reynolds number.

Figure 7.5 shows a reasonable envelope within 10% accuracy over a large

Reynolds number range (Lienhard 1966). The Strouhal number remains nearly

constant with a value of 0.2 within the range of Reynolds numbers from 300 to
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*
Table 7.2. Visualization of Vortex Trails and Karman Vortex Streets

Type of Flow Location

Wind, past an ocean island Jan Mayen

Wind, past an ocean island Jan Mayen

Guadalupe

Water, past a ship aground Nantucket Island

Water, past a marine pile English Coast

Water, past a drill North Sea
casing pipe

Water, past a model pile Laboratory channel

Late wake of a sphere towed Towing channel
in water

Wake of an inclined flat plate Water channel

Air, past a circular cylinder Wind tunnel

*From Griffin (1982), with permission--see Credits.

Reynolds
Number

1011
1010
10 7~o
107-108

108

105

104

3(103)

103

2(102)

Tracer

Clouds
Clouds

Oil

None

None

Dye

Dye

Aluminum
particles

Aerosol

.
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Cylinder (from Perry et al. 1982, with permission--see
Credits)
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2 x 105, defined as the subcritical range. As the Reynolds number is further

increased to about 3.5 x 105, the Strouhal number seems to increase. However,
the vortex shedding in this region is much weaker and defining an accurate

shedding frequency is sometimes difficult. Beyond a Reynolds number of about

3.5 x 106, the Strouhal number again seems to remain constant with S = 0.27,
with a strengthening of vortex shedding. The limits of the regions and the

figures quoted are modified by cylinder roughness, turbulence in the incoming

flow, cylinder aspect ratio, and influence of wall or adjacent cylinders.

Some of these effects are discussed in Section 7.11.

7.4 STEADY FLUID-FORCE COEFFICIENTS

When a circular cylinder is submerged in a uniform crossflow, the steady

lift force acting on it generally is zero. However, the fluid exerts a drag

force on the surface as a result of viscous effect. The resultant frictional

force in the downstream direction is usually called the skin friction drag.

But when the flow occurs past a surface that is not everywhere parallel to the

main stream, there is an additional drag force resulting from differences of

pressure over the surface. This force is called the pressure drag, or form

drag. The skin friction drag is the resultant of the forces tangential to the

surface and the pressure drag is the resultant of the forces normal to the

surface.

In a flow around a circular cylinder, the boundary layers separate from

the surface at some point. Downstream of the separation point, the flow

contains relatively large-scale eddies, known as the wake. Since the flow is

separated over much of the cylinder surface in practical applications, the

wake is large and the pressure drag is much greater than the skin friction.

The total drag is expressed in terms of a dimensionless drag coefficient C as
1 2 D

the total drag force per unit length divided by 2 pU D.

Figure 7.6 shows the variation of CD with Re for an infinitely long,

smooth, circular cylinder with its axis perpendicular to the flow. Various

coefficients are used by different investigators, including: CD, the time-

averaging value of total drag force; CDrms, the root-mean-square variation of

the drag force; CDp the pressure drag; and CD, the oscillation drag force. At

small Re (say <0.5), inertia forces are negligible compared with viscous

forces and the drag is almost directly proportional to U. In this region,

friction drag accounts for a large part of the total drag and in the limit, as

Re + 0, friction drag is two-thirds of the total. When separation of the

boundary layer occurs, pressure drag becomes a larger contribution, and the

slope of the CD curve becomes less steep. By Re = 200, the von Karman vortex

street is well established, and the pressure drag then accounts for nearly 90%

of the total. The drag coefficient reaches a minimum value of about 0.9 at

Re ~ 2000 and then there is a slight rise to 1.2 for Re ~ 3 x 10"
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At Re ~ 2 x 105 the boundary layer becomes turbulent before separation,

the separation position moves farther downstream, and the wake narrows.

Consequently, the drag falls drastically. Over the approximate range

5 x 105 < Re < 4 x 106, CD drops to about 0.3 and then rises to about 0.7.

The curve 1/St versus Re is markedly similar to the CD versus Re curve.

In the range 103 < Re < 105, the value of 1/St is about 5.

Free-stream turbulence and cylinder surface characteristics affect CD.

Therefore, the standard curve of CD versus Re for smooth cylinders alone

cannot be used to determine the drag coefficient in turbulent flow or for

rough cylinders. To determine the effect of turbulence on the drag

coefficient, one should consider turbulence intensity, turbulence scale, and

surface characteristics in addition to Reynolds number; i.e.,

CD = CD(Re, turbulence intensity, turbulence scale, surface

characteristics) . (7.2)

The detailed variations of CD with turbulence characteristics at different Re

are still not well understood. For example, for 1350 < Re < 8000, Ko and Graf

(1972) found that at low turbulence intensity, CD decreases. The lowest CD is

obtained at a turbulence intensity of 4%. Further increase in turbulence

intensity causes the drag coefficient to continue to increase. The highest

drag coefficient was CD = 1.25 at a turbulence intensity of 21%.

The critical value of Re at which the large drop of CD occurs is smaller

both for a greater degree of turbulence in the main flow and for greater

roughness of the surface upstream of the separation point. If a small rough-

ness element such as a wire is placed on the surface of the cylinder upstream

of the separation position, the transition from a laminar to a turbulent

boundary layer occurs at a smaller Reynolds number. Therefore, the drag can

be significantly reduced by increasing the surface roughness if the Reynolds

number is such that a wholly laminar layer can by this means be made

turbulent.

When the cylinder is oscillating, CD increases substantially as a result

of vortex-excited oscillations. The steady drag coefficient for a vibrating

cylinder can be several times that for a stationary cylinder. The steady

amplification on a circular cylinder due to vortex-excited oscillations is

illustrated in Fig. 7.7, in which the ratio of drag coefficients is plotted

against the wake response parameter Wr' Wr is defined as follows (Griffin

1980):

2a U -l
Wr = (1 + -)(- st) . (7.3)
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7.5 FLUCTUATING FLUID-FORCE COEFFICIENTS

Each time a vortex is shed from the cylinder it experiences a time-

varying force at the frequency of vortex shedding. The periodic fluctuating

force components are

g l p DC, sin(%t) and

(7.4)

h = j pU DCLsin(%t)

QL is equal to the Strouhal frequency and aD is equal to twice the Strouhal

frequency. The drag and lift coefficients, obtained from Eq. 7.4, are

referred to as fluctuating drag and lift coefficients. When the excitation is

not at a discrete frequency, the coefficients of fluctuating drag and lift are

defined by the root mean square value of the drag and lift fluctuations as

obtained from an integration of the corresponding frequency spectra, viz.,

- RMS value of fluctuating drag force per unit length
D 1 2

jpU D
and

= RMS value of fluctuating lift force per unit lengthL 122L pU2D

The coefficients obtained in this manner are referred to as RMS fluctuating

drag and lift coefficients.

The fluctuating force coefficients C and CL depend on different

parameters:

CL = CA(Re, turbulence characteristics, surface characteristics,

oscillation amplitude)

and (7.5)

CL = CL(Re, turbulence characteristics, surface characteristics,

oscillation amplitude) .
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Stationary Cylinders

The fluctuating lift and drag coefficients are obtained from measurements

of the fluctuating forces. Table 7.3 lists the RMS fluctuating force

coefficients and the corresponding Reynolds numbers (King 1977a). There is

considerable scatter between the values obtained by different investigators;

values may vary from about 0.1 to 1.4. The use of 1.2 for CL and 0.2 for CD

is considered conservative for all Re.

The scatter of the data could be due to the dependence of the force

coefficients on Reynolds number, aspect ratio, surface roughness, turbulence,

and boundary effects. A significant variati,.n of forces can be measured on

almost identical cylinders in different test loops.

Oscillating Cylinder

The drag and lift coefficients obtained from experimental force measure-

ments on oscillating cylinders are compared with results from mathematical

models of the fluid/cylinder system. Figs. 7.8 and 7.9 present the

fluctuating lift and drag coefficients against amplitudes of oscillation for

the crossflow and in-line directions. At low amplitudes, the lift coefficient

increases with increasing amplitude. As the amplitude rises above 0.5

diameter, the lift coefficient begins to decrease, and approaches zero as the

amplitude exceeds about 1.5 to 2.0 diameter. Thus the vortex strength appears

to be self-limiting.

The fluctuating drag coefficients CD for cylinders oscillating in the two

instability regions (see Section 7.9) given in Figs. 7.9 show that CD

increases linearly with oscillation amplitude. Contrary to the crossflow

results, the amplitude does not have a maximum for the amplitude up to the

order of 0.2 diameter. These force coefficients were measured in tests

conducted with smooth flexible cylinders vibrating in the fundamental and

second normal modes; the Reynolds numbers of the experiments are small

(Re ~ 5 x 103) (King et al. 1973).

Correlation Length

Vortices are shed in cells from stationary cylinders. The length of each

cell is called the correlation length. The correlation length varies with

Reynolds number, turbulence, length/diameter ratio, and surface roughness.

Typical results are summarized in Table 7.4 (King 1977a).

An important consequence of cylinder oscillation and vortex shedding is

the greatly increased coherence or correlation of the vortex shedding along

the length of the cylinder, when the cylinder amplitude is greater than the

threshold value--typically a/D a 10% for crossflow oscillations and 1-2% for

in-line oscillations. This implies that the cylinder oscillations must

reorganize the vortex shedding process.
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Table 7.3. Collected Experimental Data from VariouR Sources--Fluctuating
Force Coefficients and Reynolds Numbers

RMS
Fluctuating Lift Ratio

Source Coefficient (CL) (CL/CD) Reynolds Number Range

Jones (1968)

McGregor (1957)

Surry (1969)

Bishop and Hassan (1964)

Ruedy (1935)

Woodruff and Kozak (1958)

Vickery and Watkins (1962)

King (1974)

Fung (1958)

Glenny (1966)

Keefe (1961)

Humphreys (1960)

Phillips (1956)

Schwabe (1935)

Protos et al. (1968)

0.08

0.60

0.60

0.60

0.93

0.65

0.78

0.78

0.20-0.30

0.43

0.30-1.35

0.75

0.45

0.30

10

2.5-10

10

5.7-10

10

3

10

0.4 x 106-1.9 x 107

4.3 x104-1.3 x105

4.4 x 104

3.6 x 103-1.1 x 104

Approx. 105

0.2 x 106

104

4 x 104

0.2 x 106

0.2 x 106

4 x 104-105

3 x 105-5 x 105

200

Approx. 700

4.5 x 104

*
From King (1977a), with permission--see Credits.
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Table 7.4. Correlation Lengths and Reynolds Numbers of Smooth Cylinders*

Reynolds number Correlation length

40 < Re < 150 15D-20D

150 < Re < 105 2D-3D

1.1 x 104 < Re < 4.5 x 104  3D-6D

> 105 0.5D

2 x 105 1.56D

From King (1977a), with permission--see Credits.

Source

Gerlach and Dodge
(1970)

Gerlach and Dodge

(1970)

El-Baroudi (1960)

Gerlach and Dodge
(1970)

Humphreys (1960)
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Detailed investigations of the spanwise coherence that accompanies lock-

in are made by Ramberg and Griffin (1976) for Re = 7.5 x 103. The spanwise

correlation coefficient between the fluctuating pressures measured on a

vibrating cylinder is given in Fig. 7.10. It is apparent that when the

displacement amplitude increases to about 0.1 diameter, the correlation

increases significantly. Similar results were noted by Koopmann (1967) for Re

below 300 and Toebes (1969) for Re ~ 68,000.

7.6 HIGH REYNOLDS NUMBERS

The detailed flow field from the transition region up to the postcritical

region is still not well understood. An excellent experiment was reported by

Schewe (1983) recently. It shed some additional light on fluid forces. Force

measurements were conducted in a pressurized wind tunnel in regions ranging

from subcritical to postcritical. Figure 7.11 shows the steady drag coeffi-

cient CD, Strouhal number St, and RMS lift coefficient C as functions of

Reynolds number, and Fig. 7.12 shows the frequency spectra of the lift

fluctuations.

Figure 7.11 shows that in the transition region there are two

discontinuous drops of CD (A and B) in the supercritical state, which begins

at Re = 3.5 x 105. The value of CD is nearly constant up to about Re a 106

with CD = 0.22. Behind the upper transition range (106 ( Re = 5 x 106), in

which CD is increasing again, there is a further plateau where CD is nearly

constant, with CD = 0.52.

In the subcritical range, the Strouhal number is about 0.2. The

transition range exhibits two discontinuous transitions, A and B, where the

Strouhal number jumps to 0.3 and then to 0.48, which is in agreement with

Bearman's data (Bearman 1969). These two jumps are directly associated with

the two drops of CD. At the supercritical Reynolds numbers, the Strouhal

number remains constant until, the upper transition region. Finally, the
6

Strouhal number reaches 0.29 for Re a 7.1 x 106.

In the subcritical Reynolds number, CL contains a narrow band spectrum.

At the supercritical and postcritical regions, the frequency spectra also

exhibit a narrow peak. However, in the upper transition region, there is no

typical spectrum. The dotted lines in Figs. 7.12b-d are caused by mechanical

vibration.

Flow characteristics at high Reynolds numbers remain not very well

understood. This is a subject of current research (e.g., see Roshko 1961,

Bearman 1969, James et al. 1980, and Farell and Blessmann 1983).

7.7 TURBULENT EXCITATION

In an ideal crossflow, the periodic drag and lift forces are the two

excitation force components. In a turbulent crossflow, the frequency spectra
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of the lift and drag force components consist of a component in a narrow band

of frequencies due to organized vortex shedding and a component covering a

wide band of frequencies predominantly below the vortex shedding frequency due

to flow turbulence in the incoming flow stream and in the wake. The roles of

these two components depend on Re and turbulence of the flow stream.

The turbulence in the flow stream may have significant effects on the

fluid force characteristics acting on a cylinder. It is generally known that

the effect of introducing turbulence into the flow is to produce a change in

effective Reynolds number in the measurement of drag. This corresponds to the

shift in the transitional region to a lower Reynolds number range.

The effect of turbulence on drag, lift, and Strouhal number in the

Reynolds number range of 105 to 106 was investigated systematically in a study

by Cheung and Melbourne (1983). Figure 7.13 shows the steady drag force

coefficient as a function of Re. It decreases with turbulence intensities at

subcritical Reynolds numbers. The drop in drag coefficient occurs at a lower

Reynolds number in turbulent flow than in smooth flow, indicating that there

is a shift in the effective transitional Reynolds number due to turbulence.

Figures 7.14 and 7.15 show the fluctuating drag and lift coefficients.

In the presence of turbulence, the decrease in fluctuating lift in the

critical flow regime occurs at a lower Reynolds number, which is consistent

with the idea that the effect of turbulence is in part a change in the

effective transitional Reynolds number. The fluctuating lift also decreases

significantly in the subcritical regime. The turbulence introduced may reduce

both the coherence and the strength of the shed vortices in this high

subcritical regime. In the supercritical flow regime, the increased

entrainment due to turbulence could reduce the vorticity in the free shear

layers and cause the wake to fluctuate more, effectively broadening the

wake. The swinging of the wake, in effect, induces a slight increase in the

fluctuating lift. A similar trend is noted for fluctuating drag.

The Strouhal numbers are plotted against Reynolds numbers in Fig. 7.16.

The rise in Strouhal number occurs earlier at a lower Reynolds number as the

turbulence intensity increases.

The effect of turbulence in flow on fluid forces can be summarized as

follows (Mulcahy 1982):

* The Reynolds number at which the boundary layer undergoes

transition from laminar to turbulent flow is reduced. This can

be observed from the relatively sharp declines in CD as well as

the increase in St. Thus the critical region appears to occur

over a larger Reynolds number range, and the associated wake

forces are random at Re, where they were periodic in ideal flow:

the more turbulent the flow, the smaller the subcritical range

of Reynolds numbers.
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" The second effect of turbulence in the flow is the degradation

of the two-dimensional vortex shedding process for subcritical

Reynolds numbers, as measured by the broadening and reduction in

amplitude of the vortex shedding peak in the lift force spectral

density.

" The third effect is the pressure fluctuations created by the

impinging turbulence. The associated random excitation forces

are difficult to separate from those created by the wake.

7.8 EQUATIONS OF MOTION IN CROSSFLOW

Let the cylinder displacement components be u and v along and normal to

the flow, respectively, and the relative velocity between the fluid and

cylinder be V (Fig. 7.17). The drag and lift forces acting on the cylinder

based on the steady flow are as follows:

- 1 2
g=jpVDCD and

(7.6)

h = j pV DCL

CD and CL are the steady drag and lift coefficients. Note from Fig. 7.17 that

-1at

o = tan[ 1 ' (7.7)

U - a

The fluid force components acting on the cylinder in the x and y direction are

obtained from Eqs. 7.6 and Fig. 7.17:

1 2
g = pV D(CDcosO + C sinO) and

(7.8)

h = 2 pV2D(-CDsinO + CLcos )

Using Eqs. 7.7 and 7.8 gives
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1 VaBu VV and
g 2 PUD[CD)(V -j ) + CLU t and

(7.9)

h - pUD[CL(V - a) -CD

In addition to the steady fluid-force components, the fluctuating drag and

lift forces are

g =-2pU DC1 sin(%t) and

(7.10)

h =2pU2DCLsin(%t)

where SD and D are the frequencies of vortex shedding and, in general, SI -

The equations of motion for the cylinder in the drag and lift direction

are

4 2

EI +C +(a+CM) - U[ V - )
vz4+ vat md at2  2  D\ U t

- CL U at = jpU2C sin(%Dt) + g'

and (7.11)

42 1
EIv + Cvat + (m + Cmd)t - UD[CL

az DCLV-t t

+ CD U = 2pU2 CLsin(Lt) + h'

where Cv is the viscous damping coefficient in stationary fluid, and g' and h'

are turbulent excitations.

Let *1(z) and " 2(z) be the normalized modal function of the cylinder in

the x and y directions and
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u(z,t) - q1 (t)*1(z) and

(7.12)

v(z,t) = q2(t)4 2(z)

Using Eqs. 7.11 and 7.12 gives

Mi + 2Fw1.glq + X019

DUD (
+ 2(m +UCmMd)L D I

0
U Oidz)q - (CL fjj 1 02dz)i2]

0

pUDC D2

- 2(m + CMd)R I Vf1dz
pU2DC'

+ 2(m + C M )Z
m~d

t
sin(Dt)

0

q2 + 2 ,2w2c22 + w2g2

+ 2(m +CMd)L L1C 1
0

u 12 ) 1 + (CD I dz)I2*
0

pUDCit

2Cm + CL f V 2dz2 m 0 f2

pU2DC'

+ 2(m + C M )Lm d
sin(Lt) f

0

C
v

=2w C(m + CM

m = 2
EI 0.5

S+ Cm Md

1
g - (m + C M )

m d

1
g2 C m + C m )R,

I g'Cz,t) 1 (z)dz
0

I
0

h'(z,t) 2(z)dz ,

V - [CU(- 4h)2 + (422) 20.5

and A is the modal constant.

and

*ldz + gl

(7.13)

where

* 2 dz + g2

(7.14)

and
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Equations 7.13 are coupled nonlinear differential equations. The general
solution is difficult to obtain in closed form. However, some special cases

are amenable to closed-form solution.

When the flow velocity U is much larger than cylinder oscillations (U >>
u and v),

V - u(l - q 1) -. (7.15)

Substituting Eq. 7.15 into 7.13 and neglecting higher order contributions

yields

41 + 2(C1 + 11)wgq1 + wlq1 - 2 12w 2q2 - g1 + g4 + g

and (7.16)

. 2
2 + 2(+2 +2 22 2 + 2C 21w1 q1 - g2 + g2 + g2

where

CD Md U
11 ~2 (m + C M D)

W m d 1

C M 1

X12 m + C-)(f ) f *1C 2()d,
2w m d 2 o

C M 1

21 2m + C M D f 1 () 2 (,)d,
md 1 o

CD Md U
22 22m + CmMd f2D)2i ( a md 2

pDU2CD 1

g - 2(m + C Md) f0 1( )dt,

aid 0

o pDU2CL 1

g2 2(m + CmMd) fo 2 ( )d,
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pDU C' 1

g =2(m + CMd) 10* 1 ()d5 sin(%t) , and
m d o

(7.17)

2 (Contd.)
PDU CL 1

g2= 2(m + C M ) (5)d sin(i2t)
m d 0

Furthermore, the steady lift coefficient is, in general, equal to zero. The

motion in the lift and drag directions are uncoupled and modal damping ratios

are given by

C M
C = + c = + d U__

fl 1 11 2 m + CM D~f = + ll= l m d 1

and (7.18)

CD Md 1U

Cf2 = 42 + C22 = 2 + 2 mm + C 1M D

c1 and C22 are attributed to drag force and are proportional to drag

coefficient, mass ratio, and reduced flow velocity.

Different mechanisms of crossflow-induced vibrations of a cylinder can be

evaluated using the equations of motion (7.13):

Wake Excitation: The natural vortex shedding induces periodic forces on

the cylinder, perpendicular to the flow and in line with the flow, which are

contained in these terms associated with C' and CL on the right side of

Eq. 7.13. Wake excitation is, in general, a periodic forced excitation.

Self-Excitation: When the periodic flow excitation frequency is very

close to the cylinder natural frequency, "lock-in" can occur and the vibration

controls the vortex shedding and phasing necessary to continue the vibra-

tion. In this case, all the terms associated with CL and CL (crossf low

direction) or CD and CjD (in-line direction) become important.

Turbulence Excitation: Turbulence in the incoming flow or in flow across

the cylinder can be expected to excite a random motion of the cylinder; this

is controlled by the forcing terms g1 and g2.

In addition to the dynamic response, the steady drag or lift forces can

cause static displacement. This is associated with the steady fluid forces.

1.9 RESPONSE OF A CIRCULAR CYLINDER IN CROSSFL(M

Theoretically, the response of a cylinder subjected to crossf low can be

calculated using Eqs. 7.13. In reality, the solution of these two equations

is difficult for several reasons:
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" The fluid force coefficients are not constants in general (i.e.,

CD, CD and CL depend on cylinder response),

" The equations are nonlinear, and

" The fluid fields associated with turbulence g', h' are not known

in general.

Therefore, different simplified models have been developed for applications in

different parameter ranges.

Consider a typical example of a single cylinder in water flow.

Figure 7.18 shows the tube displacements and spectral density in the lift and

drag directions and Fig. 7.19 summarizes the general response characteristics

(Chen and Jendrzejczyk 1979). The cylinder response can be divided into

several regions:

* Ur G 1.25 - Very small oscillations occur in both the lift and drag

directions. Motion is excited predominantly by turbulence in the flow. The

cylinder responds at the natural frequency in both the lift and drag

directions. Occasionally, the cylinder may also be excited by vortex

shedding; the response is in the lift direction and the response frequency is

the vortex shedding frequency.

" 1.25 < Ur < 2.7 - The cylinder performs steady oscillations in the

drag direction with a small amplitude in the lift direction. The dominant

frequencies in both the lift and drag directions are at the cylinder natural

frequency.

* 2.7 < Ur < 4.5 - The path of the cylinder motion is Lissajou's figure

with the ratio of frequencies in the drag and lift directions equal to two.

" Ur > 4.5 - The cylinder motion is predominantly in the lift direction.

Based on these observations, the cylinder response can be considered according

to the following three conditions:

(1) Synchronization of Vortex Shedding in the Drag Direction: When the

cylinder natural frequency is equal to twice the vortex shedding frequency,

cylinder response in the drag direction is centered at the cylinder natural

frequency. In this range of reduced flow velocity (1.25 < Ur < 4.5), the

vortex shedding is controlled by cylinder motion in the drag direction; this

response is called lock-in in the in-line direction.

(2) Synchronization of Vortex Shedding in the Lift Direction: When the

vortex shedding frequency is close to the cylinder natural frequency, vortex-

excited oscillations in the lift direction become dominant. In this range of

reduced flow velocity (4.5 < Ur < 10), the response is called lock-in in the

lift direction.

(3) Turbulence-induced Vibration: Tube response to turbulence

excitation increases with reduced flow velocity and the response is centered

at the cylinder natural frequency. Turbulence excitations occur for all

values of Ur.



7-36

TUBE DISPLACEMENT

.... , ft":':..... ....... . .
.::i::" ... 2::::f::::T :::::::: .:.::.......... 7 _t::*.1..1. :1:::.:. .... .. ...

":::::::t:..:.'::::..:::.:::::l::'::::.::: .. . .. . .EDUCED : .... ........ {....... ....... }......... ....... 1....{............ ..................... .. ... .. ... r ow 1:: . ...
:, :;: a: ...

VELOCITY . . .¬1 :i: I:

i F..:,i :t ii:1 1 ,. . i': ...:. . ... ,::.;:"1;. .+.1 1 .1 1.9 2 .I ..:,:::: .: ..... .:.:'.l. ... .......
.... .......:................ .. 1......"I.:....... ... :.:::.:.::::....

. ... ... .... .. .... . ,4. , .

.37 i1/sa .'. . L... i.. .1.. ... ....
t". .

.,...

................. .......................... ...........i.........

I: u:+: :1: :1: .... i ii+: :+' 'I'
:i: :i: ;i; ;t' i: #'':1 Iiis :{: i

}f:: :4: i 1_" 
:1: isA ::::!:::: .::: :;i :I:

i} is
lii :¬' :i

i'i 
1:'

{ 
::{i:::ii :

i' :t:: :I--: i. .

!:" .... 1#: iii.-:j: ..... !:.. ...; ¬ .. ;i . ... .... . ..

;% ii; .:..;I;;:;.:,.::;;;;: :i- :1:

:i; :i: ii il ii: .{:t:
ii1 'r' .:::i i:;i;:f'

;ii ! .... .. t::1:1: i:ff :: ; ::;:ii": :

{{}fii: +: 
ii;;.:11.;ii 

F'..; 

il:r;ii :r:

:.i::..:i:::,:.., t s .ti1 i..j iiii:.... :1 .t......, :#: : 
:I:

:1i :I:. .:{:: i i :i is... i' ii !i;:: :i:. :;: lu, :: ! + ¬: ....... . ....... ......._;... ..:it:1:...:i::iii. . s

i; ::iii:::: ::: ::,.::::::. .
3.12 ¬.: ::

:; fit
"t :ii ;.

7.09 ft/teC): 2.
::

I: :1: it: . . ;j;:::::::: ;::::i ;: ;1; ii! :c ;i

..

ii 
ii 

:l :: .;i. is «-i#: iE :f:
: ' fii ii::;'

f:ii' i" li:' ili
i ' ;'

: ii :i' 
.i: i}' ..

a; iii :t:

:: #1; :i: iii :}; }: :I}: :i iii iii

:i: it. . :i:

.. . .... .:1:...t::::!...... ' T+::..i:....... .... : .:.. .. . . . .. . ..

:111 iF.. .. : ii

I'' :
iii :#: iii 1i' :: 1:;::::::_.;

:i ¬ 
i

r
i' iii :#:I: .ii .:::::I:::..:::. .:.:!:::::--.-::+-- :i :i.

i :¬i{ 1i: .; j

:::
:1" 

:t' 
l :t:::::

... 

:I:... .

is
1: ai' :1¬:

1.,
:1:. 1:! :

:l8 li 
i: :

#.
is

I i .. ii:.i
1. ii:. . +i;

# tlt 
11:1.....

;: ..

i! : :I

:41 ii: it+. 'f ' '

}i :} ;:
::::::::.: :: ... .............. .............. ....... : : .... . .. ... .

...........................................
::!.. . ...... L .:::::' .:.t: .

i;: ;1;
:i- :t:

:i: 
}:

}: :t: : :,.:
:i: #: it: 't1 :1:a : :i: :illr t;::::.:. ;:::::.- .. .i ... ........ ..: *1 .

..... .. .. s
- - - -

'i ;i 'iili a. 1i: !::.
.. :. 

is

i ::::::: :ii1 }ti. : t: .' ; :

i
{i. ii ii'

i' # 11 jffI..s 1#1i:. 1': ::Iii: iii ..... ... .tsi;......;i'1::
i .

4.53 
}:

;.

' ............ :..::;:;;: i .:.......:::.. :....:.:.. .
(10.3 11/sec):...1.."..:::: i;:: :':::t ::::

. . . .. .. . . . ::r

;1;.
............... ... I:.... ...

:I'

i,' 
.. 

. 1:... .

:;':iii i :ii:ii::::':
... ... . .. ..... 7.....: ... : :::::, :: .:' : . :..., ..: ...

.... 5....
ii!:: ' ' .1:: ':.":::1 .... ... ...... :i:i'.i"" : I.":

li 
.i

is ifi .I::!::.. . ::. .::":.1;:: t...
I! I ,. : :: :.

:ii. :i: c :i .... ... }:::.:....1.
! is:1: 1 :i. ! #: :ii h t. iI;j: 1 .

.ji. iii :1'ii .+: 1
!I¬l+ltll: :1: i :. 1:.L:t1: :1..... .! ... '.L..:1:S::I:iil.. 1 ....

:'::1:::,3::': ' .:' :' :: I' " .. ': . : :_:.. :::::;1.Jr.: ;... .
t'::,i!:I,1.:'::::..it.

'1. 
;;:

!. t#i ii, 'i..:.;;:.:!:;.: is I

# is
:i: :1i :#i i ' il: :+

iii. i. . };::ii ii} 
I. 

i ..
4.92 !' ii ..

¬01.2 fl/w )

}i 1 :r .Ili"1

#. i. u l ......... }.... .i. 1.

is

ii :11
.i .1.

fii ii: #1 ::' 
}i .j. .. } 

TUBE

11.i 
..

.ii;ia ::'1.i.{ , ..{....... ! i ,. : .!.. 1 .i....

i. =j:¬1 ;IIi.;:!i iii"! i 1 i FLOW . tj' 1{ .. i .: ,

.111' 1"#' '} 1 .1...1 . I I.. 11#l tljljji 11:111lil'

DISPLACEMENT -TIME TRACE
POWER SPECTRAL DENSITY

OF TUBE DISPLACEMENT
-:T: -- I - - -:r.. --- I: Till: :;;Ti

:iii1'i1::::::::1:::i:: ::;::::i't'i:.... ilti::;.. .t..1.... . ':1' iliu ii .. t::!::: f iu
11'1 }"::: iii I;1 .- ii:i :':: " is :i ,L IIf

.::i:::::::::+.. : ::s: :: :' :.i . :i ::.}'' .. l1.. :: " :: ::::1:::: t:.:::: . '_.

iii ;f; 'i++ ::: I . i :*..i :tji.t

fi 
:a ' 1.

: r ii:a :::H:;;T tit: ;

a: ::' iifjj I a. :r !i; ur :Ii' i!: 1 i
ii..:iii. F i :: ii.LIFT i F . . ..:,: i:: :t iii :1. :; iiF i ii;i; i:i:+i r :i i' ! .t.

t# D :1: : itis: S.f .. t fiia ,.'
ii i ., ::: :. !' it

ECii: i+.+ ii+ ttrt I ION}
i:: 

i 

:2 1"

. i' i t . .
1. 

..ii 

: i.iF"i' 

l;== 

ilk

:L il .: ""LIFT. ':: ..: 1
::i:::: ii ilii .::: "ili+: #i:. .IR I t.. Ii i''+'; : 

: I.. TIT
EC TONiiiiiii i ". !:!,. I#" ; . 11

: :ii fi
i' is " : 

t 
:1 .

i" :.::,::: ::- :I:::: .:::::::::: :i..... t:, :1: .1 t' t
;: 11 ;fii..

.:1::... .. ::;:::::::.:::.::::::, :... '+..:t
: :: ' 

:}::"' '}iii::' RAG iii : :2: it ::" +. 1I:

:i 

:b *.T::::i i;' :i:
} 1. i.la ::"Fli:EC « if I'li . ........ . ::D I EC T ION: i i'. ....... ::' i ...... ¬..... .. w .i .. .... . .. ..L::._:_ _ ' :..::.... ... .i. 

iii
ii" 

!

:fii" * 11, it
ii: li 1ii ;:..

iii:#: '" i .. #':'
'1" ':11' :,'

.1 a: + isr}:
T ii i 1'

:i: 
j..

l: :; 1
:ri :l +:Ii=

I: 
;i « ;:: t . :1ii .. l t . i..n 

: }" 1"
:1: + i i.' I I: 'i:' :t

i i 
j

'1: 

'ti'1"

:l :1::" 11
:1 .

!: : { 

: :t "'(( yySS i 
4 6 .... -..... ..-......... :t::. .. ......... .-. .. ."l: ":. i:: 2.1..'""' : : .. _ " f ....-.. :t. il....:.:I"i:i:'. t }: i. S :2. 2

.... .... 1.....
... .. 1... I.. .... it:"i:2 i.

.... ! . . . -i......... .... . . ....... ....... 3 ... ... T . :1 F+it. i3; F. :i i;' ;tt'."i1: 't: :I: :11 .t......... ti 1
{. . . ,

;: :l: :1.:

t: il: t'1i':1ii: ' 1':;;....: 't}
;" ' : 1' 

L: 
i

i "v.
t ii .:11 i 12 ; OF U8E UR Oll, ... :...:.:.ii :

.............. ::.:." :: ;' i:::::.:::::;.. IN HE DRAG DIREC
ION. , is :1:. :: :r "1:itl :1: o : ii :s: ii;ii !;!

:i. : f: { ,

=t 
;3; ';ii

«... :i.!!ii" i! ".iiiii .T .: 

:#;i:1:i;: #:i1

:..t. i :}:::iii== t ;
yL fF i::i :l

; 

::iii: s a:::iis
IRECT ION:i:!!i #..

is '1#ii' ifii :i iD 
::

1! :1: i:ii ii :il:i:'li ... . '.i:.' i: t.'. iii
i;ii

. :il:s:l .li' a:
DIRECTIONI {

a cat ; :::" !I' ' 11:I
:,

0 
::i" 

.. 
:1. :11.i .1+;'

i s } i'
t". 5::: is:i'

r. :F: is 1!:'
11:: : i i

ii 1'i
.. .. 1 f1. i: :r ' :

REC ih:
r 

T 
: k''

:DI IONrii

; ;*
:fE i t :. 'tafai i ;1 it # ;::' 

;;
s 

} :: :fi: ii iii';iii _
.. :E: ;::: :I. * Ii Si F..:::

¬: :+: :i' i 2..

l==1" :I :::

:t. :1: :i: .t:' i UBE NATl1Al
:i: t ....

}i1: : iit ii.i ... :1-:: iii
iii' i :I }i::., ! QR

....... .. } a i: ... .. .. .. . 1. a i ,i .. ... ..i: 1 ii:..i.If ,..I :2. , :
.......... # ' }: . ri i l ;; }+i. ; . : 1 .1...J .11.i1::ih: ¬ii i #i . n i .. :r.i::1

.1' 1... is
1 ,

=ii ;i':1' ;i'
i' I.i:ii t .:r l.'i. LIF i' ?Fi: :i :}# 11: 't-

i. r i.... ............. ... ... . .. : .:. .:'. DIREC 
r :':: :i::11

...... ... ..... ... .. " . .: T IO N : ',! :

}.........i: ........ 1... . .,. .,

:1. 5:::

.. "I. ... ... . .:i ii ., ..i:.ij.llii is 2 L

Ty 'i!; ;;_
ii J ; I .. 1. 1..

... .:1.iii. i:Fi:i..:;#ii;i}ii..i : 2. iii, ii t =

....... :' «.: t:::li:.u:u: iiiiii:..:_ i 11.

il:' Ili:::
;DRAG :}^ i I ; ::: :E;i:ris _ :u ;c^i

i:: .: .r 1 I
}i: + il it

R G :,' :;i i i:' «::..r.1 !fl }. "..:
6t'::^ 

1i

........ .. ;.: k
i IREC 10Nciii r: a.: t..: ai!: lii.:

j 
s 

:D

i' :li ;; :t.:'..,:: i:::
ii t:1 i :I... i: ki:: ::i

r: 
i: : i {

:i: 
:l: 'i: ' :! "'

is :t' .. :!"

.... .. ;:. .:IOT:: R .:l:li :i. :l: :t.

;!: ri " Fi""I NCYV "TES HEDONG E II
l:i: i l :I::':

7"1.. R: iii;;' 1!" ;i:
.. .. .. ' ....2: ' .2. .. . , .... . . .. .. :1 .. 1T NATURA F NCY"1: :iii ' UBE L REQUE

(LIFT. 
THE LIFT DIRECTION:i ' ':i

i:' t":! t .1 :: 1i«
#:i .a ... } : t.

i::..liil 

.

1 ' IFT :#1:ii
iii :ii .i :: i. . . 'fii ai':..... .... .. ... i.. . ;DIRECTION: ; li

.................. :1......1« .. 1............ ..... .Ili: t l..+ .
:.: :, . ;:: .. ; .

i;i: '}: }
.. I:. I .. i i s i :ii:::+: 1li::i":

i ' : ii ;iil': :il;i:
ti i;:' li'a '... :..:......... . :: ....... ¬ ' i liii: il'::'1::1:"::i' i1 !,:ii: 

. !li I...i 1 iii 1'i:.
... d" :''#.....

;0RAG' I.,.. i
iii

1::: . :i"..... 

i

«::+:1: .iii
RAG :: ::::ce is

D i..::i:. . ::i
.. . ..2..... +11:!i:' li.. .

:1: 1iF', ii= '1

T I0 :.. :E fI.:l: 1.:it . I .i. .
11 .... .: I - 77

a ' 

;}' I;i:'

Ii ... '} } i:. 1:: :iii:' I .ii; :ii :l. i ; ;;,iil # i :! :i.i
1:: i1lii.... 'l' .. .... . .... : :t.....L'.ll'..: i::.. L ... '.I..t::'..... .i:. 'I . ..

ii .,.

0 15 30 45 0 20 40 60
TIME, sec FREQUENCY, Hz

s0 100

Fig. 7.18. Tube Displacement and Spectral Density of Tube Displacement

in Water (Chen and Jendrzejczyk 1979)



7-37

FREQUENCIES OF TUBE RESPONSE IN THE LIFT DIRECTION
FREQUENCIES OF TUBE RESPONSE IN THE DRAG DIRECTION
VORTEX SHEADING FREQUENCIES

2.0 -

-s o 0sA0Ao 0 0

0
0

0

I- Z

ZOL
W

W -J

ID

0co

00 0 00 00000

SYNCHRONIZATION
OF VORTEX SHEDDING
WITH TUBE MOTION IN
THE DRAG DIRECTION

SYNCHRONIZATION OF
VORTEX SHEDDING WITH

TUBE MOTION IN THE
LIFT DIRECTION

0.4:

0.3

VERY OSCILLATIONS OSCILLATIONS
SMALL AS A LISSAJOUS IN THE LIFT DIRECTION

OSCILLATIONS FIGURE WITH A
nsCIiLATIONS FREQUENCY

0.2k -

IN THE DRAG;
DIRECTION TO 2,

.

.

do Mal

0 I 2 3 4 5 6
REDUCED FLOW VELOCITY (U/f D)

7

Fig. 7.19. Tube Response Characteristics

3.0

0

1.5

.0

0.5

0

Z

CLWJ

1-

0.1

8
if 1 1 1-.0000

2.5 _0s

0

-

i



7-38

In-Line Oscillations

The in-line component of the periodic force, which occurs at twice the

Strouhal frequency, is typically an order of magnitude less than the crossflow

component (see Table 7.3). In a light fluid, it rarely excites the structure

to a large amplitude. With the increased use of lightly damped structures in

water, the potential for in-line oscillations has increased because of the

larger fluid density and because of the lower flow velocities at which the

resonant vibrations are initiated.

Oscillations in the in-line direction are contained within two adjacent

but sometimes separate regions. The response in each region depends strongly

on the mass-damping parameter 6s. Figure 7.20 shows typical results from

laboratory-scale measurements (King 1974). The first region covers the range

approximately 1.25 < U/fD < 2.5. The excitation is initiated at velocities

only about a quarter of those necessary for crossflow excitation. The maximum

amplitudes occur at U/fD ~ 2.1. The second region is 2.5 < U/fD < 3.8, with

the maximum amplitudes at U/fD ~ 3.2. These values are affected by the values

of the mass-damping parameter 6s. The cylinder response amplitudes in the two

regions are approximately equal. However, the flow fields in the wake are

different. The first region is characterized by the shedding of two vortices

of opposing signs from opposite sides of the cylinder during one motion cycle,

and in the second region a single vortex is shed during each cycle of oscilla-

tions and a street of alternately rotating vortices is formed downstream of

the cylinder as shown in Fig. 7.21 (King 1977a). In some cases, there is no

clear separation of the two regions (Chen and Jendrzejczyk 1979).

The in-line oscillations reach displacements of only about 0.25 D peak-

to-peak at very low dampng. All available evidence suggests that in-line

oscillations do not occur for values of 6s > 0.6. Also, a limiting lower

Reynolds number for the onset of vortex-excited, in-line oscillations in water

is about Re = 1200 to 1500 (King 1977a).

Crossf low Oscillations

When the natural frequency of the cylinder is considerably greater than

the frequency of vortex shedding for a stationary cylinder, the cylinder

excites very small-amplitude vibrations at the natural frequency of the

cylinder and at the Strouhal frequency. This is called the zone of constant

Strouhal number and increasing forcing frequency. As the flow velocity is

slowly increased, the cylinder amplitude also increases with the frequency of

the vortex shedding, which is now controlled by the natural frequency of the

structure. This process continues until a maximum amplitude is reached, at

which point the input energy from the flow just balances that absorbed by the

cylinder. A further increase in flow velocity causes the amplitude to fall

off until eventually control of the shedding frequency is lost. At this
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point, if the natural frequency of higher modes and the damping are

sufficiently high, the cylinder response amplitude becomes small. On the

other hand, there is a possibility that a small range of flow velocity exists

where two or more modes overlap.

Figure 7.22 shows the typical cylinder response in the lock-in region in

the lift direction. Initially, as the flow velocity is increased from zero,

the cylinder is stationary and the vortex shedding frequency follows the St =

0.198 straight-line relationship. However, as the lower critical flow

velocity is approached, the cylinder begins to oscillate and the dominant wake

frequency shifts from the St = 0.198 line and remains nominally equal to the

cylinder natural frequency. Note that lock-in occurs over a range of

velocities and the vortex shedding frequency coincides approximately with the

natural frequency of the cylinder. At a velocity slightly above the critical

value, the cylinder large-amplitude motion ceases and the vortex shedding

frequency returns to the value predicted by the St = 0.198 straight-line

relationship for a stationary cylinder.

The characteristics in the lock-in region can be summarized as follows:

" Capture of Vortex-Shedding Frequency by the Cylinder Frequency

Usually, the cylinder starts to capture the vortex frequency at approximately

the flow speed for which the vortex shedding frequency for a stationary

cylinder coincides with the cylinder natural frequency. Throughout the lock-

in range, there is very little modulation of either cylinder displacement or

pressure acting on the cylinder. This indicates a much more highly organized

wake vortex system induced by the cylinder motion. The range of capture over

which the vortex-shedding frequency is locked to the cylinder frequency

depends on oscillation amplitude, which in turn depends on mass-damping

parameter--the larger the amplitude, the larger the range of capture. The

range of capture always encompasses the reduced velocity, which is equal to

the inverse of the Strouhal number measured for the corresponding stationary

cylinder.

* Increase of Correlation Length - The movement of the cylinder provides

a means of synchronizing the movement of shedding along its length. The

threshold oscillation amplitude to cause large increases in the correlation is

approximately a/D = 0.05 ~ 0.1 (see Fig. 7.10).

" Variation in Lift Coefficient - Within the lock-in range, experimental

data show an increase in the fluctuating lift coefficient at low oscillation

amplitudes (see Fig. 7.8). This is associated with the increase of the

strength of shed vortices over their fixed-cylinder values associated with the

improved two-dimensionality of the flow and the direct effect of the cylinder

movement on the flow field. A typical set of data by Sarpkaya (1978) for a

cylinder oscillating in flow with the amplitude a/D - 0.5 is given in

Fig. 7.23. The in-phase component is related to inertia and stiffness forces
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and the out-of-phase component is related to damping mechanism. The drastic

change of the components at Um 5 is connected with the vortex shedding as
r

poined out by Zdravkovich (1981). In the lower Ur, the vortex, formed on one

side of the cylinder, is shed when the cylinder is near the maximum amplitude

on the opposite side. With the increase in Ur, the vortex with the same

circulation is shed when the cylinder reaches the maximum amplitude on the

same side. Bearman and Currie (1979), using controlled forced-vibration

experiments at fixed amplitudes, have shown that although the significant

change occurs over a small range of Ur, it is progressive and not a

discontinuity.

The characteristics of the two lock-in regions in the in-line direction

and one lock-in region in the crossf low direction are summarized in Table 7.5.

7.10 PREDICTION METHODS FOR LOCK-IN RESPONSES

Prediction methods for both in-line and transverse oscillations of the

cylinders are important for design evaluations as well as for understanding of

the basic interaction process of cylinder and flow. Ideally, the methods

should be based on the solution of the Navier-Stokes equation for the flow

around a cylinder at high Reynolds numbers. At this point in time, no such

techniques appear to be available to solve the problem. Researchers have

developed different models to quantify the response under different

conditions.

7.10.1 Lock-in Region for In-line Vibration

A quasisteady representation of the fluctuating drag on a cylinder in the

critical Reynolds number is proposed by Martin et al. (1981) and Ribeiro

(1983) as the mechanism for self-excited in-line oscillations. The mechanism

can be explained qualitatively in terms of the instantaneous Reynolds number

on the relative velocity between the incoming flow and moving cylinder. In

the transition Reynolds numbers (see Fig. 7.6), the drag force varies

drastically with Reynolds number. During the half cycle over which the

cylinder is moving against the flow, the instantaneous Reynolds number is

greater than that determined by the incoming flow alone. Therefore, during

this half cycle, the drag force acting on the cylinder is smaller than the

mean value and the difference between the mean value rnd the instantaneous

drag is in the direction of the cylinder motion. Similarly, over the other

half cycle, the difference in drab is also in the direction of cylinder

motion. Because of the variation of drag, a periodic drag is produced by the

cylinder motion. Under the quasisteady condition, energy from the flow stream

will be transferred to the cylinder until an equilibrium amplitude is

established.
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Table 7.5. Characteristics of Lock-in Regions

Direction In-Line Oscillation Crossflow

of Motion First Region Second Region Oscillation

1 2 3

Ur

Value of Ur corre-
sponding to the maximum
response amplitude

Excitation frequency

Maximum cylinder
response amplitude,
a/D

1.25 ~ 2.5

2.4

Variable
input
frequency

0.25

Symmetric
vortex

Upper limit of s in
which lock-in occurs

Alternate
vortex

Alternate
vortex

0.6 0.6

Region

2.5 ~-3.8

3.2

Fixed
frequency

3.8 10

5.5 8

Fixed
frequency

2.0

Vortices

0.25

32
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Let the instantaneous drag force acting on the cylinder be g and the

instantaneous flow velocity relative to the oscillating cylinder V. The

cylinder will be unstable if the drag decreases when it is moving against the

flow; i.e.,

dV< 0 .dV

Note that

(7.19)

g = C pDV2 2=CDpD () Re2

Then

dV vdRe

Thus the condition for instability becomes

d 2
e (CDRe ) < 0.

Since CD is a function of Re,

dC C

-- R> 2 -.dRe Re

(7.20)

(7.21)

(7.22)

(7.23)

The condition requires that the slope of the CD vs. Re curve be negative, and

the magnitude of this slope must exceed twice the ordinate of the drag

coefficient divided by the Reynolds number.

The condition of instability also can be investigated using the equation

of motion. Consider the in-line motion only. Referring to Fig. 7.17 and

Eqs. 7.10 to 7.14,

v 0 , 6 = 0, Cl - 0 gl - 0 . (7.24)

Assume *1(z) - 1; the first equation of Eq. 7.13 becomes (dropping the

subscript 1):
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S+ 2w + w2q = aCD(U - )2 (7.25)

pD

= 2(m + CMd)

For small oscillations about the equilibrium position, the CD vs. Re curve can

be approximated in the neighborhood of Re and CDo by

(7.26)CD = CDo - 0(Re -Re 0 ) ,t

where

C = C(Re) =CDUD
Do D o Dv

Therefore,

D."
CD=C + g q

Equation 7.25 becomes

+ 2c 2 ++ q = (CDO + )a(U -)2

The static deflection

CDoaU

q 0=D2 .

For stability of the

equilibrium position.

system, consider small oscillations about the

Let

(7.27)

(7.28)

(7.29)

(7.30)

static

q = 6q cost + q,.

Using Eqs. 7.29 and 7.31, we obtain

(7.31)
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8h= (aaDU DOU -2c)26q and

(7.32)

q5 =(aU 2 cDoU - w)sq.

Thus the condition of stability is

aDDU2 -aCoU -c< 0(7.33)

or

2C 46
< ReDo + Re U .(7.34)

0 o r

When the second term in Eq. 7.34 is neglected, it is reduced to Eq. 7.23.

Using the quasisteady representation of the fluctuating drag on a

circular cylinder, Martin et al. (1981) have predicted that the response

amplitude in the drag direction depends on Re0 , 6s, and Ur. The analytical

predictions are in fair agreement with the experimental data by Hardwick and

Wootton (1973).

The development of the mathematical models for the lock-in region in the

drag direction is still in its infancy. Note that the drag coefficient is a

function of cylinder oscillation amplitude, as shown in Fig. 7.9. Considera-

tions must be given to including the motion-dependent effect of the drag force

in a more refined model. Much more detailed study is needed. For practical

applications, oscillation amplitude can be estimated using experimental data;

e.g., King (1977a) presents the amplitude of oscillation as a function of the

mass-damping parameter 6S given in Fig. 7.24.

7.10.2 Lock-in Region for Crossflow Vibration

Two types of models have been proposed to describe the lock-in

phenomena--self-excited oscillation models and forced-vibration models.

Self-Zxcited Oscillation Models

1. Lift Oscillator Model - The lift coefficient is assumed to satisfy a
van der Pol-type equation (Hartlen and Currie 1970) based on observation by

Bishop and Hassan (1964). The model has been refined and has successfully

predicted the lock-in characteristics (Skop and Griffin 1973; Iwan and Blevins

1974; Landl 1975).



7-49

N
Cl

0

0

Fig.

0.2 0.3 0.4 0.5 0.6

DAMPING PARAMETER ( 8 s)

Response Amplitude of a Cylinder in In-Line Direction
(from King 1977a, with permission--see Credits)

I I I I I

I L 4 I I

0.I

MASS -

7.24.

. . _ ______...__ _ .



7-50

2. Birkhoff's Oscillation Model - The added fluid region behind the

cylinder is modeled as Birkhoff's oscillator (Funakawa 1969). It is shown

that flutter is possible in a limited range of flow velocity.

3. Variable Vortex-Wake Width Model - The'vortex-wake width depends on

cylinder amplitude and vortex origin time (Di Silvio 1969); the model is able

to reproduce a certain narrowing of the wake and agrees well with experimental

data.

Forced-vibration Models

The vortex-induced force is taken as the excitation. The problem is

solved as a forced-vibration problem, with the excitation being the lift

force. Two approaches are used--a correlation model and a variable-phase

model.

1. Correlation Model: The cylinder motion is excited by the fluctuating

lift force (Blevins and Burton 1976). The equation of motion can be reduced

from the second Eq. of Eq. 7.13, assuming that CD = CL = 0 and the excitation

is a random forcing function:

2 + 2 ,2w2 2 + w2q2  (m + C M )I h'(z,t)4 2(z)dz . (7.35)
m d o

The excitation is associated with the fluctuating lift coefficient, which is

considered a function of oscillation amplitude (see Fig. 7.8). From Eq. 7.35,

the cylinder displacement can be calculated.

2. Variable-phase Model: Sarpkaya (1978) and Staubli (1983) use the

measured values of the in-phase and out-of-phase fluctuating lift forces (see

Fig. 7.23) to calculate the response of the vibrating cylinder. The results

obtained from the model agree reasonably well with the data.

All these approaches are similar in that model parameters are chosen on

the basis of experimental observations or assumptions. Although all models

are capable of reproducing some general characteristics of the cylinder

responses, the basic interaction mechanisms remain unresolved.

In practical applications, the lock-in (synchronization) range, as well

as the cylinder response amplitude, is of particular interest. Figures 7.25

and 7.26 show the synchronization range and vibration amplitude a/D as a

function of 6s (King et al. 1973). Note that for 6 > 32, no synchronization

in the lift direction occurs. Different expressions of the response amplitude

in the lock-in region have also been developed based on different models as

summarized in Table 7.6, where 68 is measured in still fluid; and y is the

mode shape factor (= 1.31 for a cantilevered cylinder). In addition, experi-

mental data for 2a/D have been compiled by Griffin (1980) (Fig. 7.27)

encompassing a wide range of single cylinders at Reynolds number from 300
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Table 7.6.

Author

Predictions of Resonant Vortex-induced Vibration Amplitude

of Circular Cylindrical Structures as a Function of
Mass-damping Parameter

Predicted Resonant

Amplitude

Griffin et al.(1975)
a
D

a
D5Iwan and Blevins (1974)

1.29y

[1 + 0.43(2wSt2 6 3.35
[ 0.43 8)

- 0.02

(6s + 1.9)St 2

+ 0.72 1/2
{0.3 +(6 + .9)StJ

a
Sarpkaya (1978)

0.32
2  )2 1 /2

[0.06 + (2nSt26 s)2
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to 106. All available experimental data indicate that the limiting unsteady

displacement of a flexible cylinder is about a/d = 1 to 1.5 at low values

of 6S.

7.11 EFFECTS OF DIFFERENT SYSTEM PARAMETERS

The response of a cylinder in crossflow is affected by different system

parameters: high Reynolds number, turbulence, yawed flow, blockage effect,

surface roughness, etc. Some of the effects of these parameters are still not

well understood.

High Reynolds Number

Vibrations at high Reynolds numbers are of particular interest with

respect to the vibration of some structural components. Full-scale data on

crossflow response of cylinders are quite limited because large-amplitude

motions lead to failure within a short time of oscillations.

Flow characteristics at high Reynolds number are discussed in

Sections 7.6 and 7.7. The response of a cylinder at high Reynolds number is

not well documented. Based on the limited available data, some general

observations are valuable in the assessment of the structural response.

" In contrast to stationary cylinders (see Fig. 7.5), there is no

discernible Reynolds number effect on the Strouhal number for Re from 3 x 105

to 1.4 x 106 obtained from a full-scale experiment with a 30 inch diameter

pipe (Wootton et al. 1974).
*

" The universal wake Strouhal number St --

D

St* = St(U )(Ds) (7.36)
s

where

Ds = the distance between two shear layers and

Us = the flow speed just outside the shear layers--

is plotted in Fig. 7.28; the results span five decades of the Reynolds number

from Re* (= U5Ds/v) = 102 to 107. St collapses the characteristic wake

scales onto a single curve (Griffin 1981).

" The overall pattern of behavior of a cylinder in water is similar at

all Reynolds numbers where vortex shedding takes place. Some typical

crossf low motions of several full-scale cylinders are given in Fig. 7.29 from

the results of Sainsbury and King (1971). The Reynolds numbers were somewhat

larger than 106. Crossf low oscillations greater than 0.1 diameter were

initiated at Ur 3.5 to 4; the maximum crossflow response was near Ur - 6.
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Surface Roughness

A comprehensive study of the effect of surface roughness on steady drag

was made by Miller (1976) for the case of stationary cylinders. However,

there are very limited data for the fluctuating fluid force coefficients on

roughed cylinders. Sarpkaya (1979b) notes a substantial increase in total

fluid force for rough cylinders. Nakamura (1976) has measured the steady drag

forces and Strouhal frequencies of rough cylinders at supercritical Reynolds

numbers and has observed strong regular vortex shedding at Re z 4 x 106 and

above. In this Reynolds number range, the vortex-excited crossf low

displacement amplitude of a rough cylinder increased substantially from the

corresponding smooth cylinder. More tests are needed to quantify the effect

of roughness of cylinder response in different flow regions.

Yawed Flow

If the cylinder is yawed to the flow direction with an angle 0, both the

effective fluid force art the reduced flow velocity are -educed:

1 2 2
g = pD[CD(U cos4) + C'(U cos4) cos(wt)] and

(7.37)

U cose

Ur ffD "

This is based on the assumption that the normal component of the flow velocity

can be taken as the effective flow velocity on a yawed cylinder; the use of

the normal component of velocity is called the independence principle.

Studies have been reported to verify the validity of the principle (e.g., King

1977b and Ramberg 1983).

King's results show that yawing the cylinder provides no protection

against vortex-excited oscillations and sustained oscillations; both in-line

and crossflow oscillations were recorded for yaw angles up to 0 = 45*. The

critical reduced flow velocities for the onset of in-line and crossf low

oscillations were similar to those for the normal cross low. King also found

that the drag coefticient CD is equal to the equivalent value of a cylinder at

normal incidence. These illustrate that the independence principle is

applicable. Ramberg undertook a detailed investigation of the flow around

yawed cylinders and its responses. His main conclusion is that although the

Independence Principle fails for the stationary cylinders, measurements of the

bounds of the lock-in regime for yawed cylinders compare well with the normal-

incidence case in terms of the effects of vibration on characteristic wake

dimensions. The findings by King and Ramberg imply that various methodologies
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for predicting vortex-excited oscillation at normal incidence can be applied

to a cylinder at different yawed angles.

Blockage Effects

In many engineering problems of a cylinder in crossf low, the f low field

is contained between parallel walls. The walls have significant effects on

the response of the cylinders. Studies have been reported for a cylinder

placed symmetrically in a channel (Richter and Naudascher 1976; Ramamurthy and

Ng 1973; Suzuki and Hirano 1979) and a cylinder near a plane boundary (Bearman

and Zdravkovi.ch 1978; Angrilli et al. 1982).

For a cylinder in a channel, the Strouhal number is increased by

increasing the flow confinement throughout the supercritical range of Reynolds

numbers. Near transition, the rise in Strouhal number is very sudden,

although the changes in drag and lift characteristics are more gradual. Flow

confinement increases the steady drag because of higher separation

velocities. The drop in the steady drag at the transition region becomes

pronounced with greater confinement. Although flow confinement reduces the

fluctuating drag in the subcritical range, it increases the fluctuating lift.

Vortex-induced vibration of a cylinder near a plane boundary is important

in off-shore pipeline applications. Figure 7.30 shows the response amplitude

and oscillation frequency (Tsahalis 1983), with G being the gap between the

cylinder and the plane boundary. The effects of the plane boundary are:

(1) the amplitude vs. flow velocity curve assumes an S shape in contrast to

the "bell" shape for the isolated cylinder, (2) the maximum amplitude is

reduced, (3) the response frequency is reduced, and (4) the critical flow

velocity at which large oscillations occur increases.

7.12 RESPONSE OF CIRCULAR CYLINDRICAL SHELLS IN CROSSFLOW

In addition to a circular cylindrical rod, a circular cylindrical shell

in crossflow car. be subjected to "ovalling oscillations" in addition to the

beam mode oscillations. The phenomenon of ovalling oscillation for a circular

cylindrical shell is generally referred to as the circumferential mode with

n > 1 (see Fig. 4.1). This type of vibration was first noted in the mid 1950s

(Dickey and Woodruff 1956; Dockstader et al. 1956).

For beam mode response, the cylindrical shell can be treated as a beam;

therefore, the general response characteristics is the same as a circular

rod. The main excitation is the vortex shedding.

For ovalling oscillations, until the mid 1970s the excitation was

considered to be vortex shedding (Dockstader et al. 1956; Johns and Sharma

1974). At the onset of large-amplitude oscillations, the frequency of

ovalling oscillations of the shell fnm (n is referred to circumferential wave

number and m is referred to the axial wave number) is an integer multiple of

the vortex shedding frequency fs i.e., f nms - rs, where rs is an integer

ranging from 1 to 6.
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Most recently, in a series of experiments by Paidoussis and his

colleagues (Paidoussis and Helleur 1979; Paidoussis et al. 1982a), several

important observations were noted: (1) Beyond the onset of ovalling oscilla-

tions, r ceases to be an integer, f remaining constant with U, while f
s nms

increases in accordance with a constant Strouhal number St. (2) Ovalling

oscillations can be excited even when a splitter plate is placed behind the

shell. These observations show that the vortex shedding is not a necessary

mechanism for ovalling oscillations, and that when there is a periodic wake,

rs is not necessarily an integer.

Figure 7.31 shows the response of cylindrical shells with R = 38.1 mm,

h = 0.48 mm of different lengths. In general, more than one circumferential

mode can be excited and the modes with respect to flow direction can change

with flow speed.

Analytical modeling of the ovalling oscillations is far from complete. A

quasi-static theory based on the superposition of the viscous mean flow and a

potential flow associated with deformation of the shell is developed by

Paidoussis et al. (1982b). The principal observed characteristics are quali-

tatively predicted by the theory, but the predicted critical flow velocity is

too high by a factor of 1.6 to 5.

Based on the available data, it appears that vortex shedding and

fluidelastic instability are the two main excitation mechanisms. In addition,

there appears to be a significant interaction between the two mechanisms.

More systematic studies are needed to clarify the matter.

7.13 CLOSING REDARKS
A single cylinder subjected to crossf low is one of the most extensively

studied problems in the area of fluid mechanics. Nevertheless, the inter-

action of cylinder movement and flow field remains unsolved. Progress is

being made in the characterization of flow field around an oscillating

cylinder, numerical simulation of the flow field, and development of
techniques to solve the coupling problem. Athough complete analysis of the

problem based on the fundamental principle of fluid dynamics and the theory of

elasticity is still not possible, the gap between theory and experiment is

getting closer.
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8. AN ARRAY OF CIRCULAR CYLINDERS IN CROSSFLOW

8.1 INTRODUCTION

When a fluid flows across a cylinder array, a fraction of the fluid

energy is transmitted to the cylinder, resulting in cylinder vibration.

Cylinder vibrations resulting from croEsflow generally are much more severe

than vibrations resulting from axial flow. Crossf low vibrations are caused by

one or more of the following mechanisms:

" Turbulent Excitation: In a cylinder array, there exist random noises,

including turbulent pressure fluctuations and far-field flow noises with some

or little coherence; these randomly varying pressures on the surfaces of the

cylinders generally produce relatively low-amplitude cylinder vibration.

" Vortex-Induced Vibration: These vibrations are induced by periodic

vortex shedding from cylinders. Within the cylinder array, the regular vortex

shedding of the first few rows becomes disorganized and turbulent. Although

the vortex shedding process can be modified by cylinder motions and is

synchronized with cylinder oscillations, it is the vortex shedding that

initiates cylinder vibration.

" Fluidelastic Instability: At a certain flow velocity, fluid energy may

feed into cylinders, resulting in large cylinder vibrations. The dominant

fluid forces are the motion-dependent fluid forces. Severe damage can result

in a short period of time.

" Acoustic Excitation: Acoustic excitation causes cylinder vibration,

generally normal to flow direction and cylinder axis. When the natural

frequency of vortex shedding at a particular flowrate coincides with the

acoustic frequencies, two systems (fluid flow and acoustic field) are coupled

and reinforce each other. The worst case is that in which the acoustic

frequency, the cylinder frequency, and the vortex-shedding frequency are the

same.

Typical response curves of a cylinder array in crossflow are sketched in

Fig. 8.1 for different conditions.

At low Ur (Fig. 8.la), turbulent buffeting is dominant; when Ur is

increased to a critical value, dynamic instability occurs. In a certain range

of Ur, vortex excitation is dominant as shown in Fig. 8.1b. The cylinder

array becomes dynamica'Cly unstable for large Ur, and in other regions, the

response is attributed to turbulent buffeting. The conditions represented in

Fig. 8.lc are similar tj those in Fig. 8.la except that instability occurs at

a much smaller Ur.

In this chapter, turbulent buffeting, vortex shedding, and acoustic

excitation are discussed. Fluidelastic instability is discussed in Chapter

10.
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8.2 FLOW REGIMES

Flow patterns across cylinder arrays depend on cylinder arrangement as

well as other parameters. Cylinder spacing is an important parameter.

Detailed classification of flow patterns remains a subject of current

research. Based on limited data (Ishigai et al. 1973; Chen 1977), flow

patterns for in-line and staggered cylinder arrays can be classified in five

regimes, as shown in Fig. 8.2:

Pattern A: All cylinders shed Karman vortices.

Pattern B: Jet swing associated with Karman vortex shedding.

Pattern C: The free shear layers of the front cylinder attach to the

downstream cylinder and thus Karman vortices cannot be

formed.

Pattern D: Jet deflection.

Pattern E: Karman vortex streets which are the same as those shed by

isolated cylinders.

The flow pattern is the same within a range of cylinder pitches, and an abrupt

change can be observed at the boundary of the cylinder spacing separating

different regimes. The border lines dividing the flow pattern on Fig. 8.2

should not be considered rigorously fixed but they are influenced by Re and

other parameters.

8.3 VORTEX SHEDDING FREQUENCY

Depending on cylinder spacings, as well as other system parameters,

vortex shedding may or may not exist in a cylinder array. Early studies on

vibration of cylinder arrays proceeded on the assumption that vortex shedding

was the dominant mechanism. Therefore the main objective was to determine the

vortex shedding frequency. Unfortunately, the precise determination of vortex

shedding in a cylinder array proved complicated, for the following reasons:

" The flow field across a cylinder array is not as easy to measure

as flow across a single cylinder.

" In a test section, acoustic resonance can interfere with vortex

shedding.

* Other flow parameters such as turbulence and Reynolds number

affect the Strouhal number.

* Some of the vortex shedding frequencies were determined from

cylinder response.

Even at subcritical Reynolds numbers, it is not possible to give a

precise value of Strouhal number for each cylinder arrangement. However,

based on the available experimental data, Strouhal numbers have been compiled

by several investigators (Fitz-Hugh 1973; Chen 1968). Figures 8.3 and 8.4

show the Strouhal numbers compiled by Fitz-Hugh. For cylinder arrays, the
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Strouhal number is defined the same way as that for a single cylinder;

however, the flow velocity is based on the gap velocity:

U = approach velocity.(8.1)
1-D/T

It should be pointed out that, although the Strouhal numbers given in

Figs. 8.3 and 8.4 are widely used, some of the data are contradictory with

results from elsewhere. A more detailed examination of the data to establish

more reliable Strouhal numbers in cylinder arrays is needed.

8.4 PRESSURE AND FLOW VELOCITY DISTRIBUTIONS

Pressure distribution around a cylinder in array is very complex, and

depends on the incoming-flow properties and cylinder arrangements. Very

limited data are available. However, these data are important in

understanding the flow field as well as obtaining the necessary force

coefficients for response calculations.

In a wind tunnel, Zdravkovich and Namork (1979) reported the fluctuating

and time-average pressure distribution around a tube located in different rows

of a triangular array having a transverse pitch ratio of 1.375 (see Fig. 8.5)

for Re = 1.1 x 105. The plots are the measured differences between the local

pressure on the tube and free-stream static pressure. The steady pressure

distributions of the first three rows were replotted (Fig. 8.6) with a common

start at the stagnation point. The actual pressure difference between the

three stagnation points and the free stream was not the same due to a

significant pressure drop along the tube bank.

It is evident in the first two rows of the cylinder array that both

pressure distributions are distinctly different. The differences in pressure

distribution are attributed to the changes of the structure of the inter-

stitial flow: (1) The cylinder in the first row is subjected to interference

by the adjacent side cylinders and low-turbulence free-stream flow. A steep

pressure gradient around the upstream part of the cylinder is accompanied by

low-intensity pressure fluctuations. (2) The cylinder in the second row is

affected not only by the adjacent side cylinders but also by the wide wakes

produced behind the first row of cylinders. The result is a steeper pressure

gradient than in the first row and a huge increase of pressure fluctuations

around both sides of the cylinder. The wake behind the cylinder in the second

row is narrow. (3) The cylinders in the third and subsequent rows are

exposed to a highly turbulent interstitial flow, which produces a sharp

increase in pressure fluctuations around the stagnation point. The pressure

gradient is less steep than in the second row, owing to the narrower wake

behind the second row. The pressure fluctuations around the sides of the

cylinder are also markedly reduced. The latter, however, gradually increases

and reaches a pronounced peak around the separation point in the last row.
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Fig. 8.5. Fluctuating (Top Curves) and Time-Average (Bottom Curves)

Pressure Distribution Around the Tubes in Rows 1-6. Vertical
scale arbitrary; horizontal scale 0-360* (one square = 360)
(from Zdravkovich and Namork 1979, with permission--see Credits)
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Figure 8.7(a) shows measured velocity and turbulence profiles across one

pitch length behind a cylinder located in the middle. Very low velocity and

high turbulence intensity were found within the wake. The velocity peaks were

not found behind the gaps but did appear adjacent to separated shear layers.

The minimum velocity behind the gap center was caused in the vicinity of the

stagnation region in front of the cylinders in the second row. The shear

layers did not affect the turbulence intensity, which remained low and

constant.

Figure 8.7(b) shows velocity and turbulence profiles between the second

and third rows. Again, the low velocity and high turbulence showed the

position and width of the wake. The wake was narrower than that found behind

the first row. Both velocity peaks were significantly lower compared with the

corresponding peaks behind the first row of cylinders. This reduction was in

direct proportion to the narrowing of the wake. The two time-average velocity

peaks coincided with the minima of intensity of turbulence. The minimum

velocity behind the gap center was coupled with the maximum turbulence

intensity so that one profile appeared as the mirror image of the other. This

feature remained typical for all subsequent rows.

Other measurements (Morsy 1975; Aba et al. 1982a) for staggered arrays

show similar results. However, for in-line arrays, the pressure distribution

around the circumference is frequently asymmetric. This asymmetry originates

from a deflection of the flow through the array (Aiba 1982b; Heinecke and Mohr

1982).

The turbulence intensity depends on the location of the cylinder.

Figure 8.8 shows a plot of turbulence vs. depth into the cylinder array

(Sandifer and Bailey 1984). The turbulence was measured in the center of the

gap of a staggered array with a pitch-to-diameter ratio of 1.5. The

turbulence intensity starts at a low level at the entrance to the array (about

4% in Fig. 8.8) and gradually increases to about 23% in the middle of the

array. At a particular location of a cylinder array the turbulence intensity

is fairly constant with increasing gap velocity. In addition, the power

spectral of turbulence excitation does not change significantly through the

cylinder array at a particular gap velocity.

8.5 FLUID EXCITATION FORCE COEFFICIENTS

Fluid excitation force coefficients are very limited for general cylinder

arrays. There have been few systematic studies to measure those coeffi-

cients. In addition, these coefficients depend on cylinder arrangement,

Reynolds number, upstream turbulence, etc.

The fluctuating lift coefficients for various cylinder arrays by Chen

(1972) and Pettigrew and Ko (1980), for application to heat exchanger tubes,

as given are presented in Tables 8.1 and 8.2. Some of the coefficients are
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Table 8.1. Fluctuating Lift
(from Chen 1972,

Coefficient (CL) of Cylinder Arrays
with permission--see Credits)

Transverse Longitudinal Reynolds
Cylinder Ratio Ratio Number

Arrangement (T/D) (P/D) x 103 CL

In-line 1.2 1.4 10.8 0.035

1.42 1.46 1.36 0.078

2.4 1.4 15.4 0.035

1.2 2.8 23.3 0.064

2.4 2.8 14.3 0.358

1.2 4.2 26.6 0.038

2.4 4.2 15.8 0.295

3.6 4.2 14.0 0.445

Staggered 1.46 2.84 0.79 0.63

2.31 3.94 20.2 0.58

4.62 2.63 42.5 0.87
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Table 8.2. Fluctuating Lift Coefficient (CL) and Strouhal Numbers
(from Pettigrew and Ko 1980, with permission--see Credits)

Periodic Wake Shedding Resonance
In Flow Direction* Normalt

Cylinder Cylinder fD fD
Array P/D Location St =- C (RMS) St . CL (RMS)

U LUL

1.23 1st row
2nd row
Interior

Downstream

1.33 1st row
2nd row

Interior
Downstream

1.36 1st row
2nd row
Interior

Downstream

1.54 1st row
2nd row
Interior

Downstream

1.57 1st Row
2nd Row
Interior

Downstream

1.23 1st row
2nd row

Interior
Downstream

1.33 1st row
2nd row

Interior
Downstream

1.36 1st row
2nd row
Interior

Downstream

None*
None
None
None

None
0.42/0.30

None
0.48

None
0.45
0.61
0.67

0.36
0.37
None
None

0.57
0.55
None
None

0.42
0.54/0.44

0.46

0.020/(0.006)

0.023
0.008

(0.023)?

(0.018)
(0.011)

0.027
0.028

(0.025)
0.033/0.015

0.016

None
None

None
None
None
None

Normal
triangle

(30*)

None
None
None
None

0.44
0.45

0.046
0.011

Parallel
triangle
(600)

0.67
None
0.61
None

None
None
None
None

0.42
0.42
None
None

0.44
0.49
0.46

None

None
None

None
0.48
None
None

0.064

0.007

0.019
0.016

0.064
0.020
0.016

(0.012)
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1.54 1st row
2nd row

Interior
Downstream

1.57 1st row
2nd row
Interior
Downstream

1.30 1st row
2nd row
Interior

Downstream

1.47 1st row
2nd row
Interior
Downstream

1.30 1st row
2nd row
Interior

Downstream

1.50 1st Row
2nd Row
Interior
Downstream

0.45
0.45

None

0.42
0.52
0.52
0.45

None
None
None
None

0.48
0.45
0.55
0.42

0.43

0.41
None

None
None
0.34

0.033
(0.030)

0.057
0.023

(0.006)
0.014

0.048
0.047
0.031
0.025

0.007

0.006

0.019

0.45

None

0.40
None
0.52
0.45

None
None
None
None

0.63
0.63

0.61/0.41
None

None

None
None

0.37
None
None
None

(0.018)

(0.021)

(0.007)
0.014

0.025
0.018

0.017/(0.012)

0.0 35

* Resonant vibration in flow direction.
t Resonant vibration normal to flow direction.
* "None" indicates that no resonance was observed; a blank space indicates

that the tests were not done or were inconclusive.
? Parenthesis indicate less prominent resonance peak (i.e., resonance peak <

2 x random turbulence response).

Normal
square
(940)

Rotated
square
(450)
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deduced from tube response, not from force measurements. Note that resonance

is more likely and more severe in upstream tubes and highly nonuniform flow or

gross turbulence can prevent the formation of correlated periodic wake

shedding.

Fluctuating fluid force coefficients CL and CD for equilateral staggered

arrays and square pitch in-line arrays were measured by Savkar (1983) for

different pitch ratios (T/D = 1.2, 1.5, and 1.71) and upstream turbulence

characteristics (u'/U = 0.5% and 8.5%). The flow patterns between the two

types of arrays were considerably different. Flow through the staggered array

followed a zig-zag path with the wakes more or less closed, while flow through

the in-line arrays was channeled in the open lanes.

Arrays of four rows deep were employed in the tests by Savkar (1983).

Typical RMS CL for equilateral staggered arrays are given in Fig. 8.9 for two

different turbulence intensities (0.5%. for no grid and 8.5% for a 154.22 mm

grid). Several features can be noted: (1) For T/D = 1.5, the progression of

the measured CL as a function of the row is more or less monotonic. However,

this is not necessarily valid for other arrays. (2) The flows can change

drastically and result in a large variation of CL. For example, at

Re = 8 x 10 , there is a sudden drop in Cj for the second-row cylinder,

apparently as a result of early flow transition.

The order of magnitude of the lift and drag coefficients for the in-line

arrays is comparable to that for the staggered arrays but the basic trends are

somewhat different. Figures 8.10 and 8.11 show the RMS CL and C for

T/D = 1.2. The data show a decrease in the coefficients with increasing Re in

uniform flow and turbulent flow. In general, the force coefficients for the

trailing rows are higher than those for the leading rows.

The steady drag and lift forces acting on a cylinder in the middle of an

array were obtained using the measured pressure for several different arrange-

ments by Zdravkovich et al. (1976). The transverse pitch was 1.66, and the

coefficients were based on the free stream velocity. The values are presented

in Table 8.3.

Steady drag coefficients also were measured by Morsy (1975) for a

staggered array (30*) with a pitch ratio of 1.5 in a wind tunnel. Figure 8.12

shows the form drag coefficient at different Reynolds numbers for cylinders in

different rows. In general, the drag coefficient decreased with Reynolds

number. The first row offered the highest form resistance to flow. This is

expected, due to the severe circumferential pressure gradients measured on

this row of cylinders and the big difference between the pressures on the

front and rear halves of its cylinders. The drag coefficient for the first

row of cylinders is about 4.5 times the values recorded for a single cylinder

in crossftLrw.
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Table 8.3. Steady Lift and Drag Coefficients (from Zdravkovich
et al. 1976, with permission--see Credits)

P/D = 1.2 P/D = 2.0 P/D - 2.5
Arrangement CL CD L DL D

In-line 0.03 -0.12 0.0 -0.07 0.01 0.09

1/3 staggered 0.52 0.03 0.48 0.21 0.30 0.16

2/3 staggered 0.70 0.50 0.81 0.48 0.77 0.34

Staggered 0.03 0.43 0.21 0.59 0.26 0.40
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Both steady and unsteady drag and lift coefficients based on the gap

velocity were obtained by Heinecke and Mohr (1982) for square arrays in a

range of Reynolds numbers 104 Re < 105. Heinecke and Mohr showed that

(1) the unsteady lift coefficient is almost independent of Reynolds number and

the coefficient for the second row is larger than the first row, and (2) the

steady drag and lift coefficients show that for different spacings the

pressure distribution around the circumference is asymmetric.

The turbulence pressure field for cylinder arrays is not well

characterized. A complete description of the pressure for application to

vibration theory requires power spectral density of pressure at different

locations and the correlation. There is no complete set of data for any

cylinder array. However, several different forms of approximation have been

suggested to render the turbulence pressure field practicable for simple use.

Pettigrew and Gorman (1981) assumed that the random force field is

homogeneous and spatially correlated. The power spectral density of the

random force acting on a cylinder is expressed

= (ICRpU2D) , (8.2)

where CR is called the random turbulence excitation coefficient. Values of CR

from the results of different experiments show that the random force field

depends on the location of the cylinder in an array.

Blevins, Gibert, and Villard (1981) measured both power spectral density

and correlation of coherence along the axis of the cylinder in a wind tunnel

for an in-line array. The results are given in Figs. 8.13 and 8.14.

Figure 8.13 gives the spectrum in row 1 for four velocities. The four

nondimensionalized spectra fall on the same curve, which indicates that the

suggested nondimensionalization appears to be a valid representation of the

spectra. Figure 8.14 gives the spectrum at five different points within the

array. The turbulence rises from the inlet to a maximum value about six rows

back; this turbulence level then persists to the back of the arrays and is

consistent with the results by Sandifer and Bailey (1984).

The correlation length for the first row is about 3.4 cylinder diameters,

which is comparable to the values obtained for a single cylinder (Toebes

1969). The correlation drops within the cylinder and increases sharply with

cylinder vibration.

8.6 ANALYSIS OF FLOW-INDUCED VIBRATION

An array of N cylinders subjected to a cross flow is shown in Fig. 1.3.

The axes of the cylinders are parallel to the z axis and flow is parallel to

the x axis. The subscript j is used to denote variables associated with

cylinder j. The variables associated with cylinder motion in the x direction
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are flexural rigidity E1I, cylinder mass per unit length mi, structural

damping coefficient CBS, and displacement uj. The equation of motion for

cylinder j in the x direction is

4u

E Ii + jaz

2au a2u

+t mj at2 , J = 1, 2, 3, ... , N ,

where gj is given in Eqs. 1.4 and 1.5, including motion-dependent fluid forces

and fluid excitation forces. Similarly, the equation of motion in the y

direction is

4

EI a
II 4 4 83

av.
+ m .at j

2
a v.

t2 = h j = 1, 2, 3, 000, N ,

where E I , C8, v., and h are flexural rigidity, structural damping

coefficient, cylinder displacement, and the force per unit length in the y

direction, which is given in Eqs. 1.4 and 1.5.

Substituting Eqs. 1.4 and 1.5 into 8.3 and 8.4 yields

a4u
E Ia + C

a z4 sj

2
au. a2u. N

aa+m c2'+at j at2 k-1l

2
ak uk

jk at 2

2

jk at2

au av N

jat'ktk + + ikuk+k k
k=1

1 U2DC + pU2 DC' sin( j + )+g=~pDCI 2 Dj Dj j

2
av a v N

at j at2
k=l

2 2
_ atuk - avk

tk at 2 + jk at2

N

k=1

au av N

k k+ k ) +k 1 kuk k + kvkjkat~~' /k=l

S pU2DCLI + pU2 LDC' sin( +h )+h .1 2 LC'sin'LI (8.6)

Equations 8.5 and 8.6 are the equations of motion for cylinder j in an

array of cylinders subjected to a crossflow. In a group of N cylinders, there

are 2N equations of motion.

(8.3)

(8.4)

N

k=1

and
4

a v.
E I. - + Csj

az s

(8.5)
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In most practical situations all cylinders are of the same length and

have the same type of boundary conditions in the x and y directions. In this

case the modal functions for cylinders vibrating in the x and y directions are

the same; thus let

u (z,t) = a j (z) and

m=1 jmm
(8.7)

v.(z,t) = b. * (z)
m=1 jmm

where *m(z) is the mth orthonormal function of the cylinder in vacuo. Assume

that the flow velocity distribution is given by

U(z) = U$i(z) . (8.8)

Using Eqs. 8.5, 8.6, 8.7, and 8.8 yields

d2a. da

dt2 + cvim vjm dt +jma
dt2

N _ d ak - d bk
+m k 2 + jk 2

j k-l dt2  dt

N da db
+ 1 N , km + a, bkm

mj k 1 km dt jkm dt

N

+ kl (jkmakm + 0jkmbkm)

=2m pDC jU2 + pDC'U J2sin(1Lm + ) +m g'!(8.9)
2m. Dim 2m ~Djm j 0 +j m

Jm

and
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2
db db

dj2  j mdt m + vim +2b
dt2 'jmWvjm dt vjm jm

1N

m k-1

1 k

jka

2
_ d a

2 +Sdt

dak
m dkm -,

Wjkm dt + Sjkm

2

_d bkm

jk dt2

dbkm

dt)

1N

m kmakm kmkm
, k=1

= PDLCJU + 1PDC' I2sin(Q + + + h'
2m. Ljm 2m Ljm Ljm +Ljm m. Jm

J j

- 1

a'km f

0jkm
0

- 1 R

jkm
0

Njkm

0

CD -
0

C =

0

22 1 x
k *idza, 1km

- 2 2 -U -k m4dz, ikm

- 2 -R1

k m*dz , Qk. ITI I =

%k 242dZ , %km 1  
0

CD .m 2dz , CL=f
00

-" 2 2d
jk m d,

-o 2 2

jk mr dz,

2

CLjm 2dz

cL m 2dz

g! _-= f g$ dz
0

h = h dz ,

and wim and cvim are the circular frequency and modal damping ratio of the

ith cylinder of mth modes in vacuum.

The responses of an array of cylinders can be calculated fairly easily

from Eqs. 8.9 and 8.1C if various fluid forces in the equations are known.

where

(8.10)

(8.11)
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Equations 8.9 and 8.10 can be written in the standard form

[M]{Q} + [C]{Q} + [K]{Q} = {Q} . (8.12)

For a cylinder array in crossf low, the matrices C and K are not necessarily

symmetric. However, M in general is symmetric. The properties of these

matrices depend on different flow conditions.

A complete analysis of a cylinder array in crossf low requires knowledge

of all fluid forces. Unfortunately, at this time, complete information is not

available for any specific cylinder arrays. This suggests that for practical

applications, simplifications or assumptions must be made in order to solve

the problem.

8.7 RESPONSE OF CYLINDER ARRAYS

Many parameters affect the response of cylinder arrays: cylinder

arrangement, damping value, reduced flow velocity, Reynolds number, Scruton's

number, turbulence characteristics, etc. Cylinder response can be calculated

based on Eqs. 8.5 and 8.6 provided that both fluid excitation forces and

motion-dependent fluid forces are known. In practice, these forces are not

known and the complicated cylinder response is difficult to predict.

To illustrate the complexity of cylinder response in crossf low, consider

a typical example examined by Weaver and Abd-Rabbo (1984). A square array

with T/D = 1.5 was tested in a low-turbulence (< 0.5%) water tunnel. The

cylinder natural frequency in air is about 25.5 Hz and damping about 1.4%.

The tube response, frequency spectra, and flow field are given in Figs. 8.15

and 8.16. Examination of the results leads to the conclusion that the tube

response can be separated into three regions: 0-0.45 m/s, 0.45-1.05 m/s, and

greater than 1.05 m/s.

(a) 0 S U < 0.45 m/s - The RMS tube response is very small both in the

lift and drag directions. The frequency spectra contain the cluster of

coupled natural frequencies in the range of 15-21 Hz. These are the coupled

modes, as discussed in Section 3.4. The wakes shown in Fig. 8.17 consist of

two stable vortices with straight flow lanes between tube columns at

U w 0.013 m/s. The vortices may become unstable with flow crossing the wake

region and vortices periodically being swept into the mainstream flows; at

U ~ 0.018 m/s, the turbulence developed in the wakes appears to have little

effect on the mainstream flow. At U ~ 0.057 m/s and 0.36 m/s, the wake

regions become turbulent and the turbulent wakes perturb the mainstream

flows. Also, the flow pattern surrounding the first row tubes is different

from that seen by the other rows. In this range, the excitation is due to

turbulence buffeting.
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(a): U = 0.013 m/s, Re = 330

(c): U = 0.057 m/s, Re = 1470

(b): U = 0.018 m/s, Re = 450

(d): U = 0.36 m/s, Re = 9.3 x 103

Fig. 8.17. Flow Field for 0 < U < 0.45 m/s (from Weaver and Abd-Rabbo,
with permission--see Credits)
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(b) 0.45 m/s < U < 1.05 m/s - There is an abrupt increase in RMS

amplitude, with the predominant response being in the drag direction. This

response peaks at U ~ 0.9 m/s and falls off sharply to a trough at about

1.05 m/s. The predominantly Irag response at U = 0.57 m/s can be seen in

Fig. 8.16b. Note the absence of other coupled mode frequencies. At

U ~ 1.05 m/s, the respcube is characterized by a much less well organized

behavior, as indicated in Fig. 8.16c, with several response frequencies: All

tubes in a given row oscillate in phase with one another and approximately

1800 out of phase with tubes in adjacent rows. The coherent vortices were

being shed in symmetric pairs from the first row tubes, with all vortex pairs

being in phase with one another. This can be seen in Fig. 8.18, which shows

the effect of a stream of aluminum tracer particles released just upstream of

the first tube row. In this region, the motion is excited by vortex shedding

and the peak response at U ~ 0.9 m/s represents the lock-in in the drag

direction.

(c) 1.05 m/s < U - Tube amplitudes rise sharply in a whirling mode in

which the drag and lift amplitudes are of the same order. The responses are

highly modulated and the relative modes unsteady, with a single frequency

being dominant, as shown in Fig. 8.16d. The tube bundle is in the

fluidelastic instability region. Sometimes the tube motion is primarily

transverse, with tubes in a column in phase with one another and 1800 out of

phase with the adjacent columns, as shown in Fig. 8.19a and b. However, at

other times, the relative mode pattern changes entirely, usually accompanied

by a shift in the dominant response frequency. The flow field is given in

Fig. 8.19c.

This example illustrates the three different excitations being dominant

in different flow velocity ranges. Many other studies have been conducted

(e.g., Blevins et al. 1981; Heinecke and Mohr 1982; Pettigrew and Gorman 1981)

to determine the response of an array of cylinders in crossflow. However, no

detailed data are available for general cylinder arrays.

The prediction method for fluidelastic instability is given in

Chapter 10. Response of cylinder arrays to excitations due to turbulent

buffeting and vortex shedding remains difficult to predict, for two reasons.

First, most of the experimental studies have been spotty. There is no

systematic investigation to quantify the turbulent pressure field and vortex

shedding in different cylinder arrays. Second, at this time, it is impossible

to calculate the detailed flow field across a cylinder array. Therefore

assumptions have to be included in the solution of the problem governed by

Eqs. 8.5 and 8.6.

The common assumptions used in the prediction of turbulence-induced

responses are:



8-33

Fig. 8.18. Flow Field for U = 0.75 m/s (from Weaver and Abd-Rabbo
1984, with permission--see Credits)
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(a) TRANSVERSE MODE (b)

(c) WHIRLING MODE (d) RIGID BUNDLE

Fig. 8.19. Flow Field for U = 1.32 m/s (from Weaver and Abd-Rabbo
1984, with permission--see Credits)
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(1) The motion of the cylinders does not significantly affect the

pressure fluctuations; i.e., gj and h3 in Eq. 8.5 and 8.6 are independent of

uj and vj.

(2) The pressure fluctuations are independent of other flow excitations

such as vortex shedding.

(3) Prediction of the cylinder arrays can be based on that of a single

cylinder in a rigid cylinder array.

Based on these assumptions, the response of the cylinder array can be

calculated by applying the random vibration theory and the technique developed

in Section 6.3. Simplified analyses have been presented by different

investigators (Pettigrew and Gorman 1981; Blevins et al. 1981).

The response to vortex shedding can be calculated once the vortex

excitation forces are known. Ideally, the coupled motion of cylinder arrays

should be considered; i.e., the response should be calculated from Eqs. 8.5

and 8.6. However, because of the lack of information on fluid force

coefficients, a single cylinder approximation has been used in applications.

8.8 ACOUSTIC RESONANCE

A fluid surrounding an array of circular cylinders can vibrate in a

resonant manner. This type of oscillation, commonly called acoustic vibra-

tion, can cause failures of the cylinders if it occurs at a frequency that is

close to one of the natural frequencies of the cylinders. Even if the

resonant vibration of the fluid does not produce failures in cylinders, it can

generate an intense noise. It also can induce fatigue damage to the casing of

the cylinder array, such as a heat exchanger.

There have been many reported cases of flow-induced vibration of an array

of circular cylinders associated with acoustic excitation (e.g., Grotz and

Arnold 1956; Putnam 1964; Byrne 1983). In this section, acoustic frequencies,

excitation mechanisms, and prevention of acoustic resonance in heat exchanger

tube arrays are discussed.

8.8.1 Propagation of Sound Waves along Fluid Cylinders

The wave equation relevant to acoustic propagation in a circular

cylindrical duct is given by

* = i(r,8,z)exp(iwt)

(8.13)

V2 +k24i= 0 , k2 = mW/c.

The solution of Eq. 8.13 is
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* = [AlJn(krr) + A2 Yn(krr)]cos no exp[-i(kzz - wt)]

(8.14)
2 2 2
kr+kz=k

where n is an integer. If the propagation constant kz is real, Eq. 8.14

represents a wave with phase velocity w/kz along the z axis. If kz is

imaginary, no propagation occurs.

First, consider a fluid cylinder along the z axis with a rapid wall at
r = R. The boundary condition is that the radial component of velocity must

vanish at the wall. The propagation constant must satisfy the condition

[J(kr)] =0. (8.15)r n )]r=R

The velocity potential for the (n,m) mode is

#nm = AnmJn(krnmr)cos no exp[-i(kzz - wt)] . (8.16)

The integers m and n indicate the number of pressure nodal diameters and

circles, respectively, associated with each mode shape. Each mode also has an

associated cut-off frequency. Thus, if the radian frequency w is high enough,

k = w/c > krnm and kz >0,

and the (n,m)th mode will propagate down the duct. At the cut-off frequency,

k = krmn , and kz = 0 , (8.17)

and there is no longitudinal acoustic wave motion in that mode. Below this

frequency k2 < 0 and the acoustic mode does not propagate. Its amplitude

decays exponentially with distance from the sound sources.

For a fluid cylinder with pressure-release wall, the pressure must vanish

at the wall, so that the characteristic values are determined by the equation

Jn(krnmR)=0 . (8.8)
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If the fluid in the cylinder is moving with constant velocity U, the

equation of acoustic pressure is given by

2 2M 2 2
V2 p= 1. La_ + -c- + M2 .(8.19)

2 2 c azat c 2
c at az

If we assume the same type of solution as for Eq. 8.13, the wave number

relationship now becomes

k2 + krnm = (k-Mckz)2 . (8.20)

The cut-off frequency is defined by

k = krnm(1 - M 2 )0.5 . (8.21)

Therefore, the frequency will be reduced irrespective of the direction of

propagation.

Next consider a compressible Newtonian fluid undergoing very small

oscillations. The governing equations are given in Eqs. 6.11. To illustrate

the essential feature, consider the axisymmetric waves. The equations of

motion in this case are

[(1+Wat)v2  12 2 =0(8.22)
o c at

and

v2 1 a1 = 0 . (8.23)
r o

The solution of Eqs. 8.22 and 8.23 is in the form

-i(kzz - wt)
f(r,z,t) = Re[f(r)e z ] , (8.24)
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where w is the circular frequency, and kz is the propagation constant, which

is complex.

Application of Eq. 8.24 to Eq. 8.22 and the bounded condition at r = 0

gives

*(r,z,t) = Re[AiJo(krr)e-i(kzz - wt) , (8.25)

where the complex constant kr is the principal square root of

2 0.5

kr 2[k + 1 + iw/ .(8.26)
c o

Application of Eq. 8.24 to Eq. 8.23 and the bounded condition at r = 0 gives

(r,z,t) = Re[A2J (k'r)e-i(kzz - wt)] , (8.27)eQ 21

where the complex constant k' is the principal square root of

kr = [kz- i_ i 0.5 .(8.28)

Therefore,

vr(r,z,t) = -Re{[A k J (krr) + A k J (k'r)]e i(kzz - t)}
irk r 2z-1 r

vz(r,z,t) = Re{[Ak Jo(krr) + A2k'J (k'r)]e (zz - wt)

(8.29)

p(r,z,t) = Re{-A ip w/(1 + iw/w )J (krr)e-i(kZ }-t)

and

p(r,z,t) = 2 p(r,z,t) .
c

The two homogeneous zero-speed boundary conditions at the wall are

vr(R,r,t) = 0 and

(8.30)

vz(R,r,t) = 0
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Using Eqs. 8.29 and 8.30 yields

[krJ(krR) kz J(k'R) ()A 0

I = . (8.31)
k J (krR) k'Jo(krR)II A 0

zorr o r j2i

Therefore the dispersion relation is

J (k R) J (k'R)
kk 1 r 2 1 r =0 (8.32)
r r J (k R) - kz J(k'R) (

or o r

which provides the relationship between the complex eigenvalue kz and circular

frequency w. Given the parameters w, v, v', the dispersion relation can be

solved for all the eigenvalues (Scarton and Rouleau 1973).

Based on the frequency equations, (Eqs. 8.15, 8.18, and 8.32), the

acoustic frequencies can be calculated. It should be pointed out that if a

fluid contains a number of circular cylinders whose dimensions are small

relative to the wavelength of sound at the frequencies of interest, the

effective speed of sound in the composite media will be reduced. It can be

shown that the effective speed of sound is given as follows (Meyer and Neumann

1972):

Effective speed of sound 1 ,(8.33)

Actual speed of sound ( + )0.5

where a is the fraction of the space occupied by solid bodies. The effective

speed of sound should be used in appropriate situations.

8.8.2 Criteria for Acoustic Resonance

In general, the turbulent buffeting and vortex shedding in an array of

circular cylinders will not be synchronized. However, at a certain frequency

it is possible for these fluctuating quantities to become synchronized. Two

criteria have been proposed to predict the condition of acoustic resonance--

one by Chen (1968) and another by Bryce et al. (1978).

Chen Criterion

The first requirement of Chen's (1968) criterion is that the Strouhal

frequency fs be equal to the acoustic frequency fa; i.e.,
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f = f . (8.34)
sa

The second requirement is that the parameter 'c exceed a certain value where

Vc is defined as

2
T=Re P- D (8D5? = ) .(8.35)c St P T

The critical value for 'c is 600 for wind tunnels and 2000 for practical

applications (Chen and Young 1974). Therefore, in Chen's criteria, frequency

coincidence is a necessary but insufficient condition for acoustic reso-

nance. Even if Eq. 8.34 is satisfied, when 'c is smaller than the critical

value, the acoustic resonance will be damped out.

Bryce et al. Criterion

Several authors have proposed a simplified criterion which provides for

an acoustic Strouhal number

St = .P(8.36)
a 2P

Bryce et al. (1978) proposed a lower bound for acoustic resonance given by

St = . (8.37)
a 2( - 0.5)

Equation 8.37 is proposed as a general guideline for avoidance of acoustic

resonance up to P/D = 3.0.

The sequence used to predict whether an acoustic resonance can occur is

as follows:

" Calculate the dominant flow excitation frequency.

" Predict the acoustic natural frequency most apt to be excited.

" Compare the excitation frequency with the predicted acoustic

frequency.

" Meet any other requirements according to the criterion used.

The technique is straightforward; however, the calculations of dominant flow

excitation frequency and acoustic natural frequencies in practical system

components are fraught with difficulties.
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The criteria by Chen and by Bryce et al. are not developed from the

fundamental principles of fluid dynamics and acoustics. Additional research

is needed to firmly set these criteria.

8.8.3 Avoidance of Acoustic Resonances

If acoustic resonance is predicted, there are several techniques to

eliminate the problem.

" Detuning Baffles: Introducing baffles in an array of cylinders raises

the acoustic frequency above the fluid excitation frequencies. The baffles

are installed parallel to the axis of the cylinders and the flow. Different

types of baffles and several baffles can be used; including solid baffles and

porous baffles (Eisinger 1979; Byrne 1983). This method increases the

pressure drop through the array.

" Reposition or Removal of Cylinders: Removing cylinders located at the

pressure modes in standing acoustic waves may eliminate the resonance. The

full bank tested by Walker and Reising (1968) produced noise of 140 dB at a

distance of 3 ft. Complete elimination of the noise was achieved by the

omission of a single cylinder at each pressure node position. Tests by

Zdravkovich and Nuttall (1974) show that acoustic resonance can be eliminated

by unequal longitudinal pitches in two successive rows.

" Fin Barriers and Helical Spacers (Eisinger 1979): The fin barrier is

made up of fins welded to the tubes forming a fin "wall" parallel to the

direction of flow and perpendicular to the direction of propagation of

longitudinal waves. The helical spacer can be inserted in the cylinder array

at different locations.

8.9 CLOSING REMARKS

The dynamics of an array of circular cylinders subjected to crossflow is

very complex. Its dynamic characteristics and response to flow noises remain

difficult to predict. In the past, tests have been used heavily for design
evaluations. At this time, there is a sound basis for analyzing the response

of a cylinder array in crossflow. However, the main task is in the

characterization of flow field, such as vortex shedding and turbulent

excitation. Detailed characterization of a cylinder array subjected to

crossflow is much more difficult. As pointed out in Chapter 7, it is not

possible to solve the coupled fluid-cylinder response for an isolated cylinder

at this time based on the fundamental principles of fluid dynamics and theory

of elasticity; much more study will be required to solve the multiple cylinder

problem in a rigorous manner.
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9. TWO CYLINDERS IN CROSSFL(W

9.1 INTRODUCTION

The flow field around a pair of rigid circular cylinders is very complex,

and has been studied extensively. Some objectives of those studies have been

to measure the fluid force and/or pressure distribution acting on each

cylinder, flow velocity profile, and vortex shedding, and to understand the

resultant flow patterns. An excellent review was published recently by

Zdravkovich (1977).

When one or both cylinders are plastic and vibrate, the flow field

becomes significant-y more complicated because of the interaction of the fluid

flow and the cylinder motion. Efforts have been made to understand the

phenomena involved. Motivated by concern over the large oscillations

frequently occurring in transmission lines exposed to high wind, most of the

studies of elastic cylinders have focused on characterizing the motion of two

cylinders in tandem. The disturbed flow caused by the windward cylinder

striking the leeward cylinder can induce dynamic instability, called wake-

induced flutter. Cylinders are also subjected to other fluctuating forces

associated with vortex shedding and turbulence generated by the cylinder

motion. These phenomena have been studied experimentally and analytically by

Wilson and Caldwell (1971), Tanida et al. (1973), King and Johns (1976),

Simpson and Flower (1977), Tsui (1977) and Zdravkovich (1974) and others. In

contrast to two cylinders in tandem, there is very limited information on two

cylinders normal to flow; Livesey and Dye (1962), Dye (1973), and Jendrzejczyk

et al. (1979) have conducted experimental investigations into the possible

modes of two cylinders normal to flow. A review of the response of two

cylinders was reported most recently by Zdravkovich (1984).

9.2 FLUID-FORCE COMPONENTS

Consider two cylinders, 1 and 2 (see Fig. 9.1), subjected to crossflow.
Fluid-force components acting on the two cylinders are g1 and g2 in the drag

direction and hl and h2 in the lift direction. If the cylinders are rigid,

these fluid force components can be written

g= iPU2DCDj + pU2 DCsin(%t +*Dj) + g and

(9.1)

hj= pU2 DCLj + pU2DCLjsin(%t + *Lj) + h',

j = 1, 2
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The fluid-force components given in Eq. 9.1 are fluid excitation forces. If

the cylinders are movable, additional fluid-force components will result from

cylinder oscillations. These are the motion-dependent fluid forces, which are

given as follows:

2 2
2 _ 3uk - a vk - auk - avk -, -,

k= jk at2  + jk 2 +jk +at jk + jkak + jkvk)

and (9.2)
2 2

2 - auk - avk - auk - avk -,, -
h= k (Tjk t2  + 0jk 2 + tjk a + jk at + Tjkuk + 8jkvk)

k- at at

Different types of motion can be classified according to the dominant fluid-

force components given in Eqs. 9.1 and 9.2.

9.3 FLOW REGIMES

The interference between the two cylinders will occur either when they

are sufficiently close to each other or when the rear cylinder is adjacent to

or within the wake of the front one. Based on the arrangement of the two

cylinders, we can group the different situations into three regions, as shown

in Fig. 9.2 (Zdravkovich 1982).

" Coupled Region: The flow field or motion of either cylinder affects

the other.

" Wake Interference Region: The flow field or motion of the front one

affects the one in the wake.

* No Interference Region: The flow field and motion of either one is

not affected by the other.

The boundaries of different regions are affected by different system

parameters. At this time, the precise boundaries are not known. Figure 9.2

is included only to illustrate the general location of the three major

regions. The two cylinders can be arranged side-by-side relative to the

incoming flow, one behind the other in tandem arrangement or staggered

relative to the flow velocity. The coupled regions encompass all three

arrangements up to a certain pitch-to-diameter ratio. The wake interference

region extends very far downstream but it is limited to the tandem and

slightly staggered arrangements.

9.3.1 Tw Cylinders Side-by-Side

One of the methods to characterize the interference is the measurement of

interference drag, which is defined as the difference between the drag
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coefficient measured on one of the cylinders, and the drag coefficient of the

single cylinder at the same Reynolds number.

Figure 9.3 shows the interference drag as a function of the pitch-to-

diameter ratio (Biermann and Herrnstein 1933). Note that the interference

drag was zero for all spacings greater than five diameters; it increases as

the spacing decreases but only down to about two diameters. For small

spacings, the interference drag changes drastically.

The Strouhal number based on that measured by Spivak (1946) is shown in

Fig. 9.4 as a function of pitch-to-diameter ratio. Similar results have been

obtained by Bearman and Wadcock (1973) and Jendrzejczyk and Chen (1982). For

T/D larger than 2.0, the Strouhal frequency is the same as for the single

cylinder. For T/D < 2.0, two frequencies are noted. The upper frequency

disappears for small spacings and the lower frequency continues down to the

two cylinders in contact.

One of the distinct features of the flow field is the bistable nature of

the biased flow pattern. For 1.1 < T/D < 2.3, Bearman and Wadcock (1973) have
found that the base pressure on the two cylinders is different and changes

from one steady value to another, or fluctuates between the two extremes. In

this range of spacing, two bistable forces are experienced by the two

cylinders.

The steady lift and drag coefficients, compiled by Zdravkovich (1977),

are shown in Fig. 9.5, in which repulsive lift force between the cylinders is

taken as positive. The general trend of the different curves is the same.

The sum of the bistable low drag and the high drag is always smaller than

twice the drag of an isolated cylinder.

A detailed study of the fluid force coefficients was conducted for T/D =

1.5 for different upstream turbulence intensities (TIs). The various

coefficients are given in Figs. 9.6-9.9 (Jendrzejczyk and Chen 1982). The

steady drag coefficient increases with turbulence intensity in the range of

Reynolds numbers tested; however, its effect is small. The results agree well

with those by Zdravkovich and Pridden (1977). The lift force tends to push

the two cylinders apart. The results are consistent with those by Bearman and

Wadcock (1973).

The fluctuating drag and lift force coefficients given in Figs. 9.8 and

9.9 show distinct features. Both fluctuating drag and lift forces increase

with turbulence intensity in the Reynolds numbers tested and they can increase

or decrease with Reynolds number. There is incomplete information on CD and

CL. More data are needed.

Based on the interference drag (Biermann and Herrnstein 1933), photo-

graphic studies of the wake behind the cylinders (Landweber 1942; Ishigai et

al. 1972), vortex shedding frequency (Spivak 1946), and base pressure (Hors

1959; Bearman and Wadcock 1973) the flow field for two identical cylinders
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normal to flow can be divided into four regions (see Fig. 9.10). In this

case, because the two cylinders are identical,

CD1 - CD2 -CD * L1 -CL2 - CL

(9.3)

C'-C C' Ll CL2- CL .
D1 D2 CDL1 L2'-C

Equations 9.3 are valid except in the bistable flow region.

No-Interference (T/D > 4): The flow around the cylinders is the same as

that around an isolated cylinder. Therefore CL - 0, and the steady drag

coefficient CD, fluctuating drag and lift coefficients C and C, and SLrouhal

frequency are the same as those for an isolated cylinder. The dominant

excitation mechanism is the vortex shedding.

Coupled Vortex Streets (2.0 < T/D < 4): The interference drag increases

with decreasing T/D, the Strouhal number is the same as that of an isolated

cylinder, and both CD and CL decrease with increasing T/D. Although both

vortex streets have the same frequency, they are coupled in an out-of-phase

mode; i.e., the vortices are simultaneously formed and shed on the gap side

and then simultaneously on the other sides. In this region, vortex shedding

is the dominant excitation, although there is some interaction between the two

cylinders.

Biased Flow Pattern (1.2 < T/D < 2.0): The gap flow is biased to one

side; consequently, wide and narrow wakes are formed behind the cylinders.

The biased flow in the gap is bistable and intermittently changes from one

side to the other. Two Strouhal frequencies are associated with the two wakes

and the drag and lift forces are not steady because of the bistable nature of

the biased flow pattern. In this region, in addition to the vortex

excitation, fluidelastic instability is important.

Single Vortex Street (1.2 < T/D): When two cylinders are fairly close, a

single vortex street is formed downstream. Two cylinders behave as a single

bluff body. The drag and lift coefficients CD and CL increase with decreasing

T/D. Because of the small gap, the two cylinders are strongly coupled by the

flow field. Both vortex-excited oscillation and fluidelastic instability can

cause cylinders to impact with each other.

9.3.2 To Cylinders in Tande.

Figure 9.11 shows the interference drag for both cylinders and the

combined interference drag, obtained by adding the interference drag

coefficients of both cylinders (Biermann and Herrnstein 1933). Note that the

minimum interference drag coefficient of the upstream cylinder coincides with
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the "s" portion of the interference drag coefficient of the downstream

cylinder.

The Strouhal frequency measured by Oka et al. (1972) is given in Fig.

9.12. In general, the vortex shedding frequencies behind the two cylinders

are different. No distinct vortex shedding is found behind the upstream

cylinders up to P/D = 3.8. For P/D > 3.8, the vortex shedding frequency

reaches the value for an isolated cylinder. The vortex shedding exist in the

whole range of spacing behind the downstream cylinder. It decreases with P/D

for 1 < P/D < 3.8, then jumps to higher values at P/D ~3.8, which is the same

spacing at which the vortex shedding appears behind the upstream cylinder.

Figure 9.13 shows the drag coefficients compiled by Zdravkovich (1977)

for various Reynolds numbers. It shows the discontinuous jump of the drag

coefficient at P/D between 3 and 4 for the upstream cylinder. Regardless of

the Reynolds number, the drag coefficient reaches the value for a single

cylinder once the spacing is larger than the critical P/D. The downstream

cylinder shows a stronger dependence on the Reynolds number.

Figures 9.14-9.16 show the steady and fluctuating drag and lift

coefficients for P/D = 1.5 for different turbulence intensities (Jendrzejczyk

and Chen 1982). In these figures,

" The steady drag coefficient increases with turbulence intensity,

" Fluctuating lift force is larger than fluctuating drag force (this is

mainly attributed to vortex shedding),

* Both fluctuating lift and drag forces increase with turbulence

intensity, and

" Both fluctuating force components in lift and drag directions acting

on the upstream cylinders are smaller than those on the downstream one.

Based on experimental data, the flow field can be divided into the

following regions (Zdravkovich 1982):

* Single Slender Body (1 < P/D < 1.1): The two cylinders behave as a

single slender body with high Strouhal number (^4.24). The shear layers

separated from the front cylinder do not reattach onto the downstream

cylinder. The drag force acting on the downstream cylinder is to push it

upstream.

" Alternate Reattachment (1.1 < P/D < 1.6): An alternate reattachment

of the shear layers takes place on the front side of the rear cylinder in the

rhythm of vortex shedding of the latter. The drag force acting on the

downstream still acts to push it upstream. Both Strouhal number and the

absolute value of the drag coefficients decrease with increasing P/D.

" Quasi-Steady Reattachment (1.6 ( P/D < 2.4): Quasi-steady

reattachment of separated shear layers is noted. Strouhal number and the

absolute value of the drag coefficients decrease with P/D.
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" Intermittent Shedding (2.4 < P/D < 3.5): One of the reattachments is

disturbed but no regular vortex shedding behind the front cylinder. The

Strouhal number and the drag coefficient for the front cylinder continue to

decrease, while the drag coefficient for the downstream one changes direction.

* Unstable Region (3.5 < P/D c 4): The vortex shedding behind the front

cylinder persists for some time and then it is intermittently suppressed and

replaced by the reattachment flow regime. There is a sharp increase of

Strouhal number of the downstream cylinder. No distinct vortex shedding is

detectable behind the front cylinder. Jump of the drag coefficients takes

place for both cylinders.

" Two Vortex Streets (P/D > 4): Beyond the unstable region, both

cylinders form vortex streets. The Strouhal number for the front cylinder

first increases with P/D approaching the value found for the single cylinder

and then decreases again for P/D > 8 and, for the downstream cylinder, it soon

reaches the value for a single cylinder. The drag coefficient for the front

cylinder is always larger than the downstream one.

9.3.3 Two Cylinders in Staggered Arrangement

The staggered arrangement is most likely to occur in practical situa-

tions; nevertheless, there are only a few published systematic studies of the

flow field. Measurements have been made for base pressure, interference force

coefficients, lift and drag forces, and Strouhal numbers for different

arrangements (Hor 1959; Mair and Maull 1971; Zdravkovich 1977; Kiya et al.

1980; Arie et al. 1983; and Dayoub 1982).

The Strouhal numbers obtained by Arie and his colleague (Kiya et al.

1980) for a Reynolds number of 1.58 x 104 are given in Fig. 9.17, in which the

curves of constant Strouhal numbers are drawn by linear interpolation of the

measured values. All possible arrangements of the two cylinders are divided

into several regions denoted by 1 , 2 , 3 , 4 , and 5 for a particular

Reynolds number. The general features of the flow are summarized by Kiya

et al. (1980).

" With respect to vortex shedding, the cylinders behave as a single body

when (T2 + P2 )0 . < 1.4 D.

* The bistable side-by-side arrangement, which represents the transition

from the upstream to the downstream stagger with respect to one of the two

cylinders, results in large changes in Strouhal number.

" There exists a region in which the Strouhal number for the upstream

cylinder is much higher than that for the single cylinder.

" The Strouhal number for the downstream cylinder is generally lower

than that for the single cylinder except when the spacing is less than 1.4 D

in a tandem arrangement.



(1) Region where the Strouhal number is higher than that
for the single cylinder.

(2) Region where the Strouhal number is less than that for
the single cylinder.

(3) Region where the bistable vortex shedding occurs.
(4) Region where the pair of the cylinders behaves as a

single body with regard to the vortex shedding.
(5) Region where weak or no vortex shedding occurs.
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" The gap flow between the cylinders is biased to the side of the

upstream cylinder, thus forming a much narrower wake behind the upstream

cylinder than that behind the downstream cylinder. Narrower wakes correspond

to higher Strouhal numbers and wider wakes to lower Strouhal numbers.

Figure 9.18 shows the steady drag and lift coefficients for the down-

stream cylinders for Re 6 x 104 (Zdravkovich and Pridden 1977). The oncoming

flow field is responsible for variations in the dynamic effect on the

downstream cylinder. The drag variation is symmetric about zero lateral

displacement. These variations occur mainly as a result of the total pressure

defect in the wake as well as the high turbulence level of the oncoming

flow. The minimum drag curve is given by the chain-dot line.

The lift coefficients show a positive repulsive force in the vicinity of

side-by-side arrangements; the remainder of the staggered arrangements have a

negative force directed toward the wake center. The negative lift force

increases gradually towards the maximum value, shown as the chain-dot lines.

There are two separate curves representing the maximum lift coefficient; one

inside the wake for pitches up to 3 diameters and tie other near the wake

boundary for pitches greater than 2.7.

There is very limited information regarding fluctuating force coeffi-

cients. In general, available information is sufficient for predicting

cylinder response from these force components.

The front cylinder is stable in the staggered arrangements except when

the downstream cylinder is fairly close to the upstream one. Therefore, for a

relatively large spacing, the main excitation mechanism for the front cylinder

is vortex shedding. For small spacings, the two cylinders are coupled by

fluid inertia forces. When the downstream cylinder is in the wake of the

upstream one, large oscillations can occur; this is called wake-induced

flutter, wake-induced oscillation, or wake-induced galloping.

9.4 RESPONSE OF NO CYLINDERS IN FLOW

The method presented in Section 8.6 can be used for two cylinders. Once

the fluid force components are known, the analysis is straightforward, but

generally the analysis cannot be made because of the lack of fluid-force data.

The response of two cylinders in flow is very complex, depending on pitch

ratio, flow direction, and mass ratio. Corresponding to a single mode for an

isolated cylinder, there are four coupled modes, as discussed in Section 3.2.

All four modes contribute to cylinder response. In addition, flow affects the

four modes. Cylinder response has been investigated experimentally (e.g.,

Jendrzejczyk et al. 1979; King and Johns 1976; Livesey and Dye 1962; and

Tanida et al. 1973).

There are very few systematic studies characterizing response character-

istics. A detailed investigation was conducted by Zdravkovich (1982); vortex
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excitation and fluidelastic instability were investigated for different

cylinder arrangements.

Figure 9.19 shows the synchronization region for 6s = 23 for different

cylinder arrangements. The reduced flow velocities for the threshold and end

of synchronization are given within each circle; the reduced flow velocity

where maximum amplitude developed is given in parentheses. The frequency of

vortex shedding depends on the arrangement, and Strouhal number can vary from

0.1 to 0.38 (see Fig. 9.17). This means that the synchronization region can

begin from Ur = 2.6 to 10. In addition, the oscillation of one cylinder can

strongly affect vortex shedding and the synchronization o- the other

cylinder. These effects are illustrated in Fig. 9.19. Figure 9.20 shows the

typical maximum amplitude of vortex excitation. It is apparent that the

oscillation amplitudes depend strongly on the arrangement. In some cases, the

displacement of the front cylinder (denoted by F) is larger than that of the

rear one (denoted by R); however, in most cases, the displacement of the rear

one is much larger.

Fluidelastic instability for two cylinders in crossflow is also very

important. The instability may be fluid-damping-controlled or fluid-

stiffness-controlled. Several mechanisms associated with different flow field

are of particular interest.

Jet Switch Mechanism: For small flow velocities, the two cylinders are

subject to the same drag and lift forces as in a side-by-side arrangement. As

flow velocity increases, the biased flow forms narrow and wide wakes,

resulting in different fluid forces (which may be in phase with the cylinder

displacement). The biased flow can lead to a steep rise in amplitude in both

directions. This jet-switch mechanism of excitation was also found for a row

of cylinders (Roberts 1966).

Discontinuities of Flow Field: The drag force coefficients and fluid

pressure acting on two cylinders in crossflow show discontinuous "jump" at

some critical spacings. The cylinder oscillations can trigger and control the

change of flow regimes. The discontinuous change of the fluid force can build

up and maintain a large amplitude of oscillations.

Wake-induced Flutter: The wake flow behind the front cylinder is complex,

containing periodicities and general turbulence. When such disturbed flow

strikes the near cylinder, dynamic instability of the rear cylinder can occur;

however, the dynamic instability is not necessarily affected by the turbulence

and periodicities in the flow.

9.4.1 Two Cylinders Side by Side

Two cylinders mounted at varying spacing in air flow were tested by

Livesey and Dye (1962). For T/D > 2.4, the cylinders vibrate as an isolated

cylinder. For T/D < 2, two distinct modes are found; at lower speeds, the
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cylinders moved out of phase, while at higher speeds they vibrate in phase.

For 2.0 < T/D < 2.4, both modes were found. These observations are generally

consistent with the flow pattern shown in Fig. 9.10. For large spacings, the

coupling due to air flow is very small; therefore, the cylinder responds

basically the same as an isolated cylinder. For T/D < 2, there are multiple

vortex shedding frequencies, and the out-of-phase and in-phase modes are

associated with the resonance of the corresponding vortex shedding.

A detailed study of two cylinders in crossflow with T/D = 1.5 and 1.75,

which corresponds to the bistable flow regime, was conducted in water by

Jendrzejczyk et al. (1979). The study measured cylinder response charac-

teristics, including natural frequencies, damping, displacements, and

vibration orbit.

The response characteristics of a particular case (T/D = 1.515) are given

in Figs. 9.21-9.24 for two tubes with the characteristics shown in

Table 9.1. Figure 9.21 shows the tube displacement in the drag and lift

directions as a function of flow velocity. Tube displacement in the drag

direction begins to increase at a certain value of flow velocity. The peak of

the drag-direction displacement curve is characterized by reduced flow

velocities in the range of Ur = 2.25 to 3.0. This peak is attributed to the

synchronization of vortex shedding with tube motion in the drag direction. In

this range of flow velocity, vortex shedding is controlled by tube motion.

The general behavior is similar to that of a single cylinder. Tube displace-

ments in the lift direction are small at low flow velocities. As the flow

velocity is increased to a certain value, tube oscillations in the lift

direction increase drastically. With the coupled natural frequency of the

out-of-phase mode of in-plane motion used as the basis, the reduced flow

velocity at which significant oscillations in the lift direction occur is

about 4.6.

Tube response frequencies in the lift and drag directions are given in

Fig. 9.22. At low flow velocities, tube natural frequencies in the drag and

lift direction are the same. As the flow velocity increases, tube natural

frequencies in the lift direction decrease while those in the drag direction

increase. The cause for the increase and reduction is not known, but it is

believed to be attributable to three factors: (1) the drag-force induced

displacement tends to change the end condition of the tubes, (2) the added

mass matrix is not constant but varies with flow velocity, and (3) the effect

of fluid damping and fluid stiffness forces may be important.

From the frequency spectra of tube displacements, major frequency

contents of the tube displacement can easily be identified. Tube responses in

the drag direction are essentially at the natural frequency of the tubes.

However, tube responses in the lift direction contain several components:

(1) tube natural frequency, (2) vortex shedding frequency with Strouhal number
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Table 9.1. Natural Frequencies (Hz) in Air and Water
of Two Tubes in Side-by-Side Arrangement

Natural Frequency in Air

Lift direction

Tube A 67.87
Tube B 75.05

Drag direction

Tube A 68.41
Tube B 75.05

Coupled Natural Frequency in Water

Lift direction

Out-of-phase mode 59.91 Hz

In-phase mode 63.57 Hz

Drag direction

Out-of-phase mode 59.52
In-phase mode 63.95
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equal to about 0.18, and (3) half the natural frequency in the drag direc-

tion. These characteristics are similar to those for a single tube.

Figure 9.23 shows tube displacement-time traces and Fig. 9.24 shows the

orbital paths of tube motion at various flow velocities. At low flow

velocities, the motion is sinusoidal with a single frequency component and the

tube oscillates predominantly in the drag direction. When the tube motion in

the drag direction is synchronized with vortex shedding, such as at 2.71 m/s

in Fig. 9.24, the contribution to lift direction from the frequency equal to

half the natural frequency in the drag direction motion is significant (this

can also be seen from the frequency curve in Fig. 9.22). The maximum tube

displacement in Fig. 9.24 is about 0.15 tube diameter for tube A at a flow

velocity of 3.41 m/s. The two tubes move out of phase and the motion is

predominantly in the lift direction. At these flow velocities, the vortex

shedding frequency is close to the tube natural frequency. Once vortex

shedding causes a tube to oscillate, the gap between the two tubes changes, as

does the fluid field. In turn, the fluid force acting on the tubes changes

and causes the tubes to oscillate more violently.

9.4.2 Two Cylinders in Tandem

The flow field for two cylinders is extremely complex, as shown in

Fig. 9.10; therefore, the cylinder response is also very complex, depending on

spacing, mass ratio, and Reynolds number. At this time, many more studies are

needed for an understanding of the response for different conditions. Some of

the known characteristics are discussed. here.

A detailed study of two cylinders in tandem immersed in a water flow and

spaced at between 0.20 and 4 diameters was made by King and Johns (1976)

(Figs. 9.25 and 9.26). They found that complex mutual interactions can arise

between the flow, vortex shedding, and the motion of the cylinders. The

dynamic response of the cylinders is a function of pitch ratio, reduced flow

velocity, mass ratio, and damping value. Reynolds number also is important;

Re must exceed 1200-1500 for in-line oscillation to occur and must exceed 100

for crossflow oscillation to occur. The responses, :.h ch depend strongly on

P/D, can be summarized as follows:

* P/D < 2.75: Symmetric vortices are shed from both cylinders in the

range 1.25 < Ur 2.5 and both cylinders oscillate in the in-line direction

provided the mass-damping parameter is less than 2.4.

" P/D > 2.75: For 1.25 < Ur < 2.5, the upstream cylinder oscillates in-

line and sheds symmetric vortices but the downstream cylinders do not

oscillate and a wide turbulent wake is formed.

" 1.5 < P/D < 7: For 2.7 < Ur < 3.8, the alternate wake from the

upstream cylinder generally reinforces that from the downstream cylinder.



Fig. 9.25. Flow Field for Two Cylinders Oscillating in the In-Line Direction with P/D = 2.0
for Ur < 2.5 (from King and Johns 1976, with permission--see Credits)
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Fig. 9.26. Flow Field for Two Cylinders Oscillating in the In-Line Direction with P/D = 4.0
for Ur < 2.5 (from King and Johns 1976, with permission--see Credits)
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" 1.25 ( P/D < 7: The alternate vortex shedding associated with the

oscillating upstream cylinder generally reinforces that from the downstream

cylinder.

Figures 9.27 and 9.28 show typical cylinder displacements for P/D = 1.75
(Jendrzejczyk et al. 1979). There are two peaks in the response curves in the

drag direction. The peaks correspond to the reduced flow velocities equal to

1.7 and 3.0, respectively. This is consistent with the experimental results

by King and Johns (1976). Figure 9.28 shows the orbital paths of two

cylinders at several flow velocities. As the flow velocity increases,

predominant cylinder motion changes from the drag direction to the lift

direction. At large oscillations, the upstream cylinder vibrates more

severely than the downstream one. The two cylinders vibrate out of phase when

they execute large oscillations. The orbital paths bend in the downstream

direction. This can be attributed to the drag variation--that is, when the

cylinders are farthest from the equilibrium position, the drag force acting on

the cylinder- becomes larger. The large amplitude oscillations given in

Figs. 9.27 and 9.28 are associated with the "interference galloping,"

discussed in Section 9.6.

Most investigations consider the cases in which the cylinders are free to

move in both the drag and lift directions. Several studies are focused on the

constrained mode, in which the cylinders are allowed to move only in the drag

or the lift direction. Simpson (1977) shows that a pair of smooth cylinders,

mounted in tandem in an airstream and free to oscillate in the drag direction,

can exhibit flutter. However, the flutter exists only when there is a

mechanical coupling between the cylinders. This flutter is most likely to be

experienced along the wake centerline at low values of cylinder spacing. In

contrast, Bokaian and Geoola (1984a, 1984b) study two cylinders in different

arrangements with either the upstream one or the downstream one oscillating in

the lift direction only. When the upstream cylinder is rigid, depending on

the cylinder separation, damping, the downstream cylinder exhibits vortex-

excited resonance, a flutter, a combined vortex-excited resonance and flutter,

or a separated vortex-excited resonance and flutter. When the downstream

cylinder is rigid, the upstream cylinder exhibits a vortex-excited resonance

or flutter. The vortex shedding frequency was found to be related to

oscillation frequency. Although the vibration characteristics remained

essentially unaffected with changes in incoming turbulence intensiLy, the

flutter amplitudes were sensitive to cylinder aspect ratio.

Most recently, Zdravkovich (1984) has attempted to summarize the response

of two cylinders according to three flow regimes, illustrated in Fig. 9.29,

which is a more detailed description of flow regimes as shown in Fig. 9.2.

His results are given in Table 9.2. It can be seen that there is still

incomplete knowledge of the cylinder response characteristics. In addition,
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the precise boundaries separating different regions are not well defined

because they are affected by various system parameters. Considerable work

remains to be done before one can describe the dynamic behavior in detail.

9.5 WAKE-INDUCED FLUTTER

The wake behind the upstream cylinder contains periodicities and general

turbulence. When this wake strikes the downstream cylinder, large oscilla-

tions can be excited in the rear cylinder; this motion moves downstream near

the outer edge of the wake and upstream near wake center. This is called

wake-induced flutter, wake galloping or wake-induced oscillation. In

transmission lines, wake-induced flutter has been observed with arrangements

of two, three, four, or more conductors. Because the oscillation can be

wholly within a subspan bound by the conductor spacers, it is also referred to

as a subspan oscillation.

The mathematical model for wake-induced flutter is commonly based on two

cylinders. Different forms of fluid forces acting on cylinders have been

proposed (Hardy and Cloutier 1973; Rawlins 1976; Simpson and Flower 1977; Tsui

and Tsui 1979). A summary of these models is given in Table 9.3. The models

have been developed for cylinders in air; therefore, the added mass of fluid

is neglected. Fluid damping and fluid stiffness forces are derived from the

steady drag and lift forces.

9.5.1 Motion-dependent Fluid Forces on the Downstream Cylinder

Figure 9.30 depicts the wake of the upstream cylinder, which is assumed

to be fixed. The fluid forces acting on the downstream cylinder are

calculated based on the quasi-static fluid dynamic theory.

At equilibrium, when the free-stream velocity is U, the position of the

downstream cylinder relative to the upstream cylinder is defined by the

transverse pitch T and longitudinal pitch P. In motion, at some instant t,

the velocity of the cylinders are u2 and 42. Let CD2 and CL2 be the

hydrodynamic coefficients based on the local velocity V in the wake. The

fluid forces acting on cylinder 2 are

au avd
g2 = pVD[CD2(U - ) + CL2atand

(9.4)

1 - u2 2
h2 = pVD[CL2 (U - a) - CD2 at ] .

The coefficients CD2 and CL2 depend on the position of the cylinder.

When Ur is very large, the quasi-static hydrodynamics are justified. Consider



Table 9.3 Comparison of Four Mathematical Models for the Fluid Dynamic Forces on Tandem Conductors in Motion

Hardy Rawlins Simpson-Flower Tsui & Tsui
Parameter Model (1973) Model (1976) Model (1977) Model (1979)

Includes effect of the
motion of the upstream
conductor on the wake
velocity distribution

Includes time lag between
the upstream and downstream
conductors experiencing
fluid dynamic forces

Requires lift and the drag
coefficient of upstream
conductor

Includes variation of lift
and drag coefficients with
respect to flow velocity.

Provides means to in-
clude buoyancy force

Yes

No

No; CD - 1.2 for
laminar flow, CD -
0.8 for turbulent
flow, CL - 0

Yes

No

Yes

Yes No

NoYes, but in very
complicated way

Yes

Yes

Yes

YesNo

No No

No, lift coefficient
CL - 0, drag coeffi-

cient CD -0

No

No

Includes fluid dynamic
forces on upstream
conductor

Includes fluid dynamic
forces on downstream
conductor

Linearized
fluid dynamic
force

Only difference
between Hardy
and Tsui & Tsui
is in fluid dy-
namic cross-
damping terms at-
tributed to
velocity of up-
stream conductor

Differs from Hardy
model because of
lift .ad drag
coefficients of
upstream conductor
and derivatives of
these coefficients
with respect to flow
velocity

Difference be-
tween Rawlins and
Hardy is in
derivatives of
fluid dynamic coef-
ficients with re-
spect to flow
velocity

Same as
Rawlins model

Difference be-
tween Simpson
and Rawlins lies
in at least two
aspects--time lag
and buoyancy
force

Same as Hardy
model

Linearized
fluid dynamic
force

From Tsui and Tsui (1979) with permission--see Credits.
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u2, v2 and their time derivative small. Let

C C ( v CD CD2 D2
C D CD2(u2 v2) D2 +3v2 2 2

and (9.5)

C = C (u v) +-3CL2 + + L2 v
L2 L2(222 L2 au 2 2 3v 2

2 2

where CD2 and CL2 are the steady drag and lift coefficients at the equilibrium

position. Substituting Eq. 9.5 into Eq. 9.4 and neglecting higher-order terms

yields

aC aC 3u av
= U2D{acD2 2+ aCD2 v r+ -2CD 2 + C 2 )} +_pU2DD
2 2p D 2 22 23at L2 at 2 D

and (9.6)

h2=- pU2D{ L2 u + L2 v2+ U 2L2 2  D2 ) + pU2DC
2 2 2UD2 - 2 at D2at)' 2+L2

2 2

The last terms in both equations 9.6 are the steady drag and lift forces,

which generally do not affect the stability of the cylinder. The others are

the motion-dependent forces, which are obtained from the quasi-static

theory. Note that the motion-dependent fluid forces include fluid stiffness

and fluid damping forces. Complete static force coefficient data for the

downstream cylinder are needed for predicting the instability regions. Not

only the magnitudes of the coefficients, but also their derivatives with

respect to both coordinates, are required.

Figure 9.31 depicts the wake of the downstream cylinder, in which lift

coefficients CL2 and CD2 are required to the free-stream velocity. Measure-

ments of these coefficients by Price (1975) for typical cases are shown in

Fig. 9.32. Figure 9.33 shows derivative in the transverse direction for lift

and drag. The profiles for different cases are similar, the lift coefficient

profile being antisymmetric, with the lift force toward the center of the

wake, and the drag coefficient being symmetric, with the minimum drag on the

wake centerline. Turbulence decreased the magnitudes of the forces, but did

not destroy their profiles. Of course, turbulence also lowered the Reynolds

number for transition of the flow around the cylinders.

Figure 9.32 shows that the lift and drag curves are still significant

when the pitch is greater than 20 diameters. Lift and drag curves for

different Reynolds numbers show no dependence on Reynolds number.
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9.5.2 Stability Analysis

Wake-induced flutter is a special case of fluidelastic instability of

cylinder arrays, as discussed in Section 10.6; therefore, the method presented

in Section 10.6 can be applied to wake-induced flutter. Once the motion-

dependent fluid forces given in Eq. 9.6 are known, the analysis is

straightforward.

A typical trace of the buildup is shown in Fig. 9.34 (Wardlaw 1972). The

relationship between wind speed and the vertical and horizontal final limit

cycle amplitude is also given in Fig. 9.34. Using the measured quasi-static

fluid force coefficients, the motion can be predicted with a reasonable degree

of accuracy using quasi-static analysis.

Equations 9.6 are used in the analysis of stability boundary; both fluid-

damping and fluid-stiffness forces are taken into account. However, the

effect of fluid damping is small (Simpson 1971). The basic instability

mechanism is of the fluid-stiffness-controlled type.

Most of the analysis is based on the assumption that the upstream

cylinder is rigid; i.e., the effect of the motion of the upstream cylinder in

the wake velocity distribution is neglected. Experimental data for both

cylinders movable are not available. Simple models have included the effect

of the upstream cylinder; e.g., Tsui and Tsui (1979) have studied the

stability for two flexible cylinders. In this case, the motion-dependent

fluid forces acting on the two cylinders are given by

1 2 S
av

h 2pU1 -L1 tl
1 a

1 ac ac
g2 - pU2D{ D2 (u2 - u) + _2 (u2 - v1 )2 2

au 2(9.7)

+ U (-20D2t+ OL2a)} , and

1 ac acL
h -2pU 2 D{L (u2 -u ) +3 (v2- 1)
2 2 au2  2 1 S2 2

au av
+ (-2C L2a t - CD2 at)

Based on Eq. 9.7, the flutter of coupled mode can be calculated.
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9.6 INTERFERENCE GALLOPING

In contrast to wake-induced flutter, which is generally important for

relatively large longitudinal pitch P/D, two cylinders with a small

longitudinal pitch ratio can be subjected to "interference galloping," which

is similar to the galloping of a single cylinder with rectangular shape in

crossf low (Blevins 1977). As shown by Ruscheweyh (1983), two different flow

conditions occur around two cylinders (see Fig. 9.35). At the flow velocity

below the critical angle, the downstream cylinder is completely in the wake of

the upstream cylinder and no lift force exists. If the critical angle is

attained or exceeded, the flow streams through the gap at high speed and

produces a lift force on the downstream cylinder. The lift force coefficient

CL? is shown in Fig. 9.36 for different pitch ratio P/D. Near the critical

angle, the values of CL2 vary drastically. This is associated with the chan'

of flow conditions given in Fig. 9.35. In this range, interference gallopin

is observed.

The analysis of interference galloping is similar to the classical

galloping of a single cylinder (Blevins 1977). The equation of motion of

cylinder 2 in the y direction is

2
dv2 dv2  1 2

m2  22 +Cs2 +k pUDC (9.8)
dt2+s2dt .2v2  2p L2

where the added mass is ignored and the fluid force is based on the quasi-

steady fluid-dynamic force. For the harmonic motion,

v2= V2sinwt

dv2

dt v 2w coswt , and (9.9)

2
d v2  - 2

d2  -v2w sinwt.dtT p l w

The phase lag between the lif t force and displacement is 0.

CL2 " CL2sin(wt + 0) .1 (9.10)



Fig. 9.35. Flow Patterns for Two Cylinders in Tandem (from Ruscheweyh 1983,
with permission--see Credits)
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For small angle of attack S,

CCv2
L2 a L2

Using Eqs. 9.8-9.11 yields

(k-2 - 2 2- PU DL2cosO)v 2sinwt

1 2 --
+ (C 2w-2 pU DC2 sino) 0

The expression in the first bracket describes the natural frequency

system with the interference coupling effect and the expression in the

expression describes the damping. When the latter becomes zero, the

loses stability by galloping; i.e.,

Cs2 -ipU2DCL 2 sin9 = 0.

(9.11)

(9.12)

of the

second

system

(9.13)

Neglecting the effect of the interference coupling on the natural frequency in

Eq. 9.13 yields

T 3.54( PD

- L 2 sinO

0.50.5 I
D2

where

1 s2)0.5
2nrm2

and

C s2 _(9.14)

- 4irm 2fs2

The onset flow velocity depends on the square root of the mass-damping

parameter 6s; this is contrary to the classical galloping, in which the

critical flow velocity is proportional to 6. The sign of the phase lag 0 is
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normally negative; therefore, for instability to occur, aCL2 /3a must be

positive. This is also contrary to that of classical galloping, in which the

derivative is negative.

9.7 CLOSING REMARKS

The flow field around two circular cylinders is very complex. It depends

on Reynolds number, cylinder arrangement, and incoming flow conditions. The

interaction of fluid flow with cylinder oscillation is even more complicated.

The excitation mechanisms can be classified as vortex shedding, turbulent

buffeting, and fluidelastic instability. A general procedure to determine the

response for different excitations is presented in this chapter and various

available experimental data are reviewed.

At this time, it is not possible generally to predict the response of two

cylinders in crossflow because the fluid forces acting on the cylinders cannot

be calculated. Therefore, techniques to obtain the fluid forces need to be

developed. Several approaches can be used, including analytical methods,

numerical techniques, and experimental methods. It is expected that more

research will be directed toward this area.

Based on the available information, the general characteristics of

cylinder response in crossf low are not well understood in various parameter

ranges. Most of the experimental data were obtained for specific applica-

tions. A systematic study is needed to quantify the response of two cylinders

under different flow conditions.

Flow discontinuities and the resulting effects are important and

interesting. No systematic study to investigate their characteristics has

been reported. Detailed characterization of the flow discontinuities and

cylinder responses deserves further attention.

Most of the research has been conducted in the subcritical Reynolds

number range. However, in many engineering applications, Reynolds numbers are

in the postcritical range. Flow characteristics and cylinder response in a

high Reynolds number range should be studied.
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10. FLUIDELASTIC INSTABILITY OF A GROUP OF CIRCULAR CYLINDERS IN CROSSFLON

10.1 INTRODUCTION

The displacement of one cylinder in an array alters the flow field,

upsetting the neighboring cylinders and causing them to change their displace-

ments. If during a cycle of oscillation the energy extracted from the flow by

the cylinder exceeds the energy dissipated by the damping, an instability will

result from the interaction of flow and cylinder. Connors (1970) developed a

simple stability criterion based on the quasi-steady theory; the critical

velocity above which large-amplitude cylinder vibration initiates is given by

U (2r~m)0.5
= U (2Tr . 5 , (10.1)

pD

where a is the threshold instability constant. The original work by Connors

(1970) has provided great impetus for numerous innovative studies of cylinder

arrays subjected to crossf low. The mechanism described by Connors has been

used to interpret different phenomena, and Connors' stability criterion has

been used extensively and misused occasionally. Furthermore, erroneous

interpretations of Connors' criterion by some investigators have been

published in different journals, illustrating the lack of understanding of

this subject.

10.2 DEFINITION OF CRITICAL FLOW VELOCITY AND SYSTEM PARAMETERS

The displacement of a cylinder in an array subjected to crossflow is

shown in Fig. 8.1. The critical flow velocity is defined as the flow velocity

above which large cylinder oscillations occur. Mathematically, this is

generally described as follows: Let the displacement of a particular location

of the cylinder be

u(t) = a exp(X + iw)t . (10.2)

The stability of the cylinder is determined by A, which is a function of flow

velocity:

If a < 0, the cylinder motion is damped.

If A > 0, the cylinder displacement increases with time.

A = 0 is the condition that separates the stable and unstable regions.

Therefore, the critical flow velocity can be determined from the condition

x - 0.

Based on Eq. 10.2, once the cylinder becomes unstable, the displacement

will increase with time without limit. Practically, other nonlinear effects
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will become important as soon as the cylinder motion becomes large, and the

cylinder displacement will be limited to a certain value. The increase in

response amplitude with flow velocity is gradual, as shown in Fig. 8.1, unlike

that described in Eq. 10.2, which shows that the cylinder response amplitude

is infinite for X > 0. It is apparent that using the response curves given in

Fig. 8.1 to establish the critical flow velocity based on the linear theory

given in Eq. 10.2 will encounter some difficulty.

A number of methods have been used to define the critical flow velocity

in laboratory tests and practical equipment tests (Wambsganss et al. 1981).

These are discussed below:

Sensory Observations: Tube vibration amplitudes are determined visually

or auditorially. When the cylinder array can be viewed from the end or at a

particular section, the amplitude increase can generally be detected

visually. If, in addition, cylinder impacting results, a distinctive loud

noise associated with the impacting is readily audible. This method does not

precisely determine critical flow velocity in most cases, because the method

is subjective and requires a fair amount of engineering judgment and

experience.

Vibration Amplitude vs. Flow Velocity: The cylinder RMS amplitude or

peak amplitude is plotted as a function of flow velocity, as shown, for

example, in Fig. 10.1. The flow velocity at which the cylinder experiences a

rapid increase in response is defined as the critical flow velocity. Using

this definition, different investigators define the critical flow velocity in

different manners. For example, Weaver and El-Kashlan (1981) define the

threshold flow velocity as the point on the curve where there is a sudden

change in slope, while Soper (1980) defines the threshold flow velocity as the

intersection of the velocity axis and the tangent to that portion of the curve

which is rapidly rising (see Fig. 10.la).

The example given in Fig. 10.la is ideal for defining critical flow

velocity. However, even in this case, the critical flow velocities determined

by different investigators are different. For other cases, the situation

becomes more difficult. For example, in Fig. l0.lb, there is uncertainty as

to whether or not the first peak indicates instability. Difficulty also

arises when the response curve exhibits a gradual increase.

Vibration Amplitude vs. Flow: The critical flow velocity is defined as

the velocity at which the threshold displacement is first exceeded. Values of

2-2.5% of cylinder diameter have been suggested (Yeung and Weaver 1983). Once

the threshold amplitude is established, determination of the critical flow

velocity is straightforward. This method is attractive for practical applica-

tions but it is not theoretically correct.

Frequency Response Data: When a cylinder array is subjected to a flow,

there are many natural frequencies of coupled modes (see Sec. 3.4). At flow
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velocities below the threshold value, turbulent buffeting or other excitation

source is the dominant excitation mechanism. It excites, in general, a broad

range of coupled frequencies. On the other hand, the vibration at instability

typically is at a well-defined single frequency corresponding to a particular

instability mode. Therefore, the critical flow velocity can be defined as the

flow velocity at which the response PSD changes from a relatively broad-band

spectrum to a narrow-band spectrum (see Fig. 10.2). This method is accurate

in general. However, difficulty arises for light fluid in which the natu.

frequencies of coupled modes are in a narrow band as well as for the case it.

which either there is a gradual transition from broad band to narrow band

spectra or instability is too abrupt, such that it results in impacting with

broad-band spectra above the critical flow velocity.

There is no single method that can be used to predict critical flow

velocity precisely in all cases. According to the definition of the critical

flow velocity associated with X = 0 given in Eq. 10.2, the method that appears

to be most useful is a combination of two methods--vibration amplitude vs.

flow velocity, and frequency response data. In practical applications, from

the vibration amplitude-flow velocity curve, the critical flow velocity can be

established approximately. Then with the frequency response data at different

flow velocities near the critical region, the critical flow velocity can be

determined more precisely. In light fluids, the critical flow velocity is

associated with high values of Ur and can generally be determined from the

amplitude velocity curve alone, such as that given in Fig. 10.la. The

response spectra will be used to verify the existence of instability. In

heavy fluids, the frequency spectra can be used as the primary tool in

determining the critical flow velocity such as that given in Eq. 10.2. The

vibration amplitude-flow velocity curve can be used supplementally to verify

the critical flow velocity.

The three important parameters used in the stability criteria are mass

per unit length m, natural frequency f, and damping ratio ; (see Eq. 10.1).

For a cylinder array vibrating in flow, the definitions of these three

parameters vary widely. System parameters can be measured under four

conditions:

" In vacuum (practically, in air), where the effect of the

surrounding fluid is ignored,

" In a quiescent fluid, with uncoupled vibration, for an elastic

cylinder .vibrating in a fluid with the surrounding cylinder

being held rigid and the coupling effect of fluid not taken into

account,

" In quiescent fluid, with coupled vibration, for an array of

cylinders vibrating in a fluid with the coupling effect of fluid

included, and
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" In flow, for uncoupled and/or coupled modes; in general, they

depend on the flow velocity.

These parameters under different conditions are summarized in Table 10,

Different sets of parameters have been used by different investigators in 9

stability criteria.

10.3 EMPIRICAL STABILITY CRITERIA

From a practical point of view, there is a great demand for design tod

in predicting critical flow velocity. Various stability criteria have bdi

proposed based on experimental data. Most of these criteria can be grou

into two classes:

1. The critical flow velocity U/fD is a function of the mass dampi

parameter,

U = (2rm\ 2.(10.
pD

2. The critical flow velocity is a function of mass ratio (m/pD2) 4
damping (2w;r),

S (m 2(2;Tc) . (10.

Models based on these two classes of criteria have been adopted by varig

investigators; the studies are summarized in Tables 10.2 and 10.3.

Experimental data for the critical flow velocity obtained by vari

experimentalists are not in agreement, and various stability criteria do n

correlate well. This is attributed to the following reasons:

" Different parameters are used by different investigators; some

use in-vacuum parameters, and some use in-fluid parameters or

in-flow parameters. Even with the same stability criterion, the

results will be different using two different sets of

parameters, as illustrated in Table 10.1.

" Instability may be caused by different instability mechanisms.

In the past, the fluid-stiffness-controlled instability mecha-

nism has been used exclusively. It is not expected that the

stability criterion for fluid-stiffness-controlled instability

can be used to correlate data for fluid-damping-controlled

instability (see Section 10.6).
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Table 10.1. Effective Mass, Natural Frequency, and Modal
Damping Ratio under Different Conditions

In Quiescent Fluid In Flow
(uncoupled

Uncoupled Coupled and/or

Vibration Vibration coupled
Parameters In Vacuum modes)

Effective
mass (m) mu mc mf

Natural
frequency (f) v u c f

Modal damping
ratio (4) Cv u 4c f
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Table 10.2. Values of a1 and a2 in Studies Where Critical Flow Velocity
Is a Function of Mass Damping Parameter

Investigators al a2 Remarks

Connors (1970)

Blevins (1974)

Y. N. Chen (1974)

Gross (1975)

Gorman (1976)

Savkar (1977)

Connors (1978)

Pettigrew et al.
(1978)

Weaver and Grover

(1978)

Chen and Jendrzejczyk
(1981)

Tanaka and Takahara
(1981)

9.9 0.5

2( 2n) 0

(C C )0.
25

x y

aRe 0 * 2

4/a

3.3

4.95(T/D)2

0.37 + 1.76 -
D

3.3

7.1

2.49 to 6.03

3.0

0.5

0.5

1.0

0.5

0.5

0.5

0.5

0.21

0.2 to 1.08

0.75

Tube row with T/D =
1.42

Cx and C are fluid-
elastic- 4tiffness
force coefficients

Re = Reynolds number,
a = constant

For square array
and a determined
from fluid force

Suggested design
guideline

For triangular
arrays

For square array,

1.41 P 2.12D

Suggested design
guideline

Rotated triangular
array P/D = 1.375

For various rectangu-
lar arrays and mixed
array in water flow

For square array,
P/D - 2.0
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Table 10.3. Values of a1, 89, and 83 in Studies Where
Is a Function of Mass Ratio and Damping

Critical Flow Velocity

Investigators 81 82 03 Remarks

Paidoussis (1980b) 0.5 0.25 Using published
data

2.3(- 1) Including all data

Paidoussis (1980b) p 0.4 0.4
5. 8 (jP- 1) Excluding some data

For square array,
Tanaka and P/D = 1.33
Takahara (1981) 0.5 0.5 Low-density fluid

0.333 0.2 High-density fluid
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" The gap flow velocities defined by different investigators are

not consistent with one another, and the critical flow

velocities are not determined with the same method.

" Critical flow velocities of tube arrays depend on tube

arrangement, spacing, and other parameters.

It is apparent that developing a universal stability criterion applicable to

all cases will be difficult, if not impossible.

10.4 MATHEMATICAL MODELS

The development of mathematical models has been very exciting. A summary

of the published models is presented in Table 10.4--Additional models are not

listed in Table 10.4; for example, the quasi-static model by Whiston and

Thomas (1982), which is basically the extension of Blevins' model and the

empirical correlation by Pettigrew et al. (1978), ihich is the same as

Connors' model.

Table 10.4 shows that these models do not agree in certain aspects:

Instability Mechanissm: Before 1980, the displacement mechanism was used

exclusively; therefore, instability was caused by fluid-stiffness forces. If

instability is attributed to the displacement mechanism, the coupling of

fluid-stiffness forces with the neighboring tubes is one of the requirements

for instability to occur. During that period, it was thought that a single

elastic tube among an array of rigid tubes would not become unstable.

Although experimental results showed the contrary, no plausible explanation

was given. One of the key; in resolving this issue was the publication of

fluid-force data by Tai'aka et al. (1981, 1982). Using Tanaka's fluid-force

data, Chen (1983a, 1983b) has shown that, in addition to the displacement

mechanism, the velocity mechanism is also very important. Based on the two

mechanisms, the discrepancy among different models can now be resolved

reasonably well.

Stability Criteria and System Parameters: Table 10.4 shows that

differerc investigators have developed different stability criteria and that

different parameters are used in different correlations. In some cases, the

ssytem parameters are not defined in sufficient detail.

Equations of Motion: Different approaches are used in solving the

equations of motion; these include a single equation of motion, multiple

equations of motion with assumed modes, and general solution of multiple

equations.

It is recognized that each model has its merits and deficiency. These

can be summarized as follow:



Table 10.4. Summary of Models for Stability of a Group of Circular Cylinders in Crossflow

Parameters
Used in

Name of Instability Dominant Stability Method to Obtain
Author Instability Mechanism Fluid Force Instability Criterion Criterion Stability Criterion

Connors Fluidelastic Displacement Fluid-stiffness force 2 0.5 f au' u Energy consideration of a
(1970) vibration mechanism - a( single tube and experi-

pD mental measurement of
fluid-stiffness forces

Blevins Fluidelastic Displacement Fluid-stiffness force 0.5 f ,au' Equations of motion for
(1974, whirling mechanism fD - a( uor. tube rows with assumed

1979) pD mode shapes

Tanaka et Fluidelastic Displacement Fluid dynamic force Light fluid: f ,m,; v Equations of motion using
al. (1981, vibration and velocity including fluid- 0.5 measured fluid-force data
1982) mechanisms stiffness force and - (2ca) (P/D - 1.33)

flow-velocity- fD- pD2
dependent damping Heavy fluid:
force a a

fD - a(2c) 2( )3, (P/D - 1.33)
pD

0.75
U 0 .75) , (P/D - 2.0)

pD

Chen et al. Dynamic insta- Displacement Fluid-stiffness force Light fluid: fv mv',v Equations of motion using
(1983a, bility: mechanism and flow-velocity- 0.5 or measured fluid-damping
1983b) Fluid-damping- and/or dependent damping f- a(fc ,c c and fluid-stiffness

controlled velocity force pD forces
instability mechanism Heavy fluid:
or fluid- a a
stiffness- - a(2xc) 2()3
controlled pD
instability

Price and Fluidelastic Displacement Fluid-stiffness force 0.5 f*,m ,r Equations of motion using
Paidoussis instability mechanism (flow-velocity- - ag[l + (1 + a2 2m ] measured fluid-stiffness
(1983) dependent force taken pD forces

into account partially)

Lever and Fluidelastic Velocity Flow-velocity-dependent f*,u,m, Equation of motion of
Weaver instability mechanism damping force - F(2m) a single tube among a
(1982) pD rigid tube array

Not clearly specified. In most cases, these parameters are defined
C - tube damping ratio or mechanical damping ratio.

as follows: m - mass or mechanical mass; f - tube natural frequency; and

aal~a2,a3 in different equations denote constants, which have different values in different equations, and F denotes a function.

!-1

0
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Quasi-staticmodels (Connors, Blevins, and Price and Paidoussis) are

applicable for fluid-stiffness-controlled instability only. Although

flow-velocity-dependent damping forces have been considered partially in

some models, these models do not appear to be applicable for fluid-

damping-controlled instability.

The analytical model (Lever and Weaver) is based on the velocity

mechanism for a single elastic tube, surrounded by rigid tubes, moving in

a specific direction. The model requires only three empirical constants

and has demonstrated the existence of the "jump" phenomenon in the

critical flow velocity at a certain value of mass-damping parameter. For

heavy fluid, the results qualitatively agree well with test results; for

light fluid, the model predicts that the critical flow velocity U/fD is

proportional to the first power of the mass-damping parameter. The model

looks very promising; extending the theory to incorporate the coupling

fluidelastic-stiffness forces for multiple elastic tubes will probably

improve the model significantly.

General semi-analytical models (Chen et al. and Tanaka et al.) require

measurements or computations to determine the fluid-force coefficients.

However, this type of model predicts very well all the observed

characteristics of instability for both light and heavy fluids.

At this time, it appears that the Chen (1983a, 1983b) model provides the

most detailed insights of the instability phenomena by (1) identifying two

different instability mechanisms, (2) resolving the controversy among

different investigators, (3) identifying proper parameters to be used in

stability criteria, (4) comparing well with experimental data, (5)

demonstrating the existence of the jump in the critical flow velocity at a

certain value of mass-damping parameter and multiple stable and unstable

regions, (6) developing different stability criteria for light and heavy

fluids, and (7) predicting the effect of different system parameters.

Therefore, the Chen model is being used as the basis for development of the

mathematical model.

10.5 FLUID FORCE COEFFICIENTS

Consider a group of N cylinders vibrating in a flow, as shown in

Fig. 1.3. The motion-dependent fluid-force components acting on cylinder j in

the x and y directions are gj and h respectively; g and h are given as (see

Eq. 1.4)
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2 ai
_ 3 Uk - a jk-
{jk 2i + ak~- + ajkUk]at

2Sv
+ [oajk 

a

82uk

{[jk 2

at

avk
+ [ljkk at

av

+ 'at + Ojkvk]}

au
k

jk at +Tk kI

av
jk at

and (10.5)

(10.6)
jkk]} .

Experimental data have shown that the fluid-damping and fluid-stiffness

matrices are a function of the reduced flow velocity. Equations 10.5 and 10.6

can be written in terms of dimensionless force coefficients:

aaj 2
Qjk = piRR jk'

2j kjk =pwR jk '

2

ik= pR tjk'

~jk = PwR Sk'

2

jk w- ajk'

_ 2

jk w jk'

pU2 ,
jk w jk'

j2

- - (w) jk'

-.. -U 2  ,

jk -pjk

jk - PU jk

-,, p2  jk
Tjk - pU jk

pU2
k - - j Sk

Using Eqs. 10.5, 10.6 and 10.7 yields

2 N

g = -prR 2

J k-1

2
+

2

(jk a2

a2k

+0 k a2
jk t

N au avk

k (ak +o'k )
k=1 jkat2 jk a

2N
+ pU2  i (ikuk+0" kvk)

k=1jk jk

N

j -I
k=1

N
h =--

k-i

(10.7)

and (10.8)
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2 N a2uk vk
h1- pwfR I ( jk 2 +83jk 2k-i at at

2 N au av

+ WU I (Tjkuak + 08v'). (0.9
k=1 jk

2N
+ pU2I Tkuk + Skvk *. 10.9)

k=1

ajk, 0jk' Tjk, and Sjk are called added mass coefficients, a9, jk T' k and

gik are called fluid-damping coefficients, and ac k' 'Tkand jk are
called fluid-stiffness coefficients.

Equations 10.8 and 10.9 describe the fluid force components for arbitrary

cylinder displacements. When the cylinder is oscillating in a particular

pattern, simplified results can be obtained. For example, let the cylinder

displacements be

uk = aku and

(10.10)

vk - bkv

where ak and bk are constants. Using Eqs. 10.8, 10.9, and 10.10 yields

g =2 2V

g1 pR2 (a'u + a)
at at

2
W j at j ate

+ pU (a"u + '.v) and (10.11)
j J

2 2 2

at

LVI ( "'aau

+ pU2,u + "'v) (10.12)
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where

N N N

a j jajkakajkak, cas-_ Iaakak '
j-i j=1 i-i

N N N
. a bk a' _ abk a"_ akbk

j ., j=l j-i

N N N (10.13)

T )ITjkak, kk' = -ak

j=1i kTb j=1 jk k j -1 jk
and

N N N

i-ijjkbk jkbk Bjjkbk.
j=1 j=1 i-1

When ak = bk = 1 (k = 1 to N), all cylinders oscillate with the same ampli-

tude; this corresponds to the case of a rigid body consisting of N cylin-

ders. The displacement patterns given in Eq. 10.10 are called "constrained

modes"; in general, these modes do not correspond to the coupled natural modes

in flow.

Added Mass Coefficients: Added mass coefficients can be calculated by

the method described in Section 3.3 for a quiescent fluid. In flowing fluid,

the added mass coefficient can vary with flow velocity and may depend on

period parameters (Keulegan and Carpenter 1958). If the motion of the

cylinders is small (i.e., for small Kc), added mass based on the quiescent

ideal fluid will be acceptable. Investigations of added masses for cylinders

with relatively large amplitude in practical flow conditions remain to be

made.

Fluid-Damping Coefficients: Fluid damping is conveniently divided into

two parts: viscous damping and flow-velocity-dependent damping. Fluid viscous

damping is defined as the damping at zero flowrate (U = 0); the flow-velocity-

dependent damping is defined as the damping at a given flowrate (U # 0) minus

that at zero flowrate. In practical applications, it may not always be

possible to separate the two parts. In Eqs. 10.8 and 10.9, these two parts of

damping are combined. Since at U - the fluid damping is not equal to zero

in general, the fluid damping coefficient multipled by pU2 /w at U = 0 is a

finite number. At this time, no analytical solutions are available for the

fluid-damping coefficients for U # 0, and they can be obtained experi-

mentally. In general, for U A 0, these coefficients are not symmetric.

Fluid-Stiffness Coefficients: Analytical solutions for fluid-stiffness

coefficients are not available except for those based on the potential flow

theory, which is not generally applicable. Systematic experiments can be
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performed to obtain fluid-stiffness coefficients. Fluid-stiffness coeffi-

cients are not symmetric, in general.

Fluid forces acting on cylinder arrays were measured and reported by

Tanaka and his colleagues (1980, 1981, 1982) for a row of cylinders and square

arrays. In their tests, fluid force components are measured as a function of

cylinder displacements. For example, cylinder k is excited in the y

direction; its displacement in the y direction is given by

vk = vkexp(iwt) (10.14)

The fluid force acting on cylinder j in the x direction is given by

1 2
g = pU (cjkcosljk+ icjksin4jk)vk (10.15)

where cik is the fluid force amplitude and *jk is the phase angle between the

fluid force and the cylinder displacement. These values can be measured

experimentally.

Using Eqs. 10.8 and 10.14, we can also write the fluid force component as

2 2 2 .+i2.
g"= (pwr ak+

Comparing Eqs. 10.15 and 10.16 yields

3

a' =-ckcos4k--2%k
jk 2 jk c jk 2 jkr

r

(10.16)

and

1
j'k =2 cjksinjk 

(10.17)

where Ur is the reduced flow velocity (- wU/ gR).

Values of a'k,'jk jk'jk, k ,"k , k ,and k for a row of
jk jk ik jk jk jks jk jk

cylinders and a square array reduced from Tanaka's data are given in

Figs. 10.3-10.6 as a function of reduced flow velocity (Ur). At low Ur,

variations of fluid force coefficients are more drastic, For large Ur, both

fluid-damping and fluid-stiffness coefficients are almo''t independent of Ur.
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10.6 PREDICTION OF THE CRITICAL FLON VELOCITY

10.6.1 Analysis

Critical flow velocity can be calculated based on Eqs. 8.9 and 8.10 by
setting the right side of the equations equal to zero. Using Eqs. 8.9, 8.10,

8.11 and 10.7, we obtain the equations of motion as follows:

d2 dad2 + nj + 2a

t2 Srjm vjm dt vim im

2 N

mj k-1

j2 N

mew k=1

d2ak

ajk dt 2

dakm

jkm dt

d2b

jk dt2

dbkm

jk dt

N

k=(1jkmakm + jkbkm) = 0

+ vj m wvj m

p, R2 N

+ m j
jk-il

db

dt +vimbm

d2a
tik 2

dt

m d2bkm

+ jk 2dt

- 2 N dak

M w k 1 jkm dt
~~t

-2 N

mj k-1
(Tjjkmakm

db
m+ 8,! k

jkm dt

+ kmbkm) = 0

jkm
0

fk 1

jkm

8jkm

0

0

jk 2 2dz

jk 2n2dz

Tjk 2 2dz

8jkm42 dz

a,. 1 a.. 2 *2d
o imd

0jkm 2
0

, k 1jEkm sD I
0

k 2 2dz

Tk 2 2dz

Ojkm a-JiSD 8 ikmdz
0

-2

mj

d2b

dt2

and (10.18)

where

(10.19)

,

(10.20)
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Note that Eqs. 10.18 and 10.19 can be applied to all values of m. For

each m, there are 2N equations that are coupled. However, there is no

coupling among the equations for different m. This is true for a cylinder

array having the same length and same type of boundary conditions, whether the

cylinders are single span or multiple spans. If the cylinders have different

types of end conditions, a similar method of analysis can be developed. In

this case the equations for different m will be coupled.

Let w be the reference circular frequency, which may be the natural

frequency of a particular cylinder in vacuum. Using the dimensionless

parameters

T = Wv~t

U = ii
v fD

v

W

(f = --- )v2n '
and (10.21)

2

j = m.

Equations 10.18 and 10.19 become

N

a"+ Yj k 1 (jkak + ojkbk)

+ 2S jm m) j -T nU2
v v

w 2

+ (-L)aj
v

N

k-1
(atjkmak + ajkmlk)

2 N

v 

U kv (k= k ak + jkmbk) O

w k-k

N

b + Y k 1 (Tjkak + 6jkbk)

w y N

vjm my j ir V k-i

V 2b

W

jkmk +jkm k

2 N
- U ('kak + jkmbk)* 0P*
it k-i

and (10.22)

(10.23)
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where the dot denotes differentiation with respect to T. Fluid-damping and

fluid-stiffness coefficients are functions of the reduced flow velocity Ur

(= U/fD). The frequency of oscillation f(- w/2w) is different from the
reference frequency fv*

The stability of a cylinder array is deterimined from Eqs. 10.22 and

10.23. The nondimensional parameters in Eqs. 10.22 and 10.23 are Y ,Wvjm/Wvm

cvjm, Uv "jk' 0jk' Tik, Sjk, a'km' 0jkm' Tjkm' 0jkm, a'jkm' 0jkm' Tkm
and k"j. Therefore, the critical flow velocity can be written in a

functional form:

U = F(y, w j/4 C aj ',aj Tjr' aja 9aT, ,l ',
v j vim v vjm jk jk jk' jk, km jkm jkm jkm

,, ,, ,, ,, )(10.24)

ajkm' ajkm' Tjkm' (jk1.4

These parameters can be divided into several groups.

Mass Ratio (yj): This represents the ratio of displaced mass of fluid to

the cylinder mass. In most practical applications, all cylinders are

identical; therefore

Yj - yv, j = 1, 2, 3, ... , N . (10.25)

Detuning in Frequency (vjm): Frequency variations of different

cylinders in an array can affect stability. For an in-tune cylinder

array,

vjm = v, j = 1, 2, 3, ... , N . (10.26)

Detuning in Damping (Cim): Detuning in damping can also affect

stability. For a cylinder array without damping variation,

= * Ev, j = 1, 2, 3, ... , N . (10.27)

Added Mass Coefficients (aljj ,o t, , and i ): These coefficients

depend on cylinder arrangement only. For a given array, they are

constants.

Effective Fluid-damping Coefficients (ajkm' 0 jkm' T jkm, and Sjkm): These

coefficients depend on flow-velocity distribution function 4i(z) (see

Eq. 8.8), cylinder mode shape $m(z), and fluid-damping coefficients a!k,

ajk Tjk, and jk. Fluid-damping coefficients are a function of the
reduced flow velocity Ur for small Ur and approximately constants for

large Ur.
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Effective Fluidelastic-stiffness Coefficients (a km 'jkm' Tjkm and

Ojkm): These coefficients are functions of flow-velocity distribution

function 11(z), tube mode shape *m(z) (see Eq. 8.7), and fluid-stiffness

coefficients a" , a , T j, and i In general, fluid-stiffness

coefficients are unctions of the reduced flow velocity Ur; however, for
large Ur, they are very weak functions of Ur and can be considered as

constants.

For a cylinder array in which all cylinders are identical, having the

same natural frequency and damping in both directions, using Eqs. 10.21-10.23

and 10.25-10.27 yields

N
j Yv kl jklk + 0jkbk)

Y N
+ 2 aj - U (ajjkmak + ajkmbk)

W k=1

2 N
+ a. --- U 2 ( ka" k + 'k b) 0 and (10.28)

T3 v lj kmk j km k
v k-l

N

bj + Yv kl( jk k + Bjkbk)

Y N

+ 2c6b - Uv k= (Tjkmk + 0jkmbk)

Yv2 N
+ b -- U (T ka + ck'bk) - 0 . (10.29)j 3 Uvk1j kmak j km k

v k-l

The critical flow velocity can be calculated based on Eqs. 10.22 and 10.23 or

10.28 and 10.29.

Approximate solutions based on constrained mode provide significant

insight into the system characteristics. Consider cylinder 1 oscillating in

the x direction. The equation of motion is

2
11 + 2 ff al +wf a - 0 ,

where

(1 - 1 U2i) 1/2

, 3- v 1 I ( 1 0 .3 0 )
wfl v 1+ a Y

kIV I
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and

_1 U2
; -l - U2Lv 2 r3 v v 11m

Efl [(1 2l U )1/2 '

[(1 + Yv01i)(l + T v urn

where afl and Cf 1 are the circular natural frequency and modal damping ratio

of the constrained mode in flow. The critical flow velocity can be determined

from Eq. 10.30:

3 1/2
2w cv

Cf - 0; i.e., U -= (Y ,v ) (10.31)
Tvallm

U 4n 0.5 2ACv V) rf .5(0.2
or .M (2 , )0  ( 2~m 0.5 (10. 32)

v llm pD

Similarly, oscillations in the y direction can be analyzed; the results

are similar to those given in Eqs. 10.30 to 10.32.

For constrained modes involving multiple cylinders oscillating in a

particular pattern, similar results are obtained. For example, consider the

case in which all cylinders are moving in the x direction with the same

amplitude. The equation of motion becomes

" 2
1 + 2f f a +w a = 0 , (10.33)
1 fi fl fli1

where
1 2 1/2

1 - YvUva.im

"f 1 =v 
T v

S1 U2
V 2w3 v v m

f l =+( 1 2  .. 1 / 21 .[(1 + vl - UvaQ (10.-34)

N

j-1



, 1
a -- f

0

N

C l ai ) $2I 2 dz
j =1

a, _1
lm

R
0

N

j=1
ajj) *2*2dz

The critical flow velocity is given by

4 0.5

im

2w m 0.5

pD
(10.35)

For light fluids, the fluid inertia can be neglected; Eqs. 10.28 and

10.29 can be written

S+ 2 a +a J

Yvu2
-U

v

N

S ajkm k + jkmk + j ak + jkmbk) = 0
k=i

(10.36)

and

+2; b + b

N

{ tkm +c

k 
+

(10.37)0jkmbk + Tkmk + 8jkrbk) = 0.

In light fluids, instability occurs at large Uv, and the fluid-force coeffi-

cients a ,im' a , ,j , 1  ia aim'Tijmand $ijm are approximately
independent of Uv (U - U ). InEqs. 10.36 and 10.37, the variables control-

v r
ling the system stability are the parameters c and YvU2 . Note that the role

of YvU2 is the same as Th. The terms associated with nd and yvUv in Eqs.

10.36 and 10.37 are contributing to system damping; the modal damping of a

mode can be written as

(10.38)C CYvU ,

10-26

and

v

Yw
- _U

3 v
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where C depends on the fluid-force coefficients. The instability occurs if

4fl = 0; i.e.,

1 v0.5
U, =v =C(_)(10.39)

v

or

- 2icrm 0.5

U( VV) . (10.40)

v pD

Thus for light fluid, the critical reduced flow velocity is proportional to

the half-power of the mass-damping parameter. This is true in both fluid-

damping-controlled and fluid-stiffness-controlled instability as long as the

critical reduced flow velocity is relatively large. At low reduced flow

velocity Uv, since both fluid-damping and fluid-stiffness coefficients are

functions of Ur, no such conclusions can be made.

10.6.2 Two Instability Mechanisms

Based on the results of this model, instability can be caused by a

velocity mechanism or a displacement mechanism.

Velocity Mechanism: The dominant fluid force is proportional to the

velocity of the cylinders. Depending on the reduced flow velocity, fluid-

damping force can act as an energy-dissipation mechanism or an excitation

mechanism for cylinder oscillations. When it acts as an excitation mechanism,

the system damping is reduced. Once the modal damping of a mode becomes

negative, the cylinders lose stability. This type of instability is called

fluid-damping-controlled instability. The instability criterion is given by

S2nrvm 0.5

-UD y( 2 v , (10.41)
v pD

where xv is a function of fluid damping coefficients.

Displacement Mechanisms: The dominant fluid force is proportional to the

displacements of the cylinders. The fluid-stiffness force can affect natural

frequencies as well as modal damping. As the flow velocity increases, the

fluid-stiffness force can reduce modal damping. When the modal damping of a

mode becomes negative, the cylinders become unstable; this type of instability

is called fluid-stiffness-controlled instability. The instability criterion

is given by
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U 21r rmy 0.5

-U - Sv 2 ) , (10.42)
v pD

where $v is a function of fluid-stiffness coefficients.

In general cases, the two mechanisms are superimposed on each other.

Then the stability criterion can be written

U = F (;. , ,turbulence characteristics) . (10.43)
v pD

The main differences between the two basic instability mechanisms are

summarized in Table 10.5.

It should be emphasized that, in general, both fluid-damping coefficients

and fluid-stiffness coefficients are functions of the reduced flow velocity

Ur(= U/ffD). Therefore, the parameters av in Eq. (10.41) and Sv in

Eq. (10.42) are functions of the reduced flow velocity Ur. For light fluids,

the instability occurs at large values of Ur. It has been shown that for

large Ur, both fluid damping coefficients and fluid-stiffness coefficients are

approximately independent of Ur; therefore, for a given cylinder array, av and

k are constants.

10.6.3 Numerical kxauples

For this presentation, calculations for a standard case of a row of

cylinders with a pitch-to-diameter ratio of 1.33 are based on ;v - 2%,

4(z) = 1 and all cylinders being in tune.

Figure 10.7 shows the critical flow velocity as a function of the number

of cylinders in a row for several values of 6s ( 21rCvmv/pD2 ). For an array

in which all cylinders are in tune, the critical flow velocity decreases with

the number of cylinders; the decrease is more drastic for a small number of

cylinders. Also, the effect of the number of cylinders on the fluid-

stiffness-controlled instability (Ss = 20, 40, and 60) is more significant

than on the fluid-damping instability (6s - 1). This effect can be explained

qualitatively using the equations of motion and fluid-force coefficients. For

small Ss, cylinder instability is basically controlled by the coefficient ali,
while at large 68 it is controlled by 1" and a" . At low 6s, instability can

occur in an elastic cylinder surrounded by rigid cylinders. But .t large 8s9
at least two cylinders are needed to cause instability.
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Table 10.5. Comparison of Two Instability Mechanisms

Fluid-damping-
controlled Instability
(velocity mechanism)

Fluid-stiffness-
controlled Instability

(displacement mechanism)

Instability
criteria

Dominant
fluid force

Fluid coupling

Phase relation-
ship of tube
oscillations

Effect of
detuning

2Um 0.5

fv - g(Ur P2 v

V pD

Flow-velocity-dependent
damping force

Not necessary

0, 1800

21m 0.5

fD Sv(Ur) (
v pD

Fluid-s tiffness
force

Necessary

0, 90 , 1800

Less significant More significant
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In different experiments conducted by different investigators, the number

of cylinders used is not the same. Therefore, even if all other parameters

are the same, the instability flow velocity will be different.

Figures 10.8 and 10.9 show the stability map for a row of five and three

cylinders. For large Ss, the results calculated for different set of ;v and

my/pD2 are about the same; i.e., the instability is independent of the

individual values of 1v and my/pD2 , but dependent on the product of ci and

my/pD2. At low S, the results for different sets of cv and my/pD2 are not

the same. In Fig. 10.8, the critical flow velocities are determined for a

fixed cv with variable my/pD 2 at low 6. It is seen that for a fixed 6S, the

critical flow velocity increases with decreasing c;. In Fig. 10.9, the mass

ratio is kept constant while cv is variable. For a fixed 6s, the critical

flow velocity increases with decreasing mass ratio.

The two parameters Cv and my/pD are frequently combined as a single

parameter. This is applicable for large Ss. For small Ss, the two parameters

must be treated as two variables. Most of the experimental data reported are

presented as a function of 6s. Since different experiments are carried out

for different sets of ;v and mv/pD2, even for the same 8s, the critical flow

velocity will be different. This is one of the reasons that there is more

scattering in the data at low values of 6s.

At 6s equal to about 3 to 5, there is a finite jump in the critical flow

velocity. The jump is attributed to the transition from fluid-damping-

controlled instability to fluid-stiffness-controlled instability. The values

of 6a at which the jump occurs depends on the values of damping cv and yv'
For smaller Cv in Fig. 10.8 and smaller yv in Fig. 10.9, the jump occurs at

higher 6s, and vice versa.

Figure 10.10 shows the instability modes for two, three, four, and five

cylinders in a row and for two values of 6S. For Ss = 1, the instability is

fluid-damping-controlled type. The motion is predominantly in the lift

direction, and the cylinders are moving out of phase. For Ss = 40, the insta-

bility is fluid-stiffness-controlled type. The motion is a typically orbital

path with some cylinders moving predominantly in the drag direction and some

cylinders in the lift direction.

Figure 10.11 shows the ratio of critical flow velocities of a row of

detuned cylinders to a row of in-tune cylinders. In the detuned row, natural

frequencies in the two directions are the same, and cylinders 2 and 4 have

higher natural frequency cB. In the in-tune row, all natural frequencies are

WA. In this case, detuning tends to stabilize the system; i.e., the critical

flow velocity increases with the increase in the frequency ratio WB/WA-

Figure 10.11 shows that for Ss = 20, the critical flow increases significantly

with a /WA. However, for 6s = 1, the effect of detuning is not very

important. The effect of. detuning is much more significant in fluid-

stiffness-controlled instability.
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10.6.4 Couparison of Theoretical and Experimental Results

A row of brass tubes (Fig. 10.12) tested in a water tunnel is used to

confirm the analytical results. Each tube element is suspended as a simply

supported beam on two 0-rings mounted 91.4 cm apart. The 0-rings are seated

in the compression plates. The tube outside diameter is 1.59 cm, the tube

wall thickness is 0.318 cm, the transverse pitch-to-diameter ratio is 1.35,

and the overhung length is 35.6 cm. Note that AD is in fluid, BC in flow, and

DE in air.

During the test, the flow velocity is increased at small intervals. At

each flow velocity, the displacement signals in the lift and drag directions

are analyzed. The test is terminated when tube impact occurs.

There are multiple stable and unstable regions. The flow velocity is

increased rapidly to reach to the second stable region. Then the flow is

decreased or increased at small intervals to determine the lower and upper

stability boundaries.

Tube damping depends on water temperature (this is attributed to 0-rings,

whose characteristics are a function of temperature); therefore, tube damping

can be controlled by controlling water temperature. The tube row is tested

under several temperatures.

The results of the tests are summarized in Table 10.6. There are two

critical flow velocities, which correspond to the lower and upper bounds of

the first unstable region. For U < U1 , (Fig. 10.13) the tube displacements

are very small. As U is increased to U1, the tubes become unstable. There-

fore, U1 is the lowest critical flow velocity. At U1, the tube vibration

amplitude increases rather slowly. If the flow velocity is increased rapidly

from a value less than U1 to that above U2, the tubes do not become

unstable. However, if the flow velocity is decreased to U2, large tube

motions occur. The increase of oscillation amplitude at U2 is much more rapid

than that at U1 . For U1 < U < U2 , tubes are unstable; in this region, tubes

can impact with one another. For U > U2, although tube motions may be

relatively large, the tubes in general do not impact with the neighbor

tubes. In most cases, the tubes move in phase for U > U2.

The critical flow velocities (U/fvD) are given in Fig. 10.14, plotted as

functions of as. Analytical results also are given in Fig. 10.14.

There are multiple stable and unstable regions. Once the flow velocity

is increased to the lowest critical flow velocity, large tube oscillations

develop, but this takes time. If the flow velocity is increased very rapidly

passing through the unstable region, lare tube oscillations do not occur and

the tubes remain stable. On the other if the flow velocity is increased

slowly so that tubes execute large-a,.p. tude oscillations in the unstable

zone, the tubes may not regain stability because of nonlinear effects. For

heavy tubes, the buildup of large oscillations is slow; for thin-wall tubes,

instability develops much more rapidly.
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Table 10.6. Experimental Data for a Tube Row in Crossflow (Chen and Jendrzejczyk 1983)

Temperature,
oC

8.78

10.39

11.44

13.00

15.89

20.28

30.17

Natural Frequency,
Hz

In Air In Water

26.1 24.5

26.1 24.2

26.3 24.4

26.2 24.3

26.2 24.3

25.9 24.0

25.9 24.0

Modal Damping Ratio,

In Air In Water

4.5 4.8

3.8 4.1

3.1 3.5

2.6 3.0

1.7 2.1

1.2 1.7

0.9 1.4

Oscillation
Frequency at
Instability,

Hz

25.0
26.0

24.2
26.0

24.1
25.5

24.0
25.5

23.9
25.5

23.6
25.0

23.5

Critical
Flow

Velocity,
m/s

1.68
2.19

1.52
2.26

1.44
2.53

1.37
2.73

1.29
3.08

1.26
3.38

1.14

U
f D

4.05
5.29

3.68
5.44

3.46
6.14

3.30
6.56

3.11
7.40

3.05
8.23

2.78

0

pD2

1.13

0.96

0.78

0.65

0.43

0.30

0.23

.. _
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The upper and lower bounds of the instability regions in Fig. 10.14 are

associated with the same mode in which the tubes oscillate, predominantly in

the lift direction and out of phase with respect to the neighboring tubes.

Mathematically this can be explained by the fluid-damping coefficients. In

this range of reduced flow velocity, fluid-damping coefficients aji and a 2
are the two dominant coefficients that cause the instability. In this range

of Ur, a 1 and aj2 have opposite signs; therefore the tube motions of the two

neighboring tubes must be out of phase. In the other flow-velocity range, a1 1
and aj2 change sign and the tubes do not lose stability by the damping

mechanism. For practical applications, the lower critical flow velocity is of

importance. The higher instability boundaries are more of academic interest.

The jump of the lowest critical flow velocity at a certain value of 6s is

demonstrated in the tests. The jump is attributed to the transition from one

instability mechanism to another. At low Ss the instability is attributed to

the fluid-damping-controlled type, while at higher 6s it is attributed to the

fluid-stiffness-controlled type. The experimental and analytical values of Ss

at which the jump in the critical flow velocity occurred agree reasonably

well.

Figure 10.15 shows the lowest critical flow velocities for tubes with

different wall thicknesses. The theoretical results and experimental data

agree reasonably well. Comparison of these two tests demonstrates several

features:

* The jump in the critical flow velocity (the transition of one

instability mechanism to another) occurs at a 6s that depends on the mass

ratio. Both experimental and analytical results show that the transition for

heavy-wall tubes occurs at larger Ss.

* Except near the transition region, for a fixed Ss the critical flow

velocity for the thin-wall tube is lower. Both theoretical results and

experimental data agree well.

" The mechanism for the two tests are basically the same, although at

instability, the tube motion for thin-wall tubes is much larger.

10.7 STABILITY MAPS

Critical flow velocities can be predicted by using the method described

in Section 10.6. To carry out the analysis, various fluid-force coefficients

must be known. Unfortunately, at this time, fluid-damping and fluid-stiffness

coefficients are difficult to compute. Except for a few cases in which fluid-

force coefficients have been measured, a stability analysis cannot be made.

Under such circumstances, stability maps based on the experimental data are

available for applications.

In the empirical correlations for critical flow velocities, different

system parameters measured in vacuum or in quiescent fluid are used. Most
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investigators use the modal damping value C, mass per unit length m, and

natural frequency f measured in quiescent fluid, but some use those measured

in vacuum (actually in air), or in flowing fluid. From the analysis of the

model, it is clear that one can use those parameters determined either in

vacuum or in quiescent fluid, provided that appropriate fluid-damping

coefficients are used (Chen 1983a). However, the two types of stability

criteria are not identical. For practical applications, it is more convenient

to use the in-vacuum parameters, since they are well defined. In-fluid

parameters are more difficult to determine. In particular, for heavy fluid,

inertia and viscous coupling become important; coupled-mode frequencies, fec

effective mass mc, and modal damping ;c are more difficult to measure (see

Table 10.1).

The stability criteria, Equations 10.41 and 10.42, are expressed in terms

of in-vacuum parameters. The effects of various parameters are as follows:

1. 2n cymv/pD2 : This is the most important parameter. The

critical flow velocity increases with this parameter.

2. my/pD2 : This parameter determines the role of added mass. For

heavy fluids, it cannot generally be combined with the damping

2n; as a single parameter.

3. P/D: Fluid-force coefficients depend on tube arrangement;

therefore, the critical flow velocity will depend on P/D.

4. Turbulence Characteristics: Fluid-force coefficients depend on

incoming characteristics (intensity and scale). Again, the

critical flow velocity depends on the turbulence

characteristics.

Available experimental data for the reduced flow velocity Ur (= U/fD) are

plotted as a function of the mass-damping parameter Ss (= 2icm/pD2) for

different tube arrangements (Figs. 10.16-10.20). Chen (1983a) showed that

either the in-vacuum parameters (mr, fv and ) or the in-fluid parameters

(mc, fc and ;c) can be used in the stability criteria. In most experiments

the in-vacuum parameters are actually measured in air. The effect of air on

those parameters is small. Therefore, m v, f, and cv will be based on those

measured in air. In liquid-flow tests, the values of in-fluid parameters mu,

fu, and cu are generally measured and, in most cases, in-vacuum parameters m,

fy, and v , and in-fluid parameters mc, c, and c, are not measured. Under

such circumstances, the in-fluid parameters of uncoupled modes mu, fu, and 4u

are ubed.

In the stability diagrams (Figs. 10.16-10.20) the data for air flow are

denoted by open symbols, liquid flow by solid symbols, and two-phase flow by

semi-solid symbols (Chen 1984). The stability diagrams summarize the

published data for different tube arrangements obtained by different

investigators.
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10.7.1 A Row of Cylinders

The critical flow velocity for a row of cylinders depends on the pitch-

to-diameter ratio T/D. Several studies have been made to investigate the

effect of T/D on the critical flow velocity. Blevins (1977) shows that

. 2(2w)0.5 (10.44)
a12 3 2 0.25

[() {2(T) - (D}]

Equation 10.44 is applicable for T/D < 2 only. In a systematic investigation,

Ishigai et al. (1983) show that for a row of cylinders,

a1 - 8 (CD- 0.375) . (10.45)

Therefore, the critical flow velocity is proportional to (T/D - 0.375). A new

reduced critical flow velocity incorporating the effect of tube spacing is

defined as follows:

U

Ur=TfD . (10.46)

Dr- 0.375

Then Ur is independent of tube spacing T/D.

Figure 10.16 shows the critical flow velocity of Ur as a function of the

mass-damping parameter 2irm/pD2. The in-vacuum parameters are used whenever

they are available. Experimental data obtained in air correlate reasonably

well for tube rows with different pitch-to-diameter ratios ranging from 1.19

to 2.68. In liquid flow, except for Chen and Jendrzejczyk (1982), who use in-

vacuum parameters, other investigators use different parameters: Connors

(1978) and Halle and Lawrence (1977) use fu, mu, and cu, while Heilker and

Vincent (1980) use ff, mu and cf.

10.7.2 Square Array (90)

Square tube arrays with different spacing are tested in air by Soper

(1980) and in water by Chen and Jendrzejczyk (1981). The results of these

tests show that critical flow velocity is not very sensitive to the variation

of tube spacing. Therefore, for square arrays, the critical flow velocity Ur

is plotted as a function of 6s regardless of the spacing. The results are

given in Fig. 10.17.
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Although different tests are performed for different flow conditions and

cylinder spacing, the data correlate fairly well. In particular, for in-water

tests, different investigators use different parameters: Tanaka and Takahara

(1981) use in-vacuum parameters, Heilker and Vincent (1980) use in-flow

parameters, and the others use in-fluid parameters.

10.7.3 Rotated Square Array (45*)

Based on Soper's data (1980), the critical flow velocity is approximately

proportional to (T/D - 0.5). Note that in Eq. 10.46, Ur " Ur for T/D a

1.375. To make Ur - Ur at P/D - 1.375, for this case, we define Ur as

follows:

U

U rf(10.47)
r 1.143 (D- 0.5)

The results are given in Fig. 10.18.

10.7.4 Triangular Array (30 )

Following the same procedure as that for rotated square arrays, Ur is

defined as follows:

U

fJD (10.48)
r 2.105 ( - 0.9)

At T/D = 1.375, Or - Ur. Figure 10.19 summarizes the results. There is more

scattering of the data at low values of 68. This is attributed to different

parameters used by different investigators and may be caused by different

spacings. Note that Eq. 10.48 is based on Soper's data obtained in a wind

tunnel. The variation of the critical flow velocity with tube spacing in

water may be different from that in air. For example, the variation of Ur

with tube spacing in the data by Zukauskas and Katinas (1980) is different

from those by Soper (1980).

10.7.5 Rotated Triangular Arrays (60)

Soper's data show that the critical flow velocity varies insignificantly

with tube spacing. All available experimental data are plotted in Fig. 10.20

regardless of tube spacing. They agree reasonably well.

The stability diagrams given in Figs. 10.16-10.20 can be used in design

evaluation.
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Calculation of Mas-hDping Parameter (8s ( 2uya pD2 )): Fluid density
p, tube diameter D, and cylinder mass per unit length m, are relatively easy

to determine. The modal damping ratio rv can be estimated or measured.

Determination of the lower Bound of the Critical Flow Velocity: The

lower bounds for different cylinder arrays are given in Figs. 10.16-10.20 by

solid lines and summarized in Table 10.7. The critical flow velocity

calculated from Table 10.7 can be compared with the actual flow velocity.

The lower bounds are established based on the following results:

" According to the analytical and experimental results, the exponent of

the mass-damping parameter is always positive; i.e., the slopes of all solid

lines given in Figs. 10.16-10.20 are positive.

" The slope for large values of the mass-damping parameter is 0.5.

" No experimental data are larger than the values given by the lower

bound.

It is recognized that the lower bounds are not uniquely determined by this

procedure; nevertheless, these bounds are established based on current

available information. It would be desirable to establish an error margin for

each case. Unfortunately, the data obtained by different investigators are

not analyzed in the same manner, so it is difficult to establish such an error

margin at this time.

10.8 EFFECT OF VARIOUS PARAMETERS ON DYNAMIC INSTABILITY

The critical flow velocity of a cylinder array is affected by many

parameters. Some of these effects are qualitatively known, but most of them

are still difficult to evaluate quantitatively.

10.8.1 Detuning

The frequency variation of a cylinder array in vacuum is called de-

tuning. Once a cylinder array is submerged in a fluid, all cylinders are

coupled by fluid. Therefore, in defining detuning, the natural frequencies of

each individual cylinder in vacuum must be employed. In general, the detuning

of a cylinder array increases the critical flow velocity. Fluid-damping-

controlled instability is attributed predominantly to the motion of the

cylinder itself. Coupling with neighboring cylinders is not necessary for

this type of instability to occur. Therefore, the effect of detuning is not

very significant. On the contrary, fluid-stiffness-controlled instability is

attributed to the coupling effect; detuning plays a more significant role (see

Fig. 10.11).

The effect of detuning on fluid-stiffness-controlled instability has been

demonstrated by Southworth and Zdravkovich (1975) for a row of cylinders. In

a wind-tunnel test, they obtained the critical flow velocity of a row of
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Table 10.7 Lower Bounds on Critical Flow Velocities

Array Parameter Range u
for 6 fD

Tube Row

Square (90 )

Rotated Square (450)

Triangular (30 )

Rotated

Triangular (600)

0.05 < 68 < 0.3

0.3 < 6s < 4.0

4.0 < 6 < 300

0.03 < 6s < 0.7

0.7 < 6s < 300

0.1 < 68 < 300

0.1 < 6 < 2

2 ( 68 < 300

0.01 < 68 < 1

1 < 6s < 300

1.35(T/D - 0.375)68006

2.30(T/D - 0.375)60.

6.00(T/D - 0.375)60.5

2.10 80.15

2.35 60.5

3.54(T/D - 0.5)60.5

3.58(T/D - 0.9)60.1
8

6.53(T/D -0.9)605

2.8 80.17

2.8 d$.5
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in-tune cylinders at about Ur - 45. However, when only one of the cylinders

in a row was flexible, they did not observe instability for Ur up to 100.

This is consistent with the theoretical prediction. Tests also have been done

for rows with three adjacent tubes flexible, and alternating tubes flexible.

At a given flow velocity, tube response is largest for all tubes flexible and

smallest for one tube flexible. This also illustrates that detuning tends to

stabilize the system.

In a water-loop test, Chen and Jendrzejczyk (1981) demonstrate the effect

of detuning on fluid-damping-controlled-instability. They show that an

elastic tube surrounded by rigid tubes in water flow can lose stability; the

motion is predominantly in the lift direction. This agrees with the theory

that a single elastic tube in a square array can lose stability by fluid-

damping force in the lift direction (Chen 1983b).

Other experimental data (Gross 1975; Blevins et al. 1981; Soper 1980;

Weaver and Lever 1977) basically agree with those of Southworth and

Zdravkovich (1975) as well as analytical resu.l.s (Tanaka and Takahara 1981).

However, Weaver and Lever (1977) show that tests on a rotated triangular array

produce an increase in critical flow velocity of up to 46% for a 3% difference

in frequency and no significant effect for a frequency difference greater than

10%. Larger detuning might cause the critical mode with the lowest critical

flow velocity to change to some other mode. For a particular mode, detuning

is expected to be beneficial in stabilizing the tubes.

A series of tests with the differe. ee in streamwise and transverse fre-

quencies ranging from 6.3 to 57% for a rotated triangular array with a pitch

ratio of 1.375 was conducted by Weaver and Koroyannakis (1985). They found

that the critical reduced flow velocity based on the lower frequency was

increased only slightly over the symmetric case, being about 20% higher than

that for tubes with identical stiffness in the transverse and streamwise

directions. The effect is essentially independent of the difference in

frequency and "direction" of the lower frequency relative to flow. Note that

the results are applicable for the particular tube arrangement only; for

different tube arrays, the effect is not the same. For example, for a tube

row in water flow, the lowest critical flow velocity is associated with the

out-of-phase mode in the lift direction (Chen and Jendrzejczyk 1981); in this

case, an increase in the natural frequency in the drag direction has little

effect on the critical flow velocity.

10.8.2 Upstreaa Turbulence

Upstream turbulence can affect critical flow velocity. Wind-tunnel

experiments (Gross 1975; Southworth and Zdravkovich 1975) have shown that

turbulence produces a shift in the initiation of fluidealstic instability to

higher flow velocities. Gorman (1980) carried out tests in water for typical
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heat-exchanger tubes. He found that the existence of upstream grids and

screens had no appreciable effect on the critical liquid approach velocity.
However, other wind-tunnel experiments (Franklin and Soper 1977) have shown

that turbulence tends to reduce critical flow velocity. A water-tunnel test

has been used to resolve the discrepancy (Chen and Jendrzejczyk 1981);

turbulence can stabilize or destabilize the cylinder array depending on the

characteristics of the turbulence. This conclusion is verified by Soper in

his wind-tunnel tests (Soper 1981). In practical situations, the turbulence

characteristics are not known; it is difficult to account for the effect of

turbulence.

10.8.3 Nonuniform Flow Distribution

In general, flow velocity is not uniform either in the axial direction

along the cylinder or perpendicular to the cylinder. Most experiments are

conducted for uniform flow. In practice, nonuniform flow distribution must be

considered.

Nonuniform Flow in the Transverse Direction: Gorman (1977) considered

the effect of open tube lanes on instability of tubes adjacent to these lanes

and found that there was no evidence of local triggering of instabilities.

Connors (1980) shows that the skimming flows created in the vicinity of inlet-

nozzle impingement plates can cause instability; the critical flow velocity

depends on tube pattern and spacing and on the clearance between the tube

array and the wall. In a large cylinder array, the cylinders do not become

unstable at the same time; this is attributed to the nonuniform flow

distribution as well as other effects. In practical applications, it is

difficult to assess the effect of the nonuniform flow in the trasnverse

direction, but it is reasonable to consider an equivalent uniform-flow case,

with the flow velocity being the maximum flow of the nonuniform case.

Nonuniform Flow in the Axial Direction: Empirical correlations are

developed for the case in which the entire cylinder length is subjected to the

same flow velocity. In many structural components or experiments, the flows

are not uniform. A general practice is to reduce the general case of

nonuniform flow to the ideal case of uniform flow. An equivalent uniform flow

velocity is defined by

2 f U2 (z)4 2 (z)dz
U m(10.49)

Ue f 2 (z)dz
m

where *m(z) is the mth orthonormal function of the cylinders. Equation 10.49

has been used by various investigators (Connors 1978; Pettigrew et al. 1978;

Franklin and Soper 1977). It can be shown that an equivalent flow velocity
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(defined in Eq. 10.49) is applicable provided that fluid-damping and fluid-

stiffness coefficients are constants. At high reduced flow velocities, this

condition is satisfied; therefore, Eq. 10.49 is applicable. At low reduced

flow velocities, both fluid-stiffness coefficients and fluid-damping

coefficients vary with the reduced flow velocity and Eq. 10.49 is not strictly
applicable. A more rigorous analysis requires the solution of the complete

equations given in Eqs. 10.18 and 10.19.

10.8.4 Tube Location

In a cylinder array, cylinder responses depend on cylinder location and

types of fluid. In water flow, the upstream cylinder row is usually the

critical one. Experiments in water (Gorman 1976; Chen and Jendrzejczyk 1981;

Soper 1981) have shown that the upstream tubes are most susceptible to

instability. The concept of "prison bars" in the upstream has been proposed

on the basis of this observation (Mirza and Gorman 1975).

Cylinder responses in gas flow have been investigated for different

arrangements (Gross 1975; Weaver and El-Kashlan 1981). For in-line arrays

(600 and 90*), the first three rows in the upstream might be the critical

ones; for out-of-line arrays (300 and 45*), the first two rows might lose

stability at the lowest flow velocity. The critical row is shifted in the

direction of flow as the pitch ratio becomes larger.

Little work has been reported for two-phase flow (Heilker and Vincent

1980; Pettigrew and Gorman 1973). Pettigrew and Gorman (1973) conducted an

experiment in a simulated two-phase flow. Their main results are as follows:

upstream cylinders vibrate most; vibration amplitudes are maximum at roughly

15% steam quality; an in-line rectangular array vibrates most; and vibration

amplitude is generally larger in the drag direction than in the lift

direction.

10.9 CLOSING REMARKS

To improve the stability criteria given in Table 10.7, the key step is to

predict the fluid-force coefficients. The fluid-inertia coefficients can be

calculated based on the potential flow theory (see Section 3.3). In most

practical applications, the results from the potential flow theory will be

acceptable. However, the potential flow solutions for fluid-damping

coefficients and fluid-stiffness coefficients are generally unacceptable.

Therefore, the main task is to develop an analytical method to compute these

coefficients. This is one of the problems that is certain to be pursued in

the field of computational fluid dynamics. These fluid-force coefficients can

also be measured using the technique demonstrated by Tanaka and Takahara

(1981), but this is a very tedious process. Furthermore, fluid-force

coefficients are a function of geometry. A large number of experiments will
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be required before one can quantify the fluid force for all practical cylinder
arrangements.

In addition to the prediction techniques, understanding of the basic

fluid dynamics for flow across a vibrating cylinder array remains a difficult
task. Detailed flow measurements and theoretical study of the flow field must

be carried out before the basic flow effect and the effect of cylinder motion

on flow field can be identified. The interaction process of cylinder array

and crossflow is certain to receive more attention in the future (Weaver and

Abd-Rabbo 1984).

Based on the Chen model (1983a), the inconsistency among experimental

data obtained by different investigators as well as different phenomena

reported in literature can now be resolved reasonably well. Although it is

still not possible to predict the critical flow velocity analytically, because

of the difficulty to calculate the fluid-force coefficients, there is a sound

basis for further development to quantify the instability flow velocity.
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11. DESIGN CONSIDERATIONS

11.1 INTRODUCTION

Flow-induced vibration can be found in a whirlpool, but it can be

extremely detrimental to structural and mechanical components subjected to

high-velocity flow. Therefore any mechanical and structural components

subjected to flow should be designed to control flow-induced vibration to an

acceptable level.

In the last two decades, significant progress has been made in the

development of design analysis methods. However, a lot of work remains to be

done. There are design guidelines available for different applications. But

in many cases, the assessment of the flow-induced vibratior. problem is still

not an exact science.

In this chapter, the techniques to evaluate the design of components from

the standpoint of flow-induced vibration are reviewed, available design

guidelines are presented, and design analysis methods and techniques to

control flow-induced vibration are discussed.

11.2 ASSESSMENT OF FLOW-INDUCED VIBRATION

In the evaluation of a structural or mechanical component, several issues

must be resolved:

" What are the flow-induced vibration phenomena that have to be

considered and how are the responses determined?

* What are the acceptance criteria and can the component meet the

criteria?

" If the component cannot meet the criteria, what fixes can be

made to reduce the vibration amplitude to an acceptable level?

These are the simple questions but complete answers are difficult to provide.

Some general procedures for evaluating the potential for flow-induced

vibration of a component subject to flow, as illustrated in Fig. 11.1, are as

follows:

" Identification of Flow Distribution and Problem Areas: From design

drawings, design data, and knowledge of the component operating character-

istics, estimate the expected flow distribution through the component and

identify regions of predominantly crossflow or axial flow. From the estimated

flow disributions and component geometries and locations within the flow

field, identify potential vibration problem areas.

" Calculations of Flow Velocities: Compute the flow velocities--

particularly in areas of potential flow-induced vibration problems--using

analytical techniques, computer codes, results from related calculations, and

experimental techniques.
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" System Configuration
" Operating and Design Data

Fluid Excitation Motion-Dependent Structural

Forces Fluid Forces Parameters

" Dimensionless Parameters

" FIV Mechanisms

Dynamic Instability Yes Unacceptable

No

Acceptable System Design

Evaluation Criteria

... JsLg.

Unacceptable * Redesign
" Fixes

Fig. 11.1. Flow-induced Vibration Evaluation Flow Chart

FIV Response
" Analytical
. Experimental
" Integrated Analytical/Experimental
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" Determination of Dynamic Characteristics of the Components: Determine

the natural frequencies and modal damping ratios of the components in vacuum

and in fluid. The general method given in Chapters 2-4 can be employed.

" Dimensionless Numbers: Computer different dimensionless numbers, as

given in Section 1.2. These dimensionless numbers are useful in determining

the significance of different excitation mechanisms.

" Dynamic Instability: From the dimensionless numbers and stability

criteria, determine if the component is in the stable region.

" Response Amplitude: If the system is in the stable region, calculate

the response amplitudes in the operating flow-velocity range.

" Acceptance Criteria: If the system is in the unstable region, in most

cases, dynamic instability is unacceptable. For low-level vibrations, assess

the fatigue and wear life of components.

" Modifications: Based on the predicted response as well as experi-

mental data, decide whether to accept the design, recommend testing, direct a

redesign, or propose modifications.

In applying the general assessment procedures, one can rely on available

design guidelines, analytical methods, numerical techniques, and experimental

method. Design guidelines developed at Argonne National Laboratory as well as

other organizations are given in the references. At this time, there are no

complete design guides applicable to all cases. In many instances, it is

still difficult to determine the acceptance criteria. Improvements of the

design guides require further work.

Because of the complexities associated with the flow field and general

structural components, it is generally necessary to resort to some form of

testing to verify design adequacy from the standpoint of flow-induced

vibration. Prototype testing is most desirable because it provides the direct

information. However, such testing is often impossible or prohibitively

expensive. The alternative, then, is to perform experiments on scale

models. But the resulting information must be correlated with the proto-

type. The scale models do not always simulate all features of the prototype

equipment; frequently, important features are omitted from the model tests.

This tends to reduce the usefulness of the test results.

11.3 KEThODS OF SUPPRESSING VIBRATION

From a practical point of view, designers need either a simple procedure

that will assure that the design life of a structure will not be affected by

flow-induced vibration or a simple method that can be adapted to vibration

problems in a unit already in operation. Because of the complexity of the

problem, no single solution will solve all vibration problems. But three

methods are generally used to eliminate detrimental vibration:
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" Fluid-Dynamic Attenuation: Modify the flow field so that fluid

excitation forces are eliminated, weakened, or modified.

" Structural-Dynamic Attenuation: Modify the structural component so

that it is less susceptible to vibration.

" A Combination of Fluid-Dynamic and Structural-Dynamic Attenuation:

Modify both flow field and structure to reduce the vibration to a tolerable

level.

For example, consider the case of vortex-excited oscillations. A wide

variety of fluid dynamic means can be employed for suppressing vortex-shedding

excitations. An excellent review was published recently by Zdravkovich

(1981). The different means can be grouped into three categories, shown in

Fig. 11.2. The first category, surface protrusions, can be further subdivided

into omnidirectional and unidirectional. Omnidirectional are those not

affected by the direction of flow velocity--helical strakes, helical wires,

rectangular plates forming a helix, helical wires forming a herringbone

pattern, etc. Unidirectional are those effective only in one direction of

flow velocity--straight fins, straight wires, rectangular fins, spherical

turbulence promoters, etc.

The second category includes all shapes of shrouds. The full shrouds are

omnidirectional, while incomplete shrouds become unidirectional. These

include perforated shrouds with circular or square holes, fine mesh gauze,

parallel axial rods, straight slats, etc.

The third category includes a variety of iearwake stabilizers, which

possess only unidirectional effectiveness, such as sawtooth fins, splitter

plate, guiding plates, guiding vanes, etc.

The techniques presented in Fig. 11.2 can be applied for isolated

cylinder and multiple cylinders. The effectiveness of different means depends

not only on the Reynolds number, structural parameters, and flow regime, but

also on the displacement of the cylinder itself. It should be pointed out

that the vortex shedding mechanism appears indestructible; however, it can be

delayed and weakened but never totally destroyed.

When flows or obstacle configuration cannot be modified to eliminate flow

excitations, recourse may be structural stiffening or increasing structural

damping. Increasing frequency is a problem; it requires consideration of both

stiffness and inertia, parameters which in practice are far from independently

adjustable. As to structural or mechanical damping, it is a much sought-after

attribute, and one not easily achieved in practice.

In most practical cases, both modifications to flow field as well as

structural parameters are needed to reduce the vibration to an acceptable

range.
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11.4 CLOSING REMARKS
Even though there are significant gaps in codified knowledge, designers

have been able to put together many system components that have provided

useful service without significant problems. In many cases, without detailed

consideration of the flow-induced vibration calculation, some of the obvious

flow-induced effects can be avoided with common sense and experience. Of

course, in the past some spectacular failures, as documented by Paidoussis

(1980), were attributed to totally ignoring the flow-induced vibration effects

or insufficiently considering flow-induced vibration effects.

Methods are available for solving flow-induced vibration problems, but it

is better to avoid the problem in the first place. However, design with a

large margin of safety factors increases costs and decreases performance.

Furthermore, the method used to reduce vibration frequently requires a

compromise to satisfy other requirements. Therefore structural design should

be optimized with respect to cost performance and safety. The current state-

of-the-art design procedures leave much to be desired; this points out the

need for in-depth studies. Until such time as all significant design

parameters can be identified and quantified, the engineer charged with design

must avoid detrimental vibrations by relying on existing information and sound

judgment in modeling and testing.
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APPENDIX A. VIBRATION OF DAMPED LINEAR SYSTEMS

For a system of N degrees of freedom, the equation of motion in matrix

form is

[M]{Q} + [C]{Q} + (Q} = {G} , (A.1)

where M, C, and K are N by N real matrices.

Consider the free vibration with G = 0. The solution of (A.1) is

represented in the form

2N

qQ = exp( a t ) . (A.2)

j-l

Yj's are 2N roots to the equation

DetIX2M + XC + KI = 0 . (A.3)

In general, the roots of (A.3) can be stated as

Xj = Y + iS . (A.4)

The stability of the system is determined by Yj:

SYj < 0, the system is asymptotically stable.

SY* = 0, the system is marginally stable.

.Y > 0, the system is unstable.

A.1 CLASSICAL NORMAL MODES

In each mode, the various parts of a system vibrate in the same phase,

passing through their equilibrium configuration at the same instant of time;

this type of normal mode is called the classical normal mode. The necessary

and sufficient conditions for the existence of the classical normal modes were

investigated by Caughey and O'Kelley (1965) and subsequently discussed by

several investigators (e.g., Lin 1966; Fawzy 1977; MUller 1979; Nicholson

1979).

If M, C, and K are real and symmetric and M is positive definite, the

necessary and sufficient condition for the existence of classical normal modes
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is the commutativity of M-1K and M1C; i.e.,

CM 1 K = KM~1 C . (A.5)

The necessary and sufficient condition for a system of N degrees of freedom to

satisfy the commutativity condition in Eq. A.5 is to select the damping matrix

in such a manner that

1 N-l -
[M] [C] = N-i [[M]i [K]], ,(A.6)

j=0

where a 's are constants. The condition given in Eq. A.6 was originally

developed by Caughey and O'Kelley (1965) and can also be derived as a direct

consequence of the Cayley-Hamilton theorem (Lin 1966). If the first two terms

in Eq. A.6 are retained in its expression, Eq. A.6 is reduced to the Rayleigh

condition of proportional damping,

[C] = 0[M] + ac[K] . (A.7)

Equation A.7 has been used extensively in practical applications.

A.2 FORCED VIBRATION OF SYSTEM WITH CLASSICAL NORMAL MODES

For a system of N degrees of freedom the eigenvalues and eigenvectors of

the system are easily computed from the undamped homogeneous equation,

[K - w2M]{Q} = {0} . (A.8)

We can normalize Eq. A.8 using the weighted modal matrix [E] formed from

the columns of eigenvectors. Letting

{Q} _ [E]{W} , (A.9)

and premultiplying by the transpose [E]T, we obtain

[ETME]{W} + [ETCE]{W} + [ETE]{W} = [ET]{G} . (A.10)

The matrices [ETME] - [I] and [ETKE] - [A] are diagonal, where [I] is an

identity matrix and [A] is a diagonal matrix with the diagonal elements being

the eigenvalues.
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When the damping matrix [C] is a Rayleigh damping,

[ETCE] = a [I] + a[A] = [C] (A.11)

where [C] is diagonal. Equation A.ll is then completely uncoupled and can be

solved sequentially for the element of {W}. The physical coordinates {Q} can

be recovered from Eq. A.9.

Equating the elements of [C] to the term 2c m, which appears in the

equation of motion of a single-degree-of-freedom oscillation, gives

ja0;j = + 2

j

j = 1, 2, ... , N, (A.12)

where Cg is the equivalent viscous modal

more general case of Eq. A.6 results in

damping ratio for the jth mode. The

N-1 2k

[]= -
k-0

and

(A.13)

1 (_.2+ C1 + a2 3 +b..,

j

j - 1, 2, ... , N .

A.3 FORCED VIBRATION OF SYSTEM WITH NONCLASSICAL NORMAL MODES

When the damping matrix does not satisfy the condition given in Eq. A.6,

the following technique can be used. If Eq. A.1 is augmented with the trivial

equation [M]{Q} - [M]{Q} (0}, it becomes

[U]{'} + [v]{Y} = f{ri,

S 0 M
NJM 

C

(A.15)

0

G

(A.16)

Equations A.16 are the basic equations which are to be used in the studies of

free vibration, stability, and forced vibration.

(A.14)

-M 0 Q

I] 0 K Q
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The damped free vibration mode shapes and mode values are obtained by

applying solutions

{Y} = {X}exp(Xt) (A.17)

to the homogeneous form of Eq. A.15:

[AU + V]{X} = {0} . (A.18)

The adjoint form to Eq. A.18 is

[xU' + V']{Y} = {0} , (A.19)

where ' denotes the transport of a matrix. The solutions of Eqs. A.18 and

A.19 can be achieved by standard procedures. Assume that the modal matrices

obtained from Eqs. A.18 and A.19 are [X] and [Y], respectively. Let

{"} = [X](Z} . (A.20)

Substituting Eq. A.20 into A.15 and using the Alothorgonality condition yields

[E]{Z} + [F]{Z} = [Y']{r} , (A.21)

where E and F are diagonal and hence Eq. A.21 is uncoupled and easily solved.
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APPENDIX B. GENERAL FLUID EQUATIONS

The motion of a continuous medium is governed by the principles of

classical mechanics for conservation of mass and momentum. if the properties

of the fluid medium are continuous in some domain of space and time, the

equations of motion become (Schlichting 1968):

Conservation of Mass:

+ pV.U = 0 (B.1)

Conservation of Momentum:

DU (B.2)

where

S - ( +2 + +4
a~~~~~~, A.p ~ 2iV V (B.3)

In these equations, t is the time, p is the density, U is the velocity of a

material particle in the frame of reference, a is the stress tensor, p is the

pressure, A and p are the two coefficients of viscosity, and f is the internal

force per unit volume. Equations B.1 to B.3 can be simplified to different

forms for different conditions in cylindrical coordinates. The cylindrical

coordinates (r,O,z) are related to the Cartesien (x,y,z) by

x = r cosO, y = r sinO , and z = z ,

and the convective time derivative and Laplacian operator are

uf u, a 1l a + a anU = u +'u + u - and
r ar r uoao z az

02 1 r ) ++ a2

Vr r 22 az2

(B.4)

(B.5)
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B.1 INCOMPRESSIBLE FLUID

The equations of motion are:

aur ar,
p (r+ u-+

a3t Ur ar

2

=f -2+ + u
r ar+ ( 2rar

1 aur
r 3r

au au u 3u u ud

at r+U r r ae r z

2

ur 1 a ur
2 r2 2

r r ao

au

1 -ap 82u

r 88 2

1 au 0

r ar

u 3~2

22 2 +
r r ao

2 au a2 u
r2 r+3r)
r az

au au u au au
p(t +ur + + Z)

2
u

az 
2

rar

2

2 2
r ao

The continuity equation is.

au u
r r+

ar r

au au
r --+,- =ao .
r 3e az

The stress components are:

flu

arrr

z -p +

zz

au2y( +
rT" a9

au

az

au au

Trz - y + ar

U our
r 3 e

2
u0

r

Sur

auU 3

2 au
2 ao
r

2
au

+
az

and

(B.6)

2
au

+ Z)
az

(B.7)

u

Tr9 u 3r 2r r)

au

u

r ) ;

T uz
T -u(- +

BZ az

au
r a9

(B.8)
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B.2 LINEARIZED COIPRESSIBLE VISCOUS FLUID

Consider a compressible Newtonian fluid undergoing very small amplitude

oscillation. For a density perturbation p much smaller than the constant

steady-state density p0, and for a fluid perturbation velocity t whose modulus

is much smaller than the speed of sound c - (K/p0)
0.5 , 'iere K is the

isothermal bulk modulus, the continuity, state and momentum equations reduce

to the linear acoustic equations

ap +
t+ p0VU = 0

e c2 , and (B.9)
ap

= -1Vp - v0VxVxU + (v' +3v)V(V )

here v and v' are the kinetic and second viscosities of the fluid. The

velocity field can be represented as

U = V + V4. (B.10)

Using Eqs. B.9 and B.10 yields

2 +
( -v V )$= 0 and

at oa o

[(1 +w )V2 12 )]$ = 0,
o c at

where

2
C

0 5 vo + V,
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B.3 LINEARIZED INCOMPRESSIBLE FLUID EQUATIONS

For small-amplitude motion, the equations of incompressible fluid can be

reduced from Eqs. B.9-B.11;

IV-t = o and

(B.12)

at p 2+v

The solution of Eqs. B.12 is given by

= - +t

P Pat

(B.13)

v2 = 0 and

2 1 a +
(v - - -)* = o .

v at

B.4 LINEARIZED COMPRESSIBLE INVISCID FLUID

For small-amplitude motion, the equation of inviscid fluid reduced from

Eqs. B.12 and B.13 are

0 = V4',

P= p at and (B.14)

(v2 - - )+ = 0
c at

where c is the speed of sound.

REFERENCES--Appendix B
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APPENDIX C. CHARACTERISTIC EQUATIONS, KIGENFUNCTIONS, AND
ADJOINT EIGENFUNCTIONS

The eigenfunctions *n () for beam vibration are obtained from the

following eigenvalue problem:

d d2
L 4+a 2 

d,

at - 0,

at =1 ,

d3 2

$+ a - - - b --- 0
1 d ,3 d 1 1 d 2

- - .d = + b2 = 0
2 d ,3 d 2 d 2

(C.1)

I
(C.2)

where a, a1 , a2 , b1 , and b2 are constants. Employing Green's identity, we can

define the adjoint eigenvalue problem. Green's identity is

< (),L() - ( ),L ()> = (C.3)

where L is the adjoint operator and *(F) is the adjoint eigenfunction. On

substituting Eq. C.1 into C.3, utilizing Eqs. C.2, and requiring that the

bilinear concomitant K[$,i] vanishes, we obtain the following adjoint

eigenvalue problem:

L i , - X4i
* d d,

L

3 2
+ a a + a - b $ - + b -- O1 ld~ 1 3 la d 1 2

aa'bc +~+b
' 2 d 2 3 2 ' dt 2 d2

(C.4)

at = 0 ,

at - 1.

(C.5)

and

and

L+ = 44
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In general, the

self-adjctnt, since

Howevere, if a1 = a2

The solution of

eigenvalue problem specified by Eqs. C.1 and C.2 is non-

the boundary conditions in C.2 and C.5 are different.

= 0, then the eigenvalue problem is self-adjoint.

Eq. C.1 is taken as

(5)= C sin p + C2 cos p, + C3 sinh q + C4 cosh q ,

where

22

2
/ 2

1/2

and

1/2

On substituting Eq. C.6 into Eqs. C.2 we obtain

-alp 3

p

sinp+a 2 p 3 cosp

p(cosp-b2 psinp)

1

b1 p2

cosp-a 2 p 3sinp

a1q
3

q

sinhq-a 2q 
3coshq

-p(sinp+b2pcosp) q(coshq+b2qsinhq)

1

coshq-a2q
3sinhq

q(sinhq+b2qcoshq)

Spatting the coefficient matrix in Eq. C.8 equal to zero yields tie

characteristic equation, which can be written as

A(a1 ,a 2 ,b1 ,b 2 ,a,a) = 0 . (C.9)

Next, the solution of Eq. C.4 is taken as

** * *
( - Csin pt + C2 cos pt,+ C3 sinh qt + C cosh qt (C.10)

(C.6)

(C.7)

olCl

C2

C3

C4

=

0

0

(C.8)



C-3

which, substituting Eq. C.10 into Eqs. C.5, gives

a1ap-a1 p
3

-p

sinp-a2 apcosp

+a2 p 3cosp

b2 gsinp+pcosp

-b2p
2sinp

1

b 1 a-b1 p2

cosp+a 2 psinp

-a 2 p 3sinp

b 2acosp-psinp

-b 2 p2cosp

a1aq+a1q
3

_-q

sinhq-a 2' Icoshq

-a 2 q3 coshq

b2a sinhq+qcoshq

+b2 q2sinhq

1

b1 a+bla2

coshq-a2agsinhq

-a 2 q3sinhq

b 2acoshq+qsinhq

+b 2 q2coshq

Setting the determinant of the coefficient matrix of Eqs. C.11 equal to zero,
we also obtain Eq. C.9, which can be solved numerically. Once the eigenvalues

are obtained, we can find Cn (n - 1, 2, 3) in terms of C4, and C (n - 1, 2,

3) in terms of C4.

The characteristic equations, eigenfunctions, and adjoint eigenfunctions

of the most common assumed end conditions are summarized as follows:

lizod-fixxd and conditions (a1 - a2

Characteristic equation:

1 - cos p cosh q - _ sin
2/X

-=b1=b2 =0)

p sinh q = 0

Eigenfunctions:

=() C Csin pF + C2co? pg + Csinh qF + C4cosh qF()sC1 snp 2cpp C3r

C1 - (cosh q - cos p) / ( sinh q - sin p)

C2 = -1

C3 - -(cosh q - cos p) / (sinh q -psin p)

C4 a 1

*-
Cl

C2

C3

0

0

0

[0]

(c.11)

-I
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Adjoint eigenfunctions:

*(0)= (= )

Hinged-hinged end conditions (a1 = a2 = 0, b1 = b2=w)

Characteristic equation:

sin p = 0

Eigenfunctions:

( ) = sin nir , n = 1, 2, 3, ... ,

Adjoint eigenfunctions:

*() = (C)

Fixed-free end conditions (a1 = b1 = 0, a2 = b2-o)

Characteristic equation:

a2 + 2A(1 + cos p cosh q) + a/ sin p sinh q - 0

Eigenfunctions:

( ) = C1 sin pg + C2cos pF + C3sinh qt + C4 cosh qt

C1 = 1

C2-(p2sin p + pq sinh q) / (p2cos p + q2cosh q)

C3 = -p/q

C4 = (p2sin p + pq sinh q) / (p2cos p + q2cosh q)
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Adjoint eigenfunctions:

- Cisin pg + C*cos pt + C*sinh qt + C cosh qt

C1 = 1

* 2 n 2 2 2
C2 =-[(a - p )sin p - (a+ q )sinh q] / [(a - p )cos p - (a+ q )cosh q]

2 q

C* = -p/q

* 2 2 2 2
C = [(a-p )sin p (a+q )sinh q] / [(a-p )cosp- (a+q )coshq]

Based on these results, the eigenvalues and eigeuifunctions can be calculated.

In most practical applications, the system is self-adjoint. Table C.1

show the angular natural frequencies and mode shapes for six types of end

conditions (Harris and Crede 19"6).

REFERENCES--Appendix C

Harris, C. M., and Crede, C. E. 1976. Shock and Vibration Handbook. McGraw-
Hill Book. Co., Second Ed.
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Table C.l. Beams of Uniform Section

Angular Natural Frequency n = X ~~i

nF= Young's modulus
I = Area moment of inertia

k = Length of beam
m = mass per unit length of beam

An = Coeffic 4ent from Table below

NODES ARE INDICATED IN TABLE BELOW AS A PROPORTION OF LENGTH t MEASURED FROM LEFT END
-0-40.500 0.926

FIXED-FREE I_____0..50 06.23
(CANTILEVER)

A_ _3.52 A=22.4 A=61.7 A=121.0 A=200.0

0.500 0.333 0.667 0.25 0.50 0.75 0.2? 0.40 0.60 0.80
HINGED-HINGED --

A=_9.87 A=39.5 A=88.9 A:=58 A=24 7

0.0 390610278050072 020.409 0.73
FIXED-FIXED aA

(BUILT -IN)
A 22.4 A=61.7 A=121 A 200 A=298

0224 0.776 0.132 0.500 0.868 0.0M 0.644 0.277 0.723 0.060 0.409 0.773
I 24 I.761. I32 . I0 .180.356 10.906 00731 0.50 0 92 0.22710.591 0.940

FPEE- FREE 5 0 093

A=22.4 A=61.7 A=121 A=200 A=298

0560 0.384 0692 0529 0429 0.810

FIXED - HINGED

A:15.4'- A=50.OAA10 4 1 A=A178 4 A=272l

0.736 0.446 0.853 0.308 0.616 0.898 0.23 40707.922 0.381 .0937
HINGED-FREE -v 1 17 Ol7

Table from Harris and Crede (1976), with permission--see Credits.

0n
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APPENDIX D: AMASS--FLUID DYNAMIC MASS COEFFICIENTS OF A GROUP OF
CIRCULAR CYLINDERS IN A FLUID

THIS PROGRAM CALCULATES HYDRODYNAMIC MASS COEFFICIENTS
OF CIRCULAR CYLINDERS IMMERSED IN A FLUID CONTAINED IN
OR IN AN INFINITE FLUID.

OF A GROUP
A CYLINDER

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C **

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

DIMENSION SPECIFICATIONS
(KKI)
(KKK)
(KKI*2)
(KKI,KKI)
(KKK,KKK)
(KKI*2, KKI*2)
(KKI,NNN, KKI)
(KKK,NNN,KKK, NNN)
(KKI*NNN*2, KK I*NNN* 2)
(KKI*NNN*2, KKI)

WHERE KKr=KKI+IK.

RA,XA,YA
R,X,Y
PA LD,D
RAIJ,PHYA,ALP, B'T,SIG,TAU
RIJ, PHY
GAM,RAM,ZZ
AL,BE,SI,TA, H
AA,BB,CC, DD
E

* THIS SUBROUTINE IS FOR NNN=10 AND KKI=4 *

----------------------------------------------------

SUBROUTINE AMASS(NNN,KKI,ICHK,RA,XA,YA,GAM,PADD,ZZ)

REAL*8 CNA,CMA,CNMA,CNA1,CMA1 ,CNMMA,CNA2,CMA2,CMMNA
REAL*8 AGG,BGG,CGG,DGG,AGG1,AGG2

ON INPUT:

NNN: NUMBER OF TERMS USED (IN GENERAL, NNN=10 WILL GIVE RESULTS
WITH SUFFICIENT ACCURACY).

KKI: TOTAL NUMBER OF CYLINDERS INCLUDING THE OUTER CYLINDER.
ICHK: IF ICHK=1, GENERAL CASE, ONE INNER CYLINDER IS CONCENTRIC

WITH THE OUTER CYLINDER (IK=0).
IF ICHK=2, NO INNER CYLINDER IS CONCENTRIC WITH TTIE OUTER

CYLINDER (IK=1).
IF ICHK=3, A GROUP OF CYLINDERS IN AN INFINITE FLUID (IK=2).

RA(I),XA(I) ,YA(I) : RADIUS AND COORDINATES OF CYLINDER I.
* INPUT SEQUENCE OF CYLINDER GEOMETRIES *

OUTER CYLINDER, CONCENTRIC INNER CYLINDER & OTHER CYLINDERS.

ON OUTPUT:

GAM(I,J): HYDRODYNAMIC MASS COEFFICIENT MATRIX.
PADD (I) : PRINCIPAL VALUES OF HYDRODYNAMIC MASS MATRIX DIVIDED BY

FLUID DENSITY AND BY PHI=3.1416 SHOULDD BE MULTIPLIED
BY FLUID DENSITY AND BY PHI TO YIELD HE EFFECTIVE
HYDRODYNAMIC MASS PER UNIT LENGTH OF CYLINDERS).

ZZ(I,J) : FIGENVECTORS OF THE HYDRODYNAMIC MASS MATRIX.

0
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REAI*8 AA,BB,CC,DD,H,E,F,DETEIIM
REAL*8 AG1,BG1,CG1,DG1,AG11,BG11,CG11,DG11
PEAL*8 RAM,ZZ,PADD,D

C
DIMENSION RA(4) ,XA(4),YA(4),R(6),X(6) ,Y (6)
DIMENSION RAIJ(4,4) ,PHYA(4,4) ,RIJ(6,6) ?HY(6,6)
DIMENSION AA(6,10,6,10),BB(6,10,6,10)
DIMENSION CC(6,10,6,10),DD(6,10,6,10)
DIMENSION H (4, 10,4) ,E (80,80) ,F (80,4)
DIMENSION AL (4, 10,4) , SI (4,10,4) ,TA (4,10,4) ,EE(4,10,4)
DIMENSION ALP(4,4),SIG(4,4),TAU(4,4),BET(4,4)
DIMENSION GAM(8,8),RAM(8,8),ZZ(8,8),PADD(8),D(8)

C
KKI2=KKI*2

C ::::: SET UP CONTROL VARIABLES :::::
GO TO (4001,4002,4003) ,ICHK

4001 IK=O
IKK-2
GO TO 4004

4002 IK=1
IKK=1
GO TO 4004

4003 IK=2
IKK=O

4004 KKK=KKI+IK
C ::::: COMPUTE RAIJ(I,J) AND PHYA(I,J) ::::

DO 201 I=1,KKI
DO 201 J= ,KKI
GO TO (4011 -4012,4012),ICHK

4011 IF (I-2) 4013,4013,4012
4013 IF (J--2) 4014,4014,4012
4014 RAIJ(I,J)=0.0

PHYA (I,J) =0.0
GO TO 201

4012 IF (I-J) 4015,4014,4015
4015 ARG=(XA(J)-XA(I))**2+(YA(J)-YA(I))**2

RAIJ(I,J) =SQRT(ARG)
ARG1=YA(J) -YA (I)
ARG2=XA(J) -XA (I)
PHYA (I,J) =ATAN2 (ARG1,ARG2)

201 CONTINUE
C ::::: CLEAR WORK SPACES

DO 4005 I=1,KKK
R (I) =0.0
X (I) =0.0
Y(I) =0.0
DO 4005 J=1,KKK
RIJ (I,J) =0.0
DHY (.,J) =0.0
L" 46,05 N=1,NNN
DO 4005 M=1,NNN
AA(I,N,J,M)=0.0
BB(I,N,J,M) =0.0
CC(I,N,J, M) =0.0

4005 DD(I,N,J,M)=0.0
C ::::: GO TO INDEX KKK FROM KKI :

GO TO (4031,40331,4033) ,ICHK
4031 DO 4032 I=1,KKK

X (I) =XA(I)
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Y (I) =YA(I)
R(I)=RA(I)
DO 4032 J=1,KKK
RIJ(I,J) =RAIJ (I,J)

4032 PHY(I,J)=PHYA(I,J)
GO TO 4040

40331 X(1)=XA(1)
Y (1) =YA (1)
R(1) =RA(1)
RIJ(1,1)=RAIJ(1,1)
PHY (1, 1)=PHYA(1,1)

4033 DO 4036 I=3,KKK
IIK=I-IK
X (I)=XA (IIK)
Y (I)=YA (IIK)
R (I) -RA (IIK)

GO TO (4034,4035) ,IK
4034 IM1=1-1

RIJ (I,1) =RAIJ (IM1,1)
idIJ(1,I) =RAIJ(1,IM1)

PHY (I,1) =PHYA(IM1,1)
PHY (1,I)=PHYA(1,IM1)

4035 DO '4036 J=3,KKK
JJK=1-IK
RIJ (1,J) =RAIJ (IIK,JJK)

4036 PHY(I,J)=PHYA(IIK,JJK)
4040 CONTINUE
C ::::: FORM AA, BB, CC, DD MATRICES :::::

GO TO (4050,4050,5010) ,ICHK
4050 DO 5000 I=1,IKK

DO 5000 N=1,NNN
GO TO (8881,8882),I

8881 MMM=N
GO TO 8883

8882 MMM=NNN
8883 CONTINUE

DO 5000 J=1,KKK
IF(ICHK.EQ.1) GO TO 4051
IF(J.EQ.2) GO TO 5000

4051 CONTINUE
DO 5000 M=1,MMM
GO TO (4052,7770) ,I

4052 CONTINUE
IF (J-2) 4053,4053,4100

4053 IF (N-M) 4061,4054,4061
4054 IF (I-J) 4058,4055,4058
4055 AA(I,N,J,M)=N

BB (I, N,J, M)=N
CC(I,N,J,M) =0.0
DD (I, N,J, M) =0.0
GO TO 5000

4058 AA(I,N,J,M)=-N*(R(2) /R(1))**(N+1)
BB(I,N,J,M)=-N* (R(2)/R(1))**(N+1)
CC(I,N,J,M) =0.0
DD (I, N,J, M) =0.0
GO TO 5000

4061 AA(I,N,J,!)=0.0
BB(I,N,J,M) =0.0
CC (I,N,J, M) =0.0
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DD(I,N,J,M) =0.0
GO TO 5000

4100 MM1=M-1
NMM=N-M
ARG11=(M-1) *PHY(1,J)
AGG1=R (J) *R (J)/ (R(I) *RIJ(1,J))
DO 4101 MC=1,M

4101 AGG1=AGG1*RIJ(1,J)/R(J)
CNA1=1.0
DO 4102 MC=1,N
CNA 1=CNA 1*MC

4102 AGG1=AGG1*R(J)/R(I)
CMA1=1.0
IF (M-1)4103, 4105, 4103

4103 DO 4104 MC=1,MM1
4104 CMA1=CMA1*MC
4105 CNMMA=1.0

IF (NMM) 4106,4108,4106
4106 DO 4107 MC=1,NMM
4107 CNMMA=CNMMA*MC
4108 AA(I,N,J,NMM+1)=-AGG1*CNA1*COS(ARG11)/(CMA1*CNMMA)

BB(I,N,J,NMM+1)=AA(I,N,J,NM+1)
CC(I,N,J,NMM+1)=AGG1*CNA1*SIN(ARG11)/(CMA1*CNMMA)
DD(I,N,J,NMM+1)=-CC(I,N,J,NMM+1)
GO TO 5000

7770 CONTINUE
IF(J.GT.2) GO TO 7774
IF(N.NE.M) GO TO 7772
IF(I.EQ.J) GO TO 7771
IF(N.EQ.1) GO TO 7773
AA(I,N,J,M) =N*(R(2) /R(1))** (N-1)
BB(I,N,J, M)=N*(R(2)/R(1))**(N-1)
CC(I,N,J,fM) =0.0
DD(I,N,J,M) =0.0
GO TO 5000

7771 AA(I,N,J,M)=-N
BB(I,N,J,M) =-N
CC (I,N,J,M) =0.0
DD(I,N,J,M) =0.0
GO TO 5000

7772 AA(I,N,J,M)=0.0
BB(I,N,J,M) =0.0
CC(I,N,J,M)=0.0
DD(I,N,J,M)=0.0
GO TO 5000

7773 AA(I,N,J,M)=1.0
BB(I,N,J, M)=1.0
CC(I,N,J,M)=0.0
DD(I,N,J,M) =0.0
GO TO 5000

7774 IN1=N-1
IM1=M-1
INM1=N+M-1
ARG1= (N+M) *PHY (I,J)
AGG=R (I) /RIJ (I, J) *R (J) /R(I)
DO 15051 MC=1,M

15051 AGG=AGG* (-1 .)*R (J)/R(I)
CNA=1.0
IF (IN1) 15052,15054,15052
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15052 DO 15053 MC=1,IN1
15053 CNA=CNA*MC
15054 CMA=1.0

IF (IM1) 15055,15057,15055
15055 DO 15056 MC=1,IM1
15056 CMA=CMA*MC
15057 CNMA=1.0

DO 15058 MC=1,INMI1
15058 CNMA=CNMA*MC/(RIJ(I,J)/R(I))

AA(I,N,J, M) =AGG*CNMA/CNA/CMA*COS (ARG1)
BB(I,N,J,M) =-AA(I,N,J,M)
CC(I,N,J,M) =AGG*CNMA/CNA/CMA*SIN(ARG1)
DD(I,N,J,M) =CC(I,N,J,M)

5000 CONTINUE
IF (KKK-2) 206,206,5010

5010 CONTINUE
DO 205 I=3,KKK
DO 205 N=1,NNN
DO 205 J=1,KKK
GO TO (5011,5012,5013),ICHK

5012 IF (J-2) 5011,205,5011
5013 IF (J-2) 205,205,5011
5011 CONTINUE

DO 205 M=1,NNN
IF (I-J) 5017,5014,5017

5014 IF (N-M) 5016,5015,5016
5015 AA(I,N,J,M)=-N

B(I,N,J,M) =-N
CC(I,N,J,M) =0.0
DD (I, N,J, M) =0. O

GO TO 205
5016 AA(I,N,J,M)=G.0

BB(I,N,J, M) =0.0
CC(I,N,J, M) =0.0
DD(I,N,J, M) =0.0
GO TO 205

5017 IN1=N-1
IM 1=M-1
INM1=N+M-1
MMN=M-N
IF (J-1) 5050,5018,5050

5018 IF (M-N) 5019,5020,5020
5019 AA(I,N,J,M)=0.0

BB (I,N,J, M) =0.0
CC (I,N,J,M) =0.0
DD (I,N,J, M) =0.0
GO TO 205

5020 ARG12= (M-N) *PHY (1,I)
AGG2=R (1)/RIJ (1,I)
CMA2=1.0
DO 5021 MC=1,M
AGG2=AGG2*RIJ (1,I) /R (1)

5021 CMA2=CMA2*MC
CNA2=1.0
IF (N-1) 5022,5024,5022

5022 DO 5023 MC=1,IN1
AGG2=AGG2*R (I) /RIJ (1,I)

5023 CNA2?CNA2*MC
5024 CMMNA=1.0
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IF (MMN) 5025,5027,5025
5025 DO 5026 MC=1,MMN
5026 CNMNA=CMMNA*MC
5027 AA(I,N,JII)=AGG2*CMA2*COS(ARG12} /(CNA2*CMHNA)

BB(I,N,J,'A) =AA (I,N,J,M)
CC(I,N,J, M))=AGG2*CMA2*SIN(ARG12)/(CNA2*CNNNA)
DD(I,N,J,M)=-CC (I,N,J,IM)
GO TO 205

5050 ARGI= (N+M)*PHY(I,J)
AGG=R (I) /RIJ (I,J) *R (J) /R (I)
DO 5051 MC=1,M

5051 AGG=AGG* (-1.)*R(J)/R(I)
CNA=1.0
IF (IN1) 5052,5054,5052

5052 DO 5053 MC=1,IN1
5053 CNA=CNA*MC
5054 CMA=1.0

IF (IM1) 5055,5057,5055
5055 DO 5056 MC=1,IM1
5056 CMA=CMA*MC
5057 CNMA=1.0

DO 5058 MC=1,INM1
5058 CNMA=CNMA*MC/(RIJ (I,J) /R (I))

AA (I,N,J, M) =AGG*CNNA/CNA/CMA*COS (ARG1)
BB(I,N,J,M)=-AA(I,N,J, M)
CC(I,N,J, M) =AGG*CNMA/CNA/CMA*SIN(ARG1)
DD (I, N,J,M) =CC (I,N,J, M)

205 CONTINUE
206 CONTINUE

GO TO (5200,5100,5100) ,ICHK
5100 DO 50 N=1,NNN

DO 50 M=1,NNN
DO 50 I=3,KKK
II1=I-1
IIK=I-IK
GO TO (11,12),IK

11 AA (II1,N, 1,M)=AA (I,N,1 ,M)
BB(II1,N,1,M)=BB(I,N,1,M)
CC(II1,N,1,M)=CC(I,N,1,M)
DD(II1,N,1,N)=DD(I,N,1,M)

12 DO 50 J=3,KKK
GO TO ("1,23),IK

21 IF (I-4' 22,23,23
22 JJ1=J-1

AA(1,N,JJ1,M)=AA(1,NJ,N)
BB (1,N,JJ1,M) =BB (1,N,J,[)
CC (1,NJJ1,M)=CC (1,NJ, M)
DD(1,N,JJ1, M)=DD(1,N,J,N)

23 JJK=J-IK
AA(IIK,N,JJK,M) =AA (I,N,J,M)
BB(IIK,NJJK,N) =BB(I,N,J,M)
CC(IIK,N,JJK,M)=CC(I,N,J, M)
DD (IIKN,JJK,M) =DD(I,N,J,M)

50 CONTINUE
5200 KN=KKI*NNN
C ::::: PREPARE TO SOLVE SYSTEM OF EQUATIONS FOR X-AXIS :::::

DO 230 I=1,KKI
DO 230 N=1,NNN
1N=(I-1) *NNN+N
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II=IN+KN
DO 230 J=1,KKI
DO 230 M=1,NNN
JM= (J-1) *NNN+M
JJ=JM+KN
E(IN,JM)=AA (I,N,J,M)
E(II,JJ) =BB(I,N,J,M)
E (IN,JJ)=CC (I,N,J,M)
E(II,JM) =DD (I,N,J,M)

230 CONTINUE
DO 220 I=1,KKI
DO 220 N=1,NNN
DO 220 L=1,KKI
IF (N-1) 62,60,62

60 IF (I-L) 62,61,62
61 H(I,N,L)=1.0

GO TO 220
62 H(I,N,L)=0.0
220 CONTINUE

DO 240 I=1,KKI
DO 240 N=1,NNN
1N= (I-1) *NNN+N
II=IN+KN
DO 240 L=1,KKI
F (IN,L)=H (I,N,L)

240 F(II,L)=0.0
KNKN=2*KN

C ::::: SOLVE SYSTEM OF EQUATIONS
CALL CROUT(E,KNKN,F,KKI,DETERM,80)
DO 250 I=1,KKI
DO 250 N=1,NNN
1N= (I-1) *NNN+N
II=IN+KN
DO 250 L=1,KKI
AL(I, N,L)=F (IN,L)
TA (I,N,L) =F (II,L)

250 CONTINUE
C ::::: PREPARE TO SOLVE SYSTEM OF EQUATIONS FOR Y-AXIS

DO 270 I=1,KKI
DO 270 N=1,NNN
1N = (I-1) *NNN+N
II=IN+KN
DO 270 L=1,KKI
F (IN,L) =0.0

270 F(II,L)=H(I,N,L)
DO 231 I=1,KKI
DO 231 N=1,NNN
1N=(I-1) *NNN+N
II=IN+KN
DO 231 J=1,KKI
DO 231 M=1,NNN
JH= (J-1) *NNN+M
JJ=JM+KN
E (IN,JM) =AA (I, N,J,M)
E(II,JJ) =BB (I,N,J,M)
E(IN,JJ) =CC(I,N,J,K)

231 E(II,JM)=DD(I,N,J,M)
C ::::: SOLVE SYSTEM OF EQUATIONS ::::

CALL CROUT(E,KNKN,F,KKI,DETERN,80)
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DO 280 I=1,KKI
DO 280 N=1,NNN
IN= (I-1) *NNN+N
II=IN+KN
DO 280 L=1,KKI
SI (I,N,L) =F (IN,L)
BE(I,N,L) =F(II,L)

280 CONTINUE
C ::::: CALCULATE ADDED MASS COEFFICIENTS

GO TO (6001,6002,6003),ICHK
6001 I=1

R21=RA(2) *RA (2)/(RA(1) *RA(1))
DO 600 L=1,KKI
ALP (1,L) =AL (1,1,L)+AL(2,1,L)*R21
SIG (1,L) =SI(1,1,L)+SI(2,1,L)*R21
TAU(1,L)=TA (1,1,L)+TA(2,1,L)*R21
BET (1,L) =BE(1, 1,L) +BE(2,1,L) *R21
IF (KKI.LE.2) GO TO 600
DO 6000 J=3,KKI
RJI2=RA (J) * RA(J)/(RA (I) *RA(I) )

ALP(1,L)=ALP(1,L)+AL(J,1,L)*RJI2
SIG(1,L)=SIG(1,L)+SI(J,1,L)*RJI2
TAU(1,L)=TAU(1,L)+TA(J,1,L)*RJI2

6000 BET(1,L)=BET(1,L)+BE(J,1,L)*RJI2
600 CONTINUE

I=2
DO 7004 L=1,KKI
ALP (2,L) =AL (1, 1,L)+AL (2,1,L)
SIG(2,L)=SI(1,1,L)+SI(2,1,L)
TAU(2,L)=TA(1,1,L)+TA(2,1,L)
BET(2,L)=BE (1,1,L)+BE(2,1,L)
IF (KKI.LE.2) GO TO 7004
DO 7003 J=3,{KI
AGG=0.0
BGG=0.0
CGG=0.0
DGG=o.0
RJIJ=RA (J) /RAIJ (2,J)
DO 7002 N=1,NNN
ARG= (N+1) *PHYA(2,J)
AG1=N*RJIJ* (COS (ARG) *AL (J,N,L) +TA (J,N,L) *SIN (ARG))
BG1=N*RJIJ* (COS (ARG) *SI(J, N,L) +BE (J, N,L) *SIN (ARG))
CG1=N*RJIJ* (SIN (ARG)*AL (J,N,L)-TA(J,N,L) *COS (ARG))
DG1=N*RJIJ*(SIN(ARG)*SI(J,N,L)-BE(J,N,L)*COS (ARG))
DO 7001 MC=1,N
AG1=-AG1*RJIj
BG1=-BG1*RJIJ
CG1=-CG 1*RJIJ

7001 DG1=-DG1*RJIJ
AGG=AGG+AG1
BGG=BGG+BG1
CGG=CGG+CG1

7002 DGG-DGG+DG1
ALP(2,L)=ALP(2,L) +AGG
SIG (2,L)=SIG(2,L) +BGG
TAU (2,L)=TAU (2,L) +CGG

7003 BET (2,L)=BET (2,L) +DGG
7004 CONTINUE

DO 605 L=1,KKI
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ALP(2,L)=-ALP(2,L)
SIG(2,L)=-SIG(2,L)
TAU (2,L) =-TAg (2,L)

605 BET(2,L)=-BET(2,L)
GO TO 6003

6002 DO 700 L=1,KKI
ALP(1,L)=AL(1,1,L)
SIG (1,L) =SI(1,1,L)
TAU (1,L)=TA (1,1,L)
BET (1,L) =BE (1, 1,L)
DO 700 J=2,KKI
RJ12=RA (J) *RA (J) /(RA (1)*RA (1))
ALP (1 ,L) =ALP (1,L) +AL(J, 1,L) *RJ12
SIG(1,L)=SIG(1,L)+SI(J,1,.L)*RJ12
TAU (1,L) =TAU(1,L) +TA(J,1,L) *RJ12

700 BET (1,L) =BET (1, L) +BE(J, 1,L) *RJ12
6003 ISS=IKK+1

IF(KKI-ISS) 899,6004,6004
6004 CONTINUE

DO 800 I=ISS,KKI
DO 800 L=1,KKI
ALP (I,L) =AL (I, 1,L)
SIG (I,5)=SI (1,1 ,L)
TAU (I,L) =TA (I, 1,L)
BET (I,L)=BE (I,1,L)
DO 790 J=1,KKI
AGG=0.0
BGG=0.0
CGG=0.0
DGG=0.0
IF (I-J) 801,770,801

801 GO TO (802,802,805),ICHK
802 IF (J-1) 805,803,805
803 DO 750 N=1,NNN

ARG1= (N-1) *PHYA (1,I)
R1IJ=RA(1)/RAIJ (1,I)
RIJ1=RAIJ(1,I) /RA(1)
AG11=N*R1IJ*(COS(ARG1)*AL(1,N,L)+TA(1,N,L)*SIN(ARG1))
BG11=N*R1IJ* (COS(ARG1)*SI(1,N,L)+BE(1,NL)*SIN(ARG1))
CG11=N*R1IJ*(-SIN(ARG1)*AL(1,N,L)+TA(1,N,L)*COS(ARG1))
DG11=N*R1IJ* (-SIN(ARG1)*SI(1,N,L)+BE(1,N,L)*COS(ARG1))
DO 804 MC=1,N
AG11=AG11*RIJ1
BG11=BG11*RIJ1
CG 1=CG11*RIJ1

804 DG11=DG11*RIJ1
AGG=AGG+AG11
BGG=BGG+BG11
CGG=CGG+CG11

750 DGG=DGG+DG11
GO TO 770

805 RJIJ=RA(J) /RAIJ (IJ)
DO 760 N=1,NNN
ARG= (N+1) *PHYA (I,J)
AG1=N*RJIJ* (COS (ARG) *AL (J, N,L) +TA (J, N,L) *SIN (ARG))
BG1=N*RJIJ* (COS (ARG) *SI (J, N,L) +BE(J, N, L) *SIN (ARG))
CG1=N*RJIJ* (SIN (ARG) *AL(J, N,L) -TA(J,N,L) *COS (ARG))
DG1=N*RJIJ* (SIN (ARG) *SI(J,N,L) -BE (J,N, L) *COS (ARG))
DO 806 MC=1,N
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AG1=-AG1*RJIJ
BG1=-BG1 *RJIJ
CG1=-CG1*RJIJ

806 DG1=-DG1*RJIJ
AGG=AGG+AG1
BCG=BGG+BG1
CGG=CGG+CG1

760 DGG=DGG+DG1
770 CONTINUE

ALP (I,L) =ALP (I,L) +AGG
SIG(I,L)=SIG (I,L)+BGG
TAU (IL) =TAU (I,L) +CGG

790 BET(I,L)=BET(I,L)+DGG
800 CONTINUE

DO 299 I=ISS,KKI
DO 299 L=1,KKI
ALP (I,L) =-ALP(I,L)
SIG(I,L) =-SIG(I,L)
TAU (I,L) =-TAU (I,L)

299 BET (I,L) =-BET(I,L)
899 CONTINUE

DO 8800 I=1,KKI
DO 8800 L=1,KKI
ALP (I,L) =ALP (I,L) *RA (I) *RA (I)
SIG (I, L) =SIG (I, L) *RA (I) *RA (I)

TAU(I,L)=TAU(TrL)*RA (I) *RA (I)
8800 BET (I,L) =BET (I,L) *RA (I) *RA (I)

DO 900 I=1,KKI
DO 900 L=1,KKI
RAM (I,L)=ALP (I, L)
RAM(I,KKI+L)=SIG(I,L)
RAM (KKI+I,L) =TAU (I,L)

900 RAM(KKI+I,KKI+L)=BET(I,L)
DO 810 I=1,KKI
DO 810 L=1,KKI
RIL=4./ ( (RA (I) +RA(L) ) **2)
ALP (I, L) =ALP (I,L)*RIL
SIG (I,L) =SIG (I,L) *RIL
TAU (I,L)=TAU (I,L) *RIL
BET (I,L) =BET (I,L)+RIL
GAM(I,L) =ALP(I,L)
GAM (I, KKI+L)=SIG (I,L)
GAM (KKI+I,L) =TAU (IL)

810 GAM(KKI+I,KKI+L)=BET(I,L)
CALL TRED2(KKI2,KKI2,RAM,PADD,D,ZZ)
CALL IMTQL2(KKI2,KKI2,PADD,D,ZZIER)
RETURN
END

C ******************************************
C * *
C * *** SUBROUTINE CROUT *** *
C * *
C ******************************************
C
C THIS PROGRAM SOLVES MATRIX EQUATION AX=B BY THE CROUT METHOD.
C
C ON INPUT:
C
C A: MATRIX.
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C N: ORDER OF MATRIX A.
C B: COLUMN MATRIX.
C M: NUMBER OF COLUMN VECTOR B.
C DETERM: RETURN CODE, IF ZERO A IS SINGULAR.
C NMAX: ROW DIMENSION FOR MATRIX A AND COLMN VECTOR B.
C
C ON OUTPUT:
C
C B: SOLUTION VECTOR X STORED.
C
C
C ------------------------------------------------------------
C

SUBROUTINE CROUT(A,N,B,M,DETERM,NMAX)
REAL*8 A,B,DETERMDOTP,V,AMAX,TEMP
DIMENSION A(NMAX,N) ,B(NMAX,M)
DIMENSION V(80)
DETERM=1.ODO
DO 1000 K=1,N
KP1=K+1
KM1=K-1
TEMP=0.0
DO 20 I=K,N
DO 2 L=1,K

2 V(L)=A(I,L)
A (I,K)=A (I,K) -DOTP(V,A (1,K) ,KM1)
IF(DABS(A(I,K)).LT.TEMP) GO TO 20

3 TEMP=DABS(A(I,K))
IMAX=I

20 CONTINUE
AMAX=A(IMAX, K)
IF (DETERM.EQ.0.0) RETURN
IF (IMAX.EQ.K) GO TO 600
DETERM=-DETERM
DO 50 J=1,N
TEMP=A (K,J)
A (K,J) =A (IMAX,J)
A (IMAX,J) =TEMP

50 CONTINUE
IF(M.LE.0) GO TO 600
DO 400 J=1,M
TEMP=B (K,J)
B (K,J) =B (IMAX,J)
B(IMAX,J)=TEMP

400 CONTINUE
600 DO 666 L=1,K
666 V(L)=A(K,L)

IF(K.EQ.N) GO TO 850
DO 700 I=KP1,N

700 A(I,K)=A(I,K)/AMAX
DO 800 J=KP1,N

800 A(K,J)=A(K,J)-DOTP(V,A(1,J) ,KM1)
850 IF(M.LE.0) GO TO 1000

DO 900 J=1,M
900 B(K,J)=B(K,J)-DOTP(V,B(1,J),KM1)
1000 CONTINUE

IF(M.LE.0) RETURN
DO 8000 I=1,N
K=N+1-I
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DO 6666 L=K,N
6666 V (L) =A (K,L)

DO 7000 J=1,M
7000 B (K,J)= (B (K,J) -DOTP (V (K+1) ,B (K+1,J) ,I-1) )/A (K, K)
8000 CONTINUE

RETURN
END

C **************************************

C * *
C * *** FUNCTION DOTP *** *
C * *
C *#:k*#***********************************

C
C THIS IS A MATRIX MULTIPLICATION SUBPROGRAM.
C
C
C -----------------------------------------------------------------
C

FUNCTION DOTP (A,B,N)
REAL*8 A,B,DOTP
DIMENSION A(1),B(1)
DOTP=0.0
IF (N.EQ.0) RETURN
DO 100 I=1,N

100 DOTP=DOTP+A (I) *E(I)
RETURN
END

C ************************************************

C * *
C * *** SUBROUTINE TRED2 *** *
C * *
C ************************** #********************

C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED2,
C NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A
C SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING
C ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C ON INPUT:
C
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT;
C
C N IS THE ORDER OF THE MATRIX;
C
C A CONTAINS THE REAL SYMMETRIC INPUT MATRIX. ONLY THE
C LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.
C
C ON OUTPUT:
C
C D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX;
C
C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C MATRIX IN ITS LAST N-1 POSITIONS. E(1) IS SET TO ZERO;
C
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G=E(J) -HH*F
E (J) =G
DO 260 K=1,J
Z (J, K) =Z (J,K) -F*E (K) -G*Z (I, K)

260 CONTINUE
290 D(I)=H
300 CONTINUE
320 D(1)=0.DO

E(1) =0.ODO
C :::::ACCUMULATION OF TRANSFORMATION MATRICES

DO 500 I=1,N
L=I-1
IF(D(I) .EQ.0.ODO) GO TO 380
DO 360 J=1,L
G=0.ODO
DO 34) K=1,L

340 G=G+Z (I,K) *Z (K,J)
DO 360 K=1,L
Z (K, J) =Z (K, J) -G*Z (K, I)

360 CONTINUE
380 D(I)=Z(I,I)

Z (I,I)=1.ODO
IF(L.LT.1) GO TO 500
DO 400 J=1,L
Z (I,J)=0.ODO
Z(J,I)=0.ODO

400 CONTINUE
500 CONTINUE

RETURN
END

C ****************************************************

C * *
C * *** SUBROUTINE IMTQL2 *** *
C * *
C ****************************************************

C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE IMTQL2,
C NUM. MATH. 12, 377-383(1968) BY MARTIN AND WILKINSON,
C AS MODIFIED IN NUM. MATH. 15, 450(1970) BY DUBRULLE.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).
C
C THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
C OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE IMPLICIT QL METHOD.
C THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO
C BE FOUND IF TRED2 HAS BEEN USED TO REDUCE THIS
C FULL MA T RIX TO TRIDIAGONAL FORM.
C
C ON INPUT:
C
C NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C DIMENSION STATEMENT;
C
C N IS THE ORDER OF THE MATRIX;
C
C D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX;
C
C E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C IN ITS LAST N-1 POSITIONS. E(1) IS ARBITRARY;
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C Z CONTAINS THE ORTHOGONAL TRANSFORMATION MATRIX
C PRODUCED IN THE REDUCTION;
C
C A AND Z MAY COINCIDE. IF DISTINCT, A IS UNALTERED.
C
C ------------------------------------------------------
C

SUBROUTINE TRED2(NM,N,A,D,E,Z)
C

INTEGER I,J,K,L,N,II,NM,JP1
REAL*8 A(NM,N),D(N),E(N),Z(NM,N)
REAL*8 F,G,H,HH,SCALE
REAL*8 DSQRT,DABS,DSIGN

C
DO 100 I=1,N
DO 100 J=1,I

100 Z (I, J) =A (I, J)
IF(N.EQ. 1) GO TO 320

C ::::: FOR I=N STEP -1 UNTIL 2 DO
DO 300 II=2,N
I=N+2-II
L=I-1
H=O.ODO
SCALE=0.ODO
iF(L.LT.2) GO TO 130

C ::::: SCALE ROW (ALGOL TOL THEN NOT NEEDED)
DO 120 K=1,L

120 SCALE=SCALE+DABS(Z(I,K))
IF(SCALE.NE.0.ODO) GO TO 140

130 E(I)=Z(T,L)
GO TO 290

140 DO 150 K=1,L
Z (I,K) =Z (I,K) /SCALE
H=H+Z(I,K)*Z (I,K)

150 CONTINUE
F=Z (I,L)
G=-DSIGN (DSQRT (H) ,F)
E (I) =SCALE*G
H=H-F*G
Z (I, L) =F-G
F=0.ODO
DO 240 J=1,L
Z (J, I)=Z (I, J)/H
G0.ODO

C ::::: FORM ELEMENT OF A*U :::::
DO 180 K=1,J

180 G=G+Z (J, K) *Z (I, K)
JP1=J+1
IF(L.LT.JP1) GO TO 220
DO 200 K=JP1,L

200 G=G+Z (K,J)*Z (I,K)
C ::::: FORM ELEMENT OF P
220 E(J)=G/H

F=F+E(J) *Z (I,J)
240 CONTINUE

HH=F/ (H+H)
C ::::: FORM REDUCED A

DO 260 J=1,L
F=Z (I,J)
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C
C Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN TF*r
C REDUCTION BY TRED2, IF PERFORMED. IF THE EIGENVECTORS
C OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
C THE IDENTITY MATRIX.
C
C ON OUTPUT:
C
C D CONTAINS THE EIGENVALUES IN ASCENDING ORDER. IF AN
C ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT
C UNORDERED FOR INDICES 1,2,... ,IERR-1;
C
C E HAS BEEN DESTROYED;
C
C Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC
C TRIDIAGONAL (OR FULL) MATRIX. IF AN ERROR EXIT IS MADE,
C Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED
C EIGENVALUES;
C
C IERP IS SET TO
C ZERO FOR NORMAL RETURN,
C J IF THE J-TH EIGENVALUE HAS NOT BEEN
C DETERMINED AFTER 30 ITERATIONS.
C
C ----------------------------------------------------------------

C
SUBROUTINE IMTQL2 (NM,N,D,E,Z,IERR)

C
INTEGER I,J,K,L,M,N,II,NM,MML,IERR
REAL*8 D(N),E(N),Z(NM,N)
REAL*8 B,C,F,G,,P,R,S,MACHEP
REAL*8 DSQRT,DABS,DSIGN

C :::::::::: MACHEP IS A MACHINE DEPENDENT PARAMETER SPECIFYING
C THE RELATIVE PRECISION OF FLOATING POINT ARITHMETIC.
C MACHEP = 16.ODO**(-13) FOR LONG FORM ARITHMETIC
C ON S360 :::::::::

DATA MACHEP/Z3410000000000C00/
C

IERR=O
IF(N.EQ.1) GO TO 1001
DO 100 I=2,N

100 E(I-1)=E(I)
E(N) =0.ODO
DO 240 L=1,N
J=0

C ::::: LOOK FOR SMALL SUB-DIAGONAL ELEMENT :::::
105 DO 110 M=L,N

IF(M.EQ.N) GO TO 120
IF (DABS (E (M)) .LE.MACHEP* (DABS (D(M)) +DABS(D(M+1)))) GO TO 120

110 CONTINUE
120 P=D(L)

IF(M.EQ.L) GO TO 240
IF(J.EQ.30) GO TO 1000
J=J+1

C ::::: FORM SHIFT :::::
G=(D(L+1)-P)/(2.ODO*E(L))
R=DSQRT(G*G+1.ODO)
G=D(M) -P+E(L) /(G+DSIGN (R,G))
S=1.ODO
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C=1 .ODO
P=O. ODO
MML=M-L

C ::::: FOR I=M-1 STEP -1 UNTIL L DO --

DO 200 II=1,MML
I=M-II
F=S*E (I)
B=C*E (I)
IF(DABS(F).LT.DABS(G)) GO TO 150
C=G/F
R=DSQRT (C*C+1. ODO)
E (I+1) =F*R
S=1.ODO/R
C=C*S
GO TO 160

150 S=F/G
R=DSQRT (S*S+ 1.ODO)
E (I+1)=G*R
C=1.ODO/R
S=S*C

160 G=D (I+1)-P
R= (D (I) -G) *S+2. ODO*C*B
P= S*R
D (I+1)=G+P
G=C*R-B

C ::::: FORM VECTOR
DO 180 K=1,N
F=Z (K,I+1)
Z (K,I+1) =S*Z (K,I) +C*F
Z (K,I) =C*Z(K,I) -S*F

180 CONTINUE
200 CONTINUE

D (L) =D (L) -P
E(L)=G
E (M) =0.ODO
GO TO 105

240 CONTINUE
C ::::: ORDER EIGENVALUES AND EIGENVECTORS :::::

DO 300 II=2,N
I=II-1
K=I
P=D(I)
DO 260 J=II,N
IF(D(J).GE.P) GO TO 260
K=J
P=D(J)

260 CONTINUE
IF(K.EQ.I) GO TO 300
D (K) =D (I)
D (I)=P
DO 280 J=1,N
P=Z (J,I)
Z (J, I) =Z (J, K)
Z (J,K)=P

280 CONTINUE
300 CONTINUE

GO TO 1001
C ::::: SET ERROR -- NO CONVERGENCE TO AN EIGENVALUE
C AFTER 30 ITERATIONS :::::

1000 IERR=L
1001 RETURN

END
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