NOTICE

CERTAIN DATA
CONTAINED IN THIS
DOCUMENT MAY BE DIFFICULT TO READ

IN MICROFICHE
PRODUCTS.

Proceedings of the PILAC Optics Workshop

August 12-13, 1991

FION LINAC AT LOS ALAMOS MESON PHYSICS FACILITY
Los Alamis National Laboratory is operated by the University of California for the United States Department of Energy
under coniract W-7405-ENG-36.

Proceedings of the PILAC Optlcs Workshop

August 12-13, 1991
LOS ALAMOS NATIONAL LAB?RATORY

By wrompatice of this article, the publisher recognizes that the 11.5 Goveinment retains a nonexclusive, royalty-trmo license to mullish ur ceproduce the published form of this contibution, or to allow others to do so, for US Government puipuies
 1) \& ! Pmatment of Energy.

This work was supported by the U.S. Department of Energy, Office of Energy Research.

These papers are printed as submitted by the authors.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States Government. Nefther the United Staley Government nor any agency thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy. completenmss, or usefuiness of any information, apparatus. product, or process disclosed, or represents that its use would not intringe privately owned rights Reference herein to any specific commercial product, pincess, or seivice by Irade liame. trademark, manufacturer, or otherwise, does not necessarily conatitute or imply its endorsement. recommendation, or favoring by the United Siates Government or any agenci', thereof The views and opinions of nuthors expressed herein do not necessanly state or rullect those of the Unifert Srates Governmient or any agency thereot.

Proceedings of the PILAC Optics Workshop

August 12-13, 1991

CONTENTS - PROCEEDINGS OF THE PILAC OPTICS WORKSHOP
August 12 \& 13, 1991
Agenda 1
PILAC Overview 3
H. Thiessen, MP-14
PILAC Injection LIne 39
B. Blind, AT-3
PILAC General-Purpose Line Design 54
N. Mao, MP-14
Program RAYTRACE 82
H. Enge, Deutron, Inc.
Design \& Performance of MRS 119
R. Boudrie, MP-10
Program MOTER 130
M. Klein, X-DO
Recent Upgrades of MOTER 144H. Butler, MP-14
Use of MOTER at Michigan State 169
J. Nolen, Michigan State University
Spectrometer Design at Michigan State 183
A. Zeller, Michigan State University
Uso of MOTER at CEBAF \& Related Toplcs 201
J. Napolitano, CEBAF
TOSCA Calculations at CEBAF 234
J. Lassiter, CEBAF
TOSCA Calculations for PILAC 281
B. Weintraub, MP- 8
Measurements of EPICS Quadrupoles 282
C. Morris, MP-10
Quadrupole Measurements and Analysis at Bates Laboratory 292
J. Zumbro, Massachusetts Institute of Technology
Analysis of 3D Quadrupole Data 314
J. Arrington, Abilene Christian University
Quadrupole 3D Fringe Fields 331
(Theoretical Lecture)
K. Halbach, Lawrence Berkeley Laboratory
Analysis of 3D Field Data- 355
D. Lobb, University of Victoria
Analysis of Dlpole Fringe Flelds 430
F. Neri, AT-3
Quadrupoles with Perfect $\mathbf{N}=2$ Symmetry 431
Pete Walstrom, AT-3
CEBAF Superconducting Cos (20) Quadrupole 445 S. Nanda, CEbAF
Upgrades to TRANSPORT and TURTLE 484
D. Carey, Fermi National Accelerator Laboratory
GIOS 515
H. Wollnik, Lieberg University
MARYLIE 546
A. Dragt. University of Maryland
Optics using Differential Algebra 595
M. Berz, Michigan State University
A Possible Test of Quad Optics Using EPICS 643
H. Thiessen, MP-14
Rapporteur 649
K. Brown. Stanford University

AGENDA

PILAC OPTICS WORKSHOP

LAMPF AUDITORIUM MONDAY, AUGUST 12, 1991

8:30-9:10	Introduction	H.A.Thiessen
9:10-9:35	PILAC Injection Line Design	B. Blind
9:35-10:00	PILAC General-Purpose Line Design	N. Mao
10:00-10:30	COFFEE BREAK	
10:30-11:00	Program RAYTRACE	H. Enge
11:00-11:30	Design \& Performance of MRS	R. Boudrie
11:30-11:45	Program MOTER	M. Klein
11:45-12:00	Recent Upgrades of MOTER	H. Butler
12:00-1:00	LUNCH	
1:00-1:15	Use of MOTER at Michigan State	J. Nolen
1:15-1:30	Spectrometer Design at Michigan State	A. Zeller
1:30-2:05	Use of MOTER at CEBAF \& Related Topics	J. Napolitano
2:05-2:25	TOSCA Calculations at CEBAF	J. Lassiter
2:25-2:45	TOSCA Calculations for PILAC	B. Weintraub
2:45-3:00	Measurements of EPICS Quadrupoles	C. Morris
3:00-3:30	COfFEE BREAK	
3:30-3:45	Quadrupole Measurements and Analysis at Bates Laboratory	J. Zumbro
3:45-4:15	Analysis of 3D Quadrupole Data	J. Arrington
4:15-5:15	Quadrupole 3D Fringe Fields (Theoretical Lecture \#1 of 2)	K. Halbach
6:30-10:00	Banquet and Discussion Session at Los Alamos Inn	Group

PILAC OPTICS WORKSHOP
 LAMPF AUDITORIUM TUESDAY, AUGUST 13, 1991

830.930	Quadrupole 3D Fringe_Fields (Theoretical Lecture \#2 of 2)	K Halbacn
9:30-10:00	COFFEE BREAK	
1000-1030	Analysis of 3D Field Data	D Lobb
1030-1100	Analysis of Dipole Fringe Fields	F Neri
1100-11-30	Quadrupoles with Perfect $\mathrm{N}=2$ Symmerry	P Walstrom
11.30-12.00	CEBAF Superconducting Cos (20) Quadrupoie	S. Nanda
12:00-1:00	IUNCH	
1.00-1.30	Upgrades to TRANSPORT and TURTLE	D Carey
130-200	GIOS	H Woilnik
200-230	MARYLIE	A Dragt
230-3.00	Cotics Using Differentiä! Algebra	M Berz
3:00-3:30	COFFEE BREAK	
3 30-345	A Possible Test of Quad Optics Using EPICS	HA. Thiessen
345-430	Group Discussion	
430-500	Rapponeur	K Brown

PILAC OVERVIEW

Technical Summary and Recent Developments

- an Overview Talk for
- PILAC Optics Meeting
-by
- Arch Thiessen
- 12 August, 1991

Contents

- Why are we Here?
- Charge to Workshop
- PILAC Reference Design Summary
- Physics
- PILAC Design
- LAMPF in 2001
- MOTER
- Construction, Measurement and Shimming of EPICS
- Summary
- Repeat Charge to Workshop

Charge to Workshop !

- Review PILAC Optics Calculations !
- Injection Line
- High-Res Dispersed Line and Spectrometer
- General-Purpose Line and MRS
- How Good Are Our Magnet Modeis ?
- Optics is Only as Good as Field Models
- Analyze 3-D Calculations and Measurements
- Compare Available Codes with Emphasis on Field Models
- Can We Build Quads With Pure $\mathrm{n}=2$ (including ends) ?
- Can We Use Entire Open Region of Quadrupole:s?
- What Do We Do When The System Is Constructed?
- Measurement Techniques
- Analysis of Measurements
- Shimming
- Adjustable Elements

4

PILAC Design Study

PILAC Team Funded by LDRD

Physics with Pions up to 1.1 GeV

- Λ-Hypernuclear Physics
- Accessed thru (π, K) Reaction at 920 MeV
- Λ-Nucleon Scattering
- Λ produced by (π, K) Reaction at 920 MeV
* Λ scattered in K production target
- Baryon Resonances
- access to next 12 resonances above Δ
- Higher Energy Pion-Nucleus Scattering
- longer mean-free-path of pion
- role of π^{+}and π^{-}reversed
- single- and double-charge exchange
- Rare Decays - for example:
- precision pion beta decay rate (0.1%)
* improved beam monitoring
- no e or p in PILAC beam!
$-\eta \rightarrow \mu \mu$ (CP violation)
* look for polarization of muons
- Of These. (π, K) is the Most Demanding. hence Sets the Specifications for PILAC

What PILAC Will Do for Hypernuclear Physics

- 36 Counts in the Weakest State in a 1-Day Run

PILAC Concept

PILAC Conceptual Layout

PILAC Specifications

- Injection Line
- 360 MeV ($480 \mathrm{MeV} / \mathrm{c}$) Fixed Energy
- Acceptance - $\pm 62 \mathrm{mrad} x \pm 3.6 \mathrm{~mm} x \pm 3.5 \%$
* 225 л mm-mrad
* 15 msr
* $7 \% \mathrm{dp} / \mathrm{p}$
- Linac
- 360-1070 MeV (480-1200 MeV/c) Injection
$-225 \pi \mathrm{~mm}-\mathrm{mrad} \times 7 \% \mathrm{dp} / \mathrm{p}$ input @ 360 MeV
$-113 \pi \mathrm{~mm}$-mrad $\times 1.5 \% \mathrm{dp} / \mathrm{p}$ output @ 920 MeV
- High Resolution Dispersed Line - for VHV Configuration
- 360-1070 MeV (480-1200 MeV/c)
- Acceptance $113 \pi \mathrm{~mm}-\mathrm{mrad} x \pm 0.75 \%$
- 10^{-4} Momentum Resolution
- 5 mrad angular resolution
$-10^{\Xi} \cdot \pi^{*}$ isec at 920 MeV
- General-Purpose Line - for MRS in HHH Configuration
- 200-1200 MeV/c
- Acceptance 225 pi mm-mrad $x \pm 1 \%$
- Adi Dispersion 2-4 cm/\% to match MRS
- 3 MeV fwhm at 920 MeV Including MRS
- Broad Range of Tuning in Achromatic Mode
$-10^{\circ} \pi^{*} \mathrm{sec}$ at 920 MeV
- Most Difficult Specification to Meet is Intensity Specification

How to Achieve High Yield?

- Optimize Acceptance of Everything
- Every Element as Short as Possible
- to Minimize Decay Losses
- Use Best Available Techology for Everything

Estimate of PILAC Yield

PILAC Linac Design

Scäling Up Cornell Technology

- Our Specification is
$-12.5 \mathrm{MeV} / \mathrm{m}$
- $\mathrm{Q}_{\mathrm{o}}=5 \times 10^{9}$
- Present Limit is Field Emission
- Heat Treatment Dramatically Reduces Field Emission

Zero-Degree Pion Channel Layout

- Input/Output Phase Space 225 л mm-mrad

- 0^{0} Production - 13 cm ATJ Graphite Target
- Acceptance - 10 Milisteradians x 6.5 \% dp/p
- Third-Order Geometric and Chromatic Aberrations Corrected
- 82\% Transmission into $225 \pi \mathrm{~mm}$-mad
- Designed by Barbara Blind

Possible Simultaneous π^{+}and π^{-}Injection Line

PILAC High Resolution Dispersed Pion Channel and Spectrometer

- 10^{-4} Beam Line and Spectrometer
- Meets 200 keV Resolution Requirement at 1 GeV
- Target Size - 40 cm high by 10 cm wide
- Spectrometer Solid Angle 27 msr
- Scattering angle Resolution - 5 mrad fwhm - 20 keV per mrad for (π, K) on Carbon at 12 Degrees

General-Purpose Pion Beam Line

- Achromatic Mode for Experiments and Future Energy Upgrade
$-\sim 1 \mathrm{~cm}$ diameter Beam Spot
- Horizontal Dispersed Mode
-2 MeV Resolution with MRS
- \& Coincidence Experiments
- Naifeng Mao Responsible for Design

Beam Sharing in PILAC

- Kicker-Based Beam-Sharing System
- Full-Aperture Slow Laminated-Iron Kicker
* Synchronized with Linac Energy \& Sign Change
- by Rephasing of Cavities
* Switching Time 0.01 Sec
- Snares Available Beam and Duty Factor
* on ~ 0.1 sec time scale
- Compatible with Simultaneous $\boldsymbol{\pi}^{+}$and $\boldsymbol{\pi}^{-}$Injection

LAMPF in 1991

LAMPF in 2001?

Possible Area-A Upgrade?

Summary: PILAC vs. Competition

- High Energy (920 MeV)
- Optimizes (π^{+}, K^{+}) Yield
- High Resolution (~200 keV)
- 10x Better than Today
- High Intensity ($\sim 10^{9} \pi^{+} / \mathrm{sec}$)
- 100x Better than Today
- Broad Range of Nuclear Physics
- Using Same Facility
- in Simultaneous Oreration

- Cost Effective - Minimum Cost Access to (π^{+}, K^{+})
- PILAC Is RF Separator - Pion Beams of Unprecedented Purity
- Unique - PILAC is Possible Only at LAMPF
- High Technology in All Elements
- High-Gradient Superconducting Linac
- Large-Aperture Superconducting Quads
- High-Field Superconducting Dipole
- High-Acceptance π^{+} / π^{-}Injection Line

MOTER:
 Morris Klein's Optimized Tracing of Enge's Rays

- RAYTRACE with Optimizer
- Very General Demand Definition
- Including Software Corrections
* and Measuring Errors
- MAPPOLE Element (ray trace from field map)
- Random Ray Generator and Apertures
- Human Cannot Bias Design by Incorrect Ray Pattern
- MOTER is Equivaient to TRANSPORT pius TURTLE
- Adding Cavity Element and Longitudinal Dynamics
- To Include Linac in Calculation

Limitation on PILAC Acceptance: Aperture of First Injection Line Magnet

- Entire Magnet will be in Vacuum System
- No Beam Pipe!
- Can We Use Entire Open Region?
- Not Just Circular Region !
- Warning: We Must Go Outside of
- Circle of Convergence!

Compare EPICS and PILAC

Recent Results on Hi-Res Beam Line Optics

- Calculations of Li \& Thiessen Used 6-D Ellipsoid
- Changed to 4-D Ellipsoid
- Uniform Distribution for $x^{\prime} \& y^{\prime}$
- Re-Optimized Beam Line (without Match Section)
- Required Use of $4^{\text {th }}$ Order Corrections
- Resolution Worsened ~20\%

Problems of PILAC Beam Line and Spectrometer

- Spectrometer Dipole Must Go To 24 kiloGauss
- Put in 2-D Calulation of Field with large $4^{\text {th }}$ Order
* Resolution OK with $4^{\text {th }}$ Order Software Corrections
- Spectrometer Quads are Very Short
- Effective Length 70 cm
- Aperture Diameter 76 cm
- Distance Between Effective Edges 40 cm
* End Fields are Very Important
- Beam Line Requires $4^{\text {th }}$ Order Corrections in Multipoles
- Accuracy of Field Representation in Multipoles
- Using "H. Enge" Rectangular Multipole Formulae
- Need to Design "Zero-Degree" System

Estimate of Effect of $\mathrm{n}=6$ in Quad Fringe Field

Take Results from Napolitano and Hunter at $r=30 \mathrm{~cm}$
0.1 Tesla $\times 12 \mathrm{~cm}$ in each of 2 tumps
separated by 15 cm
Assume Field is pure $n=6, m=0$, hence

$$
B_{x} \propto y^{5}
$$

Assume ray leaves center of target and arrives at $r=30 \mathrm{~cm}$ Focussing such that ray is bent parallel to axis in 40 cm Then kick projected back to target is

$$
\Delta y=300 \mathrm{~mm} \times \frac{0.1 \text { Tesla } \times 12 \mathrm{~cm}}{0.8 \text { Tesla } \times 40 \mathrm{~cm}} \times 5 \times \frac{0.18 \times 20 \mathrm{~cm}}{30 \mathrm{~cm}}=6.75 \mathrm{~mm}
$$

There are 4 fringe fields acting coherently

$$
\therefore \text { total } \Delta y=4 \times 6.75=27 \mathrm{~mm}
$$

MAPPOLE

- Rectangular Grid of Measurements on Midplane
- Contains All Harmonic Polynomials in x, y, z up to $5^{\text {th }}$ order
- Each Polynomial is Solution of Laplace's Equation
- Can Use as Interpolating Polynomial or Least Squares Fit
- Depending on Number of Nearest Points Used
- Has Function To Cut Off Field
- To Simulate Shim on Field Clamp
- Checked by Generating Map Identical to RAYTRACE
- With Enge's Field Formula on Midplane
- External Version Used Three Planes of Maps
- Near Midplane and Near Poles
- PILAC Requires 10^{-4}
- EPICS was 3×10^{-4}

The Disappointments of MAPPOLE

- Computed Field Is Not Continuous In Plane of Pole Tip
- Cannot Reproduce Observed Bump in Field
- 1^{2} Grid Not Sufficient for 4" Gap
* "Rapid Mapper" Forced 1" Grid in Z
- Three Plane Version Did Not Help
- Could Not Fit Midplane and Pole Plane Simultaneously
- Cutoff Function Poorly Represented Effect of Shim
- Convergence of Shimming Process was Poor

History of EPICS Beam Line Shimming

- Use $1^{\text {st }}$ Dipole in MAPPOLE
- Remaining Magnets as "DIPOLES"
- Shimmed Field Clamps
- Using Maximum Field (15 kG) Map
- Two Iterations on Shims
- Then W'ork on Shimming from Maps of 2nd Magnet
$-\ldots$ and $3 r^{\text {d }}$ and $4^{\text {th }}$ Magnet
- Computational Results Not Very Satisfying
- Could Not Estimate Accuracy of Procedure
- Final Trimming with Tuning of Multipoles
- Using Elastic Scattering
- Shimming Procedure Probably Worked
- Minimum Currents in Multipoles at 15 kG
- Achieved Same Ballpark as Design Resolution
- But No Precision Check of Off-Midplane Optics

History of EPICS Spectrometer Tuneup

- Calculated $2^{\text {nd }}$ and $3^{\text {rd }}$ Order Software Corrections
- Using Available Dipole Mạ
- Integral Harmonic Data for Quads
* No Use of Fringe Field Information
- Calculated Software Corrections Did Not Work !
- Resolution Not Much Better Than 1st Order
- Determined Experimental Software Corrections
- Using Elastic Scattering, Rods, \& Siits, etc.
- Achieved Same Ballpark as Design Resolution
- Problem May Have Been Unknown Chamber Offsets
- Expansion Not Centered on Optic Axis

What Must We Do Better the Next Time ?

- Use End Fields of Quads ?
- Use 3-D Field Map for $1^{\text {st }}$ Injection Line Quad ?
- and 3-D Calculation for Design Stage?
- Use a Full 3-D Field Map of Dipoles ?
- and 3-D Calculation for Design Stage?

Sumimary: Charge to Workshop !

- Review PILAC Optics Calculations !
- Injection Line
- High-Res Dispersed Line and Spectrometer
- General-Purpose Line and MRS
- How Good Are Our Magnet Models ?
- Optics is Oniy as Good as Field Models
- Analyze 3-D Calculations and Measurements
- Compare Available Codes with Emphasis on Field Models
- Can We Build Quads With Pure $n=2$ (including ends) ?
- Can We Use Entire Open Region of Quadrupoles?
- What Do We Do When The System Is Constructed?
- Measurement Techniques
- Analysis of Measurements
- Shimming
- Adjustable Elements

PILAC INJECTION LINE

PILAC INJECTION LINE:

EVOLUTION
AND
PRESENT STATUS

Barbara Blind
Accelerator Technology Division Los Alamos National Laboratory Los Alamos, NM 87545

$$
\text { August 12, } 1991
$$

EARLY DECISIONS

- 805 MHz linac
- focusing elements immediately downstream of the target

RECENT DESIGN PARAMETERS (TO JUNE 1991)

- 225π-mm-mrad emittance
- $x=y=4.5 \mathrm{~mm}, x^{\prime}=y^{\prime}=50 \mathrm{mrad}$ for the input beam
- $\pm 3.3 \%$ momentum bite
- equivalent drift for the beamline of approximately 11 m
- transport of pions between 380 MeV and 530 MeV
$\bullet 0.5-\mathrm{m}$ first drift

DEMONSTRATION OF A SUCCESSFUL π^{+}IINE

OUTPUT-BEAM PHASE-SPACE PROJECTIONS

a) for beamline in linear approximation
b) for beamline without sextupoles and octupoles
c) for beamline with sextupoles and octupoles

PERFORMANCE

- with nonlinear correctors, 82.2% of pions are within transverse acceptance of accelerator
- without roonlinear correctors, 56.5% of pions are within transverse acceptance of accelerator
- beamline is 20.08 m long
- 50% of $380-\mathrm{MeV}$ pions decay in transit
- thus: with (without) nonlinear elements, 41.1% (28.3\%) of initial pions are captured
- equivalent drift of beamline is 11.06 m for $380-\mathrm{MeV}$ pions, 5.10 m for $530-\mathrm{MeV}$ pions

SIMULTANEOUS TRANSPORT OF π^{+}AND π^{-}

PERFORMANCE

left bend

- 64.3% of pions are within transverse acceptance of accelerator
- beamline is 10.53 m long
- 31% of $380-\mathrm{MeV}$ pions decay in transit
- thus: 44.4% of initial pions are captured
- equivalent drift of beamline is 6.74 m for $380-\mathrm{MeV}$ pions
right bend
- 37.7% of pions are within transverse acceptance of accelerator
- beamline is 24.47 m long
- 57% of $380-\mathrm{MeV}$ pions decay in transit
- thus: 16.2% of initial pions are captured
- equivalent drift of beamline is -6.93 m for $380-\mathrm{MeV}$ pions

OUTPUT-BEAM PHASE-SPACE PROJECTIONS

a) for left bes. 1 in linear approximation
b) for lef bend with aberrations
c) for left bend with aberrations

OUTPUT-BEAM PHASE-SPACE PROJECTIONS

a) for right bend in linear approximation
b) for right bend with aberrations
c) for right bend with aberrations

PRESENT DESIGN PARAMETERS

- 225π-mm-mrad emittance
- $x=y=3.63 \mathrm{~mm}, x^{\prime}=y^{\prime}=62 \mathrm{mrad}$ for the input beam
- $\pm 3.5 \%$ momentum bite
- transport of pions of 360 MeV
- 0.575-m first drift

PERFORMANCE WITH PRESENT DESIGN PARAMETERS

left bend

- 49.2% of pions are within transverse acceptance of accelerator
- beamline is 11.62 m long
- 33% of $360-\mathrm{MeV}$ pions decay in transit
- thus: 33.0% of initial pions are captured
- equivalent drift of beamline is 8.12 m for $360-\mathrm{MeV}$ pions
right bend
- 19.0% of pions are within transverse acceptance of accelerator
- beamline is 25.74 m long
- 59% of $360-\mathrm{MeV}$ pions decay in transit
- thus: 7.8% of initial pions are captured
- equivalent drift of beamline is -3.29 m for $360-\mathrm{MeV}$ pions
- path-length difference correct for sim:ultaneous acceleration of $360-\mathrm{MeV} \pi^{+}$and $360-\mathrm{MeV} \pi^{-}$

FEATURES OF PRESENT π^{+} / π^{-}TRANSPORT SYSTEM

many constraints on geometry

- proton beam transport/dumping
- switching of polarities
- shielding
- π^{-}-beam matching
left bend
- simple
- easy to tune. in practise
- transversely matched
- equivalent drift approximately right
- pion transmission as good as can be expected for a system with the constraints imposed on this system
right bend
- complex
- hard to tune, in practise
- long
- transversely matched
- wrong equivalent drift
- very poor pion transmission

PROTON-BEAM HANDLING

HOW TO REMEDY THE SITUATION - I

WITH SIMILAR BENDS?

advantages

- both lines of similar quality
- no need tu switch polarities
- approximately erual equivalent drifts for improved longitudinal match
- probably more π^{-}captured than with present system
disadvantages
- lines at least 16 m long, each
- probably fewer π^{+}captured than with present system

PILAC GENERAL-PURPOSE LINE DESIGN

PILAC General-Purpose Beam Line

Naifeng Mao and Henry A. Thiessen
Los Alamos National Laboratory
MP-14, MS-H847
Los Alamos, NM 87545
August 12, 1991

PURPOSE

PILAC, a pion linac facility is being proposed to provide 1.07 GeV ($1.2 \mathrm{C} \mathrm{GeV} / \mathrm{c}$) pions at LAMPF (Los Alamos Meson Physics Facility)

The PILAC general-purpose beam line is being designed to deliver these pions to experiments that require either an achromatic beam on target or a dispersed beam while using the existing MRS (medium resolution spectrometer)

This beam line will also serve as a pion injector for a future linac extending the energy of PILAC to 1.6 GeV

Concept for PILAC facility at LAMPF

The beam line is downstream of the kicker-based beam sharing systen, and unsymmetrical

It has two output ports: Port A (including A1 \& A2) and Port B, to allow setup in one experimental cave while operating into a second cave

It cunsists of a matching section (four quadrupoles), a main bending and focusing section (two dipoles, four quadrupoles and one sextupole),
two post-fousing sections (four quadrupoles for each port)

It bends in horizontal plane, bending angles: $90(5+40+45)$ deg. for Port A $0(5+40-45)$ deg. for Port B

The distance (D) from the last quadrupole to
Port A1: 1.5 m , Port A2: $3.5-4.5 \mathrm{~m}$, Port B: 1.5 m
p. 5

TUO MODES OF OPERATION

ACHROMATIC MODE

```
    for special-purpose experiments:
        small beam spot, Port A1
        tuneable beam spot, Port A1
        large beam spot with small divergence, Port A2
for serving as a pion injector for a future pion
    linac extending pion energy to 1.6 ueV , Port A1
```

DISPERSED MODE
for experiments with the existing medium resolution spectrometer (HHH operation mode), Port B
HHH: Horizontal dispersion
Horizontal scattering Horizontal analysis

INPUT BEAM

Central momentum $\mathrm{P}=1.20 \mathrm{GeV} / \mathrm{c}$ (max.) Momentum spread Phase space
$\delta= \pm 0.75 \%$
$A x O=A Y O=112.5 \pi \mathrm{~mm} \mathrm{mrad}$
$0.50 \mathrm{GeV} / \mathrm{c}$ (min.) ± 1.06 \%
$225 \pi \mathrm{~mm}$ mrad

REQUIREMENTS FOR OUTPUT BEAM Achromatic mode, Max. momentum beam

Momentum selection is needed at a slit to eliminate protons and electrons

Different output beain spots and phase space are required:

Small beam spot at Port A1: 0.6-0.7 cm radius by about 20 mrad half angular divergence

Tuneable beam spot at Port A1, spot radius over a wide range: $1.0,1.5$ and 2.0 cm

Large beam spot at Port A2, spot radius larger than 2.0 cm with less than 6 mrad half divergence

For min. momentum beam with double phase space, spot size by a factor of $\sqrt{2}$

As a pion injector for a future linac, output beam with a specified phase space

Area of phase space will not increase any more than necessary
REGUIREMENTS FOR OUTPUT BEAM Dispersed mode, Max. momentum beam (for use with the existing MRS)
Horizontal dispersion (R16) varies over a range of $2-4 \mathrm{~cm} / \%$ for dispersion matching with MRS
Transfer matrix elements R26 and R12 adjustable for correction of kinematic line broadening $-5 \leq R 26 \leq 5 \mathrm{mrad} / \%$ assumed in design
Narrow monochromatic beam spot: $0.2-0.4 \mathrm{~cm}$ half width, to provide a beam line resolution of 0.2%
For min. momentum beam, by a factor of $\sqrt{2}$
Half height less than 1.5 cm (field of view of MRS: 1.57 cm)

CONSTRAINTS

Field at pole tips of quadrupoles not higher than 7.5 kG (half-aperture of quadrupole 10 or 15 cm)

Half gaps of dipoles not larger than 10 cm
Distance from the last quadrupole to the target not less than 1.5 m

METHOD AND PROCEDURE

Beam optics is calculated with program TRANSPORT in the first and second order

Design begins with the achromatic mode of operation at Port Al

When changing the beam output port or/and the mode of operation
the geometry of the beam line is unchangeable
only the field gradients of quadrupoles in the beam line can be readjusted

Design also begins with the maximum momentum beam, and then the minimum momentum beam with double phase space considered

Eigh-resolution beam line

R16-0
R26-0
-21.0
-43-0
बना-1.0, 1.5, 2.0 cm
$\sqrt{\sigma 22}=11.9,7.8,5.9 \mathrm{mad}$
$\sqrt{\sigma 33}=1.0,1.5,2.0 \mathrm{cF}$
$\sqrt{\sigma 44}=11.9,7.8,5.9$ E

General-purpose beam line
Port Al
Achromatic mode
Tuncable beam spot Double valst

Run GPL495(2nd order)
Total length 34.37 m

KICK

OL2
OLI
From LINAC

AxooAyoul $12.5 \pi \mathrm{~mm}$ mrad $6- \pm 0.75$ \%

p. 17

```
High-resolution beam line 
```


Port 11
R16.0
R26=0
Specified ellipses
$\sqrt{\sigma 11-4.40 ~ c m ~}$
o22-3.5 mrad
$\sqrt{\sigma 3}-3.76 \mathrm{~cm}$
大44-3.2 mrad
AXe119 Tma Erad
Ay-119 7 an mrad
(18
004
003
(1002
001
∞

```
General-purpose beam line
Port 11
Achromatic mode
Specified phase space
for injection
Run GPL496(2nd order)
Total length 34.37 m
```

kick
OL2
OLI
From LINhC
Axo-Ayoul $12.5 \pi \mathrm{~m}$ 8-50.75 z

Port (D)		$\begin{gathered} A 1 \\ (1.5 m) \end{gathered}$	$\begin{gathered} A 2 \\ (3.5 m-4.5 m) \end{gathered}$	$\begin{gathered} B \\ (1.5 m) \end{gathered}$
Achromatic Mode $\begin{aligned} & R 16=R 26=0 \\ & \sigma 2!=\sigma 63=0 \end{aligned}$ Momentum selection R=1.5\%	$\begin{gathered} \text { small } \\ \text { beam spot } \end{gathered}$	$0.64 \mathrm{cn} * 18.7 \mathrm{mr}(\mathrm{g})$ $0.67 \mathrm{~cm} * 22.6 \mathrm{mr}(\mathrm{V})$		
	tuneable bean spot	$\begin{aligned} & 1.0,1.5,2.0 \mathrm{c} \\ & 1.50 \mathrm{c} \nexists 7 . \mathrm{Bar}(\mathrm{~B}) \\ & 1.50 \mathrm{c} \otimes 7.8 \mathrm{Par}(\mathrm{~V}) \end{aligned}$		
	specified phase space (for injection)			
	large beam spot		D=4.0m 2.20 cm \$5.4ar(8) $2.20 \mathrm{~cm} \pi 5.4 \mathrm{mr}$ (V)	
Dispersed Mode				R16 $=-2.0 \mathrm{~cm} / \chi$ R26- $0.0 \mathrm{gr} / \mathrm{X}$ R12-0.07 cm/mr R-0.21 \% $1.53 \mathrm{~cm} * 54.3 \mathrm{mr}(\mathrm{B})$ $0.95 \mathrm{~cm}=13.0 \mathrm{mr}(\mathrm{V})$

Port (D)		$\begin{gathered} A 1 \\ (1.5 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { A } 2 \\ (3.5 m-4.5 m) \end{gathered}$	$\begin{gathered} B \\ (1.5 m) \end{gathered}$
Achromatic Mode	$\begin{gathered} \text { small } \\ \text { bean spot } \end{gathered}$	$\begin{aligned} & 1.17 c= \pm 21.0 \operatorname{mr}(\mathrm{~B}) \\ & 1.23 \mathrm{c} \pm 23.3 \mathrm{~V}(\mathrm{~V}) \end{aligned}$		
	tuneable bean spot	$\begin{aligned} & 1.4,2.0,2.5 \mathrm{~cm} \\ & 2.00 \mathrm{c}=12.1 \operatorname{lnr}(\mathrm{~B}) \\ & 2.00 \mathrm{c}=12.1 \operatorname{mr}(\mathrm{~V}) \end{aligned}$		
$\begin{aligned} & \mathrm{R} 16-\mathrm{R} 26=0 \\ & \sigma 21-243=0 \end{aligned}$	specified phase space (for injection)			
Momentu selection R=2.2X	large beam spot		D=4.0m 3.11cm*7.9mr(H) $3.11 \mathrm{c} \pm * 8.1$ mr (V)	
Dispersed Mode	$\begin{aligned} & -4.0 \leq R 16 \leq-2.0 \mathrm{~cm} / z \\ & -5.0 \in R 26 \leq 5.0<\mathrm{rr} / \chi \\ & \sigma 2100 \\ & \sigma 43-0 \end{aligned}$			$\begin{aligned} & \mathrm{R} 16=-2.0 \mathrm{~cm} / \% \\ & \mathrm{R} 26=0.0 \mathrm{mr} / \% \\ & \mathrm{R} 12=0.07 \mathrm{~cm} / \mathrm{mr} \\ & \mathrm{R}=0.29 \% \\ & 2.18 \mathrm{~cm} \pi 76.8 \mathrm{mr}(\mathrm{~B}) \\ & 1.35 \mathrm{~cm} \star 18.8 \mathrm{mr}(\mathrm{~V}) \end{aligned}$

SUMMARY

A general-purpose pion beam line with two output ports and two operation modes designed

Meet the requirements in the first and second order

Correction of kinematic line broadening by ajusting transfer matrix elements R26 and R12 at fort B (for dispersed mode operation) needs to be studied in detail

PROGRAM RAYTRACE

These notes discuss some "loose ends" in KAYTRACE and some practical hints for the use of the program. A section of the RAYTRACE manual is included as an introduction.

1. Fringing field descriptions in MTYP2 dipoles.

Figure 7 in the manual and Eq. 19 explains how we determine a "representative" distance to the effective field boundary. There has not been much checking done to justify this particular formula. The only definite things that can be said for it is that it gives a) the correct answer for a straight boundary and b) the right trend for a curved one. Figure 1 of this report shows an example of iso-B lines calculated by use of the procedure. It illustrates at the same time the effect of the proximity of the pole corners, discussed next.

2. Finite width of poles.

The manual defines what we mean with the effective field boundary (EFB). Quote: "This problem has been resolved by redefining the EFB as a mechanical reference boundary - a curve following the mechanical shape of the pole piece. The position of the EFB relative to the pole piece is the position calculated on the assumption that the boundary is straight" This statement actually is not quite complete. We generally modify the EFB as defined above by curving it around the corners of the pole piece using evan-order s-parameters. The order of these parameters depends upon the ratio of pole width W to air gap D, that is, a very narrow pole requires a second-order correction, a wide one requires an eight-order correction. The formulas we are using are, for Rogowski poles (with Reorbit radius):

$$
\begin{aligned}
& n=W / D=2(i+\delta) \text { where } i=\text { integer, } \delta<1 \\
& s_{21}=\frac{0.5(1-\delta) D}{R}\left|\frac{2 R}{W}\right|^{21} \\
& S_{21+2}=\frac{0.5 \delta D}{R}\left|\frac{2 R}{W}\right|^{21 \cdot 2}
\end{aligned}
$$

The width W is measured at the root of the pole piece.
For a magnet without pole taparing, change the factor 0.5 to 0.3.
3. How wide should the poles be?

For magnets operating in the range of 1.2 tesla and up the sides of the poles must be tapered to avoid saturation. Generally, a 60 -degree taper with a width of one alrgap ia adequate (Fig. 2).

How close to the edge can the particle move before they experience a drop in field of a factor 10^{-4} ? We are assuming flat poles, i.e. no "Rose shims". For $x>0$ we can express the scalar potential as:

$$
\phi=-B_{0} y+\sum_{n} A_{n} e^{\cdot k_{n} x_{s}} s i n k_{n} y
$$

This satisfies the requirement that the perturbing part of the scalar potential is zero at the pole surfaces and on the midplane provided

$$
k_{n} D=2 \pi n \text { with } n=\text { integer }
$$

The lowest term $(n=1)$ gives

$$
k_{1}=2 \pi / D
$$

This term decays a factor 10 over a distance

$$
\Delta x=(D / 2 \pi) \ln 10=0,367 D
$$

At the corner $(x=0)$ the magnitude of the perturbation is $\Delta B / B \approx 0.2$. Assuming this is all from the lowest order term, we find the distance from the corner to the point where the term has been reduced by a factor 2000 (to $\Delta B / B=10^{\circ 4}$) given by

$$
k_{1} x=\ln 2000=7.6
$$

which gives

$$
x=7.6 \mathrm{D} / 2 \pi=1.21 \mathrm{D}
$$

This analysis shows that for high-precision magnets without Rose shims the total widths of pole pieces (measured at the roots) should be at least 4.5 airgaps plus the width of the beam.

Figure 3 shows an example of a profile along the same idea as the Rose shim. The purpose of the Rose shim, or the corresponding bump used in this case, is to eliminate the lowestorder term in the axpansion. The nigher-order termu decay much faster with incraseing x.

The profile in Fig. 3 produces a $\Delta B / B$ lese than 100^{4} in a region which is approximately one alrgap wide. Thn total width of the root of the pole is 4.58 times the alrgap.
4. Magnet dipoles with gradients.

In the subroutines MTYPJ and MTYP4 the fringing-field expreselons are imilar to the ones for MTYY2 except, of ciurse, the n-value and higher-order terme of $\Delta R / R$ are included. Odtside the EFH we are using x instead of ΔR In these expressions. Thls is because outside the pole pleces the fleld cannot "know about" the curvature of the magnet. Both n and the higher-order gradients
should probably decay with increasing distance from the poles. This has not been written in to these programs.
5. Fitting the fringing-field expression to real data.

We either use measured fringing-field curves or data produced by POISSON calculations to fit the fringing-field expression (Eqs. 6,7 and 8 in the manual). We use a program called LASLFIT which also calculates the position of the EFB.

Be aware that the last coefficient in Eq. 7 must be odd and positive (CO3 or C05) otherwise the expression (6) does not have the correct asymptotic behavior.

Details of the off-median-plane field are very sensitive to the value of the coefficients. Not so much so in a "Rogowski" magnet as in a sharp-cornered magnet. Fortunately, the fi.eld integral along a straight line in the z-direction is not influenced by these uncertainties.

We have experienced some difficulties with. the corresponding expressions in quadrupoles in cases where the x-amplitudes in the fringing field exceeded the aperture radius. It probably would be better to fit the field of a quadrupole at the aperture radius rather than the jradient as measured at the axis. LASLFIT is not sophisticated enough for this, but it should be easy enough to write a program $10 r$ the purpose.
6. Subroutine pOLES.

Tine subroutine handles quadrupoles, sextupoles, octupoles, decapoles, docecapoles and any combination thereof. There is a proviaion for adjusting the effective lengthe of the various multipoles ralative to the quadrupole if thare is an admixture. The higher-order poles may aleo have a different rate of falloff of B vs. z in the fringing fiald. The corresponding constants (on the last line of the subroutina) have nuver been determined for any uxisting multipole. Other than this, the various multipoles are assumed to be proportional through the element. In other worde, thora is no provision for putting in a dodecapole, for instance in the fringing fields only.

It is possible, of course to introduce the dodecapoles (or other multipoles) as short ("deltafunction") elementa before and after the quadrupole with proper backtracking to place the effecta in the approprlate positions. These elements should ather have no fringing field zones or rringing field zones of "regular" length. Very short fringing field zones (large coefficiente) are likely to give trcuble.
7. TRANSPORT to RAYTRACE conversion.

We practically always run TRANSPORT firet on any ion-optical problem. In a few inwtances TRANSPORT does not have the required
mechanism. One example comes to mind: a dc accelerator. We ran the element alone with RAYTRACE, constructed an appropriate matrix and plugged it int, the TRANSPORT input. That does not give the correct answers lor the magnetic strengths of the elements following the matrix, but that is easy to adjust afterwards by multiplying by the ratio of the momenta.

We generally find very good agreement between focal strengths of dipoles in TRANSPORT and RAYTRACE. Of course, TRANSPORT does not have the zeroth-order shift XCORR which we have to insert. If the bounciaries have curvatures, we also need to have non-zero values for DELS (see below). Quadrupoles are more tricky. This is because TRANSPORT does not consijer the reduced focusing strengths of the fringing fields (relative to the field integral).

Ir general the sum of the focusing strengths $1 / f_{x}$ and $1 / f_{y}$ for a dipole is proportional to the integral of B^{2} along the path. The same holds approximately for a quadrupole doublet (or triplet), except it is the square of the gradient we are considering. So, just as for the dipole, we "lose" overall focusing power in the fringing field.

Our method for obtaining a better match between TRANSPORT and RAYTRACE is as follows. Our TRANSPORT input looks like this:

```
3. -R/2 ; (Drift -R/2)
5.0A R B 2R ; (Quad, length R, half gradient)
5.0A (L-R) B R ; (Quad, length L-R, full gradient)
5.cr. R B 2R ; (Quad, length R, half gradient)
3. -R/2 ;
(Drift -R;2)
```

The first and last entry asaures that the insertion length of the quadrupole is L meters. The two entries of lengths R have half gradiente and represent the fringing fields. The reason for halving the gradient by uaing an artificial radius 2R rather than a field $B / 2$ is to make it easier to optimize the strength by varying the three B's simultaneously and equally (variable a as shown here).

The quadrupole strengths calculated by the aid of TRANSPORT as described represent the first approximation for RAYTRACE. In some cases we need higher accuracy. In one examplo we raquired eight transfar coefficiente to have certain values. Our procedure was:
a. Run TRANSPORX with qudrupoles rapresented as shown above.
b. Run Raytrace with the strength determined under a). Record the values of the coefflcients which ware: $x / x, \theta / x, \theta / \theta, y / y, \phi / y$, $\Phi / \Phi, x / \delta$, and θ / δ. (The two confficients x / θ and γ / ϕ are not included aince they can be determined from the othere by use of Liorville's Theoram).
c. Run TRANsPORT varying seven quadrupole atrengths, BQ's, and a drift length, 1 , to produce the fame coefficients as RAYTRACE.

The changes $\triangle B Q$ and $\triangle l$ required in the TRANSPORT parameters to produce the same output as RAYTRACE are recorded.
d. Change the RAYTRACE strengths by $-\triangle B Q$ and -al; and run RAYTRACE again. This now produces first-order transfer coefficient very similar to TRANSPORT, i.e. it produces the desired beam transfer.

8. Subroutine yuLTIPOLE

As written, this subroutine describes an element that can contain any cominbation of multipoles up to dodecapole. In this respect it is similar to pOLES, but the field descritpion as a function of 2 is bell-shaped and intended to be short. There are two variables in the field expression that can be used to fit measured or calculated values for $B(z)$. Since the element is intended to be short, the effect on a stiff beam is almost that of a deltafunction, so an accurate description of $B(z)$ is not critical. With the values $c_{7}=0.4$ and $c_{8}=0.1$, suggested in the manual, the "effective length" of the multipole is at least in one case studied about $1.2 L_{w}$. The relationship of strengths between the MULTIPOLE and POLES is therefore given by:

$$
1.2 B_{m} L_{w}(W / 2)^{-n} C_{l \prime}=B_{0} L_{0} R_{0}^{\cdot n}
$$

where n is the order of the desired effect (o for dipole, etc.) The factor 1.2 should be taken with a grain of salt.

RAYTRACE ELEMENTS

1. DIPO - Six dipole versions
2. EDIP - Cylindrical electrostatic deflector
3. POLE - Quadrupole to dodecapole
4. MULT - Multipole correction element
5. SOLE - Single-layer solenoid
6. VELS - E×B velocity selector
'. LENS - Matrix plus spher., chrom. aberr.
7. SHRT - Coordinate shifts, rotation
8. DRIF - Straight drift
9. COLL - Rectangular or elliptic apertures
10. ACCE - DC accelerator
11. EINZ - Symmetric einzel lens

Fig. 1. Pole piece profile at entrance and exit

Fij.2. Cross section of magnet (one half)

LAMPF UNCLAMPED

Fringing field of dipole, Median plane

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{Y}}=\mathrm{B}_{0} /\left(1+\mathrm{e}^{\mathrm{s}}\right) \\
& \mathrm{S}=\mathrm{COO}+\mathrm{CO1s}+\mathrm{CO2s}^{2}+\mathrm{C} 03 \mathrm{~s}^{3}+\mathrm{C} 04 \mathrm{~s}^{4}+\mathrm{C} 05 s^{5} \\
& \mathrm{SD}=\text { modified shortest distance to EFB }
\end{aligned}
$$

The EFB described by:

$$
\Delta z / R=-\left[S 02(x / R)^{2}+\ldots . .+S 08(x / R)^{8}\right]
$$

$$
\begin{gathered}
.1=W / D=2(i+\delta) \text { where } i=\text { integer, } \delta<1 \\
S_{2 i}=0.5(1-\delta)(D / R)(2 R / W)^{2 i} \\
S_{2 i+2}=0.5 \delta(D / R)(2 R / W)^{2 i+2}
\end{gathered}
$$

くム－JUN－ロく 1く』3410」
SHARP POLE－UNCLAMPED

Pre.

III. Ray Tracing

The motion of a particle carrying a charge Q is governed by the Lorenta force,

$$
\begin{equation*}
\vec{F}=Q|\vec{E}+\bar{v} \times \vec{B}| \tag{8}
\end{equation*}
$$

whore \bar{E} is the alectric field and B is the magnetic field. In a rectangular (x, y, z) coordinate aystem, the equatione of motion along each of the axea may be written a

$$
\begin{align*}
& d(m \dot{x}) / d t=Q\left(E_{z}+v_{v} B_{s}-v_{z} B_{v}\right) \\
& d(m \dot{y}) / d t=Q\left(E_{y}+v_{z} B_{z}-v_{z} B_{y}\right) \tag{2}\\
& d(m \dot{m}) / d t=Q\left(E_{u}+v_{z} B_{v}-v_{v} B_{z}\right)
\end{align*}
$$

In RAYTRACE, the equation of motion are solved by means of a step-by-step numerical integration with time as the independent variable. A fourth-order Runge-Kutta integration routine in used. When sufficiently small otep aises are taken, the accuracy is limitod only by the oncertainties in our knowledge of the et ic and magnetic fielda. Round-offerrore are negligible if the atandard double-preciaion version of RAYTRACE is ueed. Varioue 1 sutines describe the field diatribution in torras of a few simple parameters for each type of element. Most of these parameters are directly related to dimensiose and opecifications on an engineering drawing of the element. The modular nature of the code allowi eacy accese for addition of new devices or modification of the "field" routines to correspond to apecific neede.

In most of the elements, the particle typically moves tbrough three distinct regions: the entrance fringing Geld, the "uniform" feld and the exit fringing field. Fig. 2 showe, as an example, the layout for a dipole magnet. Tine different coordinate syatems are related by a non-real geometrical ray ABCD which is a straight line from A to B, a circular are from B to C, and a atraight line from C to D. All calculatinns are made with reference to the four rectangolar coordinate syatems with origina at A, B, C and D. The reat of the dipole parameters are discusced in detail in Sec. v.

Each element has an input coordinate ryatem and an output coordinate aystem such as A and D for the DIPOLE. The output coordinate syatem of one element coincides with the input coordinate ayatem of the next element. As presently written, the code can handle 200 elemente and trace 100 raye through them.

The program calculates the path of one particle at a time through all elemente of the syatem. If deaired, every atep in printed out on a single line givieg the independent variable, time (converted to path leagth into the aystem), position, velocity componente, feld components and the angles θ and ϕ indicating directions relative to the y z-plane and the $x 8$-plane.

There are three optiong for a fiad coordinate aystem in which the positions and directions of the raye are given:
a) the D-axis syatem of the 6nal element
b) z-axie alone the projection of ray number 1 on the $x z$-plano, origin $a t z D=0$
c) x-axin an for cane b but with origin where the projections (on the xs-plane) of ray 1 and ray 2 intersect.

Fig. 3 showa the positions of three "focal exes" syatems relative to the D coordinate ayatem for the final element. The ponitions of the origing for differont energies form a focal aurface. For a apectrometer the detectorn are placed on or near thin foial sorface.

A nt of fourmen rays with apecificd initial anglea θ and ϕ, and all originating from the same point (the scurce), can be und to calculate tranafor cosficiente depending upon θ and ϕ only, from frat to fifth order (e.g., $x / \theta^{2} \phi^{2}$). If the fourtees ray: are ruif for five diterent energies, the program will calculate the focal plane angle and chromatic aberration conficients auch as $x / \theta^{2} \sigma^{3}$, etc. Another option is to use a apecified set of 46 rayo to calculate firat, second and third order coefficiants for x, θ, y, and ϕ at the exit in terms of $x \theta, y, \phi$ at the entrance and $\delta=\Delta p / p$.

The unite used in RAYTRACE are:

lengtha:	cm
angles, general:	degrees
beam direction:	milliradiane
energy:	MeV
megnetic fields:	Teals
electric felda:	$\mathrm{kV} / \mathrm{cm}$

Figure 2. Definition of the most important parameters used in the DIPOLE subroitine.

Figure 8. Outqut coordinate system formad at ind intersection of Ray 1 and Ray 2 for tnree aiferent momonta

V. Element Routinen

A. DIPCLE. Magnetic Dlpole.

The dipole subroatine requirea 12 reco da in the input data 61 . A short description of thene recorde is given in Appondix 1. A more detailed deecription of the subroutine is presented here. However, it is neceseary firtt to discuarin some detail the meaning of the term "the effective field boundary" (EFB).

Fig. 4 showt a cet of pole profiles with coil croms sections used is a modern dipole (for a spectrometer). The 30° and 75° cate produce a crude approximation to a Rogowaki profile.s The three examples show a "regular" protile, a profie with "field clamp" (magnetic abort-circiit), and one with a removable insert uned to adjust the position of the- "Effective Field Boundary" (EFB). The dash-dotted lines indicate the positions of the EFB, defzed en the position of shap cutof of the feld with the same field integral as the roal distribution acouming the integration in performed along a atraight line. Two practical questions need to be discuneod:

1. What is the meaning of the term Effective Field Boundary for a charged particle which moves along a curved path?
2. What is the position of the Effective Field Boundary if the mechanical boundary has a curvature?

As far a RAYTRACE is concerned, the firt question can be dismineed immediataly a irrelevant. The program noede a prescription for calculating the field at a given point in the fringing field region, given some pole profile and given come carvature of the mechanical pole boundary projected on the $x z$-plane.

The eccond question is more difficult to anewar, enpecially if the curvature called for is not a simple circular one, concave or convex. This problem han been resolved by redefining the EFB an machanical refereace boundery - a curve following the mechanical shape of the pole piece. The position of the EFB, relative to the pole piece in the position calculated on the cesumption that the boundary is atraght. With coparad poles such as shown in Fig. 4, the taper should proferably be of auch a depth that the EFB coincidee with the contour at the root of the pole. This makes the angineang design and installation much easier and les prone to artore.

1) MTYP=1 (Homogenesue Fioid): General Description

The DIPOLE subroutine bes oix options identifed with a parameter called MTYP with values 1 through 0. The data recorde are very similar for all six, and the particle erecking through the magnot in similar for all. The difference lies in the geld deacriptions, both in the fringing and "uniform" gelde. The following general dencription applies to a homogencoun fold magnet ($\mathrm{MTYP}=1$) with the aimplest erostment of the fringing feld. The differences between the MTYP's are then described in aubsequent sections.

The general layout of a magnetic dipole is shown in Fig. 2, where the mont important parametere are defined. The inpus coordinate and velocity components of a particle are given in coordinate ayatem A. The firat atep is to make a tranoformation to ayotem B.

$$
\begin{align*}
& x_{B}=\left(A-s_{A}\right) \sin a-\left(x_{A}+X C R\right. \\
&\left.y_{1}\right) \cos a \\
& y_{B}=v_{A} \tag{5}\\
& s_{B}=\left(A-s_{A}\right) \cos a+\left(x_{A}+X C R 1\right) \sin a \\
&\left(v_{B}\right)_{B}=-\left(v_{B}\right)_{A} \sin a-\left(v_{B}\right)_{A} \cos a \\
&\left(v_{v}\right)_{B}=+\left(v_{v}\right)_{A} \\
&\left(v_{B}\right)_{B}=-\left(v_{A}\right)_{A} \cos a+\left(v_{A}\right)_{A} \operatorname{ain} a
\end{align*}
$$

The constant XCR1 appeare in Fig. 2. Ite eignificance in diecussed leter. The particle in next carriod alonis a straght lune to the beginaing of the entrance fringing tield andefied by the paramoter 211 . Nute that the

 Boundary (EFE) appromimately coincides with the upper dortion of the pote.
"object dintance" A can be rero or even negative. The "image distance" B of one element and the "object distance" A for the next must, of courn, add up to the phyaical distance between the elements. How this distance ia divided is dictated by where the user wante to set an intermediste printout.

Consider first a particle moving in the modian plane. The particle is carried tbrough the entrance fringing feld sone by aumerical integration of the equations of motion with a magnetic field given by

$$
\begin{equation*}
B_{v}=\frac{B_{0}-B_{R}}{1+e^{S}}+B_{R} \tag{6}
\end{equation*}
$$

in the median plane. B_{0} in the uniform field (MTYP $=1$) inside the gap of the magnet, B_{R} is the aymptotic constant field outnide the magnet (eermally 0) and S is a parameter that increases monotonically with z (in the B-axis ayatem). It is expreased as a powar seriea in the parameter s:

$$
\begin{equation*}
S=C 00+C 01 s+C 02 s^{2}+C 03 s^{3}+C 04 s^{4}+C 05 s^{5} . \tag{7}
\end{equation*}
$$

For a straight-line offective field boundary (EFB), we have

$$
\begin{equation*}
s=\Sigma / D \tag{8}
\end{equation*}
$$

where D is the magnat airgap. Equation (6) givea the correct aymptotic bebavior of the feld for $s \rightarrow \pm \infty$ provided COS is positive. Tha banic integration atep aire in the ontrance'fringing feld in LFI which in an input parameter (Appendix 1). The rocommended value is LFI- 0.3 D or amaller.

The coefficients in Eq. (7) are generally detormined by a least-square fit batween the field given by Eqs. $(6,7,8)$ and either a meaured field or a field calculated by the aid of programs such as POISSON ${ }^{7}$. We generally find that the exact shape of the fringing field curve is not 20 impartant for the optical propersiee of a dipole, provided the coefticiente ued prodace an affectivefield boundery at $=9$ and approximately the correct slope for the curve B ve. 8. For detaile see Raf. 8.

Uf the EFB is curved, a correction $\Delta_{e}=\Delta I / D$ is made to Eq. (7) with Δs given by

$$
\begin{equation*}
\left.\Delta x / R=-\mid \operatorname{SO2}(x / R)^{2}+\operatorname{SOS}(x / R)^{3}+\cdots+\operatorname{Sos}(x / R)^{2}\right] \tag{9}
\end{equation*}
$$

Here R is the layout radius for the dipole and the SOn^{\prime} e are coofliciente describing curvatures of 2nd and 3rd orders, etc. This simple correction ($\Delta_{f}=\Delta_{\varepsilon} / D$) applien to MTYP=1 oaly.

If the curvature of the EFB in circular, one can, instoed of the SOn's, read in a parameter RAP1 (RAP2 for the exit) which is the inverse of the redian of curature in cm^{-1}. The progrem will then coavart RAP1 to a power series in (x / R) with even order terms up to eightb order. If the data aleo containe non-tero parameters S02, etc., these will be added to those calculated from RAP1 (RAP2). RAPI and RAP2 are positive for convex bounderies.

The proyram continuouely tente whesher or not the perticle hat peeed the planes $=-212$. Uf the particle hee paesed the plane on a given step, it it broughe beck to the previous point and carried forward with a reduced atep ase euch that it laeds approximaty on the plase. The coordinaten are then trasaformed to ayatem C at the exit effective edec.

$$
\begin{align*}
& x_{j}=-\operatorname{sis} \sin (\varphi-a-\beta)-x_{B} \cos (\varphi-\alpha-\beta)-2 R \sin \frac{\varphi}{2} \sin \left(\frac{\varphi}{2}-\beta\right) \\
& \text { yo }=\text { y } \\
& s_{C}=-\sin \cos (\varphi-\alpha-\beta)+x_{\theta} \cos (\varphi-\alpha-\beta)-2 R \sin \frac{\varphi}{2} \cos \left(\frac{\varphi}{2}-\beta\right) \tag{10}\\
& \left(v_{s}\right)_{c}=-\left(v_{s}\right)_{\Delta \sin }(\varphi-a-\beta)-\left(u_{a}\right)_{\Delta} \cos (\varphi-a-\theta) \\
& \left(v_{v}\right)_{c}=\left(u_{y}\right)_{s} \\
& \left(v_{0}\right)_{1}=-\left(v_{0}\right)_{\Delta} \cos (\varphi-a-\beta)+\left(v_{a}\right)_{B} \sin (\varphi-a-\beta)
\end{align*}
$$

 program continuoualy teate whether or not the particle has paceed the plane $a=221$, and a correction in made auch that it lands approximataly on the plane. It is then carried through the exit fringing field where the field description in identical to that of the entrance fringing field with the appropriate parameter. After the particle bat been deposited approximately on the plane $z=222$, a coordinate eranaformation is made to syatem D.

$$
\begin{align*}
x_{D} & =x_{C} \sin \beta+x_{C} \cos \beta-\mathrm{XCR} 2 \\
v_{D} & =y_{C} \\
x_{D} & =x_{C} \cos \beta-x_{C} \sin \beta-B \\
\left(v_{s}\right)_{D} & =\left(v_{s}\right)_{C} \sin \beta+\left(v_{s}\right)_{C} \cos \beta \tag{11}\\
\left(v_{y} I_{D}\right. & =\left(v_{y} C_{C}\right. \\
\left(v_{s}\right)_{D} & =\left(v_{s}\right)_{C} \cos \beta-\left(u_{s}\right)_{C} \sin \beta
\end{align*}
$$

The particle is then tranolated along a atraight line until it intensecte she sy-plane ($\mathrm{s}_{\mathrm{D}}=0$) of that aystem.
If the path leagth of a particle inaide the dipole is relatively ahort, it may never be in anything clone to a uniform field. The recommendation is then not to reduce the abeolute values of 212 and $\mathrm{Z21}$ but to let the two fringing Geld sonee overlap. The program then integrates the equatione of motion bacterards through the uniform Geld. Fig. 5 illustrates the effect of this procedure. The total field integral core esponde to the ares under the partially dashed curve in Fig. 5 . The reanlt in eacentially that in the middle the deficiencies for both curven are added to prodace a tolal deficiancy as shown. This procedure aimplifes the work for the denigner. He does not have to worry about overlap, wholly or partially, by the fringing field sonct. One waraing in in order, thoujh: the particle orbit must interset the beginning of the exit fringing Gald sone either by moving forward or backwarda; ocherwise, it will etert moving in circlea in a aniform field. The program cute of the integration after 206 siaje ir either sone and printe out the meange: eEncended maximem number of steps in alomens i, sone $j^{\prime \prime}$.

For particles moving of the median plane, the formula for the component B_{y} in modifed and the
 $B_{\text {a }}$ and $B_{\text {a }}$, and through fourth order for B_{p}. Symmetry about the median plane insuren that B_{a} and $B_{\text {a }}$ coatan only odd orders of y and B_{v} only oven ordarn. The corresponding expresoions are

$$
\begin{align*}
& B_{u}=(y / 11) \partial B_{a} / \partial y+\left(y^{3} / 31\right) \partial^{3} B_{a} / \partial y^{3} \\
& B_{y}=B_{v}+\left\{y^{2} / 21\right) \partial^{2} B_{v} / \partial y^{2}+\left(y^{4} / 41\right) \delta^{4} B_{v} / \partial y^{4} \tag{12}\\
& B_{a}=(y / 11) \partial B_{n} / \partial y+\left(y^{3} / 31\right) \partial^{3} B_{a} / \partial y^{3}
\end{align*}
$$

where the felds and their derivatives on the right hand side are to be evaluated at $y=0$.
The derivatives appearing tin theee equation are all computed by the use of Marwell's equations convertin! derivative of the tiad $\left(\delta^{\circ+1} B_{y} / \delta s^{\prime} \delta s^{\prime}\right)$, 0 o into the deaired forms. The derivatives of B_{y} in the median plane ere determined eamerically by calculacing $\left(B_{y}\right)_{y=0}$ in a thirtenn-point grid. Fig. 6 showi auch a erid. The grid constast DG to as inpat paramater (eee Appandix l) which ahould be givan a vaive of the order of $0.3 D$. The repulte of the Taylor expancione (with $\Delta=D G$) are

$$
\begin{align*}
B_{v}=B_{00} & =\frac{v^{2}}{\Delta^{2}}\left[\frac{2}{5}\left(B_{10}+B_{-10}+B_{01}+B_{0-1}-4 B_{00}\right)-\frac{1}{24}\left(B_{20}+B_{-20}+B_{02}+B_{0-2}-4 B_{00}\right)\right] \\
& +\frac{v^{4}}{\Delta^{4}}\left[-\frac{1}{0}\left(B_{10}+B_{-10}+B_{01}+B_{0-1}-4 B_{00}\right)+\frac{1}{24}\left(B_{20}+B_{-20}+B_{02}+B_{0-2}-4 B_{00}\right)\right. \\
& \left.+\frac{1}{12}\left(B_{1 r}+H_{-11}+B_{1-1}+B_{-1-1}-2 B_{10}-2 B_{-10} \cdot 2 B_{01}-2 B_{0-1}+4 B_{00}\right)\right] \tag{18}
\end{align*}
$$

Fif are 6. Overispping pilnging.field conas. The dashed cupve indicates approximately what the net effect will be on the darticle oy the "buckward" integration.

$$
\begin{align*}
B_{1}= & \frac{y}{\Delta}\left[\frac{2}{3}\left(B_{10}-B_{-10}\right)-\frac{1}{12}\left(B_{2}-B_{-20}\right)\right]+\frac{y^{3}}{\Delta^{3}}\left[\frac{1}{6}\left(B_{10}-B_{-10}\right)-\frac{1}{12}\left(B_{20}-B_{-20}\right)\right. \\
& \left.-\frac{1}{12}\left(B_{14}+B_{1-1}-B_{-11}-B_{-1-1}-2 B_{10}+2 B_{-10}\right)\right] \tag{14}\\
B_{1}= & \frac{y}{\Delta}\left[\frac{2}{3}\left(B_{01}-B_{0-1}\right)-\frac{1}{12}\left(B_{02}-B_{0-2}\right)\right]+\frac{y^{3}}{\Delta^{3}}\left[\frac{1}{6}\left(B_{01}-B_{0-1}\right)-\frac{1}{12}\left(B_{02}-B_{0-2}\right)\right. \\
& \left.-\frac{1}{12}\left(B_{11}+B_{-11}-B_{1-1}-B_{-1-1}-2 B_{01}+2 B_{0-1}\right)\right] \tag{15}
\end{align*}
$$

where the subecripte refer to the index atamber of the pointe in Fig. 6.
For an MTYP=1 magnet, the confficiente describing the veriation of B_{y} ve. radial position: n, BET1, GAMA and DELT (Appendix 1) are sero. If the deta record for these constants bas acn-saro valuen, thees valuee are ignored.

In the input data there appear four more constante that aeed explanation. The firat two are XCR 1 and XCR2, both of which are identifed in Fig. 2. The layout ray for the dipole connecting the origing of the four coordinate syotems is a non-roal ray consiating of a atraighe line, a circular arc and another atraight line. No real particle will follow thin trajectory. If one, somewhat arbitrarily, insists that a ray dafined a the cantral ray shall follow the layout circular are inside the magnet - and therefnre have a magnetic rigidity of $B_{0} R$ - correctione mast be made outside. That is, one must ahift the magnet relative to the ceaterline of other optical elemence by an amount ${ }^{\text {a }}$

$$
\begin{equation*}
X C R 1=D^{2} I_{1} / R \cos ^{2} a \tag{16}
\end{equation*}
$$

where I_{1} is an integral that depeade upon the shape of the fringing field. Ite value variee from $I_{1}=0.3$ for a "short-tail" fringing fald to about $X_{1}=0.7$ for a "long-tail" fringing fald. The shift at the axit is similar with a repleced by β. For a symmetric magnot $(a=\beta$), the obifte may not be neceseary in prectice. A particle moving doag the A_{A} axin can be made to uxit along the so axis by adjustment of the mabnetic Geld. It will then move on an inside track relative to the layout are inside the magnet. The corroctions diecused here are a ousance for the engincer who is laying ont the gyatem and should not be need unlese they are important. Whesher or not they are used, RAYTRACE will always predict the correct poentione and anglee of the rayo creced.

The two remaining dipole parametere are DELSI and DELS2. These can be uned to abift the poaitiona of the effective fold bounderies at entrance and exit, reapectivaly. For instance, if tald mapping indicates that the EFB at entracect is of by an amount $Z_{\text {ert }}$ intu the magnat from ite intanded position, RAYTRACE can be rorun wich

$$
\begin{equation*}
D E L S 1=Z_{\text {err }} / D \tag{17}
\end{equation*}
$$

Ln general, Eq. (8) now becomee (for MTYP=1)

$$
\begin{equation*}
s=(s+\Delta s) / D+\text { DELS } \tag{8}
\end{equation*}
$$

Of courn, DELS2 carves a similar purpoee at the exit of the dipole.
In the pat, DELSI hea bean uned to correct for the pooition of the effective feld boundary due to the curvature of the boundery. The affective field boundary for a magnet with convex curvature in cloenr to the magnes than when the boundery te etraight. aceuming the same pole piece profile. Us the tame coofficiente COO-COS are und to deecribe the fringing feld for both enen, DELS can be used to correct the position of the EFB but, of coum, not the ehape of the $B_{y}(a)$ curve. ${ }^{\circ}$ In the current vertion for MTYP=2, we attempt to make the correction du; to survature in a more direct way, applicable to aboundery of any shape (within reason) and without the use of DELS.

Figure 6. Thirteen-doint gerid ueed to determine numafical derivatives of B_{k} in ine median piane.

A new feature bae been edded to the dipole routines, MTYP=1....,s. The tield distribution on the modian plage of the fringing fald can be calculated and atorad in an artay with a distance DG batwoen neighbouring pointe. When a ray is traced through the fringing fald sone, the feld on the median plane for a given point u determinad by interpolating between aeighbourtng arid pointe. If the particle te not in the median plane, the interpoletion mutine must be used thirtesn timea and the field componenta calculated as described earlier (Eqa. 13-15).

Tha aem feature can resalt in a considerable eaving in computer time when a large aumber of raya are to be traced or when the ayatem containg a number of identical dipoles. The feature is activated by epecilying aneray aumber IMAP for the dipole (200 Appendix 1). Ideatical dipolet would have the eane value for IMAPss.

The eray on the entrance side wll have n, n, puinte where

$$
\begin{aligned}
& n_{1}=(W D E+2211 \tan a) / D G+0 \\
& n_{1}=(211-212) / D G+0 .
\end{aligned}
$$

Plcure 7. A spray of five Poekr reys" used to determing a represaniative distance to the EFB and thereby the value of B_{y}.

Corresponding expremeione apply to the axit aide.
2) MTYP=2. Homogencoue-Fiald Dipole

The only diferonce between MTYP=1 and MTYPaz is the way the parameter a is calculated. Lo both caset, represeate diatances to the efective Beld boundery. In MYTPEI $1 D$ is sumply the diatance to the EFB mearured in the g-direction, l.e. at geaerally the shortest diatance. Ln MTYP=2 the ahorteat distance to she effective fald boundery from a given polat in determined. However, thin in not simply used to calculate - ae distance/D. Rather, the line reprematiag the chorteat diatance sonly the middle one of a apray of five lines from the point where the partiche in. An average, etrongly weighted powarde the middle line, is then used to calculate a rer. asentative disesace and thereby a. The avarage in weighted in auch a way that if the buundery is etraight, D ie exectly equal to the shortent diateace.

Assume first that the shorteat distance from point P to the FFB has been found. This distance, is in Fig. 7, is divided by 4, and the distances to four other points $1,2,4$, and 5 are determined with the relationship between the a-coordinates for the points being (see Fis. 7):

$$
\begin{equation*}
x_{i+1}=x_{i}+\frac{r_{3}}{4} \cos \theta_{3} \tag{18}
\end{equation*}
$$

The formula ueed to calculate s is

$$
\begin{equation*}
s D=1.41875\left(\sum_{i=1}^{s} r_{i}^{-4}\right)^{-1 / 4} \tag{10}
\end{equation*}
$$

The algorithm for finding the shorteat distance is as follows:
a) The distance in the s-direction from point P to the $E F B$ is determined as for MTYP=1.
b) This distance in compared to the distance from point P to the origin. The shortest of the two, call it a, is divided by 5.
c) The equare of the distasce from point P to 11 points on the EFB is calculated, five points on asch aide of point A (Fig. 7) in addition to $\left(z_{1}-z_{A}\right)^{2}$. Between two neighbouring points, the distance in the x-diraction is $\Delta x=a / 5$.
d) The 11 distances aquared are compared and the amalleat of theae in selected.
e) The x-diatance between the two points on either side of the selected shortest diatance is furtber aubdivided by 10 to $\Delta x=a / 25$, and aquares of distances are calculated between the field point P and the pointe on the field boundary.
f) Again the amalleat of the 11 squares and ite amalleat neighbour ary molectnd. Call the diatance to the point with the loweat x-value r_{1} and call the other r_{2}.
8) Another subdivinion is now parformad to fad an even ahorter distance, but this time by the use of some trigonometry (see Fig. 8). It is aceumed that the EFB between the two points (with $\Delta x=a / 25$) can be considered to be a atraght line. Thin in line c, the length of which is groasly exaggerated compared to r_{1} and r_{3} in Fig. B. Some elomentary trigonometry epplied to the trianglen in Fig. 8 yialds

$$
\begin{equation*}
x_{3}=x_{1}+\frac{c^{2}+r_{1}^{2}-r_{2}^{2}}{2 c^{2}}\left(x_{2}-x_{1}\right) \tag{20}
\end{equation*}
$$

This then decermines the central point on the EFB for the npray of ive lines: diecused above.
Ae explained easlier for MTYP=1 when the parcicle is off the median plane, the feld B_{y} in the median plase must be detertined 13 timea anch that tbe appropriate derivatide can be calculated. The relative accuracy of these determinatione of B_{y}-valuet ha to be high, eapecially if $y / D G$ is much lerger than unity (\cos Eq. 13).

We call the repreeentative diatance for the contral point so D. The corresponding values for the other iwalve pointe are then determined as

$$
\begin{equation*}
B D=\otimes_{0} D+\Delta_{1} D \tag{21}
\end{equation*}
$$

where $\Delta \Delta D$ is given by (eee Fig. 9)

$$
\begin{equation*}
\Delta s D=s_{0} D+D G(i \cos \delta-\rho \sin \delta)-\left(\varepsilon_{1}-s p+A \sin \delta\right) \cos \delta \tag{22}
\end{equation*}
$$

Pigure 8. Trigenomarry used :o evaluate the shortest distafice betwen the field poln: and the boundary.
with

$$
\begin{gathered}
A=D G(j \cos \delta+i \sin \delta), \\
x_{i}=x_{p}+\lambda \cos \delta
\end{gathered}
$$

and

$$
\begin{equation*}
6=\arctan (d s / d x) \tag{24}
\end{equation*}
$$

at the poist P. The two indicen i and j identify the grid point. They are the numbers appeariag in Fig 6.
Since the Rage-Kutta integration routine looks up the feld componente B_{a}, B_{v}, and B_{1} four timea for each integration atop, altogether $\mathbf{6 2}$ values of a D have to bu determined for each integration atep.

Figure 9. Geometry used for determining coprections to a which are requifed for calcuiating offmidplane comoonents of 8.

Pigure 10. Possion resuft of an indiscriminate use of the paramaters 502, etc. enas descrioe the shade of ine EFE.

The program, of course, determinee whather the integration point is inside or outside the EFE. With any reasonable boundary cortaponding to a practi:al magnet, the compnter should have no trouble in finding the ahortest distance to the boundary. It is, however, poasible for the ion-optical degigner to confue the computer wich indiscriminate uee of higher order corrections. Fig. 10 showe an example that speaks for itself. It is generally wiee to we cighat onder term SOs and Sis to represeat the limited width of the pole pieces. For ingtance, if the pole wideh in W an meapred in the x-direction, an eighth-order correction tarm SO8= $50 D R^{9} / W^{8}$ will puht the EPB towards she comer of the pole piece by an amosnt $-\Delta 8=0.2 D$ at $x= \pm W / 2$. Thin is the right onder $o f$ magitude.
3) MTYP=3. Dipole with Field Gradiant.

MTYP $=3$ is und for a dipoie with monsero value for any of the paramecers a, BET1, GAMA, or DELT. This includen atherwiee uniform-Gald magnect for which one winhen to study the affect of limited pole face width. The fourth ordor term DELT is then probably the moat appropriate term to use. The field description on the median plane is the "uniform" region for MTYP=3 is

$$
\begin{equation*}
B_{v}=B_{0}\left\{1-n \Delta r / R+\operatorname{BET}(\Delta r / R)^{2}+\operatorname{GAMA}(\Delta r / R)^{3}+D F L T(\Delta r / R)^{4}\right] \tag{28}
\end{equation*}
$$

ard the fold of the median plane in determined by a Taylor expassion in y using enalytic derivasives.

Record	Variable		Formal
1	DIPOLE		A4
2	LFI LU1 EF2 DG	- Entrance fringing field integration step size (cm) - Uniform field integration step aize (cm) - Exit fringing field integration step size (cm) - Differential step size used in determining off mid-plane componente of B using numerical differential methods. Recommendec for all four step sizes: 0.3 D ($\mathrm{D}=\mathrm{Gap}$) although LUl can be made larger to aave computer time. For MTYP=6, DG serves another function. Jee Sec. V. A.	6F10.5
	MTYP	- Magnetic dipole option MTYP $=0,1$ - Uniform field dipole. Fringing field determined by calculation of the distance to the effective field boundary in the z-direction.	
		MTYP=2 - Uniform field dipole. Fringing field determined as described in Sec. V.A.	
		MTYP $=3$ - Non-uniforn field dipole with n-value ad second-, third-, and fourth-order co، rections. Fringing feld determined as fo: MTYP=2, but including n-value, ete.	
		MTYP=4 - Non-uniform field dipule - cylindrical geometry. Similar to MTYP=3 but better suited for purel; conical pole pieces. This option in used to dearribe magnets with wedge-shaped gaps ("CLAMSHELL") by making R large, $P E I$ amall, and by setting BETI $=$ GAMA $=$ DELT $=0$ but $n \neq 0$, and normally large becouse \mathbf{R} is artificially large.	
		MTYP=5 - Uniform field dipole, circular pole option. MTYP=6 - Pretzel magnet option.	
	IMAP	- Array number for generating and identifying fringing field array mapa If IMAP $=0$, mape are oot generated and the field components are calculated directly for each point, i.e. four timee for each integration atep. Two dipoles with identical values of IMAP will ahare a common array. IMAP ≤ 6.	
3	A	- Dislance (cm) from origin of aystem A (initia) to ayatem B (situated at entrance edge EFB of magnetic element)	5 F10.5

B - Distance (cm) from origin il system C (situated at exit edge EFB of makuplic element) to origin of output syatem D
D - Gap widt (cm)
R - Radiue of curvalure (cm) used in geometrical construction of layout
BF - Nominal value of the field un the central radiue R (Teala)
PEI - Angular extent between the EFB of syatem B and that of ayalem C (degrees). Nominally equivalent to the bend angle
ALPHA - Angle between the central trajectory and the nound to the effective field boundary (EFB) at eatrance (degreea)
BETA - Angle between the central trajectory and the aormel to the exit boundary (degrees). Both ALPEA and BETA are positive when the normals are outaide the orbit for positive trangerse plane focuasing.
NDX - 'a-value', of field index for non-uniform
BETI - ' β-value', of field index for non-uniform field magnete (second-order term).
GAMA - ' γ-value', of field index for aon-uniform field magneto (third-order term).
DELT - ' δ-value', of field index for ana-uniform field magoets (fourth-order term)
Z11 - Integration limit (em) defining the start of the entrance fringing field sone in coordinale aystem B. Normally positive.
Z12 - Iategration limit (cm) defining the termination of the entrance fringiog feld zone in coordinate syatem B. Normally negative
221 - Integration limit (cm) defining the atart of the exit fringing feld zone in coordinate ayatem C . Normelly negative.
Z22 - Integration limit (cm) defining the tormination of the exit fringing field zone in coordinate syatem C. Normally pontive

B. Dipole (12 records) - Continued

\begin{tabular}{|c|c|c|c|}
\hline Record \& Variable \& \& Format \\
\hline 7 \& \[
\begin{aligned}
\& \mathrm{C} 00 \\
\& \mathrm{CO1} \\
\& \mathrm{CO2} \\
\& \mathrm{C} 03 \\
\& \mathrm{C} 04 \\
\& \mathrm{C} 05
\end{aligned}
\] \& - Coefficienta used in the expanaion of the fringing field fall-off at the entrance of the magnetic element. \& 6F10.5 \\
\hline 8 - \& \begin{tabular}{l}
Clo \\
Cll \\
C12 \\
Cl 3 \\
Cl 4 \\
Cl5
\end{tabular} \& - Coefficiente used tor the expanaion of the fringing field falloff at the exit of the magnetic elemeat. \& 6F10.5 \\
\hline 9 \& BRI
BR2

XCRI \& | - Correction for presence of conatant field in region of entrance fringe field (Terala). |
| :--- |
| - Correction for preseace of constant field in region of exit friage field (Tesla). In the Split-Pole Spectrometer, BR1 and BR2 describe. the aymptotic field in the aplit. |
| - Equivalent to a coordinate syatem ahift (cm) at the eatrance (element SBRT) with $\Delta x=-X C R 1$. Used to correct for displacement of central ray coused by extended fringing field (∞ Fig. 2). Use XCR $1=X C R 2=0$ unlese the actual hardware element will be offeet. | \& 6 F10.5

\hline \& XCR2 2
DELS1

DELS2 \& | - Equivalent to a coordinate syatem shift (cm) at the exit with $\Delta x=$ XCR2. Used to correct for diaplacement of central ray caused by exteaded fringing field. |
| :--- |
| - A correction to the location of the effective fiald boundary. The effective fald boundary at entrance is moved cowarde the magnat (for positive Δ_{s}) by an amount $\Delta_{z}=$ DELSI* D. |
| - A correction to the location of the effective field boundary. The effective field boundary at exit u moved towarde the magnet (for poaitive Δz) by an anount $\Delta_{s}=$ OELS2 $2 D$. | \&

\hline
\end{tabular}

Record	Variable		Format
10	RAPI	- Inverse radius of eurvature of entrance boundary (cm^{-1}). Convex aurfaces are positive.	2F10.5
	RAP2	- Inverse radius of curvature of exit boundary (cm^{-1}). Convex surfaces are positive. In the program, except for MTYP=5, circles deacribed by RAP1 and RAP2 are approximated with an eighth. order power series.	
-	WDE	- Mechanical width of the entrance pole boundary. Used only when IMAP is non-rero.	
	WDX	- Mechanical width of the exit pole boundary. Ueod only when IMAP is non-zero.	
11	S02	- Coefficients ued in description of entrance	7Fis. 5
	S03	boundary curvalure. Contributions of RAP1 are	
	S04	added to thoee of S02, S04, S06, and S08.	
	S05		
	S06		
	S07		
	S08		
12	S12	- Coefficienta ueed in description of exit	7F10.5
	S13	boundery curvature. Contributions of RAP2 are	
	S14		
	S15		
	S18		
	S17		
	S18		

DESIGN \& PERFORMANCE OF MRS

PrAE (3)quics - August igen
 Medum-Rtsomitun Spectrometer

Medium Energy Resolution (~ 1 MeV at 800 MeV) Identify discrete states Good Solid Angle (~ 10 msr)
Large Momentum acceptance ($\pm 20 \%$)
Polarized proton and neutron beams
Net Bend Angle (18°) allows for detection of all spin projections from ($300-800 \mathrm{MeV}$)
Massive shielding and software traceback for good background suppression
(p, p) mode
Elasticfínelastic scattering on polarized/unpolarized light targets
Spin ocseryables in the continuum
Coincidence experiments such as (p.p; π), ($p, 2 p$), ($p, p^{\prime} \gamma$)
(n,p) mode
Third component of spin-isospin excitations (p.p), (p,n), (n,p)
Isovector spin transfer measurements to continuum
Identification of isovector resonances
$+56^{2}$
59504010n
Spectien inexex

该
Los Alamos

Los Alamos

DILAC Offtics - Auguses n9OT

Optical System

$$
\begin{aligned}
& x_{2}=F\left(x_{1}, \theta_{1}, y_{1}, \phi_{1}, \delta\right) \\
& x_{2}=(x / x) x_{1}+(x / \theta) \theta_{1}+(x / \delta) \delta+\left(x / x^{2}\right) x_{1}^{2} \\
& +(x / x \theta) x_{1} \theta_{1}+\left(x / \theta^{2}\right) \theta_{1}^{2}+(x / x \delta) x_{1} \delta \\
& +(x / \theta \delta) \theta_{1} \delta+\left(x / \delta^{2}\right) \delta^{2}+\left(x / y^{2}\right) y_{1}^{2}+(x / y \phi) y_{1} \phi_{1} \\
& +\left(x / \phi^{2}\right) \phi_{1}^{2}+\text { Higher order terms }
\end{aligned}
$$

Pロリyロomuial ©ptimization

－Set Experimental Parameters
Magnet settings－elastics，quasi＇s
Position rods，slits ．．．
－Maximize background rejection Muon rejection ．．．
－For each＂Good Event＂write＂Ray＂to disk file Includes calculated quantities $x, \theta, y, \phi, \delta \ldots$
－Vary magnet parameters
－Again write＂Rays＂to disk file
－Append ray files so that system is overdetermined
－Solve linear least squares problem

PROGRAM MOTER

Early MOTERing Days

an historical presentation to the PILAC Working Group by
Morris M. Klein
12 August 1991

Overview

- The environment at Los Alamos
- Personnel
- Computer
- How MOTER was conceived
- What we accomplished

Major Tasks 20 Years Ago

- Design a state-of-the-art spectrometer on a limited budget
- Extend data off axis within the magnets
- Model the fringe fields and their extent
- Develop a universal objective function
- Develop an effective optimization package

MOTER's Main Features

- H. Enge and S. Kowalski's ray-trace package
- M. Klein and T. Doyle Levenberg-Marquart least-squares optimization package
- Monte Carlo sampling of phase space
- Flexibiy defined objective function

H. Enge and S. Kowalski's Ray-Trace Program

- Basic magnet elements with modification - Dipole, Quadrapole, Sextapole
- Additional elements
- Separator, target simulation, ...
- Optimization-control elements
- Srot, Drift, Hisgrm
- Layout based on central ray or fixed position

The Flexible Objective Function

$$
\Phi(\overrightarrow{\mathbf{u}})=\sum_{\mathbf{i}=1}^{M} \frac{\mathbf{D}_{1}^{2}(\overrightarrow{\mathbf{u}})}{\sigma_{1}^{2}}+\sum_{\mathrm{j}=1}^{\mathrm{J}} \frac{\mathbf{S}_{\mathrm{J}}^{2}}{\sigma_{\mathrm{J}}^{2}}
$$

The demand D_{1} is defined as

$$
D_{i}=\left\langle\sum_{k=1}^{\mathbf{q}} c_{i k} \mathbf{P}_{\mathbf{k}}(\overrightarrow{\mathbf{u}})\right\rangle
$$

P_{k} denotes a term of the form $\boldsymbol{K}_{\text {comp }}\left(10 \mathcal{C}_{1}\right) H_{\text {comp }_{2}}\left(\mid O C_{2}\right) \cdots H_{\text {comp }_{1}}\left(I O C_{n}\right)$
where $\quad \mathbf{K}_{\text {comp }}\left(\mathbf{I O C _ { i }}\right)$ is $\mathbf{X}, \mathbf{X}^{\prime}, \mathbf{Y}, \mathbf{U}^{\prime}, \mathbf{I}$, or δ
example:

$$
D_{1}=H_{6}-C_{1} \boldsymbol{H}_{0}+C_{2} H_{3} \boldsymbol{H}_{4}
$$

The Levenberg-Marquart Algorithm.

Minimize $\quad \Phi(\overline{\mathbf{u}})=\sum_{\mathbf{k}=1}^{M} \mathbf{D}_{\mathbf{k}}^{2}(\overline{\mathbf{u}})+\mathbf{p}^{2}\left(\mathbf{u}_{1}^{2}+\mathbf{u}_{2}^{2}+\cdots+\mathbf{u}_{n}^{2}\right)$
Expard $\Phi(\overrightarrow{\mathbf{u}}+\vec{z})$ in a Taylor series through second order and retain first order partial derivatives after setting $\frac{\partial \Phi}{\partial z_{\jmath}}=0$

Result

$$
\begin{aligned}
& D_{k . i}\left[D_{k, j} Z^{j}+D_{k}\right]+D^{2} \delta_{i j} z^{j}=0 \\
& \quad i=1,2, \cdots, N \\
& \quad k=1,2, \cdots, M
\end{aligned}
$$

Where

$$
\mathbf{D}_{\mathbf{k}, \mathbf{i}}=\frac{\partial \mathbf{D}_{\mathbf{k}}(\overrightarrow{\mathbf{u}})}{\partial \mathbf{u}^{\mathbf{i}}}
$$

Limiting Solutions

$$
\begin{array}{lll}
p=0 & Z_{j}=-\left[D_{k, j} D_{k}\right]^{-1}\left[D_{k, j} D_{k}\right] & \text { Normal Equations } \\
p \gg 1 & Z_{j}=-\left[D_{k, j} D_{k}\right]^{-1} / p^{2} & \text { Negative Gradient }
\end{array}
$$

The ETA search

One dimensional scaling of $\overline{\boldsymbol{Z}}$

Optimization "Booby Traps"

- Mathematical
- Vanishing Jacobian defines search region e.g.

$$
\begin{aligned}
& D_{1}=x^{2}-y \\
& D_{2}=y^{2}-1 \\
& \Phi(x, y)=D_{1}^{2}+D_{2}^{2} \\
& |J|=\left|D_{i, j}\right|=4 x y
\end{aligned}
$$

- Physical System
- Unrealistic parameter values
- Lost rays

Starting Point Defines Solution Region

Monte Carlo Sampling of Phase Space

- Adequately sample the target and aperture
- Minimize designer's biases
- Model measurement precision
- Obtain representative resol: ion function

Accomplishments

- HRS Beam Line-TRANSPORT, MINIM, and MOTER
- QDD Spectrometer-Kowalski and Enge design using MOTER to define field clamps
- EPICS Beam Line-as HRS except for highorder terms
- EPICS Spectrometer-fourth-order 19-térm resolution function

Conclusion

Tvuenty years ago our MOTER-based designs worked and resulted in the world's first software-corrected spectrometers.

Twenty years from now I can visualize us meeting to design the successor to PILAC.

RECENT UPGRADES OF MOTER

USER MANUAL FOR MOTER

Table of Contents

1. INTRODUCTION
2. RUNNN'S MOTER
3. MAG INPUT FILE
4. DMD INPUT FILE
5. OPT INPUT FLLE
6. ELEMENT INPUT FÂRAMETERS
6.1 Element Input Format
6.2 Variable Parameters
6.3 Element Types
A. Drift
B. Dipole
C Poles (Quadrupole, etc.)
D. Multipole Corrector
E Shift-Rotate
F. Sentinel

1. INTRODUCTION

Pending

Subroutines in MOTER as of 03/21/91

APCKD	-	FLAG	PRIM
APCKM		FMILNE2	PRNT
APCKQ		FMIN	PRNT2
BDIP		FNMIRK	PRNT3
BDMP		ROCL	QUAD
BDPP		GATAN	RANI
BMPM		GLSS	RANDOM
BMUTT		GTAN	RANDRAY
BOUNDS		HATINT	RANSCAT
BPLS		HEX	RAYPRNT
BPOLES		HISGRM	RAYS
BPRETZ		HPOLY2	READLCM
BQUAD		HQUAD	RECPOL2
BRECP		LABRT	RECPOLE
CAVITY		LOADRN	ROTATE
DBESIO		MAPPOLE	SAVRAN
DBESII		MAPSET	SDIP
DECPL		MATINV	SECTOND
DEFFRR		MATRIX	SEPA
DERIV		MAXIN'	SEPAR
IJERV		MAXR	SHROT
DIPOLE		MLTT	SLI'T
DOTPRO		MOTR	SOS
DRIFT		MULT	TRACE
[DOX		NDIP	VECJROD
E(RD		NDPP	VECSUM
ECSGLSS		OCIPL	WEDGE
ECWR		OPTIMIZ.	WR 'TEL.CM
ERDEFI		PHIJGRAD	THB
ETASRCH		PLTOUT	7.P1
FITMAT		P()IFS	CP2
FJMPM		PRESET	

2. RUNNING MOTER

Pending

3. MAG INPUT FILE

MOTER requires three data files, named: MAG, DMD, ind OPT. If optimization is not requested, then only the MAG file is required. Each of these_data files is organized into records defining one or more parameters. The format of these records is field-free; i.e., leave one or more blanks between each parameter field. In the following table the start of each record is marked by a bullet (\cdot).

3.1 MAG File Format

Parameter Description of Parameter

- NTITLE . Title or other identifier

- NR - Number of rays to be traced (400 maximum).

NP - Number of integration steps before next printing of intermediate results. NP=100 causes printing of ray coordinates at each transition in an element. NP>20n suppresses printing.
IEORP - If $=1$, DELP will be interpreted as $\triangle E / E$, the particle's fractional (in \%) deviation from the nominal kinetic energy. Otherwise, DELP will bo taken to be $\Delta p / p$.
JRAND - If positivo, generate random rays.
ICON - If positive, determine the C-coofficients after each irnce.
NRAND - Number of normal random measurements to be generated for each demand flagged to receive a mensurement error.
ITUNE - If $=1$, genernte new scatler random. number set for each race; if $=0$, generate only at start of iteration eycle.

- JOPTIMIZE - If $=$ OPTI, optimizo If \boldsymbol{m} NOOP, perform only n trnce. If $=$ ISNG perform only one iteration of uptimization .. a rrick to get histograms without optimizing
- IRANDUM . If 0), then atarting seed is arbitrarily $=1776$. If >0, initinl seed is given by IRANSTA. If \& (), roload status of the random number genorator from a file named 'MOTER RAN'
IRANSTA . Siarting seed when IRANDUM >1); otherwise, ixnored.
- PMOMO . Momentum of design particle in MoV/e.

PMASS Mass of Jesign particle in amu.

- Beamline . Benmline elument parnmeter list, terminnted by n SENTINI:I. record Appropionto keywords aro: DRIFI, DIPOle, POIE:, MULTipole corrector, SHRT, nad SENTinel. Other elements are nvalatile hut thavo not been revilidated. See Section of tor tho "propinte furmat.
- NINDEP1 - Number of independent variables flagged in element parameter list above.
ISET - =1
- DELTA() - Step size for optimization derivatives. Must be NINDEP1 values in same order as independent variables in beamline. If NINDEP1 $=0$, omit this record from the data stream.
c LPRIMP() - Print out ray data after each element listed in LPRIMP. List 8 locations per line. A line with -1 terminates the reading. If first location $=0$, print ray data at start of 1 st element.
- JRKSTMX - If >1, use Runge-Kutta in MAPPOLE. JHAMMNG - $=0$; not used.

Note At this juncture the next record to be supplied depends on JRAND. If JRAND ≤ 0, omit the next four records from the data stream; otherwise, you must provide them.

- IBMTYPE - If $=0$, beam comes from a target; if $=1$, beam comes from an accelerator.
NSIGMA - An integer from 1 to 6 specifying the number of parameters defining the beam. This can be any subset of the standard TRANSPORT beam parameter set: $(X, \theta, Y, \phi, l, \delta)$.
ISIGMA(i) - Six integers (one for each dimension) from 0 to 3 . If $=0$, the i th term in the beam parameter set is not defined. If $=1$. use uniform distribution. If $=2$, use Gaussian distribution. If $=3$, use user-defined distribution.
- (SIGMA(i), (RSIGMA(i,j), $j=1,6), i=1,6) \quad$ Six records of 7 numbers each.
- SIGMA(i) is the standard deviation of the distribution associated with the i-th term in the beam parameter set, i.e., sqrt($\sigma(i, i)$). RSIGMA(i,j) is the o(i,j) matrix ns defined in TKANSPORT to describe the beam hyperellipsoid.
- KRAY - Number of input rays to be read in. If KRAY is θ and NR is 20, then the program computes aberration coefficients. The R matrix and four of the third-order aberration coefficients are computed (the ones important for telescope design).
KOUT - If 0 , do not output generated ray data. If $=1$, write output to file ?.
- FRAC - Fraction of particles that will be protons: (I-FRAC) will be pions. For now this option is disabled, ic.. PRAC = 0 .
- (XI(i), VXI(i), YI(i), VYI(i), ZI(i), VZI(i), DELP(i), RMASS(i), i=1,nrnys)

If JRAND ≤ 0, supply nrays $=N R$ records of 8 numbers each -- the starting coordinates of the i-th particle. Otherwise, supply nrays $=$ KRAY records of starting coordinates. If KRAY $=0$, skip these records as well as the offset records Zdefined next. For nov, RMASS(i) will be set to PMASS no . matter what value the user specifies.

- OFFSET(i) - Increment all XI() by the amount OFFSET(1). Increment all VXI() by the amount OFFSET(2). Increment all YI() by the amount OFFSET(3). Increment all VYI() by the amount OFFSET(4).

Nore If JRAND $=0$. the input data stream is complete at this point; the records below may be onsitted.

- J .. If Jso, terminate reading of MAG file.
- IRANCMP (J) - If J is between 1 and 6 , freeze the $J-t h$ input parameter, IRANCMP(J), to 3 fixed value, RANCMP(J), and read another value for J.
RANCMP(J)

4. DMD INPUT FILE

The DMD file spells out the demands which as a sum of squares define the merit function or resolution of the system. Measurement errors can be_introduced into the demand formulation. This is done by degrading the ray data through a suitable normal random number distribution at the time the demands are composed. Unlike multiple scattering the effect is not propagated to successive elements. The demands may be in the form of objectives or penalties, which prevent large high order dipole terms or large deviations from predetermined values. As in any valid merit function relative weigh's on each demand composing it must be defined. The merit function has been normalized so as to be insensitive to the number of rays traced or number of penalty functions.

4.1 DMD File Format

Parameter Parameter Description

- TITLE - Title or other identifier
- IOPT - 3, not used.

ICNORM - If $=1$, column max scaling of matrix defining coefficients is desired. (Permits observation of relative contributions of terms composing demanu.) If m, scaling is not desired.

Demand Component Record. One or more of the following records terminated by one with $1=0,-1$, or -2 and followed by a Relative Weight record constitute a Demand Group. If Ia0, then one or more Demand Groups will follow the Relative Weight record. The final Demand Group will have I =-1 or -2 and will be followed by Relative Weight record with WT = 0. A collection of Demand Groups forms the Merit Function.

Restrictions:

- A maximum of 40 coefficients may appear in the definition of any one Demand Group.
- A maximum of 400 I's may be used to define the set of all demands.
- A maximיn of 10 Demand Groups may appear in the definition of the merit function.
LOC - Location in magnet system where demand compnnent is being defined. LOC=0 corresponds to the input side of the system. LOC="integer" refers to the output of the magnet element numbered "integer", all elements being counted. The magnet system was defined in the MAG input file.
NCOMP - A number in the range $1-7$ designating $X, \theta, Y, \phi, I, 8$, and t, respectively. NCOMP $=5$ permits the introduction of a constant term (independent of ray data) into the demand definition.
COTE - An integer designating possible ties within a Demand Group. For example, x at LOC 1 may be tied to δ at LOC 0 to form an ($\mathrm{x} \mid \mathrm{B}$) term in the demand. Any number of LOC, NCOMP records may be tied. A maximum of 40 coefficients may be defined in any given demand with a total of 400 such coefficients defined for all demands. Integers used for COTLE should be equal for components to be paired, unequal for components not to be paired, and should form a monotone nondecreasing natural sequence (no integer skipped).
ISIDE - If $=0$, coefficient of demand component defined by present grouping of COTIE records is to be determined by program. If $=1$, coefficient defined by present grouping of COTIE records is preset and frozen; must appear at least once in each demand definition and appear in the record introducing (through COTIE) the terms corresponding io this coofficient.
CSTOR - Value of present coefficients; must appear in same record as ISIDE=1.
JRANTIE - Positive integer. Individual components which form terms in the demand may be tagged to receive a normally distributed weasure orror having mean zoro and standard deviation SDEV. All components tagged with identical integers receive an identical measurement error independent of the demand grouping in which they reside. Each distinct ray receives NRANE (MAC file) distinct measurement errors. This increases the offective number of rays composing the demands to NR•NRAND rays. The distribution is redefined at the heginoing of each iteration cycle of the optimization. JRANTIE -0 indicates no error is desired The integers need not appear in any particulal order. However, to promote efficient use of computor space, all integers up to the maximum one should be defined. If the maximum integer times NRAND is >100, then NRAND will be reset to the largest integer such that MAX(JRANTIE•NRAND) ≤ 100.
SDEV . Standard deviation attached to measuremont orror; needs to be defined only once for each intoger JRANTIE defined.

Relative Weight Record. This record is used to weight a Demand Group and, after $I=-1$ or -2 , to terminaie with $W T=0$ the demand file; i.e., the defining of the Merit Function.

- WT - If positive number, it is interpreted at the relative weight for the preceding demand; it is not normalized.
If $=0$, DMD file is complris; no more data follows.
If aggative number, sextupole strength demand being defined with weight equal to $\operatorname{ABS}(W T)$.
IORD - If $\operatorname{IORD}=2,3,4,5$ then RAP, CAT, CSVN, CNN terms are to be treated as penalty demands. If previous $I=-1$, then ignore LOCSEX, SEXTZRO aad use all terms of given order from all dipoles as a group. If previous $\mathbf{I}=\mathbf{- 2}$, use only the order term tagged by LOCSEX. If IORD $=0$, no penalty is implied.
LOCSEX . = FLOC integer. If integer is negative, then pick up order componeat from entrance fringe field; if positive, use component from exit fringe field. LOCSEX $=0$ is treated as "donothing ${ }^{n}$ signal.
SEXTZERO - = number. Penalty demand is to be defir 1 as a deviation from the value set in SEXTZERO. SEXTZERO $=0$ is treated as "cionothing ${ }^{\text {signal. }}$

3.2 DMD File Examples

5. OPT INPUT FILE

This input file enables the user of MOTER to tune the optimizer package for its most efficient operation. The optimizer routines are based on the Levenberg algoithm for minimizing a sum of squares. The optimizer first determines a direction of descent lying between that given by first variational principles and the negative gradient. Given this direction, its length is then determined by a quadratic search procedure. The parameters which can be set in this file control the operational characteristics at the beginning of each pass, the exit criterion for each pass, and the optimizer print control. The reading of the OPT file is initiated in the subroutine OPTIMIZ.

5.1 OPT File Format

In what follows the underlined numbers are the default values.

Parameter Description of Parameter

5 CMIN - 1.0E-3 Starting value of P^{2} which is equal to CMIN(DIAGMAX). 6 CMAX - 1.0 End value of P^{2} which is equal to CMAX(DIAGMAX).

- RELPHI - LOE-13 Exit when the relative drop in the merit function, PHI, following an iteration cycle is less than the input value of RELPHI. Nole: the maximum recommended value of RE...PHI is 1.0E-3.

2 RELPPHI - 1.0 EXit from the P-table search when the relative PHI drop is greater than RELPPHI.
3 RELDGMX - $1.0 \mathrm{E}-25$ Halt the differentiation and the P-table search when the relative change in the matrix diagona! maximum is less than RELDGMX.
4 ETAVREL - 1.5E-2 Exit from the η search when the parabolic vertex sequence relative change is 1 is than ETAVREL.
5 ETAHALT - LOE-2 Halt the η search when the relative PHI drop is less than ETAHALT times the relative P-table PHI drop.
6 USQME - L.0E+6 Freeze a bounded variable when its unconstrained mapping exceeds USQMX in absolute magnitude.

To use the default value of a variable, enter -77 for the corresponding integer in the first record and -77 . for the appropriate floating-point variable in the last two records.

5.2 OPT File Example

The following is an example of an OPT file.

-77	2	0	-77	-77	0	-77	0	-77	-77	1	1

-77. -77. .77. -77. 1.E-5 1.
1.E-23 1. 1.E-20 1.E-25 1.5E-20 $\quad-77$.

In this care the following variables in the OPT file do not use their default value:

ITERS	2	CMIN	$1 . E-5$	RELPHI	1 E.23
NPO	0	CMAX	1.	RELPPHI	1.
NETASCH	0			RELDGMX	$1 . E \cdot 20$
NTABLE	0			ETAVREL	$1 . E-25$
ICROW	1			ETAHALT	$1.5 E-20$
KREAD	1				

6. ELEMENT INPUT PARAMETERS

This section is devoted to a description of the parameters needed to define each type of element. The elements supported in this version of MOTER are given in Table 6.1. The coding for those elements above the dashed line was imported from the $(02 / 19 / 89)$ version of RAYTRACE and revalidated on selected test cases. The elements below the dashed line are new or were carried over from an earlier version of MOTER and have not been validated.

TABLE 6.1

	Element Type	Keyword	Parameters
A.	Drift	DRIF(T)	1
B.	Dipole	DIPO(LE)	63
C	Multipole	POLE(S)	40
D.	Multipole Corrector	MULT	23
E	Shift-Rotate	SHRT	6
F.	End-of-System	SENT(INEL)	0
G.	Cavity	CAVI(TY)	6
	Solenoid	SOLE	8
	ES Deflector	EDIP	30
	Velocity Selector	VELS	47
	Lens	LENS	11
	Collimator	COIL	5
	Accelerator	AOCE	24
	Einzel Lens	EINZ	15

6.1 Element Input Format

An effort has been made to present the user with as forgiving an imput format as is possible. Each element is described by (1) an alphabetic keyword followed by (2) a list of parameter values. The keyword must appear by itself on the first line of the element input (although it can appear anywhere on the line.) Only the first four characters of the keyword are used; all cther characters appearing on the line are ignored. A blank line preceding the keyword line will be ignored.

The list of parameter val_es is expected on the second and subsequent lines. The format is free-field, i.e., the only spacing requirement is
that the numbers be separated by one or more blanks. The parameters can be grouped on the lines to suit the user's sense of organization, e.g., as they are grouped in the parameter definitions below. T"ney will be read as a single record and the reading will continue until the proper number of parameters for a given element has been read. The on!y requirement is that the numbers be in the nrder specified below. The "Offset" column is meant to assist in the ordering.

6.2 Variable Parameters

In principle any para neter of an element may be denoted as a variable quantity that is to be optimized. Thus, following the records defining each element is a variable (zero or more) number of records, one for each parameter that is to be varied, up to a maximum of 30 , followed by a terminating record. The format for these records is given below.

Parameter Description of Parameter

- Jl . Order number in the parameter list

J2 - An integer to be assigned to this parameter. Tho integers should be assigned in the natural order (do not skip any). If two parameters are assigned the same integer, they become tied variables, i.e., the change calculated by the optimizer will be applied to all variables tied together by a particular integer. If J2 is negative, the change calculated by the optimizer is subtracted from the associated variable; this feature is used, e.g., to preserve the length of a drift. ABS(J2) must be $=30$.
J3 - Defines the type of bounds to be applied to this variable parameter.
$\mathrm{J} 3=0$: unbounded
$J 3=1$: bounded from below only
$\mathrm{J} 3=2$: bounded from abovo and below
$\mathrm{J} 3=3$: buunded from above only
BL . Value of the luwer bound
BU . Value of the upper bound

The specifying of which parameters of an element (if any) are to be varied is terminated by a record with $\mathrm{J} 1=\mathrm{J} 2=\mathrm{J} 3=0$.

6.3 Element Types

The pages which follow describe the parameters needed to define each element type.

A. Drift

Keyword: DRIF(T)

Rirameter Description Offse!
DZ - Field-free drift tongth (cm). $+0$

B. Dipole

Keyword: DIPO(LE)

BETA	- Angle (degrees) between the central trajectory and the normal to the exit boundary. Both ALFA and BETA are positive when the normals are outside the orbit for positive transverse plane focussing.	+13
NDX	- ' n-value' of field index for non-uniform field magnets (first-order term).	$+14$
BET 1	' β-value' of field index for non-uniform field magnets (secondorder term).	+15
GAMA	- ' γ-value' of field index for non-uniform field magnets (third-order term).	$+16$
DELT	- 'b-value' of field index for non-uniform field magnets (forth-order term).	$+17$
211	- Integration limit (cm) defining the start of the entrance fringing field zone in coordinate system B. Normally positive	+18
Z12	- Integration limit (cm) defining the termination of the entrance fringing field zone in coordinate system B. Normally negative.	$+19$
Z21	Integration limit (cm) defining the start of the exit fringing field zone in coordinate system C. Normally negative	$+20$
Z22	- Integration limit (cm) defining the termination of the exit fringing field zone in coordinate system C. Normally positive.	+21
C00	- Coefficients used in the expansion of the fringing field fall-off at	+22
C 01	the entrance of the magnetic element.	$+23$
C 02		$+24$
C()3		+25
C04		+26
C05		+27
C 10	Coefficients used in the expansion of the fringing field fallooff at	$+28$
Cl 1	the exit of the magnetic element.	129
Cl 2		+30
C13		+31
C.14		+32
C15		+33
BR 1	Correction for presence of constant field in region of entrance fringe field (Tesla)	+34
BR2	Correction for presence of constant field in region of exit fringe field (Tesia). In the Split-Pole Spectrometer, BR1 and BR2 describe the asymptotic field in the split.	+ 35
XCR1	- Equivalent to a coordinate system shift (cm) at the entrance (element SHRT) with $\triangle x$ exRCl. Used to correct for dinplacement of cential ray caused by extended fringing field (see Fig 2 in RAYTRACE manual). Use X(RI-SCR2s0 unless the actual hardware element will be offsel.	$+36$
XCR2	Equivalent to coordinate system shift (cm) at the exit with $\Delta x=X C R 2$. Used to correct for displacement of central ray conused by extended fringing field.	$+17$
DEIS!	A correction to the location of the effective field boundnry. The effective fiald boundary at the enlrance in moved lowards the mingnet (for positive Δx) by an amount as $=$ DELSI*D.	+18

C. Multipole

Keyword: POLE

Parameter

Description

Offset

| LF1 | - Entrance fringing field integration step size (cm). | |
| :--- | :--- | :--- | :--- |
| LU1 | - Uniform field integration step size (cm). | +0 |
| LF2 | - Exit fringing field integration step size (cm). | |
| | Recommended for all three step sizes: $0.3 R$ | |

D. Multipole Corrector

Keyword: M?lLT

Parameter Description Offset
LF - Integration step size (cm). $+0$
DG - Differential step size (cm) used in determiaing off-midplane $+1$components of B using a numerical technique. Recoinmended forboth step sizes: 0.3D.
A - Distance (cm) from origin of system A (initial) to coordinate system $+2$ situated at center of multipole element.
B - Distance (cm) from coordinate system situated at center of multipole $+3$element to origin of output system D.
$\mathrm{L} \quad$ - Length of the Multipole Corrector (Em). $+4$
W - W.d:h (cm) of multipole element. $+5$
D - Gap (cm) of multipole element. $+6$
$B F$ - Nominal value of field at $x=W / 2$ and $z=0$, i.e., the value the field at x $+7$$=\mathrm{W} / 2$ will attain if one of the coefficienis CO-C5 is equal to unity andthe others are zero.
Z1 - Starting point of integration (cm) mesjured from coordinate system $+8$at center of multipole element. Normally negative
22 - Termination point of integration (cm) measured from coordinate $+9$ system at center of multipole element. Normally positive.

- Coefficients describing dipole, quadrupole, etc. content of $+10$
the field. Normal range: -1.0 to 1.0 $+11$
$\stackrel{C}{C}$ $+12$$+13$
$+14$
C4 $+15$
CS - Not used. $+16$
C7 - Coefficients used to define how the field varies with z / L. $+17$
basically describing a bell-shaped curve. Typical values are C7 = 0.4 $+18$
$\mathrm{CX} \quad$ basically desc \quad and $\mathrm{C8}=0.1$.
ZIN - Aperture checking beings at a point ZIN (cın), ZIN $\geq \mathrm{ZI}$. $+19$
ZOUT inside the element and continues at eact iniegration step to ZOUT $+20$ (cm), ZOUT \leq Z2. Both quantities are measured from the center of the element, which means that ZIN is norma!ly negative while ZOUT is normally positive.
XMAX - Half-aperture collimation limits (cm) set on a ray pass'ng $+21$
YMAX thre the magnetic element. If $|X|>X M A X$ or $|Y|>Y M A X$ in the $+22$region being monitored, a message is issued, once only, indicatingthat the aperture was grazed. A value of $X \mathrm{MAX}=0$ supresses aperturechecking.

E. Shift-Rotate

Kev:Ird: SHRT

Parameter

Description

Offset

XD - Aلf following coordinate systems are displaced in the x-direction by +0 an amount $X 0$ (cm) as measured in the preceding system.
Y0 - All following coordinate systems are displaced in the y-direction by +1 an amount YO (cm) as measured in the preceding system.
Z0 - All following coordinate systems are displaced in the z-direction by an amount $Z 0$ (cm) as measured in the preceding system.
Ψ_{x}

- The rest of the optical system as a unit is rotated Ψ_{x} (degrees) about $+3$ the x-axis of the preceding system.

$$
\Psi_{y}
$$

- The rest of the optical system as a unit is rotated ψ_{y} (degrees) about +4 the y-axis of the preceding system.
ψ_{z}
- The rest of the optical system as a unit is rotated Ψ_{2} (degrees) about $+5$ the 2 -axis of the preceding system.

F. End-of-System

Keyword: SENT(INEL)

Parameters: NONE

- This element is required to signal the end of the list of elements. It has no parameters associated with it.

USE OF MOTER AT MICHIGAN STATE

Use of MOTER at Michigain State
T. Nolen

Srectumetor Desijn at MSU INSCL thie of moTER and futare idear:

1. Simple spectrosmpl: acodos 34°
2. Rexainn Product Mars stpanator "RPNS" QQWDQQ
3. Frepment sepmetr "Al200"
4. Lage sperthonat: "Sres" QQDD soffane corration
5. Using DA toakinjue for on-lise concetions

QQD Spectrograph

and the production target was $790 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9} \mathrm{Be}$.
$\ldots .-\boldsymbol{\square}$
$a d$
msu-90-010
First Order Beam Envelopes

Sehametic Layout

MOTER
"Demends" - ven, flexible
ep. Forward Maps
Inverse Maps Merskrement errors

Optimisetion Detormine best compromios beturen haidware and osfance corrcetions.

Formun:

$$
\begin{aligned}
& \text { e. } \quad x_{f}=(x 10) 0_{0}^{0}+\left(x(x) x_{0}+(x / f) \delta\right. \\
& +\left(x / 0^{2}\right) \theta_{0}^{2}+\left(x / \delta^{e}\right) f^{6}+(\operatorname{An} S) \theta_{8} \delta \\
& +\left(x / 0 \delta^{e}\right) g \delta^{e}+\cdots \\
& \begin{array}{ll}
x_{f} \\
e_{f} \\
i_{f}
\end{array} \quad x_{0} \quad x_{0} \\
& 4 f \\
& \text { Pantive }
\end{aligned}
$$

MOTER FIT:
Thase 100 or mave rays / mandam.
Guess which highow outop terns are important and lot wOTER calenlate their coof. $6 y$ ntivy randen meys.
Plot "errop" historman and rewn to mininure exrers

$$
\Delta x_{m}=\left(x_{\text {trave }}-x_{\text {fot }}\right)_{m}
$$

Inverse fit (omit x_{0})

$$
\begin{aligned}
\delta= & (\delta \mid x) x_{f} \\
& +(f / \theta x) \theta_{f} x_{f}+\left(\delta / \sigma^{2}\right) \theta_{f}^{2}+\left(\delta\left(x^{2}\right) x^{2}\right. \\
& +\left(\delta / \theta x^{2}\right) \theta_{f} \alpha_{f}^{2}+\cdots
\end{aligned}
$$

For every randm ray distribute values of k_{f}, B_{f}, ete randinly aceoroing $九$ क्ञ, Ef, ete. (~10 uahosper rey.)

Use DA to ofetermine invorse map:"
Forward nax-linew sub-map of syrthi :

$$
A_{n} \equiv A_{1}+A_{n-1}
$$

A_{n} to "wrecssary" order

- ealealate arith cory.an of MOTER / RNY TEDEF

1 theorem a recursion relation Existince of $A_{1}^{-1} \Rightarrow A_{n}^{-1}$ arists.

On-line Correction of Aberrations in Particle Spectrographs

M. Berz, K. Joh, J. A. Nolen
Department of Physics and Astronomy and
National Superconducting Cyclotron Laboratory,

B. M. Sherrill and A. F. Zeller
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Mi 43824

Abstract

A new method is presented that allows the reconstruction of trajectories and the oo-line correction of residual abere rations that limit the resclution of particle spectrographs. Using a computed or fitted high order transfer map that describes the uncorrected aberrations of the spectrograph under consideration, it is possible to determine a pseudo tranafer map that allowa the computation of the corrected data of interest as welles the reconatructgd trajectoriea in terms of position mensurementa in two planet nedt the focal plane. The technique is only limited by the accuracy of the position measurements and the accuracy of the transfer map. In practice the mothodean be expruedt mana saverigion of a preudo transfer map and implemented in the differential algebraic fremework. The method will be used to correct residual high aberrations in the 5800 spectrograph which is under conatruction at the National jupercondúcting Cy clotron Laboratory at Michigan State Univeraity.

1 Introduction - Imancomen

Efflcient modern high-recolutiop maبe apectrographe usually offer rather large phace ipace acceptance. One such spectrograpt is the $\mathbf{S 8 0 0}$ currently under coastructior, at Michigan State Univerity's National Superconducting Cyelotron Laboratory (1, 2). Such large acceptance high resc.ution apectrographe usually require a careful consideration and correction of aberrations. But because of the large phace spece acceptance, effecte of rather high orders contribute. This make the correction procere ofton considerably more difficult and complex, and sometimes aven preventa a complete correction ot aberrations in the conventional sence.

It is flen pomible to circumvent or at least alleviate these problems by uning additional information about the particlea. In particular, ane often mesures not only thair final poation but aleo their final angle by meane of a areond detector. With this addational information it is to some dearee pomible to retroactively conatruct the whole

[^0]trajectory of the particle. This information can be used both for the numerical correction of the qu sntities of interest, but it also reveale additional properties like the initial angle, which is of eourn of intereat in the atudy oi many nuclear proceses.

In the patt such trajectory raconatruction techniques were quite involved, often requiring extensive ray tracing and the storage of large arraya of ray data and extensive interpolation. In this paper, we present a rather direct and efficient method baed on differential algebraic (D.a) lechniques.

In recent years we have shown that maps of particle op. tical ayntems can be computed to much higher orders than previously pomible using DA methods $[3,4,5,6]$. Furthermore, the cectrithes alvo allow the accurate creatment of very complicated fielde that can be treated only approximately otherwise. In our particular case, these include the fringe fielde of the large aparture magnote required for nuch particie spectrographe. So for the frot time there is now the pomeibility to really compute all the sberrations that comprise a modara high resolution apectrograph without havingtosely on todious ray tracing.

On the practical side this rêquirtes bigh order codes for the computation of highly accurate mape for realastic fields. The new code COSY INFINITY [7, 8, 9, 10] allows such computationa in a very powerful language environment it also has extennive and general optimization capabilities. supporte interactive graphics and provides ample power for customized prollems, and it providee all the necenary toolo for efficient trajectory reconstruction.

In the next section, we will discuse an important algorithm for this tak, the inversion of tranafer mapa. Section 3 cutlines the une of map inversion techniques for the purpores of trajectory reconatruction. Section 4 provides an outlook for the practical application in connection with the 5800 ipectrograph.

2 Inversion of Transfer Maps

At the core of the operations that follow is the need to invert tranafar maps in their DA represantation. Though as first glance this appears like a very difficult problem. we will gee that indend there is a rather elegant and closed
algorithm to perform this task.
We begin by splitting the map A_{n} into its linear and noolinear parts:

$$
\begin{equation*}
A_{n}=A_{i n}+A_{2 n} . \tag{1}
\end{equation*}
$$

Furthermore, we write the sought for inverse as M_{n}.

$$
\begin{equation*}
A^{-1 n}=M_{n} \tag{2}
\end{equation*}
$$

Componing the functions, we oblain

$$
\begin{align*}
\left(A_{1}+A_{2 n}\right) \circ M_{n} & =E_{n} \Rightarrow \\
A_{1} \circ M_{n} & =E_{n}-A_{2 n} \circ M_{n} \Rightarrow \\
M_{n} & =A_{1}^{-1} \circ\left(E_{n}-A_{2 n} \circ M_{n-1}\right) . \tag{3}
\end{align*}
$$

Bere " 0 " otande for the compoaition of maps. In the last step use has been made of the fact that knowing M_{n-1} allowe un to compute $A_{2 n} \circ M_{i n}$. The nocemary computation of A_{1}^{-1} is a linear matrix invertion.

Equation (3) can now be yed in a recuraive manner to compute the M_{i} order by ordere:

3 Trajectory Reconstruction

The result of the comprianiog of the tranifor map of the syotem allows un to relate flad quantities to initial quastitime and paramotore. In our case, the relevant quantitiee sre the positione in z and y directions as well as the messuree of siopem $p_{n} / p_{0}, p_{y} / p_{0}$ and the energy of the particle under concideration. Usually the initid \mathbf{z}, whind-iv-dower

 positions and alopee are primarily determined by the onergy, and to higher orders aleo by the initidy y paition and the initid alopen.
la the full tranafar map we now sot x_{i} to zero and consider the following submap:

$$
\left(\begin{array}{l}
z_{f} \tag{4}\\
a_{f} \\
y_{f} \\
b_{j}
\end{array}\right)=s\left(\begin{array}{l}
a_{1} \\
z_{1} \\
b_{1} \\
d
\end{array}\right)
$$

This map rolaten the quactitioe which can be mesured in the two plance to the quantitien of intermi. The map S is not a rasuler tranofor map, and in particular its hasese part dom not bave to be a prioti invertible. In a well dengred particle upectrograph, the linear part bee the following form:

$$
\left(\begin{array}{l}
z f \tag{8}\\
a_{f} \\
y_{f} \\
b_{f}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & * \\
0 & 0 & 0 & * \\
0 & \vdots & \vdots & 0 \\
0 & \cdot & \cdot & 0
\end{array}\right) \cdot\left(\begin{array}{l}
a_{1} \\
y_{1} \\
b_{1} \\
d_{1}
\end{array}\right)
$$

where a oter denotee as entry that is not zero. Since the syotem in imaging, clearly (x, a) vauiahee, ar.d all the other

Figure 1: The vertical layout of the $\mathbf{S 8 0 0}$ spectrograph
zero terms vanish because of midriane symmetry. (\mathbf{x}, d) is maximized in apectrograph design, and (\mathbf{a}, \mathbf{a}) cannot vanish in an imaging ayatera becaum of aymplecticity. In fact, to reduen the effect of the finite eize entrance slit, (\mathbf{x}, x) is minimized within the conatranta, and so ($\mathbf{a}, \mathrm{a})=1 /(\mathrm{x}, \mathrm{x})$ it also maximised.
Becaure of aymplecticity, $(y, y)(b, b)-(y, b)(b, y)=i$, and $\infty \mathrm{we}$ obtain for the total determinant of S :

$$
\begin{equation*}
|S|=(z, d) \cdot(a, a) \notin 0, \tag{6}
\end{equation*}
$$

bemide being nonzero, the aise of the determinant is also - good mosure of the quality of the spectrograph: the larger the better.
So cortainly the linear matrix is invertible, and according to the last section, this entaile that the whole nonlinear map S is invertible to arbitrary order, and thue it is posstble to compute the initial quantities of interent to arbitrary order.
A closer inepection of the algorithrn shown that in each iteration, the renult in multiplied by the inverse of the liaear matrix S . Since the determinant of thin inverse is the inverm of the original determinant and io thue quite amall, thie sataib that the originally large terms in the aonlinear part of the original mep are more and more nuppresed. So clearly even with trajectory conatruction, the original investment in the quality of the apectrograph, which is determined by its disparsion and ite x demagnification, directly influencee the quality of the trajectory reconatruction.

4 The Correction of Aberrations in Spectrographs

The proposed superconducting magatic apectrograph, the S800 (1) ohowa in fls. I, for the National Superconducting Cyclotron Laboratory will illow the atudy of heavy tor. reactions with magnetic rigidition of up to $1.2 \mathrm{GoV} / \mathrm{c}$. It will have an energy resolution of one part in 10000 with a

Table 1: The $\mathbf{S 8 0 0}$ Spectrograph

Drift	$1=60 \mathrm{~cm}$
Quad	$1=40 \mathrm{~cm}, G_{\text {mas }}=21 \mathrm{~T} / \mathrm{m}, \Delta t=\mathscr{A} \mathrm{m}$
Drift	$1=20 \mathrm{~cm} \quad r \quad .2$
Quad	$1=40 \mathrm{~cm}, G_{\text {mas }}=6.8 \mathrm{~T} / \mathrm{m}, \mathrm{A}=92 \mathrm{~m}$
Drift	$1=50 \mathrm{~cm}$
Dipole	$\begin{aligned} & t=2.6667 \mathrm{~m}, B_{\text {max }}=1.5 T, \phi=75 i^{2} \mathrm{eg}, \\ & \epsilon_{1}=0 \mathrm{deg}, \epsilon_{2}=30 \mathrm{deg} \end{aligned}$
Drift	$1=140 \mathrm{~cm}$
Dipole	$\begin{aligned} & r=2.6667 \mathrm{~m}, B_{\text {mas }}=1.5 \mathrm{~T}, \phi=75 \mathrm{deg} . \\ & c_{1}=30 \operatorname{deg}_{1} \mathrm{c}_{2}=0 \mathrm{deg} \end{aligned}$
Drift	$1=257.3 \mathrm{~cm}$

large solid angle of about 20 msr and an energy arceptance of about 10 perceat.

The spectrcyraph will be used in connection with the new K 1200 Superconducting Cyclotron for beame of protons up to Uranium with energiea of 2 to $200 \mathrm{MeV} / \mathrm{u}$. It will provide unique opportunities for research in various areas, including the study of giant resonsnces, charge exchange, direct reaction studies and fundamental inveatigations of nuclear structure (11].

The S800 consiats of two superconducting quadrupoles and two 75 degree dipoles witi: y-focusing edge anglea. Thble 1 lists the parameters of the syatem. The settinge of the quadrupoles shown here correspond to particles of 193.04 MeV , mase 100 and charge 50. Standard uptica notation is used.

After a careful measurement of the crucial fringe fielde of the dipoles, we will be using COSY to determine the high order properties of the map of the spectrograph. The compreation of the map S from the repulting transer map cas be performed directly withia the COSY eavironment, and so can the inversion of the map S. Altogether, ecorrection map S is found, the nonlinearity of which in determined by the nonlinearity of the uriginal map and the quality in the spectrograph measured by $(x, d) /(x, x)$. It is anticipated that the correction map can be ueed for an on line determination of the relevant data without having to atore the raw two plane poation messuremente.

In closir , we would like to note that the method can also be employed for spectrographs icr which no sufficient field mesurements are known. To inis end, one has to perform experimental rey tracing end fit the resulting data with a polynomial type transfer map. Also in this case, the inveraion can be done in the map picture reaulting in a rather compact repreasitation of the data neceasary for correction.

References

[1] J. Nolen, A.F Zeller, B. Sherrill, J. C DeKamp, and J. Yurkon. A proposal for construction of the $\$ 300$ spectrograph. Technical Report MSUCL-694, .iational Superconducting Cyclotron Laboratory, 1989
[2] L. H Harwood A. F. Zeller, J. A. Nolen and E. Kashy The MSU $1.2 \mathrm{GeV} / \mathrm{c}$ spectrograph. In Workshop on High Resolution, Large Acceptance Spectrometers. ANL/PHY-81-2. Argonne National Laboratory, $198^{2} 2$
[3] M. Berz. Arbitrary order deacription of arbitrary particle optical syatems. Nuclear Instruments and Weth. ods, A298:426, 1990.
[4] M. Bers. Differential Algebraic deacription of beam dynamice to very high orders. Paricle Accelerators. 24:109, 1989.
[5] M. Berz. Differential Algebraic treatment of beam dynamies to very high orders including applications to spacechurge. AIP Conference Proceedings, 171275 1988.
[6] M. Berz. Differential Algebraic description and analyais of trajectories in vacuum electronic devices including spacecharge effects. IEEE Transactions on Eleciron Devices, 35-11:2002, 1988.
[7] M. Berz. COSY INFINITY Version 3 reference manual. Technical Report MSUCL-751, Nauonal Superconducting Cyclotron Laboratory, Michigan Siate University, East Lansing, MI 48824, 1990.
[8] M. Bers. Computational aspects of design and simulation: COSY INFINITY. Nuclear Instruments and Methods, A298:473, 1990.
[9] M. Berz. COSY INFINITY, an arbitrary order general purpose optice code. Computer Codes and the Linear Accelerator Community, Los Alamos LA-11837-C 1.37. 1990.
[10] N: Berz. COSY INFINITY. In Proceedings 1991 Par. ticle Aecelerator Conference, Sao Franciaco, CA, 1991
[11] N. Anantaraman and B. Sherrill, Editors. Proceedinge of the international conference on heavy ion researeh with magnetic upectrographs. Technical Report MSUCL-685, National Superconducting Cyclotron Laboratory, 1989.

SPECTROMETER DESIGN AT MICHIGAN STATE

SPECTROMETER
DESIG~AT

NscL/mso

1. zeicler


```
OARAMETERS OF THE MSU . 2 JeV/C SPECTROGRAPH
ENERGY RESOLUTION: IE/E = O-4 WITH Imm RADIAL OBJECT SSE

ENERGY RANGE:
SOLID ANGLE:
RESOLVING POWER:
FADIAL DISPERSION:
RADIAL MAGNIFICATION:
AXIAL OISPERSION:
ANGULAR RESOLUTION:

FOCAL PLANE SIZE:
FOCAL PI.ANE TILT:
MAGNETIC RIGIDITY:
OIPOLE FIELOS:
OIPOLE GAP:
DIPOLE SIZE:
WEICHT OF DIPOLES:
QUAD SIZES:

OETECTOR REQUIREMENTS:
```

 FOR BEAM ANALYSIS SYSTEM
    ```
```

 FOR BEAM ANALYSIS SYSTEM
    ```
```

 \DeltaE/E = 0%
    ```
    \DeltaE/E = 0%
    \Omega=0-20 msr
    \Omega=0-20 msr
    J/M= .1.7
    J/M= .1.7
    D = 9 cm/%
    D = 9 cm/%
    u=0.78
    u=0.78
    R 34}=0.74\textrm{mm}/\textrm{mr
    R 34}=0.74\textrm{mm}/\textrm{mr
    \Deltag\leq2 mr (TOTAL CF BEAM PLUS SPECTRCGRAPH
    \Deltag\leq2 mr (TOTAL CF BEAM PLUS SPECTRCGRAPH
        CONTRIBUTIONS)
        CONTRIBUTIONS)
    50 cm (RADIAL) X 15 cm (AXIAL)
    50 cm (RADIAL) X 15 cm (AXIAL)
O
O
BP=4T-m
BP=4T-m
B=1.5T( P= 2.7 m}
B=1.5T( P= 2.7 m}
D = 15 cm
D = 15 cm
3.5 m LONG X }100\textrm{cm}\mathrm{ WIDE (75* BENO) OTY SF 2
3.5 m LONG X }100\textrm{cm}\mathrm{ WIDE (75* BENO) OTY SF 2
APPROX. }70\mathrm{ TQNS EACH
APPROX. }70\mathrm{ TQNS EACH
-1) 20 cm 10 x 40 cm LONG
-1) 20 cm 10 x 40 cm LONG
02) 35 cm x 17 cm x 40 cm
02) 35 cm x 17 cm x 40 cm
TWO 2-DIMENSIONAL DET..Im SEPARATION
TWO 2-DIMENSIONAL DET..Im SEPARATION
*1) 50 cm x 15 cm
*1) 50 cm x 15 cm
*) 2) 62 cm x 16 cm
*) 2) 62 cm x 16 cm
RESOLUTION: RADIAL }0.2\textrm{mm
RESOLUTION: RADIAL }0.2\textrm{mm
                                    AXIAL 0.4 mm
```

```
                                    AXIAL 0.4 mm
```

```


SOFTMARD CORACTIONS \(\rightarrow \frac{\Delta B}{B_{1}}+5 \times 10^{-1}\)
\[
\frac{\Delta B}{\sqrt{3}} \leq 1 \mathrm{G} / \mathrm{cm} \quad t \quad 35 \mathrm{~cm}
\]

\section*{This Page is Blank}



Without curvatures.


focal plane

ToT

Table 1
"riv elements" used in MOTER obtained by trial and error.

* Common to Ottar Lists

Table 2
Matrix elements from COSY INFINITY








Table 3
S800 spectrograph resolutions,


\section*{USE OF MOTER AT CEBAF \& RELATED TOPICS}
J. napocitano, Cebaf PIllac OPTKS WCRKit Ausust 12-13, 1991

Fiecds in a "Beac" Quadrupoli Magnet
W/TED HUNTER Steve lacsiter Leggh harwood
" Spectrometer
The. ceraf 6 eren/c High momentim Sperrme
w/ Steve Wood erren yan.
Leigh harwood

Large Aperture T̂unorupole Magnets
Superconducting magnets with large apertures are useful for designing thigh momentum, large acceptance spectrometers.

ExAmples:

MSU/NSEL 5800
( \(\times 2\) ) CEBAF HRS 4 GEV
cebaf has 6 geV Design Completed

Note: No (?) Operating Focussing Spectrometers with Supercomouting Large aperture Magnets

HOWEVER , ...
Aberrations grow with large powers of the radius.
\(\rightarrow\) How bad are these aberrations and what is their effect on spectrometer performance?

Aberrations n Quadrupole Magnets
\(\begin{aligned} & \text { THE PERFECT } \\ & \text { QUADRUPOLE : }\end{aligned} \quad \Phi(r, \theta, z)=\frac{r_{0}}{2} b_{2}\left(\frac{r}{r_{0}}\right)^{2} \cos 2 \theta\)
FOR \(-4 / 2 \leq z \leq 4 / 2 ;=\varnothing\) OTHERWISE
\[
\text { 1.e. } B_{\theta} \propto r \rightarrow
\]


Two Sources of non \(-r^{2}\) Dependence:
- Higher Order Multipoles (see P. Walstrom, fomorre
\[
\Phi_{n}(r, \theta, z)=\frac{r_{0}}{n} D_{n}\left(\frac{r}{r_{0}}\right)^{n} \cos n \theta \quad n>2
\]
- Residual of 8-Focd Symmetry \((n=6,10,14, \ldots)\)
-Results of not 8 -fold symmetry \((n=\) amy thing
- Fringe Effects
\[
\Phi_{n}(r, \theta, z)=\frac{r_{0}}{n} \oint_{n}(z)\left(\frac{r}{r_{0}}\right)^{n} \cos n \theta
\]
induces Higher Order \(r^{2 m}(M \geq 1)\) Terms THROUGH DERIVATIVES OF \(D_{n}(z)\)

A General Form for the - Ii
SoluTion to Laplace's Equation
SEE K. Hatband, Today: Tomorrow
\[
\begin{aligned}
& \Phi^{\prime}(r, \theta, z)=\sum_{n=0}^{\infty}\{\underbrace{\left.\sum_{m=0}^{\infty} \frac{r_{0}}{2 m+n} b_{m, n}(z)\left(\frac{r}{r_{0}}\right)^{2 m}\right\}\left(\frac{r}{r_{0}}\right)^{n} \cos n \theta}_{m \geq 1 \text { INDUCED iN FRINGE }} \\
& \text { FOR } m \geq 1 \text { FIND } D_{m, n}(z)=\frac{2 m+n}{4 m(m+n)(2 m+n-2)} r_{0}^{2} \frac{d^{2} b_{m-1, n}}{d z^{2}}
\end{aligned}
\]

THS LEAOS To \(\int_{0}^{\infty} B_{\theta, n}(r, z) d z=\left(\frac{r}{r_{0}}\right)^{n-1} \int_{0}^{\infty} b_{0, n}(z) d z\)
1.e. THE FIELD INTEGRM AT CONSTANT ב IS RIVEN SOLELY BY THE LEADING ORDER RADIN TERM FOR THAT MULTIPOCE ( \(D_{Q T}\) )

In our work we Use tosca it ora to Determine \(\Phi(r, \theta, z)\) inching muctpoces. tHEN WE FIT THE OUTDUT RESULIS TO determine the \(\operatorname{Dimin}_{m}\left(z_{\text {r }}\right.\).

An Example J.N: HT. HUnter nim azole (1991) 40:
A Superconducting Cold Iron Quadrupole:
l. Harmon, S. lassiter, w. Tuzel ieee trans. mag.
\[
26(1989) 1910
\]


Note: Steve Lasciter (this meeting) will Present Details on the Current Design and analysis status of the mafeets to be used in the has



"Demonstration" of the Relation
\[
\int_{0}^{\infty} B_{n, r}(r, z) d z=\left(\frac{r}{r_{0}}\right)^{n-1} \int_{0}^{\infty} b_{0, n}(z) d z
\]

Multipole Components Integrated From \(z=0\) to " \(\infty\) "


THE HIGH MOMENTUM ذfer.trometer 'HM!.' For Electron and

Detector Package Hadron Detection: Hall C C


MAXIMUM CENTRA C MOMENTUM (NOM.) \(\qquad\) \(6 \mathrm{BeN} / \mathrm{C}\) MOMENTUM ACCEPTANCE \(\qquad\) \(\pm 5 \% \rightarrow \pm 10 \%\) scattering angle acceptance _. I \(25 m r\) OUT- OF-PLANE ANGLE ACCEPTANCE - - I 82.5 mer SOLID ANGLE (NOMINAL) -......... 6.5 msr . TARGET LENGTH ACCEPTANCE -...... \(\pm 5 \mathrm{~cm}\) MOMENTUM RESOLUTION \(\qquad\) \(\lesssim 0.19\)


NO HARDWARE HIGHER ORDER CORRECTIONS!

Superconducting "Cold Iron" Quadruples
FOR THE HMS
\begin{tabular}{|c|c|c|}
\hline & Q1 & Q2/Q3 \\
\hline Gradient (G/cm) & 605 & 445 \\
Pole Radius (cm) & 25 & 35 \\
"Good Field" Radius (cm) & 22 & 30 \\
Pole Tip Field (T) & 1.512 & 1.56 \\
Magnet Effective Length (cm) & 189 & 210 \\
Coil Cross Section Area (cm \({ }^{2}\) ) & 9.30 & 12.93 \\
Current Density (A/cm²) & 16,178 & 16,800 \\
Turns/pole & 76 & 110 \\
Operation current & 2,171 & 1,976 \\
Total Length (feet) & 4,000 & 6,100 \\
Stored Energy (10 \({ }^{6}\) ) & 0.25 & 0.5 \\
\hline Ideal Design Criteria: \\
Deviation in Gradient \(\leq 2.0 \times 10^{-3}\) out to warm radius \\
Error in Field \(\leq 2.0 \times 10^{-4}\) out to warm radius \\
\hline
\end{tabular}

SEE THu By S. lacsiter far More İ etac.s

FILE HMSPARAPT2: \(\mathrm{D} / \mathrm{M}=1.2 ; 6.75 \mathrm{M}\) TO FOCUS ; 215 CM Q3


EVOLUTION OF TRANSPORT NAFRIX ELEMENTS

HMSPARAPTR: D/M=1.2;6.75M TO FOCUS:215CM Q3


Comparison: Slat 8 GeN/ Spectrometer


\section*{Matrix Elements at Focus}
*PILL EMSPARAPT2: D/M-1.2 ; 6.75M TO FOCUS ; 215CM 03
\begin{tabular}{rrrrrrr} 
TRANSFORH 1* & \multicolumn{6}{c}{ "PRNT" } \\
& -3.26268 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 3.91522 \\
& 0.27371 & -0.30650 & 0.00000 & 0.00000 & 0.00000 & 4.12724 \\
& 0.00000 & 0.00000 & 0.00000 & 0.98268 & 0.00000 & 0.00000 \\
& 0.00000 & 0.00000 & -1.01762 & 0.27135 & 0.00000 & 0.00000 \\
& 1.45375 & -0.12000 & 0.00000 & 0.00000 & 1.00000 & -0.16528 \\
& 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 1.00000
\end{tabular}
-2ND ORDER IRANSFORM
111 6.407E-04
112 1.571E-04 \(122-3.422 E-05\)
\(1130.000 \mathrm{E}+00 \quad 123 \quad 0.000 \mathrm{E}+00 \quad 133-7.285 \mathrm{~B}-05\)
\(1140.000 \mathrm{~B}+00 \quad 124 \quad 0.000 \mathrm{E}+00 \quad 134 \quad 7.351 \mathrm{E}-06\)
\(115 \quad 0.000 \mathrm{~B}+00 \quad 125 \quad 0.000 \mathrm{E}+00 \quad 135 \quad 0.000 \mathrm{E}+00\)
\(136 \quad 0.000 \mathrm{E}+00\)
\begin{tabular}{llr}
1 & 44 & \(-1.680 \mathrm{~B}-04\) \\
1 & 45 & \(0.000 \mathrm{~B}+00\) \\
1 & 46 & \(0.000 \mathrm{E}+00\)
\end{tabular}
\(\begin{array}{rrr}1 & 55 & 0.000 \mathrm{E}+00 \\ 1 & 56 & 0.000 \mathrm{E}+00 \\ 1 & 66 & -3.801 \mathrm{E}-02\end{array}\)

211 -3.335E-04
\(212-1.335 \mathrm{E}-04\)
\(213 \quad 0.0008+00\)
\(214 \quad 0.000 E+00\)
\(2150.000 \mathrm{~B}+00\)
\(216-6.5128-02\)
\(222-4.507 \mathrm{E}-06\)
\(2230.000 \mathrm{E}+00\)
233 -5.747E-0
\(2240.000 \mathrm{E}+00\)
\(234-2.890 \mathrm{E}-04\)
\(244-1.1028-04\)
\(245 \quad 0.000 \mathrm{~L}+00\)
\(255 \quad 0.000 \mathrm{E}+00\)
\(2560.0008+00\)
\(266-4.0388-02\)
\(3110.0002+\infty\)
\(\begin{array}{lllll}3 & 12 & 0.000 \mathrm{E}+00 & 3 & 22 \\ 0.000 \mathrm{E}+\infty\end{array}\)
\(313 \quad 3.725 \mathrm{~B}-03 \quad 323-4.394 \mathrm{E}-05\)
314 9.248E-04 \(324 \quad 2.190 \mathrm{E}-06\)
\(3150.000 \mathrm{E}+00\)
\(3160.000 \mathrm{E}+\infty\)
\(325 \quad 0.000 \mathrm{E}+00\)
\(330.000 \mathrm{E}+00\)
\(334 \quad 0.000 \mathrm{E}+00\)
\(3350.000 \mathrm{E}+00\)
\(3640.0502+00\)
\(3450.000 \mathrm{E}+00\)
346 6.5008-02
\begin{tabular}{lll}
3 & 55 & \(0.000 \mathrm{E}+00\) \\
3 & 56 & \(0.000 \mathrm{E}+00\) \\
3 & 66 & \(0.000 \mathrm{E}+00\)
\end{tabular}
\(4110.0008+00\)
\(4120.0002+00 \quad 422 \quad 0.0002+00\)
413 1.986 -03 42 -9.865E-06
\(433 \quad 0.000=+00\)
414 1.081E-03
4 24-1.0428-04
\(434 \quad 0.000=+00\)
415 0.000E+00
- \(250.0002+00\)
\(4350.0002+00\)
- 36 1.1298-01
\(\begin{array}{ll}4 & 44 \\ 4 & 0.0002+00 \\ 4 & 0.0008+00 \\ 46 & 4.3838-02\end{array}\)
\(\begin{array}{ll}4 & 55 \\ + & 0.000 \mathrm{~F}+00 \\ +66 & 0.000 \mathrm{E}+00 \\ +66 & 0.000 \mathrm{~F}+00\end{array}\)

511 -1.0985-02
512 7.9258-04
\(522-2.0398-04\)
\(5130.0002+00\)
\(5230.0002+00\)
5 33-8 579E-03
\(5140.000 E+00\)
\(5240.000 \mathrm{E}+00\)
\(534-5.709 \mathrm{E}-03\)
\(544-1.3702-03\)
\(545 \quad 0.000 E+00\)
\(5350.000 E+00\)
\(556 \quad 0.000 \mathrm{E}+00\)
\(566-5.749 E-03\)
file parapt3c：five energy（＋－5\％）version of parapt3b
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ENERGY（MEV） & 5700.000 & 5850.000 & 6000.000 & 1 & 6150.000 & 6300.000 \\
\hline XOR（CH） & －15．743 & －8．836 & －0．001 & \(\alpha\) & 10.738 & 23.408 \\
\hline YOR（CM） & 0.000 & 0.000 & 0.000 & 8 & 0.000 & 0.000 \\
\hline ZOR（CH） & －222．717 & －112．979 & 0.017 & 2 & 117.557 & 240.864 \\
\hline TR（HR） & －21．696 & －10．576 & －0．001 & 3 & 10.069 & 19.671 \\
\hline PHI（IR） & 0.000 & 0.000 & 0.000 & 2 & 0.000 & 0.000 \\
\hline ｜XIAXI（CM） & 1.539 & 1.632 & 1.746 & 2 & 1.878 & 2.027 \\
\hline \(21 \mathrm{MLAXI}(\mathrm{CH})\) & 27.336 & 35.126 & 43.382 & & 52.093 & 61.274 \\
\hline X／TB & 0.000 & 0.000 & 0.000 & & 0.000 & 0.000 \\
\hline T／TB & －0．309 & －0．308 & －0．305 & －0．307 & －0．300 & －0．294 \\
\hline 7／PB & 6.631 & 8．1．05 & 10.287 & 9.827 & 12.273 & 14.369 \\
\hline P／P日 & 0.062 & 0.186 & 0.298 & 0.271 & 0.400 & 0.493 \\
\hline X／TB＊＊2 & －0．318 & －0．333 & －0．339 & \(-0.342\) & －0．335 & －0．322 \\
\hline 1／PE＊＊2 & －0．709 & －1．262 & －2．875 & －1．680 & －2．532 & －3．218 \\
\hline T／TB＊＊2 & －0．008 & －0．006 & －0．004 & －0．005 & －0．003 & －0．001 \\
\hline T／P日＊＊2 & －0．094 & －0．105 & －0．118 & －0．110 & －0．132 & －0．146 \\
\hline 8／TE＊PB & 0.291 & 0.179 & 0.028 & 0.022 & －0．158 & －0．374 \\
\hline P／TE＊PB & －0．063 & －0．088 & －0．110 & －0．104 & －0．129 & －0．144 \\
\hline X／7月＊＊ 3 & －10．151 & －10．866 & －11．730 & & －12．735 & －13．873 \\
\hline X／TA＊P8＊＊2 & －202．674 & －209．663 & －217．598 & & －226．167 & －235．527 \\
\hline T／T月＊＊\({ }^{\text {\％}}\) & 0.175 & 0.086 & 0.001 & & －0．080 & －0．157 \\
\hline T／TZ＊PG＊＊2 & －1．483 & －2．544 & －3．457 & & －4．239 & －4．909 \\
\hline 1／P日＊＊3 & －863．564 & －871．884 & －882．712 & & －696．925 & －915．129 \\
\hline 7／TB＊＊2＊P日 & －138．989 & －155．346 & －172．140 & & －189．393 & －207．148 \\
\hline P／PE＊＊3 & －67．657 & －63．712 & －60．399 & & －57．582 & －55．194 \\
\hline P／TG＊＊2＊PB & －10．703 & －11．084 & －11．411 & & －11．686 & －11．910 \\
\hline X／TE＊＊ 4 & 0.884 & 0.622 & 0.344 & & 0.060 & －0．220 \\
\hline X／TG＊＊2＊PG＊＊2 & 44.470 & 52.211 & 59.988 & & 67.797 & 75.639 \\
\hline X／P1＊＊\({ }_{\text {\％}}\) & 228.554 & 276.645 & 315.432 & & 347.187 & 373.709 \\
\hline T／TH＊＊ & －0．042 & －0．047 & －0．050 & & －0．051 & －0．051 \\
\hline  & 0.015 & 0.538 & 1.022 & & 1.464 & 1.861 \\
\hline T／PB＊＊\({ }_{\text {¢ }}\) & 7.157 & 9.470 & 11.039 & & 12.072 & 12.720 \\
\hline 7／77＊＊3＊PB & －1．989 & －0．882 & 0.372 & & 1.714 & 3.100 \\
\hline 7／7E＊PG＊＊3 & 33.113 & 34.387 & 34.554 & & 33.514 & 31.122 \\
\hline P／TB＊＊ 3 ＊ P \(^{\text {P }}\) & 2.038 & 2.090 & 2.108 & & 2.096 & 2.061 \\
\hline  & 19.464 & 18.240 & 16.915 & & 15.537 & 14.133 \\
\hline x／7ti＊＊ & 7.206 & 8.216 & 8.381 & & 7.620 & 5.849 \\
\hline X／T\＃＊＊3＊P奴2 & 42.696 & 15.260 & －35．395 & & －111．632 & －216．273 \\
\hline X／T1＊P7＊＊＊ & 119.642 & －22．365 & －193．037 & & －389．670 & －610．586 \\
\hline T／T゙\＃＊ 5 & 0.000 & 0.000 & 0.000 & & 0.000 & 0.000 \\
\hline X／P日＊＊2（Trunc． & －－0．598 & －1．128 & －1．723 & & －2．364 & －3．037 \\
\hline \(\mathrm{X} / \mathrm{TR}\)＊ PH ＊\({ }^{\text {2 }}\)（Tr． & －－202．326 & －209．570 & －217．863 & & －227．115 & －237．295 \\
\hline X／T＊＊2（Trunc． & －－0．312 & －0．329 & －0．337 & & －0．334 & －0．324 \\
\hline X／T＊＊\({ }^{\text {（Trunc．}}\) & －－10．102 & －10．810 & －11．673 & & －12．683 & －13．833 \\
\hline
\end{tabular}


Some Words About Raytrace (is moper)

Fringe Field Aberrations
RAYTRACE Correctly calculates higher order radial terms by taking (analytic) derivatives of the \(b_{N_{1,1}}(z)\)

FRINGE EXPANSION in \(z / 2 R\) NOT \(z / R\) !
Fringe field is expressed as an expansion. around effective field boundary in turns of \(S=z / 2 R\), not \(S=z / R\) as implied by early mann

MINOR CHANGES FROM RT \(82.0 \rightarrow\) RT 90.1
- More sigufirant figures on output
- Sone change in DIPOLE parameter definitions
- Added "image size" output
- Runs a istle slower now ( \(T_{\text {CPO }} \times 1.4\) )
- More precise value of " \(c^{\prime}=2.9979 \ldots\) (!)
tigre Multipole Fringe is Non-Realistic
A. Thiessen, et.al., are worleing on this

Resolution Reconstruction via Raytrar.e
Le Question: How well does the spectrometer reconstruct momentum, scattering angle, etc... and how is it affected by aberrations due to the quadruples?

THe Approach: Write momentum, etc... as polynomials in \(x, x^{\prime}, y, y^{\prime}\) at the defector and trace bis of rays to get resolution.

Prosirans:
- "Old" voter (l.harinood)
, "new" MIter (S.WOOD)
* Optimization of manet Pazmetrers
- limited number of rays ; not too flexible
- Raytrace + minuit (cern Product)
- Confirm muter results
- Towards experiment monte carlo

The Procedure
1) Generate Rays
- Phase space choices
- Apertures in or out-
- which versing of RAYTRAEE or MOTER
2) Pick Terms in Reconstruction Poyynomisl. This work uses (for momentum recinstusetcim
\[
\begin{aligned}
\delta & =(\delta \mid x) x+\left(\delta \mid x^{2}\right) x^{2}+(\delta \mid x \theta) \theta+\left(\delta \mid \theta^{2}\right) \theta^{2} \\
& +\left(\delta \mid x^{2}\right) x^{3}+\left(\delta \mid x^{2} \theta\right) x^{2} \theta+\left(\delta \mid x \theta^{2}\right) x \theta^{2}+\left(\delta \mid \theta^{3}\right) \theta^{3}
\end{aligned}
\]
3) Find terms by Minimizing Resolution That is, determine the values of ( \(\delta \mid x\) ), etc... by murumizing \(\left\langle\left(\delta-\delta_{0}\right)^{2}\right\rangle\) as a friction of the values.
4) MOTER: OPTMIzation of MAANET PARAMETERS MOTER can automatically repeat the above. procedure, minimizing the finial result even further by varying the magnet paravisters.

Note: Same Procedure for Other Varuble ie. \(\phi\) (Scattering lugte) y (Target position) i.. \(\theta\) (out-of-plave tughte)

EXAMPLE OF RESUCTS
RESOLUTION IN DELTA (RAYTRACE)
USERI: (JIMNAP.HMS.OPTICS.RECONIPARAPT 3B_RT_CDR.RECON:1 LIMITS: 0.000100 .08250 .05000 .02500 .00000 .0500 pitate same RMS Resolution \(=5.899 \mathrm{E}-04\)

\[
\begin{aligned}
& (\delta \mid x)=2.564 E-01 \\
& (81 \theta)=0.000 E \cdot 00 \\
& (81 y)=0.000 E \cdot 00 \\
& (81 \theta)=0.000 E \cdot 00 \\
& \left(81 x^{2} \theta\right)=-1.286 E \cdot 01 \\
& \left(81 x \theta^{2}\right)=7.514 E \cdot 01 \\
& \left(81 x^{3}\right)=6.884 E \cdot 01 \\
& \left(81 \theta^{3}\right)=-1.358 E \cdot 02
\end{aligned}
\]
\(\left(81 x^{2}\right)=-2.927 E-01\)
(sley) \(-0.000 E \cdot 00\)
\((810 \phi)=0.000 E \cdot 00\)
\(\left(81 y^{2}\right)=0.000 E \cdot 00\)
\((81 y \$)=0.000 E \cdot 00\)
\(\left(810^{2}\right) \cdot 0.000 E \cdot 00\)

\section*{RESOLUTION IN PHI (RAYTRACE)}

USERI:I JIMNAP.HMS.OPTICS.RECONIPARAPT 3B_RT CDR.RECON:I
LIMITS: 0.000100 .08250 .05000 .02500 .00000 .0500
RMS Resolution \(=5.373 E-04\)

\begin{tabular}{lll}
\((\phi \mid x)=0.000 E \cdot 00\) & \(\left(\phi \mid x^{2}\right)=0.000 E \cdot 00\) & \((\phi \mid \theta y)=0.000 E \cdot 00\) \\
\((\phi \mid \theta)=0.000 E \cdot 00\) & \((\phi \mid x \theta)=0.000 E \cdot 00\) & \((\phi \mid \theta \phi)=0.000 E \cdot 00\) \\
\((\phi \mid y)=1.077 E-01\) & \((\phi \mid x y)=-2.850 E-01\) & \(\left(\phi \mid y^{2}\right)=0.000 E \cdot 00\) \\
\((\phi \mid \phi)=-1.178 E-01\) & \((\phi \mid x \phi)=4.325 E \cdot 00\) & \((\phi \mid y \phi)=0.000 E \cdot 00\) \\
& \(\left(\phi \mid \theta^{2}\right)=0.000 E \cdot 00\) & \(\left(\phi \mid \phi^{2}\right)=0.000 E \cdot 00\) \\
\(\left(\phi \mid \theta^{2} y\right)=-6.108 E \cdot 00\) & & \\
\(\left(\phi \mid \theta^{2} \phi\right)=1.112 E \cdot 02\) & &
\end{tabular}

\section*{RESOLUTION IN Y (RAYTRACE)}

\section*{USERI:(JIMNAP.HMS.OPTICS.RECONIP ARAPT 38_RT_CDR.RECON:1 LIMITS: 0.000100 .08250 .05000 .02500 .00000 .0500}

RMS Resolution= 2.048E-03

\begin{tabular}{lll}
\((y \mid x)=0.000 E \cdot 00\) & \(\left(y \mid x^{2}\right)=0.000 E \cdot 00\) & \((y \mid \theta y)=8.560 E-02\) \\
\((y \mid \theta)=0.000 E \cdot 00\) & \((y \mid x \theta)=0.000 E \cdot 00\) & \((y \mid \theta \phi)=1.195 E \cdot 01\) \\
\((y \mid y)=2.486 E-01\) & \((y \mid x y)=1.080 E \cdot 00\) & \(\left(y \mid y^{2}\right)=0.000 E \cdot 00\) \\
\((y \mid 0)=-9.418 E \cdot 00\) & \((y \mid x \phi)=-1.777 E \cdot 01\) & \((y \mid y \phi)=0.000 E \cdot 00\) \\
& \(\left(y \mid \theta^{2}\right)=0.000 E \cdot 00\) & \(\left(y \mid \phi^{2}\right)=0.000 E \cdot 00\)
\end{tabular}

\section*{RESOLUTION IN THETA (RAYTRACE)}

USERI:I SIMNAP.HMS. IPTICS.RECONIPARAPT 3B_RT_CDR.RECON;I
LIMITE: \(0.000100 .06, ~ 50.05000 .02500 .00000 .0500\)
RMS Resolution \(=6.514 \mathrm{E}-04\)

\(\begin{array}{ll}\left(\theta \mid x^{2}\right)=-4.427 E-01 & (\theta \mid \theta y)=0.000 E \cdot 00 \\ (\theta \mid x \theta)=4.173 E \cdot 00 & (\theta \mid \theta \phi)=0.000 E \cdot 00 \\ (\theta \mid x y)=0.000 E \cdot 00 & \left(\theta \mid y^{2}\right)=0.000 E \cdot 00 \\ (\theta \mid x \phi)=0.00 J E \cdot 00 & (\theta \mid y \phi)=0.000 E \cdot 00 \\ \left(\theta \mid \theta^{2}\right)=-6.836 E-01 & \left(\theta \mid \phi^{2}\right)=0.000 E \cdot 00\end{array}\)
\(\left(\theta \mid x^{2} \theta\right)-1.220 E \cdot 01\)
( \(\theta 1 \mathrm{xe}^{2}\) ) \(=\) 4.097E•01
( \(\theta 1 \mathrm{X}^{3}\) ) \(=7.976 \mathrm{E}-01\)

Comparison of Programs
Resolutions averaged over phase space

* no detector resolution or multiple scattering
* no optimization of magnet parameters

Reconstruction Parameters
(values for rays traced with pure \(n=2\) quads)
\begin{tabular}{lcr} 
PARAMETER & \begin{tabular}{c} 
RHYRACE \\
MINUIT
\end{tabular} & \\
\cline { 1 - 2 }\((\delta \mid x)\) & 0.256 & \\
( \(\delta\left(x^{2}\right)\) & -0.293 & 0.257 \\
\((\delta \mid x \theta)\) & 3.372 & -0.291 \\
\(\left(\delta \mid \theta^{2}\right)\) & -0.301 & 3.360 \\
\(\left(\delta \mid x^{3}\right)\) & 0.688 & -0.238 \\
\(\left(\delta \mid x^{2} \theta\right)\) & -12.86 & 0.708 \\
\(\left(\delta \mid x \theta^{2}\right)\) & 75.14 & -12.44 \\
\(\left(\delta \mid \theta^{3}\right)\) & -135.8 & 66.95 \\
& & -124.0 \\
\((\phi \mid y)\) & 0.108 & \\
\((\phi \mid \phi)\) & -0.118 & 0.107 \\
\((\phi(x y)\) & -0.285 & -0.100 \\
\((\phi \mid x \phi)\) & 4.325 & -0.289 \\
\(\left(\phi \mid \theta^{2} y\right)\) & -6.108 & 4.330 \\
\(\left(\phi \mid \theta^{2} \phi\right)\) & 111.2 & -7.192 \\
& & 106.1
\end{tabular}

ALL UNITS USE METERS AND RADIANS

Some Monte Carlo Results
The Effect of Quadrupole aberrations Run 10,000 Rays and look at resdution in slices

1.e. Or-Or-pune \(\longleftrightarrow \theta_{0}(m r)\)

Recall: !apse \(\theta_{0}\) Samples large Rail - in magnets Ql and Q3

Using Optimization Feature of Hoter
Can we regain momentum resolution in the. face of higher order muctipoles?

Let MOTER vary \(Q_{1}, Q_{2}, Q_{3}\) field sheugh keeping the fraction of higher order muletipoles a constant. (Required a program modification!) minimize momentum resolution.

FIND: \(\delta: 0.90 \longrightarrow 0.68 \longrightarrow\) works!
\[
\begin{aligned}
& \phi: 0.64 \longrightarrow 0.57 \\
& y: 2.2 \longrightarrow 2.0 \\
& \theta: 0.95 \longrightarrow 0.90
\end{aligned}
\]

FOR: QI: \(1.487 \longrightarrow 1.491\)
QR: \(-1.457 \longrightarrow-1.343\)
QB: \(0.748 \longrightarrow 0.691\)

A LOOK AT THE EFFECT ON THE \(\theta_{0}\)-Dependence of the Resolution


FILE PARAPT3D: FROM PARAPT3B \(W / N=6\) POLES ON QUADS, N=4 ON


RAY PLOT AFTER MOTER OPT:MIZATION.
FILE PARAPT3E: FROM PARAPT3D W/MOTER VALS FOR QUAD FIELDS F


\section*{TOSCA CALCULATIONS AT CEBAF}

\title{
LARGE APERTURE SUPERCONDUCTING CRYOSTABLE QUADRUPOLES FOR CEBAF'S HIGH MOMENTUM SPECTROMETER
}

\author{
STEVEN R. LASSITER
}

\section*{Q2/Q3 CROSS SECTION}



228-R5.COND
3,Augh1 08:33:47 Page 6: DISP XEYE-0 0 SIZE-50


VF/OPER

1


VF/OPEI
_Y 100.0

\section*{O2C-RS.TOSCAB}
5.Aug/91 15:44:05 Page 10: DISP XEYE \(=00\)

I
\(\Gamma^{-Y 80.0}\)

```

22C-RS.TOSCAB 1/Aug/91 10:53:34 Page 2:DISP SIZE-70 XORG= 0-10 SHADF\E\EMO

```



VF/OPEF


VF/OPERA


Close up of Q1 coil showing the helium vessel, anti-buckling plate, ground insulation, yoke arid notch in the pole needec for the anti-buckling plate.

The anti-buckling plate is needed to support the coil when the quadrants are squeezed together.

Summary of TOSCA/OPERA Analysis for Q1
TOSCA Database File: Q1-V2.TOSCAB
Effective Length \(=189.3 \mathrm{~cm}\)
Polo Radius \(=25.0 \mathrm{~cm}\)

Radius of Fourier Analysis \(=25.0 \mathrm{~cm}\) * (extrapolated form \(R=22.0 \mathrm{~cm}\) )
\begin{tabular}{|c|c|c|}
\hline \(N\) & Integral \([B(N) d z]\) (Tesla-meter) & \% of Integral
\[
[B(2) d z]
\] \\
\hline 2 & 1.4236 & --- \\
\hline 4 & -5.58E-03 & -0.392 \\
\hline 6 & 1.07E-02 & 0.752 \\
\hline 10 & -3.02E-03 & -0.212 \\
\hline 14 & -1.70E-!)? & -1.194 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(N\) & Integral \([B(N) d z]\) (Tesla-meter) & \(\%\) of Integral [B(2) dz] \\
\hline 2 & 1.2527 & ------ \\
\hline 4 & -3.80E-03 & -0.303 \\
\hline 6 & 5.64E-03 & -0.450 \\
\hline 10 & -0.55E-04 & -0.076 \\
\hline 14 & -3.22E-03 & -0.257 \\
\hline
\end{tabular}

MAIN COILS ONLY NI \(=150,000\). AT/POLE
Radius of Fourior Analyaia \(=25.0 \mathrm{~cm}\)
\begin{tabular}{|c|c|c|}
\hline N & Intogral [B(N)dz] (Tesla-meter) & \% of Integral [B(2) dz] \\
\hline 2 & 1.4236 & ------ \\
\hline 4 & -5.88E-03 & -0. 382 \\
\hline 6 & 1.07E-02 & 0.752 \\
\hline
\end{tabular}

Q1 WITH NE4 CORRETTION COILS TURNED ON
\begin{tabular}{|c|c|c|}
\hline \(N\) & Integral [B(N) dz] (Tesle-meter) & W of Integral [B(2) dz] \\
\hline 2 & 1.4239 & ------ \\
\hline 4 & -5.18E-02 & -3.638 \\
\hline 8 & 1.00E-02 & 0.768 \\
\hline
\end{tabular}

Q1 WITH N=6 CORRECTION COILS TURNED ON
\begin{tabular}{|c|c|c|}
\hline \(N\) & Integral \([B(N) d z]\) (Tesle-meter) & \begin{tabular}{l}
W of Integral \\
\([B(2) d z]\)
\end{tabular} \\
\hline 2 & 1.4214 & ------- \\
\hline 4 & -5.60E-03 & -0.401 \\
\hline 0 & 8.05E-02 & 8.668 \\
\hline
\end{tabular}

Q1 WITH NEA AND N=6 CORRETTION COILS TURNED ON
\begin{tabular}{|c|c|c|}
\hline \(N\) & Irtegral \([B(N) d z]\) (Tesle-weter) & \[
\begin{aligned}
& \text { Kof Integral } \\
& {[B(2) d z]}
\end{aligned}
\] \\
\hline 2 & 1.4220 & ------ \\
\hline 4 & -6. 10E-02 & -3.643 \\
\hline 6 & 1. OPE-02 & 5.800 \\
\hline
\end{tabular}


\section*{3D COIL FORCES}


_Y 100.0

P5.TOSCAB
\(-\mathbf{G} 9115: 10: 27\)
1


VF/OPERA


VF/OPER



1s output created on 7-AUG-91 at 16:26:36
ERA output file used: q2c-r5-pot.har ISCA active file used: Q2C-R5.TOSCAB Component: POT
adrupole name Q2 with pole radius 35.0 fit up to \(r=32.0\)
ing fitted values of \(b 0,2(z)\) find:
Effective length \(=212.3 \mathrm{~cm}(2 * 106.1 \mathrm{~cm})\)
\begin{tabular}{llr} 
Fringe parameters & \(m\) & \(C m\) \\
& 0 & -0.0948 \\
& 1 & -2.8865 \\
& 2 & 0.2589 \\
& 3 & -0.0611
\end{tabular}
ta Extracむed for Quadrupole ( \(n=2\) ) Compcnent
\begin{tabular}{llll} 
tegral \([b 0\) & \(d z]=\) & 1.7560 Tesla-m \\
tegral \([B(32.0 c m)\) & \(d z]=\) & 1.6037 Tesla-m \\
tenral \([B(28.3 \mathrm{~cm})\) & \(d z]=\) & 1.4183 Tesla-m \\
tegral \([B(22.3 \mathrm{~cm})\) & \(d z]=\) & 1.1200 Tesla-m
\end{tabular}
ta Extraeted for \(n=6\) Component

ta Extracted for \(n=10\) Component


\section*{t. Extracted for \(n=14\) Component}
\begin{tabular}{llllll} 
itegral & {\([\) LO } & \(d z]=-0.777 E-01\) Tesla-m & \((-4.425 \%\) of \(n=2)\) \\
itegral \([R(32.0\) & \(\mathrm{cm})\) & \(d z]=-0.965 E-03\) Tesla-m & \((-0.060 \%\) of \(n=2)\) \\
itegral \([P(28.3 \mathrm{~cm})\) & \(d z]=-0.374 E-03\) Tesla-m & \((-0.026 \%\) of \(n=2)\) \\
itegral \([B(22.3 \mathrm{~cm})\) & \(d z]=-0.170 E-04\) Tesla-m & \((-0.002 \%\) of \(n=2)\)
\end{tabular}

\section*{Q2 SPEC SHEET}

Eftective Length
Radius Pole
Good Aperíure Radlus
Fisld at Pols
Gradtent
Fleld grrors:
wition Aporiuro
Physlcal wolght
Physical longin

Physleal Cross Section

1500 gtp (yolic)
Boro (pule)

at ino Polewition Aporiuro
\(=2.1 \mathrm{~m}\)
\(=.35 \mathrm{~m}\)
\(=.30 \mathrm{~m}\)
\(=4.56 \mathrm{Telsa}\)
= 4.4.57 Telsa/m
\[
\sum \frac{B(n)}{B(2)}<.3 \%
\]
\(=20.8\) Tons
\(=2.6 \mathrm{~m}\)
\(=4.56 \mathrm{~m}\) Dla.
\(=2.734\)
```

nary of TOSCA/OPERA analysis for Quadrupole Magnet

```


5 output created on 7-ALIG-G1 at 16:23:32
2A output file used: q2c-r5-chamf-pot.har
ZA active file used: Q2C-R5-CHAMF.TOSCAB Component: POT
drupole name Q2 with pole radius 35.0 fit up to \(r=32.0\)
19 fitted values of bo,2(z) find:
Effective length \(=211.9 \mathrm{~cm}(2+105.9 \mathrm{~cm})\)
Fringe parameters
\begin{tabular}{lr}
\(m\) & \(C m\) \\
0 & -0.0997 \\
1 & -2.8818 \\
2 & 0.2757 \\
3 & -0.0703
\end{tabular}
a Extricted for Quadrupole ( \(n=2\) ) Component
\begin{tabular}{llll} 
egral \([b 0\) & \(d z]=\) & 1.7562 Tesla-m \\
egral \([B(32.0 \mathrm{~cm})\) & \(d z]=\) & 1.6035 Tesla-m \\
egral \([B(28.3 \mathrm{~cm})\) & \(d z]=\) & 1.4184 Tesla-m \\
egral \([B(22.3 \mathrm{~cm})\) & \(d z]=\) & 1.1201 Tes!a-m
\end{tabular}
a Extracted for \(n=6\) Component
\begin{tabular}{|c|c|c|c|}
\hline egra & [bo & \(\mathrm{dz}]=0.49 .3 \mathrm{E}-02\) & 0.281\% of \(n=2\) ) \\
\hline ogral & \({ }^{\mathrm{B}}\) ( 32.0 cm ) & \(\mathrm{dzj}=0.826 \mathrm{E}-02\) Tesla-m & 0.515\% of \(n=2\) ) \\
\hline egral & [ \(\mathrm{B}(28.3 \mathrm{~cm}\) ) & \(d z]=0.350 \mathrm{E}-02 \mathrm{Tesila}-\mathrm{m}\) & 0.246\% of \(n=2\) ) \\
\hline egral & [ \(\mathrm{B}(22.3 \mathrm{~cm}\) ) & \(d z j=0.109 E-02\) Tes \(10-\mathrm{m}\) & 0.097\% of \(n=2\) ) \\
\hline
\end{tabular}
```

a Extracted for n=10 Component

```

a Extracted for \(n=14\) Component
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline egral & [bo & & & 01 & m & & 548\% & & & 2) \\
\hline ral & B & 32.0 cm) & dz & \(=-0.387 \mathrm{E}-03\) & Tesia-m & & -0.024\% & & & \(n=2)\) \\
\hline egral & [B & \(28.3 \mathrm{~cm})\) & dz & \(=-0.348 \mathrm{E}-03\) & Tosla-m & & -0.025\% & & & \(n=2)\) \\
\hline re & [ B ( & \(22.3 \mathrm{~cm})\) & dz & -0.114E-04 & To & & .001\% & & & 2) \\
\hline
\end{tabular}


ひくし－Kり lNIEGKAL IBINJ Ut」




Q2C-POISSON HARMONICS

\(\frac{\int B(6) \mathrm{dz}}{\int \mathrm{B}(2) \mathrm{dz}}<3.0 \%\)
\(\int \mathrm{~B}(6) \mathrm{dz}\)
for col tolerances we can do a taylor serieg expaneion


FFOM TOEOA
WHERE \(\delta \frac{\int B(B) d z}{\int B(2) d z}=6\) IG THE NCREMENTAL CHANGE WITHN THE MAONET dUE TO COIL PLACEMENT ERRORE. THS WAS CALCULATED IN 2-D ANALYEIS.
\(\frac{\int B(B) d z}{\int B(2) d z} \leqslant 3.0 \%=\) TOSCA RESULTS + COIL PLACEMENT

\(\int B(6) d z=1.63 \%\)
\(\int B(2) d z\)

\section*{SOURCES OF COIL PLACEMENT ERRORS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{coll heght}} & 8 & ERROR \\
\hline & & 3.68\%/1n & 1.62 \\
\hline 1 & coll - medinn plane oap separation & 3.76\%/in \({ }^{2}\) & 2.85 \\
\hline 1 & coll thickness & 1.11\%/1/ \({ }^{2}\) & . 49 \\
\hline ; & coil - fo gap separation & 126\%/1/ \({ }^{2}\) & . 55 \\
\hline ) & face angle & 1.468\%/deg-In & . 25 \\
\hline
\end{tabular}


```

Ar.COND
-g91 08:50:18 Page 5: DISP XEYE=100 20 SIZE=100

```
r100.0


1
VF/OPER/

\section*{Q1 CONDUCTOR SPEC. SHEET}

\# Turns/Pole = 25
\# Layers/Coil - 1
\# Turns/Layer - 25
Current (Max)/Turn = 6800 Amps
(Cryostability)

NI (Total \(=680 \mathrm{KA}-\) Turns (Max)
\(1(\mathrm{op})(6 \mathrm{GeV} / \mathrm{c})=6000 \mathrm{Amps}\)
\(\alpha(o p)=\).

Super Conducting Filaments : \(8 \mu \mathrm{~m}\) Diameter Nb -Ti Ailloy, 2100 Filaments/Strand Strand Diameter \(=0.0268 \pm 0.0003\) in
\# Strands/Cable . 23
Strand Twist Pitch = 0.5 in
Cable Twist Pitch = 2.25 h
Strand Short-Sample Current (min) = 420A 0 20KO \& 4.2K
Cable Short-Sample Current (min) - 9660A 0 20KO \& 4.2K
Copper Resistivity Ratio \(=R(9.5 K) / R(273 K)=0.023\)
AL Resistivity Ratio - R(4.2K)/R(273K) 0.001
AL to CU to S.C. Ratio \(=18.27 / 1.8 / 1.0\)

Q1 CROSS SECTION



CENTER TOSLAB



VF/OPERA


Summary of TOSCA/OPERA Analysis for Q1
TOSCA Database File: Q1-V2.TOSCAB
Effective Length \(=189.3 \mathrm{~cm}\)
Pole Radius \(=25.0 \mathrm{~cm}\)

Radius of Fourier Analysis \(=25.0 \mathrm{~cm} *\) (extrapolated form \(R=22.0 \mathrm{~cm}\) )
\begin{tabular}{c|c|c|}
\hline\(N\) & \begin{tabular}{c} 
Integral \begin{tabular}{c}
{\([B(N) d z]\)} \\
Tesla-meter)
\end{tabular} \\
\hline 2
\end{tabular}\(|\)\begin{tabular}{c} 
of Integral \\
{\([B(2) d z]\)}
\end{tabular} \\
\hline 4 & 1.4236 & \(-5.58 \mathrm{E}-03\) \\
6 & \(1.07 \mathrm{E}-02\) & -0.392 \\
0 & \(-3.02 \mathrm{E}-03\) & 0.752 \\
4 & \(-1.70 \mathrm{E}-02\) & -0.212 \\
\hline
\end{tabular}

Radius of Fourier Analysis \(=22.0 \mathrm{~cm}\)
\begin{tabular}{|c|c|c|}
\hline \(N\) & Integral \([B(N) d z]\) (Tesla-meter) & \% of Integral [B(2) dz] \\
\hline 2 & 1.2527 & ------ \\
\hline 4 & -3.80E-03 & -.0.303 \\
\hline 6 & 5.64E-03 & -0. +50 \\
\hline 0 & -9.55E-04 & -0.076 \\
\hline 4 & -3.22E-03 & -0.257 \\
\hline
\end{tabular}
- \(B(N, 25)=B(N, 22)(25 . / 22 .)^{*}(N-1)\)

MAIN COILS ONLY NI \(=150,000\). AT/POLE Radius of Fourier Analysis \(=25.0 \mathrm{~cm}\)
\begin{tabular}{|c|c|c|}
\hline N & Integrai \([B(N) d z]\) (Tesls-meter) & * of Integral [B(2) dz] \\
\hline 2 & 1.4236 & ------- \\
\hline 4 & -5.58E-03 & -0.392 \\
\hline 6 & 1.07E-02 & 0.752 \\
\hline
\end{tabular}

Q1 WITH NEA CORRECTION COILS TURNED ON
\begin{tabular}{|c|c|c|}
\hline \(N\) & Integral \([B(N) d z]\) (Tesle-meter) & N of Integral [B(2) dz] \\
\hline 2 & 1.4238 & ------ \\
\hline 4 & -5.18E-02 & -3.630 \\
\hline 8 & 1.09E-02 & 0.768 \\
\hline
\end{tabular}

Q1 WITH \(N=6\) CORRECTION COILS TURNED ON
\begin{tabular}{|c|c|c|}
\hline \(N\) & Integral \([B(N) d z]\) (Tesla-meter) & \% of Integral
\[
[B(2) d z]
\] \\
\hline 2 & 1.4214 & ------ \\
\hline 4 & -6.60E-03 & -0.401 \\
\hline 6 & 8. OBE-02 & 5.686 \\
\hline
\end{tabular}

Q1 WITH N=4 AND N=6 CORRECTION COILS TRRNED ON
\begin{tabular}{|c|c|c|}
\hline \(N\) & Irtegral \([B(N) d x]\) (Tesla-meter) & X of Integral [ \(B(2) \mathrm{dz}]\) \\
\hline 2 & 1.4220 & ------- \\
\hline 4 & -5.1 EE-02 & -3.043 \\
\hline - & - anor an & \\
\hline
\end{tabular}


3D COIL FORCES



Close up of Q1 coil showinc the helium vessel, anti-buckling plate, ground insulation, yoke and notch in the pole neede for the anti-buckling plate.

The anti-buckling plate is needed to support the coil when the quadrants are squeezed together.

\title{
LARGE APERTURE SUPERCONDUCTING CRYOSTABLE QUADRUPOLES FOR CEBAF'S EIGB MOMENTUM SPECTROMETER
}

\author{
S.R. Lessiter, P.D. Brindea, W.T. Buatet, R.R. Thorpe, M.J. Fowler, J.A. Miller \\ Continuoua Electrod Beam Arcelerator Facility 12000 Jefferaon A vedue Nemport News, VA 23606
}

\begin{abstract}
Absicas
-The present desige for CEBAF'S Ball C Eig Momentum Spectrometer \({ }^{1,2}\) calli for two large aperture quadrupolea, each baring the ame phyical charactetialica but operating at dif. ferent fiald gradients. A cold-iron, ouperconducting, laminated yoke magaet bat been developed as the reference denign. The resulte of the tro and three dimensiona magretoatatic nudiet will be presented bere aloag witb aome detais of the conductor and croatat derign.

\section*{Indroduclion}

If is our intention bere at CEBAF to purchase from is. duatry, the magneli for the EMS apectrometer based opon magoctic performance apecifications. This paper will preaent - reference denign that we believe will meet the apecifications Listed is Table 1 below.

The design of Q2/Q3 was dao conatrujged by olber non. optics requirementisuch an size aid weight of the magoet. cryortabibly, bow carcon, and how power head consumption. rbe mappetoalatic andyoes were performed for the requirements of the lager gradient Q2 magnet.
\end{abstract}

> TABLE 1. Q2/Q3 Optical Requirementu ad Magoet Specification:
\begin{tabular}{|c|c|c|}
\hline & Q2 & 03 \\
\hline Lef & - 210 cm & 210 cm \\
\hline Field Graduent & \(=443.7 \mathrm{G} / \mathrm{cm}\) & \(194 \mathrm{G} / \mathrm{cm}\) \\
\hline \(\boldsymbol{R}\) (pole) & = 33 cm & 35 cm \\
\hline R(pood feld region) & - 30 cm & 30 cm \\
\hline Field 0 Poie & = 1.36 Teile & . 68 Tesle \\
\hline Dyommic Field range & - 10:1 & \\
\hline
\end{tabular}

Iolegral Mulipole Fied errort
(perceat of quadrupole)
\begin{tabular}{lll} 
Dodecapole(at pole) & \(<3.0 \%\) & \(<3.0 \%\) \\
\begin{tabular}{ll} 
Unknowa Multipoles \\
mithin aperture)
\end{tabular} & \(<0.3 \%\) & \(<0.5 \%\)
\end{tabular}


The cold iton design of Q2/Q3 ia baued upou the conformal sapping of a window frause dipale into a quadrupole peomelry hit methed was ooed in the reperence decifn of the amalier conl eod quadrupole Q1 of the BMS.' Fipure 1 bhowi a erons retiod vien of the Q2/Q3 qua '. upole magnel.
enureripl received Septernber 24, 1080


FOUEE 1 CRESS SETTONA NEW OF gTRJ SOWND NER NO OUTE CRYOSTAT PAE ROUJS - 23am

\section*{Yoke Desics}

Altention was given to the overall nize of abe goke and to the field levelo within the goke. The field levela were controlled by rising the width of the amallest tur patb withis the yoke to be equad to one bas of the flus path leagib anag the pole face for a field level of 1.6 Tecla, a abown in Figure 2. The magnetic froperties of the yoke were taken from the internal table of POISSON' This in listed as 1006 irod at 4.2 helvin.

nevts en
 LIMINE IHE YOE NO AON THE MEFACE

We have investigated the procest of oumerically controlled laner cutting for the yoke/pole laminations an it reloter to const effectivenens and cutling precision. The toleraner control of the pole ahape in of prime concern, as the field quatity it de. termined an much by the pole abope as it it by the curreat distribution. Actua leser col laminations were made for the Q1 geometry. Figure 3 giver the accorary of this teat fabrication. The machaing tolerance of the laminationt when modeled in POISSON were well within the magnetolatic opecificationt.


\section*{Civoshal Desicn}

The transition from warm to cold oreurs over the apalial dumention of 5. cminaide the bore of the magnel. The in. ner warm bore mill be andinar arel eyluder wiapped in super-insul, tion to reduce the radiation beat load to the in. flated aidinlataled bquid ailtogen intercept panel. The be. bum aninleas cylinder will dio be mrapped milb auper inowa. tion to reduce radiation beat loads. The cyliodere mill abere a common neuum between them to lower thermat conduction.

The mapnet will be cooled by measiof ofatura thermal apphon oupplied from a belium reservoir mounted above the magnel. The capacity of the reservoir ti sieed such that a 3 bour rupply of liquid hetium will be a milable is the event of sbort duratine eupply interrupliona.

The cold tron yoke will be eupported wilhio ite cryotal by eleht conasant tedoiod apport linke that altach from the end of the lanimation to alandofis allached to the ouler vee. yum reaneld. The lak will be intercepliad by a bquid nitrogen therms shield to "educe beal condurtion down the abail.

\section*{Super Conductor Derien}

The Q2/Q3 quadrupole conductor is a multi-filament, 023 en dimeter, NbTi-copper, 11 -atrand Rutheriord cable. This cable is then extruded into a bigb purity aluminum atabilizes ( 90.099 Al.) for cryostability. Figure 4 bbows a crots aectiond view of the conductor.


GUERCONOUCTNO CARE MLETT


SNOLE STRUND WTH 2700 FHOEE STRNO WTH RTS

RUTS ©N
FROUE \& ORESS EECTION VEW or conouctor

Table 2. Q2/Q3 cryoilable conductor Parametera
\begin{tabular}{|c|c|}
\hline Beam energy & \(=6.0 \mathrm{Gev}\) \\
\hline Ni/pole & = 217310 Amp Turas \\
\hline \# Turas/pole & - 71 \\
\hline Tura Lengib & \(=463 \mathrm{~cm}\) \\
\hline 1/turn & - 3.061 KAmpr \\
\hline lc/urn & \(=4.62 \mathrm{KAmpi}\) \\
\hline \(\mathrm{Al}^{1} / \mathrm{C} \cdot / \mathrm{NbTi}\) & - 6.4/1.8/1 \\
\hline Stidy \({ }^{\text {W }}\) & - . 43 \\
\hline Stored Energy & = . \(31 \mathrm{MJ} / \mathrm{m}\) (Q2 al 1.36 Teale) \\
\hline Power Lead Conaumption & \(=0.1 \mathrm{~L}\) of belum/bour \\
\hline
\end{tabular}

For the Stekly calculation, do credit was taten for the ropper preseal io the atrada.

Ai focresest to the beam edergy foi CEBAF look prumis. Lng, the cryotiability of the magnel it preterved up to the op. erating current of 4.6 KAmph , correspondigg to a heam energy of \(7.6 \mathrm{GeV} / \mathrm{c}\).

\section*{Tre Dimensioga Quadrupole Field_Calculations}

The initia magnetostalic solutions were performed using the code POISSON to gain a understanding of the sensitirity of the 2-dimensioned problem to coil and iron geometries. The aeed to allow ior ndequate belium fiow passage changels in and around the coil stachs was used a a constraining parameter in minimiking the unwanted multipoles.

Three atack of conductor were used to achieve the desired amp turns and lower the operating current. Gaps along the median plave for earth coil stack were constrained to be equal in an atiempt to reduce the mumber of indiridual parameters that could effect field quality. The beights of each coil stack were individually sized to reduce field errors. This results in an unequal pumber of turas per coil stark as well as the peed for an additisna sparer in the first two stacks. The turn to turn insulation consists of 2.2 mon thict \(G .10\) spacers sized such that adequate heljum fow would result as well as marimising the curreat density. The spacing between the stacks of conductor was sired such that the midth of the coils stacks would be kept to a minimum ye: provided for sufficient belium fow along the stack heights. The superconducting cable is offset within the aluminum stabilizer an eid in reduciag the unwarted barmonjes. The apacing between the coil atack and the iron yoke wes also used to achieve a betier feld quality.

The current cartring portions of the conductor were mod. eied as uniform atacks in \({ }^{\text {d }}\) of the magnetostatic analyas. Fig. ure 3 show the approximation to the current cariging portions of the conductor that were modeled in the magnetostatic prob. lems.


Table 3 lista the roefficienti of the field biulipoles at a radiun of 35 cmand a ben:n energy of \(0.0 \mathrm{Giel} / \mathrm{c}\).

Thble 3. Poiseon Hemonic Aralysis
\begin{tabular}{lll}
\hline\(N\) & \(B(N)\) & \(B(N) / B(2)-5\) \\
2 & \(1.5540 E+04\) & 1.0000 \\
6 & \(6.8937 E+00\) & 0.0444 \\
10 & \(-1.0264 E+01\) & -0.0776 \\
14 & \(-2.0747 E+01\) & -0.1335
\end{tabular}
\(2 \times \mathrm{N}=\) multipole
Fiedd is given by \(B=\operatorname{Sum}\left[B(N)^{*}(r / R p)^{(N-1)}\right]\)
The field within the iron goke was 1.45 Tesla along the median adi and 1.6 Tesla at the pole. Flux leakage outside the irod was 6.5 Gause next to the yoke and drops to 4.8 Gauss 30 cw away at the boundary. Figure 6 sbows the 2 -dimensional colution for one-eight of the geometry from POISSON.


FOURE 8 FELD UNES NO DEOETRT FROM MOSSSON

\section*{3. Dimensienal Quadiunele Firld Calculations}

The ibree dimentiond solution was done with the code TOSCA'. The effects of the shape of the end coil geometry and pole asturation were looked at since it it the integrad multipole content that we must atisfy. As a starting point the magnel was modeled with no shaping of the poles at the end or ure of fieid elamps to contain the feld fall off. A well defined ment was aet up in the \(x_{1}\) g plade uting quadratic elementa to obtain reasonable fite to the vertor poientid within the aperture of the magnet. This mesh was then extruded out Nong the a.acis with erophmia placed aen the ead of the magnet yoke and the region where the colla reaide.

The posi-procecsor OPERA' and the program EXTRACT' - :re used in analy cis the integral multipole content of the mag. aet. The coefficients of a fourier fit to the total potential were integrated along the magnelic axis es a function of the radius The andrtic derinative of the potential was then taken to de. rive the coefficient, for the magnetir fields. Figure 7 showa the feld fall of along the maknetic axis for a radius of 30 cm Table \(\&\) list the resulis of the three dimentional atudy.


2 (UN FROM CENTER

FOUPE 1. FED FAL: OFF MN NTEORA of OUADRIPAE TERM

Toble A Tossa Resulenend Paremeteri


The aum of the unknown mulipoles (.ie. Nelo and 14) the aperture of the wantetic is \(\mathbf{2 3 \%} \%\) of the quadrupole d the dodecapole is ools \(364 \%\) of the quadrupole at the le. Studies will continue to in reatigate the effecte of pole amlering, field clampi and coil end geometries in regerde to eit contribution to the integral content

\section*{Conclunion}

A reletence desipn he been modeled for the large aperture percondueting quadrupolec that meets the oplied require. pall of the Eigh Momentum Spectrometer. It is our aim to mplete the decign work to allow. Requert for Proposdi to oul by December 1990.

\section*{Referencis}
1. Conceptual Design Repor Braic Experimental Equipment - Ball C. April 13, 1890.
2. P.D. Brindra et a.. "CEBAF Superconducting Spectrometer Deaign", IEEE Tharaaction on Magneh, Mag. 25, 1897, 1989.
3. L.E. Harwood, et a.,"A Superconducting Iron-Dominated Quadrupole for CEBAF", IEEE Tranaction on Magnet, Mag-25, 1910, 1989.
4. POISSON MANUAL
B. J.A. Miller, et N., "Cryostat Derign And Magnetortatic Analycicof the 6 Ger Superconducting Dipole for the Bigh Momentom Spectrometer", Submifted to IEEE Transac. dion on Magneth.
6. TOSCA, Vcetre Field Limiled
7. OPERA, Vectra Ficid Limited
8. J. Napoiitano et a., "Candations of Bigher Multipole Componenta in a lage Superconducting Quadrupole Mag. netn, Submitted 10 Nuclear Instrumento and Methods.

\section*{TOSCA CALCULATIONS FOR PILAC}

Presentation not made.

\title{
MEASUREMENTS OF EPICS QUADRUPOLES
}


\[
\begin{aligned}
& \rightarrow=-5 \quad \therefore-(-r \overline{\beta r} \quad \therefore-o r a p \\
& i^{2}=\left(\frac{z^{1}}{2}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial F^{2}}+\frac{\vdots}{3 z^{2}}\right) y=0 \\
& V=\sum_{r=2}\left(y_{n_{1} 1} \sin n \phi+V_{n_{2}=} \cos n \phi\right) \quad \text { foosier } E_{x_{1}=0,1 \sin ,}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{c}
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial^{j}}{\partial r}-\frac{n^{2}}{r^{2}}+\frac{\partial^{2}}{\partial=}\right)_{n}=0 \\
=
\end{array} \\
& \text { cin=1, lopa } \\
& \text { Fomier } E_{x}=0 \text { asio. }
\end{aligned}
\]

Forrier transform in \(=\)
\[
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{n^{2}}{r^{2}}+p^{2}\right)-V_{n}=0 \\
& v_{n}(r, p)=J_{n}(r p) \cdot f_{n}(p) \\
& \begin{array}{c}
\text { no seco.e CM, } \\
\text { solution }
\end{array} \\
& J_{n}(x)=\frac{(x / 2)^{n}}{n!} L_{n}(x) \\
& \text { Jonte. Eme } \\
& \Lambda_{r}(x)=\frac{\sum_{2}^{2}}{n} \frac{n!}{r \cdot r} \cdot \frac{\left.-x^{2} / \div\right)^{n}}{p_{2}} \\
& x=x p \\
& v_{n}(r, p)=r^{n} \Lambda_{n}(r p) \cdot a_{n}(p) \\
& \text { inios: tran=fo:n } \\
& V_{n}(i, z)=r^{n} \Lambda^{\prime}\left(i \frac{i}{i z}\right) \cdot c_{n}(z)
\end{aligned}
\]

1) set axis of rotiation par..ll:l to \(\vec{r}\) - \(a x i r\)


Fix dial indisata, th meppee stand sothat then mocsure \(x\) ine 4 disricse inert. of the shatt. Take readingond bot atey shist bo \(180^{\circ}\) an rocel againud the The cemtite of rotation "I gue-b- the average of the tho reading. (assiuning the shaft " romern ed th diainote i constan)
2) Aligh z-axil patra(lal to quadimpol cester


Eu.l Yes.stane

\[
\begin{aligned}
& R_{120}^{2}=1.140 j \times 5-.0499 \\
& R_{12 j \times}^{2}=2.8759-.0499 \\
& R_{10}^{1}=197.9-.0499 \\
& R_{120}^{1}=1.2745-.0499 \\
& R_{\text {mix }}^{3}=4.6405-.0499 \\
& R_{R C}^{3}=10.0095-.0499
\end{aligned}
\]

Just Pnlge tiufan .0465
1. 11,

\[
0
\]

\section*{QUADRUPOLE MEASUREMENTS AND ANALYSIS}

12-Ana-1991

Measurements of Quadrupole for The Bates SHR.

Ton Zumero




Sacces
\[
2 x^{2}
\]
,


FIG. 2 b


FIG. 1

Relative shift of quad magnetic center



\(\underset{r}{\text { BYXZ }} \quad\) BLK \(\quad 3 \times\) IND 227 Z-Cord \((0.1 \mathrm{~mm})\)
\(0 \times H I=\)
0 LST=
\(\begin{array}{lll}0 & 17 A U G 9^{\prime} & 151 \\ 0 & 30-J U L & 1\end{array}\)

```

YLO= O YHI= 0
TH= 1 PHI=


```
BYXZR BLK 4 X IND 227 Z-Cord (0.1 mm)
R'
                        O 9-AUG-91
                    SUM=-87949.
                }0.1
                    O XHI=
```

```
T.
0 10:47:51
\(\mathrm{ADD}=1: 1 \mathrm{~F} .=\)
0 LST=
```



```
Y IND 225 X-Cord (0.1 mm)
YLO= O YHI= 0
```

TH= 1 PHI=
0


```
BYX7R BLK 4 X IND 227 2-Cord (0.1 mm) 
```


| Byxz | ${ }_{0}^{\text {BLK }}$ \% ${ }^{3} \mathrm{X}$ X ${ }^{\text {aUG }}$ IND | 227 2-Cord SUM 195373. | (0.1 mm) | $0 \times H I=$ | 0 | 17 AUG90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TS ${ }^{\text {- }}$ | 0 13:09:12 | ADD- 1: i | Ft | 0 LST= | | 30-JUL-91 |

' $100 \lll \pi$-cord (0.1 mm)
YLO= 0 YHI= $0 \quad$ THe 1 PHI= 0

SHR Quad 001

ANALYSIS OF 3D QUADRUPOLE DATA

Jeff Arrington

(Analysis of 3D data)
 or
 "Deciding What Counts"

Reference made to
"Calculations of Higher Multipole Components in a Large Superconducting Quadrupole Magnet"
by
J. Napolitino and T. Hunter (CI:BAF)

Goo: Comporison of B field model in RAYTRALE/MOTER to 30 (TOSCA) type results.

Problems generating relioble, comparable ToscA data

$$
\sqrt{V}
$$

New question: How much detail (how many terms) should be included to represent measured data accurately

By woy of review:
RAYTRACE calculotes mognetic fields bosed on z dernuetives of

$$
\begin{gathered}
\frac{1}{1+e^{S}} \quad \text { (ENGE fon) } \\
\delta=\sum_{n=0}^{s} C_{n} s^{n} \quad s=\frac{E}{2 R}
\end{gathered}
$$

The Cn chosen so that Enage fon fits $m=0$ component of field.
Thus IST step in extending model in RAYTRACE might be to fit $N=6, m=0 \quad B$ coripouent to ckp. deto.

$$
\begin{gathered}
B_{6 r}=\cos (6 \theta)\left(\frac{r}{r_{0}}\right)^{5} \sum_{m=0}^{\infty}\left[b_{m n}(z)\left(r / r_{0}\right)^{2 m}\right. \\
B_{6 r} \sim F(\theta)\left(\frac{r}{r_{0}}\right)^{5}\left[b_{06}+b_{16}\left(r / r_{0}\right)^{2}+b_{26}\left(r / r_{0}\right)^{4}+\cdots\right] \\
b_{m / n}(z)=C_{m n} r_{0}^{2} \frac{d^{2} b_{m-1, n}}{d z^{2}} \quad m \geq 1 \\
B_{6 r \sim F} \sim(\theta)\left(\frac{r}{r_{0}}\right)^{5}\left[b_{0}+c_{m n} r_{0}^{2} b_{0}^{\prime \prime}\right] \\
b_{0}^{\prime \prime} \equiv \frac{d^{2} b_{0}}{d z^{2}}
\end{gathered}
$$

or

$$
b_{0}+c_{16} r_{0}^{2} b_{0}^{\prime \prime}+C_{26} r_{0}^{2} r_{0}^{2} b_{0}^{(11)}+\ldots
$$

1. Fit data w/ 4 Gaussians

$$
g_{i}(x)=a_{i} \exp \left[\frac{-\left(x-x_{0 i}\right)^{2}}{s^{2}}\right]
$$

2. Mathematica $\rightarrow b_{0}^{\prime \prime}, b_{0}{ }^{(1 v)}$
3. MATHCAD $\rightarrow \frac{M=1}{M=0}, \frac{M=2}{M=0}$
(for $r / r_{0} \sim 1, r_{0}=0.15 \mathrm{~m}$)
4. $N=6$ conclisions + plons

- At LEAST $m_{i}=12$ needed
- 5,6 Gaussion fit needed.
- Mathemetica $f \tau \rightarrow$ es many as $n=5$

Plot of Ratio of $m=1$ term to $m=0$ term, $N=6$

Plot of Ratio of $m=2$ term to $m=0$ term, $N=6$

Similar analysis for $n=4$ data (NOT as significant as $n=6$) shows of least $m=1,2$ should be included.

Sow for actual problem, we nave (Istopprox.)

$$
b_{0}+c_{m n} r_{0}^{2} b_{0}^{\prime \prime}=\sum_{i} a_{i} \exp \left[\frac{-\left(x-x_{c_{i}}\right)^{2}}{s^{2}}\right]
$$

By hand, sol'n reduces to

$$
\int e^{-\frac{\left(x-x_{0}\right)^{2}}{s^{2}}} \cos (q x) d x
$$

Mathemotica solution

$$
\sim e^{(a+b i)} \operatorname{erf}(c+d i)
$$

Complex + hard to toke deriuctuves

Numerical problem
Linear, 2ud order, $O E$

Very STIFF!
Suggestions????

Plot of Ratio of $m=1$ term to $m=0$ term, $N=4$

Ratio of $\mathrm{m}=2$ term to $\mathrm{m}=0$ term, $\mathrm{N}=4$

Conelusions

1. $N=6 \quad m=1,2 \ldots$? needed
2. $N=4 \quad m=1,2, \ldots ?$ needed
3. $N=10,14$ unmeosured

Tost tentotively plonned for foll/winter'91. (ARcin, Tom.)
4. Results from 3 to be used to odel to RAYTRACE /MOTER field model
5. Current/new model to be compared to TOSCA ASAP.

(1.

QUADRUPOLE 3D FRINGE FIELDS THEORETICAL LECTURE

$$
\begin{aligned}
& \text { (E) } \\
& \qquad \begin{array}{l}
\text { Multipole } 30 \text { Fields in Vacuum } \\
\text { K.Halbach, LBL } \\
\text { PILAC Workshop, Ang. } 91
\end{array}
\end{aligned}
$$

eff increases with increasing field
ϑ

1) Properties of straight line integrals over 30 fields

21 Utilization of $\nabla^{2} H_{t}(t, y, z)=0$
3) V, \vec{H} in cylindrical coordinatesystem
4) Use and exploitation of (3.9), (3.10), method $\# 1$: expansion in r^{2}
5) Magnetic field measurement/characterization priorities
6) Use and exploitation of (3.9), (3.10), method $\# 2$: direct use of $B_{\varphi}\left(r_{0}, q_{i} z\right) \quad\left(r_{0}=\right.$ "large") to get 30 fields
Y) Use and exploitation of (3.9), (3.10), method $\# 3$: Exact calculation of 30 fields from analytical function $G_{n}(0, z)$
8) Methods to determine $G_{n}(0,3)$

1) Properties of straight line integrals over
$\frac{30 \text { fields }}{32}$

$$
\begin{aligned}
& \frac{1}{L} \cdot \int_{z_{1}}^{z_{2}} H_{x}\left(x_{1} y, z\right) d z=\bar{H}_{x}(x, y) \\
& \frac{\partial}{\partial x} H_{y}-\frac{\partial}{\partial y} H_{x}=0 \longrightarrow \frac{\partial}{\partial x} \bar{H}_{y}-\frac{\partial}{\partial y} \bar{H}_{x}=0 \\
& \frac{\partial}{\partial x} H_{x}+\frac{\partial}{\partial y} H_{y}+\frac{\partial}{\partial z} H_{z}=0 \longrightarrow \frac{\partial}{\partial x} \bar{H}_{x}+\frac{\partial}{\partial y} \bar{H}_{y}=\left.\frac{1}{L} \tilde{r}_{z}(x, y, z)\right|_{z_{2}} ^{z_{1}}
\end{aligned}
$$

When $H_{z}\left(x, y_{1} z_{1}\right)=H_{z}\left(x, y, z_{2}\right)$, then integrals over 30 Cartesian field components have same mathematical properties as 20 fields

$$
\rightarrow \hat{H}_{x}-i \bar{H}_{y}=\bar{H}^{*}=\text { analytical function of }
$$

complex variable $z=x+i y=r e^{i \varphi}$

$$
\begin{aligned}
& \bar{H}^{*}=i d F \mid d Z ; A+i V=F(Z)=\sum a_{n} Z^{n} \\
& V=\sum\left(a_{n} \mid r^{n} \sin \left(n p+\alpha_{n}\right) \quad\left(a_{n}=\left|a_{n}\right| i^{i \alpha_{n}}\right)\right. \\
& n=1=\text { dipole, } n=2=\text { quadrupole, etc. }
\end{aligned}
$$

FIRST ORDER PERI 'JRDATION EFFECTS IN MULTIPOLES
Tanle 2
$N=J$.

| n | $\frac{\pi}{N} \cdot j_{0}=\frac{n}{N} \cdot \frac{.1 C_{0}(n)}{16}$ | $\frac{n}{N} \cdot b_{4}=\frac{n}{N} \cdot \frac{\Delta C_{a}(r d)}{i r}$ | $\frac{n}{N} \cdot \sigma_{0}=\frac{n}{N} \cdot \frac{J C_{n}(a d)}{r}$ | $\frac{n}{N} \cdot \rho_{0}=\frac{n}{N} \cdot \frac{J C_{n}(r)}{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $9.79 \mathrm{E}-02$ | - 3.14E-01 | 5.09E-02 | 8.47E-112 |
| 2 | 1.96E-01 | -4.93E-01 | 1.71E-01 | 2.8+E-11 |
| 3 | 1.67E-01 | - 9.13E-01 | 3.03E-01 | $5.00 \mathrm{E}-111$ |
| 4 | 1.3JE-O1 | - 3.90E-01 | 3.90E-01 | 6 19E-11 |
| 9 | 7.09E-02 | -1.73E-01 | 3.97E-01 | 6.43E-01 |
| 6 | 0.0 | 6.3SE-02 | 3.18E-01 | S.00E-U1 |
| 9 | - 1. 3 HE-02 | 1.03E-01 | 1.93E-01 | $2.38 \mathrm{E}-01$ |
| 8 | -1.07E-01 | 9.03E-02 | 9 OJE-02 | $1.08 \mathrm{E}-01$ |
| 9 | 0.0 | 4. 16E-0\% | 231E-02 | 0.0 |
| 10 | 9.1]E-03 | - 1.90E-03 | 1,905-03 | - 3.38E-02 |
| 11 | 9.12E-03 | - 1.49E-02 | 9.49E-03 | $-2.05 \mathrm{E}-02$ |
| 13 | 0.0 | 1.05E-02 | 1.31E-02 | 0.0 |
| 11 | - 1.01E-03 | 1.07E-02 | 1.36E-02 | 7. 3 AE-O) |
| 14 | -1.18E-03 | 9.83E~3 | 9,15E-03 | 3.12E-03 |
| 19 | 0.0 | 9,06E - ${ }^{\text {3 }}$ | 4.36E-0] | 0.0 |
| 16 | 1.63E-03 | - 1.26E-03 | 1.26E-0] | $-3.66 E-03$ |
| 17 | 2.07E-03 | - $3.77 \mathrm{E}-03$ | 1.18E-0] | $-2.54 E-01$ |
| 18 | 0.0 | 203E-03 | 212E-03 | 0.0 |
| 19 | - 1.12E-04 | 1.82E-0] | 211E-03 | 1.13E-94 |
| 20 | -1.70E-04 | 1.69E-03 | 1.69E-03 | 7.14E-04 |
| 21 | 00 | 9. 30E-O4 | 9.09E-04 | 0.0 |
| 21 | J. $23 \mathrm{E}-04$ | - 3.02E-04 | J 02E-04 | -6.4E-O4 |
| 23 | 4.6.E-O4 | -9.34E-04 | 246E-04 | -4.99E-98 |
| 24 | 00 | 4.1JE-O4 | 4.18E-04 | 0.0 |

uncorreciable field errors. A nuther possibility is their
by δ about the origin of the magnet, and a displace. ane ar il. L-ir L.. magnet, and a displace
2) Utilization of $\nabla^{2} H_{x}(x, y, z)=0$

$$
\begin{aligned}
& \vec{H}=-\operatorname{grad} V \longrightarrow \operatorname{cur}(\vec{H}=0 \\
& -\operatorname{div} \vec{H}=\nabla^{2} V=0 \\
& H_{x}=-\partial V / \partial x \longrightarrow \nabla^{2} H_{y}^{y}=0
\end{aligned}
$$

If I measure a Cartesian component of \vec{H}^{\prime} on the surface enclosing a volume, and if I calculate from that the field inside the volume with an algorithon that does not violate the Laplace equ., field errors will be smaller in the volume than on its surface.
3) $\underline{V,} \vec{H}$, in cylindrical coordinate system
) $\nabla^{2} V=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial \xi^{2}}\right) V=0$
Fourier series in φ
) $V(r, \varphi, z)=\sum V_{n}(r, z) \sin \left(n \varphi+\alpha_{n}\right) ; \alpha_{n}=$ cost
Allowed / forbidden harmonics determined by rotational symmetry. Example: if $V(r, \varphi+i / 2, z)=-V(r, q, z)$,
only $n=2,6,10 \cdots$ are allowed, $=$ allowed harmonics. All others (eg. $n=4=$ octupole) are forbidden harmonics and con appear only when rotational symmetry is violated.
(3.2) into (3.1)
3) $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{n^{2}}{\tau^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) V_{n}=0$
$>\mathscr{L} V_{n}(r, z)=v_{n}(r, r)$
4) $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{n^{2}}{r^{2}}+k^{2}\right) v_{n}(r, k)=0$

FIG. 3

FIG. 3a

$$
\times B L 6944824
$$

This is nor the say to do it. same cross seclength.

$$
=\frac{1}{2} \cdot \frac{\mu_{0} y}{B \rho}
$$

his is the correct lay to do it. same cross seclength.

「. 1)
Votation: $\mathscr{L} F(z)=\int_{-\infty}^{\infty} F(z) e^{-x z} d z=f(x)$

$$
X^{-1} f(k)=\int_{-i \alpha+c}^{\min _{i c}^{\infty} f(k) e^{x_{z}} d u_{k} / 2 i_{i}=F(z)}
$$

Notice: $F^{(n)}(z)=\int f(k) p^{n} e^{k z} d p / 2 \pi i$

$$
\mathscr{\alpha} F^{(n)}(z)=p^{n} f(p)=p^{n} \mathscr{L} F(z)
$$

Solution to (3.4)
) $v_{n}\left(r_{1} k\right)=J_{n}\left(r_{k}\right) \cdot C(k)$
coefficient for term $\sim I_{n}\left(r_{\mu}\right)$ must be $=0$
Since $I_{n}(x)$ blows up at origin.
) $J_{n}(x)=\frac{(x / 2)^{n}}{n!} \Lambda_{n}(x)$ (Jahake-Ende notation)
7 $\Lambda_{n}(x)=1-\frac{x^{2} / 4}{1!(n+1)}+\frac{\left(x^{2} / 4\right)^{2}}{2!(n+1)(n+2)}-\frac{\left(x^{2} / 4\right)^{3}}{3!(x+1)(n+2)(x+3)}+\cdots+\cdots$
"Absorb" $(2 / 2)^{n} / n!$ in $c(N) \longrightarrow g_{n}(N)$
) $v_{n}(r, k)=r^{n} \underbrace{\Lambda_{n}\left(r_{k}\right) g_{n}(\theta, k)}_{g_{n}(r, k)}$

1) $v_{n}(r, k)=r^{n} g_{n}(r, k)$.
2) $g_{n}\left(r_{1} t\right)=-L_{n}\left(r_{k}\right) g_{n}(0, k)$
ω
3) Use and exploitation of (3.9),(3.10), \#1: expansion in r^{2} Apply \mathscr{L}^{-1} to (3.9), (3.10):
4.1) $V_{n}=\mathscr{L}^{-1} v_{n}=r^{n} G_{n}(r, z)$
(.2) $\quad G_{n}(r, z)=\left(1-\frac{r^{2} j^{2} / \partial z^{2}}{4(x+1)}+\frac{r^{4} \partial^{4} / \partial z^{4}}{16 \cdot 2 \cdot(x+1)(x+2)}-+\right) G_{m}(0, z)$ "gradient" on axis.
Comments to (4.2)

- (4.2) reflects again fact that 3 -integral over 30 fields satisfy 20 field equations.
- (4.2) should be used with caution, because calculating fields far from axis from gradient on axis can be dangerous. Degree of danger depends on how gradient on axis was determined.
- Semantic / technical point: I characterize multipolarity with n in $\sin (n \varphi+\alpha n)$, not with power of r. Specific example:
in quad potential,

3) $V_{2} \cos 2 \varphi=\cos 2 \varphi\left(r^{2} G_{2}(0,3)-r^{4} G_{2}^{\prime \prime}(0,3) / 12+-\right)_{1}$
term $\sim r^{4}$ has nothing to do with octupole. This fact restricts possibility to correct this aberration with genuine octupole.

- To get feeling for consequences of 3 . order aberration in fringe field of quad, ask simple question: What transverse kick is experienced by particle on straight trajectory through fringe field region? Answer: in skew conrdinatesystem,

1) $\Delta p_{x} l e=-\frac{B^{\prime}}{2} \cdot y_{0}^{\prime}\left(x_{0}^{2}+\left(x_{0}^{(2} R^{2}\right)\right) \quad R^{2}=\int G_{2}^{\prime} z^{2} d z$
2) Δ 价le $=-\frac{\beta^{\prime}}{2} x_{0}^{\prime}\left(y_{0}^{2}+\left(y_{0}^{\prime 2} R^{2}\right)\right)$

Trajectories: $x=x_{0}+x_{0}^{\prime} \cdot z ; y=y_{0}+y_{0}^{\prime} \cdot z$
$G_{i}^{\prime}(1,9) G_{2}(0,1) \ldots B^{1} / 2$ $z=0$ chosen so that

$$
\int z G_{i}^{\prime} d z=0
$$

for iron free CSEM gand: $R=\sqrt{T_{1} T_{2}} / 2$
(.1)

$$
\begin{aligned}
& \dot{\vec{R}}=l(\vec{V} \times \vec{B}) ; \quad x=x_{0}+x_{0}^{\prime} z ; y=y_{0}+y_{0}^{\prime} \cdot z \\
& \Delta R_{x} l e=\int\left(\dot{y} B_{z}-\dot{z} B_{y}\right) d l=y_{0}^{\prime} \cdot \int B_{z} d z-\int B_{y} d z \\
& \mu_{0} V=r^{2} \cos 2 \varphi\left(G_{2}-r^{2} G_{2}^{\prime \prime} / 12\right) \text { in skew system! } \\
& \mu_{0} V=\left(x^{2}-y^{2}\right) G_{2}-\left(x^{4}-y^{4}\right) G_{l}^{\prime \prime} / 12
\end{aligned}
$$

To take only 3.order terms:

$$
\begin{aligned}
& B_{x}=x^{3} G_{2}^{\prime \prime} / 3 ; B_{y}=-y^{3} G_{l}^{\prime \prime} / 3 ; B_{z}=\left(y^{2}-x^{2}\right) G_{l}^{\prime} \\
& \Delta 1_{k} / l=\underbrace{y_{0}^{\prime} \cdot \int\left(y^{2}-x^{2}\right) G_{l}^{\prime}}_{=\underbrace{\left.\int \frac{y^{3}}{3} G_{2}^{\prime} \right\rvert\,-y_{0}^{\prime} \cdot \int y^{2} G_{l}^{\prime} d z}_{=0} G_{l}^{\prime \prime} d z} \\
& \Delta k_{x} l e=-y_{0}^{\prime} \int\left(x_{0}^{2}+2 x_{0} x_{0}^{\prime} z+x_{0}^{\prime 2} z^{2}\right) G_{l}^{\prime} d z
\end{aligned}
$$

Chose $z=0$ such that $\int \sigma_{i}^{\prime} \cdot z d z=0$

$$
\begin{aligned}
& \int G_{i}^{1} \cdot z^{2} d z=B^{\prime} / 2 \cdot R^{2} i R^{2} \text { of order } r_{a p}^{2} \\
& \Delta R_{x} l e=-\frac{B^{\prime}}{2} \cdot y_{0}^{\prime}\left(x_{0}^{2}+x_{0}^{\prime 2} R^{2}\right) \\
& \Delta R_{f} / l=-\frac{B^{\prime}}{2} x_{0}^{\prime}\left(y_{0}^{2}+y_{0}^{\prime 2} R^{2}\right)
\end{aligned}
$$

Comments and conclusions

- The largest contribution from $x_{0}^{\prime 2} R^{2}$ or $y_{0}{ }^{2} R^{2}$ will always be much smaller than the largest contribution from x_{0}^{2} or y_{0}^{2}, so for many cases, the term with R^{2} can be ignored
- Total "damage" $=$ sum from entrance and exit
- For quad of given integrated strength $B^{\prime} \cdot L$, 3. order aberrations are ~ $1 / L$

7)
8) Magnetic field measurement/characterizalio priorities
9) Allowed and forbidden harmonics inside
10) Allowed and forbidden harmonics integrated over whole length
11) Fundamental as function of z
12) Allowed harmonics as function of z

Comments

- Bearing and similar problems cause mainly contamination of $n=$ fundamental ± 1 Therefore: Null measurements for inside and length-integrated measurements
- Fringe field measurements are easy to "digest" when one measures $B_{q}(r, q, z)$, since that leads directly to V.

6) Use and exploitation of (3.9), (3.10), method $\# 2$: direct use of $B_{\varphi}\left(r_{0}, \varphi, z\right)\left(r_{0}=\right.$ "large") to get 30 fields

$$
\begin{aligned}
& v_{n}(r, k)=\Lambda_{n}(r k) \cdot g_{n}(0, k) \\
& v_{n}\left(r_{0}, k\right)=\Lambda_{n}\left(r_{0} k\right) g_{n}(0, k)
\end{aligned}
$$

(v.1) $g_{n}(0, k)=v_{n}\left(r_{0}, k\right) / \Lambda_{n}\left(r_{0} k\right)$
$\therefore 2) \quad V_{n}\left(r_{1} p\right)=V_{n}\left(r_{0}, k\right) \cdot \Lambda_{n}\left(r_{k}\right) / \Lambda_{n}\left(r_{0}, k\right)$
(6.2) can be used (FFT) to calculate 30 field for $r<r_{0}$ from measured $v_{n}\left(r_{0}, p\right)$, (6.1) = special case: gradient on axis

- Notice: if one likes to think in terms of convolution integrals, it is useful to notice that the zeroes of $\Lambda_{n}(x)$ are the same as those of $J_{n}(x)$
- This approach was implemented by Chris's Morris in $19 y^{?}$?

ソ
7) Use and exploitation of (3.9), (3.10), method \#3:

Exact calculation of 30 fields from analytical function $G_{n}(0, z)$
Presented in some talks but never published; never executed in detail, but looks very promising

$$
\begin{aligned}
& \text { (1) } G_{n}(r, z)=\dot{L}^{-1} \Omega_{n}(r k) \cdot g_{n}(0, \mu) \\
& \text { Y.1) } G_{n}(r, z)=\frac{4^{n}(n!)^{2}}{(2 n)!} \cdot \frac{2}{\pi} \int_{0}^{\pi / 2} n e G_{n}(0, z+i r \sin \psi) \cdot \cos ^{2 n} d \psi \\
& \text { (.2) } G_{n}(r, z)=\frac{4^{n+1}(n!)^{2}}{(2 n)!\pi} \cdot \int_{0}^{1} \operatorname{Re} G_{n}\left(0, z+i r \frac{2 \mu}{\left(1+u^{2}\right.}\right)\left(\frac{\left(1-u^{2}\right.}{1+u^{2}}\right)^{2 n} \frac{d u}{1+\mu^{2}}
\end{aligned}
$$

Form of expression shows clearly that $G_{n}(0, z)$ must be analytical, because how else could $G_{n}(0, z)$ be evaluated for complex argument; even prece-meal analytical express cons wont do.
(Y.2) can be used to design "ideal" multipole. To do it, one has to be clever/artful to invent appropriate $G_{n}(0, z)$
)

$$
\mathscr{2}^{-1} \Omega_{n}(r p) g_{n}(0, k)=G_{n}(r, z)
$$

Use integral representation of $\Lambda_{m}\left(r_{N}\right)$:

$$
\Lambda_{n}(x)=2 C_{i} \int_{i_{0} \text { in teresting nu meri }}^{1}\left(1-R^{2}\right)^{n-1 / 2} \cdot \cos (x h) d i
$$

$$
G_{n}(r, z)=c_{n}^{i+} \int_{-i \infty}^{1} \int_{0}^{1}\left(1-k^{2}\right)^{n-1 / 2}\left(e^{i r \mu 1}+e^{-i r k q}\right) e^{k z} g_{n}(0, k) d h \frac{d / 2}{2 \lambda^{i} i}
$$

integrate over P first:

$$
\begin{aligned}
& G_{n}(r, 3)=C_{n} \cdot \int_{0}^{1}\left(1-R^{2}\right)^{n-1 / 2}\left(G_{n}(0,3+i r r)+G_{n}(0,3-i r n)\right) d r \\
& 1=\sin \psi \\
& G_{n}(r, 3)=2 c_{n} \cdot \int_{0}^{\pi / L} \operatorname{Re} G_{n}(0,3+i r \sin \psi) \cdot \cos ^{2 n} \psi d \psi
\end{aligned}
$$

Detertaine C_{n} from condition $G_{n}(0, z)=\sigma_{n}(0, z)$.

$$
G_{n}(r, z)=\frac{4^{n}(x!)^{2}}{(2 n)!} \frac{2}{\pi} \cdot \int_{0}^{\pi / 2} \operatorname{Re} G_{n}(0, z+i r \sin \psi) \cdot \cos ^{2 \pi} \psi d \psi
$$

To actually evaluate fast, use $\tan \psi / 2=\mu$:

$$
G_{n}\left(r_{1} 3\right)=\frac{4^{n+1}(n!)^{2}}{(2 n)!\cdot \pi} \cdot \int_{0}^{1} \operatorname{Re} G_{n}\left(0,3+i r \cdot \frac{2 u}{\left(+u^{2}\right.}\right) \cdot\left(\frac{1-u^{2}}{\left(1+u^{2}\right.}\right)^{2 \pi} \frac{d u}{1+u^{2}}
$$

(a)
8) Methods to de ter mine $G_{n}(0, z)$
X.1) For R^{2} in (4.4), measuring gradient "close" to axis is adequate
8.2) Feel less comfortable with 1) for actual ray tracing involving derivatives of $G_{2}(0,3)$
8.3) Measure $B_{\varphi} \rightarrow V$ at large r_{0} and get from that gradient and derivatives on axis. Q.K. for ray tracing with expansion in r^{2} (if that approach is good enough)
8.4) "Invent" appropriately structured analytical functions for $\sigma_{n}(0,7)$; calculate with $(\gamma .2) G_{n}\left(r_{0}, z\right)$, and a'etermine free parameters : $G_{n}(0, z)$ such that a good fit is obtained for the measured $G_{n}\left(r_{0}, z\right)$. For any magnet, this need's to be only done once. Calculation of fields should then be easy and fast with (Y.2i. I have some ideas of some suitable functions $\left[\operatorname{Leg} .1+\tanh \left(\alpha_{3}\right)_{i}\left(1+\frac{63}{\sqrt{1+k}}\right)^{m}\right.$, etc.)], but have not done any "real"
8.5) Calculate $G_{2}(0,3)$ analytically.

Is "easy" to execute in some cases (e.g. iron-free (SE1Y dipole, quad) because one expounds in r and needs to retain only lowest order term $\neq 0$. Lan give useful ideas about choice of functions to be used for practical analytical! expressions, and some models can give insight into properties of fringe fields.

$$
\begin{aligned}
& B_{y}(x)=f f_{n} f(\lambda) \\
& B_{4}- \\
& B_{+}(x, y)-i B_{n}(t, y)=-i f(x, i y) \\
& \frac{1}{1+e^{\sum a_{n} x^{n}}} \frac{1}{\left(1+a_{1} l^{n+}\right.}+a_{2} e^{2(z))^{n}}
\end{aligned}
$$

ANALYSIS OF 3D FIELD DATA

MAGNETIC FIETD DATA
D. E. LobbTRIUMF/University of Victoria

1) Example system
2) Visual assessment of theaccuracy of the results

-

3) Self-checking harmonic analysis
a) Comparision of radial and
azimuthal field coefficients
b) Harmonic analysis atdifferent radii
4) Discussion of properties of orthogonal functions
5) Introduction to Cliebyshevpolynomials
6) Chebyshev poly:uminil xids onthe example sysoan
a) Linesb) Planc:
c) Volume:'
\qquad
7) Summasy

COMMENTS ON TOSCA MODELING

A maximum of 50000 nodes MAY be available.
When quadratic shape functions are used,the number of non-zero elements in themain matrix in TOSCAmay exceed memory capacityfor as few as 35000 nodes.
Two dimensional calculations
using PE2D or POISSON:
satisfactory precision may be obtained
using 5000, or 10000, or 15000 nodes.
For a three dimensional calculation,
t.he XY plane mesh is always coarserthan desired.

PRECISION

In the air gap region, the field components divided by some normalization value can be precise to within 0.001 to 0.0001

THE EXAMPLE SYSTEM ON TOSCA

A boundary value quadrupole configuration. No iron, no coils

The boundary is tangent to a circle,
centered at the origin,
radius 10 cm .
All nodes lie on or inside
the source surfaces
Total scalar potential values are
available in the region of interest.
(If coils and iron were used
this region would have reduced
scalar potential.)
UNITS: GAUSS, CENTIMETER

T7Q
 $0 \leq z \leq 15$

VISUAL CHECKING OF CALCULATED FIELD RESULTS

Define a function
that would be constant for a perfect magnet
Plot this function

For a quadrupole configuration, a suitable function that tests the $X Y$ plane components is
\#GRAD=SQRT((HX*HX+HY*HY)/(X*X+Y*Y))

1000 segments per line were used to eliminate any possible error due to fitting by the plotting routines.

Harmonic Anmysis

At a particular value of z
Tine TEXMS of intereit have the form
Scmak potontiat : $\quad\left(\frac{r}{a}\right)^{n} \sin n \theta$
Radim fielo:

$$
\left(\frac{r}{a}\right)^{n-1} \sin n \theta
$$

Azimuther fielo:

$$
\left(\frac{r}{a}\right)^{n-1} \cos n \theta
$$

a: Normmization Endius

SELF-CHECKING HARMONIC COEFFICIENTS

The computational programs work in

 Cartesian coordinates.Convert Cartesian field components into Cylindrical field components.

Calculate the harmonic coefficients for the radial and azimuthal fields

The two sets of coefficients should be the same.
\qquad

Note that harmonic coefficients are obtained by integration, which smooths data;
the harmonic coefficients are more precise than
the visual examination of \#GRAD results would indicate.

HARMONIC COEFFICIENTS FOR T7Q
 100 segments

Calculation radius = Normalization radius $=5 \mathrm{~cm}$

| rmonic
 rder | $\begin{aligned} & \text { THETA1-0 } \\ & \text { THETA2=90 } \end{aligned}$ | | $\begin{aligned} & \text { THETA1=90 } \\ & \text { THETA2-180 } \end{aligned}$ | | $\begin{aligned} & \text { THETA1=180 } \\ & \text { THETA } 2=270 \end{aligned}$ | | $\begin{aligned} & \text { THETA1=270 } \\ & \text { THETA2 }=360 \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Rad. | Azi. | Rad. | Azi. | Rad. | Azi. | Rad. | P.zi. |
| 2 | 496.0 | 495.4 | 495.9 | 495.4 | 495.7 | 495.0 | 495.7 | 495.2 |
| 4 | 1.784 | 1.783 | 1.777 | 1.763 | 2.027 | 2.154 | 1.913 | 1.934 |
| 6 | -. 718 | -. 741 | -. 773 | -. 756 | -. 791 | -. 903 | -. 800 | -. 768 |
| 8 | 0.114 | 0.128 | 0.137 | 0.118 | 0.174. | 0.282 | 0.195 | 0.211 |
| The coefficients below mainly represent error | | | | | | | | |
| 0 | 0.32 | 0.021 | -. 004 | 0.007 | -. 001 | -. 118 | -. 050 | 0.001 |
| 2 | -. 011 | -. 013 | -. 015 | -. 032 | 0.002 | 0.115 | 0.015 | 0.006 |
| 4 | 0.008 | 0.011 | -. 018 | -. 008 | -. 0003 | -. 108 | 0.011 | 0.032 |
| 6 | 0.016 | 0.007 | 0.002 | -. 007 | -. 009 | 0.1221 | -. 020 | -. 008 |

We may estimate from above thar the field values have a precision of about 3 parts in 5000 (0.061)

THE MODEL TBQQ (30315 nodes)

The XY geometry defined in first quadrant onlyZ - 0 is a symmetry planeFine subdivision in 2 direction.
Quadratic XY elements
are used in the central region
out to Z = 35
Extrusion Subdivision Intervalplane2 (cm)0
8 1.87515
6 1.6672535$4 \quad 2.500$75.714

CALCULATION OF HARMONIC COEFFICIENTS AT DIFFERENT RADII

To be done in a region in which the longitudinal variation is small

Along arcs with radius such that the arc stays at least one grid element away from any source

The coefficients expressed in terms of the same normalization radius should be the same for small variations
in arc radius
(Small: less than, or about, the size of a a grid element)

| Harmonic
 Order | $r=4.5$ | $I=5$ | $I=5.5$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Radial Azimuthal | Radial Azimuthal | Radial Azimuthal | | | |
| 2 | 495.5 | 495.1 | 495.7 | 495.2 | 495.9 | 495.3 |
| 4 | 1.892 | 1.846 | 1.855 | 1.877 | 1.883 | 1.863 |
| 6 | -0.6664 | -0.7253 | -0.7263 | -0.6909 | -0.6890 | -0.7144 |
| 8 | 0.1446 | 0.0895 | 0.1135 | 0.1691 | 0.1847 | 0.1552 |
| 10 | -0.0206 | -0.0625 | -0.0669 | -0.0004 | -0.0049 | -0.0212 |
| | The coefficients below mainly represent error | | | | | |

We may estimate from above that the field values have a precision of about 1 part in 5000 (0.021) for locations near radius - 5Rthocoun Functions

Examples:

Writu: $\phi_{n}(x) \quad$ a memaer of a fanty of orthoginm functions
Normazization: $\left\|\phi_{n}\right\|_{r}=\int_{a}^{b} r(x) \phi_{n}{ }^{\prime}(x) \phi_{n}(x) d x$
Orthocinmitt:

$$
\int_{a}^{b} r(x) \phi_{m}^{n}(x) \phi_{n}(x) d x=\left\|\phi_{n}\right\|_{r} \delta_{m n}
$$

For electric and magnetic fields in source-free space, potential and field functions are continuous with continuous derivatives to all orders.
(This is a property of Coulomb's Law and Biot-Savart Law; actual fields are superpositions of Coulomb and/or

Biot-Savart fields.)

Therefore, we may write our functions of interest
as expansions in a particular family of orthogonal functions.

$$
f(x)=\sum_{n=0}^{\infty} C_{n} \phi_{n}(x)
$$

(fix) Rear, C_{n} mar be complex)

Multiply Both sioes By $r(x) \phi_{n}^{*}(x) d x$, Intecimate fhom a to b:

$$
\begin{aligned}
& \int_{a}^{b} r(x) \phi_{n}^{*}(x) f(x) d x=\sum_{n=0}^{\infty} c_{n} \int_{a}^{b} r(x) \phi_{n}{ }^{*}(x) \phi_{n}(x) d x \\
& =\sum_{n=0}^{\infty} c_{n}\left\|\phi_{n}\right\|_{r} \delta_{m n}-C_{n}\left\|\phi_{n}\right\|_{1} \\
& C_{m}=\frac{1}{\left\|\phi_{m}\right\|_{r}} \int_{a}^{b} r(x) \phi_{n}^{n}(x) f(x) d x \\
& \text { INDELPENDCTHT OF TNE OTMEA Cn's } \\
& C_{m}^{x}=\frac{1}{\left\|\phi_{m}\right\|_{r}} \int_{a}^{b} r(x) \phi_{n}(x) f(x) d x
\end{aligned}
$$

We APPRoximate a function by a truncated Series:

$$
\bar{f}(x)=\sum_{n=0}^{N} a_{n} \phi_{n}(x)
$$

S HoULD $a_{n}=C_{n} \quad n=0,1, \cdots, N \quad ? ?$

Cltoose to Minimize the weighted integnuteo SQuARED ERKOR

$$
\begin{aligned}
& \Delta_{N}=\int_{a}^{b} r(x)\left[f(x)-\overline{f_{N}}(x)\right]\left[f(x)-\bar{f}_{N}^{*}(x)\right] d x \\
& =\int_{a}^{b} r(x) f^{2}(x) d x+\int_{a}^{b} r(x) f(x)\left[f_{N}^{-}(x)+f_{N}^{-n}(x)\right] d x \\
& +\int_{a}^{b} r(x) \overline{f_{N}}(x) \overline{f_{N}}(x) d x
\end{aligned}
$$

Third tekn:

$$
\begin{aligned}
& \int_{a}^{b} r(x)\left[\sum_{n=0}^{N} a_{n} \phi_{n}(x)\right]\left[\sum_{m=0}^{N} a_{m}^{\prime} \phi_{m}^{\prime}(x)\right] d x \\
& =\sum_{n=0}^{N} \sum_{m=0}^{N} a_{n} a_{m}^{*} \int_{a}^{b} r(x) \phi_{n}(x) \phi_{n}^{\prime \prime}(x) d x \\
& =\sum_{n}^{N} \sum^{N} a_{n} a_{m}^{n}\left\|\phi_{m}\right\|_{r} \delta_{m n} \\
& =\left[\sum_{m=0}^{N} a_{m} a_{m}^{N}\right]\left\|\phi_{m}\right\|_{r}=\left\|\phi_{n}\right\|_{r} \sum_{m=0}^{N} \mid a_{m} \|^{2}
\end{aligned}
$$

Second term:

$$
\begin{aligned}
& \int_{a}^{b} r(x) f(x):\left\{\sum_{n=0}^{N}\left[a_{n} \phi_{n}(x)+a_{n}^{*} \phi_{n}^{\prime \prime}(x)\right]\right\} d x \\
= & \sum_{n=0}^{N} a_{n} \int_{a}^{b} r(x) f(x) \phi_{n}(x) d x \\
& +\sum_{n=0}^{N} a_{n}^{*} \int_{a}^{b} r(x) f(x) \phi_{n}^{*} d x \\
= & \sum_{n=0}^{N}\left\{\left[a_{n} c_{n}^{N}+a_{n}^{*} c_{n}\right]\left\|\phi_{n}\right\|_{r}\right\} \\
= & \sum_{m=0}^{N}\left\{\left[a_{m} c_{m}^{*}+a_{m}^{*} c_{n}\right]\left\|\phi_{m}\right\|_{r}\right\}
\end{aligned}
$$

Thiko tekm plus secone jiam

$$
\begin{gathered}
=\left\{\sum_{m=0}^{N}\left[a_{m} c_{m}^{*}+a_{m}^{*} c_{m}+a_{m} a_{m}^{*}\right]\left\|\phi_{m}\right\|_{r}\right\} \\
=\left\{\sum _ { m = 0 } ^ { N } \left[\left(c_{m} c_{m}^{\prime}+a_{m} c_{m}^{*}+a_{m}^{*} c_{m}+a_{m} a_{m}^{*}\right)\right.\right. \\
\left.-c_{m} c_{m}^{*}\right]\left\|\phi_{m}\right\|_{r} \\
= \\
\sum_{m=0}^{N}\left(c_{m}-a_{m}\right)\left(c_{m}-a_{m}\right)^{*}\left\|\phi_{m}\right\|_{r} \\
-\sum_{m=0}^{N} c_{m} c_{m}^{*}\left\|\phi_{m}\right\|_{r}
\end{gathered}
$$

So:

$$
\begin{gathered}
\Delta_{N}=\left\{\int_{a}^{b} r(x) f^{2}(x) d x-\sum_{m=0}^{N}\left|c_{m}\right|^{2} \cdot\left\|\phi_{m}\right\|_{m}\right\} \\
\\
+\sum_{m=0}^{N}\left|c_{m}-a_{m}\right|^{2}\left\|\phi_{m}\right\|_{r}
\end{gathered}
$$

The best fit accomolne to tote chosen criterion is $\left.\Delta_{N}\right]_{\text {min }}$ For $\quad a_{m}=C_{m} \quad m \infty, 1, \ldots, N$

For $a_{m}=C_{m} \quad m=0,1, \cdots, N$

$$
\geqslant 0<\underbrace{\int_{a}^{b} r(x) f^{2}(x) d x}_{\substack{\text { Nor A FUNE TRon } \\ \text { of } N}}-\underbrace{\sum_{m=0}^{N}\left|c_{m}\right|^{2} \cdot\left\|\phi_{a}\right\|_{r}}_{\text {AL TERMS } \geqslant 0}
$$

$$
\lim _{N \rightarrow \infty} \sum_{m=0}^{N}\left|c_{m}\right|^{2} \cdot\left\|\phi_{a}\right\|_{F}=\int_{a}^{b} r(x) f^{2}(x) d x
$$

Themerme, seals on L.h.S. mane Convenors.

$$
f(x)=\sum_{n=0}^{\infty} c_{n} \phi_{n}(x)-\sum_{m=0}^{\infty} c_{m}^{N} \phi_{m}^{*}(x)
$$

(since $f(x)$ is $R \pi x$)

$$
=\sum_{m=0}^{\infty} c_{m} c_{m}^{*}\left\|\phi_{n}\right\|_{\infty}-\sum_{m=\infty}^{\infty}\left|c_{m}\right|^{2} \cdot \| \phi_{m} \mid
$$

Incromse N : Δ_{m} DEceronos.

$$
\begin{aligned}
& f^{2}(x)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n} c_{n}^{n} \phi_{n}(x) \phi_{n}^{n}(x) \\
& \int_{a}^{b} r(x) f^{2}(x) d x=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n} c_{m}^{a} \int_{a}^{b} r(x) \phi_{n}(x) \phi_{m}^{*}(x) d x \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{n} c_{m}^{n}\left\|\phi_{m}\right\|_{r} \delta_{n m} \\
& \Delta_{N}-\int_{a}^{b} r(x) f^{2}(x) d x-\sum_{m=0}^{N}\left|c_{m}\right|^{2} \cdot\left\|\phi_{m}\right\|_{r} \\
& =\sum_{m=0}^{\infty}\left|c_{m}\right|^{2} \cdot\left\|\phi_{n}\right\|_{r}-\sum_{m=0}^{N}\left|c_{m}\right|^{2} \cdot\left\|\phi_{m}\right\|_{m} \\
& =\sum_{m=N+1}^{\infty}\left|c_{m}\right|^{2} \cdot\left\|\phi_{m}\right\|_{n} \\
& \Delta_{m}=\sum_{m=N+1}^{\infty}\left|c_{m}\right|^{2} \cdot\left\|\phi_{m}\right\|_{r}
\end{aligned}
$$

Derivatives

$$
\begin{gathered}
\text { Write } \quad g(x, p) \equiv \frac{d^{P} f(x)}{d x^{p}} \\
f(x)=\sum_{n=0}^{\infty} c_{n} \phi_{n}(x) \rightarrow g(x, p)=\sum_{n=0}^{\infty} c_{n} \phi_{n}^{(p)}(x)
\end{gathered}
$$

Previous results apply to $g(x, p)$: $\left.\Delta_{N}\right]_{\text {min }}$ occurs for fitter coefficients EQum TO ThEORETICM COEPFICIGOUT FOK $n=0,1, \cdots, N$.

Example: $\quad \operatorname{SinusolD} \quad f(\theta)=\sum_{n=0}^{\infty} c_{n} e^{i n \theta}$

$$
\begin{gathered}
g(\theta, p)=\sum_{n=0}^{\infty}\left[C_{n}(i)^{p} n^{p}\right] e^{i n \theta} \\
\text { Write } \quad b_{n}=C_{n}(i)^{p} n^{p} \\
\\
\left|b_{n}\right|=\left|c_{n} n^{p}\right|
\end{gathered}
$$

For time truncated fit to $g(x, y)$

$$
\begin{aligned}
\left.\Delta_{N}\right]_{\min } & =\sum_{m=N+1}^{\infty}\left|b_{m}\right|^{2} \cdot\left\|\phi_{m}\right\|_{m} \\
& =\sum_{m=N+1}^{\infty}\left|c_{m} m^{p}\right| \cdot\left\|\phi_{m}\right\|_{m}
\end{aligned}
$$

ALl terms in tire sum ale positive.

$$
\left|C_{m} m^{p}\right|>\left|C_{m}\right| \quad m=N+1, \cdots, \infty
$$

The truncated fit to the derivative is WORSE (OR MUCH WORSE) THAN THE SAME ORDER TRUNCATED FIT TO THE DRLGINA Function.

Reetancular Aperture

Because of the ratio behavior $\left(\frac{r}{a}\right)^{n}$ and $\left(\frac{r}{a}\right)^{n-1}$,

Extrapolation of harmonic coefficients

OBTAINED ON EITINER CIRCLE TO THE REGION

Beyond the circle will result in a

GROWTH OF TI HE IMPRECISE HIGHER ORDER TERM:

In GENERAR 30 FORMULAE:

Ragiar derenditior: Powix laws
Azimutime dependertice: Sinusoios - Express Tay Ta Suans in x y
Axim dependener: Expras as Taycor Sixio

$$
\vartheta
$$

3 D Formunat could (as tmeoky) Be writion with totus of Tir form $x^{m} y^{n} z^{p}$.

$$
\sqrt{ }
$$

Inversion retsults fir the familay of oxptocian
Pocynomiars $\xi_{n}(x), \xi_{n}(y), \xi_{p}(z)$ arcon, in Tharory, tite furtirex chancie in Representation

$$
x^{m} y^{n} z^{p} \longrightarrow \xi_{m}(x) \xi_{n}(y) \xi_{p}(z)
$$

Focloning this Link of Arrgument, we now write

$$
\begin{aligned}
& \psi(x, y, z)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \alpha_{m n p} \xi_{m}(u) \xi_{n}(v) \xi_{p}(w) \\
& x_{1} \leqslant x \leqslant x_{2} \\
& y_{1} \leqslant y \leqslant y_{2} \\
& Z_{1} \leq z \leqslant Z_{2} \\
& \bar{x}=\frac{x_{1}+x_{2}}{2} \\
& \bar{y}=\frac{y_{1}+y_{2}}{2} \\
& \bar{z}=\frac{z_{1}+z_{2}}{2} \\
& a=\frac{x_{2}-x_{1}}{2} \\
& b=\frac{y_{2}-y_{1}}{2} \\
& c=\frac{z_{2}-z_{1}}{2} \\
& u=\frac{x-\bar{x}}{a} \\
& v=\frac{y-\bar{y}}{b} \\
& w=\frac{z-\bar{z}}{c} \\
& -1 \leq u \leq+1 \\
& -1 \leq v \leq+1 \\
& -1 \leqslant W \leqslant+1
\end{aligned}
$$

Sinusides: OScILLATE BETWEREN LIMITS $-1,+1$
Cain tezl at a glainet tare role playeo

By finy Particular coefficient.

Cheiby shev Polynomions of tive First Kino.
$T_{n}(u): n^{T H}$ oxpur polynomian

$$
T_{n}(1)=1 \quad T_{n}(-1)=(-1)^{n}
$$

n even: Triul evers: n ond: $T_{r}(u)$ onn

Tn(u) has ($n-1$) Extrame vanuss in - $1<u<+1$

$$
\text { AT } u_{k}=\cos \frac{k \pi}{n} \quad k=1,2, \ldots,(n-1)
$$

Lut varues bunetres natik $u= \pm 1$, SPREAT OUT NETKR UOO.

Monotomie behavion for $|u|>1$

Handbook of Mathematical Functions

 With Formulas, Graphs, and Mathematical Tables
Ediled by Milton Abramowie and Lrame A. Steran

National Bureau of Standards Applied Mathematics Series - 55 Lenud Jumen 194

Fiouri 22.6. Chebysheo Polynomials $T_{n}(x)$,

Chebyshar Parmomin or Sezono Kin.

$$
\frac{d T_{n}}{d u} \equiv n U_{n-1}(u)
$$

Figuri 22.7. Chebystico Polynomials $U_{a}(x)$,

Drthogonmity Imtecems

$$
\begin{aligned}
& \int_{-1}^{+1} T_{m}(u) T_{n}(u) \frac{d u}{\sqrt{1-u^{2}}}= \begin{cases}\pi & m=n=0 \\
\frac{\pi}{2} & m=n \neq 0 \\
0 & m \neq n\end{cases} \\
& \int_{-1}^{+1} U_{m-1}(u) U_{n-1}(n) \sqrt{1-u^{2}} d u=\frac{\pi}{2} \delta_{m n} \quad n>1
\end{aligned}
$$

In pratetire, tree $A B O V E$ Woulo be

APPROXIM ATED BY SUMMATIONS ACCORDINE TO

A PARTIEULAR QUAORATVRE RULE.

Notation: $\quad \sum_{n=0}^{N}{ }^{n} d_{n}=\frac{d_{0}}{2}+d_{1}+\cdots+d_{N-1}+\frac{d_{N}}{2}$

Summation ortiocinamity Results

$$
\begin{aligned}
& \sum_{r=0}^{M} \prime T_{j}\left(u_{p}\right) T_{k}\left(u_{p}\right)=\left\{\begin{array}{cc}
0 & j \neq k \\
\frac{M}{2} & j=k \neq 0 \text { oo } j-k \neq n \\
M & j=k=0 \text { or } j=k=N
\end{array}\right. \\
& \sum_{r=0}^{M}\left[\sin ^{2} \frac{\pi r}{M}\right] U_{j-1}\left(u_{r}\right) U_{k-1}\left(u_{r}\right)=\left\{\begin{array}{cc}
0 & j=k \\
M & j-k \neq 0 \text { or } j=k+1 \\
0 & j=k=0
\end{array} \text { or } j=k=1\right. \\
& u_{r}=\cos \left(\frac{\pi r}{M}\right) \quad v_{s}=\cos \left(\frac{\pi_{s}}{N}\right) \quad \omega_{t}=\cos \left(\frac{\pi t}{p}\right) \\
& 0 \leq r \leqslant M \quad 0 \leq \leq \leq N \quad 0 \leq t \leq P
\end{aligned}
$$

Note: Locations ARE SPEcl:-iED Amp are Hot EQumGy SPAEED.

These relationships are used in the MATERIM PRESENTED SUBSEQUENTLY.

IVIATERITL WRITTET UP IN
D.E. Lobr, The Use of Cherysurev

Polynomiters in Fittinc Magnetic Fiezo Damm, UVIC. TRiUmF REPORt, VPN-88-2, Aucust 1988 (Revisen Jum 1991)
(A copy is avoricable heres for copyine.)

$$
\begin{gathered}
\vec{B}=-\nabla \psi \\
B_{x}=-\partial \psi / \partial x, B_{y}=-\partial \psi / \partial y, B_{z}=-\partial \psi / \partial z
\end{gathered}
$$

If we postuvate:

$$
\psi(x, y, z)=\sum_{m=0}^{M_{n}} \sum_{n=0}^{N_{n}} \sum_{p=0}^{P_{n}} \alpha_{m n p} T_{m}(u) T_{n}(v) T_{p}(w)
$$

Tren:

$$
\begin{aligned}
& B_{x}(x, y, z)=-\sum_{m=0}^{M_{n}} \sum_{n=0}^{N} \sum_{p=0}^{p} \sum_{m}^{n} \frac{m a_{m n p}}{a} U_{m-1}(u) T_{n}(v) T_{p}(w) \\
& B_{y}(x, y, z)=-\sum_{m=0}^{M_{n}} \sum_{n=0}^{N} \sum_{p=0}^{p} \sum_{n}^{n} \frac{n a_{m n p}}{b} T_{m}(u) U_{n-1}(v) T_{p}(w) \\
& B_{z}(x, y, z)=-\sum_{m=0}^{M} \sum_{n=0}^{N} \sum_{p=0}^{P} \frac{p a_{m n p}}{c} T_{m}(u) T_{n}(v) U_{p-1}(w)
\end{aligned}
$$

The coefficient $\alpha_{\mu \nu p}$ mapt be obtaineoine GENERM, FROM FOUR independent Cheulations:

$$
a_{u \vee \rho}=\frac{8}{M N P} \sum_{r=0}^{M \prime} \sum_{s=0}^{N /} \sum_{t=0}^{P_{n}^{\prime \prime}} T_{\mu}\left(u_{r}\right) T_{v}\left(v_{s}\right) T_{\rho}\left(w_{t}\right) \psi\left(u_{r}, v_{s}, w_{t}\right)
$$

$$
\begin{aligned}
& a_{\text {HVP }}= \\
& -\frac{8 a}{\mu M N P} \sum_{r=0}^{M \prime} \sum_{s=0}^{N=} \sum_{t=0}^{P_{n}^{\prime \prime}} \sin ^{2}\left(\frac{\pi r}{M}\right) U_{\mu-1}\left(u_{r}\right) T_{v}\left(v_{s}\right) T_{\rho}\left(w_{t}\right) B_{x}\left(u_{r}, v_{s}, w_{t}\right. \\
& a_{\mu \nu \rho}= \\
& -\frac{8 b}{W N N P} \sum_{r=0}^{M_{n}} \sum_{s=0}^{N} \sum_{t=0}^{P_{n}^{\prime \prime}} T_{\mu}\left(u_{r}\right) \sin n^{2}\left(\frac{\pi s}{N}\right) U_{v-1}\left(v_{s}\right) T_{p}\left(w_{t}\right) B_{y}\left(u_{r}, v_{s}, w_{t}\right) \\
& a_{\text {uvp }}= \\
& -\frac{8 c}{\rho M N P} \sum_{r=0}^{M_{n}} \sum_{s=0}^{N_{n}} \sum_{t=0}^{P_{n}} T_{\mu}\left(u_{r}\right) T_{v}\left(v_{s}\right) \sin ^{2}\left(\frac{\pi t}{P}\right) U_{\rho-1}\left(w_{t}\right) B_{z}\left(u_{r}, v_{s}, w_{t}\right)
\end{aligned}
$$

These formulae can be reduced

to two dimensional formulae for planes parallel to $X Y$, or $Y Z$, or $Z X$ coordinate planes
and to one dimensional formulae for lines parallel to
X, or Y, or Z coordinate axes.
we do not have OPERA source code, we cannot instruct OPERA to
calculate fields at the desired locations of a "Chebyshev grid".
\qquad
Temporary Solution
We generate OPERA data on a finely spacedgrid, we do local quadratic interpolationof these values to obtain values atthe desired locations.
Another temporary problem
We need to use large values of M, N, and Pin the coefficient calculations so as toadequately sample the field,
but we need to be able to set to zero
(1.e., not calculate, not use)
coefficients of order higher
than a specified order.

Frince Fielo
One Regiomfit: $\quad X=5, Y=0, \quad 15 \leqslant Z \leqslant 75$

$$
\log _{10}(H Y)=-\sum_{n=0}^{20} a_{n} T_{n}(w) \quad w=\frac{z-45}{30}
$$

$n \quad a_{n}$
$0 \quad 1.463$
$1 \quad-1.430$
$2 \quad 0.2399$
$\begin{array}{ll}3 & -0.01986 \\ 4 & 0.03212\end{array}$
$5 \quad 0.03212$
$5 \quad 0.001219$

From tias fir, emeumate $\log _{10}(H y)$, tuen $H Y$;
COMPARE t OPERA valust of HY.

-bine Field

- THREE REGIONS: $\quad X=5, \quad Y=0$

| n | $15 \leqslant z \leq 30$ | $30 \leqslant z \leqslant 45$ | $45 \leqslant z \leqslant 75$ |
| :---: | :---: | :---: | :---: |
| | $w=\frac{z-22.5}{7.5}$ | $w=\frac{z-375}{7.5}$ | $w=\frac{z-60}{15}$ |
| 0 | 3.662 | 1.789 | -0.06958 |
| 1 | -0.5795 | -0.3793 | -0.4936 |
| 2 | 0.03889 | 0.004608 | 0.06554 |
| 4 | 0.0007247 | -0.001557 | 0.01496 |
| 5 | -0.006149 | 0.01062 | 0.003828 |
| | 0.002780 | -0.003590 | -0.002693 |

Do THE SAME COMOARISON AS ON THE PEEVIOUS PAGE

Tramition Region
FIT TO HY: $\quad H Y=-\sum_{n=0}^{20} b_{n} T_{n}(w)$

IWo rezions $\quad X=5, \quad Y=0$

| n | $0 \leq z \leq 10$ | $10 \leq z \leq 15$ |
| :---: | :---: | :---: |
| | $w=\frac{z-5}{5}$ | $w=\frac{z-12.5}{2.5}$ |
| 0 | -969.8 | -553.1 |
| 1 | 18.02 | 191.4 |
| 2 | 8.519 | -0.3525 |
| 3 | 2.659 | -14.08 |
| 5 | 0.6084 | 0.6172 |
| 5 | 0.07533 | 1.395 |

10ヶZ $\leq 15: \quad$ Worst excer $=0.07$ e $Z=11.25$

$$
0.02 \%
$$

Good fit

The fit was $\mathrm{M}=20, \mathrm{~N}=20$.
CHEBYSHEV COEFFICIENTS
The BX, BY, PHI coefficients are grouped by values of m and n

$$
n=0 \quad n=1 \quad n=2 \quad n=3 \quad n=4
$$

$\mathrm{m}=0$

| BX | $0.0000 \mathrm{E}+00$ | $0.0000 \mathrm{E}+00$ | $0.0000 \mathrm{E}+00$ | $0.0000 \mathrm{E}+00$ | $0.0000 \mathrm{E}+0($ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $-.2014 \mathrm{E}+04$ | $0.6082 \mathrm{E}-01$ | $0.1192 \mathrm{E}-01$ | $-.2044 \mathrm{E}-01$ |
| PHI | $-.4028 \mathrm{E}+04$ | $-.2014 \mathrm{E}+04$ | $-.1370 \mathrm{E}-01$ | $0.6335 \mathrm{E}-01$ | $-.1243 \mathrm{E}+0 \mathrm{C}$ |

$\mathrm{m}=1$

| BX | $-.2019 \mathrm{E}+04$ | $-.1009 \mathrm{E}+04$ | $-.2317 \mathrm{E}+00$ | $-.8256 \mathrm{E}-01$ | $-.9094 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $-.1010 \mathrm{E}+04$ | $-.2535 \mathrm{E}+00$ | $-.9469 \mathrm{E}-01$ | $-.2631 \mathrm{E}-01$ |
| PHI | $-.2019 \mathrm{E}+04$ | $-.1009 \mathrm{E}+04$ | $-.2738 \mathrm{E}+00$ | $0.2245 \mathrm{E}-01$ | $-.1088 \mathrm{E}+0 \mathrm{C}$ |

$\mathrm{m}=2$

| BX | $-.4109 \mathrm{E}+01$ | $-.2133 \mathrm{E}+01$ | $-.5286 \mathrm{E}-01$ | $-.5978 \mathrm{E}-01$ | $-.4839 \mathrm{E}-01$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $-.2133 \mathrm{E}+01$ | $-.8714 \mathrm{E}-01$ | $-.4489 \mathrm{E}-01$ | $-.3379 \mathrm{E}-01$ |
| PHI | $-.4153 \mathrm{E}+01$ | $-.2133 \mathrm{E}+01$ | $-.1043 \mathrm{E}+00$ | $-.4728 \mathrm{E}-01$ | $-.6731 \mathrm{E}-01$ |

$m=3$

| BX | $0.1136 \mathrm{E}+01$ | $0.7872 \mathrm{E}+00$ | $0.2404 \mathrm{E}+00$ | $0.7454 \mathrm{E}-01$ | $0.9264 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $0.7823 \mathrm{E}+00$ | $0.2804 \mathrm{E}+00$ | $0.5022 \mathrm{E}-01$ | $-.1347 \mathrm{E}-01$ |
| PHI | $0.1121 \mathrm{E}+01$ | $0.7639 \mathrm{E}+00$ | $0.2613 \mathrm{E}+00$ | $0.438 \mathrm{i}-01$ | $-.3233 \mathrm{E}-01$ |

$m=4$

| BX | $0.2823 \mathrm{E}+00$ | $0.1599 \mathrm{E}+00$ | $0.3243 \mathrm{E}-01$ | $0.2043 \mathrm{E}-02$ | $0.5468 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $0.1874 \mathrm{E}+00$ | $0.3501 \mathrm{E}-01$ | $0.1393 \mathrm{E}-02$ | $-.2168 \mathrm{E}-01$ |
| PHI | $0.2608 \mathrm{E}+00$ | $0.1468 \mathrm{E}+00$ | $0.4147 \mathrm{E}-01$ | $0.4977 \mathrm{E}-02$ | $-.6741 \mathrm{E}-02$ |

XY plane at 2-15
X

Y ranges from $\quad 0.00$ to $\quad 9.00 \quad N X=$| 91 | $D X=$ |
| :--- | :--- |
| | 0.00 |

The fit was $\mathrm{M}=20$, No 20 .
CHEBYSHEV COEFFICIENTS
The BX, BY, PHI coefficients grouped by values of m and n.

| | $\mathrm{n}=0$ | $\mathrm{n}=1$ | $\mathrm{n}=2$ | $\mathrm{n}=3$ | $\mathrm{n}=4$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~m}=0$ | | | | | |
| BX | $0.0000 \mathrm{E}+00$ | $0.000 \mathrm{EE}+00$ | $0.0000 \mathrm{E}+00$ | $0.0000 \mathrm{E}+00$ | $0.0000 \mathrm{E}+00$ |
| BY | $0.0000 \mathrm{E}+00$ | $-.1078 \mathrm{E}+04$ | $0.2006 \mathrm{E}+02$ | $0.7448 \mathrm{E}+01$ | $0.2193 \mathrm{E}+01$ |
| PSI | $-.2184 \mathrm{E}+04$ | $-.1077 \mathrm{E}+04$ | $0.2095 \mathrm{E}+02$ | $0.8257 \mathrm{E}+01$ | $0.2834 \mathrm{E}+01$ |

m-1

| BX | $-.1086 \mathrm{E}+04$ | $-.5329 \mathrm{E}+03$ | $0.1466 \mathrm{E}+02$ | $0.5760 \mathrm{E}+01$ | $0.1766 \mathrm{E}+01$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $-.5325 \mathrm{E}+03$ | $0.1500 \mathrm{E}+02$ | $0.5997 \mathrm{E}+01$ | $0.1881 \mathrm{E}+01$ |
| PSI $-.1085 \mathrm{E}+04$ | $-.5315 \mathrm{E}+03$ | $0.1588 \mathrm{E}+02$ | $0.6778 \mathrm{E}+01$ | $0.2495 \mathrm{E}+01$ | |

$\mathrm{m}=$?

| BX | $0.1571 \mathrm{E}+02$ | $0.1346 \mathrm{E}+02$ | $0.8186 \mathrm{E}+01$ | $0.3529 \mathrm{E}+01$ | $0.1195 \mathrm{E}+01$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $0.1381 \mathrm{E}+02$ | $0.8583 \mathrm{E}+01$ | $0.3835 \mathrm{E}+01$ | $0.1371 \mathrm{E}+01$ |
| PSI | $0.1702 \mathrm{E}+02$ | $0.1474 \mathrm{E}+02$ | $0.9377 \mathrm{E}+01$ | $0.4481 \mathrm{E}+01$ | $0.1872 \mathrm{E}+01$ |

m-3

| BX | $0.1326 \mathrm{E}+02$ | $0.1003 \mathrm{E}+02$ | $0.4941 \mathrm{E}+01$ | $0.2082 \mathrm{E}+01$ | $0.7143 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $0.1037 \mathrm{E}+02$ | $0.5336 \mathrm{E}+01$ | $0.2433 \mathrm{E}+01$ | $0.9301 \mathrm{E}+00$ |
| PSI | $0.1439 \mathrm{E}+02$ | $0.1115 \mathrm{E}+02$ | $0.5960 \mathrm{E}+01$ | $0.2896 \mathrm{E}+01$ | $0.1277 \mathrm{E}+01$ |

m-4

| BX | $0.4664 \mathrm{E}+01$ | $0.3672 \mathrm{E}+01$ | $0.2021 \mathrm{E}+01$ | $0.9505 \mathrm{E}+00$ | $0.3918 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $0.4026 \mathrm{E}+01$ | $0.2363 \mathrm{E}+01$ | $0.1262 \mathrm{E}+01$ | $0.5913 \mathrm{E}+00$ |
| PSI | $0.5500 \mathrm{E}+01$ | $0.4480 \mathrm{E}+01$ | $0.2732 \mathrm{E}+01$ | $0.1521 \mathrm{E}+01$ | $0.7659 \mathrm{E}+00$ |

T300_SWAP (2257 points)

Compared to all other diagrams and examples, the coordinate axes have been cyclically permuted:
 All other diagrams
 This exampl and examples

Horizontal to the right
X Y^{\prime} $\underset{y}{x}$ \mathbf{Z}^{\prime}
\mathbf{X}^{\prime}VerticalBeam axis

Horizontal to the right: Y^{\prime}, Vertical: Z^{\prime}, Beam axis: X^{\prime}.
$X^{\prime} Y^{\prime}$ plane at Z'-4.5

| X^{\prime} | ranges from | 5.00 | to | 20.00 | NX | 61 | DX | 0.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y^{\prime} | | 0.00 | | 9.00 | NY | 37 | DY | 0.25 |

The fit was $M=20, N=20$.

CHEBYSHEV COEFFICIENTS

$n=0$
n- 1
$n=2$
$n=3$

$m=0$

| BX | $0.0000 \mathrm{E}+00$ | | | | |
|---|---|---|---|---|---|
| BY | $0.0000 \mathrm{E}+00$ | $-.2691 \mathrm{E}+04$ | $-.1259 \mathrm{E}+02$ | $0.3219 \mathrm{E}+01$ | $-.9844 \mathrm{E}+00$ |
| PHI | $-.5348 \mathrm{E}+04$ | $-.2687 \mathrm{E}+04$ | $-.8712 \mathrm{E}+01$ | $0.6452 \mathrm{E}+01$ | $0.1415 \mathrm{E}+01$ |

$m=1$

| BX | $0.1944 \mathrm{E}+04$ | $0.1029 \mathrm{E}+04$ | $0.7521 \mathrm{E}+02$ | $0.2428 \mathrm{E}+02$ | $0.8712 \mathrm{E}+01$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BY | $0.0000 \mathrm{E}+00$ | $0.9921 \mathrm{E}+03$ | $0.4458 \mathrm{E}+02$ | $0.3652 \mathrm{E}+01$ | $-.1784 \mathrm{E}+01$ |
| PHI | $0.1906 \mathrm{E}+04$ | $0.9928 \mathrm{E}+03$ | $0.4521 \mathrm{E}+02$ | $0.4191 \mathrm{E}+01$ | $-.1390 \mathrm{E}+01$ |

$\mathrm{m}=2$

| BX | $0.5080 \mathrm{E}+03$ | $0.2982 \mathrm{E}+03$ | $0.5140 \mathrm{E}+02$ | $0.6739 \mathrm{E}+01$ | $-.2371 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- | :--- | ---: |
| BY | $0.0000 \mathrm{E}+00$ | $0.2952 \mathrm{E}+03$ | $0.4993 \mathrm{E}+02$ | $0.6845 \mathrm{E}+01$ | $0.8770 \mathrm{E}+00$ |
| PHI | $0.4998 \mathrm{E}+03$ | $0.2908 \mathrm{E}+03$ | $0.4602 \mathrm{E}+02$ | $0.3595 \mathrm{E}+01$ | $-.1518 \mathrm{E}+01$ |
| $\mathrm{~m}=3$ | | | | | |
| BX | $-.2606 \mathrm{E}+03$ | $-.1587 \mathrm{E}+03$ | $-.3735 \mathrm{E}+02$ | $-.1116 \mathrm{E}+02$ | $-.2712 \mathrm{E}+01$ |
| BY | $0.0000 \mathrm{E}+00$ | $-.1454 \mathrm{E}+03$ | $-.2649 \mathrm{E}+02$ | $-.3742 \mathrm{E}+01$ | $0.1302 \mathrm{E}+01$ |
| PHI | $-.2488 \mathrm{E}+03$ | $-.1476 \mathrm{E}+03$ | $-.2833 \mathrm{E}+02$ | $-.5329 \mathrm{E}+01$ | $0.2475 \mathrm{E}+00$ |

$m=4$
$\mathrm{BX}-.2367 \mathrm{E}+03-.1625 \mathrm{E}+03-.5604 \mathrm{E}+02-.1329 \mathrm{E}+02-.1491 \mathrm{E}+01$
BY $0.0000 \mathrm{E}+00-.1585 \mathrm{E}+03-.5391 \mathrm{E}+02-.1291 \mathrm{E}+02-.2195 \mathrm{E}+01$
PHI -. $2273 \mathrm{E}+03-.1542 \mathrm{E}+03-.5036 \mathrm{E}+02-.1018 \mathrm{E}+02-.1481 \mathrm{E}+00$

We now return to the usual coordinate systemi
Horizontal to the right: X, Vertical: Y, Beam axisi 2

A Comparison of the results of an $M=N=P=7$ Chebyshev fit (higher order 3D fits cannot be done until a program bug is fixed)
to T 800 (8788 points)

| | 9.00 | $N X=$ | 26 | $D X=$ | 0.36 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| 0.00 | to | 4.50 | $N Y=$ | 13 | $D Y=$ |
| 0.00 | | 15.00 | $N 2=$ | 26 | $D Z=$ |
| 5.00 | | | | | 0.475 |

against the results of OPERA calculations at representative locations
(Since the $Y Z$ and $2 X$ planes are zero equipotential surfaces we expect $H X(X, 0,2)=H Y(0, Y, Z)=\operatorname{POT}(X), Z,)=\operatorname{POT}(0, Y, Z))$

CHEBYSHEV COEFFICIENTS

The Use of Chebyshev Polynomials For Fitting Magnetic Field Data

D.E. Lobb

TRJMF, Ph.'sics Deparment, University of Victoria

Victoria, B.C., Canada V8W 3P6

1. We are interested in the static magnetic field within a source-free rectangular cube specified by

$$
\begin{equation*}
x_{1} \leq x \leq x_{2}, y_{1} \leq y \leq y_{2}, \quad z_{1} \leq z \leq z_{2} \tag{1.1}
\end{equation*}
$$

where x, y and z are local Caresian coordinates. We are also interested in rectangular areas parallel to the Cartesian coordinate planes and in fields along lines parallel to the Cartesian coordinate axes.

Under some symmerry conditions, data need to be available only over a certain portion of this region; this is discussed in Section 10 below. We define

$$
\begin{align*}
& a=\left(x_{2}-x_{1}\right) / 2, b=\left(y_{2}-y_{1}\right) / 2, c=\left(z_{2}-z_{1}\right) / 2 \tag{1.2a}\\
& \bar{x}=\left(x_{2}+x_{1}\right) / 2, \bar{y}=\left(y_{2}+y_{1}\right) / 2, \quad \bar{z}=\left(z_{2}+z_{1}\right) / 2 \tag{1.2b}\\
& u=(x-\bar{x}) / a, \quad v=(y-\bar{y}) / b, \quad w=(z-\bar{z}) / c \tag{1.3}
\end{align*}
$$

so that

$$
\begin{equation*}
|u| \leq 1, \quad|v| \leq 1, \quad|w| \leq 1 . \tag{1.4}
\end{equation*}
$$

The magnetic field $\vec{B}(x, y, z)$ is characterized by a scalar potential $\psi(x, y, z)$ with

$$
\begin{equation*}
\vec{B}=-\nabla \psi \tag{1.5}
\end{equation*}
$$

with

$$
\begin{equation*}
B_{x}=-\frac{\partial \varphi}{\partial x}, \quad B_{y}=-\frac{\partial \psi}{\partial y}, \quad B_{z}=-\frac{\partial \psi}{\partial z}, \tag{1.6}
\end{equation*}
$$

Data values are available either from a magnetic field calculating program or from measurement.

In the following section we lscuss some properties of orthogonal functions, of orthogonal polynomlals, and of Chebyshev polynomials. We then show that various common methods or fitting magnetic fleld data are formally equivalent to a Chebyshev fit. An analytic form $1 s$ postulated for the fitted rield conflguration and properties of this representation are presented.
2. Orthogonal functions, orthogonal polynowials and Chebyshev polynomials

Let us write $f(u)$, an arbltrary function of u, as an expansion in a ramily of orthogonal Cunctions $8_{n}(u)$

$$
\begin{equation*}
r(u)=\sum_{j=0}^{\infty} a_{j} g_{j}(u) . \tag{2.1}
\end{equation*}
$$

If the $g_{j}(u)$ form a complete set, the RHS has the value

$$
\begin{equation*}
\lim _{c \rightarrow 0} \frac{\left.\int f(u+c)+f(u-c)\right]}{2} \tag{2.2}
\end{equation*}
$$

at all values of u. Since we are interested in $-1 \leq u s+1$, we introduce the intermediate variable 5 with

$$
\begin{equation*}
u=\cos 6,-1 s u s \cdot 1,0 \leqslant 6 \leqslant \pi . \tag{2.3}
\end{equation*}
$$

and write the fourier cosine serles

$$
\begin{equation*}
f(u)=\sum_{j=0}^{\infty} d_{j} \cos j \sigma \equiv \sum_{j=0}^{\infty} d_{j} \cos j \sigma-d_{0} / 2 . \tag{2.4}
\end{equation*}
$$

This implies that $f(u)$ is an even runction of 6 thls is of no intarest in the present context since we are Intorastod $1 n 0 \leq 5: n$ and are not intorested in $-7<6<0$. The coefficients are glvon by

$$
\begin{equation*}
d_{j}=2 / \pi \int_{\zeta=0}^{\pi} f(u) \cos j \zeta d t . \tag{2.5}
\end{equation*}
$$

The truncated series

$$
\begin{equation*}
f(u)=\sum_{j=0}^{J} d_{j} \cos j \sigma \tag{2.6}
\end{equation*}
$$

has the property that, for a given value of J, the squared error integrated
 from any other cholce of coefficitnts in the truncated serles.

A further truncation is:

$$
\begin{equation*}
r_{j}(u)=\sum_{j=1}^{J} d_{j} \cos j \sigma \equiv \sum_{j=1}^{J} d_{j} \cos j 6-1 / 2\left[d_{0}+a_{j} \cos j \zeta\right] . \tag{2.7}
\end{equation*}
$$

This rorm allows the use of a particular summation orthogonality relationship (Eq. 6.8 below) to calculate the values of the coefficlents.

Ceneral praperties of Chebyshev polynomials of the first and second kind are presented in references ') and "). The Chebyshev poiynomlal of the flrst kind, $T_{n}(u)$, is an $n^{\text {th }}$ order polynomial which is even if n is oven and odd if u is odd and which is represented over the range $-1 \leq u \leq+1,0 \leq 6 \leq n$, by

$$
\begin{equation*}
T_{n}(u)=\cos n \xi-\cos \left[n\left(\operatorname{sos}^{-1} u\right)\right] . \tag{2.8}
\end{equation*}
$$

It has its ($n-1$) extreme values of +1 and -1 located at

$$
\begin{equation*}
\sigma_{k}=\frac{k \pi}{n} \quad u_{k}=\cos \left(\frac{k \pi}{n}\right) \quad k=1,2 \ldots \ldots(n-1) . \tag{2.9}
\end{equation*}
$$

Values at the ends of the range of interest are +1 at $u=+1$ and $(-1)^{n}$ at $u=-1$. The regular spacing of the valucs $5_{k} \cdot k \pi / n$ bocomes a distorted spacing of valuns cos(kn/n) with polnts more closely spaced near $u= \pm 1$ and morn diatantly nuaced nmar $u=0$.

Cheyshev polynomials of the second kind, $U_{n}(u)$, are obtained by differentiating $T_{n}(u)$:

$$
\begin{align*}
& \frac{d T_{n}}{d u}=\frac{d T_{n}}{d \zeta} \frac{d \zeta}{d u} \tag{2.10}\\
& \quad U_{n-1}(u) \frac{\sin n \zeta}{\sin \zeta} \equiv n U_{n-1}(u) \tag{<.11}\\
& \sin \zeta
\end{align*}
$$

We may write powers of u and v as expansions in Chebysnev polynomials:

$$
\begin{align*}
& u^{M}=\sum_{m=0}^{M} a_{m} T_{m}(u) \tag{2.12}\\
& v^{N}=\sum_{n=0}^{N} B_{n} T_{n}(v) \tag{2.13}
\end{align*}
$$

The Chebyshev polynomials or the rirst and second kind are related by

$$
\begin{equation*}
T_{n}(u)=1 / 2\left[U_{n}(u)-U_{n-2}(u)\right] \quad n \geq 2 \tag{2.14}
\end{equation*}
$$

The coefficients in the inverse relationship

$$
\begin{equation*}
U_{n}(u)=\sum_{j=1}^{n} c_{j} T_{j}(u) \tag{2.15}
\end{equation*}
$$

do not have a almple form.

For $n \geq 2$ and $|u| s 1$, lt $1 s$ convendent to ondculate numerloal values using the recursion relationships

$$
\begin{equation*}
T_{k}(u)=2 u T_{k-1}(u)-T_{k-2}(u) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{k}(u)=2 u U_{k-1}(u)-U_{k-2}(u) \tag{2.17}
\end{equation*}
$$

A few Chebyshev polynomials of low order are presented dn Table 1 , with the inverse results presented in Table 2.

Table 1.

| n | $T_{n}(u)$ | $U_{n}(u)$ |
| :---: | :---: | :---: |
| 0 | 1 | 1 |
| 1 | u | $2 u$ |
| 2 | $-1+2 u^{2}$ | $-1+4 u^{2}$ |
| 3 | $-3 u+4 u^{2}$ | $-4 u+8 u^{2}$ |
| 4 | $1-8 u^{2}+8 u^{\prime}$ | $1-12 u^{2}+16 u^{\prime \prime}$ |

Table 2.

| 1 | T_{0} | U_{0} |
| :---: | :---: | :---: |
| u | $T_{1}(u)$ | $\frac{1}{2} U_{1}(u)$ |
| u^{\prime} | $\frac{1}{2}\left[T_{0} \cdot T_{1}(u)\right]$ | $\frac{1}{4}\left[U_{0}+U_{1}(u)\right]$ |
| u^{\prime} | $\frac{1}{4}\left[3 T_{1}(u)+T_{1}(u)\right]$ | $\frac{1}{8}\left[2 U_{1}(u)+U_{1}(u)\right]$ |
| u^{\prime} | $\frac{1}{8}\left[3 T_{0}(u)+u T_{1}(u) \cdot T_{0}(u)\right]$ | $\frac{1}{16}\left[2 U_{0} \cdot 3 U(u)+U(u)\right]$ |

3. The one-dimensional truncated Taylor series

It $1 s$ very usual to represent the field component noraal to the median plane (zx plane zlong a $z=2$ o line in the medıan plane $(y=0)$ by

$$
\begin{equation*}
D_{y}\left(x ; \equiv \frac{B_{y}\left(x, 0, z_{0}\right)}{B_{y}\left(0,0, z_{0}\right)} \cdot \sum_{j=0}^{N} v_{j} u^{j}\right. \tag{3.1}
\end{equation*}
$$

Substituting Eq. 2.12 above, we may write

$$
\begin{equation*}
b_{y}(x)=\sum_{j=0}^{N} \sum_{k=0}^{j} v_{j} a_{k} T_{k}(u)=\sum_{k=0}^{M} \delta_{k} T_{k}(u) \tag{3.2}
\end{equation*}
$$

so the one-dimensional Taylor serles representative is formally equivalent to a Chebyshev expansion.

It should be noted that a Taylor serles has poor properties for purposes of numerical fltting: for $g 22$ the power u^{J} varles siowly near $u=0$ and rapldy near u - ± 1.
4. The two-dimensional truncated Taylor series

A common representation of componenc of two-dimensional pleld is

$$
\begin{equation*}
B_{y}(x, y)=\sum_{j=0}^{j} \sum_{k=0}^{k} c_{j x} u^{j} v^{k} \tag{4.1}
\end{equation*}
$$

Substituting Eqs. 2.12 and 2.13 we may write

$$
\begin{equation*}
B_{y}(x, y)=\sum_{j=0}^{J} \sum_{k=0}^{k} c_{j k} \sum_{\ell=0}^{\ell} \sum_{m=0}^{k} c_{j k} B_{m} T_{\ell}(u) T_{m}(v)=\sum_{m=0}^{J} \sum_{n=0}^{k} \eta_{m n} T_{\ell}(u) T_{n 0}(v) \tag{4.2}
\end{equation*}
$$

30 the two dimonslonal Taylor sorlos rapreaontation ls rormally equavalont to a Climbyher expansion.

5. Two- and three-dimensional harmonlc representations

For a two-dimensional fleld (functions of x and y with no variation along the z direction) it is convenient to use the complex independent variable

$$
\begin{equation*}
\xi=x+1 y=r e^{1 \theta} \tag{5.1}
\end{equation*}
$$

with the complex potential

$$
\begin{equation*}
W(\xi)=A(\xi)+1 \psi(\xi) \tag{5.2}
\end{equation*}
$$

where A and ψ are the vector and scalar potentlals respectively. Truncated solutions of the two-dimensional Laplace's equation may be written in the form

$$
\begin{equation*}
W(\xi)=\sum_{n=0}^{N} \gamma_{n} \xi^{n} \cdot \sum_{n=0}^{N} Y_{n}[\cos n \theta+1 \sin n \theta] \tag{5.3}
\end{equation*}
$$

with the rields given by

$$
\begin{equation*}
B_{y}+1 B_{x}=-\frac{d W}{d \xi}=-\sum_{n=1}^{N} n \gamma_{n} \sum_{\infty=0}^{n-1} x^{\infty}(1 y)^{n-1-\infty}\binom{n-1}{\infty} \tag{5.4}
\end{equation*}
$$

Substituting Eqs. 2.12 and 2.13 above, we agaln obtaina Chobyshev series in the form

$$
B_{y}+1 B_{x}=\sum_{j=:}^{N} \sum_{q=1}^{N} \delta_{p q} T_{p}(u) T_{q}(v)
$$

with $\delta_{p q}=0$ ror $p+q>N$.

The form of this result diffirs from tha form of the result presented in Eq. 4.2 In that the latter result alloved for truncation at different orders or polynomials in u and v.

The harmondc representation of magnetic fleld 13 practical only for a region that is a clrcular disc. Values obtalned by extrapolation beyond the disc are prone to error slnce the $n^{t h}$ order harmonle ls masociated with a radial dopendance of $\left(x^{\prime}+y^{\prime}\right)^{n / 2}$ for the potential arid $\left(x^{2}, y^{\prime \prime}\right)^{(n-1) / 2}$ for the rinid emponents. This sugeosts the dealrabllity of another method of fitilng Lhat is appropriate to a roctangular area in a plane.

Three-dimensional fields within a cylindrical volume may be represented by harmonic series where coefficlents are functions of 2 (reference ')); however, this 19 practical only if the variation of the field with z is "slow" compared to the varlation with x or y.

6. Three-dimensional Chebyshev fit

We wish to have a representation in which the x, y and z directions are treated in the same manner. We also want this representation of a three-dimensional field in three-dimensional space to reduce easily to forms appropriate to three-dimensional fields on planes paraliel to coordinate planes and on lines parallel to coordinate axes. We postulate that the scalar potentlal $\psi(x, y, z)$ and the field components $\left(\vec{B}=-\nabla_{\psi}\right)$ way be represented by the following truncated Chebyshev series (the \sum^{n} notation is defined in Eq. 2.6 above):

$$
\begin{align*}
& \psi(x, y, z)=\sum_{0=0}^{M_{n}} \sum_{n=0}^{N_{n}} \sum_{p=0}^{P_{n}} \alpha_{\operatorname{mnp}} T_{\infty}(u) T_{n}(v) T_{p}(u) \tag{6.1}\\
& B_{x}(x, y, z)=\sum_{m=0}^{M_{n}} \sum_{n=0}^{N_{n}} \sum_{p=0}^{P_{n} m a_{m n p}} U_{m-1}(u) T_{n}(v) T_{p}(w) \tag{6.2}\\
& B_{y}(x, y, z)=\sum_{m=0}^{M_{n}} \sum_{n=0}^{N_{n}} \sum_{p=0}^{P_{n}^{\prime \prime}} \frac{n a_{m n p} T_{m}(u) U_{n-1}(v) T_{p}(w)}{b} \tag{6.3}\\
& B_{z}(x, y, z)-\sum_{m=0}^{M_{n}} \sum_{n=0}^{N_{n}} \sum_{p=0}^{P_{n}^{\prime \prime} P a_{m n p}} T_{m}(u) T_{n}(v) U_{p-1}(w) \tag{6.4}
\end{align*}
$$

The orthogonallty result

$$
\int_{-1}^{+1} T_{m}(u) T_{n}(u)\left(1-u^{2}\right)^{-0.5} d u= \begin{cases}n & m=n=0 \\ \frac{1}{2} & m=n=0 \\ 0 & m=n\end{cases}
$$

$\therefore 1 . \quad$ Is not in a convenlent rorm for numerlcal integration due to the behavior of $\left(1-u^{\prime}\right)^{-0.5}$ as $u \rightarrow+1$ and $u \rightarrow-1$.

The orthogonality result

$$
\begin{equation*}
\int_{-1}^{+1} U_{m-1}(u) U_{n-1}(u)\left(1-u^{2}\right)^{0.5} d u=\frac{\pi}{2} \delta_{m n} \quad m>1 \tag{6.6}
\end{equation*}
$$

could be integrated numerically.

More convenient forms for numerical computation are the following summation orthogonality results:

$$
\sum_{r=0}^{M} T_{j}\left(u_{r}\right) T_{k}\left(u_{r}\right)=\left\{\begin{array}{cc}
0 & j=k \tag{6.7}\\
\frac{M}{2} & j=k=0 \text { or } j=k \sim M \\
M & j=k=0 \text { or } j-k=M
\end{array}\right.
$$

and

$$
\sum_{r=0}^{M \prime \prime}\left(\sin ^{2} \frac{\pi r}{M}\right) U_{j-1}\left(u_{r}\right) U_{k-1}\left(u_{r}\right)=\left\{\begin{array}{cc}
0 & j=k \tag{6.8}\\
M & j=k=0 \text { or } j=k=M \\
0 & j=k=0 \text { or } j=k=M
\end{array}\right.
$$

with

$$
\begin{array}{ll}
u_{r}=\cos \frac{\pi r}{M} & (0 \leq r \leq M) \\
v_{s}=\cos \frac{\pi s}{N} & (0 \leq s \leq N) \\
w_{t}=\cos \frac{\pi t}{P} & (0 \leq t \leq P) . \tag{6.11}
\end{array}
$$

Eq. 6.7 is presented in many references (for evample, ${ }^{1}$) and ${ }^{2}$)); since Eq. 6.8 is not presented in many of the standard works, a proof is presented In Appendix I.

The coefficlent $a_{\psi v p}$ is calculated from Input data values of $\psi\left(u_{r}, v_{s}, u_{t}\right)$ by

$$
\begin{equation*}
a_{u \cup p}=\frac{8}{1 N P} \sum_{r=0}^{M_{n}} \sum_{s=0}^{N \prime} \sum_{t=0}^{P}{ }^{\prime \prime} T_{\mu}\left(u_{r}\right) T_{v}\left(v_{s}\right) T_{p}\left(w_{t}\right) \psi\left(u_{r}, v_{s}, w_{t}\right) \tag{6.12}
\end{equation*}
$$

Once these coefricients have been calculated, Eqs. 6.1 to 6.4 may be used to calculate potential or field values at any desired location.

Since the ψ, B_{x}, B_{y} and B_{z} fits of the same fleld should, in theory, all yield the same set of coefficients, the lack of correspondence of coefficients calculated using different components of the same input fleld data will give a measure of the inconsistency in the input data and/or errors associatec with the truncated fit. For example, coefficients calculated using ψ data may be used to calculate B_{x}, B_{y} and B_{z} values at the data points; these results may be compared to the input B_{x}, B_{y}, B_{z} data values. Coefficients may be obtained from input data values of \vec{B} by

$$
\begin{align*}
& a_{\mu v D}=-\frac{8 a}{\mu N N P} \sum_{r=0}^{M_{n}} \sum_{s=0}^{N} \sum_{t=0}^{P} \sum_{0}^{\prime \prime} \sin ^{2}\left(\frac{\pi r}{M}\right) U_{\mu-1}\left(u_{r}\right) T_{v}\left(v_{s}\right) T_{p}\left(w_{t}\right) B_{x}\left(u_{r}, v_{s}, w_{t}\right) \tag{6.13}\\
& a_{\mu v p}=-\frac{80}{W N P} \sum_{r=0}^{M_{n}} \sum_{s=0}^{N} \sum_{t=0}^{N_{n}} T_{\psi}^{P}\left(u_{r}\right) \sin ^{2}\left(\frac{\pi s}{N}\right) U_{v-1}\left(v_{s}\right) T_{p}\left(w_{t}\right) B_{y}\left(u_{r}, v_{s}, w_{t}\right) \tag{6.14}
\end{align*}
$$

and

$$
\begin{equation*}
a_{\mu v \rho}=-\frac{8 c}{\rho M N P} \sum_{r=0}^{M_{n}} \sum_{s=0}^{N} \sum_{t=0}^{P} \sum_{H}^{n} T_{H}\left(u_{r}\right) T_{v}\left(v_{s}\right) \sin ^{2}\left(\frac{\pi t}{P}\right) U_{p-1}\left(w_{t}\right) B_{z}\left(u_{r}, v_{s}, w_{t}\right) . \tag{6.15}
\end{equation*}
$$

In Eq. (6.13), $0<\mu$ (M; In Eq. (6.14), $0<v<N$; and In Eq. (6.15), $0<\rho<P$. The low order coefflcients not calculated are those that play no role in the approprlate fleld expansion. The nlgh order coefficients not calculated are those for which all terms in the sumation are zero due to data values belng located at zeros of the Chebyshev polynomlals of the $3 e c o n d k l n d$.

It is important to note that, due to the terms $\sin ^{2}\left(\frac{\pi r}{M}\right), \sin ^{2}\left(\frac{\pi s}{N}\right)$ and $\sin ^{2}\left(\frac{\pi t}{p}\right)$, the field components normal to the bounding surface of the region play no role in Eqs. (6.13) to (6.15). For this reason, it is prudent to have the region of input data somewhat larger than the region for which fitted values are desired.
7. The equations for the three-dimensional field in a plane farallel to a coordinate plane

Let us consider the case in which B_{x}, B_{y} and B_{z} field data are avallable over a rectangular area in an $x y$ plane at $z=z_{c}\left(w-w_{c}\right)$. If we write

$$
\begin{align*}
& B_{m n}\left(w_{c}\right)=\sum_{p=0}^{P \prime \prime} a_{m n p} T_{p}\left(w_{c}\right) \tag{7,1}\\
& Y_{m n}\left(w_{c}\right)=\sum_{p=0}^{P \prime} \frac{p a_{m n p}}{c} U_{p-1}\left(w_{c}\right) \tag{7.2}
\end{align*}
$$

then

$$
\begin{align*}
& \psi\left(x, y, z_{c}\right)=\sum_{m=0}^{M_{n}} \sum_{n=0}^{N_{n}} B_{m n}\left(w_{c}\right) T_{\pi}(u) T_{n}(v) \tag{7.3}\\
& B_{x}\left(x, y, z_{c}\right)=-\sum_{m=0}^{M} \sum_{n=0}^{N / m B_{m n}\left(w_{c}\right)} U_{A}^{m-1}(u) T_{n}(v) \tag{7.4}\\
& B_{y}\left(x, y, z_{c}\right)=-\sum_{m=0}^{M_{n}} \sum_{n=0}^{N_{n}} \frac{n B_{m n}\left(w_{c}\right)}{B} T_{m}(u) U_{n-1}(v) \tag{7.5}\\
& B_{z}\left(x, v, z_{c}\right)-\sum_{m=0}^{M_{n}} \sum_{n=0}^{N_{n}^{\prime}} \gamma_{m n}\left(w_{c}\right) T_{m}(u) T_{n}(v) \tag{7.6}
\end{align*}
$$

The coefficients are obtalned frow input data values by

$$
\begin{align*}
& B_{\mu \nu}\left(w_{c}\right)=\frac{4}{M N} \sum_{\Gamma=0}^{M_{1 \prime}} \sum_{s=0}^{N_{1 \prime}} T_{u}(u r) T_{v}\left(v_{s}\right) \psi\left(u_{r}, v_{s}, w_{c}\right) \tag{1.7}\\
& B_{u v}\left(w_{c}\right)=-\frac{4 A}{M N \mu} \sum_{r=0}^{M_{n}} \sum_{g=0}^{N_{n}} \sin ^{2}\left(\frac{\pi r}{M}\right) U_{\mu-1}\left(u_{r}\right) T_{v}\left(v_{s}\right) B_{x}\left(u_{r}, v_{g}, w_{n}\right) \tag{7.8}\\
& B_{\mu v}\left(w_{c}\right)=-\frac{4 B}{M N v} \sum_{r=0}^{M_{0}} \sum_{s=0}^{N /} T_{\mu}\left(u_{r}\right) \sin 2\left(\frac{\pi s}{N}\right) U_{v-1}\left(v_{s}\right) B_{y}\left(u_{r}, v_{g}, w_{c}\right) \tag{7.9}\\
& Y_{\mu v}\left(w_{c}\right)=-\frac{4}{M N} \sum_{r=0}^{M} \sum_{g=0}^{N /} T_{H}\left(u_{r}\right) T_{v}\left(u_{s}\right) B_{z}\left(u_{r}, v_{s}, w_{c}\right) \tag{7.10}
\end{align*}
$$

In Eq. (7.8) $0<\mu<M$, and in Eq. (7.9) $0<v<N$.

Equations for the planes $x-x_{c}\left(u-u_{c}\right)$ and $y-y_{c}\left(v-v_{c}\right)$ are obtalned by cycilc permutation of Eqs. (7.1) to (7.10).

8. The equations for the three-dimensional fleld along a line in a plane

 parallel to a ooordinate axisLet us consider the case in which B_{x}, B_{y} and B_{z} field data are avallable along the line parallel to the x axis with $y=y_{c}\left(v=v_{c}\right)$ and $z=z_{c}\left(w-w_{c}\right)$. If we write

$$
\begin{align*}
& \delta_{m}\left(v_{c}, w_{c}\right)=\sum_{n=0}^{N_{n}} T_{n}\left(v_{c}\right) \sum_{p=0}^{P} T_{p}\left(w_{c}\right) a_{m n p} \tag{8.1}\\
& \varepsilon_{m}\left(v_{c}, w_{c}\right)=\sum_{n=0}^{N_{n}} \frac{n U_{n-1}\left(v_{c}\right)}{B} \sum_{p=0}^{P_{n}} T_{p}\left(u_{c}\right) a_{m n p} \tag{8.2}\\
& n_{m}\left(v_{c}, w_{c}\right)=\sum_{n=0}^{N_{n}} T_{n}\left(u_{c}\right) \sum_{p=0}^{P_{n}} \frac{p a_{m n p}}{c} U_{p-1}\left(w_{c}\right) \tag{8,3}
\end{align*}
$$

(1: then

$$
\begin{align*}
& \psi\left(x, y_{c}, z_{c}\right)=\sum_{m=0}^{M_{n}} \delta_{m}\left(v_{c}, w_{c}\right) T_{m}(u) \tag{8.4}\\
& B_{x}\left(x, y_{c}, z_{c}\right)=-\sum_{m=0}^{M} \frac{m \delta_{m}\left(v_{c}, w_{c}\right)}{A} U_{m-i}(u) \tag{8.5}\\
& B_{y}\left(x, y_{c}, z_{c}\right)=-\sum_{m=0}^{M_{m}} c_{m}\left(v_{c}, w_{c}\right) T_{m}(u) \tag{8.6}\\
& B_{z}\left(x, y_{c}, z_{c}\right)=-\sum_{m=0}^{M} \eta_{m}\left(v_{c}, w_{c}\right) T_{m}(u) \tag{8.7}
\end{align*}
$$

The coefficients are obtalned from input data values by

$$
\begin{align*}
& \delta_{\mu}\left(v_{c}, w_{c}\right)=\frac{2}{M} \sum_{r=0}^{M_{n}} T_{\mu}(u r) \psi\left(u_{r}, v_{c}, w_{c}\right) \tag{8.8}\\
& \delta_{H}\left(v_{c}, w_{c}\right)=-\frac{2 A}{\mu M} \sum_{r=0}^{M n} \sin n^{2}\left(\frac{\pi r}{M}\right) u_{\mu-1}\left(u_{r}\right) B_{x}\left(u_{r}, v_{c}, w_{c}\right) \tag{8.9}\\
& c_{\mu}\left(v_{c}, w_{c}\right)=-\frac{2}{M} \sum_{r=0}^{M_{n}} T_{\mu}\left(u_{r}\right) B_{y}\left(u_{r}, v_{c}, w_{c}\right) \tag{8.10}\\
& n_{H}\left(v_{c}, w_{c}\right)=-\frac{2}{M} \sum_{r=0}^{M_{n}} T_{H}\left(u_{r}\right) B_{z}\left(u_{r}, v_{c}, w_{c}\right) \tag{8.11}
\end{align*}
$$

In Eq. (8.9), ц > 0 .

Equations for the 1 ines $z-z_{c}, x-x_{c}$ and $x-x_{c}, y=y_{o}$ are obtained by cyclic permutation of Eqs. (8.1) to (8.11).
9. A Chebyshev fit for a two-dimensional magnetic fleld derived from vector potential

If we postulate

$$
\begin{gather*}
A_{z}(x, y)=\sum_{m=0}^{M_{n}} \sum_{n=0}^{N} B_{m n} T_{m}(u) T_{n}(u), \tag{9.1}\\
B_{x}=\frac{\partial A_{z}}{\partial y}=\sum_{m=0}^{M_{n}} \sum_{n=0}^{N}\left(\frac{n B_{m n}}{B}\right) T_{\pi}(u) U_{n-1}(v) \tag{9.2}\\
B_{y}=-\frac{\partial A_{2}}{\partial y}=\sum_{m=0}^{M_{n}} \sum_{n=0}^{N}\left(-\frac{m B_{m n}}{A}\right) U_{m-1}(u) T_{u}(v) \tag{9.3}
\end{gather*}
$$

In theory, an expansion of the functions U_{n} in terms of functions T_{m} would allow Eqs. (7.4) 1 (9.2) for B_{x}, and Eqs. (7.5) and (9.3) fo. By to be brought to the same form; however, in practlce this would not be worth the e:'rort.

10. Symetry Properties

We shall conslder the consequences of particular functions being elther even or odd function of u, or v, or w.
10.1 M1dplane Symmetries and Antisymmetries

| | | ψ | Values of amp that are constralned to be zero, for \& - 0,1,2,... |
| :---: | :---: | :---: | :---: |
| a) | B_{x} even in u | odd In u | (1-21 |
| D) | B_{y} even $\ln \mathrm{V}$ | odd in v | n-2i |
| c) | B_{2} even in w | odd In w | p-2l |
| d) | B_{x} odd $\ln u$ | ovon $\ln \mathrm{u}$ | - - 22-1 |
| -) | $B y$ odd $\ln v$ | even 1 n v | $n-22+1$ |
| f) | B_{2} odd in w | even $10 \times$ | $p=2 l+9$ |

10.2 Symmetric "Dipole"

| | B_{x} | B_{y} | B_{2} | ψ | Values of $a_{\text {mnp }}$ that are constralned to be zero $\begin{aligned} & \text { for } k=0,1,2, \ldots \\ & \text { and } z=0,1,2, \ldots \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a) | ode $\ln u$ odd $\ln v$ | even in u even in v | even in u odd in v | even in u odd in v | $\begin{aligned} & n=2 k+1 \\ & n=22 \end{aligned}$ |
| b) | $\begin{aligned} & \text { even } \ln v \\ & \text { odd } \ln w \end{aligned}$ | odd in v odd 10 w | even in v even $\ln w$ | oven In v odd in w | $\begin{aligned} & n=2 k+1 \\ & p=2 \ell \end{aligned}$ |
| c) | oven $1 n \mathrm{w}$ even !n u | $\begin{aligned} & \text { even in } w \\ & \text { odd in } u \end{aligned}$ | odd in w odd in u | even $\ln \mathrm{w}$ odd $\ln u$ | $\begin{aligned} & p=2 k+1 \\ & ⿴ 囗=2 l \end{aligned}$ |

10.3 Asymmetrde "Quadrupole"

| | ${ }^{B}$ | B_{y} | B_{2} | ψ | Values of $a_{\text {anp }}$ that are constrained to de zero
 for $k=0,1,2, \ldots$
 and $\&=0,1,2, \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a) | $\begin{array}{r} \text { even } \ln u \\ \text { odd } \ln v \end{array}$ | odd In u oven In v | odd in u
 odd in v | odd $\ln u$ odd $\ln v$ | $\begin{aligned} & \text { un }=2 k \\ & n=2 l \end{aligned}$ |
| b) | odd in v
 odd in w | $\begin{aligned} & \text { oven } \ln v \\ & \text { odd } \ln v \end{aligned}$ | $\begin{aligned} & \text { odd } \ln v \\ & \text { oven } \ln v \end{aligned}$ | odd $\ln v$ odd $\ln w$ | $\begin{aligned} & n=2 k \\ & p=2 \ell \end{aligned}$ |
| 0) | odd $\ln w$ oven $1 n u$ | odd $\ln w$
 odd $\ln u$ | $\begin{aligned} & \text { even } \ln w \\ & \text { odd } \ln u \end{aligned}$ | odd $\ln w$ odd in u | $\begin{aligned} & D=2 k \\ & \infty=2 \ell \end{aligned}$ |

10.4 "Quadrupole" Symmetry

In addition to the constralnts

$$
\begin{equation*}
\psi(u, v, w)=-\psi(-u, v, w) \tag{10.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(u, v, w)=-\psi(u,-v, w) \tag{10.2}
\end{equation*}
$$

which results in

$$
a_{2 k, 2 l, p}=0
$$

$$
\begin{aligned}
& k=0,1,2, \ldots \\
& \ell=0,1,2, \ldots
\end{aligned} \quad(10,3)
$$

We have for A - B the additional constralat

$$
\psi(u, v, w)=\psi(v, u, u)
$$

which results in

$$
\begin{equation*}
a_{\text {mnp }}=a_{n m p} \text {. } \tag{10.5}
\end{equation*}
$$

Appendix I

A Proof of the Summation Orthogonality Relationship for Chebyshev Polynowials of the Second Kind.

Let us consider:

$$
\begin{align*}
s= & \sum_{r=0}^{n} \sin j\left(\frac{\pi r}{n}\right) \sin k\left(\frac{\pi r}{n}\right) \cdot \sum_{r=0}^{n-1} \sin j\left(\frac{\pi r}{n}\right) \sin k\left(\frac{\pi r}{n}\right) \\
= & \frac{1}{2} \sum_{r=0}^{n-1}\left[\cos (j-k) \frac{\pi r}{n}-\cos (j+k) \frac{\pi r}{n}\right] \\
= & \frac{1}{2} \operatorname{Re}^{\pi} \sum_{r=0}^{n-1}\left[\exp \left[1(j-k) \frac{\pi r}{n}\right]-\exp \left[1(j+k) \frac{\pi r}{n}\right]\right] \\
= & \frac{1}{2} \operatorname{Re}\left\{\frac{1-\exp [1(j-k) \pi]}{1-\exp \left[1(j-k) \frac{\pi}{n}\right]}-\frac{1-\exp [1(j+k) r]}{1-\exp \left[1(j+k) \frac{\pi}{n}\right]}\right\} \tag{1.1}
\end{align*}
$$

For the case $j-k$ with both $(j+k)$ and $(g-k)$ odd, we have

$$
\begin{equation*}
\exp [1(j-k) \pi]=\exp [1(j+k) \pi]=-1 \tag{1,2}
\end{equation*}
$$

$$
\begin{aligned}
& 1.1 .1 \\
& S=\frac{1}{2} \operatorname{Re}\left\{\frac{2}{1-\exp \left[1(1-k) \frac{\pi}{n}\right]}-\frac{2}{1-\exp \left[1(j+k) \frac{\pi}{n}\right]}\right\} \\
& -\frac{1}{2} \text { Re }\left\{\frac{-21\left(1 \exp \left[-1(j+k) \frac{\pi}{2 n}\right]\right)}{\exp \left[-1(j-k) \frac{\pi}{2 n}\right]-\exp \left[1(j-k) \frac{\pi}{2 n}\right]}-\frac{-21\left[1 \exp \left[-1(j+k) \frac{\pi}{2 n}\right)\right]}{\exp \left[-1(j+k) \frac{\pi}{2 n}\right]-\exp \left[1(j+k) \frac{\pi}{2 n}\right]}\right\} \\
& =-\operatorname{Re}\left\{\frac{1 \exp \left[-1(j-k) \frac{\pi}{2 n}\right]}{\sin \left[(j-k) \frac{1}{2 n}\right]}-\frac{\exp \left[-1(j \cdot k) \frac{\pi}{2 n}\right]}{\sin \left[(j+k) \frac{\pi}{2 n}\right]}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{2} \operatorname{Re}\left\{\frac{1 \cos \left[(j-k) \frac{\pi}{2 n}\right]+\sin \left[(j-k) \frac{\pi}{2 n}\right]}{\sin \left[(j+k) \frac{\pi}{2 n}\right]}-\frac{1 \cos \left[(j+k) \frac{\pi}{2 n}\right]+\sin \left[(j+k) \frac{\pi}{2 n}\right]}{\sin \left[(j+k) \frac{\pi}{2 n}\right]}\right\} \\
& =0 . \tag{I.3}
\end{align*}
$$

For the case $j-k$ with both ($j+k$) and ($j-k$) even, we have

$$
\exp [1(j-k) \pi]=\exp [1(j+k) \pi]=+1
$$

and

$$
\begin{equation*}
s=\frac{1}{2} \operatorname{Re}\left\{\frac{1-\exp [1(j-k) \pi]}{1-\exp \left[1(j-k) \frac{\pi}{n}\right]}-\frac{1-\exp [1(j+k) \pi]}{1-\exp \left[1(j+k) \frac{\pi}{n}\right]}\right\}=0 . \tag{1,4}
\end{equation*}
$$

For j-len or j-k=0 we have

$$
\begin{align*}
S & =\sum_{r=0}^{n-1} \sin n^{2} \frac{j \pi r}{n} \cdot \frac{1}{2} \sum_{r=0}^{n-1}\left[1-\cos \frac{2 j \pi r}{n}\right] \cdot \frac{n}{2} \cdot \frac{1}{2} \operatorname{Re}_{r=0}^{n-1} \exp \left[1\left(\frac{2 j \pi r}{n}\right)\right] \\
& =\frac{n}{2}-\frac{1}{2} \operatorname{Re}\left\{\frac{1-\exp [12 j \pi r]}{1-\exp \left(1 \frac{2 j \pi r}{n}\right)}\right\}=\frac{n}{2} . \tag{1.5}
\end{align*}
$$

For Jok-0 we have

$$
s=\sum_{r=0}^{n-1} \sin n^{2} 0=0
$$

and for jok-n we have

$$
\begin{equation*}
S=\sum_{r=0}^{n-1} \sin n^{\prime}(r \pi)=0 \tag{1.7}
\end{equation*}
$$

In muminary, we have

Now, since the r=0 and ran terms in the sum are both zero, we way write

$$
\left.\begin{array}{l}
\sum_{r=0}^{n} \sin j\left(\frac{\pi r}{n}\right) \sin k\left(\frac{\pi r}{n}\right) \tag{1.9}\\
\sum_{r=0}^{n} \sin j\left(\frac{\pi r}{n}\right) \sin k\left(\frac{\pi r}{n}\right) \\
\sum_{r=1}^{n-1} \sin j\left(\frac{\pi r}{n}\right) \sin k\left(\frac{\pi r}{n}\right)
\end{array}\right\}-\left\{\begin{array}{lll}
0 & j=k & \\
\frac{n}{2} & j=k=0 & \text { or } j=k=n \\
0 & j=k=0 & \text { or } j=k=n
\end{array}\right.
$$

Now, with

$$
\begin{equation*}
u_{r}=\cos \frac{\pi \Gamma}{n} \tag{6,9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin j\left(\frac{\pi r}{n}\right)=\sin \left(\frac{\pi r}{n}\right) U_{j-1}\left(u_{r}\right) \tag{1.10}
\end{equation*}
$$

(see Eq. (2.11)), the above relationshlps can be written

$$
\left.\begin{array}{l}
\sum_{r=0}^{n} \sin n^{2} \frac{\pi r}{n} u_{j-1}\left(u_{r}\right) u_{k-1}\left(u_{r}\right) \tag{I.11}\\
\sum_{r=0}^{n} \sin 2 \frac{\pi r}{n} u_{j-1}\left(u_{r}\right) u_{k-1}\left(u_{r}\right) \\
\sum_{r=0}^{n} \sin \frac{\pi r}{n} u_{j-1}\left(u_{r}\right) u_{k-1}\left(u_{r}\right) \\
\sum_{r=1}^{n-1} \sin ^{2} \frac{\pi r}{n} u_{j-1}\left(u_{r}\right) u_{k-1}\left(u_{r}\right)
\end{array}\right\}= \begin{cases}0 & j=k \\
\frac{n}{2} & j=k=0 \text { or } j=k=n \\
0 & j=k=n \text { or } j=k=0\end{cases}
$$

References

```
1) L. Fox and I.B. Parker (1968) Chebystiev Polynomials in Numerical
    Analysis, Oxford University press.
2) M.A. Snyder (1966) Chebyshev Methods in Numerical Approximation,
    Prentlce-Hall Inc.
3) D.E. Lobb (1973) Nucl. Instr. and Metn. 114, 609-614.
```


ANALYSIS OF DIPOLE FRINGE FIELDS

QUADRUPOLES WITH PERFECT N=2 SYMMETRY

Large Bore Magnet Optics.

Filippo Jeri AT-3 Peter Walstrom Grumann/LANL J. van Zeijts University of Maryland HOOPLA High Order Optics Program at Los Alamos

$$
\begin{aligned}
& \text { PlLfi: Nortshop } \\
& \text { flog is } 1991
\end{aligned}
$$

seal. Cystophorn cristata, of northern seas, spotted coat and an inflatable boodlize or in the region of the nose. Also called "blad-
mn, hoodr-) n. 1. A gangeter; thus. 2. A youth. Origin unknown.)
n.. $\boldsymbol{\text { f }}$-deen 1. Voodoo. 2. a Bed luck. bad luck. -ir. n. meedeoce. -demen toee. 10. [Perhaps variant of vo0000.] -heof.
 in. 2. Archaic. To blindidd. 3. Oheolete. Synoayms al eneatra. [M000D + wing.] lary. Nomsense. [Origis unknown.]
pl. hoele or heoves (hdtovz hotiva). 1. The ing lhe toes or lower part of the foot of a ets Perissodectyla and Artiodactyla, such as
2. The foot of such an amianch, especially a s human loot. -an the heet. Alive; not yet ccially of cattle. - . meoted, treervicy hedis. e with the hools. 2. Ifformad. To wall. dance. 2. To 10 on foot; wall. Often used I instead of rakint a cob. [Middle English if. See huptor in Appendia. ${ }^{-1}$ und', bōif-) adt. Alficted with drying and ool, resultine in lameness. Said of a horse I adt Having hoofs; ungulace.
'far) in Slane. A professional dancer: expe-
Ilso Ampen. A branch of the Ganges, risiag ublic of India, and nowing 160 miles south 1.
curved or sharply bent device, manally of dras, suspend, or fasten somelring. 2 A sase. 4. Anythins shaped like a hook, as: d plant or animal pert. A. A short engled letier. e segin. The lip of a bretking - The fixed part of a door hince: the pin.
7. Boxbre. A short gwingine blow ded arm. B. Golf. A stroke which cemde the player. -hy heck er Myl ereet By whatfair or unfair. -are the moen siame. To wri a -hoet bla, end delem. Siar. en $\stackrel{s}{\omega} \mathrm{r}$: completely. $-\infty$ men mon ubi or a vesatious obitation. 2. Left
orten oetwoen unilikely associates or factors.
hooleworm (hơt'wûm') n. Any of numerous small, parasitic nematode worms of the family Ancylostomatidae, having hooked mouth parts with which they fasten themselves to the intestinal walls of various hosts, including man, causing Int disease ancylostominsis.
hookworm liopees. Ancyleptomiads (sce).
 shaped.
hooley' (hoth ${ }^{\circ}$ ') n. Informal. Absence without leave; iruancy. Used in the phrase day hooky. [Perhaps from hook (to escape). 1
how ipen (hoofllena) n. fromal. A youns pulfian; hoodlum. [Origia obwcure.] -hooill-gem-lom' n.
hoep (hobp, hdtp) in. 1. A circular band of metai or wood put around a cask or barred to biad the staves together. 2. A laree wooden, plastic. or metel sing used as a playthine. 3. One of the lightweight circular supports for a noop etert (see). 4. A circular, ringlite earrise. E. One of \cdot. pair of circular wooden or metal frames used to bold material taut for embroidery or similar needlework. 6. A croquet wicket. -Ir.v. hooped. hoopmes. hoope. 1. To hold together or support with or as if with a hoop or boops. 2. To encirele. [Middle English hoop. Old English höp. from Germanic höpaz (unallested).)
hpeper (hoiver, hotopest, A cometrect.
hoop-la (hoop'li', hdop'-) n. Slant. 1. Boisterous jovial commotion or excitement. 2. Talt intended to mislead or confuse. (French how-da!.]
hoo-poo (hooppoi. -pd) n. An Old World bird. Umpa epops. bavine distinctivdy patterned phumage, a fantite creah, and: zlender, downward-curvine bilt. (Variant of obsolete hoop. from OVd Freach happe, Trom Latin upupa (imitative).
 cent norelome (see).
hacp efire A lone full stipt belled out with a terias of consected hoopa.
hoop santio. Aay of several sanke, such is the moct enate (sec), that supposenty erap the thil in the mouth and move winh a rolline booplite motion.
foorrey. Vaciant of hurrate.
 in wetern Masachmetts. Hiaheat elevation, Sprwce Hill $(2,588$ (eet).
 courtroom, from the past participle of surgar, to, judie, from Latin findicire. to subge.I

Tth athe/ü cut/ür mege/v ralve/w with/y res/z zebra size/zh viaion/s ahout, ilem. edible, gallep, circus/

hoop

hoop skirt
Illusitalion in
Punch. August 1856

Fringe Fields (Dipole ?).

- Basic equations.
- The importance of being analytic.
- Maps versus particle tracking.
- Questions.

Midplane Symmetric Case.

Scalar potential: $\partial_{x z}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

$$
V=\sum_{l=0}^{\infty} \frac{(-1)^{l}}{(2 l+1)!} \partial_{x=2}^{2 l} B_{y}(x, 0, z) y^{2 l+1}
$$

Magnetic field:
This expansion makes sense only if the derivatives of By exist.

$$
B_{y}=\sum_{l=0}^{\infty} \frac{(-1)^{\psi}}{(2 l)!} \partial_{x}^{2} B_{x} B_{y}(r, 0, z) y^{2 l}
$$

Hamiltonian equations.

$$
\begin{aligned}
& H=-\sqrt{P_{\tau}^{2}-m^{2}-\Pi_{x}^{2}-\Pi_{y}^{2}}-A_{z} \\
& \Pi_{x}=P_{x}-A_{x} \quad \Pi_{y}=P_{y}-A_{y} \\
& \dot{x}=\frac{\partial H}{\partial P_{x}}=\frac{\Pi_{x}}{\sqrt{P_{\tau}^{2}-m^{2}-\Pi_{x}^{2}-\Pi_{y}^{2}}}
\end{aligned} \dot{P}_{x}=\frac{\frac{\partial A_{x}}{\partial x} \Pi_{x}+\frac{\partial A_{y}}{\partial x} \Pi_{y}}{\sqrt{P_{\tau}^{2}-m^{2}-\Pi_{x}^{2}-\Pi_{y}^{2}}+\frac{\partial A_{z}}{\partial x}} \begin{array}{ll}
\dot{y}=\frac{\partial H}{\partial P_{y}}=\frac{\Pi_{y}}{\sqrt{P_{\tau}^{2}-m^{2}-\Pi_{x}^{2}-\Pi_{y}^{2}}} & \dot{P_{y}}=\frac{\frac{\partial A_{x}}{\partial y} \Pi_{x}+\frac{\partial A_{y}}{\partial y} \Pi_{y}}{\sqrt{P_{\tau}^{2}-m^{2}-\Pi_{x}^{2}-\Pi_{y}^{2}}}+\frac{\partial A_{z}}{\partial y} \\
\dot{\tau}=\frac{\partial H}{\partial P_{\tau}}=\frac{-P_{\tau}}{\sqrt{P_{\tau}^{2}-m^{2}-\Pi_{x}^{2}-\Pi_{y}^{2}}} & \dot{P}_{\tau}=0
\end{array}
$$

We need the vector potentials.

Vector Potentials.

$$
\begin{aligned}
& \beta(x, 0, z)=\int_{-\infty}^{z} B_{y}\left(x, 0, z^{\prime}\right) d z^{\prime} \\
& A_{x}=\sum_{l=0}^{\infty} \frac{(-1)^{y}}{(2 l)!} \partial_{x z}^{2} f(x, 0, z) y^{2 l}
\end{aligned}
$$

This is just one possible choice of gauge.

Particularly convenient if no x dependence, but it can be used in the general case.

$$
A_{y}=\sum_{l=0}^{\infty} \frac{(-1)^{y}}{(2 l+1)!} \partial_{x z}^{2} \frac{\partial}{\partial x} f(x, 0, z) y^{2 l+1}
$$

$$
A_{z}=0
$$

The Importance of being analytic.

- No matter what method is used, if one wants to expand final conditions as a polynomial of the initial conditions, one assumes the existence of a series expansion of the potentials.
- Maxwell equations force analytic solutions in current-free regions.
- There is no such thing as a "Maxwell Spline".
- The only way to interpolate measured data in a way consistent with Maxwell equations is to use a single analytic function.
- Analytic functions have the added advantage that one can usually take the derivatives exactly and program them.

Map Methods.

Rather than integrating particles and then deriving Taylor series coefficients, directly compute the coefficients.
In simple cases we can derive analytic results, in general we derive ordinary differential equations for the Taylor coefficients and then integrate them numerically.
Faster than integrating particles (?) and possibly more exact (?).
Not necessarily related to either Lie or Differential Algebras.
One possible algorithm (GENMAP) computes Lie coefficients, but one does not have to use them.

Equations for Maps.

The equation of motion for a particle can be written as.
$\mathrm{z}=\left(\begin{array}{llllll}x & P_{x}, \quad y, \quad P_{y}, \quad \tau, \quad P_{\tau}\end{array}\right)$
$\mathbf{J}=\left(\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0\end{array}\right)$
$\dot{\mathbf{z}}=\mathbf{J} \frac{\partial H}{\partial z} \quad$ Dot denotes derivative with respect $\mathbf{J}=$ to independent variable s.

If we introduce a set of functions giving the initial coordinates in term of the final ones:
$z_{i}(0)=T_{i}(s, z)$
Then the following equations follow:
$\dot{T}_{i}=\frac{\partial H}{\partial z} \mathbf{J} \frac{\partial T_{i}}{\partial z}$ These are PDEs. They can be solved for the Taylor coefficients of T. Then, after inversion, we can obtain the coefficients of the map.

This method is actually used in HOOPLA.

Implementation.

The direct integration method has been up to now used only for Halbach (permanent) magnets or Walstrom (see next talk) magnets but it is generally applicable.
The field models used are analytic formulas derived by P. Walstrom.

The programming has mostly been done by J. van Zeijts.
For very high order one needs to be very careful, since the high order derivatives cscillate very fast.
We tend to prefer self-adjusting, variable step methods.
Alternatively, since the potentials are analytic, we can use very high order Adams methods, but still use brute force doubling of the number of steps until the results stop changing. Exact to 13 digits! Round-off?

\pm

Plot of Conductor Center Line

Mo. of TheradPalez 10 Fith of Hollop= 0.200
M. Ahradrase 10 Unk at Mellop= -2000

Application

Beam expanding telescope aberrations.
List of contributors:
A. Dragt, University of Maryland, A. Jason,LANL,
R. Kraus, LANL, C. T. Hottershead, LANL, P Waistrom, Grumann/LANL,
J. van Zeijts, University of Maryland.

Fifth Order Correction

Thanks to Tlie, it is now possible to fit fifth order (12-pole) correctors.

- Fifth order geometric aberrations are generated by -

$$
f_{6}=A x^{6}+B x^{4} y^{2}+C x^{2} y^{4}+D y^{6}
$$

- Therefore four duodecapole ($\mathrm{m}=6$) trims are needed to cancel these four coefficients
- Tlie did it for thin shell REC multipoles in alternating 0.5 m sections of Quad A and all of Quad B:

| | DDA1 | DDA2 | DDA3 | DDB |
| :---: | :---: | :---: | :---: | :---: |
| Field $\left(T / \mathrm{m}^{5}\right)$ | 2.70 | -1.86 | 0.516 | -0.028 |
| Percent of quad | -5.44% | 3.75% | -1.04% | -0.032% |

- Multipole correctors increase the next higher geometric aberration in the corrected maps. These agree with tracking statistics in appropriate cases :

RMS kick amplitude at 10 cm

| | Focused (C1) | Octupoles (C3) | Duodecapoles (5) |
| :---: | :---: | :---: | :---: |
| Order 3 | 93.94 | 0.0 | 0.0 |
| Order 5 | 0.62 | 6.71 | 0.0 |
| Order 7 | 0.031 | 0.035 | 1.283 |
| Order 9 | 0.0036 | 0.0038 | 0.1016 |

- Computing to 2 orders higher than correction is required for accuracy.

CEBAF SUPERCONDUCTING Cos (20) QUADRUPOLE

CEBAF HRS $\cos 2 \theta$
SUPERCONDUCTING QUADRUPLES

- CEBAF hrs
- Quads: Basic Choice
- Design Parameters
- TOSCA 3D Field Analysis
- Lorentz Forces
- Tolerances
- Correctional Multipoles
- Remarks
J. Alcorn
A. Gavalya
J. Mousey
J. Simkin
T. Tortsehanoff
W. Tue el

PILAC workshop Aug 12,13,1991

HALL_A EXPERIMENTAL EQUIPMENT

 CEB.- High Resolution Spectrometer Palr HRS ${ }^{2}$
- Two identical $4 \mathrm{GeV} / \mathrm{c}$ spectrometers, QQDQ configuration, with superconducting magnets
- Focal plane instrumentation: Vertical drift chambers, scintillation and Cerenkov counters, shower detectors, focal plane proton polarimeter
- High power solld and cryogenic targets (upt.
- Beam line equipment
- Including high power dump and beam polarimeter.
- Data acquisition and counting house equipment

174-0 Incu Denerat

RANGE OF POSTTIONS FOR HRS "ARMS"

CEBAF HRS SPECIFICATIONS

CONFIGURATION:

OPTICS
.- BEND
optical length
D/M
FOCAL PLANE ANGLE
DISP. MATCHING
HARDWARE CORRECTION

ACCEPTANCES:
$P_{\text {max }}$
$\Delta(8 \mathrm{~F} / \mathrm{p})$
$\Delta \Omega$
Δy_{t}
$Q Q D_{n} Q$
45° (vertical)
23.4 m
5.0
38° (w.r.t O.A.)
No
th order
$4 \mathrm{GeV} / \mathrm{c}$
$\pm 5 \%$
7 ms p
$\pm 5 \mathrm{~cm}$

RESOLUTIONS* (FWHM)
$\delta(\delta \mathrm{P} / \mathrm{P})$ momentum
$<10^{-4}\left(\begin{array}{ll}-4 \times 10^{-4} & \text { hi } \\ <10^{-4} & \text { sw }\end{array}\right.$
$\delta \theta$ scatt.angle
0.1 mr
δy_{t} vertex
1.0 mm

* The following parameters are assumed detector $\delta x \times 250 \mu \mathrm{~m}$

$$
\delta \theta \approx 0.5 \mathrm{mr}
$$

4.n1 beam. $5+/ \mathrm{p} \leq 10^{-4}$

$$
9 \times 10016
$$

Cosine 2θ Quadrupole: Assembly Cross-Section Figure Q. 11

limensions are In cm.
Approx. Weight 40 Klbs.
COSINE 2θ QUADRUPOLE

| Table I. Quadrupole Requirements | | | | |
| :--- | :--- | :---: | :---: | :---: |
| | | Q 1 | Q 2 | Q 3 |
| Magnetic Length | (m) | 0.8 | 1.8 | 1.8 |
| Useful Aperture | $(\mathrm{m} \times \mathrm{m})$ | 0.22×0.30 | 0.50×0.36 | 0.33×0.55 |
| Useful Aperture Field | (T) | 1.3 | -0.88 | -0.82 |
| Quadrupole | $(\mathrm{T} / \mathrm{m})$ | 8.650 | -3.116 | -2.946 |
| Sextupole | $\left(\mathrm{T} / \mathrm{m}^{2}\right)$ | 0 | 0.123 | 1.000 |
| Octupole | $\left(\mathrm{T} / \mathrm{m}^{3}\right)$ | 0 | 1.767 | -1.037 |
| Gradient Uniformity | $\Delta G / G$ | 10^{-3} | 10^{-3} | 10^{-3} |
| Distance from Target | (m) | 2.2 | 4.75 | 18.96 |

| Table II. Design Parameters | | | |
| :--- | :---: | :---: | :---: |
| | Q1 | Q2 | \ldots |
| Field Gradient | 9.0 | 3.5 | $\mathrm{~T} / \mathrm{m}$ |
| Magnetic Length | 0.8 | 1.8 | m |
| Useful Aperture | 0.3 | 0.6 | m |
| Gradient Uniformity | 10^{-3} | 10^{-3} | |

Noles:

- Dimensions ore in mm

Conductor:

- Maximum operaling current: 1850 A
- Average current density: $67.5 \mathrm{~A} / \mathrm{mm}^{2} 01850 \mathrm{~A}$
- Acceptance test current: 2000 A

NoTE

- 火 - $3000 \mathrm{~A} / \mathrm{mm}^{2}$ - 2.5 T. 4.5 K
- Jop - $1575 . \mathrm{A} / \mathrm{mm}^{2}$ - 2.5 T .4 .5 K

Composite wire insert:

- Configuration: flaltened (Rutherford) cable
- Numuer of wires: 18
- Wire ciameler: 0.500 mm (19.7 mils)
- CuNbTE ralio - $2: 1$

Copper substrate:

- Area: 25.6 min 2

- Average current density of operating curreni: $72.3 \mathrm{~A} / \mathrm{mm}^{2}$
- Material: Oxygen Free tigh Conductivily (OFHC) (CDA 102), fully annealed.

1.85 KA Conductor of Reference Design

Figure Q. 15

1/28/91
Coil Quadrant Cross-Section
Figure Q. 12

Coil Quadrant Longitudinal-Section
2/4/91
Figיre Q. 13

Why $\cos (2 \theta)$ design?

Iron dominated quadrupole

- Field shaped by iron pole faces

Cannot reach gradient specification

Panofsky quadrupole

- Allows rectangular aperture
- Lower Amp-turns and stored energy

Complicated end shapes.
Difficult to obtain desired field quality. Auxiliary multipole windings difficult to incorporate.
$\cos (2 \theta)$ quadrupole

- cylindrical geometry
- Simple end shapes
- Easier mechanical design
- Auxiliary multipole windings easily implemented
- ISR/LEP proven technology Higher Amp-turns and stored energy

Cos2: Current Distribution

Mangnetic Field in 2D cylindrical geometry

$$
\mathrm{B}_{\theta}(r, \theta)=\sum_{n} \mathrm{a}_{n} r^{n-1} \cos n \theta
$$

where n is an integer.
Note that n gives rise to $2 n$ poles
$n=2$ is a QUADRUPOLE with $\operatorname{Cos} 2 \theta$ current distribution
Perfect $\operatorname{Cos} 2 \theta \quad$ Practical Approximations

Departure from perfect $\operatorname{Cos} 20$ distribution creates higher harmonics. However, due to 4 -fold symmetry of the geometry, the allowed harmonics are

$$
n=2,6,10,14 \ldots
$$

Figure 1. Gradient error as a function of percentange of the coil bore for one, two, and three sector $\operatorname{Cos} 2 \theta$ approximations.

Figure 3. Full coil geometry for Q1.

2.3 Harmonic Analysis

The coefficients C_{n} 's were evaluated by Fourier analysis of the TOSCA field maps evaluated at the useful bores in different transverse planes along the axis of the quadrupoles. The results of the harmonic analysis is summarized in Table 6 for the central straight section ($z=0$) and integrated along the axis of the quadrupole. It is evident from the results that in the central section of the quadrupole, contribution to the field from the high order harmonics are of the order of 1×10^{-4} or lower. In fact, the strongest contribution comes from the $\mathrm{n}=26$. This comes as no surprise since with a three sector coil the optinization in the straight section minimizes only the first five harmonics. This situation is somewhat degraded in the integrated multipole strengths. The coil ends contribute significantly in the region of $z=70 \mathrm{~cm}$ to about $\mathrm{z}=120 \mathrm{~cm}$. In particular, the first harmonic, the dodecapole, exceeds 10^{-3} level. It might be necessary to add a correctional dodecapole element in the auxiliary multipolar windings. Shown in figure 6a is the axial distribution of the quadrupole term; the distribution of the first few multipoles along the axis of the quadrupole are shown in Figure 6b.

Table 6
Harmonic Analysis

| n | $C_{n} / C_{2} \mathrm{at} z=0$ | $\int C_{n} / C_{2}$ |
| :--- | :--- | :--- |
| 6 | 1.2704×10^{-4} | 2.5154×10^{-3} |
| 10 | 4.1271×10^{-5} | 3.8197×10^{-4} |
| 14 | 1.6440×10^{-8} | 1.7551×10^{-4} |
| 18 | 1.0091×10^{-7} | 6.5316×10^{-8} |
| 22 | 2.0450×10^{-8} | 4.2844×10^{-8} |
| 26 | 1.5062×10^{-4} | 8.2971×10^{-8} |
| 28 | 1.1772×10^{-9} | 1.2377×10^{-9} |

3. Energy and Forces

The field distribution on the inner surface of the coil was calculated with TOSCA. The peak field on the conductor was determined to be 1.83 T which occure at the coil ends. The peak coil field in the straight section of Q 2 is 1.5 T . The .e values are quite conservative for a cryomagnet. Stored energy and magnetic body forces along the coil were also evaluated with TOSCA. The magnetic forces in the transverse plane at the atraight section of Q2 are shown in Figure 7n and foreen at the end nections are plotted in Figure ib. The foren inf these figurea are in metric Tons/m.

690

$\frac{\text { MAGNETIC FOREES (Ton } / \mathrm{m})}{G_{0}=3.5 \mathrm{~T} / \mathrm{m}}$

Sextupole Forces (Ton/m)

Figure 0.8 - Sheet 1

Conductor placement tolerances

- Studied in 2D with program CEM
- compute fields in cylindrical geometry in the presence of a $\mu=c$ shield.
- Analytic
- few cases cross checked wilt TOSCA and POISSON - good agreement.
- Both symmetry preserving and symetetry breaking type of mis placements were studied.
- 3D alignment issues studied with TOSCA.

Coil Placement Tolerances

Fig. 6

Fizure 5.20 a) Schematic view of multipole windings. b) Blow up of the multipule layers; c): Harmonic strengths relative to the quadrupole term allowing for a randorn misadignment of $\pm 0.5 \mathrm{~mm}$. The solid(open) bars are with(without) correctional multipoles. Note that $n=3,4$ are required by optics.

Table 7 .
Multipole Elements

| n | Type | Phase (deg) | $\begin{gathered} \text { Field } \\ (r=30 \mathrm{~cm}) \\ (\text { Tesla }) \\ \hline \end{gathered}$ | Magnetic Length (em) | Ampere Turns (kA) | Turns per pole | Coil
 Radius
 (cm) | Coil Length (em) | Sector
 Angle
 (deg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | normal | 0 | 0.10 | 207 | 183 | 305 | 38.45 | 224 | 20.0 |
| 4 | normal | 0 | 0.045 | 202 | 109 | 137 | 38.75 | 216 | 15.0 |
| 1 - | normal | 0 | 0.01 | 210 | 7.7 | 39 | 39.80 | 220 | 3.95 |
| $1{ }^{-}$ | skewed | 90 | 0.01 | 210 | 7.6 | 39 | 39.65 | 220 | 3.92 |
| 2 - | skewed | 45 | 0.01 | 210 | 10.8 | 27 | 39.50 | 220 | 2.88 |
| 3* | skewed | 30 | 0.01 | 210 | 15.5 | 26 | 39.35 | 220 | 2.78 |
| 5* | normal | 0 | 0.01 | 210 | 33.3 | 33 | 39.20 | 220 | 3.51 |
| $6 *$ | normal | 0 | 0.01 | 210 | 50.0 | 42 | 39.05 | 220 | 4.32 |

Developed Plane ($r=40.0$)

Figure 10 Schematic layout of the end sections of the multipole windings. a) Sextupole and octupole coils. b) All other correctional inultipoles as deacribed in the text.

Table I. Basic Features

| COIL | Cos2 θ | Cold Iron |
| :---: | :---: | :---: |
| Ideal Current: | Cos2日 | Hyperbotic |
| | Current distributioar | Current sheet |
| Design Approximation: | Constant thickness 3-sector blocks | Single rectangular
 block |
| Goodness of Approx: | First five harmonics are eliminated | None of the harmonics are eliminated |
| Coil field | Current dominated | Equal to iron |
| Contribution: | Typically 75% | Typically 50% |
| End shape: | Constant Perimeter | Saddle |
| Coil confinement: | Simple | Complex 3D |
| | Essentially 2D | |
| Coil placement | | |
| Tolerance: | high | high |
| IRON | Cos2 θ | Cold Iron |
| Function: | Sbield | Field shaping |
| Geometry: | Simple cylinder | Hyperbclic Pole |
| | No end shaping | Complex end profileı |
| Field Contribution: | 25\% | 50\% |
| Maximum Pole.tip Field: | None | 1.3 Teala ${ }^{\text {- }}$ |
| Machining Tolerance: | low | high |

It was suggested by the HMS team that the cold iron HMSQ3 may be a possible candidate for the two large HRS quadrupoles. The HMSQ3 has a 76 cm warm bore; for the HRS use only 60 cm of this will be used. One then expects the field quality to be better over this smaller useful bore. Furthermore, this allows room for placement of multipolar windings in the unused portion of the bore for HRS needs.

We have studied the HMSQ3 with 3D TOSCA analysis. The study is by no means complete, but already demonstrates some problem areas in meeting HRS requirements. Given in Table II are the parameters of the HMSQ3 with the HRS gradient requirement; the reference $\cos 2 \theta$ design parameters are also shown for comparison.

| Table II HRSQ2 and HMSQ3 magnetostatics | | | |
| :---: | :---: | :---: | :---: |
| | $\begin{aligned} & \text { HRSQ2 } \\ & (\operatorname{Cos} 2 \theta) \end{aligned}$ | HMSQ3
 (Cold Iron) | |
| Excitation parameters | | | |
| Gradient | 3.5 | 3.5 | T/m |
| Amp-turns | 1.4 | 0.9 | MAT |
| Stored Energy | 0.6 | 0.5 | MJ |
| Coil Forces | 13 | 17 | Ton/m |
| Iron/Coil contribution | 24/76 | 49/51 | \% |
| Field Quality ($\mathrm{r}=30 \mathrm{~cm}$) | | | |
| $B_{0} / B_{2}(z=0)$ | 3.5×10^{-4} | 2.5×10^{-3} | |
| $\int \Delta G / G$ | 1.3×10^{-3} | 7.6×10^{-3} | |
| $\Delta L / L(.3 \leq G \leq 3.5 T / m)$ | 1.4×10^{-3} | 2.1×10^{-9} | |
| Peak fields | | | |
| Iron (atraight) | 1.4 | 2.1 | Tesla |
| Iron (Ends) | 1.2 | 3.5 | Tesla |
| Coil (atraight) | 1.5 | 1.9 | Tesla |
| Coil (Ends) | 1.8 | ? | Tesla |
| Weights | | | |
| Total | 11.8 | 11.4 | Ton |
| Iron Mase | 10.6 | 8.6 | Ton |
| Cold Mess | 1.4 | 10.0 | Ton |
| Tolerances | | | |
| Coil Placement | ± 0.25 | ± 0.30 | mm |
| Iron Surface | ± 0.50 | ± 0.05 | mm |

$$
\text { Fig. } 5
$$

Remarks:

- Large bore, short length quads are true 3D beasts!
- Good 3D finite clement computations are required for accurate analysis.
- For high resolution, high peak field, and wide dynamic range applications, avoid field shaping with iron.
- current dominated magnets exhibit better linearity; hence, better reproducibility.
- Avoid sharp bends in coil (particularly out-of-plane bends e.g. saddle ends)
- if constraints dictate sharp bends, dilute current density in the region
- Applications where "good field" region is close to the coil, pay attention to the peculiarities of superconductors.
- persistent currents
(Irreversible filament magnetization)
- Meissner effect
- Conductor microstructure..
- Most likely field error will be due to "non-allowed" harmonics egg. dipole, sextuple octupole..: do because of 4 -fold symm. breaking in manufacturing process.
- Tighten tolerances (2)
- After all is said and done, buy some extra insurance
- Auxiliary correction!
low multipole windings
- Mu!tipoles may be cheaper than tighter tolerances!

Still, if the magnet turns out to be a lemon...

DUNT WORRY!
The gay who designed the HUBBLE telescope is looking for a roommate 'in his exiled soult American home full of venomous snakes!

UPGRADES TO 'TRANSPORT' AND 'TURTLE'

||annonont

DRAMTIS PEPSONAE
C, H, POORE
S. K. HONRY
H. S. BUTLER
B., K., KEAR
R. H. HEM
K. L. BRONM
S. KOMALSKI
D. C. CAREY

CH. ISEIM
F; ROTHACKER
R. PORTES

TURTLE
(Trace Unlimited Rays Through Lamprad Elcaents)

D. C. Carey

Particle decay inserted by: K.L. Brown
Ch. Isatin

Second-Order Equations

$$
\begin{aligned}
& d \vec{T}=\hat{x} d x+\hat{y} d y+(1+h x) \hat{t} d t \\
& \vec{T}^{\prime \prime}-\frac{1}{2} \frac{\vec{T}^{\prime}}{T^{\prime}} \frac{d}{d s} T^{\prime 2}=\frac{q}{p} T^{\prime}\left(\vec{T}^{\prime} \times \vec{B}\right)
\end{aligned}
$$

Magnetic Field:

$$
\begin{aligned}
& B_{x}=\frac{p_{0}}{q}\left[-n h^{2} y+2 \beta h^{3} x y\right] \\
& B_{y}=\frac{p_{0}}{q}\left[h-n h^{2} x+\beta h^{3} x^{2}+\frac{1}{2}(n-2 \beta) h^{3} y\right.
\end{aligned}
$$

$n \rightarrow$ Quadrupole component
$\beta \rightarrow$ Sextupole component

Second-Ordir Equations of Motion

$$
\begin{aligned}
\frac{d^{2} x}{d s^{2}}+(1-n) h^{2} x= & h \delta+h^{3}(2 n-\beta-1) x^{2} \\
& +\frac{1}{2} h^{3}(2 \beta-n) y^{2}+\frac{1}{2} h x^{\prime 2} \\
& -\frac{1}{2} h y^{\prime 2}+h^{2}(2-n) x \delta-h \delta^{2} \\
\frac{d^{2} y}{i^{2}}+n h^{2} y= & 2 h^{3}(\beta-n) x y+h^{2} n y \delta \\
& +h x^{\prime} y^{1}
\end{aligned}
$$

Third-order Equations of Motion

$$
\begin{aligned}
\frac{d^{2} x}{d s^{2}}+(1-n) h^{2} x & =h \delta+h^{3}(2 n-\beta-1) x^{2} \\
& +\frac{1}{2} h^{3}(2 \beta-n) y^{2}+\frac{1}{2} h x^{12} \\
& -\frac{1}{2} h y^{\prime 2}+h^{2}(2-n) x \delta-h \delta^{2} \\
& -h^{4}(\gamma+2 \beta-n) x^{3} \\
& +h^{4}\left(3 \gamma+3 \beta-\frac{1}{2} n\right) x y^{2} \\
& -h h^{2} x^{1} y y^{\prime}+\frac{1}{2} n h^{2} x y^{2} \\
& +h^{2}\left(\frac{3}{2} n-2\right) x x^{1^{2}}+h^{3}(\beta-2 n-1) x^{2} \delta \\
& -h^{3}\left(\beta-\frac{1}{2} n\right) y^{2} \delta+\frac{3}{2} h x^{1^{2}} \delta \\
& +\frac{1}{2} h y^{\prime 2} \delta-h^{2}(2-n) x \delta^{2}+h \delta^{3}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d s^{2}}+n h^{2} y= & 2 h^{3}(\beta-n) x y+h^{2} n y \delta \\
& +h x^{\prime} y^{\prime}+h^{4}(3 y+4 \beta-n) x^{\prime} y \\
& -h^{4}\left(y+\frac{1}{6} n+\frac{1}{3} \beta\right) y^{3} \\
& -h^{2}(2-n) x x^{\prime} y^{\prime}-\frac{3}{2} n h^{2} y y^{\prime 2} \\
& +h x^{\prime} y^{\prime} \delta-2 h^{3}(\beta-n) x y \delta \\
& -\frac{1}{2} n h^{2} x^{\prime 2} y-n h^{2} y \delta^{2}
\end{aligned}
$$

Third Order

$$
\begin{gathered}
x_{i}(1)=\sum_{j} R_{i j} x_{j}(0)+\sum_{j, k} T_{i j k} x_{j}(0) x_{k}(0) \\
+\sum_{j, k, l} U_{i j k \ell} x_{j}(0) x_{k}(0) x_{l}(0)
\end{gathered}
$$

Specification:
ORDER 3 ; (Typ ecode 17.)
U matrix constraint:
FIT -i joke. (desire devalue) (tolerance)
FIT NAME $=U_{i j k}, ~ V A L U E=\left(V_{\text {alack }}\right)$, TOLE $=($ Holier $) ;$
Octupole:
OCTUPOLE (length) (pole tip field) (aperture);
Thired-Order Terms For
Central region of bending magnet (combined function) Quadrupole with fringing fields
Sextuple
Octupole

$$
x_{1}=R_{10}+T_{x_{0}} x_{0}+U_{x_{0} x_{0} x_{0}}
$$

Expend abont trejcolory Es

$$
\dot{x}=x_{0}+\Delta x
$$

$$
\begin{aligned}
& x_{s c}+\Delta x_{s}=R\left(x_{0 c}+\Delta x_{0}\right)+T\left(x_{00}+\Delta x_{0}\right)\left(x_{00}+\Delta x_{0}\right) \\
& \rightarrow \mp U\left(x_{\infty}+\Delta x_{0}\right)\left(x_{m}+\Delta x_{0}\right)\left(x_{\infty}+\Delta x_{0}\right) \\
& \Delta x_{i}=\left(R+2 T_{x_{\infty}}+3 U_{r \infty} I_{\infty}\right) \Delta x_{0} \\
& 4\left(T+3 U x_{0}\right) \Delta x_{0} \Delta x_{0}+U \Delta x_{0} \Delta z_{0} \Delta x_{0} \\
& =R^{\circ}=\bar{R}+2 \bar{T} 8_{n-}+3 U_{80} x_{\infty} \cdots
\end{aligned}
$$

Shifted matrices - aot ayeplacilie
ladade Lugtur- ordar tureni, madading chromatre
OPt - arn banin cansed by
Candroed stult
Arsalognacat
Escoss howeontol band sidd
Vorlmil bend fiald

- Bending Magnet with Excess Field

Fig. 7. Crose eection of the SLC arc magnats. Dimansione are i.: millimetars.

Magnotro ficld erpenavon on magrate andplaee
Axdilos sycuedry'

$$
\begin{aligned}
& B_{x}=0 \\
& B_{1}: B_{0}^{\prime}\left(1-n h x+\beta h^{2} x^{2}\right)
\end{aligned}
$$

Mrdplace ion-syeedrice:

$$
\begin{aligned}
& B_{1}=B_{0} r_{0}\left(v_{n}-n^{0} h s+\beta^{0} h^{2} s^{2}\right) \\
& B_{y}=B_{0}\left(1+r_{1}\right)\left(1-n h x+\beta h^{2} x^{2}\right)
\end{aligned}
$$

ro indades effeal of horisental bean stacring

$$
\begin{aligned}
B_{B}= & B_{0}\left[v_{R}-n^{\prime} h_{0} x-n h y+\beta^{\prime} h_{0}^{\prime} x^{2}\right. \\
& \left.+2 \beta h h_{0} x y-\frac{1}{2}\left(2 \beta^{\prime}-n^{\prime}-v_{R}\right) h_{0}^{2} y^{\prime}\right] \\
B_{y}= & B_{0}\left[\left(1+r_{R}\right)-n h_{x}+\left(n^{\prime}-v_{R}\right) h_{0} y+\beta h_{0} x^{2}\right. \\
& \left.-\left(2 \beta^{\prime}-n^{\prime}-v_{R}\right) h_{0}^{2} x y-\frac{1}{2}(2 \beta-n) h h_{0} y^{2}\right]
\end{aligned}
$$

lasaed sote equations of motion and solve

$$
x_{2}=x_{28}+R x_{0}+T x_{0} x_{0}
$$

Ess zeroth ordar merising from

1) Excess horisondyly bonding fiald
2) Vurticolly banding fiald

- First-order equation: of motion

$$
\begin{aligned}
& \frac{d^{2} x}{d s^{2}}+(1-n) h^{2} x=h \delta \\
& \frac{d^{2} y}{d s^{2}}+n h^{2} y=0
\end{aligned}
$$

Excess bend:

$$
\begin{gathered}
\frac{d^{2} x}{d a^{2}}+\left[1-n+r_{s}(2-n)\right] h_{0}^{2} x=-r_{s} h_{0}+h \delta \\
\frac{d^{2} y}{d s^{2}}+n h h_{0} y=0
\end{gathered}
$$

Non midplane symmetric:

$$
\begin{aligned}
& \frac{d^{2} x}{d s^{2}}+(1-n) h^{2} x=h^{2}\left(v_{R}-n^{\prime}\right) y+h \delta \\
& \frac{d^{2} y}{d s^{2}}+n h^{2} y=h^{2}\left(2 v_{R}-n^{\prime}\right) x+v_{R} h-v_{R} h \delta
\end{aligned}
$$

- First -order Midplanc Symmetric Excess Bend

$$
{ }_{i_{s}}=-I_{s} \frac{h_{0}^{2}}{k_{x}^{2}}\left(1-c_{x}\right)
$$

$$
\left(y \mid y_{0}\right)=c_{y}=\operatorname{cosk} y^{t}
$$

$$
\left(y \mid y_{0}^{\prime}\right)=s_{y}=\frac{h}{k_{y}} \sin _{y} t
$$

$$
\left(x \mid x_{0}\right)=c_{x}=\operatorname{cosk} t
$$

$$
\left(x \mid x_{0}^{\prime}\right)=s_{x}=\frac{h}{k} \sin k_{x} t
$$

$$
\left(y^{\prime} \mid y_{0}^{\prime}\right)=s_{y}^{\prime}=\operatorname{cosk} y^{t}
$$

$$
(x \mid \delta)=d_{x}=\frac{h}{k \frac{2}{x}}\left(1-c_{x}\right)
$$

$$
\begin{array}{ll}
\left(x^{\prime} \mid x_{0}\right)=c_{x}^{\prime}=-k_{x} \cos k_{x} t \\
\left(x^{\prime} \mid x_{0}^{\prime}\right)=s_{x}^{\prime}=\cos k_{x}^{t} & k_{x}^{2}=l(1-n)+r_{s}(2-n) j h_{0}^{2} \\
& i_{y}^{2}=\pi h h_{0}^{2}
\end{array}
$$

$$
\left(x^{\prime} \mid \delta\right)=d_{x}^{\prime}=h s_{x}^{\prime}
$$

where now we have
D. Second-Ordez Tezms

The midplane-symmetric equarions of motion

$$
\begin{equation*}
\frac{d^{2} x}{d s^{2}}+l(1-n)+I_{s}(2-n) \int h_{0}^{2} x=-I_{s}+h \delta+h h_{0}^{2}(2 n-B-1) x^{2} \tag{1}
\end{equation*}
$$

$$
+\frac{1}{2} h h_{0}^{2}(2 B-n) y^{2}+\frac{1}{2}\left(2 h_{0}-h\right) x^{\prime 2}
$$

$$
-\frac{1}{2} h y^{\prime 2}+n h_{0}(2-n) \times \delta-h \delta^{2}
$$

$$
\frac{\dot{c}^{2} v}{i s^{2}}+n h h_{0} y=2 \pi h_{0}^{2}(B-n) x y+n h_{0} n y \delta+h_{0} x^{\prime} y^{\prime}
$$

Non-midplanc-symmetric First. Order Matrix Elements

$$
\begin{aligned}
& y_{1 s}=v_{R} \frac{1-c_{y}}{n h} \\
& y_{1 s}^{\prime}=v_{R} h s_{y} \\
& \left(x \mid y_{0}\right)=\left(v_{R}-n^{\prime}\right) \frac{c_{y}-c_{x}}{1-2 n} \quad\left(y \mid y_{0}\right)=\left(n^{\prime}-2 v_{R}\right) \frac{c_{x}-c_{y}}{1-2 n} \\
& \left(x \mid y_{0}^{\prime}\right)=\left(v_{R}-n^{\prime}\right) \frac{s_{y}-s_{x}}{1-2 n} \quad\left(y \mid x_{1}^{\prime}\right)=\left(n^{\prime}-2 v_{R}\right) \frac{s_{x}-s_{y}}{1-2 n} \\
& \left(x^{\prime} \mid y_{1}\right)=\left(v_{R}-n^{\prime}\right) \frac{c_{y}^{\prime}-c_{x}^{\prime}}{1-2 n} \quad(y \mid \delta)=-v_{R} d_{y}+\left(n^{\prime}-2 v_{R}\right) \frac{d_{1}-d_{y}}{1-2 n} \\
& \left(x^{\prime} \mid y_{0}^{\prime}\right)=\left(v_{R}-n^{\prime}\right) \frac{s_{y}^{\prime}-s_{x}^{\prime}}{1-2 n} \quad\left(y^{\prime} \mid x_{1}\right)=\left(n^{\prime}-2 v_{R}\right) \frac{c_{x}^{\prime}-c_{y}^{\prime}}{1-2 n} \\
& \left(l \mid y_{0}\right)=\left(v_{R}-n^{\prime}\right) \frac{d_{y}^{\prime}-d_{1}^{\prime}}{1-2 n} \\
& \left(\lambda \mid y_{0}^{\prime}\right)=\left(v_{R}-n^{\prime}\right) \frac{d_{y}-d_{x}}{1-2 n}
\end{aligned}
$$

seconce - Uristr

$$
\begin{aligned}
\frac{d^{2} x}{d s^{2}}+(1-n) h^{2} x= & h \delta+\left(v_{R}-n^{\prime}\right) h^{2} y \\
& +(2 n-\beta-1) h^{3} x^{2}+\left(2 \beta^{\prime}-3 n^{\prime}+v_{R}\right) h^{3} x y \\
& +\frac{1}{2}(2 \beta-n) h^{3} y^{2}+\frac{1}{2} h x^{\prime 2}-\frac{1}{2} h y^{\prime 2} \\
& +(2-n) h^{2} x \delta-\left(v_{R}-n^{\prime}\right) h^{2} y \delta-h \delta^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d s^{2}}+n h^{2} y= & v_{R} h-v_{R} h \delta+\left(2 v_{R}-n^{\prime}\right) h^{2} x \\
& +\left(\beta^{\prime}-2 n^{\prime}+v_{R}\right) h^{3} x^{2}+2(\beta-n) h^{3} x y \\
& -\frac{1}{2}\left(2 \beta^{\prime}-n^{\prime}-v_{R}\right) h^{3} y^{2}-h^{2}\left(2 v_{R}-n^{\prime}\right) x \delta \\
& +n h^{2} y \delta+\frac{1}{2} v_{R} h x^{\prime 2}+h x^{\prime} y^{\prime} \\
& +\frac{1}{2} v_{R} h y^{2}+v_{R} h \delta^{2}
\end{aligned}
$$

Fig. 1. Illustration of possible variations c ? the function $k(:)$ along the optic axis, showing the meaning of the parameters ko and δ. The rectangle $B C^{\prime} B^{\prime}$ in (a) gives the rectangulat model. Part (b) shows a region of rapidly varying $k(=)$ betwedl the members of a doublet. The linear-ramp model is illustrated in part (c).

Third. Order Quadrupole

$$
\begin{aligned}
x^{\prime \prime}+k^{2} x= & k^{2}\left(x^{\prime} y y^{\prime}-\frac{3}{2} x x^{\prime 2}-\frac{1}{2} x y^{1^{2}}\right) \\
& +\left(k^{\prime}\right)^{\prime} x y y^{\prime}+\frac{1}{12}\left(k^{\prime}\right)^{\prime \prime}\left(3 x y^{2}+x^{3}\right)
\end{aligned}
$$

Use Green's function
Integrate by parts
End up with integrals over entire length of quadrupole not involving derivatives of k^{2}.

Model fringe field as

Use MAD notation

DIPOLE FRINGE FIELDS:

$$
\frac{d h}{d t} \neq 0
$$

Problems:

- True R. T. not a simple arc ($0^{\text {th }}$ order shift)
- Power serles expansions not well defined
- Need practical definition of fringing fields
(Note: not a problem for higher miultipoles because of optical axis, R. T. does not change)

Impulse approximation (sharp cut-off):

- Gives no $0^{\text {th }}$ order shift
- Misses reduction in vertical focusing
- Leads to Infinicles in the third order

Approach:

- Pole face rotation + Extended field \Longleftrightarrow Normal boundary + Thin lens
- Field extent parametrized by gap size d

$$
\epsilon=\frac{d}{\rho}
$$

- Assume $\epsilon \ll 1$, get $R_{i j}, T_{i j k}, U_{i j k l}$ as a power series $\ln \epsilon(O(\epsilon)$ here)
- $\epsilon \rightarrow 0$: impulse approximation (see which $U_{i j k l}$ causes ∞ In the $3^{\text {rd }}$ order)

Mathematical Formulation:

- $\mathcal{M}^{0 \mapsto 1}: \operatorname{drift}(z=0) \mapsto\left(s=s_{1}\right)$
- $\mathcal{M}^{1 \mapsto 2}$: fringe $\left(s=s_{1}\right) \mapsto\left(s=s_{2}\right)$
- $\mathcal{M}^{2 \mapsto f}:$ bend $\left(s=s_{2}\right) \mapsto(z=0)$
- $\mathcal{M}^{0 \mapsto f}=\mathcal{M}^{2 \mapsto f} \mathcal{M}^{1 \mapsto 2} \mathcal{M}^{0 \mapsto 1}$

Field:

$$
h(s)=\frac{B_{y}(y=0)}{B_{0}}
$$

$$
h\left(s_{1}\right)=0 . h\left(s_{2}\right)=1 ; h\left(s_{1}\right)=h\left(s_{2}\right)=h\left(s_{1}\right)=h\left(s_{2}\right)=0
$$

$$
\int_{-\infty}^{s^{*}} h(s) d s=s^{*} \quad \text { for } s^{*} \gg d
$$

RESULTS : total fringe field map
$s_{2}=-s_{1} \rightarrow \infty$

$$
\frac{s_{2}^{2}}{2}=\int_{s_{1}}^{s_{2}} d s \int_{s_{1}}^{s} h_{0}\left(s^{\prime}\right) d s^{\prime}
$$

$h_{0}(s):$ step-function centered at $s=0$

- Zeroth Order: R. T. shift

$$
\begin{gathered}
\Delta x=\epsilon^{2} \sec ^{2} \beta I_{1} \\
\Delta x^{\prime}=\epsilon^{2} \sec ^{2} \tan \beta I_{1} \\
I_{1}=\int_{-\infty}^{+\infty} d s \int_{-\infty}^{s} d s^{\prime}\left[h_{0}\left(s^{\prime}\right)-h\left(s^{\prime}\right)\right]
\end{gathered}
$$

- First Order:
$O(\epsilon):$

$$
I_{2}=\int_{-\infty}^{+\infty} d s[1-h(s)] h(s)
$$

$O\left(\epsilon^{2}\right):$

$$
\begin{aligned}
& I_{3}=\int_{-\infty}^{+\infty} d s[1-h(s)] \int_{-\infty}^{s} d s^{\prime} h^{2}\left(s^{\prime}\right) \\
& I_{4}=\int_{-\infty}^{+\infty} d s\left[1-h^{2}(s)\right] \int_{-\infty}^{\varepsilon} d s^{\prime} h\left(s^{\prime}\right)
\end{aligned}
$$

Note: Integrands go to zero at both limits

$$
\begin{aligned}
x_{f}= & \epsilon^{2} \frac{I_{1}}{\cos ^{2} \beta}+x_{0}\left[1-\epsilon^{2} I_{1} \frac{\sin ^{2} \beta}{\cos ^{4} \beta}\right] \\
& +x_{0}^{\prime} \epsilon^{2} I_{1} \frac{2 \sin \beta}{\cos ^{3} \beta}-\delta \epsilon^{2} \frac{I_{1}}{\cos ^{2} \beta} \\
x_{f}^{\prime}= & \epsilon^{2} I_{1} \frac{\sin \beta}{\cos ^{3} \beta}+x_{0} \tan \beta \\
& +x_{0}^{\prime}\left[1+\epsilon^{2} I_{1} \frac{3 \sin \beta}{\cos ^{4} \beta}\right]-\delta \epsilon^{2} I_{1} \frac{2 \sin \beta}{\cos ^{3} \beta} \\
y_{f}= & y_{0}\left[1-\frac{\epsilon^{2}}{\cos ^{4} \beta}\left(I_{1}-\left(I_{3}+I_{4}\right)\left(1+\sin ^{2} \beta\right)\right)\right] \\
& -y_{0}^{\prime} \epsilon^{2} I_{1} \frac{2 \sin \beta}{\cos ^{3} \beta} \\
y_{f}^{\prime}= & -y_{0}\left[\tan \beta-\epsilon I_{2} \frac{\left(1+\sin ^{2} \beta\right)}{\cos ^{3} \beta}\right. \\
& \left.+\epsilon^{2} \frac{\sin \beta}{\cos ^{5} \beta}\left(2 I_{5}\left(3+\sin ^{2} \beta\right)-I_{3}\left(1+\sin ^{2} \beta\right)\right)\right] \\
& +y_{0}^{\prime}\left[1+\frac{\epsilon^{2}}{\cos ^{4} \beta}\left(I_{1} \sin ^{2} \beta+\left(I_{3}+I_{5}\right)\left(1+\sin ^{2} \beta\right)\right)\right]
\end{aligned}
$$

where

$$
I_{5}=I_{1}+I_{4}
$$

Second Order Matrix Elements:

$$
\left.\begin{array}{c}
I_{2}=\int_{-\infty}^{+\infty} d s[1-h(s)] h(s) \\
I_{6}=\int_{-\infty}^{+\infty} d s[1-h(s)] h^{2}(s) \\
T_{111}=-\frac{\tan ^{2} \beta}{2}+O\left(\epsilon^{2}\right) \\
T_{133}= \\
T_{212}=\frac{\sec ^{2} \beta}{2}-\epsilon I_{2} \frac{\sin \beta\left(5+\sin ^{2} \beta\right)}{2 \tan ^{4} \beta}+O\left(\epsilon^{2}\right) \\
T_{216}=-\tan \beta+O\left(\epsilon^{2}\right) \\
T_{233}= \\
\\
\\
-\frac{\sin \beta\left(1+\sin ^{2} \beta\right)}{2 \sin ^{2} \beta} \cos ^{5} \beta
\end{array} I_{2}\left(5-\cos ^{4} \beta\right)-I_{6} \frac{\cos ^{2} \beta}{2}\right]+O\left(\epsilon^{2}\right) .
$$

Third Order Matrix Elements:

- Six additional integrais:

$$
\begin{aligned}
& J_{1}=\int_{-\infty}^{+\infty} d s\left[\frac{d h(s)}{d s}\right]^{2} \sim \epsilon^{-1} \\
& J_{2}=\int_{-\infty}^{+\infty} d s\left[\frac{d h(s)}{d s}\right]^{2} s \sim \epsilon^{0} \\
& J_{3}=\int_{-\infty}^{+\infty} d s\left[\frac{d h(s)}{d s}\right]^{2} s^{2} \sim \epsilon^{1} \\
& J_{4}=\int_{-\infty}^{+\infty} d s\left[\frac{d h(s)}{d s}\right]^{2} \int_{-\infty}^{s} d s^{\prime} h\left(s^{\prime}\right) \sim \epsilon^{0} \\
& J_{5}=\int_{-\infty}^{+\infty} d s\left[\frac{d h(s)}{d s}\right]^{2} s \int_{-\infty}^{s} d s^{\prime} h\left(s^{\prime}\right) \sim \epsilon^{1} \\
& J_{6}=\int_{-\infty}^{+\infty} d s\left[\frac{d h(s)}{d s}\right]^{2} \int_{-\infty}^{s} d s^{\prime} \int_{-\infty}^{s^{\prime}} d s^{\prime \prime} h\left(s^{\prime \prime}\right) \sim \epsilon^{1}
\end{aligned}
$$

- Integrands go to zero at both limits
- J_{n} 's appear in $U_{i, j, k, l}$ only when $i, j, k, l=3,4$
- Divergent term:

$$
U_{4333}=-\frac{2}{3} \frac{\left(1+\sin ^{2} \beta\right)}{\cos ^{4} \beta} \frac{j_{1}}{\epsilon}+\cdots
$$

e. g. , Chromatic Terms:

$$
\begin{aligned}
& U_{1116}=\frac{\tan ^{2} \beta}{2}+O\left(\epsilon^{2}\right) \\
& U_{1336}=-\frac{\sec ^{2} \beta}{2}+\epsilon I_{2} \frac{\sin \beta\left(5+\sin ^{2} \beta\right)}{\cos ^{4} \beta}+O\left(\epsilon^{2}\right) \\
& U_{2126}=-\tan ^{2} \beta+O\left(\epsilon^{2}\right) \\
& U_{2166}=\tan \beta+O\left(\epsilon^{2}\right) \\
& U_{2336}=-\frac{\sin \beta\left(1+\sin ^{2} \beta\right)}{\cos ^{3} \beta}+O\left(\epsilon^{2}\right) \\
& U_{2346}=\tan ^{2} \beta-\epsilon I_{2} \frac{2 \sin \beta\left(1+\sin ^{2} \beta\right)}{\cos ^{4} \beta}+O\left(\epsilon^{2}\right) \\
& U_{3136}=-\tan ^{2} \beta+\epsilon I_{2} \frac{2 \sin \beta\left(1+\sin ^{2} \beta\right)}{\cos ^{4} \beta}+O\left(\epsilon^{2}\right) \\
& U_{4146}=\tan ^{2} \beta-\epsilon I_{2} \frac{2 \sin \beta\left(1+\sin ^{2} \beta\right)}{\cos ^{4} \beta}+O\left(\epsilon^{2}\right) \\
& U_{4236}=\sec ^{2} \beta-\epsilon I_{2} \frac{2 \sin \beta\left(5+\sin ^{2} \beta\right)}{\cos ^{4} \beta}+O\left(\epsilon^{2}\right) \\
& U_{4366}=-\tan \beta+\epsilon I_{2} \frac{3\left(1+\sin ^{2} \beta\right)}{\cos ^{3} \beta}+O\left(\epsilon^{2}\right)
\end{aligned}
$$

GIOS

$$
-g i o s
$$

and Fringing Fields
H. Wolluilh

University giessen, Germany

$$
\begin{aligned}
& B_{z}(x, y, z)=0 \\
& B_{y}(x, y, z)=B_{y}(0,0, z)+\frac{y^{2}}{2}\left(\frac{\partial^{2} B_{y}}{\partial y^{2}}\right)_{0,0, z}+\ldots \\
& B_{z}(x, y, z)=y\left(\frac{\partial B_{y}}{\partial y}\right)_{0,0, z}+\ldots
\end{aligned}
$$

$$
\operatorname{curl} \vec{B}=\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{x}}{\partial y}=0
$$

$$
\operatorname{div} \vec{B}=\frac{\partial^{2} B_{y}}{\partial y^{2}}+\frac{\partial^{2} B_{y}}{\partial z^{2}}=0
$$

$$
\begin{aligned}
& B_{z}(x, y, z)=0 \\
& B_{y}(x, y, z)=B_{y}(0,0, z)-\frac{y^{2}}{2}\left(\frac{\partial^{2} B_{x}}{\partial z^{2}}\right)_{0,0, z}+\ldots \\
& B_{z}(x, y, z)=y\left(\frac{\partial B_{z}}{\partial z}\right)_{0,0, z}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
m \ddot{x}= & q v_{z} B_{y}(x, y, z)-q v_{y} B_{z}(x, y, z) \\
m \dot{x}= & q \int_{z_{y}}^{z_{y}} v_{z} B_{y}(0,0, z) d z-q \int_{z_{0}}^{z_{y}} y v_{y}\left(\frac{\partial B_{y}}{\partial z}\right)_{0,0, z} d z- \\
& \stackrel{\vdots}{v} \int_{x_{0}}^{4} \frac{y^{2} v_{z}}{2}\left(\frac{\partial^{2} B_{y}}{\partial z^{2}}\right)_{0,0, z} d z+\ldots
\end{aligned}
$$

fringing-field effects of a homogenous magnetic sector

$$
\left(\begin{array}{l}
x_{f} \\
a_{f} \\
y_{f} \\
b_{f}
\end{array}\right)=\left(\begin{array}{llll}
1 \ldots I 1 & 0 & 0 \\
t & 1-\ldots I 1 & 0 & 0 \\
0 & 0 & 1-\ldots I_{1} \ldots I 1 \\
0 & 0 & 1+\ldots I_{8} & t-\ldots I_{4}
\end{array}\right)\left(\begin{array}{c}
x_{i} \\
a_{i} \\
y_{i} \\
b_{i}
\end{array}\right)
$$

some higher order effects:

$$
\begin{aligned}
& (x, x x)=-\frac{t^{2}}{2} \\
& (x, x x a)=-t^{3} \\
& (x, x y y)=\frac{1}{2} t^{2}\left(1+2 t^{2}\right)+\ldots I_{11} \\
& (x, a y y)=\frac{1}{c^{2}}+\ldots I_{12} \\
& (a, x y y)=\frac{t^{2}}{2}+\ldots I_{7} \\
& (y, y y y)=\frac{1}{6 c^{2}}\left(1+6 t^{2}\right)+\ldots I_{11} \\
& (b, y y y)=\frac{1}{18} s f\left(8+11 t^{2}+12 t^{4}\right)+\ldots I_{7} \\
& (b, y y b)=-\frac{1}{2}\left(1+t^{4}\right)+\ldots I_{11}
\end{aligned}
$$

0
experimental values

Ratio $R_{2} / R_{1}=1.5$

fringing-field effects of a quadrupole

$$
\left(\begin{array}{l}
x_{f} \\
a_{f} \\
y_{f} \\
b_{f}
\end{array}\right)=\left(\begin{array}{llll}
1-K_{0}^{2} I_{1} & -2 K_{0}^{2} I_{2} & 0 & 0 \\
K_{0}^{4} I_{3} & 1+K_{0}^{2} I_{1} & 0 & 0 \\
0 & 0 & 1+K_{0}^{2} I_{1} & 2 K_{0}^{2} I_{2} \\
0 & 0 & -K_{0}^{4} I_{3} & 1-K_{0}^{2} I_{1}
\end{array}\right)\left(\begin{array}{c}
x_{i} \\
a_{i} \\
y_{i} \\
b_{i}
\end{array}\right)
$$

some third-order effects:

$$
\begin{aligned}
& (x, x x x)=+\frac{1}{12} K_{0}^{2} \\
& (x, x y y)=+\frac{1}{4} K_{0}^{2} \\
& (a, x x x)=-\frac{1}{3} K_{0}^{4} \cdot I_{4} \\
& (a, x y y)=-K_{0}^{4} \cdot I_{4} \\
& (y, y y y)=-\frac{1}{12} K_{0}^{2} \\
& (y, y x x)=-\frac{1}{4} K_{0}^{2} \\
& (b, x x x)=-\frac{1}{3} K_{0}^{4} \cdot I_{4} \\
& (b, y x x)=-K_{0}^{4} \cdot I_{4}
\end{aligned}
$$

Massenseparator ISOLDE III

Q : Quadrupol
M : Multipol

size of the window
$x-$ range $=5.0 \mathrm{E}-5 \mathrm{~m}$ $y \cdot r a n g e=5.0 \mathrm{E} \cdot 5 \mathrm{~m}$

size of the window
r-range m $5.0 \mathrm{E}-3 \mathrm{~m}$ $y-r e n g e=5.0 E-5$

$$
\begin{array}{ll}
\frac{1}{\rho_{0}} \int_{z_{a}}^{z_{b}} \frac{B(0,0, z)}{B_{0}} d z & \approx \frac{\Delta z}{\rho_{0}} \\
\approx 0.05 \\
\int_{z_{a}}^{z_{b}} \frac{B^{\prime}(0,0, z)}{B_{0}} d z & \approx 1 \\
& \approx 1 \\
\int_{z_{a}}^{z_{b}} z \frac{B^{\prime 2}(0,0, z)}{B_{0}^{2}} d z & \\
\rho_{0} \int_{z_{a}}^{z_{b}} \frac{B^{\prime 2}(0,0, z)}{B_{0}^{2}} d z \approx \frac{\rho_{0}}{\Delta z} \approx 20
\end{array}
$$

MARYLIE

University of Maryland Charged Particle Beam Codes

(In Collaboration with LANL)

- MARYLIE 3.0

3rd Order

- MARYLIE 3.1

3rd Order with Errors

- MARYLIE 5.0

5th Order

- MARYLIF 5.1

5th Order with Errors

- CHARLIE (R. Ryne)

3rd Order with 2-d
Nonllnear Space Charge

- TLIE (J. van ZelJts and F. Nerl) Arbltrary Order with Errors

MARYLIE 3.0
 User's Manual

A Program for Charged Particle Beam Transport Based on Lie Algebraic Methods *

Alex J. Dragt and Johannes van Zeijts
Center for Theoretical Physics
Department of Physics and Astronomy
University of Maryland
College Park, Maryland 20742

David R. Douglas
Continuous Electron Beam
Accelerator Fucility
Newport News, Virginia 23606

Robert D. Ryse
Lasrence Livermore Laborawry
Livermore, Californin 9450

Etienne Forest
Lawrence Berkeley Laboratory Berkeley, California 94720

Liam M. Healy
Naval Research Laboratory
Washington, DC 20375

Filippo Nexi
C. Thomas Motternhead

Petra Schüett
Lus Alamoe Natioal Leboratery Technische Hochschule Darmstadt Lus Alamos, New Merico st543 6100 Darmstadt, West Germany

April 1991

[^1]
13.2 Element Type-Code Mnemonics (Functional Order)

The beam-line elements and their type code mnemonics, as currently available in Mary Lie 3.0, are listed below according to function along with the subsections that describe them in detail and/or give examples of their use.

| $\frac{\text { Type Code }}{\text { drit }}$ | Element | Subsections |
| :---: | :---: | :---: |
| | Drift space | 6.1 |
| | dipole bend magnets | |
| nbnd | a) Normal entry bending magnet. with or without fringe fields. | 6.2 |
| pbad | b) Parallel faced bending magnet. with fringe fields and equal entry and exit angles. | 6.3 |
| gbad | c) General bending magnet. | 6.4 |
| prot | d) Used for leading and trailing pole face rotations. | 6.5 |
| gbdy | e) Used for the body of a general bending magnet. | 6.6 |
| frog | f) Used for hard-edge dipole fringe fields. | 6.7 |
| chd | g) Combined function bend. | 6.8 |
| corn | h) Cbange fringe fields of combined function dipoles. | 6.29 |
| sol | Solemid. | 6.23 |
| quad | Magmeric enadrupole. | 6.9 |
| cafd | Combieal fmection magnetic quadrupole. | 624 |
| mem | REC qeadrupote multiplet. | 6.27 |
| \cdots | Magpetic sextupole. | 6.10 |
| oction | Magnetic octupole. | 6.11 |
| octe | Electric ortupole. | 6.12 |

Type Code Element Subsections
uric Short RF cavity. 6.13
arot Axial rotation. 6.14
thlm "Thin lens" approximation to low 6.16 order multiprles.
cplm "Compressed" approximation to low 6.17order multipoles.
twsm Linear matrix transformation specified 6.15 in terms of twiss parameters
dism Dispersion matrix. 6.22
jmap Map with matrix part. J 6.18
inark Marker 6.25
dp Data point. 6.26
spce Space for accounting purposes. 6.28
usrl User specified subroutines that 6.20
usis act on phase space data
usre U'ser specified subroutines that 6.21produce or act on maps.
usr9
r**: Random counterpart of the element 6.19 wish type-code mnemonic ":"*.

13.4 Simple Command Type-Code Mnemonics (Functional Order)

Gimple commands and their type code mnemonics, as currently available in MaryLie 30. are listed below according to function along with the subsections that describe them in detail and/or give examples of their use.
Type Code Cemmand Subsections
end Halt execution. Must be last7.1entry of a lattice listing.
of Open files. 7.24
of Close files. 7.23
$r t$ Perform a ray trace. 7.2
num Number lines in a file. 7.27
circ Set parameters and circulate. 73
wel Write contents of a loop. 7.33
rapt Aperture the beam with a rectangular aperture. 718
eapt Aperture the beam with an elliptic aperture. 7.19
wad a Window a beam. 720
What Write history of beam loss. 7.21
pmif Print contents of Master Input File (file 11). 7.4
ptm Print tranufer map. $i . i$
tmi Input matrix elements and polynomial 7.5coefficients from an external file.
tmo Ouptut matrix elements and polynomal if coefficients to an external file.
pol Parameter eet specification. i!
pe9
rpel Random parameter set sperilication 7.2
rpas
wp: Write out parameters in a parameter set 728
stin Store the existing transfer map. i. 16
Type Code Command Subsections
$\mathrm{gtm} \quad$ Get a transfer map from storage 7.17
mask Mask off specified portions of existing 7.13 transfer map.
ftr Filter the existing transfer map. 7.22
sqr Square the existing transfer map. 7.15
symp Symplectify matrix portion of transfer map. 7.14
iden Replace existing transfer map by the 7.8 identity map.
inv Replace existing transfer map by its inverse. 7.9
rev Replace existing transfer map by 7.11its reversed map.
revf Replace existing transfer map by $i 12$ reverse factorized form.
tran Replace existing transfer map by its 7.10 "transpose".
tpol Twiss polynomial. 7.37
dpol Dispersion polynomial. 7.38
time Write out execution time. 7.29
cdf Change drop file. $\div 30$
bell Ring bell at terminal. 731
womrt Write out value of merit function. 7.32
pawi Pauee. 7.34
inf Change or write out values of infinities. 735
zer Change or write out values of zeroes. 736
cbm Chage of write out beam parampters. 7.39

13.6 Advanced Command Type-Code Mnemonics (Functional Order)

Idvanced commands and their type code mnemonics, as currently available in MaryLie 1.0. are listed below according to function along with the subsections that describe thein in detail and/or give examples of their use.
Type Code Command Subsection
cod Compute off-momentum closed orbit data 8.1
tasm Twiss analyze static map 8.2
tadm Twiss analyze dynamic map. 8.3
ctr Change tupe range. 8.28
snor Static dormal form analysis. 88
dnor Dybamic normal form analysis. 89
ani Apply script N inverse. 8.29
ram Resonance analyze static map. 8.4
radm Resonance analyze dynamic map. 8.5
sia Static invariant analysis. 8.10
dia Dynamic invariant analysis. 8.11
panf Compute power of static normal form. 8.12
pdof Compute power of dynamic normal form. 8.13
palp Compmite power of nonlinear part. 8.30
trea Trampert static A. 8.24
trda Traepput dyoamic . 4 8.25
Type Code Command Subsections
fasm Fourier analyze static map. 3.15
fadm Fourier analyze dynamic map. 8.16
pold Polar decomposition of a map. 8.22
tbas Translate basis. 8.6
exp Compute exponential. 8.7
gbuf Get buffer contents. 8.14
amap Apply map to a function or moments. 8.17
bgen Generate beam. 8.34
tic Translate initial conditions. 8.35
smad Multiply a polynomial by a scalar. 8.18
padd Add two polynomials. 8.19
pmul Multiply two polynomials. 8.20
pb Poisson bracket two polynomials. 3.21
mn Compute matrix norm. 8.33
psp Polynomial scalar product. 8.32
pval Evaluate a polynomial. 8.23
sq \quad Select quantities. 8.26
wsq Write selected quantities. 8.27
csym Check symplectic condition. 8.31

13.8 Procedures and Fitting and Optimization Commands (Functional Order)

Procedures and fitting and optimization commands and therr type code mnemonics, as currently arailably in MaryLie 3.0, are listed below according to function along with the rubsections that describe them in detail andjor give examples of their use.

| Type Code | Procedure/Command | Subsection |
| :---: | :---: | :---: |
| bip | Begin inner procedure. | 9.1 |
| bop | Begin outer procedure. | 9.2 |
| tip | Terminate inner procedure. | 9.3 |
| top | Terminate outer procedure. | 94 |
| aim | Specify quantities to be fit or optimized and set target values. | 9. 5 |
| vary | Specify quantities to be varied. | 9.6 |
| fit | Carry out fitting operation | 9.7 |
| mrt0 | Merit function (least squares). | 9.10 |
| a.rll
 mist 5 | Merit functions (user written). | 9.11 |
| opt | Carry out optimization. | 9.8 |
| conl
 con5 | Conatrants. | 9.9 |
| grad | Compute gradient matrix. | 9.15 |
| scan | Scan parameter space. | 9.18 |
| rset | Rebet tnenu entries. | 9.16 |
| las | Change or write out values of fage and defaults. | 9.17 |
| $\begin{gathered} \text { cpal } \\ \vdots \\ \text { cpor } \end{gathered}$ | Caplure parameter set. | 9.12 |
| fpo | Free parameter set. | 9.13 |
| dapt | Compute dynamic aperture. | 9.14 |

Bending a Beam without Breaking

Construction of a Couple Achromat through thad order

Alex J. Drag
University of Maitland: :

An Isochronus Achromet

$$
\begin{aligned}
& Z=\left(x, P_{x}, y, P_{y}, \tau, P_{\tau}\right) \\
& \tau=\text { time of flogat devcatioi } \\
& P_{\tau}=\text { - energy deviation }
\end{aligned}
$$

Generally have

$$
\begin{aligned}
z_{a}^{\text {fam }} & =\sum_{b} R_{a b} z_{b}^{i n} \\
& +\sum_{b, c} T_{0 b 0} z_{b}^{\prime \prime} z_{b}^{\prime a} \\
& +\sum_{b, 0, d} U_{a b o d} z_{b}^{\prime \prime \prime} z_{0}^{\prime \prime} z_{d}^{\prime \prime} \\
& +\ldots
\end{aligned}
$$

Want to Rood

$$
\begin{aligned}
& z_{a}^{\sin }=z_{a}^{i n}+O\left(z^{4}\right) \Rightarrow \\
& R_{\text {ab }}=\delta_{\text {ah }}, T_{\text {abc }}=0, \\
& U_{\text {abd }}=0
\end{aligned}
$$

How many conditions muet be oatiofied?

$$
\begin{aligned}
& \text { Rab } 36 \\
& \text { Tabe } 126 \\
& U_{\text {abed }} \frac{336}{498} \text { condidioan }
\end{aligned}
$$

Need Mef knots?

Aefrally, can be dowe with 3 1st order knobs 3 and ordor knobs
$Y(0)$ ind ordor knabs 14 knobs

Use tàres conditions:
a) Symplectic condutcoic
b) Midplonc eymmetloy
c) Periodioity

Outline
0. Introduetion

1. Symplectic Mors
A. De finition
B. Importanec
2. Productioa, Parameterization, Monipulatioa
A. Lie Operators
B. Lic Troneformatione
C. Production Theocom
D. Feotormatión Theorem
E. Multiplication
F. Truncetion
G. Calculation
3. Applications
4. Syaploctic Mops

Notation

$$
z=\left(g_{1} \cdots g_{a} ; p_{1} \cdots p_{n}\right) .
$$

Dynamical system

Write relation between initial and final conditions

$$
\begin{aligned}
& \text { as } \\
& z^{\text {final }}=m z^{\text {initial }} \\
& \text { m ..lld - Traunfe Man }
\end{aligned}
$$

Assume m comes
from following Hamilton's equations of motion:
That is, there exits $H\left(\tilde{c}_{q, p, \alpha}^{2}\right)$
such that

$$
\dot{g}_{4}=\partial H / \partial p_{1} \cdot \dot{p}_{4}=-\partial H / \partial g_{4} .
$$

Capitalize ea tais
arguaption.

tidy effect of m an nearby points.

Form the Jacobian
matrix M defined by

$$
M_{a b}\left(z^{m}\right)=\partial z_{a}^{\operatorname{mom}} / \partial z_{b}^{m} .
$$

M describes small changes in $z^{\text {fin }}$ produced by small changes in $z^{\prime \prime}$?

Define the fundamental $2 n \times 2 n$ matrix J.

$$
J=\left(\begin{array}{c:c}
0 & I \\
\hdashline-I & 0
\end{array}\right)
$$

Then....

Then m is a symplectuc map
if

$$
\tilde{M}\left(2^{i \dot{a}}\right) J M\left(2^{i n}\right)=J \quad \begin{aligned}
& \text { for } \\
& \quad \text { ell } \\
& 2^{i n}
\end{aligned}
$$

Note that sympleatie mops are severely restricted.

In comes from a Hamiltociea.
§
$\tilde{M} J M=J, \quad$ All $z^{\prime \prime \prime}$
\Uparrow
M is a symplectic matrix $\left\{\begin{array}{l}\text { strong } \\ \text { restriction } \\ \text { on } m\end{array}\right.$

$$
\pi
$$

Liouville's Theorem, Conservation of All Poincare Invariants.

Symplectic Map $=$
Canonical Transformation

Basic Problem

Produce
Parameterize
Manipulate

Symplectic Maps
The code
MARYLIE does this using
Lie algebraic methods

Taylor Series Expansion
write

$$
\begin{aligned}
z_{a}^{f i n} & =k_{a}+\sum_{b} R_{a b} z_{b}^{\prime n} \\
& +\sum_{b, c} T_{a b c} z_{b}^{i n} z_{c}^{i n} \\
& +\sum_{b, c, d} U_{a b c d} z_{b}^{i n} z_{c}^{i n} z_{d}^{i n} \\
& +\cdots .
\end{aligned}
$$

a) Entries of R, T, U, \cdots, inter-related by symplectic condition. Coefficients far from being independent.
C) Expansion generally wot symplectic ir truncated. Example...
a) Lie Operators

Let $f(z)$ be any function.
Define the associated (differential)
Lie Operetor:f: by

$$
: f: \stackrel{\text { def }}{=} \sum_{i} \frac{\partial f}{\partial g_{2}} \frac{\partial}{\partial p_{2}}-\frac{\partial f}{\partial p_{a}} \frac{\partial}{\partial g_{i}}
$$

Let $h(z)$ be any other function.
Then,

$$
\therefore f: h=\sum_{\sim} \frac{\partial f}{\partial g_{2}} \frac{\partial h}{\partial p_{2}}-\frac{\partial f}{\partial p_{2}} \frac{\partial h}{\partial g_{c}}=[f, h]
$$

or $: f: h=[f, h]^{4}:$ Poisson Bracket

Thru. $\quad\{: f:,: g:\} \underset{=}{\text { def }}$

$$
: f:: q:-: g:: f:=:[f, g]:
$$

The commutator of 2 Li operator
b) Lie Transformations

Define powers of : f : by

$$
\begin{aligned}
& : f: h=h \\
& : f: h=[f, h] \\
& : f:^{2} h=[f,[f, h]], \text { etc. }
\end{aligned}
$$

Define the operator $\exp (: f:)$ by

$$
\exp (: f:)^{\text {def }} \sum_{n=0}^{\infty}: f^{n} / n!
$$ nation.

Explicitly, this gives

$$
\begin{aligned}
\exp (: f:) h= & h+[f, h]+[f,[f, h]] / 2! \\
& +\cdots .
\end{aligned}
$$

Notation: Sometimes write

$$
\exp (: f:)=e^{: f:}
$$

c) Production Theorem

Let $f=f\left(z^{\prime i}\right)$, and define

$$
\begin{gathered}
z^{f i n} b y \\
z_{a}^{f i n}=\exp (: f:) z_{a}^{i n} .
\end{gathered}
$$

Write this as

$$
z_{a}^{f i n}=m z_{a}^{i n}
$$

Then,

$$
m=\exp (: f:)
$$

is a Symplectic Map.
d) Factorization Theorm

Suppase M is an arbitrory symplactic map expanded in a Toylor Serres.
Then, one can write

$$
m=e^{: f_{1}:} e^{: f_{2}:} e^{: f_{3}:} e^{: f_{4}:} \ldots
$$

where each f_{n} is a homogeneous polynomiai in the z^{\prime} s of degree n.

Correspandence to Teylor Sereis.

Normal Forms

Problem: Given m, find
a: A such that

$$
n=a 7 n a^{-1}
$$

is as "nice" as possible.

When this is done, N is called a normal form.

Similar in spirit to diagonalizing a matrix. There one asks, "Whet is intrinsic to a matrix, end what depends on the choice of coordinate system?"

$$
m=a^{-1} n a
$$

Thrm: Juppose m is itatia and hes traneveroe tuncs. (Trensuerse eigenvalus of R lie on the unit cirok.) Suppese the transueres tunes v_{x} and v_{y} are mot rosoand through ordor 4:

$$
\begin{aligned}
& \ell v_{x}+m v_{y} \neq \text { intopot } \\
& |e|+|m|=4 .
\end{aligned}
$$

Exampl: $\omega_{x}=1 / 8, \quad v_{y}=1 / 6$

$$
\begin{aligned}
h_{4} & =P_{z}^{2}\left(x^{2}+P_{x}^{2}\right) \\
& +P_{z}^{2}\left(y^{2}+P_{y}^{2}\right) \\
& +\left(x^{2}+P_{x}^{2}\right)^{2} \\
& +\left(y^{2}+P_{y}^{2}\right)^{2} \\
& +\left(x^{2}+P_{y}^{2}\right)\left(y^{2}+P_{y}^{2}\right) \\
& +P_{z}^{4}
\end{aligned}
$$

Nete:

$$
\begin{aligned}
& h_{2}: v_{x_{1}} v_{y_{1}} \nRightarrow 3 \\
& h_{3}: 3 * 3 \\
& h_{y}: 6 \geqslant 3
\end{aligned}
$$

Observation
Can sometimes brong n to tair form even whin tuncs are resoant
prourdiag the correspoading driving terme are about.
Examplos:

$$
\text { efi }\left\{\begin{array}{l}
v_{x}=1 / 7, \cdots v_{y}=2 / 7 \\
2 v_{x}-v_{y}=0, v_{x}+3 v_{y}=1 \\
\text { drevoeg terms ebooot due } \\
\text { to midplone (} x y) \text { bymmedey }
\end{array}\right.
$$

Them, those exit on a suck that \boldsymbol{R} takes doe form

$$
n=e^{: h_{2}:} e^{: h_{3}:} e^{: h_{4}:}
$$

where

$$
\begin{aligned}
h_{2}= & -2 \pi v_{x}\left(x^{2}+P_{x}^{2}\right) / 2 \\
& -2 \pi v_{y}\left(y^{2}+R_{3}^{2}\right) / 2 \\
& +P_{F}^{2} \\
h_{3} & =P_{F}\left(x^{2}+P_{x}^{2}\right) \\
& +P_{F}\left(y^{2}+P_{y}^{2}\right) \\
& +P_{F}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
v_{x}=1 / s ; v_{y}=1 / s \\
v_{x}=v_{y}=0 \\
\text { abooct due to } \\
\text { midploas iymonotoy } \\
2 v_{x}-2 v_{y}=0 \\
\text { prosoat, but remouable }
\end{array}\right. \\
& \text { using } 2 \text { ectupele } \\
& \text { correctors } \\
& h_{4}: \quad * P_{e}\left(x+a P_{x}\right)^{2}\left(y-a P_{y}\right)^{2} \\
& \text { * Im }\left(x+\alpha P_{y}\right)^{2}\left(y-a P_{y}\right) \\
& 2 * 2 \text { knobs }
\end{aligned}
$$

Appucatioq
Recipe for 2 Complete
Third Order Achromat
Consider a small a FCDO cell with bonding and 8 corrector slots:

Follow Three
Simple stope:

1. Adjust tic two grade and the coll length (or a third quad) e that

$$
h_{2}\left\{\begin{array}{l}
v_{x}=1 / r, \quad v_{y}=1 \rho \\
x=0 .
\end{array}\right.
$$

2. Adjust 3 sextopales se dat

$$
h_{3}\{3=0
$$

3. Adjust $g(6)$ ectupoles so that

$$
h_{4}\{P(6)=0
$$

```
Popyright :987 Alex J. Dragt
    l rights reserved
Cata input complete; going into "labor.
# comment
    This is an example of a complete third order achromat.
#beam
    1.0000000000000000
    2.860000000000000
    1.000000000000000
    1.0000000000000000
#menu
    zer zer
    0.0000000000000COE +00 2.000000000000000E-08 0.000000000000000EE+00
    fileout pmif
        1.00000000000000 12.0000000000000 3.00000000000000
    =1 thlm
        0.0000000000C J0E+00 0.000000n00000000E+00 0.000000000000000E +00
        0.000000000000000E+00 7.63061277477838 0.0000000000000000E +00
    c2 thlm
    0.000000000000000E+00
    0.0000000000000000E+00
    c3 thlm
    0.0000000000000000E+00
    0.0000000000000000E+00
    c4 thlm
    0.000000000000000E+00
    0.000000000000000E +JO -2.31070361422000 0.0000(100000000030E +00
    c5 thlm
    0.0000000000000000E+00
        .0000000000000000E+00
                            thlm
    0.00000000000000000E+00
    0.0000000000000000E+00
    c7 thim
    0.0000000000000000E+00
    0.0000000)0000000EE+00
    c8 thlm
    0.0000000000000000E+00
    0.000000000000000E+00
    dr! drfe
        1.000000000000000
    dr.5 drft
        0.5000000000000000
    dr2 drft
    0.519011603105030
    bend nond
        .8.40000000000000
        0.200000000000000
    hfq quad
        0.300000000000000
        1.00000000000000
    hdq quad
        0.30000000000:0000
        1.00000000000000
    cmapout ptm
        3.00000000000000 3.00000000000000 0.000000000000000E +00
        0.0000000000000000E+00
        id end
    0.000000000000000E+00 0.500000000000000
        1.00000000000000 1.00000000000000
    0.745388387071964 1.00000000000000
-0.842490808214709 1.00000000000000
    1.00000000000000
```

```
#lines
    whole
    1*drl I*dr2 l*cl l*drl l*c2
    1*hEq l*c3
    1*drl 1*c5
    1*c7 1*dr2
    cachro
        5*1whole
#lumps
    Iwhole
        1*whole
#loops
#labor
        i*fileout
        l*zer
        l*cachro
        1* cmapout
        l*end
lump 1whole constructed and stored.( 1)
marrix for map is :
\begin{tabular}{rrrrrr}
\(1.00000 \mathrm{E}+00\) & \(-6.20639 \mathrm{E}-11\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(3.50600 \mathrm{E}-12\) \\
\(2.11028 \mathrm{E}-12\) & \(1.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(2.9 \mathrm{~s} 29 \mathrm{E}-12\) \\
\(\mathrm{U} .00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(1.00000 \mathrm{E}+00\) & \(-6.81257 \mathrm{E}-11\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) \\
\(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(2.27543 \mathrm{E}-12\) & \(1.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) \\
\(-2.93519 \mathrm{E}-12\) & \(3.50539 \mathrm{E}-12\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(1.00000 \mathrm{E}+00\) & \(-1.60026 \mathrm{E}-11\) \\
\(2.00000 \mathrm{E}+70\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(1.00000 \mathrm{E}+00\)
\end{tabular}
r.onzero \epsilon ments in generating polynomial are :
end of MARYLIE run
```

```
Copyright 1987 Alex J. Dragt
    ! rights reserved
wata input complete; going into #labor.
#comment
    This is an example of a complete third order achinmat made of thick
    elements. For ease of comparison with other codes, all fringe-
    field effects have been neglected.
#beam
        1.000000000000000
        2.860000000000000
        1.000000000000000
        1.000000000000000
#menu
    zer zer
        0.000000000000000E+00
    fileout pmit
        1.00000000000000
    cl cfqd
        0.3000000000000000
    0.000000000000000E +00
    c2 cfqd
        0.3000000000000000
        0.0000000000000000E+00
    c3 cfqd
        0.3000000000000000
        0.000000000000000E +00
    C4 Efqu
        3000000000000000
        0.000000000000000E +00
        -5 cfqd
        3000000000000000
        0.0000000000000000E+CO
    c6 =fqd
        0.300000000000000
        0.000000000000000E +C0
    c7 cfqd
        300000000000000
        0.000000000000000E +00
    c8 cfqd
        0. 300000000000000
        0.0000E0000000000E +00
    zp: psl
        0.000000000000000E +00
        O.000000000000000E+00
    cp2 ps2
    0.000000000000000E+00
        0.000000000000000E +00
        cp; ps3
        0.000000000000000E +00
        100000000000000E +00
            ps4
    :p4
    l.000000000000000E+00
    0.000000000000000E +00
    cpb psb
        0. In001000000000000E+00
        O.O0000000000000E+00
                            ps6
    (1.090000000000000000E+00
        1.00000000000000000E+00
                    ps7
    0.001)00000000000000E+00
    0.0000000000000000E+00
```

$2.000000000000000 \mathrm{E}-08$
$0.000000000000000 \mathrm{E}+00$
12.0000000000000
3.00000000000000
$1.00000000000000 \quad 0.000000000000000 \mathrm{E}+00$
2.00000000200000
$0.000000000000000 E+00$
3.00000000000000
$0.000000000000000 E+00$
$4.00500000000000 \quad 0.000000000000000 \mathrm{E}+00$
5.00000000000000
$0.000000000000000 E+00$
5.00000000000000
$0.000000000000000 E+00$
7.00000000000000
$0.000000000000000 \mathrm{E}+00$
8.00000000000000
$0.000000000000000 E+00$
0.0000000 n $0000000 E+00 \quad 0.000000000000000 E+00$ $25.1707502760476 \quad 0.000000000000000 \mathrm{E}+00$
$0.000000000000000 E+00 \quad 0.000000000000000 E+00$ $-26.4409006724282 \quad 0.000000000000000 E+C O$
$0.000000000000000 \mathrm{E}+00 \quad 3.24975783016200$ $13.8784804977115 \quad 0.000000000000000 \mathrm{E}+00$
$0.000000000000000 \mathrm{E}+00 \quad$-4.33263796704460
$-7.49095110399962 \quad 0.000000000000000 \mathrm{E}+() 0$
$0.000000000000000 \mathrm{E}+000.734824919856963$ $31.5325612211053 \quad 0.900000000000000 E+00$
$0.000000000000000 \mathrm{E}+00 \quad 0.000000000000000 \mathrm{~F}+00$
$-45.2313702851510 \quad 0.000000000000000 \mathrm{E}+00$
$\begin{array}{cc}0.000000000000000 \mathrm{E}+00 & 0.000000000000000 \mathrm{E}+00 \\ 30.2884235117541 & 0.000000000000000 \mathrm{E}+00\end{array}$

```
    0.0000000000000000E+00 0.000000000000000E+00 0.000000000000000E +00
    0.000000000000000E+00
                        0.00000000000C, ,O0EE+00
dr-. 3 drft
-0.300000000000000
    rl drft
        1.00000000000000
dr.5 drft
    0.500000000000000
dr2 drft
    0.519011603105030
bend nbnd
        18.0000000000000
        0.200000000000000C
        0.00000000こ000000E +00
        0.500000000000000
        0.000000000000000E+00
        0.000000000000000E+00
        0.745388387071964 0.000000000000000上r00
        .2q % quad
        0.000000000000000EE+00
hdq quad
    0.300000000000000 -0.842490808234209 0.000000000000000E+00
    0.000000000000000E+00
mapout ptm
    3.00000000000000 3.00000000000000 0.000000000000000E+n0
    0.000000000000000E+00
    1.00000000000000
end end
#lines
set
\begin{tabular}{|c|c|c|c|c|}
\hline 1*cpl & \(1{ }^{*} \mathrm{cp} 2\) & \(1^{*} \mathrm{cp} 3\) & \(1^{*}\) cp 4 & 1* \(\operatorname{cp} 5\) \\
\hline 1*cp6 & 1*cp 7 & 1*cp8 & & \\
\hline \multicolumn{5}{|l|}{e} \\
\hline l*set & 1 * \(d r 1\) & \(1^{*} d r 2\) & \(1 * d r-.3\) & 1*c1 \\
\hline 1*dy 1 & 1*dr-. 3 & 1*C2 & 1*hfq & 1* C 3 \\
\hline 1*dr-. 3 & 1*drl & 1*dr-. 3 & 1* \({ }^{\text {c }}\) 4 & 1*bend \\
\hline 1*drl & \(1 * d r-.3\) & 1*C5 & 1*hdq & 1* c6 \\
\hline 1*dr-. 3 & 1*dr 1 & 1*c7 & 1*dr-. 3 & i*dr2 \\
\hline 1*dr 1 & * \({ }^{\text {dr }}\) - & 1* CB & & \\
\hline
\end{tabular}
`achro
    5*Iwhole
|lumps
    iwhole
    1*whole
#loops
* Labor
    1*f1leout
    1*zer
    1*rachro
    1*mapout
    1*end
iump lwhole constructed and stored.( 1)
matilx for map is :
\begin{tabular}{rrrrrrr}
\(1.00000 \mathrm{E}+00\) & \(-6.20639 \mathrm{E}-11\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(3.50597 \mathrm{E}-12\) \\
\(2.11028 \mathrm{E}-12\) & \(1.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(2.93530 \mathrm{E}-12\) \\
\(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(1.00000 \mathrm{E}+0 \mathrm{O}\) & \(-6.81257 \mathrm{E}-11\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+(00\) \\
\(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(2.27543 \mathrm{E}-12\) & \(1.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) \\
\(-2.93519 \mathrm{~F}-12\) & \(3.50539 \mathrm{E}-12\) & \(0.00000 \mathrm{E}+100\) & \(0.00000 \mathrm{E}+00\) & \(1.00000 \mathrm{E}+00\) & \(-1.60025 \mathrm{E}-11\) \\
\(0.10000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+00\) & \(0.00(000 \mathrm{E}+00\) & \(0.00000 \mathrm{E}+(00\) & \(0.00000 \mathrm{E}+00\) & \(1.0000(0 \mathrm{E}+00\)
\end{tabular}
```

wnari "imments in gnfierating polymomial atr :

[^2]',rif.

Variatione

1. Tuac cell se duat $\nu_{x}=1 / 5, v_{y}=1 / 6$ (or viec verse). Tune seytupoles as before, and tume 6 eetupoles.

Then 30 suod callo predues a complate ectromit. No midplome symmedoy is reyurred.
2. Tuac colf oo diad

$$
v_{x}=1 / y, v_{y}=8 / 7
$$

Tuae sertupoles as before, ead tuad 6 ectupete.

Then 7 suol collo
producs a cemplate echroant. Midploer symmotor is reguired.

Then,

$$
m=a^{-1} n a
$$

wits

$$
\begin{aligned}
n & =e^{: h_{2}:} \\
h_{2}= & -2 \pi / 8\left(x^{2}+p_{x}^{2}\right) / 2 \\
& =2 \pi / 5\left(y^{2}+R_{1}^{2}\right) / 2 .
\end{aligned}
$$

Conoider

$$
\begin{aligned}
m^{5} & =a^{-1} x a a^{-1} n a \cdots \\
& =a^{-1} x^{5} a .
\end{aligned}
$$

But $n^{5}=1 \Rightarrow$

$$
m^{5}=a^{-1}+a=1
$$

Thus, 5 suct eano plaod in a row yreld

Complete Tand orden Achromat

TLOn,

$$
\dot{m}^{\prime}=a^{-1} n^{\prime} a
$$

with $n^{s}=e^{: 4:}$

In this capo, n^{5}...d a commote, .. raot

$$
\begin{aligned}
m^{r} & =a^{-1} n^{r} a \\
& =n^{r} a^{\prime} a=n^{r} \\
& =\text { poovde doudity }
\end{aligned}
$$

I. tain cape, one los a third ardor achromat except for energy dopudiod tome of fight tome:

$$
\begin{aligned}
& x^{n .4}=x^{m} \\
& P_{x}^{\text {dis }}=P_{1}^{i} \\
& y^{0.4}=y^{\text {in }} \\
& P_{y}{ }^{\text {n/2 }}=P_{y}^{m}
\end{aligned}
$$

$$
\begin{aligned}
& P_{r}^{\text {r.4 }}=P_{r}{ }^{\text {in }}
\end{aligned}
$$

Iceemplete Thivid Ordes
Acdromet

Give up isaceraay.
De not worry about coufficeonto of $P_{2}{ }^{2}, P_{0}^{3}$, $P_{\text { }}{ }^{4}$. Peguives:

1. Ne fittoing ea lought or 1 loer guad/eoll
2. One le0s sordupat/ /eoll
3. Onc 1038 ecriypole/call

HOW TO REMEDY THE SITUATION - II

FORGET THE RIGHT BEND?

I think we have to have a good look at this option!

OPTICS USING DIFFERENTIAL ALGEBRA

COSY INFINITY

A Beam Optics and
 Accelerator Code

M. Berz
Michigan State University

implicit dounle pretision in－ 21
intran moanem．mc．，wo
voUble paccision Ife：4hi．＇I
KEI ：QUAORUPOLE STAENGTH
$\mathrm{KO2}$ ：MEXAPCLE STR：NTTH
ROS ：DECAPOLF STQEMG
04 ：DECAPOLF STRENGTA
05 ：DOUECAFCIE STREMGTH

＊30 $=1.1(1 \cdot 632)$
R1－1．111．832：2．1
FIJ－－Fil－R27

（FifE2．LT．－1．D－01 Then
AFR－SOMT（－FA2）
Cr－cos（atriz）
sx－sim（AFI－2）／ary
ELSEIF（TIZ．GT．1．D－B）THEM
NRE－SOMT（FX2
TI－EXP（AFI－2
EEX－I．DOIEX
CK－（FX．FEX）／2．DO
Sx－IEX－EEXI／2．do／aFx
－-5
-1.00
－$\quad 2$
$-18=1.3-8$
（fify2．LT．－1．D－0）THER ATY＝SOMT－TT1） Cy － $\cos (a r y-z)$
ELSEIFIFY1．GT．I．D－0）Then AFY－SOMT（FTZ）
EY
EEY－1．00／EY
CT－（ET－EEY）$\because .00$
－EET／／2．DO／AF
CT－ 1.00
SY $=1$
ENDIF

CSI
CS
CS
CT
Ss－sy

| CS |
| :---: |
| 56 |
| － |

（W）－K110～こと

KK3－m30－Kj3
FFZ－FM2
TT2－CS？
tis－CSJ
TT4－Csjorit
TT5－C54
TTS
TTO－CSS
TIT－Cssertz
TTE－C56
Tr9－C56－kK2
TT10－C56．MR
Lill．1）－（TTra）
L（2，1）－（－TT3）
L（1，2）－（1．TT4）

（13．3）－ $1 \cdot 1$ TT5）
1．（4，3）＝ $1 \cdot \mathrm{TT} 6)$

1rimd．EO．O．AMD．NG．LO．O）GOTO 100

It（NG．LO．O）COSO 100
L（5，5）－（．1）
L（S．1）－ $1 \cdot 0.50+00 \cdot$ TTB＋0．25D•00•TT9－TT10）
100 IFINONDER．Eg． 11 coto 1000
Cs1 $=$ Cs30cs
Cso－Cs3－sx
css－csa cx
csio－csa－sx
csil＝cssoex
cs12－css．sx
Cs1
Cs
－Css．ct
CSIA．CSS－3y
csis－cssocx
cs16－cs6esx
CS17－C56－CY

RES－KR3＊K31＊K

FF3－

TTI2－Cs7－RKGAFA
TTIJ－CSE日KKg
TTIJ－CSE•KK6
TT14－CSJ•KRG＋FF4

TTIT＝CS20KM6．

TT18＝CSE日KK6－f
TT19－CS14－KR6
tT20－CSSB－RRG•rra

［T22－CS16－FF2

TT24－CSI•RR2
TT2s－©

26.840 ines further...

 -0. 750-03•TT1716•0.19531250-00-rT345-0.07696350-01•TT396 $-0.3925712130 \cdot 00 \cdot T 11117 \cdot 0.19624906750 \cdot 00 \cdot 776914+0.156290 \cdot 00 \cdot T \mathrm{~T}$
 1891•TT11211-0.4296190-01•TT1694•0.327343150-01:1-TT1695-TT

 390-0.24902343750-00-TT1725-0.124511110340-00•716976

 cess-0.156250-01•Tr5e32)

 -0.1113241250-CI-TT352-0.527343750-00•TT1732-0.05449210750-01-TT ces7

 -0.50593150-01•TT1690•0.327343750-01•TT6076-0.6250-01•1•TTG017
 cenz-0.3P06250-02•TTEAEJ)
L1369.71 - $1-0.018406150-01-7 T 56-0.2441406750-01 \cdot 77315$

 19:-0.14943150.00-1-TT10-7T611-0.434531730-00•TT353

- $+0.1410703125 \mathrm{D}-01 \cdot \mathrm{~T}$ T6502+0.46815D-01•(4TT1710-TT17111

- -

- sesjec.158350-01-7T6908)

- 343-0.0165625D-01•TT346-0.07090625D-01•TT1717-0.1967090625D*00

- $0.1111015 \mathrm{D} \cdot 00 \cdot \mathrm{TT} 1693 \cdot 0.42968$ 75D-01•TT1694-0.2929687SD-01•TT

- TT69181-0.468750-01•T16919-0.15625D 01•TT6921•0.101250- 2•TT
- 6922-0.3ヶ0625D-02-7T69231

L(449.7) = (-0.07890625_-01•TT:-0.2441406250-01•TT147

- 351-0.14843750.0001-TT10-TT611-0.43945312s0+00•TT35?
- $0.292988750 \cdot 00 \cdot \mathrm{Tt349} \cdot 0.917940750-01 \cdot \mathrm{TT} 350-0.7374210750-01 \cdot \pi$
- 1125-0.124511710750000-TT692600.1093750000:(-TT17264TT1727

- -0.01656250-0.jotrcess-0.15625D-01-tt6932)

- 60.0.3404593750.00*TT151-0.31470703125D•00*TT1731

- $-0.91403250 \cdot 00 \cdot \mathrm{~T}$ 352*0.74210750*00*TT1732-0.1700304375D*00*TT
-69371
-1439.11 = 100.390625L-01'TT0-0.3906250-02•TTt-0.11110750-01-Tt

- 60371

- \cdot TT $\mathbf{C 0}$-0.401221250-61•T7351-0.256347656250-01-TT1731

- -0.11718750-01•TT35140.5059375D-01•TT1732-0.0544921075D-01•T
- 6937
soo If (mometa.e9.5) coto 1000
1000 curtinut

metur

[m

Differential Algebra

An Algebra (vector space with multiplication) with a Derivation ∂ that satisfies

$$
\partial(a \cdot b)=(\partial a) \cdot b+a \cdot(\partial b)
$$

In particular, we are using a differential algebra of equivalence classes of infinitely often differentiable functions. Two functions are called n-equivalent if their derivatives agree to order n .

The derivation is very useful for nonlinear dynamics problems; allows efficient computation of flow of differential equations (= Transfer Maps).

Any differential algebra with at least two derivations contains a Lie algebra. (Gencralization of Lie algebra).

10 Degree homogeneous sector through 50th order; only dependence of final position x on initial angle Ai is shown.

| Coefficient | Eponent
 of Ai | |
| :--- | :--- | :---: |
| | $\left(\times 1 a^{n}\right)$ | |
| 1 | $0.000000 \mathrm{E}+00$ | 0 |
| 2 | 0.500000 | 1 |
| 3 | $-.625000 \mathrm{E}-01$ | 4 |
| 4 | $-.312500 \mathrm{E}-01$ | 6 |
| 5 | $-.954961 \mathrm{E}-02$ | 8 |
| 6 | $-.438368 \mathrm{E}-02$ | 10 |
| 7 | $-.175964 \mathrm{E}-02$ | 12 |
| 8 | $-.494470 \mathrm{E}-03$ | 14 |
| 9 | $-.120357 \mathrm{E}-03$ | 16 |
| 10 | $-.303507 \mathrm{E}-04$ | 18 |
| 11 | $-.748015 \mathrm{E}-05$ | 20 |
| 12 | $-.166065 \mathrm{E}-05$ | 22 |
| 13 | $-.340812 \mathrm{E}-06$ | 24 |
| 14 | $-.682165 \mathrm{E}-07$ | 26 |
| 15 | $-.133936 \mathrm{E}-07$ | 28 |
| 16 | $-.252307 \mathrm{E}-08$ | 30 |
| 17 | $-.454204 \mathrm{E}-09$ | 32 |
| 18 | $-.792470 \mathrm{E}-10$ | 34 |
| 19 | $-.135272 \mathrm{E}-10$ | 36 |
| 20 | $-.225391 \mathrm{E}-11$ | 38 |
| 71 | $-.365251 \mathrm{E}-12$ | 40 |
| 22 | $-.576846 \mathrm{E}-13$ | 42 |
| 23 | $-.891832 \mathrm{E}-14$ | 44 |
| 24 | $-.135248 \mathrm{E}-14$ | 46 |
| 25 | $-.201106 \mathrm{E}-15$ | 48 |
| 26 | $-.293181 \mathrm{E}-16$ | 50 |

Implementation of DA on a Computer

There is a DA package that works to arbitrary order and for arbitrarily many variables.
(In practice, on a VAX 8650 one encounters the following limitations because of space:)

$$
\begin{gathered}
v=6 \Rightarrow o \leq 20 \\
v=10 \Rightarrow o \leq 10
\end{gathered}
$$

Difficulties that had to be resolved:

- efficient multiplication
- storage (vectors are often very sparse)
- functions (at the moment, we have trig, hyperbolic, exp, \ln, roots and all their inverses)
- precompiler to change existing code

DAFC．

Differential Algebra
Precompiler
Version 3
Reference Manual

M．Berz
Department of Physics and Astronomy and National Superconductiog
Cyclotroa Laboratory
Michigan State C＇aiversity
East Lansing，Mi 48824

CALL DACSU(ISA 1A ,2S ,2L)
-DA
DA $\leadsto Y(1)=Y(1)+E K R^{}(X L * X L-Z L \star 2 L)$
CALL DAMUL (XL ,XL ,IS(1))
CALL DAMUL(2L , ZL ,IS (2))

CALL DASUB(IS (1) ,IS(2) ,IS(3))
ISA 4A = Y (INT(.000001+ 0.100000D+01))
CALL DACMU(IS (3) ,ERK ,IS(5))
CALL DAADD(ISA 4A ,IS(5) ,Y(1))
) * *
3i * $Y(2)=Y(2)-2 . D O * E K R \star X L * Z L$
ISA 1A - Y (INT (.000001+0.200000D+01))
RS (2) $0.200000 \mathrm{D}+01$ * EKR
CALL DACMU(XL ,RS(2) ,IS(3))
CALL DAMUL(IS (3) , ZL
CALL DASUB(ISA 1A ,IS(4) ,Y(2))
*I)A \quad
GOTO 2
C--MORMAL OCTUPOLE
24 EKR=ERK*1D-6
-DA \quad XLEX(1)-XS
18A 1A $=\mathrm{X}$ (INT (.000001+0.100000D+01))
CALL DACSU(ISA 1A ,XS ,XL)
*DA
-DA - 2L=X(2)-2S
ISA 1A $-X \quad$ (INT (.000001+0.200000D+01))
CALL DACSU(ISA 1A ..88 ,2L)
-DA
+DA ${ }^{+}$XX=XL*XL
CALL DAMUL (XZ ,XL ,XX)
rDA
-DA - 32=2L*2L
CAIL DAMUL(2L , ZL , ZZ)
\therefore UA *
'HA * Y(1) $=Y(1)+E K K * X L *(X X-3 D 0 * 7, Z)$
I'ALLL DACMU(22 ,0.300000D+01,IS(1))
CALL DASUB(XX ,IS(1) ,18(2))
ISA 3A = Y (INT(.000001+0.100000D+01))
C:ALL DACMIIXL ,EKR ,IS(4))
CALL DAMUL(IS (4) ,IS(2) ,IS(5))
CALL DAADD(ISA 3A ,IS(5) ,Y(1))
UUA
-UA $\quad Y(2)=Y(2)-E R R \star Z L *(3 D O * X X-22)$
CALL DACTM(XXX ,0.300000D+01,IS(1))
CALL DASUB(IS(1) ,22 ,I8(2))
1SA 3A $=Y$ (INT (.000001+0.200000D+01))
(:ALL DACHU(ZL ,EKR IS(4))
CALL DAMUL(1S(4) ,IS(2) ,IS(5))
CALL DASIJB(ISA 3A ,IS(5) ,Y(2))
${ }^{\text {DA }}$.
O(T) 2
C, - NORMAL DECAPOLE
25 KKKF.KX*1D-9
*IIA M XI®X(1)-X8
1HA IA = X (INT(.000001+ 0.100000D+01))
CAIL DACSU(ISA IA ,XS ,XL)
"in m
$\pi 11 / 4 \% 1.18(2)-7.8$
190 IA $=\mathrm{X} \quad$ (INT (.000001+ 0.2000000+01))
(:1.L. I)ACSU(ISA IA , 2S , ZL)
1 n.

Numerical Integration using DA

Suppose motion is described by

$$
\frac{d}{d t} \vec{r}=\vec{f}(\vec{r}, t)
$$

Let $h(\vec{r}, t)$ be a functiou of phase space. Then we ubtain

$$
\begin{aligned}
& \frac{d}{d t} h(\vec{r}, t)=\vec{\nabla} h \cdot \frac{d}{d i} \vec{r}+\frac{\partial h}{\partial t} \\
&=\vec{\nabla} h \cdot \vec{f}+\frac{\partial h}{\partial t}=L_{f} h \\
& \frac{d^{2}}{d t^{2}} h(\vec{r}, t)=L_{f}^{2} h \\
& \frac{d^{3}}{d t^{3}} h(\vec{r}, t)=L_{f}^{3} h
\end{aligned}
$$

etc. Thus, by applying $L_{\text {/ enough times, we obtain a high- }}^{\text {e }}$ order numerical integrator. In case $\vec{f}(\overrightarrow{0})=\overrightarrow{0}$, the order is unlimited; otherwise, the order is limited by the order to which f is known.

COSY INFINITY

- Arbitrary order
- Maps depending on parameters (mass dependence!)
- No approximations in motion or field description
- Large library of elements
- Arbitrary Elements (you specify fields)
- Very flexible input language
- Powerful interactive graphics
- Errors: position, tilt, rotation
- Tracking through maps
- Normal Form Methods
- 80 page manual with index

COSY INFINITY
 Version 4

1

User's Guide
and
Reference Manual ${ }^{1}$

M. Berz

Department of Physics and Astronemy
and National Superconducting
Cyclotron Laboratory
Michiged State University
Eat Lanaing, Mi 48824

The guts of COSY

Major parts:

- DA package (10,000 lines)- Compiler/Executer for COSY language (4,000 lines)- Optimizers (3,000 lines)
- Graphics interfaces (1,000 lines)
Altogether about 20,000 lines of standard FORTRAN 77.
Compilation/Execution is in one step, no linking.
Incremental compilation possible (Physics routines COSY.FOX are compiled only once)

Current COSY Implementations

Currently (July 1991) there are about 60 registered users of the code. Implementations exist at the following institutions:

Argonne National Laboratory
Atomic Energy of Canada Ltd., Chalk River
BESSY, Berlin
Brookhaven National Laboratory
CEBAF, Newport News
CERN, Geneva
California State University, L ss Angeles
DESY, Hamburg
Fritz Haber Institut, Berlin
GANIL, Caen
GSI, Darmstadt
KFA, Juelich
Krasnojarsk Polytechnical Institute
Lawrence Berkeley Laboratory
Los Alamos National Laboratory
MIT Bates Laboratory, Boston

MPI Heidelberg
POSTECH, Korea
Paul Scherrer Institute, Villingen
Soviet Academy of Sciences, Leningrad
Soviet Academy of Sciences, Novosibirsk
Stanford Linear Accelerator Center
TRIUMF
Texas A + M, College Station
Texas Tech
Universite Laval
University of Beijing
University of Berlin
University of Bochum
University of Bonn
University of Frankfurt
University of Giessen
University of Groningen
University of Saskatchewan
University of Wisconsin
Wilson Laboratory, Cornell University

Currently processing about 20 more license registrations.

 The new institutions involved areBoeing, Seattle
CEA, Saclay
Grumman Aerospace, Princeton
Indiana University Cyclotron Facility
Interatom, Bergisch Gladbach
SSC Laboratory, Dallas
University of California Los Angeles
Varian Associates, Palo Alto

Environments in which COSY currently runs

1. Systems

- VAX VMS
- SUN
- HP
- IBM Mainframes
- IBM PC (Lahey F77)
- Cray

2. Graphics

- Direct Tektronix
- Direct PostScript
- $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ picture mode
- GKS-based VAX VMS
- GKS-based Tektronix
- GKS-based PostScript
- GKS-based HP7475 plotter
- GKS-based HP Paintjet / DEC JL250
- IBM PC VGA with Lahey F77
- Low resolution ASCII

Elements in COSY

- Magnetic and electric multipoles
- Superimposed multipoles
- Combined function bending magnets with edge angles
- Electrostatic deflectors
- Wien filters
- Wigglers
- Solenoids
- Glaser round lens
- 3 tube electrostatic round lens
- Exact fringe fields to all of the above
- General electromagnetic element
- Glass lenses, mirrors, prisms with arbitrary surfaces
- Misalignments: position, angle, rotation

All can be computed to arbitrary order, and the dependence on any of their parameters can be computed.

Applications of COSY INFINITY

- Interactive design of spectrometers
- Interactive design of accelerator lattices
- High-order analysis
- Fringe field analysis
- Measured fields
- Error analysis, parameter dependences
- Closed orbit, lattice parameters, parameter dependence of these
- Normal Form, resonant and non-resonant, resonance driving terms

The COSY Language

- Structured Language with nesting of procedures
- Object oriented; allows direct DA and picture variables
- Flow control statements including optimization

BEGIN ;

VARIABLE ;
PROCEDURE ; ENDPROCEDURE ;
FUNCTION ; ENDFUNCTION ;
<assignments>
<procedure calls>

| IF ; | ENDIF ; |
| :--- | :--- |
| WHILE ; | ENDWHILE ; |
| LOOP ; | ENDLODP ; |
| FIT ; | ENDFIT ; |

END ;

MAGNET WITH ERRORS

```
PROCEDURE HOBEND ; {NINTH ORDER INHOMOGENEOUS
MAGNET WITH AXIS OFFSET, TILT AND ROTATIOM}
OV 9 2 O ; RP.141 ;
UM ;
RA .1 ;
SA 1E-6 0 ;
TA .02 0 ; WRITE 6 ' BEGIMNIMG HORK '
MS 2 45 . 05 .1 .2 . 3 .4 .5 ;
PM 7 ;
EMDPROCEDURE ;
WRITE 6 ' WRITIMG MAP ' ;
WRITE 6 ' DONE ' ;
```


MAPS WITH KNOBS

```
PROCEDURE KNOBS
    OV 5 2 2 ; RP.1*PARA(1) 4 1 ;
    UM ;
    MQ .1 .1*PARA(2) .1 ; WRITE 6 'WRITING MAP' ;
    WRITE 6 MAP(1) ;
    PM 7 ;
    WRITE 6 ' DONE ' ;
    ENDPROCEDURE ;
```


The General Electromagnetic Element

Allows the computation of the map of any given arrangement of fields, especially measured data. Need to supply

- List of s-values (Position along optic axis)
- List of Curvatures
- List of magnetic multipole strengths
- List of electric multipole strengths

If known, the derivatives of the above quantities with respect to s can also be supplied; allows more coarse spacing / higher accuracy. Example:

GE 1005 S H V W ;

Currently we are working on an interface routine that accepts measured data on a 3D cartesian grid (expected September 91).

Beamline Definition

```
PROCEDURE MAGIC_SYSTEM D L SO1 SO2 SO3 ;
    DL 3.*D ;
    MQ L . 08 . 05 ;
    DL D ;
    MOL L -. 08 . 05 ;
    DL D ;
    MO D SO1 .05 ;
    DL D/2 ;
    MO D SO2 . 05 ;
    DL D/2 ;
    MO D SO3 .05 ;
    DL D ;
    MQ L . 08 . 05 ;
    DL D ;
    MQ L -.08 . 05 ;
    DL 3.*D ;
    ENDPROCEDURE ;
```


Tuning the Magic System

PROCEDURE MAGIC1 ; VARIABLE L 1 ;
OV 120 ; RP . 141 ; L := . 1 ;
SB 0.050 .0500 ;
WHILE L\#C ;
WRITE 6 ' PLEASE GIVE L (. $1<\mathrm{L}<1$)' ;
READ 5 L ;
UM ; CR ; ER 14141111 ;
BP ; MAGIC_SYSTEM . 05 L 000 ; EP ;
PM 6 ; PG -1 -51 ;
ENDWHILE ;
ENDPROCEDURE ;

Third Order Optimization

PROCEDURE MAGIC3 ;
Variable L 1 ; Variable 011 ; Variable 021 ;
Variable 031 ; Variable oX 1 ; Variable oy 1 ;
OV 320 ; RP . 141 ; L := . 258538902555212 ;
SB 0.010 .0100 ;
01 := -1E-2 ; 02 := $2 \mathrm{E}-2$; 03 := -1E-2 ;
FIT 010203 ;
UM ; CR ; ER 14141111 ;
MAGIC_SYSTEM . 05 L 010203 ;
BP ; LL 1E-3 ; EP ;
$\mathrm{OX}:=\operatorname{ABS}(\mathrm{MA}(1,222))+\operatorname{ABS}(\operatorname{MA}(1,233))$;
OY := $\operatorname{ABS}(\operatorname{MA}(3,444))+\operatorname{ABS}(\operatorname{MA}(3,422))$;
WRITE 6 ' OCT. STR. O1, 02, O3: ' 010203 ;
WRITE 6 , SUM OF THIRD ORDER ABERRATIONS
(ANGSTROM): ' (OX+OY)*1E10 ;
PG - 1 -51 ;
ENDFIT OX+DY 1E-12 10001 ;
ENDPROCEDURE ;

Fifth Order Aberrations

```
PROCEDURE MAGIC5 ; VARIABLE L 1 ;
    VARIABLE 01 1 ; VARIABLE 02 1 ; VARIABLE 03 1;
    VARIABLE OX 1 ; VARIABLE OY 1 ;
    OV 5 2 0 ; RP . 1 4 1 ; L := . 258538902555212 ;
    SB 0.01 0 .01 0 0 ;
    01 := -1.3154806E-2 ; U2 := 2.5379889E-2 ;
    03 := -1.3154772E-2 ;
    UM ; CR ; ER 1 4 1 4 1 1 1 1 ;
    MAGIC_SYSTEM . 05 L 01 02 03 ;
    BP ; DL 1E-5 ; EP ;
    OX := ABS (MA (1,22222))+ABS(MA (1, 22244))
        +ABS(MA(1,24444)) ;
    OY := ABS (MA (3,44444))+ABS(MA (3,44422))
        +ABS(MA(1,42222)) ;
    WRITE 6 ' SUM OF FIFTH ORDER ABERRATIONS
        (ANGSTROM): , (OX+OY)*1E10 ; PG -1 -51 ;
    RE/. 5 L ;
    ENIDROCEDURE ;
```

Lissajoux Figures
PROCEDURE LISSA ;
VARIABLE ISTOP 1
PROCEDURE FIGURE IU WX WY ;
VARIABLE PICTUHE 100000 ; VARIABLE T 1 ;PICTURE := MOVE ($1,0,0$) ;LOOP T 0 8*ATAN(1) . 01 ;
PICTURE := PICTURE\&DRAW(COS (WX*T), SIN(WY*T), 0) ;ENDLOOP ;WRITE IU PICTURE ;
ENDPROCEDURE ;
WRITE 6 ' DRAWING LISSAJOUX FIGURES ' ;
FIGURE -1 1112 ; FIGURE -51 1213 ;READ 5 ISTOP ;
ENDPROCEDURE

Figure 4: The beam npole for "uncorrected(top)", "mextupole corrected(middle)" and "octupole cor-
 $d_{0}=b_{0}=0.001$ and the right ande is for $x_{0}=10=10 \mu \mathrm{~m}, a_{0}=b_{0}=0.001$ in the demagnification ratio of 20 to 1.

V_{i} selerinane V.
Salve n Fointale Tontemas, ishare (othe j-th $\sim 0,1 / i=1,1 i=-(i \neq j)$.
cree $18=0 \mathrm{of} \quad{ }^{\prime}$ '.
Tiren, in general,

$$
V=\sum V_{j} \cdot V^{(j)}
$$

$V^{(j)}$ depends olly in geanetry (e.g. Cigki. and have to be comisked ully a is. Octal. simplifiration: cyei-ancal Sigi.:
\Rightarrow Ding a hormoinc cm.n.lysis olice for thei $V(i)$ allocis a hormsuric annis of any Potemtial.
Mals pole terns: $\sum V_{j} \cdot m^{(j)}$

Normal Form Theory

Goal: perform a nonlinear change of variables such that the motion in the new variable pairs is rotationally invariant:

$$
\mathcal{M} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{M}
$$

If the map is symplectic, this means circles. If the map is damped, we obtain logarithmic spirals.

Advantage: Tune with amplitude is trivial to compute, since each iteration of the map corresponds to the same a:agle advance.

Other Advantages: - Provides pseudo invariants the quality of which allows conclusions about the map; - sensitive to resonances, allows efficient study or resonances

History of Normal Form Theory

- Probably first studied by Birkhoff 1917
- Introduced to Accelerator Physics in Lie Algebra Picture by Dragt and Finn 1979
- Lie implementation to third and fifth order by Neri 1985
- Arbitrary order differential algebraic/Lie algebraic formulation 1938
- Arbitrary order purely differential algebraic formulation including damped systems M.B. 1991

The DA Normal Form Algorithm

Assume linear part of map has been diagonalized by a linear change of basis:

$$
\mathcal{M}=\mathcal{R}+\mathcal{S}
$$

where R has on its diagonal the values $r_{j} \cdot e^{ \pm i \nu_{j}}$ (pair structure).

Now attempt to simplify the map by a nonlinear transformation. Choose transformation

$$
\mathcal{A}_{m}=\mathcal{E}+\mathcal{T}_{m}
$$

Up to order m, the inverse is $\mathcal{A}_{m}^{-1}={ }_{m} \mathcal{E}-\mathcal{T}_{m}$, and we obtain

$$
\begin{aligned}
& \mathcal{A} \circ \mathcal{M} \circ \mathcal{A}^{-1} \\
&={ }_{m}\left(\mathcal{E}+\mathcal{T}_{m}\right) \circ\left(\mathcal{R}+\mathcal{S}_{m-1}\right) \circ\left(\mathcal{E}-\mathcal{T}_{m}\right) \\
&={ }_{m}\left(\mathcal{E}+\mathcal{T}_{m}\right) \circ\left(\mathcal{R}+\mathcal{S}_{m-1}\right) \circ\left(\mathcal{E}-\mathcal{T}_{m}\right) \\
&={ }_{m} \mathcal{R}+\mathcal{S}_{m-1}+\left(\mathcal{T}_{m} \circ \mathcal{R}-\mathcal{R} \circ \mathcal{T}_{m}\right)
\end{aligned}
$$

Removing Terms in the Normal Form Step

We can use the commutator \mathcal{C} of \mathcal{T}_{m} and \mathcal{R} to remove terms from \mathcal{S}_{m-1}. We write

$$
\begin{aligned}
& \mathcal{T}_{m j}^{ \pm}=\sum\left(\mathcal{T}_{m j}^{ \pm} \mid k_{1}^{+}, k_{1}^{-}, \ldots, k_{n}^{+}, k_{n}^{-}\right) \cdot\left(v_{1}^{-}\right)^{k_{1}^{+}}\left(v_{-}^{-}\right)^{k_{1}^{-}} \cdot \ldots\left(v_{n}^{+}\right)^{k_{n}^{+}}\left(v_{n}^{-}\right)^{k_{n}^{-}} \\
& \mathcal{C}_{m j}^{ \pm}=\sum\left(\mathcal{C}_{m j}^{ \pm} \mid k_{1}^{+}, k_{1}^{-}, \ldots, k_{n}^{+}, k_{n}^{-}\right) \cdot\left(v_{1}^{+}\right)^{k_{1}^{+}}\left(v_{1}^{-}\right)^{k_{i}^{-}} \ldots . .\left(v_{n}^{+}\right)^{k_{n}^{+}}\left(v_{n}^{-}\right)^{k_{-}^{-}}
\end{aligned}
$$

Because of the simple form of \mathcal{R}, we obtain

$$
\begin{aligned}
& \left(\mathcal{C}_{j}^{ \pm} \mid k_{1}, k_{1}^{-}, \ldots, k_{n}^{+}, k_{n}^{-}\right) \\
= & -C_{j}^{ \pm}\left(\vec{k}^{+}, \vec{k}^{-}\right) \cdot\left(\mathcal{T}_{j}^{ \pm} \mid k_{1}^{+}, k_{1}^{-}, \ldots, k_{n}^{+}, k_{n}^{-}\right)
\end{aligned}
$$

where

$$
C_{j}^{ \pm}\left(\vec{k}^{+}, \vec{k}^{-}\right)=r_{j} \cdot e^{ \pm i i_{j}}-\left(\prod_{j=1}^{n}\left(r_{j}\right)^{k_{j}^{+j}+k_{j}}\right) \cdot e^{i^{-\pi\left(\bar{k}^{k}-\vec{k}^{-}\right)}}
$$

So we can remove every term for which $C_{j}^{ \pm}\left(\vec{k}^{+}, \vec{k}^{-}\right)$is nonzero!

Removable Terms in the Symplectic Case

In the symplectic case, all r_{j} are one (no damping). Then everything is removable except

$$
\vec{\nu} \cdot\left(\vec{k}^{+}-\vec{k}^{-}\right)=l \cdot 2 \pi \pm i \cdot \nu \quad \forall l
$$

This can occur in the following cases:
$1 . \vec{n} \cdot \vec{n} \boldsymbol{u}=2 \pi l$ has nontrivial solutions (we are on a resonance; physics case)
2. $k_{l}^{+}=k_{l}^{-} \quad \forall l \neq j$, and $k_{j}^{+}=k_{j}^{-} \pm 1$ (unavoidable; mathematics case)

Removable Terms under Damping

In case there is damping (or blow up), some of the r_{j} are not 1 . In this case, additional terms can be removed.

Of particular interest is the case of total damping in which all r_{j} are less than one. Then everything can be removed except

1. $k_{l}^{+}=k_{l}^{-}=0 \quad \forall l \neq j$, and $k_{j}^{+}=k_{j}^{-} \pm 1$ (unavoidable; mathematics case)

But this is the identity!

This has important consequences:

- Damped systems are not susceptible to resonances
- There are no amplitude dependent tune shifts in damped systems

On-line Correction of Aberrations in Particle Spsctrographs

M. Berz, K. Jual, J. A. Nolen
Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory,
B. M. Sherrill and A. F. Zeller
National Superconducting Cyclotron Labora:ory, Michigan State University, East Lansing, Mi 48824

Abstract

A new method is presented that allows the reconstruction of trajectories and the on-line correction of residual aberrations that limit the resolution of particle spectrographs. Using a computed or fitied high order transfer map that describes the uncorrected aberrations of the spectrograph under consideration, it is possible to determine a pseudo transfer map that allows the computation of the corrected data of interest as well as the reconstructed trajectories in terms of pusition measurements in two planes near the focal plane. The technique is only limited by the accuracy of the position measurements and the accuracy of the transfer map. In practice the method can be expressed as an inversion of pseudo transfer map and implemented in the differential gebrasc framework. The method will be used to correct residual high aberrations in the S 800 spectrograph which is under construction at the Natione! Superconducting Cyclotron Laboratory at Michigan State University.

1 Introduction

Efficient modern high-resolution mass spectiographs usually offcr rather large phase space acceptances. One such spectrograph is the S 800 currently under construction at Michigan State University's National Superconducting Cy. clotron Laboratory [1, 2] Such large acceplance high resslution spectrographs usually require a careful consideration and correction of aberrations But because of the large phase space acceptance, effecty of ralher high orders contribute This makes the correction process often considerably moie difficult and complex, and sometimes everi prevents a complete correction of alierrations in the conventional sense.
It is often possible to circumbent of at least alleviate thrse problems by using adduonal information about the particles. In particular, one uften mirasures not only their final persetion but also their final angle ly menns of a sec. ond detector. With thas adiatomal mformation it is to me degree possible to retroartarely construct the whole

[^3]trajectory of the particle. This information can be used ooth for he numerical correction of the quantities of interest, but uta reveals additional properties like the initial angle, which is of course of interest in the study of many nuclear processes.

In the past such trajectory recoiatruction techniques were quite involved, often requiring extensive ray tracing and the storage of large arrays of ray data and extensive interpolation. In this paper, we present a racher direct and efficient method besed on differential algebraic (DA) techniques.

In recent years we have shown that maps of particle optical syatems can be computed to much higher orders than previously possible using DA methods $[3,4,5,6]$. Furthermore, the techniquea also allow the accurate treatment of very complicated fielde that can be treated only approximately otherwise. In our particular caee, these include the fringe fields of the large aperture magnota required for such particle spectrographs. So for the firat time there is now the possibility to really compute all the aberrations that comprise a modern high resolution spectrograph without having to rely on tedious ray tracing.

On the practical side this requirea high order codes for the computation of highly accurate maps for realiatic fields. The new code COSY INFINITY (7, 8, 9, 10) allows such computations in a very powerful language environment. It also has extensive and general optinuzation capabilities. supports interactive graphics and provides ample power for customized problema, and it provides all the necessary tools for efficient trajectory reconstruction.

In the next section, we will discuas an important algorithm for this task, the inveraion of tranafer mapa. Section 3 outlines the use of map inversion techniques for the purposen of trajectory reconstruction. Section 4 provides an outlouk for the practical application in connection with the S800 spectrograph.

2 Inversion of Transfer Maps

At the core of the operations that follow is the nerd to invert tranafer maps in their DA representation 'lhough at firat glance this appeara like a very diflicult problem, we will see that indeed there is a rather regant and closed
agontinm to pertorm this task
We begin by splitting the map A_{n} into its linear and ulinear parts:

$$
\begin{equation*}
A_{n}=A_{1 n}+A_{2 n} . \tag{1}
\end{equation*}
$$

Furthermore, we write the sought for inverte as M_{n}.

$$
\begin{equation*}
A^{-\ln }=M_{n} \tag{2}
\end{equation*}
$$

Composing the function, we obtain

$$
\begin{align*}
\left(A_{1}+A_{2 n}\right) \circ M_{n} & =E_{n} \Rightarrow \\
A_{1} \circ M_{n} & =E_{n}-A_{2 n} \circ M_{n} \Rightarrow \\
M_{n} & =A_{1}^{-1} \circ\left(E_{n}-A_{2 n} \circ M_{n-1}\right) . \tag{3}
\end{align*}
$$

Here "on stands for the composition of maps. In the last atep use bas been made of the fact that knowing M_{n-1} allows us to compute $A_{2 n} \circ M_{n}$. The neceseary computation of A_{1}^{-1} u a linear matrix invervion.

Equation (3) can now be uned in a recursive manner to compute the M_{i} order by order.

3 Trajectory Reconstruction

The result of the computation of the transfer map of the syatem allows us to relate final quantities to initial quan-- itien and parameters. In our caee, the relevant quantitice - the positions in x and y directions an well an the mea rea of alopes $p_{s} / p_{0}, p_{y} / p_{0}$ and the energy of the particles under ecranderation. Uaually the initial x, which is deter. mined by the target thickness or a subsequent slit, is kept amall to provide a minimal entrance width. So the final ponitions and slopea are primarily determined by the energy, and to bigher ordera aleo by the initial y porition and the initial slopen.

In the full tranfer map we now set x_{i} to zero and consider the following submap:

$$
\left(\begin{array}{l}
x_{f} \tag{4}\\
a_{f} \\
y_{f} \\
b_{f}
\end{array}\right)=S\left(\begin{array}{l}
a_{i} \\
y_{i} \\
b_{1} \\
d
\end{array}\right)
$$

This map relates the quannties which can be measured in the two planea to the quantities of intereat. The map S is not a regular tranafer map, and in particular ile linear part does not have to be a priof invertible. In a well dexigned particle apectrograph, the linear part has the following form:

$$
\left(\begin{array}{l}
x_{f} \tag{5}\\
a_{f} \\
v_{f} \\
b_{f}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
a_{1} \\
y_{1} \\
b_{1} \\
d_{1}
\end{array}\right)
$$

sre a star denotea an entry that is not zero Since the syatem is imaging, clearly (x, a) vanishes, and all the other

Figure 1: The vertical layout of the $\mathbf{S 8 0 0}$ apectrograph
zero terms vanish because of midplane aymmetry (x, d) is maximized in apectrograph design, and (a, a) cannot vanish in an imaging ayatem because of aymplocticity. In fact, to reduce the effect of the finite aize entrance slit, (x, x) is minimized within the conatrainta, and $m(a, a)=1 /(x, x)$ is also maximised.

Because of aymplecticity, $(y, y)(b, b)-(y, b)(b, y)=1$, and $s 0$ we oblain for the total determinant of S :

$$
\begin{equation*}
|S|=(x, d) \cdot(a, a) \neq 0, \tag{6}
\end{equation*}
$$

besides being nonzero, the size of the determinant is also - good measure of the quality of the spectrograph: the larger the better.

So certainly the linear matrix is invertible, and according to the lat section, this entaite that the whole nonlinear map S is invertible to arbitrary order, and thus it is posaible to compute the initial quastities of intereat to arbitrary order.

A closer inspection of the algorithm shows that in each iteration, the resilt is multiplied by the inverse of the lineal matrix S. Since the determinant of this inverse is the invirse of the original determinant and in thus quite amall, this enteile that the originally large terms in the nonlinear part of the original map are more and more suppresed. So clearly even with trajectory construction, the original investment in the quality of the spectrograph, which in determined by ita diapersion and ita x demagnification, directly influencres the quality of the trajectory reconatruction.

4 The Correction of Aberrations in Spectrographs

The proposed auperconducting magnetic apectrograph, the S8OU [1] shown in fg 1, for the National Superconducting Cyclotron Laboratory will allow the atudy of heavy ion reactions with magnetic rigidities of up to $1.2 \mathrm{GeV} / \mathrm{c}$. It will have an energy reanlution of one part in 10000 with

Table 1: The S800 Spectrograph

| Drift | $I=60 \mathrm{~cm}$ |
| :--- | :--- |
| Quad | $I=40 \mathrm{~cm}, G_{\text {mas }}=21 \mathrm{~T} / \mathrm{m}, \mathrm{d}=.01 \mathrm{~m}$ |
| Drift | $I=20 \mathrm{~cm}$ |
| Quad | $I=40 \mathrm{~cm}, G_{\text {mas }}=6.8 \mathrm{~T} / \mathrm{m}, d=.02 \mathrm{~m}$ |
| Drift | $I=50 \mathrm{~cm}$ |
| Dipole | $\mathrm{r}=2.6667 \mathrm{~m}, B_{\text {mas }}=15 T, \phi=75 \mathrm{deg}$, |
| | $\mathrm{c}_{1}=0 \mathrm{deg}, c_{2}=30 \mathrm{deg}$ |
| Drift | $I=140 \mathrm{~cm}$ |
| Dipole | $\mathrm{r}=2.6667 \mathrm{~m}, B_{\text {mas }}=1.5 T, \phi=75 \mathrm{deg}$, |
| | $\mathrm{I}_{1}=30 \mathrm{deg}, \mathrm{c}_{2}=0 \mathrm{deg}$ |
| Drift | $1=257.5 \mathrm{~cm}$ |

large solid angle of about 20 ms ; and an energy acceptance of sbout 10 percent.

The apectrograph will be used in connection with the new K1200 Superconducting Cyclotron for beams of protons up to Uranium with energies of 2 to $200 \mathrm{MeV} / \mathrm{u}$. It will provide unique opportunsties for research in various areas, including the atudy of giant resonancen, charge exchange, direct reaction atudies and fundamental invealigations of nuclear atructure (11).

The S800 consists of two superconducting quadrupolea and two 75 degree dipoles with y-focusing edge angles. Table I lista the parameters of the syatem The settings of the quadrupoles shown here correspond to particles of 193.04 MeV, r a 100 and charge 50. Standard optica notation is used.

After a careful measurement of the crucial fringe ields of the dipoles, we will be using COSY to determine the high order propertles of the map of the spectrograph The computation of the maps from the reaulung transfer map can be performed directly withon the COSY environment, and so can the inveration of the map S Altagether, a correction mas. S in found, the nonlmearity of which in determined by the nonlinenrity of the origimal map and the quality in the spectograph meanured by $(x, d) /(x, x)$ It in anticipated that the corrertion map can be uned for an on line determination of the relevait data without having to store the raw two plane portion measurementa

In rloniliz we would like to nume that ilie methoded entalao be employed for spertroxpaplis for which no nuflitient field mennuremente are knowill 'To than rodd, whe lian to perform expremitiental ray tracing and fit the tesulteng data with a polynominal type tranifer map Alau ill than enase, the ivernon ran be dolie in the map piture renulting in a ather rompart erpersentaion of the data necessary for corpection.
$1 . .2$:

References

[1] J. Nolen, A F. Zeller, B. Sherrill, J. C. DeKamp, and J. Yurkon A proposal for construction of the $\mathbf{S 8 0 0}$ spectrograph. Technical Deport MSUCL-694, Netional Superconducting Cyclotrun Laboratory, 1989.
[2] L. H. Harwood A. F. Zeller, J. A. Nislen and E. Kashy. The MSU $1.2 \mathrm{GeV} / \mathrm{e}$ spectrograph. In Workshop oll High Resolution, Large Acceplance Spectrometers, ANL/PHY-81-2. Argonne National Laboratory, 1982.
[3] M. Berz. Arbitrary order deacription of arbitrary particle oplical syatems. Nuclear /nstruments and Methods, A298-426. 1990.
[4] M Bers. Differential Algebraic deacription of beara dynamice to very high orders. Particle Accelerators. 24:109, 1980
[5] M. Berz. Differential Algebrace treatment of beam dynamice to very high orders including applicationa to upacecharge. AIP Conference Proceedings, 177 275, 1988
[6] M Berz. Differential Algebraic descriplion and analyais of trajectories in vacuum electronic devices including spacecharge effects IEEE Transactions on Eleciron Devices, 35-11:2002, 1989.
[7] M Berz. COSY INFII:ITY Version 3 reference mall. ual Technical Report MSUCL-751, National Supercoliducting Cyclotron Laboratory, Michigan State Univeraity, East Lanaing, MI 48824, 1990.
[8] M. Berz. Computational aspecta of design and aimulation C.OSY INFINITY. Nuclear Instrumsents and Methods, A298:473, 1990
[9] M Berz. COSY INFINITY, an arbitrary order general purpose opticn code Comnuter Codes and the Linear Accelerator Communidy, Loa Alamon LA-11857-C:I37. 1890.
[10] M Berz COSY INFINITY. In Pruceedings 1991 Parlicle Accelerator Conference, San Franciaco. CA, 1091.
(II) N. Anantarnman and H. Sherrill, Editora. Proceed. anga of the international conference on heary ion research with magnetic npectrographa. Technical IReport MSUCL-fi85, National Superconducting Cyrluteron Laboratory, IOAD.

A POSSIBLE TEST OF QUAD OPTICS USING EPICS

- a Talk for
- PILAC Optics Meeting
-by
- Arch Thiessen
- 13 August, 1991

EPICS Spectrometer Quad Triplet

- Installed and Operating
- Use Experimental Ray-Tracing Only
- Full 3rd Order Coefficients Available
-
- Try to Compute Coefficients
- and Solid Angle

What I Have in Mind

- Compute 3-D Fringe Fields
- Using TOSCA
- Take Account of Adjacent Quad
- Measure 3-D Fringe Fields
- Using Proposal of Klaus Halbach
- Measure Bphi vs phi at large r
- Analyze with Bessel Functions
- In Presence of Adjacent Magnet
- Align Chambers, Targets, and Slits
- And Measure Location of Vac Chbr
- Modify RAYTRACE/MOTER
- Use TOSCA \& Measurement Info
- Compute Coefficients and Solid Angle
- Compare with Experiment

Personnel \& Time Scale

- TOSCA
- Barbara Weintraub - next 1-2 months
- Including effects of Adjacent Quad
- Measurement Apparatus
- Modity by Xmas
*With Advice of Klaus Halbach
* Measure in Place
- Designed by
- Barbara Weintraub
- Steve Greene
- John Zumbro
- Measurement Logistics
- Measure Before Beam on (May?)
* Barbara Weintraub - MP-8
* Steve Greene - EPICS
* John Zumbro - MP-14
- Bessel Function Analysis
- Jeff Arrington - ACU
- MOTER/RAYTRACE Mods
- Zumbro \& Thiessen
- U of Pa Student?
- Comparison of Experiment and Theory
- Zumbro \& Greene

Value of Experiment

- A Clear Goal
- Tests Concepts for PILAC Design
- Gives EPICS Confidence in Solid Angle

RAPPORTEUR

PILAC OPTICS WORKSHOP

AUGUST 12，13， 1991

RAPPORTEUR

K．BROWN

1）PILAC in its present form is a highly optimized design． Many things have to work right at the same time．In this respect，PILAC resembles SLC at SLAC．It would be useful to make improvements to the design that provide a margin for error．

2）Optics programs are in good shape．With Lie－Algebra and calculations to very high order，in some cases to tenth order．This is an important achievement for the field． Many important problems can now be addressed that were impossible previously．Many papers can be written． But some of this work will be meaningless unless the magnetic field models in the codes are also improved to models．This workshop gave some clues as to how to begin．

EVALUATION OF ENVIRONMENTALLY SAFE CLEANING AGENTS FOR DIAMOND TURNED OPTICS

Lonnie A. Theye, Robert D. Day, Jeffrey Weinrach
Los Alamos National Laboratory
Los Alamos, NM 87545

Rudolf Schubert
Bell Communications Research Red Bank, NJ 07701

Stephen Seiffert Benchmark Environmental Corporation

Albuquerque, NM 87110

Background and Need:

Precision machining of metal surfaces using diamond turning has increased greatly in popularity at LANL in recent years. Similar techniques are used extensively to manufacture metal mirrors for use in laser applications. The diamond tumed surfaces are easily damaged, making the selection of a cleaning agent very criticai.

These surfaces have been traditionally cleaned using Trichloroethane (TCA) to remove residual oil remaining from the machining process. The TCA was then removed with an ethanol rinse, leaving a residuc free surface. Recently, however, TCA was pronounced environmentally unsafe. Consequently, we are searching for an environmentally safe cleaning agent for these diamond tumed metal optics.

The concen with using altemative solvents is the potential for residual surface films that produce reflectivity changes related to a combination of wavelength, surface coverage, film thickness and dielectric propertics. Therefore, we 'ave initiated a program for testing the effectiveness of a variety of environmentally safe solvents used to clean diamond turned optical surfaces.

Our basie est plan consists of comparing a number of environmentally safe solvents against the TCA/ethanol cleaning system. We have identified twelve candidate solvents, but have only been able to perform a partial test on one of them to date. This paper discusses the results obtained to date using this solvent known as Pドl|.

Iexperimental Procedure:

Three dificenomaterials have leecon used for the essts. They are: (xypen free high conductivity (OHIC) copper, electrolytic tough pitch (E:T1) copper and (x) (el aluminum. These materialis were selected lecause they are currently used for many diamond machiming applicanoms. Test specimens were com from a

The surfaces to be tested were finished using a single-point diamond tool with a tool nose radius of approximately 3 mm . The machining conditions were adjusted so that a $1 \mathrm{vm} / \mathrm{rev}$ feed was obtained.

A fixture was made to simultaneously machine ninc Glanks. Clean mineral oil was used as a cutting fluid. After removing the blanks from the machine they were stored in a mineral oil bath until they could be cleaned. The mineral oil plus any particulates generated by the machining process must be cleaned from the surface.

The cleaning procedure consisted of squirting cleaning solvent onto the oily surface and then air-drying with pressurized clean air. The fluid coming off of the surface during the cleaning process was collected for subsequent chemical analyses.

The following techniques are used to evaluate each solvent's effecriveness:
A. Bidirectional Reflectance Distribution Function (BRDF) scatter measurements
B. Ellipsometric analysis.
C. Observation of the surface using a Nomarski microscope.
D. Artificially aging for the equivalent of ten years using those solvents which provide the best surfaces based upon the three techniques listed above. After aging, an Auger analysis will be performed to determine surface contanination film thickness.

BRDF Measurements:

The BRDF is a measure of the amount of light scattered by a surface away from the normal angle of reflection. It is sensitive :o both particulates and surface films and is a good measure of the surface performance in a typical application. For the purposes of this suidy, the BRDF measurements provide a functional criterion against which to evaluate the solvents. These measurements are made at a wavelength of 0.6328 mm and at off axis scattering angles between 0.5° and 6$)^{\circ}$. These correspond to a range of surface wavelengths between $0.73 \mu \mathrm{~m}$ and $73 \mu \mathrm{~m}$.

Ellipsometry Mcasurements:

Ellipsonetry is a sensitive technique used to measure surface film thichnesses of less than one monoliyer. Therefore it is a very good quantitative method for determining how well a solvent removes surface oils. By using data obtained from the chemical analyses perfomed on the collected rinses atong with a mathematical model, ellipsometric measurements can be used to deternine the type and amount of surface contaminant. An advantage of this technigue is that it works in air as opposed to vacumen.

Nomarski Micro:cope:

According to Bemen and Mantsom [2| the Nomarski (or Differential Interference Contrast) microscope is the most sensitive instrunent for observing surface clemtiness next whe human cye. It is a poxd methex for reconding the sumate comdition on film, bum since it prexduces a qualitative amalysis if dexes no provide a mumetical companson of resules

Artificial Aging and Auger Analysis:

Long term performance of an optic is often an imporant requirement. Since the cleani ig solvent affects surface chemistry, it was decided to artificially age the specimens after cleaning them. The aging is perfonmed in a chamber with an atmosphere containing high concentrations of corrosive chemicals rormally present in our environment. For example, a typical corrosive atmospheric mixture will be $10-\mathrm{ppb}$ hydrogen sulfide, $10-\mathrm{ppb}$ chloride, and $200-\mathrm{ppb}$ nitrogen dioxide with a relative humidity of 70\% [3]. The Auger analyses performed after aging determines the surface contamination thickness as a function of the solvents used.

Data Analyses Obtained Thus Far:

To date BRDF measurements have been made on three cleaning systems:

1) trichloroethane with an ethanol rinse
2) $P F$ with an ethanol rinse, and
3) $P F$ with no rinse.

Figures 1 through 6 are plots of these data for ETP copper and 6061 aluminum. (The results for the OFHC copper were very similar to those obtained for the ETP copper and therefore are not presented.) An examination of these plots reveals that the amount of scatter produced from the surface cleaned with the PF/ethanol system was similar to that of the TCA/ethanol system for both copper and aluminum substrates. The surfaces that were cleaned using PF without the ethanol rinse produced much more scatter than the surfaces cleaned with the 'TCA/ethanol system. The peak observed at approximately 40 degrees on the copper data is caised by diffraction effocts from the machining marks.

Aging and Auger Analyses Results:

The copper and aluminum were aged for 10 days in an Accelerated Aging Chamber. Auger analyses were performed on each sample after the tests to determine the elements present in the contamination layer and to determine the contamination layer thickness. Figure 7 shows a typicai Auger Spectrum taken on one of the copper samples. Figures 8 through 10 are the depth profiling data for the ETP Copper samples with a sputtering rate of 100 angsuroms per minute. Figures 11 through 13 are the depth profiling data for the 6061 Aluminum samples with a sputering rate of 200 angstroms per minute. From these data it has been concluded that there is no "ignificant difference; between the eleaning procedures for either material with regard to future corrosion.
l:llipsometric measurements have been delayed because of mstroment repair

Summary:

We discussed the plan to test the cleaning, capability of a number of environtmentally safe solvents used on dianond tumed metal optics. Partia: results have been obtained on thee cleaning systems, indicating that a suitable replacenent for T'CA can be found.

Acknowledgemient:

This work was funded by the U.S. Depatmen of Dinery under contant

The authors wish :o express their appreciation to Saridia Systerns, Albuquerque, NM for taking the BRDF data.

References:

1. PF is a registered trademark of P-T Technologies of Clearwater, Florida.
2. Bennclı Jean M. and Mallsson, Lars, Introduclion lo Surface Roughness and Scallering. Optical Socicty of America, Washingion, DC; ;)89, p. 30.
3. Schubert, R., "A Second Generation Accelerated A.tmospheric Corrosion Chamber," American Sociely for Testing and Materials Special Technical Publication 965, pp. 374-384.

Fig. 1. ETP Copper with TCA and Ethanol Rinso

Fig. 2. ETP Copper with PF Rinse

Fig. 3. ETP Copper with PF and Ethanol Rinso

BRDF Measurements on 6061 Aluminum

Fig. 4. 6061 Aluminum with TCA and Ethanol Rinse

Fig. 5. 6061 Aluminum with PF Rinse

Fig. 6. 6061 Aluminum with PF and Ethanol Rinse

Fig. 7. Auger Spectrum for Artifically Aged ETP Copper

FIG. 8. TCA ETHANOL

FIG. 9. PF/ETHANOL

FIG. 10. PF/ONLY

FIG. 11. TCA/ETHANOL

FIG. 12. PF/ETHANOL

FIG. 13. PF/ONLY

T:TLE Portable Radiation-Detection Instruments for Distinguishing Nuclear from Non-nuclear Munitions

AUTHORIS: Paul E. Fehlau

SUBRitted TO IEEE Nuclear Science Symposium
 November 2-9, 1991
 Santa Fe, New Mexico

DISC'LAIMER

 I nitet blater Cuvernment i", ans apenat therenl

PORT．ABLE R．ADI．ATION－DETECTION I．SSTRL．MENTS FOR DISTINGLISHING NL．CLE．AR FROM NON－NCCLEAR MLNITIONS

Pal！E．Fehlau
Lus Alamos National Laboratory，Lus Alamos，New Mexico 8.545

Abstruct

The emission of gamma ray and fast neumrons by nuclear materials provides a vimple means for distinguishing between real nuclear munimons and other assemblies that are non－nuclear．such as nuclear－explosive－like test assemblies （．NEL．As）and conventional munitions．

The presence or absence of significant numbers of neutrons and iharacteristic plutonium gamma rays are distin－ guishing attributes for plutonium munitions．The presence of energetic gamma rays from $23-\mathrm{U}$ daughters．if present in uf－ fictent number，is a distinguishing attribute for highly en－ riched uranium munitions．Some portable instruments are being developed for venfying that munitoons are or are not nuclear．and others are already commercially avallable．The commercial ones have been evaluated for pre－flight non－ nuclear verificanon of NELAs in Air Force flight tests．

1．LNTRODUCTION

Radiation detection provides a convenient means to lest one or more attributes of a nuclear munition to verify that it is consistent with expectitions．For example，the emission of penetrating．characteristic gamma rays and neutrons from nuclear munitions contaning low－bumup plutonium can be used to distinguish them from either conventional munitions or test munimons that are non－nuclear，nuclear－explosive－like assemblies（：NELAs）．Similarly，munitions containing highly enriched uranium（HEUI）may be distinguished from NELAs by measuring penerrating gamma rays．provided that suffi－ vent amounts of the isolope 232 U and its daughters are present in the HEU．Some form of background may te present for any of these radiations，but the backgrounds are unually low．

II．．NCLEAR MATERIALS RADIATION

Almost all nuclear materials are radioactive and emit one ot more ispe：of ridial un．including neutron．alpha，and beta paricles and photon bremsstrahlung．x－rays．and ganma rath，The radoactive eminoms penetrate nuclear or encap－ valating materials with differing degrees of effectiveness． Alpha and hera paricle and lowenergy phrions for ex－ ample，are readly altenualed．making them valtable only for verituing a materia！sipe，wach as verif！ng that hare．
depleted－uranium pars are not highly ennched．Deutron and gamma ras from plutonium are more penerratng ．red are avalable as a verification ignature wuthade if ．in a． embled nuclear mun：tion．

Lou bumup plutonium contalns，atout nc；it the \therefore Pu wotope and emits both penetrating fast neurrons and intelise． penetratite．characteristic gamma rays in the enerey regon between 330 and +50 keV ． HEL ，however．emis ：ew neutrons，and its $185-\mathrm{keV}$ gamma ravs have limited penetra－ uon．Other uranium isotopes that may be present in HEL do have decay chans that lead to emission of penetratin！ gamma rays：！or example．23： L at 1.86 and 2.0 ．We C and 234L at 766 and 1001 keV ．However，for HEL＇，the intenutt？ of these higher energy gamma rays may be relathels low． and large detectors and long counting times may be needed to detect them．Another factor for these radiations in that they are often present in natural backgrounds．hence．using them for non－nuclear venfication may give less confidence in the result than would other methods．

III．PORTABLE INSTRLMENTS

Pcrable instruments for disunguishing muniuons wan he as basic as a simple alpha detector used to measure the ur－ face alpha－emission rate of bare uranium．munition parts，or they can be as complex as a pornable muluchannel analyzer （MCA）and high－purity germanium（HPGe）delector used to measure high－energy uranium－daughter radiations from ar as－ sembled munition．The middle ground is a class of poratie． hand－held instuments that often are small，battery－powered． and have intemal radiation detectors for rugeedness and microprocessor conirol for versatility．These insiruments can be readily specialized for venfying that plutonium in elther present or absent in a mumition．

The spe ：adized instruments u．e ethe，a neutron－，precific radiation detector th detect plutonium neurons or a gamma－ ray detect：and firmware to strp a characterintic plutontuin region－of－interest（ROI）from a broad gamma ray vecirum．

The sections that follow give examples of the following： （1）neutron verificalion instruments based on sims．！allun in pioporional－counter fast neutron Jelectors，and 2 gamma－
 gammaray region as a venalure for＇e preselce if plutonium

[^4]
IV. NEUTRON INSTRL\ENTS

A. Thermal Veatron Detecrors

Thermal neurron detectors are used to discriminate beineen real and other munitions because they can predominantly measure the neutrons in a mixed (neutron and gamma-ray) radiation field. However, the neutrons emitted by plutonium are fast neutrons so a polyethylete detector moderator is used to provide thermalization.

The two types of thermal neutron detectors in use are cintillation detectors based on enniched lithium (${ }^{6} \mathrm{Li}$), and ${ }^{3}$ He proportional counters. In these detectors. the gamma-ray response can be suppressed by using pulse-height discrimınation, as is illustrated (Fig. 1) by the pulse height spectra for enriched-lithium scintillators. The moderated ${ }^{6} \mathrm{Lil}(\mathrm{Eu})$-scintullator2 response to a ${ }^{252} \mathrm{Cf}$ fast-neutron source in (Fig. la) has a distinct peak region at the right from thermal and epithermal neutron interactions and a low-energy continuum region at the lefi from gamma-ray interactions. The two regions can be separated at the threshold of the neutron region by a pulse-height discriminator that will exclude gamma-ray pulses from environmental sources and other materials (such as depleted uranium) that may be found in NELAs.

The second scintillator in Fig. \mid is BC 7023, which comprises an enriched-lithium compound mixed with a $\mathrm{ZnS}(\mathrm{Ag})$ phosphor and encased in transparent plastic. lis pulse-height ıpecrrum (Fig. Ib) is a less intrusive one that does not give spectral infurmation in either the gamma-ray or neutron regions. The spectrum shows only a gamma-ray spike at very low energy and a diminishing continuum of neutron pulses over most of the range. A pulse-height discriminator set just above the gamma-ray spike effectively separates the gamma-ray response from the neutron response. The situa-

Fig. I Neutron reactions in the ${ }^{6} \mathrm{Lil}(\mathrm{Eu})$ scintillator (a) produce a peak region at the right, and ganima-ray interactions lead to a continuum of decreasing pulse heights at the left. In BC 702 (b), neutrons give the broad continuum, and gamma rays simply produce a spike at the extrem: left.

[^5] ly excludes any gamma-ray response.

B. Hand-Held Veutron Verification Instramemts

Two manufacturers have commercially produced a handheld neutron verification instrument originally developed [2] at Los Alamos for non-nuclear ventication of NEL.As. The Jomar Systems ${ }^{+}$JHH-22 and the TSA Systems ${ }^{5}$ NNV. +70 both use a moderated ${ }^{6} \mathrm{LiI}(\mathrm{Eu})$ scintillator and pulse-height discrimination to detect fast neutrons. The detector is moderated by surrounding it with horseshoe-shaped polyethylene and an acrylic light pipe (Fig. 2). Because munitions may provide some moderation, the moderator is thin in the most likely source direction. below the instrument's base.

Both the Jomar and TSA instruments were origmally developed as prototypes for last minute veritication that NELAs do not contain plutonium. The NNV-470 was selected for further development and now includes features that address the human factors involved in prelaunch, nonnuclear verification of NELAs carried by aircraft. These features include a large folding handle, membrane switches, and display illumination to facilitate using the instrument in a cold. dark environment by a persor, wearing foul-weather gear. Figure 3 shows the instrument being used, under less rigorous circumstances, by an operator from Sandia National Laboratories. the lead laboratory for implementing routine military use of the instrument. Besides the muniton measurement in progress in Fig. 3, both background measurements and before and after radioactive source checks of the instrument are included in the verification procedure.

Fig. 2 The moderator and light pipe in the neutron
 has an acti ch volume that is 2.5 cm in diameter and 0.2 cm thick. The photomultiplier is a Hamamatsu ivpe R 1924 thill is 2.9 cm in diameter and 7.9 cm long.

[^6]

Fig. 3 Last minute. preflight verification of NELAs uses ? 0 -s measurements and requires just a few minutes overall when carted out with the hand-held neutron verification instrument

C. Field Experience with the Hand-Held Neuron Instruments

During one year of field use of the neutron verification instruments by Sandia operators, three $20-\mathrm{s}$ measurements were used at each step in the venfication procedure. After each 20-s measurement. the instruments sound a beeper. display the result. and begin a new measurement. Reference 3 revieus the mesturement results obtained during the year, including refersnce measurement results for real munitions (Fig. : \therefore The real-munition results with the NNV- 470 are proporional to umilar measurement results from rouline verifications cartied out with a less portable MCA and ,hielded neulron-assay probe (SNAP) detector [4] at the Panrex plant. The approximately four-times-higher inurinsic effictency of the SNAP detector. estimaled at 10% in Ref. 4 , allows the plant to shorten their measurement times to 10 s . The corresponding measurement results for NELAs during prelaunch, non-nuclear verification were all close to back. ground and at least a factor of 10 below results for the real mumatom

1) Promonpe Instrunemes for Trecon Verificution

 marumenm ungt the lean monse and some what less senslase. BC - ${ }^{-0}$) sontillator have been produced as prototypes for powitle application to armsecontrol vel:fication. These improments ahtuese the ame intrinsic detection efficiency as

 measurements) for real munitions show lood proportionality with the corresponding Pantex confirmation results (x-a is. 10-s measurements). The outlying open-symbol points are for munitions in shipping contaners or launch velacles.
702. detector intrinsic efficiency for moderated sources $1 s$ will expected to be somewhat lower than the original detector.

One of the prototype instruments appears identical to the original NNV -470 , but is shghtly heavier at 1.5 kg . The second prototype has a much different appearance because is detecior assembly is mounted at the end of an extendable pole. The exiended detector provides ineasurement access to munitions that, for whatever reason, are not within an arm', reach with the original instrument.

A much different prototype ams-control instrument for detecting neutrons from munitions more than an arms length away is a perable. self-contained, ! 0 -kg. brieficase countung system that uses moderated 'He proporitonal counters for in delector. The $5-\mathrm{cm}$-diam, $25-\mathrm{cm}$ active length, proporional counters are mounter in hemi-cylindrical polyethelenc moderators and have a high counter-gas preswire 10 A). These design features, described further in Ref. S. provide good derector response to both bare ind moderated neutron sources. The briefcase uses a Motorola 6 KHClI microprocessor. a large LCD, and a 512 -hbyte mass-ntorage RAM card to permit it to search for neutron sources, verily munitions, or monitor aid display time-histories of neutron intensity.

V. GAMMA-RAY INSTRUMENTS

A. Hand-Held Gamma-Ruy Verificatlom Instruments

Gamma-ray venfication mstruments fir pivtomum mum nons inust relably detemine the energy of detected gimmia rays and record their number for later amalys the net ins lensity in a charactersstic gamma-ray ROI san then he wed (1) distinguish between real weapons and NELA, lin be at tective, the radiation detector must he sery valle lice Jomar JHH-()f veritication instrument une a Nall Tli somil
 ting-dinde ILED) retereme light whice mate the detion

By gauging the LED pulse height, the instrument can determint the amount of $三$ Ean adjustment that may be needed. This non-radioacture apprnach to stabilization makes the invtrument raore readily transportable than if a radioactive light pulser hac been uned. During tests of the first JHH-01 intruments. the LED tabilization maintained a $662-\mathrm{keV}$ gamma-ray pulse watho $2 C_{c}$ oi its mean pulse height over a temperature range of 8 to $+0^{\circ} \mathrm{C}$ [6]. This type of instrument , now commercially a'ailable from Jomar with the model number JHH-31.

The JHH-01 and JHH-31 insitruments use a 330 - to 450 keV plutonium ROI and two namower regions centered on 330 and +50 keV for verification measurements (Fig. 5). The net peak intensity for the central region is obtai.ted by using the two adjacent narrow regions to estimate the amount of underiying Compton-scattered radiation that must be subtracted. The instrument makes simultaneous $20-s$-long measurements in each region. then calculates the net intensity in the central region and displays it. The net intensity for rea! munitions and NELAs can be markedly different: although. the differences are not always as great as with neutron detection. Hence, when gamma-ray verification is used for plutonium muntions, it is not unusual for neutron terification to be used as well.

Fig. 5 The 330-10 $450-\mathrm{keV}$ peak region between the shaded regions is characteristic of plutonium. The sharied regions are used to estimate the underlying Compton scattered radiarion. in this case from a 0.5 -cm-thick depleted uranium plate theluing the plutonium.

B Porruble Gumma-Ray Verification Instruments

Ponable MCAs and radiation detectors are the only those, at present, fior verfying that assembled munitions contain only HEC by measuring :3U-daughter gamma rays. ()ne of the small. commercial MCAs and a large $\mathrm{Nal}(\mathrm{TI}$) or a HPYie detector are used. The more intense oftheV samma ray woally prenetrates well enough to offer thoner measurement times than for the ?.n MeV gamma ray.
 present in the lifil for domestic applisatoms. a repre
sentatue sample of the real munmon ean te measured. and the average result is then avalabie for detemaning dectson thresholds for NELA veritication. The arms-control application may not provide the same degree of assurance that thene gamma ras s are present in real muntions.

More portable, MCA-based instruments are heing developed for verification applications. One commercial prototype is the TSA Systems MCA-465. just now appearing on the market. As yet, the MCA- 465 is still being evaluated and any problems discovered will have to be comectea berore it becomes a useful product. The concept behind the MC.A+65 is a hand-portable. battery-operated MCA that unes either an intemal or external $\mathrm{Nal}(\mathrm{T})$ detector for identify ing gamma-ray emitting materials. Besides vieuing spectra on an LCD, the operator can store up to it spectra for later transmission to a PC. Calibrating the detector is done by using a reference source and the calibrate mode to obverve and move a selected gamma-ray peak to a desired charnel by means of keyboard input. The nominal conversion gain is 8 $\mathrm{keV} / \mathrm{ch} a n n e \mathrm{l}$. ROIs can be set by the user, and the counts falling within each RCi can be displayed.

Another portable MCA instrument prototype is being Jeveloped for treaty verification applications where the operator needs very little information other than a simple yes or no. The instrument is the NAVI and is described elsewhere in these proceedings (7). Its unique features include (1) its ability to identify either of two gamma-ray calibration sources and use three peaks from the spectrum to automatically calibrate the MCA, and (2) its ability to make its own determination of when it has sufficient data to make a decision about whether or not plutenium is present.

VI. CONCLUDING REMARKS

Porable radiation-detection instruments can be a useful and convenient means for distinguishing between nuclear and non-nuclear munitions. Their usefulness is best assured when close approach to the munition is allowed for verification and an opportunity is provided beforehand to establish decision thresholds from measureinents of representative real munitions. Furthermore, easily and effectively using the instruments rests on the user being trained in their use and being given sufficient opportunity to nuantain proficiency by practucing the venfization procedures. Scheduled instrumient maintenaince is also aecessary and should include calibration. measurements of stindard sources to confirm normal uperation, and a review of accumulated verification results for measurement control.

VII. ACKNOWLEDGMENTS

Many individuals in the Advanced Nuclear Technology Group at Los Alamos and present and past menters of the Stockpile Evaluation organization at Sandia have providel valuable assistance in developing the insirumens and proce dures described here. The instrument manulacturem and DOE. Sanda. and many Dol) representabes have abo
provided valuable service touard achieving many of the goals involved in implementing a program of r n-nuclear verification.

VIII. REFERENCES

[1] T. W. Crane and M. P. Baker, Neutron Detectors." in "Passive Nondestructive Assay of Nuclear Material." T. D. Reilly, N. Ensslin, and H.A. Smith. Eds.. U.S. Nuclear Resulatory Commission contractor repor NLREG/CR-5550 (March 1991). p. 38t.
[2] P. E. Fehlau, "Rugged. Lightweight, and L.ong.Operating Hand-Held Instruments for Neutron and Gamma-Ray Verification Measurements," Proc. 22nd Midyear Topical Meening of the Health Physics Sociery on Instrumentation. San Antonio. Texas. December +-8. 1988. Los Alamos National document LA-UR-88-2780 (November 1988).
(3) Paul E. Fehlau. "Field-Trial Results for Pre-Flight Non-Nuclear Verification in Air Force NELA Flight Tests." Los Alamos National Laboratory repon LA-12006-MS (January 1991).
[4] R. B. Walton and T. L. Atwell, "Portable Neutron Probe. 'SNAP'." in "Nuclear Analysis Research and Development Program Status Report. January-April 1973." Los Alamos Scientific Laboratory repor LA-S291.PR (May 1973). p. 14.
(5) F. E. Fehlau. W. S. Murray, K. B. Butierfield and H. F. Atwater, "Hand-Held Verification Instruments for Intrinsic Radiation Detection." Los Alamos National Laboratory document LA.CP-89-332 (August 1991).
[6] P. F. Fehlau and G. Wiig. "Stabilized, Hand-Held. Gamma-Rav Verification Insirument for Special Nuciear Materials." IEEE Trans Nucl Sci. NS.36. 1160-1165 (February 1989).
[7] K. B. Butterfield. W. S. Murray, L. E. Ussery, and D. R. Millegan. "Portable Gamma-Radiation Analyzer for Treaty Verification." paper presented at the IEEE 1991 Nuclear Sireme Svinposium, Santa Fe, NM. November 5.9. 1991.

－－．E The Performance of a Single－Crystal BGO Annulus as a Compton－Suppression Detector

A．THORIS，Scott K．Mathews and Larry E．Ussery

```
SismM"ED TO [EEE 1991 Nuclear Science Symposium
November 2-9, !991
Santa Fe, New Mexico
```


DISCLAIMER

The Performance of a Single-Crystal BGO Annulus as a Compron-Suppresision Detector

Larty E. U'ssery
Los Alamos National Laboratory, Los Alamos. MM 87545
Scotr K. Matthews
The George Washington University, Washington. D.C. 20052

tbsiract

We hav: rested a single-تry sral bismuch-gennanate annulus in conjunction with a high-purity germanium derector as a Compton-suppresision spectrometer, and have measured gammaray energies of up to 6.13 MeV

I. Detector Description

We have rested a single-crysial BGO annulus (shown in Fig. II in conjunction with in Crtec high-punty germanium 1HPGe detector as a Compton-suppression ipectrometer Bciause the Compron cross iec: on is forward peaked ar higher energles. we have specitied an annulus with most ot the matenal in the forward certenng direction to maximize iensitivity at higher energles. A simgle photorube was chosen to enhance portability, athough ottics tave found that several photorubes improve the response i ; The energy resolution meisisured with the annulus tor 56.2 kel, gamma rays from ${ }^{13^{7}} \mathrm{C}$ s was about H) r

Fiy i Harshau ingle eroval BGO annulus and phomotabe

 whe t preamfinured witheach detector althoudhit may not ne necoriary tur the B(i) The final inmindence was made

pulse width. Data were collected with a malenchannel buffer and a computer readour. The time resolution of the vero circuir was sbout 00 ns .

II. Detector Performance

In previous wiork with a BGO-based Compton-iuppresion system. Hildingsson et لa [1] tound that a very low BGO threshold was necessary to accommodate multipiy-scantered gammas. Figure 3 shows some of the suppression rathos that is. the gated spectrum divided by the ungated specirum) fiom Hildingsson's work [1] and the BGO thresholds for each ranic We can see that a BGO chreshold of 15 ke V was necessory for the best suppression results. The fresent annulus is housid in a 0.032 -in. thick aluminum skin. The minimum transmission energy for this much aluminua. is around 30 keV Figure shows the effect of BGO threshold on the suppresision for the present derector. The top curve correxponds to about zero threshold (no lower threshold had any effect), so we expect that this is the limit imposed by the aluminum ikin

Fig : Counting circuit
 urny aut in be the case Althouph all wher meavarentent, were made with hath detectors ifisude int alead hrick . an we mithe

with the detector inude the BGO and the leadidve in fidue The middle curve is an ungared apectram tahen with the HPGe detetior still :nside the annulun. tut anthallort the lead removed Finally. the upper surte in the ipectrom tuken with the HPGe detector ungared and un ohelided. Weedan oee that the BGO doen \perp sedible gob as a wheld for these ininds of measurements Recill that there in 1 rather !aree hele tr the BGO to dumit the primary detector. and in the econd eurke, this ennsorrutes a mole in the vhelding Furthermere, unce this derector is desoned pnoarilu for une at higher energles where the background in negligible it would be desirable to dispense wath the lead if the "hole" iould be plugged. For example, \perp,econdar detector could te fideed behind the HPGe , inside the detestor ease : 10 act both as a shieid and di a detector. onnce the annulus in heva lot it iounts in this director.
 temo is by measuring the peak-io-Compon ratio, which is defined the ratio of the number of counts in the highest channel of the 13 -MeV peak to the aterage number: ot counts

 the sistriated peak to-Compon ration an improvement of
 -he detector manuticturer

Table I
Pesh ro-C mporon rato

| Gequited |
| :---: |
| 9 |

Fig + Suppremon fatho fior our whem

Fig 5 Shieldingettectis
Figure - , how, ipectra fromi an encippulated : +1 Ain amd ${ }^{\circ} \mathrm{C}$ wurce, which produces \pm yamma ray vecirum with a promary gamma ray at 6 is Mev and everal prominent dam mas aterve and below thon peak. There is ignaticant improve ment in the high energy vpectrum many peaks that are not prominent enough to be veen above the norse if: the ungated , pectrum hecome wable when the Compoon betol wad Fir cumple. Fig x vhows an expansion for the gated and uncated pectrant the ated afound "olaked in the quted pectrump we osn vee a peak from kamma raw produced hv neutron -apure in ('u neutrin, are prenduced in the wurse', tha pe..th 1. In.
 area are ohboruly much slearer ato well

「ate II

| Exime pesh vuppression | | |
| :---: | :---: | :---: |
| | Promar. Firnt E-ige | Primary Second Eviape |
| Cn:ated | i in | 2.18 |
| G.uted | 20^{-} | $1+4$ |

Fig o N ${ }^{(0)}$, pectra gated and ungated

 ansured

Fig y olinghev \% promary and eriape peak,

In conctusion. the veto circuit ungiticant! y improver the quality of speciers for gamma rays in the few . Met range The main problems are the large oites of the detector cave entrance. which inu.d he plugyed with an evera BCO deteciore in the HFX ie houving, andi the thisiness of tine diummum ving. wish could te replaced with womething thinner ir miare trallajarent

III Refertice

[^7]
TITLE MATERIMS MD SPPRCONUCTING EETRONICS

Authoris, limes L. Srith, ERC

5. 1 MMITED in Procseatings of the Superconducting Digital Ciraits and Systens Conference ed. by E. Edelsadk, George Vashington Univ. Press (1991)

DISCLAIMER

Thin report wan prepared us an account of wort sponsored by an agency of the United Statea Government Nether the United Sitates (iovernment nor iny agency thereat, nor any of their employees. matien any warranty, eaprean or implied, or an umes any legal liability or reaponaihility for the accuracy. comptetenem. or unefulnens of any nformaton, apparatus, product, of proces diechoed. of represents that tis use wout not infringe privitely awned riehts Refer. ence herein to any apecific commercial priduci, procea, or service hy trade name, trademart. - monucturer, of wherwine diex not necemarily constilute ir imply its endorvement, recommendatam, of faviring by the IIniled States (iovernmeni ur any agency thereof the vewa ond upanoms of authors espremed herein for mot necesuarly state ir reflect thome of the I/nited Siaten (invernment or any argency thereor

MATERIALS AND SUPERCCNDUCTING ELECTRONICS

James L. Smith
Los Alanos National Laboratory
At Los Alamos we make things out of gold. I don't know why the TV has been on all morning. This is an example of what Keyworth says about consumer procucts, that it is okay if it is cold or hot inside, as long as the consumer doesn't know.

And remember that we must keer these things warmed up. That is why, if you want to save electricity, you unplug it. The consumer wants it on very fast.

I an not an electronics expert. Remenber a few years ago that we all said that the real applications of the high T_{e} 's will be those things that we can't think of yet, and it seems to me that in electronics, for the most part, that what has been done is unchanged from the low temperature materials.

In fact, the only difference with the high T_{e} materials is that you can't make a tunnel juriction.

Bruce Murdock had asked ne over a year ago about these materials. I mean, the question is, is there some thing that we can do with high $T_{\text {e }}$ material that we can't do with low T_{e} materials, and I am going to talk about a couple of things today that we haven't tried. They are just ideas.

It seesed to me yesterday that it was very depressing when Paul Chu showed the roller coaster, with Chuck Byvik talking about all the gray men, the sort of graying national capability, and David Chaffee was very quiet at lunch yesterday.

He has "Superconductor Week," and I think he must have been wondering what kind of job he is going to have next. Let's not forget some of the glow we all felt a couple of years ago!

I mentioned M. K. Wu at National Tsing Hua Univerfity to David. He has this group of about 30 people, ard they looked to me like they were all under 20. So there are other parts of the world where people are still trying to hustle, and I will try to give you a feeling for some of the things that we haven't done yet that we might do.

For making thin films for electronics, materin!s compatibility suggested the substrates for high $\mathrm{T}_{\text {, }}$, Perovisite materials. We have been using things ilke strontium titanace, but funny thing, these are plaqued by lattice transformations.

You cool the thing down from the temperature whris you make the film, or you cool it down below roon temperature, and there is a transformation. The thing twins, and it messes up your superconducting properties.

Incidently, the connection between the Perovskiterelated high T_{e} materials and the real Perovskites, with all of their lattice transformations, in fact, tells you a little of the physics about why these things are superconducting. It is not some magnetic interaction.

The point is that this is a problem. Our substrates are no good. We need a cubic Perovskite which is something, in the low temperature linit, that is essentially impossible to find.

This is what I thought about after Bruce asked me what we could do. The point is, consider what these lattice changes can do for you, and I will remind you first about piezoelectrics because the guys who do uitrasonics are always impressive.

I mean, they understand that the oscillations they are getting in piezoelectrics are really tensor quantities. I mean, they can do transverse waves, longitudinal waves; they do shear waves. I don't even know all of these things that these guys do, but it is really impressive what you can do with a piezoelectric.

And the point is that rather than put a tiny little fiezoelectric onto a big superconductor to check its properties, u/hy not take a big piezoelectric and put a little superconducting film on and see what the properties of the film are. What kind of devices can we make out of this?

The same thing works with ferroelectrics. I mean, ferroelectrics give you a hysteretic device. I don't know how fast you can do these things. I looked up a little bit last week, and I found one old reference that said you could do a transformation that goes a half a meter in a microsecond, and that struck me as too fast. That is much faster than a shock wave. I don't know about the speed of these devices.

The point is, that this being a tensor quantity, there are all kinds of transformations available with your piezoelectrics. But it's not just piezoelectrics, with Perovekites you can get tetragonal, orthorhowbic, and rhomboid -- that means it ooes off of 90 degrees -- distortions.

And as far as I know, nobody has made these things yet.
Some of the atoms in these transformations will move more than an angatrom; that much I could ifind when I looked it up. So you have got big changes going on in the substrate, and this is something that you can't really do with low temperature supercinductors. They are not intrinsically the same crystal etructure as these substrates.

All of the high T. superconductors bear a relationship to the Parovskite structures!

Now look at the extensive variables we have got for such devices. We had a probler with using Perovskites for the subscrate because when you cooled it down it transformed. So the point is that we can control the temperature as an extensive parameter.

In the piezoelectrics you control with voltage. You control with stress, remember that is how people got the twins out of the $Y-123$ single crystals. You just squeeze it, and the things sweep out.

And in some materials you can make the changes with a magnetic field. So there is this huge variety of extensive variables that we can put on and get any kind of tensor transformations that we want.

The point is, we already know this works because when the substrates transforn, they mess up the superconducting properties. The odds are we can, in fact, do critical field, do critical temperature, do Σ_{c} modifications by messing with the substrate.

Whatever will happen, there are yoing to be serious nonlinear effects, and serious non-linear effects are what electrical engineers have known about since the heterodyne radio. Physicists have only understood non-linearities in the last ten years.

So the point is, this is where you get devices. I mean, it is amazing that you can make a circuit with that resistive phase transition in a $J J$ instead of having to have it hysteretic. I mean, I am still impressed by that kind of stuff. And this JJ stuff doesn't work as well with high T_{c} superconductors.

So another subject: Remember when we all wanted room temperature superconductors. That was the point four years ago, and it seems to me that everybody has fallen asleep. It seems strange to see Paul Chu now pushing Buckyballs into niobium tubes and heating thes.

But a lot of people have seen higher temperature transitions in the $y-123$. There are certain temperatures that keep reoccurring. Perhaps it is worth a little thought, and I saw something recently when I was in Taiwan that reminded me of all of this.

Two of the people who already pushed a little harder were Ken Taylor et the University of New South Wales and J.T. Chen at Wayne State University.

These are not guys who seek controversy. These are good solid physicists who are working, who found a phenomenon that was reasonably reproducible. They fael birrned by the comounity because nobody would listen to them. The story and the evidence that they have is a iot bettar than room temperature fusion. It is more reproducible thar that.

And it seems to me that I can begin to see what might be going on. Ken raylor, early in 1987 found that if he kept his Y-123 ceramic below room temperature in gaseous nitrogen, that he could, during thermal cycling, get a resistive transition up to 141 Kelvin.
J.T. Chen found by keeping the sample above room temperature in oxygen, and thermally cycling it, that he could get T_{c} 's as high as 240 Kelvin. He started with an off stoichiometric ceramic, but from x-rays it wis just made of the $1,2,3$ material; the 2,1,1; and CuO phases. ${ }^{2}$

It is interesting that there is a symmetry here. I think nature might just be telling us something. If you keep it away from oxygen, below room temperature, or in oxygen above room temperature, there may be some subtle thing going on.

But perhaps there was something about their two materials that was different from other people's.

Chen will still say that, among his graduate students, some of them can always get to the high T_{c} and some of them can't, and that may sound like a lack of reproducitility. But any of us who have tried to make good Y-123, have noticed that for a few months it works and for a few months it doesn't, and eventually we figure out what we did wrong.

I think that there may be sometning going on here that is worth at least as much effort as we are putting into Buckyballs right now.

So what's new, Los Alamos has found some spiral growt'ns, screw dislocations, in thin films.' But I was looking through old stuff and I saw that, in fact, Ken Taylor had seen those back. in 1987 and published them in 1988, -- he had them in single crystals on a surface.

With a scanning electron microscope, he could see the spirals, and as far as I could tell, this was the only published work before what Los Alamos and IBM did this spring on thir films.

But Chen has this new result! He has single crystals of y-123 with thin platelets with the C-axis perpendicular to the thin direction, and he finds that on one side, 10 percent of the material is going superconducting at 240 Kelvin .

He says that under microscope he can tell which side it is. Optically it is a littledifferent, but these spiral things are optically flat, in casas forgat to tell you again. The photo I will show you is optically flat material.

And anyway, they don't have good materials science at Wayne State, and Chen sent it to one of his friends at Bell Labs who took a look with a TEM. He thinned $1 t$, keeping track of which
surface had the high $T_{\text {c. }}$ Incidently, it wouldn't be superconducting at 240 K after you thinned it and put it in a vacuum system.

What it looked like were these layers. It looked like what the side view of a spiral thing should look like.

And I explained this to him, and let me show you what the spirals look like (Figure 1). This is a scanning tunneling microscope picture from Marilyn Hawley. This was stuff that Los Alamos submitted six weeks before IBM submitted theirs to NATURE, but our work from Los Alamos was published one day later because NATURE publishes on Thursday and SCIENCE on Friday.

Under the scanning-tunneling microscope, it appears four microns across and these steps are 12 angstroms high, so you have got about 1,000 times the magnification vertically as you do horizontally.

That is why Ken Taylor had trouble seeing with a scanning electron microscope, and why you tend not to notice what is going on with the surface of these things.

This is about a 2,000 angstrom film, but they all start growing this way.

It is easy to guess what might be going on to make a 240 Kelvin superconductor, and this is important. I me n, some of us have walked around in our winter coats at about 240 Kelvin. It's not that cold.

If the material is sensitive to the oxygen around room temperature and when you have spirals sweeping dy each other -- the neighboring ones have the same sense -- you have all possibie variations of two-layered structures coring together -- then it is easy io imagine that this modifies the mobility of oxygen or nitrogen within the substrate -- then you need a proximity effect that car give you enough of the material to see 10% of it superconducting.

At Wayne State it looks like with magnetic measurements on a polycrystal that you have got close to 50 percent of the material superconducting.

But why does the community reject this work? That is sort of the point. It may not work in thin films because of the epitaxial constraints of the substrates. I haven't tried any of these things. I haven't triod any of the stuff I've been talking about, but we will get on this.

So anywa, what I have talked about is, why don't we put some fllms down on sore substrates and take advantage of what had been the problem with the substrates and, by the why, that might give us some new physics.

If we can, in an interesting way, modify the properties of these things, and I am unaware of anybody trying that, we might get a feeling of why the things are superconducting.

And it is also true: why don't we look a little harder for higher temperature superconductors instead of just picking on these two guys? Thank you.

DR. BIRNBACH: Can you explain what kind of Perovskites would do this for you?

DR. SMITH: They are all cubic at high enough temperatures. I can show you a generalized phase diacram ${ }^{3}$, and the piezoelectrics are a very predictable material within this general class.

DR. GILMORE: How is Chen making his materials ror his processing?

DR. SMITH: The stuff he gets -- he mixes up the powder -- the two oxides and the barium carbonate -- and does the heat treatment at 900 to 950 C , not doing anything special.

But the fact that he has got extra phases tells you that the phase separation will tend to grow large grains. It is not unlike the way you grow single crystals.

My guess is that what he has done is that he has found a composition that tends to yield the spiral structure. He will have his friends do STM -- scanning tunneling microscopy -- start getting stuff looked at to see if this feature is present even in the polycrystal.

DR GILMORE: I was thinking about your spiral. They look like the sort of thing you get from vapor.

DR. SMITH: That is what we get, at Los Alamos, with heated substrates. That is a standard growth defect, and the point is that because of what Ken Taylor saw when he grew crystals, you can also get it out of a liquid transport.

So the point is that we already know that the siingle crystals will also have the same kind of growth structure. That is probably what Chen has with his off stoichiometric composition.

DR. GILMORE: I have a question about the micrograph that you showed.

DR. SMITH: That is a scanning tunneling mieroscope photo. That is off-axis sputtered, 2,000 angatroms thick onto a heated substrata. We will always see this. On films thas we make that are c-axie vertical, we always see these structures on heated substrates. If you put the thing down and heat it later, it gives a different morphology.

DR. FLUSS: I have a question about those pictures. That is an STM picture which is telling us about electronic topology, tunneling topology. Has that been confirmed with the force microscope and do you see the same topology or can you actually distinguish insulating and conducting regions in the spirals?

DR. SMITH: Okay, the scanning tunneling microscope gives you the product of the electronic density of states and the morphology so that you are not necessarily seeing atoms.

You confirm the structure by also looking at atomic force microscopy which actually measures only the topology but has lower resolution. We have confirmed it with the atomic force microscope.

DR. BIRNBACH: Have you looked at a-axis films to see if you find the same kind of spirals?

DR. SMITH: a-axis: they look like little saucers up on end, just like you might think. That is recent work. It is all unpublished, but depending on the direction, it looks like little dishes sticking up on the surface.

PARTICIPANT: Have you looked at this done by other techniques? Do they have spiral structures?

DR. SMITH: I thirk that is what we get from the laser deposition but on a lot of our laser ablation films, we did a post heat treatment and then we get little lumps on it, but I am fairly sure that everything we do on a heated substrate will show this growth pattern. \ddot{i} am not 100 percent sure about the pulse laser. There is a different kind of sputtering to it.

REFERENCES

1. D.N. Matthews, A. Bailey, R.A. Vaile, G.J. Russell, and K.N.R. Taylor, Nature 328, 786 (1987).
2. J.T. Chen, L.E. Wenger, C.J. McEwan, and E.M. Logothetis, Phys. Rev. Lett. 58, 1972 (1987).
3. Marilyn Hawley, Ian D. Raistrick, Jerome G. Beery, and Robert J. Houlton, Science 251, 1587 (1991).
4. K.N.R. Taylor, P. Cook, T. Puzzer, D.N. Matthews, G.J. Russell, and P. Goodman, Physica C 153-155, 411 (1988).
5. F.S. Galasso, Structure, Properties and preparation of Perovskite - Tyoe compounds (Pergammon, oxford, 1969) p. 7 and P. 10; taken from R.S. Roth, J. Research NBS, RP 2736, 58 (1957).

Invited paper presented at the Beijing International Symposium on Fast Neuron Physics, Beijing, China (9-13 September 1991)

MECHANISM OF (n, γ) REACTION AT LOW NEUTRON ENERGIES

S. Raman

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
and
J. E. Lynn

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

The submited manuscript has been authored by a contrector of the U.S. Govermment under contret No. DE-ACOS-84OR21400. Accordingly, the II.S. Government rouins a nonexelusive, royalty-tres licence to publish or reproduce the published form of this contribution, of allow athers to do so, for U.S. Government purposes."

MECHANISM OF (n, γ) REACTION AT LOW NEUTRON ENERGIES

S. Raman
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
and
J. E. Lynn
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

We discuss the interplay between direct capture, valence capture, and compound-nuclear capture in attempting to explain the vast amount of capture data for light-mass nuclei.

1. Introdurtion

Information that has been accumulated in a vast range of nuclides on the radiaive transitions that follow slow-neutron capture has been one of the main sources of knowledge on the detailed nuclear level structure of these nuclides. Most of this knowledge comes from γ-ray energies and level placements, the relative yields, branching ratios of secondary transitions between low-lying states, and angular correlations among successive secondary transitions. Spectroscopic information may aiso be contained in the cross sections of the primary transitions originating from the capturing state, and this fact is demonstrated by the success of "direct" theories of neutron capture for many nuclides, especially those of light and near closed-shell character.

2. El_mansitions

2.A. Direct capture

Although low-energy neutron capture can be regarded as the classical compoundnuclear process (the original experimental evidence for large neutron capture cross sections motivated Rohr in the creation of the compound-nucleus concept), it has also been known for a long time [1] that far away from resonances a direct form of radiative capiure not involving the compound nucleus can exist. In this process, the neutron-target interaction is represented in zero order by a potential well, and the neutron that is initially in an sorbit simply falls inte a p-wave orbit in the final nucleus resulting in the emission of a primary El transition. The theoretical analjsis of this process requires a knowledge of the coherent scattcring length and (d, p) spectroscopic factors.

This form of neutron rapture is amenable to calculation because the riajor contribution to the radial factor of the $E 1$ matrix element arises from a region outside the potentia! weli where the wave functions are known. These wave functions depend only on the scattering length (for the initial state) and the binding energy plus single-particle
spectroscopic factor (for the final state). Indeed, many partial $E 1$ cross sections can be reproduced by a formalism that treats the potential with a sharp cutoff at the well radius and ignores all internal contributions to the matrix element. This version is known as channel capture (see Fig. 3 of Ref. [2]).

2.B. Chamnel capture

The channel-capture formula $[1,3]$ is simple:

$$
\begin{aligned}
\sigma_{r(i \rightarrow f)}^{\mathrm{CH}}= & \frac{0.0614}{R \sqrt{E_{\mathrm{LbD}}}}\left(\frac{Z}{A}\right)^{2}\left(\frac{M+m}{M}\right)^{3} \sum_{j} g_{j} \frac{1}{\left|1-i P_{0} R_{J}\right|^{2}} \\
& \times\left|y^{2}\left(\frac{y+3}{y+1}\right)^{2}+2 \operatorname{Re} R_{j} \frac{y^{3}(y+1)(y+2)}{(y+1)^{2}}+\left|R_{j}\right| y^{2}\left(\frac{y+2}{y+1}\right)^{2}\right| W_{, j j} \theta_{f}^{2},
\end{aligned}
$$

where

$$
y=R \sqrt{\frac{M}{M+m}} \sqrt{\frac{2 m E_{f}}{\hbar^{2}}}, \operatorname{Re} R,=1-\left(a_{\nu} / R\right), \quad R=\left(1.16 A^{1 / 3}+0.6\right) \mathrm{fm}
$$

M - target mass, m - neutron mass, g_{j} - statistical weight factor, P_{0} - penetration factor for s-wave neutrons, R_{j}, \cdots reduced R function, $W-$ spin coupling factor, θ_{j}^{2} - spectroscopic factor, E_{f} - binding energy of the final state, and a_{j}-scattering length. This simple anslytical formula has been found to be very successful in estimating the cross sections of primary $E 1$ transitions in many nuclides [3].

2.C. Potential capmure

In the more detailed version of capture theory [4-8], called potential capture, the wave functions are computed numerically from a realistic eptical model (such as WoodsSaxon) and the intemal contributions are included. The optical-model parameters (well depth, diffuseness, and imaginary potential amplitude) ar, varied within physically reasonable limits to reproduce the measured scattering length (which may be affected by local compound-nuclear states). The depths of the real potential are then varied to reproduce the binding energies of final bound states of largely single-particle character. This is the specialized oprical-model $[S]$ procedure. This model works well even when (as in ${ }^{9} \mathrm{Be}$) the scattering length (7.0 fm) is large compared to the potential radius (3.0 fm), resulting in large cancellations in the $E 1$ matrix elements [5].

It can be argued that forced adjustment of the optical-model parameters is not the best way to proceed to explain thermal-neutron cross sections. Also, occasionally, cerain optical-model parameters get pushed to values that are at the limits of physical acceptability. To circumvent this problem, the direct-capture amplitude can be written as a sum of two terms-a potential-capture ampitude (based on a global [G] potential such as Moldauer's)
and a valence [V] correction due to the wave function of local resonance levels projected on the single-particle motion. The valence correction can be assessed from the difference berween the calculated (from the optical model) potential scattering length and the measured scattering length of the target nucleus. We call this the global optical model + valence correction $[G+V]$ procedure.

From the global optical-model calculations, a complex capture amplitude is obtained. The real part is the potential capture and the imaginary part gives a cross section that is the average of a resonance-resonance interference term (not a crc is section averaged over resonances in the Hauser-Feshbach sense). From this, the valence radiation strength function can be obtained and hence the valence correction. The direct-capture cross section is given by

$$
\sigma_{r(i \rightarrow f)}^{\mathrm{dir}}=\sum_{J} g_{j}\left|\sqrt{4 \pi} R R_{J}^{\mathrm{loc}}\left[\frac{\bar{\Gamma}_{\lambda y(i \rightarrow f)(, \omega)}}{\Gamma_{\lambda,}}\right]^{1 / 2}+\sigma_{\mathrm{poo}, r}^{\mathrm{y2}}\right|^{2},
$$

where $R_{J}^{b c}$ is the contribution from local levels to the reduced R function

$$
R R_{j}^{b c}=\left(a_{p o l}-a_{j}\right),
$$

$\bar{\Gamma}_{\lambda r(i \rightarrow f)(\mathrm{ml})}$ is the average valency radiation width, and $\Gamma_{\lambda_{n}}$ is the neutron width derived from the neutron strength function calculated from the optical-model scattering. In general, we find that the $[G+V]$ and $[S]$ methods give very similar results [6].

2.D. Compound-nuclear contributions

Differences between experimental and calculated cross sections are atributed to a compound-nuclear radiative amplitude due to the tails of nearby resonances. Compound nucleus (CN) is a generic term for mechanisms involving more general features of the wave functions than the simple picture of neutron motion in the field of the unexcited core of the target. It is uncorrelated with the single-particle content of the initial or final state. The experimental cross section $\sigma_{r}(X)$ is

$$
\sigma_{r}(X)=\left(\sigma_{\mathrm{dli}, y}^{\mathrm{L} / y}+\sigma_{\mathrm{CN}, y}^{\mathrm{L} / 2}\right)^{2} .
$$

The extracted CN cross section can be converted to a radiation width if it is assumed that the discrepancy between the potential and measured scattering lengths is due to a single capturing resonance level. Thus

$$
\frac{k\left\langle\sigma_{C N, r} / E_{\gamma}^{3}\right\rangle}{2 \pi R R^{b e}}=\frac{\left\langle\Gamma_{\lambda r, K N} / E_{r}^{3}\right\rangle}{E_{\lambda}} .
$$

This radiation width can be compared with the Cameron estimate

$$
\Gamma_{J . \gamma, \mathrm{O}}(\text { in } \mathrm{eV})=0.33 \times 10^{-9} E_{\gamma}^{3}(\mathrm{in} \mathrm{M} \mathrm{eV}) A^{2 / 3} D_{J}(\text { in } \mathrm{eV}),
$$

which usually underestimates the average strength of high-energy (-5 MeV) transitions. Alternatively, the compound-nuclear radiation width can be derived from the Brink's model of the damped giant resonance built on each final state, but it has been established that this model overestimates the widths for transitions in the 2 to 3 MeV range.

In general, the $\left\langle\Gamma_{\lambda, \text { CN }} / E_{\gamma}^{3}\right\rangle / E_{\lambda}$ deduced from experiment agrees (within an order of magnitude) with Cameron's $\left\langle\Gamma_{\lambda y, 0 \times} / E_{\gamma}^{3}\right\rangle / D_{j}$. By comparing them, we can suggest which bound or unbound level might be responsible for the CN contributions [9].

2.E. Generalized valence correction

For some nuclides the discrepancies between theory and experiment are not only greater than would be expected from the Cameron estimate, but also appear to be systematic. The softness of ${ }^{44} \mathrm{Ca}$ allows virtual excitation of quadrupole collective vibrations with sufficient amplitude to interfere with the direct-capture amplitude. The potential field that such a nucleus presents to an incoming neutron contains higher multipole terms that couple the initial configuration (target nucleus \otimes single-particle motion within the spherical potential) to other configurations (target excited collective state \otimes singleparticle motion). The higher multipole terms have a similar mixing eftect on the final states. This generalized valence capture model [9] leads to a systematic reduction (by a factor of 2) in the capture cross sections of transitions to the group of low-lying states in ${ }^{45} \mathrm{Ca}$ from the values computed in the direct-capture theory, thereby improving agreement with experiment. [There will also be a systematic enhancement for transitions to some higher-lying states but these have not been measured.]

2.F. Yalence caprure

The total (n, γ) capture cross section: discussed above are small (<1 b) indicating that the influence of resonance wings is small. In some cases, nearby resonances clearly have a major influence and more complex capture mechanisms, such as the va!ence mechanism, have to be considered. We base our calculations on the \mathbb{R}-matrix theory of nurlear reactions and the assumption of a real potential. The fractionation of the modeled single-particle state into the actual resonance is known from the experimentally determined neutron width of the resonance. It is therefore unnecessary, in this approach, to model the expected average fractionation by the formulation of the imaginary part of the optical model. The valence-capture amplitude, while being closely related to the potential-capture amplitude, is now more sensitive to the components of the wave function in the internal region because the initial-state wave function has an antinode rather than a node close to the potential radius. This also allows significant valence capture by p-wave resonances (see Fig. 5 of Ref, (2]).

The valence contribution is proportional to $\Gamma_{\lambda(n)}^{42} \Gamma_{\lambda(\gamma, v a))}^{1 / 2} /\left(E_{\lambda}-E\right)$. The valence γ width for resonance λ has the imporant property of $\Gamma_{\lambda(\gamma, \text { val })}^{1 / 2} \propto \Gamma_{\lambda(n)}^{1 / 2}$. The valence term in the capture amplitude is constructive or destructive with respect to the potential-capture amplitude depending on whether the resonance level E_{λ} is above or below the thermal neutron energy E, respectively. In the case of ${ }^{43} \mathrm{Ca}$ (whose thermal capture cross section of 6.2 b is an order of magnitude greater than the direct capture cross section), the resonance influence is clearly dominant but not overwhelming. (Our analysis is approximate because the total scattering cross section and the parameters of the $1.48-\mathrm{keV}$ resonance are poorly known.) Even though the resonance valence radiation width is small ($\sim 0.13 \mathrm{eV}$ out of 1.9 eV), constructive interference yields an estimate of 3.7 b (a substantial fraction of the 6.2 b) for the direct component, indicating that even in this quasicompound nuclear situation, direct capture plays an imporant role.

At shown in the following table, direct-capture theory, at first sight, fails badly in the case of the ${ }^{14} \mathrm{~N}(n, \gamma)$ reaction with thermal neutrons [10]. The deduced CN component is of similar magnitude to the direct component.

| Final state
 $E_{f}(\mathrm{keV})$ | Primary
 $E_{\gamma}(\mathrm{keV})$ | $\sigma_{\gamma_{\mathrm{dir}}(\mathrm{mb})}$
 (theory) | $\sigma_{\gamma}($ exp. $)$
 (mbj) | $\sigma_{\gamma}(\mathrm{CN})$
 (mb) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 10829 | 330 | 10 | 220 or 450 |
| 6324 | 4509 | 1 | 14 | 5 or 25 |
| 9152 | 1681 | 0.1 | 1 | 1 |

But a resonance at -24 keV is known from the ${ }^{14} \mathrm{C}(p, \gamma)$ reaction and we use its γ-ray spectrum and our calculated valence widths to deduce the compound-nuclear contributions. We then combine everything to estimate

| Final state
 $E_{f}(\mathrm{keV})$ | Primary
 $E_{\gamma}\left(\mathrm{ke}^{\prime}\right)$ | σ_{γ} (theory)
 (mb) | σ_{γ} (exp.)
 (mb) |
| :---: | :---: | :---: | :---: |
| 0 | 10829 | 8 | 10 |
| 6324 | 4509 | 16 | 14 |
| 9152 | 1681 | 3 | 1 |

The agreement between theory and experiment is now satisfactory. The concept implicit in valence capture, namely that the neutron valence radiative width is of similar magnitude to the compound-nuclear radiative width, is shown explicilly here for the first time in a resonance formed by a non-neutron reaction.

We have applied the valence-capture theory to calculate (see table below) the expected total radiation width of the $153-\mathrm{keV}$ resonance in ${ }^{13} \mathrm{C}$ [11]. The resulting width of $\sim 0.2 \mathrm{eV}$ disagrees strongly with the previous measured value of $2.4 \pm 0.9 \mathrm{eV}$.

| if $1 p_{y 2}$ | $\Gamma_{\gamma \rightarrow 6.1}$ | $=0.16 \mathrm{eV}$ | | | |
|---|---|---|---|---|---|
| if $2 p_{3 / 2}$ | | $=0.14 \mathrm{eV}$ |\quad| | $\Gamma_{\gamma \rightarrow 6.7}$ |
| ---: | :--- |
| | |

The partial radiation widths of the 6.1 - and $6.7-\mathrm{MeV}$ transitions have been remeasured at the Tokyo Institute of Technology [11].

$$
\Gamma_{\gamma \rightarrow 6.1}=0.151_{-0.033}^{+0.076} \quad \Gamma_{\gamma \rightarrow 6.7}=0.030_{-0.013}^{+0.030}
$$

These results offer a striking confirmation of the valence-capture theory. (Scatteredneutron sensitivity was probably underestimated previously.) Of the two possible scenarios for nucleosynthesis-red-giant He burning and nonstandard Big Bang-the new result has little significance for the former, but affects the latter in terms of a significant reduction in the production of $A \geq 14$ isotopes [11].

3. M1 ransitions

Some tendency for the strong M1 transitions to be associated with high spectroscopic factors suggests the operation of a direct mechanism quite analogous to that for E1 transitions. In this case, the chances of arriving at a successful theory are slimmer for two reasons: (1) In the El case the matrix elements involve the electrostatic dipole moment, whereas in the M1 case, the operator depends on currents that may be described much more poorly by the wave functions of a simple direct-capture model. (2) The radial component of the El matrix element is more strongly weighted to the channel regionwhere the wave functions are well established by the energies of the initial and final states-than is the radial M1 element. In fact, in the M1 case, it is often stated that there can be no direct capture analogous to $E 1$ because the radial wave functions are necessarily orthogonal in a simple porential well. However, because of the complexity of the nucleus, we usually find it necessary to generate the radial wave functions of the initial and final states with rather different mutual potentials (just as we usually do for $E 1$ capture) and $M 1$ transitions become possible. The M1 operator has the form [12]

$$
H_{m, m}^{\prime}=\frac{e n}{2 m c}\left[\frac{3}{4 \pi}\right]^{1 / 2}\left[\frac{\mu_{1} I_{m}}{I}+\frac{\mu_{n} \sigma_{n, m}}{\sigma}\right] .
$$

From this expression the reduced matrix element for the spin factor can be computed, while the radial matrix element is simply the integral of the product of the projection of the radial wave function of the initial state onto the entrance channel and the radial wave function of the single-particle component of the final state. Because t ere is no orbital contribution in
the above $M 1$ operator, the single-particle components of the initial and final states have zero orbital angular momentum in slow-neutron direct M1 capture.

In very light nuclei, direct $M 1$ capture (with the $M 1$ operator substituted in place of the $E l$ operator) appears to play a qualitatively important role.

| Target | E_{f}
 (keV) | E_{γ}
 (keV) | $\sigma_{\gamma^{(\text {theory })}}^{(\mathrm{mb})}$ | σ_{γ} (exp.)
 (mb) |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{9} \mathrm{Be}$ | 6265 | 547 | $37 \times \theta_{f}^{2}$ | 14 |
| ${ }^{12} \mathrm{C}$ | 3089 | 1857 | $25 \times \theta_{f}^{2}$ | 6 |
| ${ }^{13} \mathrm{C}$ | 6094 | 2080 | $24 \times \theta_{f}^{2}$ | 34 |
| ${ }^{13} \mathrm{C}$ | 6900 | 1274 | $68 \times \theta_{f}^{2}$ | 67 |

In 20 F , the direct-capture $M 1$ model underestimates the cross sections to the two strongest $s_{1 / 2}$ states (at 3.488 and 3.526 MeV) by a factor of ~ 4 and to the state at 1.057 MeV by three orders of magnitude. In ${ }^{21} \mathrm{Ne}$, the calculated cross section of the primary M1 transition to the $2.794-\mathrm{MeV}$ state is an order of magnitude greater than experiment. In ${ }^{23} \mathrm{Ne}$, the calculated and measured cross sections to the state at 1.02 MeV nearly agree (0.6 mb and 0.9 mb , respectively). In this region, the simple direct process has a substantial but not predominant role to play.

We have recently analyzed the ${ }^{7} \mathrm{Li}(n, \gamma)$ data in the $0-400 \mathrm{keV}$ region [12]. We have (1) deduced the direct-capture cross section for thermal-neutron $E 1$ capture as 39 mb , (2) analyzed the total cross section and angular distributions of scattered neutrons to deduce R-matrix parameters, (3) showed that the potential-capture cross section behaves as $1 / v$, and (4) calculated the valence $M 1$ radiation width for the $255-\mathrm{keV}$ resonance as 0.094 eV . The measured thermal-neutron capture cross section is $45.4 \pm 3.0 \mathrm{mb}$. The capture data obtained at Lockheed (Palo Alto) are consistent with $1 / v$, whereas those obtained at Karlsruhe are not. If we normalize the Karlsruhe data to thermal (and $1 / v$), we infer a radiation width of $0.09 \pm 0.02 \mathrm{eV}$ (average of Lockheed and renormalized Karlsruhe data) which is now in agreement with theory. The Karlsruhe conclusion that the ${ }^{7} \mathrm{Li}(n, \gamma)$ reaction is not the predominant link to the primordial r process is not supported.

4. Conclusion

The nuclides that we have investigated oll now are listed in the following tanle [13j. After more than half a century of study, we still do not have a fully quantiacive or universally applicable theory of neutron radiative capture. What we have is a number of models that are applicable in different mass or energy regions and a cerrain amount of basic
theory that explains, in principle, why some of these models work in certain situations. Fortunately, high-quality data continue to be produced in this area and this is leading to continued quantitative development and application of capture models.

Mechanism of (n, γ) reaction at low neutron energies

| Mechanism | Explains ${ }^{\text {a }}$ |
| :---: | :---: |
| E1 transitions | |
| Potential + valence correction + compound | $\begin{gathered} { }^{7} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}, \\ { }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg},{ }^{26} \mathrm{Mg}, \\ 28 \mathrm{Si},{ }^{29} \mathrm{Si},{ }^{30} \mathrm{Si}, \\ 32 \mathrm{~S},{ }^{33 \mathrm{~S}},{ }^{34} \mathrm{~S}, \\ { }^{40} \mathrm{Ca},{ }^{42} \mathrm{Ca},{ }^{46} \mathrm{Ca},{ }^{48} \mathrm{Ca} \end{gathered}$ |
| Potential + generalized valence correction + compound | ${ }^{44} \mathrm{Ca}$ |
| Valence + potential + compound | ${ }^{43} \mathrm{Ca}$ |
| Compound + valence + potential | ${ }^{14} \mathrm{~N}$ |
| Valence | ${ }^{13} \mathrm{C}(153 \mathrm{keV})$ |
| M1 transitions | |
| Potential | ${ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{13} \mathrm{C}$ |
| Compound | ${ }^{14} \mathrm{~N}$ |
| Valence | ${ }^{7} \mathrm{Li}(255 \mathrm{keV})$ |

Thermal-neutron capture unless stated otherwise.

5. Acknowledgments

This work was sponsored by the Department of Energy under Contract DE-ACO5840R21400 with Martin Marietta Energy Systems, Inc. (Oak Ridge) and W-7405-eng-36 with the University of Califomia (Los Alamos). We thank our colleagues who are listed in the references and especially Ed Jumey and Bill Stame; of Los Alamos.
[1] A. M. Lane and J. E. Lynn, Nucl. Phys. 17(1960) 563; 17(1960)586; See also J. E. Lynn, Theory' of Neutron Resonance Reactions, Clarendon, Oxford (1968).
[2] S. Raman, in Neutron Capture Gamma Ray Spectroscopy and Related Topics, Proceedings of the Fourth Intemational Conference at Grenoble, France, 1981 (Edited by T. von Egidy, F. Gönnenwein, and B. Maier), p. 357, Institute of Physics, Bristol (1982).
[3] S. Raman and J. E. Lynn, in Neurron Induced Reactions, Proceedings of the Fourth International Symposium at Smolenice, Czechoslovakia, 1985 (Edited by J. Kristiak and E. Betak), p. 253, VEDA, Bratislava (1986).
[4] S. Raman, R. F. Carlton, J. C. Wells, E. T. Jurney, and J. E. Lynn, Phys. Rev. C 32(1985)18.
[5] J. E. Lynn, S. Kahane, and S. Raman, Phys. Rev. C 35(1987)26.
[6] S. Kahane, J. E. Lynn, and S. Raman, Phys. Rev. C 36(1987)533.
[7] S. Raman, S. Kahane, R. M. Moon, J. A. Fernandez-Baca, J. E. Lynn, and J. W. Richardson, Phys. Rev. C 39(1989)1297.
[8] S. Raman, J. A. Fernandez-Baca, R. M. Moon, and J. E. Lynn, Phys. Rev. C 44(1991)518.
[9] S. Raman, S. Kahane, and J. E. Lynn, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Mito, Japan, 1988 (Edited by S. Igarasi), p. 645, Saikon, Tokyo (1988).
[10] E. T. Jumey, J. E. Lynn, J. W. Stamer, and S. Raman, to be publish:
[11] S. Raman, M. Igashira, Y. Dozono, H. Kitazawa, M. Mizumoto, and J. E. Lynn, Phys. Rev. C 41(1990)458.
[12] J. E. Lynn, E. T. Jurney, and S. Raman, Phys. Rev. C 44(1991)764.
[13] J. E. Lynn and S. Raman, in Capture Gamma-Ray Spectroscopy, Proceedings of the Seventh Intemational Conference at Asilomar, Califomia, 1990 (Edited by R. W. Hoff), p. 355, AIP, New York (1991).

AUTHOR(S): | M. B. Chadwick, $\mathrm{T}-2$ |
| :--- |
| P. G. Young, T-2 |

SUBMITEDTO: The Consultants Meeting on Methods of Calculation of Fast Neutron
Nuclear Data for Structural Materials, Int. Atomic Energy Agency,

DISCLAIMER

This report was prepared as an account of work aponsored by an agency of the Unitod Siates Government. Neither the United States Government nor any agency thefoof, nor any of their employees, makes any warranty, exprens or implied, or amumes any legal liability or reaponaibility for the accuracy, completenes, or usefulnes, of any information, apparatus, product, of process disctosed, of reprenents that its use would not infringe privately wined rights. Refer ence herein to any apecific commercial product, procens, of aervice by trade name, trademark, manufactures, of otherwine doen not necemarily constitute of imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof The viewn and opinions of euthors expremed herein do not necemarily state or reflect those of the United Staten (fovernment or any agency thereor?

[^8]

Calculations of Long-Lived Isomer Production in Neutron Reactions

M.B. Chadwick and P.G. Young
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

We present theoretical calculations for the production of the long-lived isomers: ${ }^{121 \mathrm{~m}} \mathrm{Sn}(11 / 2-, 55 \mathrm{yr}),{ }^{180 \mathrm{~m}} \mathrm{Ho}(7-, 1200 \mathrm{yr}),{ }^{184 \mathrm{~m}} \mathrm{Re}(8+, 165 \mathrm{~d})$, ${ }^{180} \mathrm{~m} \mathrm{Re}\left(8+, 2 \times 10^{5}\right.$ $\mathrm{yr}),{ }^{178 \mathrm{~m}} \mathrm{Hf}(16+, 31 \mathrm{yr}),{ }^{179 \mathrm{~m}} \mathrm{Hf}(25 / 2-, 25 \mathrm{~d}){ }^{102 \mathrm{~m}} \mathrm{Ir}(9+, 241 \mathrm{yr})$, all which pose potential radiation activation problems in nuclear fusion reactors if produced in $14-\mathrm{MeV}$ neutron-induced reactions. We consider malnly ($n, 2 n$) production modes, but also (n, n^{\prime}) and (n, γ) where necessary, and compare our results both with expermental data (where available) and systematics. We also investigate the dependence of the isomeric crose section ratio on incident neutron energy for the isomers under consideration. The statlotical Hauser-Feshbech plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the bomeric state, which can be justifed theoretically but have not been experimentally resolved, were reconstructed.

I. INTRODUCTION

Fusion systems operating on the deuterium-tritium reaction give rise to intense neutron fluxes that cause structural components to be activated. The first wall, in particular, is subjected to neutron damage that, in deaigns envisaged at present, could require its replacement every few years. Disposal or reuse of the material would be facilitated if the activation could be kept to low limits, and therefors there is a search for materials that will give rise to the minimum activation. The neutron fluxes in fusion systems are expected to be so high that multiple reactions will be posaible in which a given nucleus interacte with a succession of neutrons. As a result, it is often important to have activation crose sections for unstable as well as stable nuclides. As there is often a lack of experimentai data on activation cross sections of intereat, it is important to be able to assess these cross sections theoretically. Ir this paper we shall present calculations of activation cross sections for a number of long-lived isomeric states which are considered important for fusion reactor dealgn.

The isomeric state production cross sections that we have considered were calculated at the request of the United Kingdom and United States fusion programs, which are in the process of establishing nuclear data libraries and inventory code packages to enable activation in virtually any material to be estimated. In a recent paper [1] we presented theoretical calculations of the production cross sections of hafnium isomers in 14 MeV reactions, using the GNASH [2] code. These calculations were perfornued prior to the release of experimental measurements [3] of the cross sections for hafnium isomer production, and agreement to within a factor of 2-3 was found. Because the cross sections under consideration were rather small and the isomer spins very large, the agreement obtained was encouraging, and suggested that our theoretical approach can be extended for use in other isomer-production calculations. We have, therefore, now determined production cross sections for long-lived isomers in $\mathrm{Sn}, \mathrm{Ir}, \mathrm{Ho}$ and Re at 14 MeV . In addition, we have determined the variation of the production cross section with incident neutron energy, since neutron energies below 14 MeV are produced in fusion reactors in inelastic collisions. As the energy variation of the hafnium isomer production was not shown in Ref. 1 we summarize our previous results for hafnium and give this variation.

The systematics of neutron-induced isomeric cross section ratios at 14.5 MeV have been been studied by Kopecky and Gruppelaar [4]. They used a simplitiod version of the GNASH code to determine the ratio of the cross section to the isomeric state and ground stata in $\left(n, n^{\prime}\right),(n, p),(n, t),(n, \alpha)$, and $(n, 2 n)$ reactions, replacing the realistic nuclear level structure by two discrete states (the ground state and the isomeric state) plus a continuum of statistically described states. Their, approach is, thereforc, considerably simpler than our calculations and so we have compared our results with the Kopecky svstematics. We shall show that while such systematics are very useful, in many cases a full calculation (with a realistic description of the nuclear structure) is important in accurately determining isomer ratios. Also, Kopecky and Gruppelear point out that their calculation is particularly sensitive to the simple model parameters that they adopt for the ($n, 2 n$) reaction. Our investigations into an analogous simple model confirm this, and indicate that for certain reactions one should be wary about using sirmple sytematic predictions. Finally, our calculations also include isomeric ratios for states formed in (n, γ) reactions, which are perticularly resistant to simple systematice-based descriptions.

In Section II we give a brief deacription of the theoretical models that we use to describe the auclear reactions, and in section III we show our results, and compare them with the Kopeciry systematics and experimental data where available. We shall use the hafnium isomer calculations as a detailed example of our approach, and then indicate the isomer ratios, and their energy dependences, that we obtain for other nuclei. We give some conclusions concerning our general approach in Section IV.

II. DESCRIPTION OF THE CALCULATIONS

A. General Description

The GNASH nuclear theory code [2] is based on the Hauser-Feshbach statistical theory with full angular momentum conservation, and with width fluctuation rorrections obtained from the COMNUC code [5] using the Moldauer approach. Preequilibrium emission processes, which are important for incident energies above about 10 MeV , are calculated using the exciton model of Kalbach [6]. Tiansmission coefficients for neutrons and charged particles are calculated using an optical model, and gammaray transmission coefficiens are obteined from giant dipole resonance approximations $[7,8]$, making use of detailed balance. The level structure for each residual nucleus in a calculation is divided into discrete and continuum regions, with the former obtained from experimental complilations and the latter from phenomenological level density representations.

B. Optical Model

Both the Hauser-Feshbach theory and the exciton model require optical potentials to calculate transmission coefficients and inverse reaction cross sections. The coupled channels code ECIS [9] was used for deformed nuclei, and the code SCAT2 [10] for spherical nuclei. Before using an optical potential tc generate transmission coefficients and reaction crose sections, the potentials were checked by comparing their predictions of elastic and total cross sections with experimental data, where available.

C. Gamma-Ray Transmission Coefficients

Transmission coefficients for gamma-ray emission coefficients were obtained using detailed balance, exploiting the inverse photoabsorption process. The Brink-Axel hypothesis is used, permitting the cross section fo: photoabsorption by an excited state to be equated with that of the ground state. The gamma-ray transmisaion coerticients were obtained from the expression

$$
\begin{equation*}
T^{X l}\left(e_{\gamma}\right)=2 \pi f_{X e}\left(e_{\gamma}\right) e_{\gamma}^{2 l+1}, \tag{1}
\end{equation*}
$$

where ϵ_{γ} denotes gamma-ray energy, $X l$ indicates the multipolarity of the ganmaray, and $f_{X e}$ is the energy-dependent gamma-ray strength function. The surength functions for El decay were calculated either from standard Lorentzian expressions [7], given by

$$
\begin{equation*}
f_{E 1}\left(e_{\gamma}\right)=K_{E 1} \frac{\sigma_{0} \epsilon_{\gamma} \Gamma^{2}}{\left(c_{\gamma}^{3}-E^{2}\right)^{2}+\epsilon_{\gamma}^{2} \Gamma^{2}} \tag{2}
\end{equation*}
$$

or from the generalized Lurentzian of Kopecky and Uhl [8]

$$
\begin{equation*}
f_{E 1}\left(\epsilon_{\gamma}, T\right)=K_{E 1}\left[\frac{\epsilon_{\gamma} \Gamma\left(\epsilon_{\gamma}\right)}{\left(\epsilon_{\gamma}^{2}-E^{2}\right)^{2}+\epsilon_{\gamma}^{2} \Gamma\left(\epsilon_{\gamma}\right)^{2}}+\frac{0.7 \Gamma 4 \pi^{2} T^{2}}{E^{5}}\right] \sigma_{0} \Gamma, \tag{3}
\end{equation*}
$$

where

$$
\begin{gather*}
\Gamma\left(\epsilon_{\gamma}\right)=\Gamma \frac{\epsilon_{\gamma}^{2}+4 \pi^{2} T^{2}}{E^{2}} \tag{4}\\
T=\sqrt{\frac{B_{n}-\epsilon_{\gamma}}{a}}, \tag{5}
\end{gather*}
$$

and $K_{E_{1}}=8.68 \times 10^{-8} \mathrm{mb}^{-1} \mathrm{MeV}^{-2}$ (nominally) but was usually determined empirically by matching the theoretical gamma-rey strength function for s-wave neutrens to experimental values compiled by Mughabghab [11]. The quantities B_{n} and a are the neutron binding energy and Fermi gas level density parameter, respectively. The Lorentzian parameters of the giant-dipole resonance, E and Γ, are taken from the tables of Dietrich and Berman [12].

In addition to E1 radiation, M1 and E2 components are also included. For M1, a standard Lorentzian expresaion was used for the gamma-ray sirength function. When the Kopecky-Uh formulation was employed, a glant resonance formulation was also used to calculate the E2 strength function [8]; otherwise, a Weisskopf expression ($f_{E 7}$ = constant) was incorporated.

D. Nuclear Structure and Level Denalties

The level density model of Gilbert and Cameron [13] was used in the HauserFeshbach calculations. At high energies the Fermi gas modil is used along with a constant temperature form for lower energies. A gaussian distribution of spin states is taken to deacribe the angular momenta of levels at a certain excitation energy

$$
\begin{equation*}
\rho(E, J, \pi)=\frac{(2 J+1)}{2 \sqrt{2 \pi \sigma^{2}}} \exp \frac{-\left(J+\frac{1}{3}\right)^{2}}{2 \sigma^{2}} \rho(U) \tag{6}
\end{equation*}
$$

where $U=E-\Delta$ (Δ is the pairing energy) and σ^{2} is the spin cut-off parameter which is determined via $\sigma^{2}=0.116 \sqrt{a U} A$? for the Fermi gas region. The spin cut-off factor is also determined from the spin distribution of observed low lying discrete levels and in the constant temperature region σ^{2} is linearly interpolated between this value and the value of σ^{2} where the Fermi gas region begins. In the high energy region the Fermi gas expression for $\rho(U)$ is

$$
\begin{equation*}
\rho(U)=\frac{\sqrt{\pi}}{12} \frac{1}{2 \sqrt{\pi} \sigma} \frac{\exp 2 \sqrt{a U}}{a^{1} U T} \tag{7}
\end{equation*}
$$

and it lower energiea the constant temperature form is given by

$$
\begin{equation*}
\rho(E)=\frac{1}{T} \exp \frac{\left(E-E_{o}\right)}{T} \tag{8}
\end{equation*}
$$

The pairing energy used to determine U is obtained from the Cook parameter set [14] and the level density parameters were calculated from the slow neutron resonance parameters of Mughabghab. The constant temperature $\rho(E)$ is chosen to match (both in value and in first derivative) the Fermi gas $\rho(U)$ at an energy $E_{\text {match }}$ and to fit the known discrete levels at the lowest excitation energies. The parameters E_{o}, T and $E_{\text {match }}$ are varied to achieve this.

The production cross section of a certain isomeric state is often particularly sensitive to the discrete nuclear level structure, since the gamma cascade of discrete states into the isomeric state will enhance its production. In many cases, the isomeric state of interest is a band-head, with a rotational band built upon it, though often the rotational band members have not been experimentally resolved and lie in a high-excitation energy regicn. Accordingly, the energies of the rotational levels were assessed theoretically (obtaining the moment of inertia from observed rotational bands at lower excitation energies) and GNASH was modified to allow these discrete levels to be embedded within the continuum of statistically described levels. In the case of our calculation of iff isomers [1], this procedure was particularly important; we found that over 40% of the production of the ${ }^{178} \mathrm{Hf}(16+)$ in an $(n, 2 n)$ reaction came from the decry of the 14 - level and the inferred discrete rotational band states above the 14-and $16+$ levels. In Fig. 1 we show schematically the combination of discrete and statistical levels for the case of the ${ }^{178} \mathrm{Hf}$ nucleus.

Fig. 1. A schematic representation of the combination of discrete, statistical and discrete levels embedded in the statistical continnum region used to describe the nuclear structure of ${ }^{178} \mathrm{Hf}$.

III. RESULTS

A. The Hafnium Isomers: A Detailed Example

By way of example, in this subsection we shall give details of the calculations for the production of hafnium isomers. Full details can be found in Ref. [1]

The possibility of including small amounts of tungsien and tantalum in the firstwall material has been suggested, and after a few reactions on these miclei hafnium could be produced. The presence of hafnium in a fusion reactor could pose serious activation problems due to the possible build-up of the isomeric state ${ }^{178} \mathrm{Hf}\left(J^{\pi}=\right.$ $16+$) with a $31-\mathrm{yt}$ half life. This state, if produced in sufficient quantity, could lead to the first wald being active for a very long time after its removal from the reactor, and the high excitation energy of the state (2.447 MeV) results in harmíul gamma radiation on its decay.

The ${ }^{179} \mathrm{Hf}(n, 2 n)$ and ${ }^{178} \mathrm{Hf}\left(n, n^{\prime}\right)$ reactions both give the ${ }^{1 / 8} \mathrm{Hf}(16+)$ lsomer, with」 the ($n, 2 n$) reaction expected to be the dominant production mode. There ls, however, also an isomeric state in ${ }^{179} \mathrm{Hf}\left(J^{\pi}=\frac{35}{2}-\right)$ with a 25 -day half life that is sufficiently long-lived for subsequent neutron-induced reactions to occur. Once this ${ }^{174 m} \mathrm{Hf}\left(\frac{25}{2}-\right)$ isomer is produced, it would be expected that subsequent ($n, 2 n$) reactions could take place with a relatively large crose section leading $!n^{178 \cdot} \cdot \mathrm{Hf}(16+)$ as the spin difference between these isoriers is small. Thus we calculate the ${ }^{170 \mathrm{~m}} \mathrm{Hf}\left(\frac{28}{2}-\right)(n, 2 n)^{178 m} \operatorname{IIf}(16+)$
reaction as well as those for the production of the ${ }^{179 m} \mathrm{Hf}\left(\frac{25}{2}-\right)$ state. Fig. 2 indicates the pathways that have been investigated.

Fig. 2. Reaction pathways investigated fo the hafnium isomers. Pathways 2,5 and 6 are ($n, 2 n$) reactions; pathways 1 and 4 are (n, n^{\prime}) reactions, and pathway 3 is a (n, γ) reaction.

Both the $16+$ state and the $\frac{25}{2}$ - state are rotational band heads, though none of the other members of the rotational bands have been detected. In addition, there is a 14 - band head state above the 16+ state that decays into the latter. Since a sizable fraction of the production cross section of these high-spin states comes from the gamma decay of higher-energy states, the rotational states were included explicitly into the calculation, their energies being eatimated by determining the moment of inertia from low-lying rotational bands. These rotational levels were then embedded into the continuum of statistically described states (see Fig. 1 for a schematic illustration). Because the hafnium isotopes are highly deformed, the coupled channels code ECIS [9] was used to evaluate the transmission coefficents and the direct scattering cross sections to low-lying states. The optical potential that we used [15] described the total elastic and total cross sections fairly well.

In Table I below we show our theoretical results, along with experimental measurements where available. The experimental numbers of Patrick et al. [3] have been extracted from data assuming that the ratios of our theoretical results for production of the same isomaric atate though different reactions are correct. In the experimental numbers that are quoted, the natural abundances of Hf have been taken into account. Reactions 1 through 6 are of importance for the determination of the production of the ${ }^{178 m} \mathrm{Hf}(16+)$ state in fusion reactors, and are numbered according to the pathways in Fig. 2. Reactions 7,8 and 9 are aloo shown to allow further comparisons of our calculations with data.

TABLE I
Theoretical Cross Sections for the Production of Isomeric States in Hafnium Compared with Data Where Available*
$\left.\begin{array}{|l|c|c|}\hline \text { Isoraer Production Reaction } & \begin{array}{c}\text { Theoretical } \\ \text { Cross Secrion (mb) }\end{array} & \begin{array}{c}\text { Experimental } \\ \text { Cross Section }\end{array} \\ \hline \hline \text { (mb) }\end{array}\right]$
-The reactions are numbered according to the pathways shown in Fig. 2.
${ }^{a}$ All Experimental Data are taken from the Brookhaven National Laboratory SCISRS file, except those of Patrick et al. [3][?].

B. The ($\mathrm{n}, 2 \mathrm{n}$) Isomeric Cross Section Ratios

We have concentrated on the ($n, 2 \pi$) reaction mechanism for isomer production since, at 14 MeV , this is the dominant process through which most of the reaction flux goes. The following isomeric states, in addition to the hafnium states, have been considered in detail: ${ }^{121 \mathrm{~m}} \mathrm{Sn}(11 / 2-, 55 \mathrm{yr}),{ }^{100 \mathrm{~m}} \mathrm{Ho}(7-, 1200 \mathrm{yr}),{ }^{104 \mathrm{~m}} \operatorname{Re}(8+, 165$ d), ${ }^{186 m} \mathrm{Re}\left(8+, 2 \times 10^{5} \mathrm{yr}\right)$, and ${ }^{192 \mathrm{~m} \mathrm{Ir}}(9+, 241 \mathrm{yr}$). In all casea the experimentally measured discrete states have been examined and a matching point above which experimental data is missing has been determined. Rotational bands above the isomers were determined theoretically and included in the calculation, as discussed above. Optical potentials were found and checked against elastic and total scattering data, where available. In Table II below we show our results for the isomeric cross section ratio (the ratio of crose section to the isomeric state to the sum of the cross sections to ground state and isomeric state), for neutron energies between 8 and 14 MeV .

TABLE IIa
Isomeric Cross Section Ratios in ($\mathrm{n}, 2 \mathrm{n}$) Reactions

| Neutron Energy (MeV) | $\begin{gathered} { }^{122} \mathrm{Sn}(\mathrm{n}, 2 \mathrm{n}) \\ { }^{121 \mathrm{~m}} \mathrm{Sn}(11 / 2-) \end{gathered}$ | | $\begin{aligned} & { }^{179} \mathrm{Hf}(\mathrm{n}, 2 \mathrm{n}) \\ & { }^{179 \mathrm{~m}} \mathrm{Hf}(16+) \end{aligned}$ | $\begin{aligned} & 180 \mathrm{Hf}(\mathrm{n}, 2 \mathrm{n}) \\ & 179 \mathrm{~m} \mathrm{Hf}(25 / 2-) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 8 | 0. | 0.52 | 0. | 0. |
| 9 | 0.61 | 0.42 | 3.8×10^{-6} | 5.1×10^{-6} |
| 10 | 0.61 | 0.41 | 1.2×10^{-4} | 1.6×10^{-4} |
| 11 | 0.67 | 0.43 | 3.0×10^{-4} | 5.3×10^{-4} |
| 12 | 0.68 | 0.45 | 5.7×10^{-4} | 1.1×10^{-3} |
| 13 | 0.70 | 0.47 | 8.9×10^{-4} | 2.4×10^{-3} |
| 14 | 0.72 | 0.49 | 1.4×10^{-3} | 3.6×10^{-3} |

TABLE IIb
Isomeric Cross Section Ratios in ($\mathrm{n}, 2 \mathrm{n}$) Reactions

| Neutron Energy (MeV) | $\begin{aligned} & 185 \mathrm{Re}(\mathrm{n}, 2 \mathrm{n}) \\ & 184 \mathrm{Re}(8+) \\ & \hline \end{aligned}$ | $\begin{aligned} & { }^{187} \mathrm{Re}(\mathrm{n}, 2 \mathrm{n}) \\ & 180 \mathrm{Re}(8+) \\ & \end{aligned}$ | $\begin{aligned} & 189 \mathrm{Ir}(\mathrm{n}, 2 \mathrm{n}) \\ & 192 \mathrm{~m} \mathrm{~m}(9+) \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 8 | 0.06 | 0.13 | 0.016 |
| 9 | 0.15 | 0.19 | 0.11 |
| 10 | 0.20 | 0.22 | 0.19 |
| 11 | 0.24 | 0.25 | 0.24 |
| 12 | 0.28 | 0.28 | 0.28 |
| 13 | 0.31 | 0.31 | $0.3{ }^{\circ}$ |
| 14 | 0.33 | 0.33 | 0.31 |

The isomer ratios obove can be compared with the Kopecky systematics for ($n, 2 n$) reactions. Kopecky and Gruppelaar [4] showed that a simplified version of GNASH predicted $14 \cdot \mathrm{MeV}$ isomer cross-section ratios that have a parabolic dependence on the isomer spin, with a peak at isomer spins between 3 and 5 . Their calculated isomeric ratio described the library of experimental ratios reasonably well, though they commented that for the case of the ($n, 2 n$) calculation their results were particularly sensitive to the model parameters describing the simplified nuclear structure. In Fig. 3a, we show the 14 MeV isomer ratios from Tablea IIa and IIb, compared with the Kopecky systematics. The differences betpreen the line (the Kopecky prediction) and our theoretical results (triangles) can be understood as a measure of the need to perform full GNASH calculations with realistic nuclear structure and optical models. In the case of the hafnium isomers ($25 / 2$ - and $16+$) we have shown the experimental isomer ratio, from Patrick et al. In most cases the Kopecky systematics yield isomer ratios that are close to our detailed GNASH calculations. Our GNASH calculations for the isomer production cross section ratios of the $25 / 2$ - and $16+$ levels in hafnium are seen to lie below the experimental numbers by about a factor of 2 . The Kopecky sytematics overestimate the isomeric ratio for the $25 / 2$ - by about a factor of $4-5$, and interpolating their curve to an isomer spin of 16 suggests that their systematics agree
with the experimental measurement reasonably well.
($n, 2 n$) reactions

Fig. 3. The ($n, 2 n$) isomeric cross section ratio as a function of isomer spin, for 14 MeV incident neutrons. The Kopecky systematics calculation is comnared with our GNASH calculations, and a comparison with data is made for the $/ 2$ - and 16+ hafnium isomers.

As well as ($n, 2 n$)isomeric cross section ratios for 14 MeV incident neutron energies, Table II contains the ratios for lower neutron energies, down to the threshola of about 8 MeV for ($n, 2 n$) reactions. The energy dependence of the isomeric ratio is of importance when assessing activation in a reactor induced by neutrons with degraded energies, after inelastic scattering processes have occurred. In Fig. 4. we show the variation of the isomer ratio with isomer spin for three different incident neutron energies: 14,11 and 8 MeV .

Fig. 4. The ($n, 2 n$) isomeric cross section ratio as a function of isomer spin, for three different incident zeutron energies. The lines connect GNASH calculations for the same isomers that are shown in Fig. 3.

It is seen that, for a given incident neutron energy, the ($n, 2 n$) isomer ratio decreases with increasing isomer spin (at least for iscmer spins above 4). This feature, which is also seen in experimental data and in the Kopecky calculations [4], can be simply understood in the following way. In $(n, 2 n)$ reactions both outgoing neutrons generally have low energies and are dominated by s-wave transitions. However, in order to produce a high-spin isomer, the intermediate nuclear states also have to be of high spin, and since the transmission coefficients at 14 MeV decrease with increasing l for large l, it would be expected that the isomer ratio would decrease strongly with increasing isomer spin. This same explanation accounts for another feature of our results. It is clear from our GNASH calculations that the variation of the isomer ratio with isomer spin is much stronger for lower incident neutron energies. At lower encrgies the decrease of the transmission coefficients with increasing l is even greater, resilting in a drastically reduced population of high-spin isomers in $(n, 2 n)$ reactions.

C. The (n, n^{\prime}) Isomeric Cross Section Ratios

The ground states of ${ }^{178} \mathrm{Hf}$ and ${ }^{179} \mathrm{Hf}$ are stable and are naturally occuring in hafnium, and naturai niobium is monoisotopic in ${ }^{93} \mathrm{Nb}$. Therefore we have considered the (n, n^{\prime}) reactions to the isomeric states for these nuclei. In addition we have also calculated the (n, n^{\prime}) reaction on ${ }^{168} \mathrm{Ho}$ to the isomeric state, the ground state of ${ }^{106} \mathrm{Ho}$ having a $1 . i$ day lifetime. We have determined the isomeric cross section ratio as a function of incident neutron energies between 1 and 14 MeV , and our results are shown in Table III.

TABLE III
Isomeric Cross Section Ratios in (n, n^{\prime}) Reactions

| Neutron Energy (MeV) | $\begin{aligned} & \hline{ }^{93} \mathrm{Nb}\left(n, n^{\prime}\right) \\ & { }^{93 m} \mathrm{Nb}(1 / 2-) \\ & \hline \end{aligned}$ | $\begin{aligned} & 160 \mathrm{Ho}\left(n, n^{\prime}\right) \\ & 100 \mathrm{Ho} \\ & \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline{ }^{176} \mathrm{Hf}\left(n, n^{\prime}\right) \\ & { }^{178 m} \mathrm{Hf}(16+) \\ & \hline \end{aligned}$ | $\begin{gathered} \hline{ }^{176} \mathrm{Hf}\left(n, n^{\prime}\right) \\ { }^{179 m} \mathrm{Hf}(25 / 2-) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $9.7^{-2} \times 10^{-2}$ | 8.3×10^{-3} | 0.0 | 0.0 |
| 2 | $8.9^{-2} \times 10^{-2}$ | 2.8×10^{-2} | 0.0 | 4.5×10^{-5} |
| 3 | $8.5^{-2} \times 10^{-2}$ | 5.5×10^{-2} | 2.2×10^{-16} | 3.8×10^{-6} |
| 4 | 8.8×10^{-2} | 8.7×10^{-2} | 4.4×10^{-11} | 1.1×10^{-3} |
| 5 | 8.9×10^{-2} | 0.12 | 1.5×10^{-9} | 2.8×10^{-3} |
| 6 | 8.8×10^{-2} | 0.15 | 1.5×10^{-6} | 4.3×10^{-3} |
| 7 | 8.7×10^{-2} | 0.19 | 8.6×10^{-8} | 7.1×10^{-1} |
| 8 | 8.6×10^{-2} | 0.24 | 3.9×10^{-7} | 1.7×10^{-2} |
| 9 | 8.6×10^{-2} | 0.28 | 2.3×10^{-6} | 3.2×10^{-2} |
| 10 | 8.6×10^{-2} | 0.30 | 1.2×10^{-6} | 3.5×10^{-2} |
| 11 | 8.6×10^{-2} | 0.32 | 3.3×10^{-6} | 3.4×10^{-2} |
| 12 | 8.6×10^{-2} | 0.34 | 7.2×10^{-6} | 3.9×10^{-2} |
| 13 | 8.7×10^{-2} | 0.34 | 1.4×10^{-6} | 3.7×10^{-2} |
| 14 | 8.8×10^{-2} | ก. 36 | 2.8×10^{-4} | 4.3×10^{-2} |

For the high-spin isomers (all except ${ }^{03 m} \mathrm{Nb}(1 / 2-)$), the isomer ratio is seen to be a strongly-decreasing function of incident energy, and the higher isomer spins have the stronger the energy dependences. This is because the angular momentum brought in by the projectile neutron decreases with decreasing energy, and therefore results in a reduction in the high-spin isomer population. It is interesting to note that the energy dependence of the (n, n^{\prime}) isomer cross-section ratio is weaker than that of the $(n, 2 n)$ reaction. If the two ratios are compared over the energy range 148 MeV , it is clear from Tables II and III that the isomer cross section ratio decreases iess rapidly for the (n, n^{\prime}) reaction. This can be understood as follows: for an (n, n^{\prime}) reaction to occur at these energies, rather than an ($n, 2 n$) reaction, the primary-emitted neutron has to be emitted with a relatively high energy, so that gamma decay then occurs. A high-energy emitted neutron is able to carry off a large angular momentum, and hence can result in the population of high-spin residual nucleus states. ($n, 2 n$) processes, on the other hand, will be dominated by low-energy equilibrium-emission neutrons with
small angular momenta, with a small probability of - - citing the high-spin state. In the case of the (n, n^{\prime}) reaction on ${ }^{93} \mathrm{Nb}$, the fact that the long-lived isomer is of low spin results in an isomeric cross section ratio which is approximately energy-independent.

The Kopecky-Gruppelaar systematic calculations for the (n, n^{\prime}) isomeric cross section ratio again show a peak at an isomer spin $J^{m}=3-5$, and are compared in Fig. 3 with our calculations at 14 MeV . As well as showing our results from Table III in this figure, we include isomeric ratios at 14 MeV for the production of the ${ }^{178 m} \mathrm{Hf}(8-),{ }^{170 m} \mathrm{Hf}(1 / 2-)$ and ${ }^{180 m} \mathrm{Hf}(8-)$ states which we have also determined. In general the Kopecky-Gruppelaar systematics agrec fairly well with our detailed GNASH calculations (to within a factor of 2-3). One notable exception is the isomer cross section ratio for the production of the ${ }^{179 m} \mathrm{Hf}(25 / 2-)$, for which our calculation exceeds the systematics by more than an order of magniture (and the experimental result of Patrick et al exceeds the systematics by an even greater fuctor). This is probubly due to the fact that Kopecky et al adopt a ground-state spin of 0.5 in their model calculation, whereas in this case the ground-state spin is 4.5 . Hence they overestimate the spin change in the reaction and consequently underestimate the isomeric cross section ratio.

Fig. 5. The (n, n^{\prime}) isomeric crose-section ratio as a function of lsomer spin for $14-\mathrm{MeV}$ incident neutrons. The Kopecky systematics for one-step reactions are compared with

GNASH calculations and with experimental data.

D. Isomeric Cross Section Ratios for (n, γ) Reactions

A limited amount of cross-section data for total (n, γ) radiative capture reactions is available at neutron energies in the MeV region, and simple systematic behavior with atomic number A has been noted for $14-\mathrm{MeV}$ neutrons [16]. In the case of (n, γ) reaction to isomeric states, however, experimental data are much more limited and consist mostly of data for thermal incident neutrons. Thermal (n, γ) isomer ratios for an assortment of heavy nuclei are plotted versus the spins of the isomeric states in Fig. 6. Clearly, simpie systematic behavior is much less evident for thermal neutron capture data than for $14-\mathrm{MeV}$ particle-production cross sections, especially for isomeric states with spins greater than 5 . This situation, coupled with the almost complete lack of experimental data at higher energies, results in a pressing need for reliable theoretical estimates of (n, γ) isomer ratios.

Experimental (n, γ) Isomer Ratios for 0.0263 oV Incident Neutrons

Fig. 6. Experimental lsomer ratios for (n, γ) reactions with thermal neutrons, ploted as a function of spin of the bomeric states.

The GNASH code was used to calculate (n, γ) croses sections leading to isomeric states in ${ }^{100} \mathrm{Ho}\left(7^{-}, 1200 y\right),{ }^{178} \mathrm{Hf}\left(16^{+}, 31\right.$ y; $8^{-}, 4$ s), ${ }^{1 / 0} \mathrm{Hf}\left(25 / 2^{-}, 25.1\right.$ d; $1 / 2^{-}$, 18.7 s), ${ }^{150} \operatorname{Re}\left(8^{+}, 2 \times 10^{5} y\right)$, and ${ }^{104} \operatorname{Re}\left(0^{-}, 18.0 \mathrm{~m}\right)$. Except as noted helow, the generalized Lorentzian form was utilized for the gammarray strength functions. The
calcuiations were performed down to an incident energy of at least 1 keV in each case, at which energy the neutron transmission coefficients are completely dominated by s-waves, and it is possible to make a crude comparison with the thermal neuiron experimental data. A selection of the isomeric ratios [relative to the total (n, γ) cross section] that results from the calculations for ${ }^{105} \mathrm{Ho}(n, \gamma){ }^{160 m} \mathrm{Ho},{ }^{177} \mathrm{Hf}(n, \gamma){ }^{178 \mathrm{~m}} \mathrm{Hf}$, and ${ }^{187} \mathrm{Re}(n, \gamma){ }^{188 m} \mathrm{Re}$ reactions are shown in Fig. 7. The calculated isomer ratios are given explicitly in Table IV.

A feature of isomer ratios of Fig. 7 is a general trend of increasing ratio with increasing neutron energy. This behavior reflects the fact that more angular momentum is brought into the reactions as the neutron energy is increased thus increasing the population of higher spin states. For both the ${ }^{105} \mathrm{Ho}(n, \gamma)^{100 m} \mathrm{Ho}$, and ${ }^{187} \mathrm{Re}(n, \gamma)^{180 m} \mathrm{Re}$ reactions, an anomaly is seen in the calculated isomer ratios near 300 keV that interrupts this general trend of increasing isomer ratios with neutron energy. This effect is thought to result from the fact that thresholds for one or more high spin states in the target nucleus opens in this energy region. The presence of these open channels to higher spin states permits neutron decays to occur more readily from higher spin states in the compound nucleus, thus reducing the high-spin population available for cascading to the isomeric state. As the incident neutron energy is further increased, more and more channels of all spins are opened, and the annmalous effect is overwhelmed by the increasing angular momentum brought into the reaction.

Calculated $177 \mathrm{Hi}(\mathrm{n}, \mathrm{y}) 17 \mathrm{BmHP}$ leomer A

Fig. 7. Calculated isomer ratios for ${ }^{165} \mathrm{Ho}(n, \gamma)^{166 m} \mathrm{Ho},{ }^{177} \mathrm{Hf}(n, \gamma){ }^{178 \mathrm{~m}} \mathrm{Hf}$, and ${ }^{187} \operatorname{Re}(n, \gamma)^{188 m} \operatorname{Re}$ reactions from 0.1 keV to 20 MeV . Experimental data from thermial neutron measurements are included for comparison.

The agreement (or lack of agreement) between uur calculated iscmer ratios al. lower energies and the thermal neutron measurem ints depends "oon the extent to which the average properties (widths) embodied in our statisticai model coincide with the very few channels involved in the thermal neutron measurements. Clearly, large differences between the calculations at $\sim 1 \mathrm{keV}$ and the thermal measurements are possible, and such are seen in the case of the ${ }^{177} \mathrm{Hf}\left((n, \gamma){ }^{178 m} \mathrm{Hf}\right.$ isomer ratios (\sim factor of 20 differences). In the cases of the ${ }^{105} \mathrm{Ho}(n, \gamma)^{166 m} \mathrm{Ho}$ and ${ }^{187} \mathrm{Re}(n, \gamma)^{188 \mathrm{~m}} \mathrm{R} \mathrm{R}$) reactions, however, the differences between the calculated ratios near 1 keV and the thermal experimental values are much smaller, of the order of 30%.

To investigate the behavior of isomer ratios with neutron energy and with isomer spin, a simple parametric study was periormed using the ${ }^{187} \mathrm{Re}(n, \gamma){ }^{188 m} \mathrm{Re}$ reaction as a base case. In this study various values of spin between 0 and 16 were assumed for the isomeric state in ${ }^{180} \mathrm{Re}$ at $E_{x}=172 \mathrm{keV}$, and the isomer ratio was calculated as a function of incident neutron energy for each isomer spin. The ${ }^{187} \operatorname{Re}(n, \gamma)^{188 m} \mathrm{Rc}$, reaction was chosen because the real isomer ($J^{\pi}=6^{-}, E_{x}=172 \mathrm{keV}$) is not fed by any of the known discrete states, so all the isomer's excitetion comes from decays from the continuum. Additionally, the calculated isomeric state branching ratio for the real isomer is consistent (within 30\%) at the lowest energy of the calculation (0.1 keV) with the measured ratio for thermal neutrons. The results of these calculations, performed using a standard Lorentzian, are shown in Fig. 8 for incident neutron energies o!' $0.001,1$, and 14 MeV . The calculated isomer ratios show strong dependence on both incident neutron energy and on isomer spin. The calculations for the higher spin states are thought to depend strongly on details of the gamina-ray strength functions as well as on the level density in the compound nucleus, since populating the isomerie: states occurs almost exclusively through multiple γ-rey cascades in the compourd mucleus.

Theoretical lsomer Ratios as Functions of lsomer Spln Based on

Fig. 8. Calculated isomer ratios as functions of incident neutron energy and isomer spin for the $\left.{ }^{187} \operatorname{Re}(n, \gamma)\right)^{188 m} R e$ reaction. The calculations were performed by replacing the spin of the actual isomer in ${ }^{188} \operatorname{Re}\left(j^{\pi}=6^{-}, E_{x}=172 \mathrm{keV}\right)$ by values from 0 to 20 .

While it is attractive to consider using calculations such as those illustrated in Fig. 8 to search for systematic relationships that might be useful in making simple predictions of isomer ratios, we found that the calculated results for the various cases were strongly dependent on the properties of the nuclei in question. The (n, γ) reaction is specifically excluded from the "one-step reaction" systematics identified by Gruppelaar et al. [16], because the validity of those systematics was primarily established for (n, n^{\prime}), (n, p), and (n, α) reactions and was doubtful for ($\left.n, \gamma\right)$. However, it was necessary for those authors to use the one-step reaction systematics for (n, γ) reactions in the REAC-ECN-3 library, due to the lack of other alternatives. A comparison between the one-step reaction systematics of Gruppelaar it et al. and our calculated (n, γ) isomer ratios at $E_{n}=14 \mathrm{MeV}$ is given in Fig. 9. The calculated ratios are seen to differ significantly from the systematics, thus confirming the conclusion of Gruppelaar et al. that the one-step reaction systematics might not be valid for (n, γ) reactions. This further highlights the need for careful nuclear theory calculations for important reactions.

TABLE IVa
Isomeric Cross Section Ratios in (n, γ) Reactions

| Neutron Energy (MeV) | $\begin{aligned} & 165 \mathrm{Ho}(n, \gamma) \\ & 100 \mathrm{mo} \mathrm{Ho}(7-) \end{aligned}$ | $\begin{aligned} & \hline 178 \mathrm{Hf}(n, \gamma) \\ & { }^{178 \mathrm{~m}} \mathrm{Hf}(8-) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 178 \mathrm{Hf}(n, \gamma) \\ & { }^{178 m \mathrm{Hi}(16+)} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 0.001 | 0.069 | 0.069 | 2.3×10^{-11} |
| 0.01 | 0.078 | 0.071 | 2.0×10^{-10} |
| 0.1 | 0.11 | 0.081 | 8.2×10^{-9} |
| 0.2 | 0.13 | 0.092 | 1.1×10^{-7} |
| 0.4 | 0.11 | 0.086 | 6.9×10^{-7} |
| 0.6 | 0.14 | 0.087 | 1.3×10^{-6} |
| 0.8 | 0.17 | 0.10 | 4.5×10^{-6} |
| 1.0 | 0.19 | 0.11 | 7.1×10^{-6} |
| 2.0 | 0.25 | 0.17 | 1.1×10^{-6} |
| 4.0 | 0.32 | 0.21 | 6.3×10^{-6} |
| 6.0 | 0.38 | 0.23 | 1.7×10^{-3} |
| 8.0 | 0.43 | 0.25 | 3.9×10^{-3} |
| 10.0 | 0.48 | 0.26 | 3.9×10^{-3} |
| 12.0 | 0.57 | 0.28 | 1.1×10^{-2} |
| 14.0 | 0.66 | 0.30 | 2.5×10^{-2} |

TABLE IVb
Isomeric Cross Section Ratios in (n, γ) Reactions

| $\begin{gathered} \text { Neutron } \\ \text { Energy }(\mathrm{MeV}) \end{gathered}$ | $\begin{aligned} & \hline 17 \mathrm{Hf}(n, y) \\ & { }^{179} \mathrm{HP}(25 / 2-) \\ & \hline \end{aligned}$ | $\begin{aligned} & { }^{115} \mathrm{Re}(n, \gamma) \\ & \mathrm{in}^{\mathrm{nm}} \mathrm{Hf}(8+) \end{aligned}$ | $\begin{gathered} \hline 14 \mathrm{Re}(\mathrm{n}, \gamma) \\ { }^{120 m} \mathrm{Re}(\theta-) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 0.001 | 1.9×10^{-15} | 2.1×10^{-3} | 0.048 |
| 0.01 | 2.7×10^{-12} | 2.5×10^{-3} | 0.051 |
| 0.1 | 1.4×10^{-10} | 8.1×10^{-5} | 0.088 |
| 0.2 | 1.5×10^{-0} | 0.014 | 0.114 |
| 0.4 | 5.4×10^{-5} | 0.016 | 0.099 |
| 0.6 | 2.8×10^{-7} | 0.018 | 0.12 |
| 0.8 | 7.6×10^{-6} | 0.022 | 0.14 |
| 1.0 | 1.6×10^{-7} | 0.027 | 0.17 |
| 2.0 | 5.3×10^{-6} | 0.081 | 0.24 |
| 4.0 | 9.8×10^{-8} | 0.13 | 0.33 |
| 6.0 | 3.2×10^{-6} | 0.18 | 0.40 |
| 8.0 | 1.8×10^{-5} | 0.24 | 0.47 |
| 10.0 | 4.0×10^{-3} | 0.20 | 0.52 |
| 12.0 | 9.3×10^{-3} | 0.35 | 0.68 |
| 14.0 | 2.2×10^{-2} | 0.45 | 0.69 |

Fig. 9. The ($n, \gamma)$ isomeric cross-section ratio as a function of isomer spin for $14-\mathrm{MeV}$ incident neutrons. The Kopecky systematics for one-step reactions are compared with GNASH calculations.

rv. CONCLUDDNG REMARKS

We present calculations of the energy dependence of isomer ratios for long-lived metastable states in ${ }^{93} \mathrm{Nb},{ }^{121} \mathrm{Sn},{ }^{106} \mathrm{Ho},{ }^{184} \mathrm{Re},{ }^{166} \mathrm{Re},{ }^{178} \mathrm{Hf},{ }^{179} \mathrm{HI}$, and ${ }^{193} \mathrm{Ir}$, populated by means of $\left(n, n^{\prime}\right),(n, 2 n)$, and (n, γ) reactions. The calculated ratios for $(n, 2 n)$ reactions generally support predictions from systematics at 14 MeV except for isomer spins above ~ 12. The agreement with systematics is not as good for (n, n^{\prime}) reactions as is the case for ($n, 2 n$), but the systernatics obviously are good enough to still be uscful in developing large activation librarics. In the case of (n, γ) reactions, the theoretical values cannot be compared directly with the thermal neutron measurements but are roughly consistent at the lower energy range of the calculations.

Because of the limited amount of experimental data available on isomer ratios, nuclear theory codes such as GNASH provide a useful complement to the data base. The calculations are particularly important for (n, γ) reactions, as experimental data are extremely limited and systematics provide little guidance, as well as for determining the energy dependence of (n, n^{\prime}) and ($n, 2 n$) isomer ratics, for which there is little experimental information. In general, we recommend that evaluations of important long-lived isomers be based on detailed theoreticai analyses matched to the available experimental data. The use of systematics should be limited to providing daia for less important reactions. In cases where systematics are used, particular care should be exercised with (n, γ) isomeric ratios, and the procedure, which is sometimes used, of setting the isomer ratio to $1 / 2$ of the total (n, γ) cross sections should never be used at low energies, as it can lead to errors of many orders of magnitude.

A detailed description of the present work will be presented at the upcoming IAEA Research Coordination Meeting on "Activation Cross Sections for the Generation of Long-Lived Radionuclides of Importance in Fusion Reactor Fechnology," in Vienna, 11-12 November 1991.

V. REFERENCES

[1] M.B. Chadwick and P.G. Young, 'Calculations of the Production Cross Sections of High-Spin Isomeric States in Hafnium', Nucl. Sci. and Eng. 108, 117 (1991).
[2] E.D. Arthur, 'The GNASH Preequilibriam-Statistical Model Code', Los Alamos National Laboratory report LA-U'R-88-382 (1988); P.G. Young and E.D. Arthur, 'GNASH: A Preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross Sections and Emission Spectra', Los Alamos Scientific Laboratory report LA-11753MS (1990).
[3] B.H. Patrick, M.G. Sowerby, C.G. Wilkins and L.C. Russen, 'Measurements of $14-\mathrm{MeV}$ Neutron Crose Sections for the Production of lsomeric states in Hafnium Isotopes,' presented at the Specialists' Mtg. Neutron Activation Cross Sections for Fission and Fusion energy Applications, Argonne, Illinois, Septeraber 13-15 1289.
[4] J. Kopecky and H.Gruppelear, 'Systematics of Neutron-Induced Isomeric Cross Section Ratlos at $14.5 \mathrm{MeV}^{\prime}$, ECN report FCN-200 (1987).
[5] C.L. Dunford, 'Cornpound Nucleus Reaction Programs COMNUC and CASCADE', AI-AEC-12931, Atomics Int. (1970).
[6] C. Kalbach, 'The Griffin Model, Complex Particles and Direct Nuclear Reactions', Z. Phys. A283, 401 (1977).
[7] D. M. Brink, 'Some Aspects of the Interaction of Flelds with Matter', D.Phil. The-
sis, Oxford (1955); P. Axel, 'Electric Dipole Ground Stave Transition Width Strength Function', Phys. Rev. 126, 671 (1962).
[8] J. Kopecky and M. Uhl, 'Test of Gamma-Ray Strength Functions in Nuclear Reaction Model Calculations,' Phys. Rev. C 42, 1941 (1990).
[9] J. Raynal, 'Optical Model and Coupled-Channel Calculations in Nuclear Physics', SMR-9/8, International Atomic Energy Agency (1972).
[10] O. Bersillon, 'SCAT2 - A Spherical Optical Model Code', in Progress Report of the Nuclear Physics Division, Bruyeres-le-Chatel (1977), CEA-N-2037, p. 111 (1978).
[11] S.F. Mughabghab, 'Neutron Resonance Parameters and Thermal Cross Sections', Parts A and B, in Neutron Cross Sections, V. 1, Academic Press Inc., New York, (1981) (part A) and (1984) (part B).
[12] S.S. Dietrich and B.L. Berman, 'Atlas of Photoabsorption Cross Sections Obtained with Monoenergetic Photons', Atomic and Nuclear Data Tablea, 199 (1988).
[13] A. Gilbert and A.G.W. Cameron, 'A composite Nuclear-Level density formula with Shell Corrections', Can. J. Phys. 43, 1446 (1965).
[14] J. L. Cook, H. Ferguson, and A. R. Musgrove, Aus. J. Phys. 20, 477 (1967).
[15] E. D. Arthur, P. G. Young, A. B. Smith, and C. A. Philis, Trans. Am. Nucl. Soc. 39, 793 (1981).
[16] H. Gruppelaar, H. A. J. van der Kamp, J. Kopecky, and D. Nierop, 'The REAC-ECN-3 Data Library with Neutron Activation and Transmutation Cross Sections for Use in Fusion Reactor Technology,' ECN report EC.N-207 (1988).

State densities with linear momentum and their application to preequilibrium and photoabsorption reactions

M.B. Chadwick
Theoretical Division. Los flamos Vational Laboratory. Los flamos, Vew Mexico 9754

P. Oblożinskẏ

Institute of Physics, Slovak Academy of Sciences, 84328 Bratislava, Czechoslovakis

We discuss the concept of state densities with linear momentum and describe their application to preequilibrium reaction theory as well as nuclear photoabsorption via the quasideuterou machanism. An exciton model is presented for particle amission in nucleon-induced reactions in which linear momentum conservation is inrluded. The nucleon emission contributions from the first two preequilibrium stages are calculated by determining exact particle-hole state densities with a specific energy and linear miomentum in a Fermi-gas model of the aucleus. Angular distributions arise naturally from our treatment and do not have to be added in an ad hoc way. The angular distributions that we obtain from the first two preequilibrium stages are identical to those found using the hikuchi-Kawai quasifree scattering kernel. Since many prequilibrium analyses are based upon an equidistan: single-particle model if the nucleus. we also determine the state densitien with linear momentum (and ! pance angular distributions) in such a model. A no-parameter quasideuteron model nf photoabsorption is prenented in which the Levinger parameter and Pauli-blocking :inction are determined theoretically. using state densities with linear momentum 1 inmparisons with data are shown. and the temperature dependence of the photnab.)

I. INTRODCCTOM

A! - Enotetial lesctiptions of nuclear reactions in the continuum region mate \because - race assumptions corcerning the complex multistep reaction process. In order \therefore cuiculate ross sections for preequilibrium emission one implifies the complicated rature of he different possible scattering processes by introducing averaged matrix el--ments of the varions possible transitions and state densities for the different particlehoie preequiliorium configurations. Expressions for the state densities represent an integral part of any theoretical calculation. and a number of different approaches ior obtaining such densities have been developed. Frectiently an equidistant single-particle-state model is adopted. allowing a simple evaluation of the particle-hole state iensity. If there are no restrictions on the particle-hole excitations the formulae of Ericson [1] and Williams [2] result. Including finite well-depth restrictions leads to the slighrly more complicated expressions in [3]. Partial state densities withir an equidistant single particle model have been developed to describe the angular momentum 2 , parity 't'. and isospin structure of the states. We have recently extended such ideas to obtain the linear-momentum structure of such particle-hole state densities ?.bl

The linear momentum structure of a state density is a useful concept since. tor reasonably high excitation energies, a semiclassical description of the cucleus (where one pictures the individual nucleon states as eigenstates of linear momentum) becomes more realistic. By considering the variation of the accessible residual nucleus state dersity with nucieon emission angle.' it is possible to obtain angular distributions of rmitted particles in a consistent manner. We also describe how state densities with innear momentum can be used in a quasideuteron model of photoabsorption. We bind such densities essential for a realistic description of the correlated nature of neltron-proton emission in photoabsorption processes above the giant resonance and below the pion threshold.

In section II we discuss state densities with linear momentum. and how they can her ialculated both for a Fermi-gas and an equidistant single-particle-state model. In section III we describe two different applications of state densities with linear momentum. Section IliA descibes now angular distributions can be obtained in an writion model of preequilibrium seactions, and an account of this work is to appear in the November I 391 issue of Physical Review C. Rapid Commuaications. Section IISB mires a desc:iption of out quasideuteron photoabsorption model (full detals ran 're ?ind in Ref. ?') and we give sonle conclusions in section [V.

II STATE DENSITIES WITH LNEAR MOMENTUM

If . A.: now thow how state densities with linear momentum are calculated. ils :ew are nudens semiciassically and wish to determine the number of $p-h$ \cdots wht an energy in the range $E \rightarrow E+d E$ and a total momentum ir the range $\mathbf{K} \mathbf{-} \mathbf{K}-i^{\prime} \mathbf{K}$. This problem was first investigated by Madler and Reis ?! wro :sed a parteton-function approach. Unfortunately, their method is vaiid only for lu:ge numbers of excited particles and holes, and for most applications in nuclear :eaction theories it is the simple particle-hole excitations that are most important. In addition. their approach suffers from some computational difficulties in making -addle-point approximations. Maddler and Reif's approach has been extended by [wamoto [?] for use in heavy-ion calculations. Our approach, on the otherhand. is pxact and leads to simple analytic expressions for ithe simplest $p-h$ state densities. The more complicated $p-h$ densities become barder to solve using our method due to the high-dimensionality of the integrations, though for many applications (including those shown in this paper) it is only densities for simple $p-h$ excitations that are needed.

In order to make our approach more transparent. we firs. indicate how state densities without linear momentum can be determined. The state density of a p-particle h hole system can be obtained by convoluting single-particle and -hole densities with an energy-conserving delta-function. When linear momentum effects are not accounted for, this can be expressed as

$$
\begin{gather*}
\rho(p, h, E)=\frac{1}{p!h!} \int_{1=1} \ldots \int_{i=p} \int_{l=1} \ldots \int_{j=h} \delta\left(E-\sum_{i=1}^{p} \epsilon_{i}+\sum_{j=1}^{n} e_{j}\right) \\
\times \prod_{i=1}^{F} \rho\left(1 p, \epsilon_{1}\right) \theta\left(\epsilon_{1}-\epsilon_{r}\right) d \epsilon_{1} \prod_{j=1}^{n} \rho\left(l h, \epsilon_{j}\right) \theta\left(\epsilon_{r}-\epsilon_{j}\right) d \epsilon_{j} . \tag{ill}
\end{gather*}
$$

where , labels the particles and j the holes. The theta functions are unity if their argument is greater than zero and zero otherwise. accounting for Pauli-blacking. The hensities of single-particles and holes in energy space are represented by $\rho(l p, e$, and $p\left(t h .9\right.$). with the energies $e_{1, \text {, }}$ measured relative o the bnttom of the nuclear we!! The factorials p ! and h ! account for the indistinguishability of the particles and huleg If an equidistant single-particle model of the nucleus is used, the above \cdots ‥ession would yield the Ericson state density expression. corrected to include finite :unar weil depth restrictions [?]. In a Fermi gas model of the nucleus the single-
 $\because h_{n}=3.1_{\sqrt{*}} / M_{r}^{3 / 2}$. where A is the nuclear mass number.

No nuw anneralize the above expression to allow state densities with a ifectic :nome momenm to he determined. The convolution of the single-particle and hole \therefore and is nuw performed in momentum space, and a linear momentum conserving

$$
\begin{align*}
& \left.\therefore \mathbf{K}-\sum_{i=1}^{z} \mathbf{k}_{\mathbf{1}}-\sum_{i=1}^{n} \mathbf{k}_{i}\right) \prod_{i=1}^{p} \rho\left(1 p \cdot \mathbf{k}_{i}\right) \theta\left(k_{1}-k_{F}\right) d^{3} \mathbf{k}_{\mathbf{1}} \prod_{i=1}^{h} \rho\left(1 h . \mathbf{k}_{i}\right) \theta\left(k_{F}-k_{i}\right) d^{3} \mathbf{k} . \tag{2}
\end{align*}
$$

where \mathbf{k}, and \mathbf{k}, are the single-particle and -hole linear momenta. and $\boldsymbol{k}_{\mathbf{r}}$ is the Fermi momentum. The density of single-particle and -hole states in momentum space aie $\left.\mu_{1} \mid p, \mathbf{k}_{1}\right)$ and $\rho\left(1 h . \mathbf{k}_{3}\right)$ respectively.

Veither Eq. (1) nor Eq. (2) include the possibility that some of the excited par:icles/holes can Pauli-block other particles/holes, though for the simple particle-hole configurations that we consider this effect can be safely ignored. As expected from symmetry, the density of states with linear momentum. $\rho(p, h, E, K)$, is independent of the direction of the total momentum K and depends only upon its magnitude. The dimensions of the state densities with linear momentum are $\mathrm{MeV}^{-1}(\mathrm{MeV} / \mathrm{c})^{-3}$, and they obey the relation

$$
\begin{equation*}
\rho(p, h, E)=\int \rho(p, h, E, K) 4 \pi K^{-2} d K . \tag{3}
\end{equation*}
$$

This equation aiso allows a useful check on analytic expressions that are derived for state densities with linear momenta. If they are integrated over all values of total momenta they must yield the 'conventional' state densities. which are only a function of energy.

.. . The Fermi-gas model

In the Fermi-gas model the single-particle and -hcle states are eigenstates of linear nomentum. the density of such states in momentum-space being a constant which :eproduces the number of nucleons.

$$
\begin{equation*}
\rho\left(l p, k_{1}\right)=\rho\left(1 h, k_{1}\right)=\frac{A}{\frac{1}{3} \pi k_{r}^{3}} \equiv \kappa . \tag{1}
\end{equation*}
$$

Briow we give some analytic results for state densities with linear momentun for i - hionfigurations which are important-in preequilibrium reactions and will be used in the rext section. We shall consider particle emission from only the first two preefulibril: \boldsymbol{T} stages since these dominate the prequilibrium spectrum for most nuclenn-
 and lpith "rritationg. The $p(l p, \mid h, E, K)$ density requires the solution of a in. amusunai integration. which can be oolved analytically using the techniques shown a Ref i's siving
where

$$
\begin{gather*}
k_{m, a}=\sqrt{2 m E-k_{F}^{2}}=k_{F} \\
k_{2}=\sqrt{2\left(k_{F}^{2}-m E\right) \mp \cdot k_{F} \sqrt{k_{F}^{2}-2 m E}} \tag{17}
\end{gather*}
$$

$$
1 i_{i}
$$

The high-dimensionaiity of the integrations for the evaluation of the more complex state densities can be reduced by breaking up the integrals, making use of analyric solutions for simpler configurations. For instance. the $\rho(2 p . \geqslant h, E, K)$ requires a cwelve-dimensional integration, though it can be expressed as a convolution of two : plh state densities. each of which is known analytically, so that

$$
\begin{equation*}
\rho(2 p .2 h, E . \mathbf{K})=\frac{1}{2!} 2!\iint \rho\left(l p, 1 h, E_{1}, \mathbf{K}_{1}\right) \rho\left(l p, 1 h, E-E_{1}, \mathbf{K}-\mathbf{K}_{1}\right) d^{3} \mathbf{K}_{1} d E_{1} \tag{3}
\end{equation*}
$$

which. by symmetry, can be reduced to a three-dimensional integral and can be solved numerically without any difficulties. We checked that when the state densities with: !inear momentum are integrated over all total momenta [using Eq. (3)] they yield the Fermi-gas state densities without linear momentum of Eq. (1).

In Fig. 1 ithe variation of the residual nucleus $1 p 1 h$ and $2 p 2 h$ state densities Eqs. (3) and (3)] with emission angle is shown for the reaction ${ }^{184} \mathrm{~W}\left(n, n^{\prime}\right)$ for an incident energy of 26 Mel and emission energies of 14.5 and 13.5 MeV . 1 Fermi energy of 35 MeV was adopted. These densities are strongly forward-peaked due to the variation of the state density with the linear momentum deposited in the residual nucleus. This forward peaking decreases with increasing exciton number as the linear momentum brought in by the projecti'e is shared among more particles and holes and -he memory of the incideat direction is lost. Since the angular distribution of emitted :ar'ucles comen from the variation of the residual-nucleus phase space with emission A: ale. no prequilibrium emission from the $n=3$ stage can occur for angles greater 1 tian about 110 degrees. This is a kinematical effect resulting from the restrictions of nnergy and momentum conservation and is also seen in Refs. $[8,10]$.

FIG. 1. The variation of the $l p l h$ and $2 p 2 h$ state densities with emission angle for the residual nucleus in the reaction ${ }^{184} W\left(n, n^{\prime}\right)$, using a Fermi-gas model. The incident rnergy is 26 MeV . and the emission energies are $\epsilon_{n^{\prime}}=14.5$ and 18.5 MieV .

B. Equidistant single-particle-state model

The above subsection contained expressions for state densities with linear momentum in a Fermi gas model of the nucleus. In such a model the single-particle tates in energy space increase as the square-root of the excitation energy, and are ionstants in momentum space. In this section we shall indicate bow state densities wh linear momentum can be obtained for equidistant single-particle levels in energy apace. This is of importance since preequilibrium reaction theories almost always use $\therefore A^{\prime \mu}$ denstites which are based upon equidistant single-particle levels, duc to their -.mputational simplicity.

The particle-hole state density is determined using Eq. (2). We need. however. :0 ir-termine the siagle-particle density in momentum space which yields equidistant inemls in energy space. The number of single-particle states in momentum space with . in,winte mementa between k and $k+d k$ is

$$
d N(k)=t \pi k^{2} d k \cdot p_{1}(k) .
$$

 the pxcitation energy and g the constant single-particle density. Since $\epsilon=h_{n}^{\prime 2}$, A.s equation can be expressed as

$$
d . V(k)=\frac{g k}{m} d k
$$

Equations (??) yield the res:lt for the single-particle density in momentum space.

$$
\begin{equation*}
\rho\left(1 p, k_{1}\right)=\rho\left(l h, k_{j}\right)=\frac{g}{4 \pi m k} . \tag{li}
\end{equation*}
$$

In other words. the density of single-particle states in momentum space that yields equidistant states in energy space varies as l / k. Since the $1 p l h$ state density determines the angular distribution from single-step scattering, we show below the $l p l h$ state density with linear momentum for an equidistant single-particle level nucleus. obtained by solving the six-dimensional integral (2) with Eq. (11).

$$
\begin{equation*}
\rho(1 p, 1 h, E, K)=\frac{g^{2}}{3 \pi m K} \ln \left[\frac{k_{F}+\sqrt{k_{r}^{2}+2 m E}}{k^{\prime}+\sqrt{k^{\prime 2}+2 m E}}\right] \tag{1.2}
\end{equation*}
$$

where

$$
\begin{align*}
k^{\prime} & =\left|\frac{m E}{K^{\prime}}-\frac{K^{\prime}}{2}\right| & & \text { if } K_{\text {min }}<K^{\prime}<K_{1}^{\prime} \text { or } K_{2}<K^{\prime}<K_{\text {max }} \\
k^{\prime} & =\sqrt{k_{r}^{2}-2 m E} & & \text { if } K_{1}<K_{1}<K_{2} \\
\text { and } \rho(1 p . \mid h . E, K) & =0 & & \text { otherwise. } \tag{1.3}
\end{align*}
$$

$K_{\text {mun }} . K_{\text {max }}, K_{1}, K_{2}$ being given by Eqs. (6,i). As in the Fermi gas model, we again find an expression for the 1 plh density which has three diferent regions. The values of $K_{\text {min }}, K_{\text {max }}, K_{1}, K_{2}$ which define the boundaries of these regions are not sensitive o the particular single-particle densities adopted and are therefore identical for the Fermi-gas and equidistant models. Equation (3) must hold, indicating that if the above !plh state density is integrated over all momenta the Ericson density, with finite well-depth restrictions, results. We have checked that our Eq. (13) satisties

$$
\left.\int \rho|p .| h . E, K\right)+\pi K^{-2} d K=\rho(1, p . \mid h . E) \equiv g^{2}\left[E-\left(E-e_{r}\left|\theta\left(E-e_{r}\right)\right|\right.\right.
$$

Fquation (i?: can be compared with the analogous expression ([?]) for a Fermu was nucleus. While the functional form is clearly different. there are some close amilaritios. The angular distribution for a given emission energy arises from the dependence of the lpl state density on the momentum K, and it is seen that in the irson $K_{1}<\boldsymbol{K}<\boldsymbol{K}_{2}$ both Eqs. (5) and (1:3) show identical $1 / \boldsymbol{K}$ dependences.

The constant density of single-particle states in energy space is often taken as $\eta=$ A If. a alue psrabiished from extensive data on slow neutron resonances. Howerer. \because Ene Frii-gas model as described in the previous section sields a density of states di :ha Fermi level of $3.4 / 2 \epsilon_{F}$. which for $\epsilon_{F}=35 \mathrm{Me}$ is a factor of 1.66 too small. This is a well known problem with the Fermi-gas model. On the otherhand. a value of $g=1: 1 t$, while لescribing the density of states at the Fermi surface fairly well. uverprecicts the number of nucleons by a factor of 2.5 in an equidistant model? $?$ In order for a comparison to be made between the equidistant and Fermi-gas state densities. we have chosen a value of $g=3.4 / 2 \epsilon_{r}$ so that the densities at the Fermilevel agree. This choice was motivated by the fact that for small excitation energies most excited particles and holes are close to the Fermi-level. In Fig. 2 the variation of the residual nucleus $1 p l h$ state densities with emission angle is shown for the reaction $: s+W\left(n . n^{\prime}\right)$ for an incident energy of 26 MeV and an emission energy of 18.5 MeV . for Fermi-gas and equidistant models. It is seen that the $1 \mathrm{pl} h$ state densities are very similar in the two models.

We again stress that our choice above for g was made solely to allow a comparison with our previous results for a Fermi-gas nucleus. Another approach might have been to use the commonly adopted value of $g=A / 1+$ for the equidistant model, but then use a Fermi-energy of 21 MeV in the Fermi-gas model in section Ila so that both models yield identical single-particle densities at the Fermi-level.

It is worth mentioning that Madler and Reif's method for determining state densities with linear momentum (which also uses an equidistant single-particle level model) fails completely for the important $I p l h$ state density with linear momentum. They show in Fig. 2 of Ref. [?] the variation of their lpih density with emission angle. which differs considerably in shape from our exact result in our Fig. 2. The shape of the lpl h density is critically important in determining the angular distribution of emitted particles.

FIG. $\mathbf{2}$ the variation of the residual nucleus $l p l h$ state densities with emission angle. for the reaction ${ }^{13+} \mathrm{W}^{(}\left(n, n^{\prime}\right)$ for an incident energy of 26 MeV and an emission energy. of l .j.j Mel. for Fermi-gas and equidistant models.

III. APPLICATIONS OF STATE DENSITIES W:TH LINEAR MOMENTEM

A. Angular distributions in the exciton preequilibrium model

It has been established that non-equilibrium processes play an important role in nuclear reactions induced by light projectiles with incident energies above about 10 MeV . The characteristic features of pasticle emission from the composite nucleus before equilibrium has been reached (preequilibrium emission) are an excess of highenergy particles. and a forward peaking in the observed angular distributions. The overabundance of high-energy particles is due to the nuclear excitation energy being shared among only a few degrees of freedom in the early stages of the reaction when preequilibrium emission occurs, and the forward peaking is indicative of the incident projectile's direction being partially preserved. Both quantum mechanical and semi-classical theories have been developed to account for preequilibrium emission. Quantum mechanical approaches such as that of Feshbach, Kerman, and Koonin (FKK) [12], Tamura et al. [13] and Koning and Akkermans [?] have been able to successfully describe the spectral shape and angular distribution of emitted particles, though the calculations are rather involved and their predictive power is limited [15]. The semiclassical exciton [16] and hybrid [17] preequilibrium models, on the other hand. are able to describe the angle-integrated spectral shapes successfully, though in their usual formulation they cannot yield angular distributions directly. In this section we shall show that by modifying the exciton model to include linear momentum effects it yields angular distributions in a natural and consistent way. We shall not explicitly discuss the hybrid model, though the modifications needed in it for the inclusion of linear momentum effects should be similar to those that we present for the exciton model.

In the exciton model the particle emission rates from the preequilibrium stages of the reaction are calculated by invoking microscopic reversibility and applying phasespace arguments. In its usual formulation it does not conserve linear momentum in the various intra-nuclear transitions and can not yield information concerning the angular distribution of emitted particies. In order to obtain such information. it has become commonplace to include in the model, in an ad hoc manner. a nucleonnucleon scattering kernel obtained either from free nucleon-nucleon scatterirg [18. 19] or. more realistically, from quatifree scattering in nurlear matter using the KikuchiKawai (KK) expression ($10.20-23$), for reviews see Refs. [24,25]. While the inclusion of a nucleon-nucleon scattering kernel within an exciton model is a physically plausible way to obtain angular distributions, no formal theoretical connection has been made bet ween the exciton model and quasifree scattering descriptions. We shall show that by ronserving linear momentum in the exciton model and by using the Ferni-gas
state densintes with linear momentum described in the previous section. the angular distributions obtained are identical to those found using KK quasifree scattering. We do not make use of the fast particle approximation. as in Ref. [18], but treat the excited particles and holes for a given preequilibrium stage statistically. The forward-peaked angular distributions that we obtain arise purely from phase-space facturs, and possible dynamical effects are disregarded.

In the previous section we presented a method for exactly determining state densities with linear momentum. Since our approach involves convoluting single-particle and -hole states in a Fermi-gas nucleus, the complexity of the integrals increases rapidly for more complex preequilibrium stages. We are able, however. to determine the state densities with linear momentum needed for the calculation of first and second stage preequilibrium emission in nucleon-induced reactions. We assume, following Chiang and Hüfner [26], that preequilibrium emission beyond the second stage can be ignored before equilibrium emission occurs.

In the exciton model it is assumed that an incident nucleon interacts with the target nucleus to form a two-particle-one-hole (2 plh) state, and in subsequent twobody nucleon-nucleon interactions the excited system may pass through more complex particle-hole configurations towards equilibrium. Particle emission can occur from the early preequilibrium stages and these particles typically contribute to the high-energy part of the emission spectrum. The double-differential cross section for the emission of a particle with energy ϵ and direction Ω can be written as

$$
\begin{equation*}
\frac{d^{2} \sigma}{d \epsilon d \Omega}=\sigma_{R} \sum_{\Delta n=+2} \frac{\lambda_{n}(\epsilon, \Omega)}{\lambda_{n}^{+}+\lambda_{n}} D_{n}, \tag{1.5}
\end{equation*}
$$

where the number of excitons is $n=p+h$. The reaction cross section of the incident particle on the target nucleus is σ_{R}, and D_{n} is the depletion factor, representing the probability that the system reaches the n-exciton configuration without preequilibrium decay. Λ_{7}^{+}and Λ_{n} are the total rates for decay to more complex exciton configurations and for particle emission, respectively, and $\lambda_{n}(\epsilon, \Omega)$ is the ble-differential emission rate for a given type of particle. This is found from microscupic reversibility to be

$$
\begin{equation*}
\lambda_{n}(\epsilon, \Omega)=\frac{m e \sigma_{\text {inv }}(e) R(p)}{2 \pi^{3} \hbar^{3}} \frac{\rho\left(p-1, h, E-e_{n}, \mathbf{K}-\mathbf{k}_{\Omega}\right)}{\rho(p, h, E, K)} . \tag{16}
\end{equation*}
$$

where the reaction cross section for the inverse process of nucleon absorption on the residual nucleus is $\sigma_{\text {inv }}(\epsilon)$. The composite system total energy and momentum before particle emission are E and \mathbf{K} respectively, and the residual nucleus energy and momentum aiter emission are $E-\epsilon_{\Omega}$ and $K-k_{\Omega}$ respectively, all these quantities heing measured relative to the bottom of the nuclear well. The energy and momentum of the emitted particle relative to the bottom of the nuclear well are $\epsilon_{\Omega}=\epsilon+B+\epsilon_{r}$ and $\mathbf{k}_{\boldsymbol{n}}$, where $\left|\mathbf{k}_{\mathrm{f}}\right|=\sqrt{\operatorname{2m}\left(\epsilon+B+\epsilon_{\boldsymbol{r}}\right)}, B$ being the binding energy and $\epsilon_{\boldsymbol{r}}$ the Fermi
energy. $R(p)$ is a correction factor to account for neutron-proton distinguishability. and is discussed below. In the above expression state densities with linear momentum are shown. though the state densities that are used in the original exciton model are a function of en rogy only.

From Eq. (16) it is clear that the angular distribution of emitted particles from a preequilibrium stage arises from phase-space factors. For a given particle emission energy, the various emission directions result in different total momenta being transfered to the residual nucleus, with corresponding different accessible state densities. Thus the angular distribution of emitted particles from the $n=3$ stage (i.e. single-step scattoring) is given by the variation of $\rho\left(1 p, 1 \hbar, E-\epsilon_{\Omega}, \mathbf{K}-\mathbf{k}_{\Omega}\right)$ with the emissirn angle. The angular distribution that we obtain using $1 p!h$ state densities according to Eq. (5) is ideniical to that found by $\mathrm{KK}[10]$ for single-step quasifree scattering from a non-interacting Fermi-gas nucleus. An inspection of the physics inv ed suggests that this result is to be expected since our exciton model, and the quasifree scattering mode: of KK , both conserve linear momentum and energy in a Fermi-gas nucleus. Furthermore, the expression used by KK for single-step scattering uses a basic free-space nucleon-nucleon cross section which is isotropic, so that all the angular dependence arises implicitly from phase space factors, as done explicitly in our approach. The similarity of our exciton model with KK's approach can be most clearly seen in the work of Chiang and Hūfner [26], who use the KK scattering function to calculate single- and double-step quasifree scattering. Their expressions for the single- and double-step scattering use nuclear response functions [27] for a noninteracting Fermi-gas, which are directly proportional to our $1 p 1 h$ and $2 p 2 h$ state densities with linear momentum. It should be noted that from Eq. (8) it is clear that our model yields a convolution structure for the two-step scattering, which is common to most semiclassical scattering theories as well as the quantum mechanical FKK multistep direct thecry.

For the calculation of nucleon emission cross sections we used Kalbach's parametrization [28] for the transition rates to more complex configurations..$_{n}^{+}$. which was originally determined without linear momentum considerations. This is reasonable since we found that Λ_{n}, obtained by integrating Eq. (16) over all angles and energies for neutrons and protons, agreed to within 5% with the value obtained when linear momentum effects were not included. Also, this integral did not differ significantly from its value obtained using the traditional Ericson equidistant singleparticle level state densities, corrected for a finite nuclear well depth. The neutronproton distinguishability factor $R(p)$ [29] in Eq. (16) is consistent with the above parametrization [*]. The rcaction cross sections in Eqs. (15,16) were determined using the Becchetti-Greenlees optical potential [30], and we took the Fermi energy to be 35 MeV .

Ingular distributions for 14.5 and 18.5 . MeV neutzons emitted in the reation ${ }^{1+1} W n . n^{\prime}$, induced by 26 . MeV neutrons. At these emission energies the atinibrium amession contributions were found to be nergligible. Shown for comparison are puan. tum mechanical EKh calcuiations and experimental data. taken from Marcinhowshi ot ub : 5 .

We bave determined angular distributions for 14.5 and 13.5 . WeV emitted nemerons in the reaction ${ }^{1+t} \boldsymbol{W}\left(n, n^{\prime}\right)$ induced by 20 MeV neutrons. Our results are shown in Fis. EPand it is evident that the observed forward peaking in the data is accounted fir in our model. though we underpredict the data at backward angleg. Viputron emission from the $n=3$ stage dominates scattering in the forward direct on but does not contribute beyond 110 degrees. whereas $n=5$ emission covers all directions but is roo weak to account for the backward-angle data. This underprediction was also seen in Refs. [20-2? where the KK quasifree scattering kernel was used in semiclassical preequilibrium models, and results from the absence in our model of effects such as diffaction of the nucleons in the mean-field nuclear potential [21,20$]$. [t is beyond he scope of the present work to inclu fe such effects, which really require a quantum mechanical treatment. The dashed line shows a quantum mechanical calculation of the neutron scattering cross section using the FKK theory [1.5] which uses the distorted-wave Born expansion. and with single and double-step scattering the theory describes the angular distritutions well. In Fig. 33 we show the proton emission spectra at five different angles for the reaction ${ }^{54} \mathrm{Fe}\left(p, p^{\prime}\right)$ induced by 62 MeV protons. For low emission energies we have included the equilibrium er.ission contribution , recuced due to the reaction flux lost through $n=3$ and $n=5$ preequilibrium emission). determined with the Hauser-Feshbach code GNASH [32]. The shapes of the spectra generally agree fairly well with experiment, but again we underpredict the hackward-angle data. We also determined the angle-integrated spectrum and found that it describes the data well (since the backward-angle cross section is a minor fraction of the total preequilibrium cross section), and have compared it with an pxiton model calculation using Fermi-gas state densities which do not include linear mumentum. from Eq. (1). We found differences of less than 3%, indicating that it is not necessary to include linear momentum effects when determining angle-integrated ipectra.

Spectra of protons emitted at a number of anglone in the " Fe (p. p^{\prime}) reaction induced by it Mel protuns compared with experimental data 31!. The fill line shows rhe am of $n=3$ and $n=5$ preequilibrium émission in our model, and the dash-dot line inc:ades the equilibrium emission contribution.

The above results show that if a Fermi-gas model is used to evaluate state densities with linear momentum in an exciton model. angular distributions are ubtained which are dentical to those found using the KK scattering kornel. Theretore, if one used a preequilibrium model with Fermi-gas state densities which are only a function of energy (and not momentum), and in addition used a KK scattering kernel to obtain angular distributions, one would obtain identical resulis to those found using our above model. However, a number of auttors [?,?] have adopted an inconsistent approach of using an equidistant single-particlestate model to determine state densities, with a KK scattering kernel for the angula: distributions. A consistent approach would be to use the formalism shown in this section with the state densities with linear momentum from Section IIB/ Or, alternatively, use a preequilibrium model based on equidistant singleparticle-states (without linear momentum considprations), in conjuction with a scattering kerne' obtair d from Eq. (13). Due to the close similarity betwern the lplh Ferinigas and equidistant single-particle state densities seen in Fig. 2. the scatiering kernel from Eq. (13) would be almost identical to that of KK .

9=

Fig?

B. THE QC.ASIDELIER.N MODEL OF NLCLE.AR PHOIOABSORPTION

In rhis section we shall discuss another application of state densities with 'in par momeatum: nuclear photoabsorption on correlated neutron-proton pairs via the 'i'asideuteron mechanism. A full discussion of this application can be found in our paper? $?$

The quasideuteron model describes the dominant mechanism for nuclear phorwabsorption ior incident photon energies in the range $40 \mathrm{MeV} \leq \mathrm{e}_{n} \leq 140 \mathrm{MeV}$. This model was first proposed by Levinger [3.3-3.5] añd has subsequently been applied extensively to analyze nuclear photoabsorption cross sections [36-39]. The model does, howerpe. contain two free parameters and treats the effects of the Pauli exclusion principle in an entirely phenomenological manner. Here we present a quasideuteron model of photoabsorption which includes Pauli-blocking effects theoretically and dues not contain any free parameters. [n the quasideuteron model it is assumed that photoabsoiption takes place on correlated neutron-proton pairs within a nucleus. The relatively imall photon wavelengths ensure that the interaction takes place with a nucleonnucleon pair. rather than with the nucleus as a whole. and the predominantly electricdipole nature of the interaction implies photoabsorption only by neutron-proton pairs. Levinger showed [33.35] that the nuclear photoabsorption cross section $\sigma_{\text {ad }}\left(\epsilon_{\gamma}\right)$ can be expressed in terms of the free deuteron photo-disintegration cross section $\sigma_{i}\left(\epsilon_{\checkmark}\right)$.

$$
\sigma_{\eta_{d}}\left(e_{q}\right)=\frac{L}{A} \cdot V Z \sigma_{i}\left(e_{\sim}\right) f\left(e_{q}\right),
$$

where L is the Levinger parameter and $f\left(e_{n}\right)$ is the Pauli-blocking function. The factor.$V Z$ is the total number of neutron-proton pairs inside the nucleus, which is multiplied by a reduction factor L / A to account for the fact that it is only correlated pairs that can be considered to be quasideuterons [$\mathbf{~} 0,4 \mathrm{~L}$]. In addition. the function $f(e$,$) accounts for those excitations of neutron-proton pairs that cannot occur since$:he Pauli-exclusion principle allows only final particle states which lie above the Fermi ievel. This effect is particularly important for low photon energies, and Levinger mugested that it can be represented by an exponential Pauli-blocking function [3.3]

$$
\begin{equation*}
f_{\text {Levi }}\left(e_{n}\right)=e^{-D / \omega_{0}} . \tag{1,1}
\end{equation*}
$$

where D is a constant. Although a theoretical entimate for the Levinger parameter is wrli hnown [?]. no theoretical derivation for the Pauli-blocking function has been wirn. In practice. L and D are treated as free parameters to fit the photuabsorption lata. The difficulty in geparating the efferts of the Levinger parameter and the Pash-bloxking function in Eq. (1) has resulted in a substantial ambiguity in the L and D-walues used by different groups: they range from $L=\$.9$ and $D=60 \mathrm{Mel}$ Ref. W', 1) $L=10$ and $D=\$ 0$ MeV (Ref. 'W1'). We shall describe below how we aiculate $[$. and fien thenretically.
()ur varting point is an expression derivel hy Levinger $\{3 ; 3$ fer the photoals.

By :asing effertive range theory Levinger was able to relate the phorabsorption on a
 tree deuteron. which is known experimentally:

$$
\begin{equation*}
\sigma_{r 1}\left(k, \epsilon_{\sim}\right)=\sigma_{\Delta}\left(\epsilon_{\sim}\right) \frac{2-\left(1-\alpha r_{1}\right)}{l \alpha} \frac{1}{\alpha^{2}+\left(i, \hbar_{1}\right)^{2}} \tag{19}
\end{equation*}
$$

where $k=\frac{1}{2} \mathbf{k}_{\iota}-\mathbf{k}_{\text {: }}$ is the initial relative momentum of a neutron-proton pair. $\alpha^{-1}=\left(\kappa_{1}^{\prime}(2 \cdot 23 m)^{\frac{1}{2}}\right)$ is related to the neutron-proton scattering length $[f], m$ being the nucleon mass, and r_{0} is the effective range. The nuclear volume in the above expression is $V^{-}=\frac{4}{3} r 1.2^{3} . \mathrm{fm}^{3}$.

Following Lei inger, we assume that if all the possible final neutron and proton states after photoabsorption are not Pauli-blocked. the photobsorption cross section on a quasideuteron is given by Eq. 119). However, if the available phase space for the nautron and proton after photoabsorption is reduced by Pauli-blocking, we assume that the quasideuteron ponotoabsorption cross section is also reduced by the same amount. Thus we suppose that the cross section for photoabsorption is proportional to the a vailable phase space. This is reasonable since Fermi's Golden Rule ought to be applicable as the electromagnetic perturbation is small compared to the nuclear interactions.

FIG. i. Absorption of a hard photon by a quandeuteron in the nucleus. The initial hirear momenta of the photon. neutron, and proton are $\boldsymbol{k}_{n}, \mathbf{k}_{\mathbf{v}}, \mathbf{k}_{\mathbf{n}}$ respectively. and the final linear momenta are $\mathbf{k}_{v}^{\prime}, \mathbf{k}_{\boldsymbol{*}}^{\prime}$. The total momeatum is \mathbf{K}.

Fixure; shows, in momentum spece. the absorption of a hard photon upon a aritron-proton par within the nucleus. The initial and final linear momenta, and -im in urmpondiag eneri, are related by

$$
\begin{align*}
& k_{v}+k_{\varphi}+k_{\nu}=K=k_{v}^{\prime}+k_{\varphi}^{\prime} \\
& e_{v}+e_{\varphi}+\rho_{v}=E^{\prime}=e_{v}^{\prime}+r_{\varphi}^{\prime} \tag{ו}
\end{align*}
$$

:he verors \boldsymbol{k} and \boldsymbol{k}, must extend beyond the Fermi-sphere as :rined by ther atA: n. \quad.nsidering all accessible tinal states that are consistent with the above \therefore arraints. ate sbtains the neutron-proton state density which depends on \mathbf{K} and E

 the one that is ubtained when the Pauli exclusion principle is excluded.
\checkmark that the photoabsorption on a particular quasideuteron pair with momenta $\mathbf{k}_{\text {- }}$. k_{n} is $\sigma_{n+1}\left(k, \epsilon_{r}\right) \times F\left(\mathbf{k}_{\nu}, \mathbf{k}_{n}, k_{n}\right)$ In order to determine the ${ }^{2} p$ state density with linear momentum, a 'two-component' version of Eq. (2) was used. Veutrons and protons are distinguished in this calculation. the neutron and proton single-particle densities in momentum space being given by $\kappa_{\nu}=. V /\left(\frac{4}{3} \pi k_{F}^{3}\right)$ and $\kappa_{\pi}=Z /\left(\frac{1}{3} \pi k_{F}^{3}\right)$. The resulting state density has dimensions $\left((\mathrm{MeV})^{-1}(\mathrm{MeV} / \mathrm{c})^{-3}\right)$ and is given by

$$
\begin{aligned}
& \rho(3 p, E, K)= \\
& \text { ? } \tau m \kappa_{\iota} \kappa_{F} \sqrt{m E-\frac{h^{2}}{4}} \text { if }\left\{\begin{array}{l}
m E \geq k_{F}^{2}+k_{F} K^{\prime}+\frac{1}{2} K^{-2} \\
\text { or } K \geq 2 k_{F} \text { and } \frac{1}{4} K^{-2} \leq m E \leq k_{F}^{2}-k_{F} K+\frac{1}{2} K^{-2}
\end{array}\right. \\
& \because-m \kappa_{\iota} K_{F}\left[\frac{m E-4 \perp}{k}\right] \quad \text { if }\left\{\begin{array}{l}
K^{2} \geq 2 k_{F} \text { and } k_{F}^{2}-k_{F} K^{\prime}+\frac{1}{2} K^{-2} \leq m E \leq k_{F}^{2}+k_{F} K^{\prime}+\frac{1}{2} K^{\prime 2} \\
\text { or } K \leq 2 k_{F} \text { and } m E \leq k_{F}^{2}+k_{F} K^{2}+\frac{1}{2} K^{-2}
\end{array}\right. \\
& \text { 1) } \\
& \text { if }\left\{\begin{array}{l}
k \leq 2 k_{F} \text { and } m E \leq k \frac{2}{2} \\
\text { or } K \geq 2 k_{F} \text { and } m E \leq \frac{1}{1} h^{2} .
\end{array}\right.
\end{aligned}
$$

The pwoparticle state density that includes all transitions (including those that :nolate the Pauli principle) can be obtained from the results in Eq. (2) in the limit $\therefore k_{F} \rightarrow 1$, vielding

Er:ations (:2) and (23) are used to evaluate the photomborption crons section on a "preitic quandeuteron in the aucleus. The nuclear photoabsorption iroes section is
 irura in a Frormsag nucleus. Such an integration yields a nuclear photoabsorption - r.s. anition of the form (17), with a Levinger parameter of $L=6.5$ and a Pault. li, whing finction as vhown in Fig, if below. Fig if also showe phenomenolugical

()ir P'ulil howhing function has the vame general energy dependence an that of 1 ..inuer'vid hore exponential function, i.e. at low incident energies it iends eo arril

different see Fig. bi) We note that is not possible to reproduce the step energy: dependence of file, which we obtain with a phenomenological exponential function. Since the Pauli-blocking function calculation requires such a large amount of c.p.u. time. we have found a polynomial fit to our results to facilitate future uses of our Parii-blocking function in nuclear reaction calculations and data evaluations. Our results can be well approximated in the photon energy range ?0-140 Mel by the polynomial

$$
\begin{gather*}
f\left(\epsilon_{\sim}\right)=3.371+\times 10^{-2}-9.8343 \times 10^{-3} \epsilon_{\tau}+4.1222 \times 10^{-4} \epsilon_{\gamma}^{2} \\
 \tag{-24}\\
-3.4762 \times 10^{-8} \epsilon_{\tau}^{3}+9.3537 \times 10^{-3} \epsilon_{\uparrow}^{4}
\end{gather*}
$$

In Fig. i we show our calculated quasideuterol contribution to the nuclear photoabsorption cross section compared with data for the nuclei Pb, Ta. Sn and Ce . We also show the tails of the giant dipole resonances (GDR) which may contribute even at these high photon energies. The data as well as the GDR tails are taken from Ref. ' 36]. and the photodisintegration cross section was taken from [$f 4$] It is seer, that the sum of these two contributions describes the data fairly well. The comparison with data that we obtain seems to be better than that obained with a phenomenological exponential Pauli-blocking function (see, for instance, Leprètre et al [36]. If their quasideuteron component is added to the GDR component they significantly over estimate the data below a photon energy of $t 0 \mathrm{MeV}$).

1: \quad Fig 7

FIG. 6. The calculated quasideuteron componeat of the nuclear photoabsorption rross section as a function of photon energy is compared with experimental data fior Ph . Ta. Sn and Ce. The full curve is the sum of the quasideuteron and GDR contributions. The tails of the GDR as well as experimental data are taken from Ref. :3fi!.

We have also investigated the temperature dependence of the quasideuteron phoionberption cross section. This is of interest since detaled balance can be applied to determune photon emission rates from hot nuclei produced in heavy-ion collisions via a \ddagger liandeuteron mechanism [$42.4 .5 \mid$. We assumed a Fermi-Dirac distributior of single. ;hirtile iates and calrulated state densities which are a function of energy, linear minmentum. and temprrature |?|. The photuabsorption cross section was found to be -rirmely ansitive to temperature, and an example of our results for photobasorption in :"ap!, is shown in Fig. 3.

[V. SCMMARY

We have introduced the concept of state densities with linear momentum. and have indicated an exact method for their determination. Our calculational procedure differs from that of Madler and Reif, and can be applied in the determination of state densities of simple particle-hole configurations. Simple analytic expressions can be found for such densities, facilitating their use in nuclear reaction theories. Two dife:ent applications for state densities with linear momentum have been presented.

The inclusion of linear momentum effects in an exciton model is able to explain the forward-peaked angular distributions observed in preequilibrium decay, and the angular distributions which they yield are identical to those seen in KK quasifree scattering. We have, therefore, provided a link between exciton model ind quasifree scattering descriptions of nuclear reactions, and have provided further justification for the commonly adopted procedure of using a KK scattering kernel in an exciton model. We have also discussed state densities with linear momentuma in an equidistant single-particle-state model, and have given expressions which allow angular distributions to be determined (though we also pointed out that the angular distributions would be almost identical to those of $K K$).

The quasideuteron model of photoabsorption that we have developed is based on phase space arguments and uses state densities with linear momentum. We have presented, for the first time, a theoretical basis for Pauli-blocking effects, and our noparameter model is able to give a good description of the photoaboorption data for a wide range of nuclei. Our state densities, when generalised to include temperature dependence. were used to determine the quasideuteron photoabeorption croas section on an equilibrated hot nucleus. We found the cross section to be very sensitive to temperature.

These two applications have demonstrated the richaess of state densities with linear momentum. They seem to have considerable versatility in their possible applications within nuclear reaction theories. Wie are presently inveatigating their application in hard-photon emission reactiona and stopped pion-aboorption processes.

We would like to thank Dre. M. Blana, P.E. Hodgson, D. Madland, G. Reffo, R. Smith and P.G. Young for helpful discuscions, and one oi un (M.B.C) acknowledges financial support from an SERC/NATO Fellowship.

RZFERENCES

i. T. E. Ericson. Adv. in Phys. 9. +25 (1960).

2 F. C. Williams. Nucl. Phys. A163. 231 (19:1).
 A279. 319, 1976).
\ddagger H. Gruppelaar. ECN report ECN-s.3-064.
: ${ }^{\text {; }}$. C. Kalbach. Phys. Rev. C30). L310 (1984): Los Alamos Report L.A-LR-91-2302.
.6] M.B. Chadwick and P. Oblozinsky, to be published in the .Vovember 1991 issue of Phys. Rev. C (Rapid Communications).
\therefore M.B. Chadwick. P. Oblozinsky. P.E. Hodgson and G. Reffo. Phys. Rev. C. 44. sit (1991).
© P. Mädler and R. Reif, Nucl. Phys. A337, H5 (1980).
[9] A. [wamoto. Phys. Rev. C 35. 984 (1987).
IO K. Kikuchi and M. Kawai. .Vuclear Matter and Vuclear Reactions, (NorthHolland, Amsterdam. 1968), p. H: M.L. Goldberger. Phys. Rev. 74. 1269 (1948).
11] M. Chadwick and G. Reffo, Phys. Rev. C. 44. 919 (:991)
'12! H. Feshbach. A. Kerman. and S. Koonin, Ann. Phys. 125, +29 (1980): R. Bonetti, M.B. Chadwick. P.E. Hodgson. B.V. Carlson, and M.S. Hussein. Physics Reports 202(4). L71 (1991).
(13] T. Tamura. T. C'dagawa. and H. Lenske. Phys. Rev. C 26. 379 (1982).
'It| A.J. Koning and J.M. Akkermans, Acn. Phys. 208. 216 (1991).
[15] A. Marcinkowski. R.W. Finlay, J. Rapaport. P.E. Hodgson, and M.B. Chadwick. Nucl. Phys. A501. 1 (1989).
'16] H. Gruppelaar, P. Nagel, and P.E. Hodgson, Riv. Nuovo Cimento 9. I (1986).
. 1^{-1}. M. Blann. Ann. Rev. Nucl. Sci. 25. 123 (1975).
' $\mathrm{S}_{\mathrm{i}}^{i}$ G. Mantzouranis, D. Agacai, and H.A. Weidenmüller, Phys. Lett. 57B. 220 11975): G. Mantzouranis. D. Agassi, and H.A. Weidenmüller. Z. Phys. A 276. 14.5 (1976)
'i9] J.M. Akkermans. H. Gruppelar and G. Reffo. Phys. Rev. C 22. 33 (1980).
:0) Sun Ziyang. Wang Shunuan. Zhang Jingshang, Zguo Yihong and Han Huiyi. Z. Phys. A 305. 61 (1982).
I1 C. Cuota. H. Grupp laar and J.M. Akkermans. Phys. Rev. C 28, 38 (1083).
$\ldots!$ M. Blana, W. Scobel and E. Plechaty. Phys. Rev. C 30. 1+93 (1984).
3' R.D. Smith and M. Bozoian. Phys. Rev. (C 39. 17.51 (1989).
\therefore H. Machner. Z. Phys. A 327. 1is (1987).
\therefore E. (iadioli in Proceedings of the International (innference on Vurlear Reaction Wrihunisms. Saha Institute of Nuclear Phyars. Calcutta, Jan. 3.9 (IDs9), mited h 4. Mukherjer (World Scientitic, Singapore, (1949). p. 145.

2:- A.L. Fetter and J.D. Walecka. Quantum Theory jf Many-Partacle Sistems. 1.McGraw-Hill. New York, 1971). p. 161
? C. Kalbach. 2. Phys. A287. 319 1978).
?! ' C.K. Cline, Nucl. Phys. A193. 417 ; 1972).

- In the recent preequilibrium calculations of F. Cielhar, E. Betak and J. Merhar (J. Phys. G17. 113 (1991)) a value of $\mathrm{K}^{\prime}=100 . \mathrm{Se}^{\cdot 3}$ in the damping matrix element was adopted. Since our emission rates found using Fermi-gas levels are somewhat smaller than those obtained using equidistant levels. $K^{\prime \prime}$ was increased to $13.5 \mathrm{Mel}^{-3}$. The larger rates in our Fermi-gas calculation resuit from the normalization that we adopted for the single-particle states (Eq. (3)) which result in an underprediction of the density at tormi-level.
30] F.D. Becchetti and G.W. Greenlees, Ptys. Rev. 182, 1190 (1969).
31| F.E. Bertrand and R.W. Peelle. Phys. Rev. C 8, 1045 (1973).
[32] P.G. Young and E.D. Arthur. Los Alamos National Laboratory Report L.A-63ti. Los Alamos National Laboratory (1977).
${ }^{\dagger}$ Levinger's notation differs from the usual convention. The conventional inverse $\mathrm{n} \cdot \mathrm{p}$ scattering length is given by $\alpha-\frac{1}{2} \alpha^{2} r_{0}$. Note also that in the literature there seems to be some confusion conceraing r_{0}. It is the effective range, not the nuclear size parameter.
33| J. S. Levinger, Phys. Rev. 84, 43 (1951).
34] J. S. Levinger. Vuclear Photo-Disintegration (Oxford Cuiversity Press, Oxford, 1960). p. 97.

35] J. S. Levinger. Phys. Lett. 82B, 181 (1979).
36| A. Leprètre, H. Beil, R. Bergère, P. Carlos, J. Fagot, A. De Miniac, and A. 'eyssière, Nucl. Phys. A307. 237 (1981).
(37| R. Bergere. Nuovo Cim. A 76, 1+7 (1983).
(38] J. Ahrens. H. Borchert. K.H. Czock. H.B. Eppler. H. Gimm, H. Gundrum, M. Kroning, P. Riehn, G. Sita Ram, A. Zieger and R. Ziegler, Nucl. Phys. A251. ti3 (197.5).
[39] M.L. Terranova. D.A. De Lima and J.D. Pinheiro Filho, Europhys. Lett. 9 (6). 203 (1989).
10] F. Murgia and P. Quarati. Mod. Phys. Lett. A4. 1 (1989).
H| P. C. Stein. A. C. Odian, A. Wattenberg, and R. Weinstein, Phys. Rev. 119. 348 (1960).

12 M. Prakash, P. Braun-Munzinger. J. Stachel, and N. Alamanoa, Phys. Rev. r 37. 19.59 (1988).

13: W. M. Alberico, M. Ericson, and A. Molinari, Ann. Phys. (N. Y.) 154, 3;h ($19 \mathrm{~N}+$).
H.J. R. Wis and C. C. Chang, Phys. Rev C 16. 1812 (1977).
6.) X Herrmann et al. Phys. Rev. L.ett. 60, 16.30 (1988).

Recent MCNP Developments

J. S. Hendricks and J. F. Briesmeister
Applied Theoretical Physics Division
Los Alamos National Laboratory
Los Alamos, N.M 87545

Abstract

We report here both the status and recent developments in the MCNF Monte Carlo radiation transport computer code and also two items of more general interest to computational physics: the accuracy of modern physics computer codes and the performance of scientific workstations.

1 MCNP Introduction

MC.VP is a Monte Carlo continuous-energy, threedimensional neutron-photon-electron radiation transport computer code used in many industries, including nuclear well logging medica' 'maging, and nuclear reactors. A genural overview of MCNP was presented at the IEEE 1989 Vuclear Science Symposium[t]. Here we forus upon (1) a uimber of recent significant advances and new directions for MCNP. (2) the MCNP benchmark project that alon provides insight into the reliability of modern computer codes and data libearies. and (3) a new timing study measuring the performance of MCNP on severad computing pliseforms

UCNP version $\&$ wis prlensed internationally in March 1001. featuring for the first time electron transport, a thick-target hememstrahlung model, multitasking, pulse housht tallies. and other features Several new Monte Carlo reweareh proseams are underway relating in Mo Vif and many new features ape heing prepaped for the upenming II NPtA version of the ende

A prgatim to benchmark the eode against a wide vafiely of experiment.al measurements has peached a major milestone Not only does this peoject document the aceluracy of MC'NP for neatenn and photon transport peoblems. hut it alan provides insight int, how well modern phyaics computer colen ran mudel a variety of experimenta

A part if the eveluturn frem heing a ('eay roile to a VVIX eode mpported in many computer platforms, a um. ung acinty win mate comparing perfiemance of Sun Ifll
 here fire the firat time

2 MCNP Overview and Status

MCNP is a general purpose Monte Carlo code for calculating the time-dependent continuous-energy transport of neutrons, photons, and/or electrons in three-dimensional geometries. Both fixed source and $k_{\text {i/s }}$ criticality problems can be solved and a number of outpu: tally options are available. Data representations either can be fully or partially continuous or multigroup. The code is rich in variance reduction techniques that improve the efficiency of difficult calculations. The documentation for MCNP is a 600-page manual[2] describing the Monte Carlo theory. geometry, physics. cross sections, variance reduction techniques, tallies, errors. input, and output

MCNP is used for many applications reactor design (boch fission and fusion), nuclear criticality safety, padtation shielding, nuclear safeguards, detector design and analysis, nuclear well logging, personnel dosimetry and health physics, accelerator target design, medical physics and radhotherapy, aerospace applications, defense applications, radography, waste dispival, and derontamunation and decommassioning. Recent major applications at Low Alamo include the space exploration initiative, general eriticality afety strategic niclear materials safeguarits ar. celerator transmutation of nuclear waste, and safety analysis for the DOE New Production Reactor Facilities designed with or having safety analysis performed by MC.VP include the Dual dxis Radiographir Hyden Tent fachity (DARHT), the targat area for the Manuel Li:an. Jr, Xout tron Scattering Center (LANSCE), and the Materiala Prir resming Laboratory raduological dowe peductuon atiolio-

MCNP is diserituted fire L (m Alamom by the Hatiation Shielding and Informaton ('enter (RSIC') in Oak Ridur [enneame They receive rediuentig for the ende frim athout 50) insectutions per year M(NP also te diserihuted 'y the VE,A Data Bank in France and ran be wermed by anvonwith an werount on the Lis Alannom Integrated Computink Vetwork We estimate that there are hundents perfina mere than a theusand active users apound the werlit it perhapm one humiteri installations

search, tevelopment, programming, documentation, and data bases for MCNP. The first mnltipurpose code version was written in 1963. In the mid-70's. neutron and photon codes were merged to form MCNP, which has undergone major upgrades approximately every two to three years since. MCNP3 was released in 1983 and rewritten in standard Fortran. MCNP3A was released in 1985 and featured a very flexibie generalized source. MCNP3B was released in 1988, featuring a repeated structures and/or lattice capability, a multigroup option, and tally output ploting.

MCNP4 was released in July 1990 at Los Alamos and in March 1991 to the Reactor Shielding and Information C'enter at Oal Ridge (version MCNP4.2). There are hundrects of minor improvements in addition to the following major new features:

- A continuous-energy electron transport package based on the Sandia National Laboratories Integrated Tiger Series (ITS)[3] has been incorporated into MCNP along with the associated data base.
- A thick-target bremsatrahlung approximation has heen incorporated to model electron-induced photon production using the ITS electron data. The model includes much of the electron physics for photon generation as only a fraction of the cost of the fully-continuous-energy electron treatment.
- Shared mrinory multitasking has been added for multitasking workstations and the Cray multiprocessor munframes The clock tirnaround for multitasted problems is reduced by approximately the number of processors used in the ralculation
- A pulse-height tally noodel is now available that perords the energy iepowiteit in a rell by earh soupre particle and its serondary parcucles lonlike other MC'VP tallies. the pule heighe cally modele micere aropor pather than macrumeropic eventes
 unerality of other MC’XP wiuters for the intual con duenens in k.f/ problems
- lriNP an be interrupted inepactively to pripiest il. es of tally fuantiimes

 w.th (ir .j) :hermal sinteremg [1.i]
 \therefore ally for IVIX syoterns and hise datis paths hule on
 answer atele fire aparifi- avaterms

3 MCNP4A

The next version of MC.NP will be MC.YP4A. schedular! for release in late 1902 or early 1093. The code will continue in evolve more towards a Cnix workstation-based code. We believe that if massively parallel systems berome widely available, they will have shared memory and be available with Unix :ind standard Fortran $7 i$. Even worbstations will become highly parallel. In the meantime. the current generation of workstations will become increasingly important as their performance approaches that of supercomputers. As shown in the timing studies presented later. some workstacions already approach the Cray mainframes in performance.

Signticant new features under active development for incorporation into MCNP4A are:

- E.VDF/B-VI physics. The recent E.VDF/B-VI data libraries include a number of new formats and formalisms such as correlated energy-angle scattering:
- Photons to 1 Gev Although the MCXP. plectron/photon physics is based upon the Integrated Tiger Series, the present photon data only goes up to 100 MeV . MCNP is being given the capability to read multiple data sets with physies models appr priate to ranges up to 1 Gev :
- Improvements in the electron-photon transport parkage, including charge deposition tallies and variable electron substep sizes;
- A quasi-deterministic weight window generitor devploped [B, T] to more efficiently automatically estimate in optimure importance function tor varianere peduc(tion than does the present soheme $[x]$.
- The DXANG angle bias method[9] fis partule colltsuns provides a numerirally stable means of dipritionally hasing particles emerging from collisions.
- Expansion of the tallying rapatilities for problems with latuces and repeated structures to permit talfying taolated eomponents that are repenteil.
- Pepiodic: and whise boundiary eonditwns have heen alided.
 ing either by the SABRINA color \&raphies colvellif
 epsy eransport.) endeilli.
- The wincie moriel will incluide merilisic palation

 spereprister.
- Probability table treatment for the unresolved range neutron eroeq section data:
- A generalized perturbation -- atment.

A number of research projects are under way which will certainly have long-ran-s effects upon MCNP, though perhaps not MCNPiA. These programs are funded by computer companies, oil services companies, the Department of Energy and some competitive Los Alamos National Laboratory discretionary research funding. They are

- Variance-of-variance. A modified version of MCNP is available that scores the variance of the tally variance and produces a history score probability density function to provide more information on how reliable the MCNP estimated answers are. [1.4]
- Dataflow. A stripped-down version of MCNP has been written in the Id datallow language, which is an advanced computer language designed for massively parallel MIMD (Multiple Instruction Multip.e Data) computers
- Oil and gas well logging (proprietary projects).
- Criticality problem eigenfunction stabilization. Although Monte Carlo can do an excellent job estimating eigenvalues ($k_{e f f}$) of critical systems, the principal eigenfunction, such as the flux distribution acrose a reactor core, is sometimes estimated quite poorly with misleading reror estimations.
- Variance reduction for collective multiparticle events Some Monte Car!o estimates. for example, the pube height tally, equare detaile' simulation of microscopic events Curpent variance reduction techniques are corproct for talliey devermined by the behavior of individnal partules, but not applicable when the tally us dewermind by the behavior of a collection of particles The modeling of rollective (or non- Boltzmann) transport is ineompatihle with normal variance redurtion terhniques and new vasiance peduction methods must be developed

UC'VP is a apensor and user driven eomputer eode ()ur aponsory determine what they want us to add to theite and luser ferthack leads to many improvements Vow frotures are incorporated inen the eode only after peep f-viow an extensive testing peogram. and resodency in "ati-heif veryons." where algopithm robust new and sustaned uber interest and atisfaction must he femonstrated

The large number of Winte ('aplo emparih projecten and UT VPid development projecte underway estifios to the neinuent vitality of the Mo'VP prosem

4 MCNP Benchmarking

[^9]just been released comparing MCNP calculations with a wide variety of analytic and photon benchmarks[15] and with three major classes of neutron experimental measurements[10]. These benchmarks not only serve to validate MCNP, but also indicate the high degree of reliability of modern computational methods and data.

In the first pub'ication, LA-12196. analytic and photon benchmarks are considered. As would be expected. MC.YP agrees with analytic problems to withen the statistical uncertainty. Three families of photon experiments were also calculated: a gamma-ray skyshine experiment. a ${ }^{50} \mathrm{Co}$ air-over-ground experiment, and thermoluminescent dosimeter (TLD) experiments. These problems were deep penetration and streamung problems, and all required elaborate : ariance reduction. In all cases MC.VP did well, agreeing to within statistical and measured uncertainties for all but the deepest penetrations. For penetrations on the oriper of ten mean free paths deep, MC.NP usually was within a factor of two of the measurement, which often times was of questionable accuracy.

In the second publication, LA-12212, three families of netiron benchmarks are compared the Livermore pulsed sphere meturements, the Oak Ridge fusion shielding benchmarks, and, finally, nine critical assemblies. The cricical assemblies ranged from simple Godiva and Jezebel spheres to complicated arrays, and all converged sulf. ciently near $k_{\text {. } / \rho}=1$.

The Oak Ridge fusion shielding benchmarks involved streaming, deep penetration, and generation of neutroninduced photons. Fourteen-MeV neutrons were emito..! isotropically and streameri down an iron pipe embedded :a concrete before penetrating shields of 30.5 cm iron. or is cm iron and 10 cm of borated polyethylene. Veutrons and secondary photons then were measured at points on- and off-axis beynnit the shield. Considering the derp penptration of up to 2.5 mean free pachs. both neutron and photon eresults were excellent Throughout the enerey ranke. detailed-specteal results were always within a factore of two and integral results (the total flux at offaxt detectora) wree never more than 25% off from the measurement for shallower penetrations the ralctilations agreel with measurements within statistics

The Livermore pulaed spheres inseil a $1 / \cdot 11 \cdot V$ neutron source and measure penetration of a wide varme of mate. rials of varinus thicknensen at several angles The remulta for $2 \boldsymbol{A}$ apheres indicate that the Honte Carlo resules agrme with the measurements exept when the cooss surtion lata are poorly known In the worve casen n hiliud nitengen phere i i mean free paths thick. MC'NP differeil fromithe experiment by 23° 总 on the worst energy range and by ix

 34. imprictumly

From these benthmark radculatuns wrextrlide that

of the croses section data. For shallow penetrations we have full confidence in the calculational results. For deeper penetrations where small uncertainties in the physics data can. build up to systematic deviations from measurement, we observe that even at 10 to 25 mean free paths the calculations are usually within a factor of two of measurements.

The two benchmark reports are avalable free to anyone contacting the authors. The E-mail address is MCNP: $\operatorname{LANLGOV}$

These benchmarks are part of an ongoing project[17,18]. A cooperative program being carried out at General Electric. San Jose, consists of MCNP light water reactor benchmark problems $[19,20]$. A subsequent phase focusing on electron problems is planned

5 Timing Study

We have recently completed a timing study comparing the performance of MCNP on the Cray-YMP264, CrayXMP416. Sun Sparc 1, Sun Sparc 2, IBM RS/6000-5.50. and HP $9000 / \mathrm{i} 30$. This paper is the first public disclosure of the results of this particular timing study. which has the following characteristics

- It is limited to MCNP. We believe the results do not extrapolate to other computer codes. In particular. MCNP performs well on workstations relative to the Cray manframes because MCNiP does not vectorize well. For codes that vectorize, the Cray should perform much better than the workstations
- The results we report are for the hardware and software available to us October 1991 The Fortran compilers used were the Sun 14 . HF 805 , IBM XI.F2 2. and Cray CFTTi version5007, (XICOS) Advances in both hardware and software, parti. 'arly compilers. will inevitahly make our reforted results ohsolete
- This timing veludy used a real production-beraton physics code
- The problems uxd are the 25 Mrap tect wet problems avalable fenm RSIC: Our timang comparison is not limuted to a angle "typieal" test pentle'm
 performance (pasticle histofies per munute) for each
 pifer rall get the dame tat problem art and the sarte VC'VP! 2 rode fromi RSll' and replicate nur resulla

A typleal set of performaner data for the twenty five

$\mathbf{X M P}=86 \pi, \mathrm{HP}-730=91 \%$, IBM-550 $=60 \%$. Sun Spari $1=12 \%$ and Sun Sparc $2=24 \%$

The highest level of optimization for each compiler was used to the best of our ability. All runs were done in $6.4-h, 1$ mode, although the workstations used 32 -bit cross-section data. Timing results were obtained through the use of MCNP routines that return elapsed cpu plus system time as opposed to wallclock time or time in cycles. The performance for each problem on each machine rarely varied more than a few percent from trial to trial and was always within 10%.

We were surprsed to see how strongly problem deperdent our results were. For example, the IBM-5.50 consistently ranges from about 50% to 80% of the performance of the Cray YMP depending upon the problem. Therefore. we believe that studies comparing performance hased upon a single "typical" problem can be very misleading

We also found that performance was very sensituve to the compiler version used and the optimization level cho sen. The performance of purticular problems on the same machine with different optimization levels varied significantly. For example, on the Cray XMP problem 6 was the best performer with one optimization level and prohlem 11 was the best performer with another optimization level On some machines we observed performance differences as much as 50% for different compilers and optimization lovels.

We wish to repeat the caveats of one of our rarlier puthlished timing comparisons[21]. The performance of sime ufic workstaticn harilware and software is improving so rapidly that mest mesures are outdated by the time they are published These performance figures give : relatur comparison at one instant in time and are presproted fior information only

One conclustin is cleas form these cumang studes tioentufic workstations today ran approach the perfiemame avalable nly from manframes a frow yous ato,

6 Summary

WCSp is a widely used and acturly developed Mont. ('aplopadiation tiansport come Dang important fenturo. have perencly been adied and mote are under downipme it

 owers hastoally as arcurate st the phace data that s.o.

7 References

[1] R. A. Forster, R. C. Little, J. F. Briesmeister, and J. S. Hendricks, -MCNP Capabilities for Nuclear Well Logging Calculations," IEEE Transections on Niclear Science, 37, (3) 1378 (June 1990)
[2] J. F. Briesmeister, Editor, ${ }^{\mathbf{M}}$ MCNP - A General Monte Carlo Code for Neutron and l'hoton Transport, Version 3A," Los Alamos National Laboratory report LA-7396-M, Rev. 2, (1986)
[3] J. A. Halbleib and T. A. Meblhorn, "]TS: The Integrated TIGER Series of Coupled Electron/Fhoton Monte Carlo Transport Codea." Sandia National Laboratory report SAND840573 (1984)
[t] J. S. Hendricks and R. E. Prael, "Monte Carbo NextEvent Estimates from Thermal Collisions," Neclear Sisence and Engineerng, 109 (2) 150-157 (October 1991)
[5] J. S. Hendricks, R. E. Przel, -MCNP $S(a, \beta)$ Detectot Scheme." Las Alamos National Laboratory report. LA-1 1952 (October, 1990)
[6] T E Booth, "Intelligent Bionte Carlo Phase-Space Division and Importance Estimation," Thans. Am. .Vacl. Soc., 60. 358 (1989)
[i] T. E. Booth, "A Quasi-Deterministic Approximation of the Monte Carlo Importance Function." Nisclear Science and Engineerng. 104 374-384 (1990)
[8] T E. Booth and J. S. Hendricks, "Importance Estimation in Forward Monte Carlo Calculations," .Nucl. Tech /Fusion, 5 (1984)
[0] T E Booth. "A Weight Window/Importance Generzior for Monte Cario Streaming Problems." Sirth /nternational Confernce on Radiation shielding. Tokyo. Japan (May 16-20. 1983)
[10] J T West III. "SABRINA An Interactive Three-Dimensional Ceometry-Modeling Program for VC.X P." Loa Alamos National Laboratory pepore LA106REL: (10R6)
[11] R E. Prapland If Lirheenstein. "t'ser Guide to icS [he LaHET Code System." Las Alamon National l.aboratory report. I.A.C'R-R9-3014 (1989)
[12] GP Estem. R i; Schranill.J T Kiriese "Automated Mr-VP Photon Sinuper (ienerntion for Arbitrary Configurations of Radionetive Materiale and Firgt Pein. riples (Caleulatwns of Phoenn Desectur Responsea." L.m Alamm National Latherntory prport, L.A-1115.? VS: Mar'h (!)en)
|13| W R V Vhan. H Hirayama, and D W O Rogra - The Ficcil iont Suatrm." Stanfied limens Aremer

[14] 5. A. Forster, *A New Method to Assess the Statistical Convergence of Monte Carlo Solutions," Accepted at the American Nuclear Society Winter Meeting (November 1991)
[15] D. J. Whalen, D. E. Hollowell, J. S. Hendricks. -MCNP: Photon Benchmark Problems," Los Alamos National Laboratory report, LA-12196 (September 1991)
[16] D. J. Whalen, D. A. Cardon. J. L. L'hle, J. S. Hendricks, "MCNP: Neutron Benchmark Problems," Los Alamos National Laboratory report, LA-122.2 (November 1991)
[17] D. J. Whalen. D. E. Hollowell, and J. S. Hendricks, "Monte Carlo Photon Benchmark Problems." Proceedings of the International copica! Meeting on Advances in Mfathematics. Compatations, and Reactor Physıcs, April 28 - May 2, 1991, 5, 30.1 5-1 (April 1991)
[18] J. S. Heidrick, D. J. Whaten, D. A. Cardon. J. L. Chle, "MCNP Neutron Benchmarks," Submitted to the American Nuclear Society Annual Meeting (June 1992)
[19] S. Sitaraman, "Benchmarking Study of the MCNP Code Against Cold Critical Experiments." Trang. Am. Vuel. Soc. 63426 (June 1991)
[20] S. Sitaraman, "Benchmarking Study of the Monte Carlo Code MCNP Against Light Water Reactor Critical Experiments," to be published as a General Electric Report.
[21] J F. Briesmeinter. F. W. Brınkley. B. A Clark. J T West, "Loa Alamos Radiation Transport Code System on Desktop Computing Platforms." Trans. Ain. Nucl. Sor 62455 (November 1930)

TABLE 1

MCNP PERFORMANCE (particle histories per minute)

| Test Problem | YMP | X.MP | Sun Sparcl | Sun Sparc2 | IBM-5.50 | HP-730 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | T.1224E+4 | $5.9703 \mathrm{E}+4$ | 73082E+3 | $1.5121 E+4$ | 3.7221E+4 | 5. $8824 E+4$ |
| 2. | $2.2188 \mathrm{E}+4$ | $1.8704 \mathrm{E}+4$ | $2.0580 \mathrm{E}+3$ | $4.4248 \mathrm{E}+3$ | $1.2058 \mathrm{E}+4$ | $1.8270 \mathrm{E}+4$ |
| 3. | $1.8622 E+4$ | 1.623:E+4 | $2.6062 \mathrm{E}+3$ | $5.9488 \mathrm{E}+3$ | $1.3342 \mathrm{E}+4$ | $2.0783 \mathrm{E}+4$ |
| 4. | $9.4285 \mathrm{E}+3$ | $8.0183 \mathrm{E}+3$ | 7.9256E+2 | $1.7386 \mathrm{E}+3$ | 4972 T E+3 | T. $1908 \mathrm{E}+3$ |
| 5. | $2.0661 \mathrm{E}+3$ | 1.i499E+3 | $1.5492 \mathrm{E}+2$ | $3.6364 \mathrm{E}+2$ | $1.0844 \mathrm{E}+3$ | $1.5460 \mathrm{E}+3$ |
| 6. | $5.5836 \mathrm{E}+4$ | $4.6859 \mathrm{E}+4$ | $5.6022 \mathrm{E}+3$ | $1.2010 \mathrm{E}+4$ | $2.9499 \mathrm{E}+4$ | $4.8780 \mathrm{E}+4$ |
| 7. | $1.8000 \mathrm{E}+4$ | $1.55-49 E+4$ | 2.2759E+3 | $4.8591 \mathrm{E}+3$ | 1.1050E+4 | 1.8il6E+4 |
| 8 | $5.2182 \mathrm{E}+3$ | $4.2544 \mathrm{E}+3$ | 4.4183E+2 | $1.0714 E+3$ | $2.6923 \mathrm{E}+3$ | $3.3281 E+3$ |
| 9. | 3.4869E+4 | $3.0248 \mathrm{E}+4$ | 5.3109E+3 | $1.1051 \mathrm{E}+4$ | $2.5285 E+4$ | $4.0911 E+4$ |
| 10. | $3.6352 \mathrm{E}+3$ | $3.0767 \mathrm{E}+3$ | $3.0525 \mathrm{E}+2$ | $6.8259 \mathrm{E}+2$ | $1.8029 \mathrm{E}+3$ | $2.5751 \mathrm{E}+3$ |
| 11 | T. $94044 \mathrm{E}+3$ | - $3203 \mathrm{E}+3$ | $9.3985 \mathrm{E}+2$ | 2.1572E+3 | $5.8575 E+3$ | $8.9109 \mathrm{E}+3$ |
| 12. | $4.0817 \mathrm{E}+3$ | $3.5007 \mathrm{E}+3$ | 3.1959E+2 | $8.3577 \mathrm{E}+2$ | $2.154+3$ | $3.0136 \mathrm{E}+3$ |
| 13 | $2.6404 \mathrm{E}+4$ | $2.3082 \mathrm{E}+4$ | $3.6643 \mathrm{E}+3$ | ع. $3091 \mathrm{E}+3$ | $2.164 E+4$ | $3.4904 \mathrm{E}+4$ |
| 1.1 | $2.6560 \mathrm{E}+4$ | $2.3252 \mathrm{E}+4$ | $5.2306 E+3$ | $1.0648 \mathrm{E}+4$ | $2.1490 \mathrm{E}+4$ | $3.5993 \mathrm{E}+4$ |
| 1.5 | 2.1260E+4 | $18587 \mathrm{E}+4$ | $3.2310 \mathrm{E}+3$ | $6.4034 E+3$ | $1.3319 \mathrm{E}+4$ | $2.4641 E+4$ |
| 15. | 1.2064E+4 | $10332 \mathrm{E}+4$ | $1.8328 \mathrm{E}+3$ | $3.6720 \mathrm{E}+3$ | 7.7381E+3 | 1. $9976 \mathrm{E}+4$ |
| 17. | $1.4883 E+4$ | $1.2558 \mathrm{E}+4$ | $1.6950 \mathrm{E}+3$ | $3.6137 \mathrm{E}+3$ | 9.3520E+ ${ }^{\text {d }}$ | $1.3350 \mathrm{E}+4$ |
| 18 | 1.3017E+3 | $1.2104 \mathrm{E}+3$ | $2.2095 E+2$ | 4.7372E+2 | $1.0808 \mathrm{E}+3$ | $1.8551 E+3$ |
| 19 | 5 $3358 \mathrm{E}+3$ | $46138 \mathrm{E}+3$ | $6.6262 E+2$ | $1.4055 \mathrm{E}+3$ | $2.6490 \mathrm{E}+3$ | $4.4280 E+3$ |
| 21) | $2.1523 E+4$ | $1.7562 \mathrm{E}+4$ | 1.7580E+3 | +3343E+3 | $1.2600 \mathrm{E}+4$ | $1.2275 \mathrm{E}+4$ |
| $\underline{2} 1$ | $31801 E+4$ | $27927 \mathrm{E}+4$ | $3.9481 \mathrm{E}+3$ | 7.9734E+3 | $1.9036 \mathrm{E}+4$ | $2.8289 \mathrm{E}+4$ |
| 22 | $38328 \mathrm{E}+3$ | $33800 \mathrm{E}+3$ | 5) 3422E+2 | 1.15īE+3 | $2.4343 \mathrm{E}+3$ | 3.6923F.+3 |
| 2 J | $56890 \mathrm{E}+3$ | $46908 \mathrm{E}+3$ | 4.6671E+2 | $1.1478 \mathrm{E}+3$ | $3.2189 \mathrm{E}+3$ | $3.4572 \mathrm{E}+3$ |
| 24 | $1.8468 \mathrm{E}+3$ | $1.6629 E+3$ | $2.9949 \mathrm{E}+2$ | $6.3766 \mathrm{E}+2$ | $1.3169 \mathrm{E}+3$ | $2.0979 \mathrm{E}+3$ |
| 2.5 | $3.7108 \mathrm{E}+4$ | $32402 E+4$ | ¢ $0809 \mathrm{E}+3$ | $1.2409 \mathrm{E}+4$ | 2.E240E+4 | $44375 \mathrm{E}+4$ |

TABLE 2

MCNP PERFORMANCE NORMALIZED TO CRAY-YMP

| | YMP | XMP | Sun Sparc1 | Sun Sparc: | IBM-550 | HP-430 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 100 | 84 | 10 | 21 | 52 | 83 |
| 2 | 100 | 84 | 9 | 20 | 54 | 82 |
| 3. | 100 | 87 | 14 | 32 | -2 | 112 |
| 4. | 100 | 85 | 3 | 19 | 53 | 76 |
| 5. | 100 | 85 | 7 | 18 | 52 | 75 |
| 6. | 100 | 84 | 10 | 22 | 51 | 87 |
| 7. | 100 | 86 | 13 | $2{ }^{1}$ | 61 | 102 |
| 8. | 100 | 82 | 8 | 21 | 52 | 64 |
| 9. | 100 | 87 | 15 | 32 | 73 | 117 |
| 10. | 100 | 85 | 8 | 19 | 50 | 71 |
| 11. | 100 | 92 | 12 | 27 | 74 | 112 |
| 12. | 100 | 86 | 9 | 20 | 53 | 74 |
| 13. | 100 | 87 | 14 | 31 | 80 | 132 |
| 14. | 100 | 88 | 20 | 40 | 81 | 136 |
| 15. | 100 | 88 | 15 | 30 | 63 | 116 |
| 16. | 100 | 86 | 15 | 30 | 64 | 108 |
| 17. | 100 | 84 | 11 | 24 | 63 | 90 |
| 18. | 100 | 93 | 17 | 36 | 83 | 143 |
| 19. | 100 | 86 | 12 | 26 | 50 | 83 |
| 20. | 100 | 82 | 8 | 20 | 59 | 57 |
| 21. | 100 | 88 | 12 | 25 | 60 | 89 |
| 22 | 100 | 88 | 14 | 30 | 64 | 96 |
| 23. | 100 | 82 | 8 | 20 | 57 | 61 |
| 24. | 100 | 90 | 16 | 35 | 71 | 114 |
| 25. | 100 | 87 | 16 | 33 | 71 | 120 |
| Average: | 100 | 86 | 12 | 26 | 63 | 96 |

TABLE 3
MCNP PERFORMANCE NORMALIZED TO IBM RS/6000-550

| | IBM-550 | YMP | XMP | Sun Sparc 1 | Sun Sparc2 | HP-730 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 100 | 191 | :60 | 20 | 41 | 158 |
| 2. | 100 | 184 | 155 | 17 | 37 | 152 |
| 3. | 100 | 140 | 122 | 20 | 45 | 156 |
| 4. | 100 | 190 | 161 | 16 | 36 | 145 |
| 5. | 100 | 191 | 161 | 14 | 34 | 143 |
| 6. | 100 | 189 | 159 | 19 | 41 | 165 |
| 7. | 100 | 163 | 141 | 21 | 44 | 167 |
| 8 | 100 | 194 | 158 | 16 | 40 | 124 |
| 9. | 100 | 138 | 120 | 21 | 44 | 162 |
| 10. | 100 | 202 | 171 | 17 | 38 | 143 |
| 11. | 100 | 136 | 125 | 16 | 37 | 152 |
| 12. | 100 | 189 | 162 | 18 | 39 | 140 |
| 13. | 100 | 125 | 109 | 17 | 39 | 165 |
| 14. | 100 | 124 | 108 | 24 | 50 | 167 |
| 15. | 100 | 160 | 140 | 24 | 48 | 185 |
| 16. | 100 | 15.5 | 133 | 24 | 47 | 167 |
| 17. | 100 | 159 | 134 | 18 | 39 | 143 |
| 18. | 100 | 120 | 112 | 20 | 44 | 172 |
| 19. | 100 | 201 | 174 | 25 | 53 | 167 |
| 20. | 100 | 170 | 138 | 14 | 34 | 97 |
| 21. | 100 | 167 | 147 | 21 | 42 | 149 |
| 22 | 100 | 157 | 139 | 22 | 48 | 152 |
| 23. | 100 | 177 | 146 | 14 | 36 | 107 |
| 24. | 100 | 140 | 126 | 23 | 48 | 159 |
| 25. | 100 | 141 | 123 | 23 | 47 | 169 |
| Average | 100 | 164 | 141 | 19 | 42 | 152 |

title THE NEUTRINOS IN MUON DECAY

AUTHOA(S) Peter Herczeg, T-5

DISCLAIMER

This report was prepared an an account of work sponsored by an agency of the United Slates Government. Neither the United State: (Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or renponsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, of process disclosed, or represents that its use would not infringe privately owned rights. Referene herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, of otherwise dies mot necessarily constitute of imply its endorsement, reconmendation, of favoring by the United States Government of any agency thereof The views and opimons of authors expressed herein do not necessarily state or reflect those of the United Staten (iovernment of any agency thereof

The neutrinos in muon decay

Peter Herczeg
Theoretical Diviaion, Los Alamos National Laboretory Lot Alannos, New Mexico 87545

Submitted 21 October 1091

Abstract

We review the available information on the identity of the neutrino states emitted in muon decay, and discuss the exotic decay $\mu^{+} \rightarrow e^{+} \bar{\nu}_{s} \nu_{\mu}$.

1 Introduction

The main decay node of the muon ia the decay into two neutrinos [1]: $\mu^{+} \rightarrow e^{+}+n+n^{\prime}$. In the standard model $n=\nu_{0 L}, n^{\prime}=\bar{\nu}_{\mu L}$, where $\nu_{0 L}$ and $\nu_{\mu L}$ are masaleas left-handed neutrinos which accompany the corresponding left-handed charged leptons in doublets of $S U(2)_{L}$. The interaction responsible for this decay is due to W-exchange and has the V-A form
$H_{V-A}^{(\mu)}=\frac{G_{F}}{\sqrt{2}} \bar{\mu}_{\lambda}\left(1-\gamma_{B}\right) \nu_{\mu} \bar{\nu}_{c} \gamma^{\lambda}\left(1-\gamma_{B}\right) e+$ H.c.,
where $G_{F}=\left(g^{2} / 8 m_{W}^{2}\right)(1+\Delta r) ; \Delta r$ represente radiative corrections [2].

In extensions of the standard model there may be new decay modes of the type $\mu^{+} \rightarrow e^{+}+$neutrinos, and new decay interactions may be present. Among the decays $\mu^{+} \rightarrow e^{+}+$neutrinos there could be some which violate the conservation of lepton family numbers and possibly also the conservation of the total lepton number. In the presence of the new interactions the neutrinos are expected to be masaive, and the gauge group eigenstates are not expected to coincide with the maso-eigenstates. The mixing of the neutrino may involve also heavy neutrino states, which eannot be emitted in the decays.

In this talk we nhall review the exinting information on the identity of the neutrinos in the main decay mode of the muon, and then liscuss the particular exotic lecay mode $\mu^{+} \rightarrow \rho^{+} \nu_{\nu} \nu_{\mu}$.

2 The identity of the muon decay neutrinos

The most general local nonderivative four-fermion interaction that allows for lepton family number and total lepton number violation can be written in the helicity projection form [3] as [4]

$$
\begin{align*}
H & =4 \sum_{i j}\left[\left(g_{L L}^{V}\right)_{i j} \bar{e}_{L} \gamma^{\lambda} n_{i L} \bar{n}_{j L} \gamma_{\lambda} u_{L}\right. \\
& +\left(g_{L R}^{V}\right)_{i j} \bar{e}_{L} \gamma^{\lambda} n_{i L} \bar{n}_{j R}^{c} \gamma_{\lambda} \mu_{R} \\
& +\left(g_{R L}^{L}\right)_{i j} \bar{e}_{R} \gamma^{\lambda} n_{i R}^{c} \bar{n}_{j L} \gamma_{\lambda} \mu_{L} \\
& +\left(g_{R R}^{V}\right)_{i j} \bar{e}_{R} \gamma^{\lambda} n_{i R}^{c} \bar{n}_{j R}^{c} \gamma_{\lambda} \mu_{R} \\
& +\left(g_{L L}^{S}\right)_{i j} \bar{e}_{L} n_{i R}^{c} \bar{n}_{j R}^{c} \mu_{L} \tag{2}\\
& +\left(g_{L R}^{S}\right)_{i j} \bar{e}_{L} n_{i R}^{c} \bar{n}_{j L} \mu_{R} \\
& +\left(g_{R L}^{S}\right)_{i j} \bar{e}_{R} n_{i L} \bar{n}_{j R}^{c} \mu_{L}+\left(g_{R R}^{S}\right)_{i j} \bar{e}_{R} n_{i L} \bar{n}_{j L} \mu_{R} \\
& +\left(g_{L R}^{T}\right)_{i j} \bar{e}_{L} t^{a} n_{i R}^{c} \ddot{n}_{j L} t_{a \rho} \mu_{R} \\
& +\left(g_{R L}^{T}\right)_{i j} \bar{e}_{R} t^{\left.a \rho_{n_{i L}} \bar{n}_{j R}^{c} t_{a \rho} \mu_{L}\right]+H . c .}
\end{align*}
$$

The fermion fields in Eq. (2) are maso-eigenatates. The indices i, j run over all the neutrino states that can be emitted in the decay. For a fermion feld $(f) f_{L}=\frac{1}{2}(1-$ $\left.\gamma_{b}\right) f_{1} f_{R}=\frac{1}{2}\left(1+\gamma_{b}\right) f_{i} t_{a O}=: \frac{1}{\sqrt{2}}\left[\gamma_{a}, \gamma_{s}\right] . \quad n_{i L}$ includes all the left-handed neutrino states ($1, ~ \mathrm{r} \equiv \nu_{a i}, H_{2 L} \equiv$ $\nu_{i L}^{c}, n_{3 L}=\nu_{\mu L}$ etc.), and the set $n_{R i}^{c}$ all the righthanded ones ($n_{i R}^{c} \equiv \nu_{i R}^{c}, n_{2 R}^{c} \equiv \nu_{i R}, n_{3 R}^{c} \equiv \nu_{\mu R}^{c}$, ctc.).

A special case of the Hamiltonian (2) is the oue ($H_{L C}^{(\mu)}$, which contains all the possible interactiun typem (V,A,S,...), but allows only decay modes which conlmerve the individual lepton family numbera, and includen only $\nu_{a R}$ and $\nu_{\mu R}$ in addition to $\nu_{0 L}$ and $\nu_{\mu L}$. $H_{L /}^{(\mu)}$ containa 10 coupling constante $f\left(O_{L L}^{V}\right)_{13} \equiv g L_{L,},\left(g_{K}^{V}\right)_{14} \Xi$

[^10]$g_{R R}^{S}, \quad\left(g_{L R}^{T}\right)_{23} \equiv g_{L R}^{T}$, and $\left.\left(g_{R L}^{T}\right)_{14} \equiv g_{R L}^{T}\right]$. In Ref. [5] limits have been set on all of these using the available experimental results on the muon lifetime, the positron energy spectrum and polarizations, and the inverse muon decay crose-section. One of the results of the analysis is the lower bound
\[

$$
\begin{align*}
Q_{L L} & \equiv\left(\frac{1}{4}\left|\dot{g}_{L L}^{S}\right|^{2}+\left|g_{L L}^{V}\right|^{2}\right)\left(G_{\mu} / \sqrt{2}\right)^{-2} \tag{3}\\
& >0.949(90 \% \text { c.l. })
\end{align*}
$$
\]

obtained from muon-decay data alone on the quantity $Q_{\text {lL }}$ which contains the standard model contribution. In Eq. (3) G_{μ} is the muon decay constant ($G_{\mu}=1.16637(2) \times 10^{-5} \mathrm{GeV}^{-2}$). For the contribution of the remaining coupling constants to the decay rate upper limits have been obtained (also from muon decay measurements), which are smaller than $\left(G_{\mu} / \sqrt{2}\right)^{2}$ by factors of about 20 to 500 . However, some of the coupling constants could still be quite large. For example the limit on $\left|g_{R L}^{S}\right|$ is $\left|g_{R L}^{S}\right|<0.424\left(G_{\mu} / \sqrt{2}\right)$ [5].

In the general case the muon decay parameters can be expressed through a set of quadiatic functions of the coupling constants, which are generaliaations of those for the lepton family number conserving case [4]. There is a one-to-one correspondence between the two sets [4], and consequently it is possible to use the results for the lepton family number conserving case to obtain constraints for the Hamiltonian (2). Thus, since [4]

$$
\begin{align*}
\frac{1}{4}\left|g_{L L}^{S}\right|^{2} & \longrightarrow \sum_{i>j}\left|\left(g_{L L}^{V}\right)_{i j}+\frac{1}{2}\left(g_{L L}^{S}\right)_{j i}\right|^{2} \\
\left|g_{L L}^{V}\right|^{2} & \longrightarrow \sum_{i \leq j}\left|\left(g_{L L}^{V}\right)_{i j}+\frac{1}{2}\left(g_{L L}^{S}\right)_{j i}\right|^{2} \tag{4}
\end{align*}
$$

the constraint (3) becomes
$Q_{L L} \equiv \sum_{i, j}\left|\left(g_{L L}^{V}\right)_{i j}+\frac{1}{2}\left(g_{L L}^{S}\right)_{i j}\right|^{1}>0.949\left(G_{\mu} / \sqrt{2}\right)^{2}$
In the analysis it has been ossumed that the masses of the neutrinos that ean te emitted in the decay are small enough that their effect on the positron spectrum can the neglected.

Information on one of the neutrino atates in muon decay comen from the invarse muon decay process $\nu_{\mathrm{R}} \mathrm{C}^{-} \rightarrow \mu^{-} n_{\mathrm{i}}$ where ν_{z} is the neutrino state rmitted ill $\pi^{+} \rightarrow \mu^{+} \nu_{r}$ deray, and n_{1} are mome neutrino atalen. The cromemection for thin reaction has been measured ererntly by the ('UARM II collaboration [B] and by the (' ('Fll collabotation [7], whenining
$\therefore=!(004 \pm 0.1) 79 \quad(\because H A / R M I I)$.
$. '=0.961 \pm 00087$
(($(1 \% R)$ 。

 dieted hy thermamined model An ν_{*} in to nal excerilent
approximation left-handed [8], S is given by (taking into account the limits on the coupling constants)
$S \simeq \sum_{i}\left|\left(g_{L L}^{V}\right)_{i 3}+\frac{1}{2}\left(g_{L L}^{S}\right)_{3 i}\right|^{2}\left(G_{\mu} / \sqrt{2}\right)^{-2}$,
where the neutrino state $\nu_{\mathrm{z}}=\sum_{j} c_{j} n_{j L}$ has been denot. \cdot d as $n_{3 L} . \quad\left(S \simeq\left|g_{L L}^{V}\right|^{2}\left(G_{\mu} / \sqrt{2}\right)^{-2}\right.$ in the case of the Hamiltonian $H_{L C}^{(\mu)}$ [5]).

The experimental value of S enables one to set a lower bound on the term which includes the standard model contribution, and using $Q_{L L} \leq I$ an upper bound on the remaining part of $Q_{L L}[5]$. From (7) one obtains [7]
$\sum_{i}\left|\left(g_{L L}^{V}\right)_{i 3}+\frac{1}{2}\left(g_{L L}^{S}\right)_{3 i}\right|^{2}>0.925\left(G_{\mu} / \sqrt{2}\right)^{2}$
(90% c.l.),
$\sum_{\substack{j, j \\ j \sim 0}}\left|\left(g_{L L}^{V}\right)_{i j}+\frac{1}{2}\left(g_{L L}^{S}\right)_{j i}\right|^{2}<0.075\left(G_{\mu} / \sqrt{2}\right)^{2}$
(90% c.l.)
The limits from (6) are only slightly weaker.
The bound (9) implies that at least one of the μ^{+}-decay modes which involves the neutrino $\bar{\nu}_{n}$ produced in $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\pi}$ decay dominates the μ^{+}-decay rate [4].

Regarding the nature of the state ν_{n} there is some experimetital information from a search [9] for $e^{ \pm}$-production by ν_{π} on nucleons. The experiment yielded $\Gamma\left(\pi^{+} \rightarrow \mu^{+} \bar{n}_{e}\right) / \Gamma\left(\pi^{+} \rightarrow\right.$ all $)<1.5 \times$ 10^{-3} (90\% c.l.) and $\Gamma\left(\pi^{+} \rightarrow \mu^{+} n_{e}\right) / \Gamma\left(\pi^{+} \rightarrow\right.$ all $)<$ $8 \times 10^{-3}(90 \%$ c.l. $)$, where \tilde{n}_{e} and n_{e} are neutrino staten capable of producing e^{+}and e^{-}, respectively. ${ }^{2}$ This indicates that ν_{n} is not the atate which accompanies the positron or the electron in nuclear beta decay.

Information on the second neutritio in muon decay follows from the experiment of Ref. [10], where neutrinos (n .) from μ^{+}-decay have been observed through th" reaction $n, l) \rightarrow p^{-}$. The gond agreement of thr mennured $n_{e} D \rightarrow p p e-$ reomesection and the calculated one it the standard model indicaten that the total muon decay rate containe a aubatantial contribution from muon deray into a final state in which one of the neutrinom is the one accompanying the pomitron in nuelear beta decay

Experimental remules [io, 11,12,13] are available alse on decayn of the typer $\mu^{+} \rightarrow{ }^{+}+\eta_{a} n_{r}$, where n_{r} is sombe

[^11]producing positrons on protons. ${ }^{3}$ The best limit on the branching ratio
\[

$$
\begin{equation*}
R \equiv \Gamma\left(\mu^{+} \rightarrow e^{+} \bar{n}_{e} n_{x}\right) / \Gamma\left(\mu^{+} \rightarrow \text { all }\right) \tag{11}
\end{equation*}
$$

\]

is

$$
\begin{equation*}
R<0.018 \quad\left(9 \Gamma_{0} \text { c.l. }\right) \tag{12}
\end{equation*}
$$

from the experiment of Ref. [13]. ${ }^{4}$
It is evident from the above discussion that the experimental information regarding the mucn decay interaction and the nature of the neutrinos involved is consistent with the standard model picture. Searches for non-standard contributions and non-standard decay modes continue to be of great importance. In the next section we shall consider the exotic decay $\mu^{+} \rightarrow e^{+} \bar{\nu}_{e} \nu_{\mu}$.

3 The decay $\mu^{+} \rightarrow e^{+} \bar{\nu}_{c} \nu_{\mu}$

The exotic decay mode $\mu^{+} \rightarrow e^{+} \bar{\nu}_{0} \nu_{\mu}{ }^{5}$ was first considered [15] before the advent of gauge theories, in connection with the question regarding the nature of the suspected invariance principle which was supposed to account for the apparent absence of processes like $\mu \rightarrow e \gamma$, or $\mu^{-} N \rightarrow e^{-N}$. In the scheme of Ref. [15] the decay $\mu^{+} \rightarrow e^{+} \bar{\nu}_{0} \nu_{\mu}$ is one of the processes (muonium to antimuonium conversion is another) which would be allowed if the conservation of a multiplicative quantum number (muon parity) would be involved, but forbidden if the conservation law concerned additive quantum numbers (muon number and electron number). In the standard model the lepton family numbers are conserved and therefore $\mu^{+} \rightarrow e^{+} \bar{\nu}_{\Delta} \nu_{\mu}$ (like $\mu \rightarrow e \gamma$, etc.) is forbidden. Beyond the standard model the presence of conserved lepton number, (additive or multiplicative) is generally not expected. ${ }^{6}$. We should note also that since the strength of the $\mu^{+} \rightarrow e^{+} \bar{\nu}_{\mathrm{a}} \nu_{\mu}^{\prime}$ interaction is

[^12] introducing three lliage doublete, one for eath lepton fanilly. The
not related to the weak interactions, the existence of a conserved multiplicative quantum number cannot be ruled out by the absence of $\mu^{+} \rightarrow e^{+} \bar{\nu}_{e} \nu_{\mu}$ (or muonium to antimuonium conversion, etc.) at a certain level.

The decay $\mu^{+} \rightarrow e^{+} \bar{\nu}_{e} \nu_{\mu}$ could be mediated at the tree-level by non-standard Higgs bosons, or new gauge bosons. A simple extension of the standard model which allows $\mu^{+} \rightarrow e^{+} \dot{\nu}_{e} \nu_{\mu}$ cnn be obtained by adding to the Higgs doublet a singlei charged Higgs boson (h) and including singlet right-handed neutrinos. A coupling of the form ${ }^{7}$
$L=g_{e \mathrm{e}}{\overline{\nu^{c}}{ }^{c} e_{R} h+g_{\mu \mu} \bar{\nu}_{\mu R}^{c} \mu_{R} h+H . c . ~}_{\text {. }}$
is then possible, which (if the right-handed neutrinos are sufficiently light) gives rise to $\mu^{+}-e^{+} \bar{\nu}_{\mathrm{a}} \nu_{\mu}$. The correaponding interaction after a Fierz transformation can be written in the form
$H=\frac{g_{\sigma e} g_{\mu \mu}^{*}}{8 m_{h}^{2}} \bar{\mu} \gamma_{\lambda}\left(1+\gamma_{\sigma}\right) \nu_{0} \bar{\nu}_{\mu} \gamma^{\lambda}\left(1+\gamma_{\varsigma}\right) e+H . c$.
Denoting $Z=\sqrt{2} g_{c e} g_{\mu \mu}^{*} / 8 m_{h}^{2}$, the branching ratio R (see (11), where now $\bar{n}_{s}=\bar{\nu}_{0}, n_{x}=\nu_{\mu}$) is given by $R=|\bar{C}|^{2} /\left(G_{F}^{2}+|\bar{\zeta}|^{2}\right)=\left|\bar{\zeta} / G_{\mu}\right|^{2}$. The experimental linait (12) does not apply for this case, since the righthanded neutrinos do not couple to the W. There are however several indirect constraints on \bar{G}.

One constraint follows from the limits on the coupling constants of the general Hamiltonian (2). The Hamiltonian consisting of the standard model contribution and the interaction (14) is a special case of (2) with
$\left(g_{L L}^{V}\right)_{13}=G_{F} / \sqrt{2},\left(g_{R R}^{S}\right)_{34}=2 \bar{G}^{0} / \sqrt{2}$,
and all the other coupling constants set to zero. Fiom the analyais of muon decay data one has the limit $\left|g_{R R}^{S}\right|<0.066\left(90 \%\right.$ c.l.) [5] for $H_{L C}^{(\mu)}$, which translates in the general case to
$\sum_{i>j}\left|\left(g_{R R}^{v}\right)_{j j}+\frac{1}{2}\left(g_{R R}^{S}\right)_{j i}\right|^{2}<0.0011\left(G_{\mu} / \sqrt{2}\right)^{2}$
(90'\% c.l.)
Since the left-hand side of Eq. (16) is simply $\left|\frac{1}{2}\left(g_{R R}^{S}\right)_{24}\right|^{2}$, we obtain from (15) and (16) the bound
$|C|<0.032\left|G_{\mu}\right| \quad(90 \%$ c.l.).
Limits on \bar{G} are implied aimo by the experimental value of the W-mass, and by rharged current universality.

The muon decay congtant in the premence of the interartion (14) is given by (i, $=$ dir($1+$

[^13]$\left.\left|\bar{G} / G_{F}\right|^{2}\right)^{1 / 2}$. Since G_{μ} is known experimentally and G_{F} can be evaluated using the experimental values of $m_{W}, \sin ^{2} \theta_{W}$ and Δr, a constraint follows for $\left|\bar{G} / G_{F}\right|$. With $m_{I V}=(79.91 \pm 0.39) \mathrm{GeV}$ [18], $\sin ^{2} \theta_{w}=0.2291 \pm 0.0034$ [19], and $\Delta r=0.056_{-0.010}^{+0.006}$ [19], we find
$\left|\bar{G} / G_{\mu}\right|<0.23 \quad$ (90% c.l.).
The experimental value of the ud-element $U_{u d}$ of the Kobayashi-Maskawa matrix is defined as the ratio of the experimental value of the beta decay vector constant G_{β} and the muon decay constant G_{μ}. In the standard model $G_{p}=G_{F} \hat{U}_{u d}$ (where $\hat{U}_{u d}$ is the true KM matrix element), and $G_{\mu}=G_{F}$, so that $U_{u d}=G_{\rho} / G_{\mu}=\hat{U}_{u d}$. In the presence of the interaction (14) we have $\left|U_{u d}\right|^{2}=$ $\left|\hat{U}_{\text {ud }}\right|^{2}\left(1+\left|\bar{G} / G_{F}\right|^{2}\right)^{-1}$. Analogous relations hold for $\left|U_{u}\right|^{2}$ and $\left|U_{u b}\right|^{2}$, so that using the unitarity relation for the 3 -family case one obtains.
$\left|U_{u d}\right|^{2}+\left|U_{u b}\right|^{2}+\left|U_{u b}\right|^{2}=\left(1+\left|\bar{G} / G_{F}\right|^{2}\right)^{-1}$
A recent analysis [20] yields $\left|U_{u d}\right|^{2}+\left|U_{u s}\right|^{2}+$ $\left|U_{u b}\right|^{2}=0.9989 \pm 0.0012$, implying
$\left|\bar{G} / G_{\mu}\right|<0.053 \quad$ (90% c.l.)
The example (14) of an interaction that can give rise to $\mu^{+} \rightarrow e^{+} \bar{\nu}_{0} \nu_{\mu}$ is just a possibility, without a particular motivation. Mohapatra and I have investigated [21] $\mu^{+} \rightarrow e^{+} \bar{\nu}_{\mathrm{a}} \nu_{\mu}$ and also muonium to antimuonium ($M \overrightarrow{\mathrm{M}}$) conversion in the left-right aymmetric $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{U}(1)_{B-1}$ model of Ref. [22]. In this model $\mu^{+} \rightarrow \mathrm{e}^{+} \bar{\nu}_{\mathrm{a}} \nu_{\mu}$ and $M \rightarrow \bar{M}$ conversion arise naturally, and moreover turn out to play a distinctive role. We have pointed out that with resoonable asoumptions concerning some of the parameters of the model there is a lower bound in these models for the $\mu^{+}-e^{+} \bar{\nu}_{\mathrm{e}} \nu_{\mu}$ rate and the $M \rightarrow \bar{M}$ conversion rate for the range of the muon neutrino mass $m_{\nu_{\mu}}$ for which the constraint from cosmology requires ν_{μ} to be unstable. Below I shall give a brief sketch of this work, referring the reader to Ref. [21] for details and complete references.

The Higgs sector of the model contains the bidoublet field $\phi(2,2,0)$ and the triplet fields $\Delta_{R}(1,3,2)$ and Δ_{L} $(3,1,2)$. Left-right symmetric models provide an attraclive framework for underatanding the origin of parity violation in the weak interactions. The clase of $\mathrm{SU}(2)_{L} \times$ $\mathrm{SU}(2)_{\mathrm{A}} \times \mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}$ models with triplet Higgs bomons ran also provide an explanation of the amallnens of the maseen of the observed neutinon.

The observed energy density of the universe implien that neutrinon which are heavier than about $\mathbf{4 0} \mathrm{eV}$ must be unatable, and that there in an upper bound on their lifetimes, which in a decreasing functin of their manem for the muon neutrino the only decay mode that ran antinfy the commologieal conntraint in the decay $\nu_{\mu \prime} \rightarrow \nu_{0} \nu_{0} \nu_{e}$ anediated by Δ ? -exchange. 'The commological conatenint given a lower bound (proportional to $m_{\nu_{\mu}}^{-3 / 2}$) on ther nterngth $\left|\left(i_{1}\right) \sqrt{2}\right|$ of ther $\nu_{u} \cdots \nu_{\text {e }} \nu_{0} \nu_{\text {e }}$ internction, whirh
in turn implies an upper bound (proportional to $m_{\nu \mu}^{3 / 4}$) on the mass m_{0} of the Δ_{L}^{0}. This bound combined with the lower hound $m_{0} Z 43 \mathrm{GeV}$ on m_{0} provided by the experimental value of the invisible width of the Z dictates that if ν_{μ} is unstable, its mass has to be larger than \sim 36 keV . It follows that the model is viable for $m_{\nu \mu} \lesssim$ 40 keV and for $m_{\nu \mu}$ in the range $36 \mathrm{keV} \leqq m_{\nu \mu} \lesssim 270$ keV .

The decay is mediated by the exchange of the singlycharged Higge boson Δ_{L}^{+}[23]. The corresponding interaction can be written in the form
$H=2 \frac{G_{+}}{\sqrt{2}} \dot{\mu} \gamma_{\lambda}\left(1-\gamma_{5}\right) \nu_{0} \bar{\nu}_{\mu} \gamma^{\lambda}\left(1-\gamma_{5}\right) e+$ H.c.,
where $G_{+} \simeq \sqrt{2} f_{\circ 0} f_{\mu_{\mu}}^{e} / 8 m_{+}^{2} ; m_{+}$is the mass of the Δ_{L}^{+}; $f_{\text {of }}$ and $f_{\mu \mu}$ are lepton $-\Delta_{L}$ Yukawa couplinge.

The constant G_{+}is related to G_{\circ} as
$G_{+}^{*}=\frac{1}{2} G_{o} K_{\theta \mu}^{-1} \frac{f_{\mu \mu}}{f_{\theta \theta}-f_{\mu \mu}} \frac{m_{o}^{2}}{m_{+}^{2}}$,
where $K_{\Delta \mu}$ is the $e \mu$-element of the mixing matrix K^{\prime} in the charged-current interactions of the light neutrinos. Eq. (22) yields a lower bound on | $G_{+} \mid$, since it can be shown that not only $\left|G_{o}\right|$ but also $\left|f_{\mu \mu}\right|$ and m_{o}^{2} / r_{+}^{2} are bounded from below.

Muonium to antimuonium conversion arises in the model at the tree level through Δ_{L}^{++}-exchange [24]. The resulting effective $M \rightarrow \bar{M}$ interaction is given by
$H=\frac{G_{++}}{\sqrt{2}} \vec{\mu} \gamma^{\lambda}\left(1-\gamma_{B}\right) e \bar{\mu} \gamma_{\lambda}\left(1-\gamma_{B}\right) e+$ U.c.,
where $G_{++} \simeq \sqrt{2} f_{00} f_{\mu \mu}^{*} / 8 m_{++}^{2} . G_{++}^{*}$ is related to G_{o} in the same way as G_{+}^{+}except for the replacement $m_{+} \rightarrow m_{++}$in Eq. (22). Since m_{o}^{2} / m_{++}^{2} is, like m_{o}^{2} / m_{+}^{2}, bounded from below, a lower bound follows also for $\mid G_{++}$|.
 $10^{-1} G_{F}$ for $36 \mathrm{keV} \lesssim m_{\nu_{\mu}} \lesssim 270 \mathrm{keV}$ [21]. The lower bounds increasc with decreasing $m_{\nu_{\mu}}$ Thus, as the experimental limits on $\left|G_{+}\right|$and $/$or $\left|G_{++}\right|$become more and more atringent, the allowed range of $m_{\nu_{\mu}}$ for which the model is viable becomes increasingly smaller. For $m_{\nu_{\mu}} \simeq 36 \mathrm{keV}$ we obtain $\left|G_{+}\right| Z^{2} \times 10^{-2}$ and $1 G_{++} \mid \geq 10^{-2}$.

The branching ratio R in Eq. (11) (with $n_{e}=\nu_{\text {e }}$ $n_{s}=\nu_{\mu}$) in given by
$R=4\left|C_{+} / G_{\mu}\right|^{2}$
The experimental limit (12) implien
| $6+\mid<0.007\left(i_{\mu}\right.$
The Iamileoninn conniating of the interaction (21) nad theneandard model contribution correnpenden to the gelorenal Inmilonian (2) with
$\left.(!)_{1, L}^{\prime}\right)_{13}=\left(i_{r} / \sqrt{2},\left(g_{1,1}^{S}\right)_{13}=1\left(i_{i} / \sqrt{2}\right.\right.$
and all the remaining constants absent. Eq. (10) in this case implies

$$
\begin{equation*}
\left|G_{+}\right|<0.14 G_{\mu} \quad(90 \% \text { c.l. }) \tag{27}
\end{equation*}
$$

From the experimental value of the W-mass and from charged current universality we obtain
$!G_{+} \mid<0.12 G_{\mu} \quad$ (90\% c.l.)
and
$\left|G_{+}\right|<0.026 G_{\mu} \quad(90 \%$ c.l. $)$,
respectively. These are the same constraints as for $|\vec{G} / 2|$ before, since the muon decay constant is now given by $G_{\mu}=G_{F}\left(1+4\left|G_{+} / G_{F}\right|^{2}\right)^{1 / 2}$. From the upper limits (25), (27), (28) and (29) the most stringent at present is the one from charged current universality. It should be noted however that this bound may be affected by theoretical uncertairties.

An experiment in preparation at LAMPF [25] plans to search for $\mu^{+} \rightarrow e^{+} \bar{\nu}_{0} \nu_{\mu}$ with a sensitivity corresponding to $\left|G_{+}\right| \simeq 6 \times 10^{-3} G_{F}$. The LAMPF experiment will improve simultaneously the limit on $K_{e \mu}$ by a factor of ~ 3.5. This will increase the lower bound on $\left|G_{+}\right|$ and $\left|G_{++}\right|$by a factor of ~ 2.

The present experimental upper limit on $\left|G_{++}\right|$is $\left|G_{++}\right|<0.16 G_{r}(90 \%$ c.l.) [26]. The experiment under way at PSI [27] is expected to lowe: the upper limit to $10^{-3} G_{F}$.

4 Conclusions

In this talk we discussed two subjects in the field of muon decay: the status of our knowledge regarding the identity of the neutrinos emitted in muon decay, and the exotic decay mode $\mu^{+} \rightarrow e^{+} \bar{\nu}_{0} \nu_{\mu}$.

Concerning the identity of the muon decay neutrinoe experiment indicats that ainong the decays $\mu^{+} \rightarrow e^{+}+$neutrinos the decay mode which dominates the $\mu^{+} \rightarrow e^{+}+$neutrinos rate involves the neutrino species of the standard model scenario: one of the neutrinos in this decay mode is the state \dot{v}_{n} emitted in $\pi^{-} \rightarrow \mu^{-} \dot{\nu}_{\text {n }}$ decay, and the other the state n_{e} which accompanies the positron in nuclear beta decay; experiment indieates alao that ν_{r} and m_{e} are not the amme entatea. Muon decay and inverse muon decay data conatrain the interaction that governa this decay mode to be the atandard model interaction and/or a scalar typer interaction. The experimental values of m_{w} and $\sin ^{2} \theta_{w}$ indicate that the atandard model antribution dominates.

The contribution of other deray interactione and deeny moden to the $\mu^{+} \rightarrow \mathrm{p}^{+}+$neutrinos rate in connurailied to be leme thall about 10 㘯. Searchen for nonmeandard contributione contimue to be of gerat importance. From non-ntandard decay moden we diarcumsed the rexotir decay $\mu^{+}-e^{+} \nu_{0} \nu_{10}$. More and more menni-

to antimuonium conversion) will provide important information on an attractive class of left-right symmetric models.

Acknowledgement. I am grateful to R. L. Burman, V. W. Hughes, K. Jungmann, W. C. Louie, B. E. Matthias, R. N. Mohapatra and D. H. White for valuable conversations. I would aleo like to thank K. Jungmann and G. zu Putliz for a moat enjoyable aympoaium and wonderful hospitality. This work was aupported by the United Statea Depariment of Energy.

References

1. Recent reviews of aspecte of muon decay include R. Engfer, i. K. Walter. Ann. Rev. Nucl. Part. Sci, 36(1986)327; S. P. Rosen: Loa Alamoe National Laboratory preprint LA-UR-584013, invited talk at the Workahop on new directions in neutrino physice at Fermilab, Fermilab, Sept. 14-16, 1988; P. Herczes: In: Pare Decay Symposium, eds. D. Bryman, J. Ng, T. Numao, J. Poutimeou, p. 24. Singapore: World Scientific 1989
2. A. Sirlin: Phys. Rev. D22(1980)970
3. F. Scheck: Leptons, Hadrons and Nuclei. Amaterdam: NorthHolland 1983; K. Mursule, F. Scheck: Nucl. Phys, B55(1985)189
4. P. Langacker, D. London: Phye. Rev. D39(1989)266
5. W. Fetacher, H.-J. Gerber, K. F. Johnaon: Phye. Lett. 173B(1988)102; W. Fetscher, H.J. Gerber, Note on muon decay parametera, In: Review of particle propertien: Phyn. Lell. 239B(1990)VI.11
6. D. Geiregat et a.: Phys. Lott. 247B(1900)131
7. S. R. Mishre et a.: Phyn. Lett. 252B(1990) 170
8. W. Felscher: Phys. Lell. B140(1984)117
9. A. M. Cooper et al: Phys. Lett. 112B(1982)97
10. S. E. Willin, el al.: Phyo. Rev. Letl. 44(1980)522
11. T. Eichten et al:: Phya. Letl. 46B'1973)281; J. Blietschau el a.: Nucl. Phyo. B133(1978)205
12. F. Bergame et al: Phyゅ. Lett, 122B(1983)465
13. D. A. Krakauer et al.: Phya. Lett. 263B(1991)534
14. P. Langecker, D. London: Phys. Rev. D38(1988)907
15. G. Feinberg, S, Weinberg: Phys. Rev. Lell. 6(1961)381
16. E. Derman, D. R. T. Jonuai Phys. Letl. 70B(197i)449: E. Derman: Phya. Lell. 78B(1978)497; E. Derman: Phyo. Rev. D19(1979)317
17. R. N. Mohapatra: In: Eighth Workahop on Grand Unified Theory, Syracuae, ed. K. C. Wali, p. 200. Singapore: Worlid Scientific 1987; D. Chang, W.Y. Keung: Phyo. Rev, l,ett. 42(1988)2583
18. S. Lloyd: In: Proceedinge of the I891 Aapen Winter Conferenter in Elementary Particle Physice (unpublished)
19. P. Langacker, M. Lup: Phys. Rev. D44(1991)817
20. D. H. Wilkineon: Iscopin and Quarks in Nuclear Hetn-I)eray, paper preapnted at the International Conference on Sipin and Isompinin Nuclear Interactions, Tellurlde, Colorado. March II 13, IMA1, '"LLIUMF' preprint TRI-PP-II. 9
21. P. Herczeg, R. N, Mohepatre: Lae Alamua National I, abiniatiory preprim, Det. logl. A brief veraion of this paper is alven in P. Herizeg, IR. N. Mohapatra: Ine Alanum National Laboratury preprint I.A-UN-Ul-30:t8, to appear in the procerdinge of the I'articlen and Plelila ' Ol Conferellice of the AP'S, Vantiouver. Conmela, Aug. In-da, Imel
 II. N. Mohapatra, (i, Senjanovil! I'liya. Ifev. I)z:3(IDR1)Ith

2: I' Herizen, K, N. Moliapatra (unpuhiliahed). Heported in I' Hercizes: In: IIare I)ecay Sympomilin, eile. I). Hryiliant. I. Na.
 $1!1 \times 11$
24. A. Halpriu: Phya. Rev. Let. 48(1982)1313
25. X.-Q. Lu et al.: A Propoal to Search for Neutrino Oecillations rith High Sennitivity in the Appearance Channels $\nu_{\mu} \rightarrow \nu_{0}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, LAMPF Prupoal La-11842-P, Aug. 1990.
28, B. E. Mathias et al.: Phys. Rev. Lett. 68(i991)2716
27. K. Jungmann, W. Bertl et al.: Search for Spontaneous Conversion of Muonium to Antimuonium, PSI Experiment R-89-06.1

This article war proceased uaing Springer-Verlag TEX Z.Physik C macro package 1991
and the AMS fonts, developed by the American Mathematical Society.

LASER DEPOSITION AND LASER MODIFICATION OF HIGH-TEMPERATURE SUPERCONDUCTING THIN FILMS

R. C. Dye, S.R. Foltyn and N. S. Nogar
Chemical and Laser Sciences Division

X. D. Wu and E.J. Peterson R. E. Muenchausen
Exploratory Research and Development Center
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract

ABETRACT Applications of high-temperature superconductors (HTSC) may require epitaxial thin films with $\mathrm{T}_{c} \geq 77 \mathrm{~K}$, and $\mathrm{J}_{c} \geq 10^{6} \mathrm{Acm}{ }^{2}$. In-situ pulsed laser deposition (PLD) is suitable for fabrication of such films. We report parametric studies on the effect of laser and processing parameters on the crystallinity, epitaxy and electrical properties of laser-deposited HTSC thin films.

In addition, several laser-based processes were used to modity the electrical properties (T_{c} and J_{c}) of PLD thin films. A direct-write laser heating ($1.06 \mu \mathrm{~m}$ at $=0.5 \mathrm{~kW} / \mathrm{cm}^{2}$ for $\mathbf{~} 5 \mathrm{~min}$) process 'n an exygen atmosphere at $\quad 590$ Tort was shown to selectively regenerate high- T_{c} material in microscopic domains from films that were partially deoxygenated. In separate work, electrical responses and crystallinity of HTSC films were measured as a function of excimer laser exposure using fluencos in the rang $20-150 \mathrm{~mJ} / \mathrm{cm}^{2}$. The critical current and boundary layer could be modified with a high degree of accuracy.

1. INTRODUCTION

Many microelectronics, microwave and optoelectronics applications of the new metat-oxide based high-temperature superconductors (HTSC) will require epitaxial (high $\mathrm{J}_{\mathbf{c}}$) thin films with transition temperatures, $\mathrm{T}_{\mathrm{c}} \geq 77 \mathrm{~K}$. In-situ pulsed laser dapostion (PLD) offers considerable promise for the fabrication of such films, oven over large areas, In addition to buffer-layer and multilayer coatings (1-5).

Potential device atructures for high-temperature superconducting (HTSC) thin illms include interconnects, oscillaiors, swithes, junctions, SQUIDs, filters and delay lines (6). All applications will require the ceneration (and possible erasure) of superconducting structures in well-defined domaing, preferably under gentle processing conditions. Critical current control may also be
required for some applications. Mild processing conditions with an exceptionally clean interface between the superconducting and nonsuperconducting regions may be necessary to produce high quality HTSC thinfilm devices. Several lithographic and direct-write patterning techniques, including ion-milling, plasma-etching, and wet chemical etching have been reported. These techniques may produce a damaged boundary or layer at the interface between the original high- T_{C} and modified materials that can severely degrade device performance.

We describe in this manuscript major characteristics of the laser deposition process for $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ (YBCO) superconductors, including characteristics of the laser generated plume, and modifications occuring on the target surfaco. In addition, several methods for pattering of HTSC thin films, and for the modification of both T_{c} and J_{C} under relatively mild processing conditions, are described.

2. EXPERIMENTAL

The apparatus developed for PLD of YBCO thin filmsifl consists of a modified six way $6^{\prime \prime}$ dia. stainless steel cross as shown in Figure 1. Load locks are provided for target and substrate introduction to minimize pumping times. The target can bo rotated in conjunction with horizontal rastering of the laser beam while the substrate can be rotated to ensure uniform thickness ($\pm 10 \%$) across the substreie diameter. The exposure (shots/site) was calculated by simply dividing the number of shots by a geometrical factor which is the area ratio of the annular ring of target material exposed divided by the laser beam area. Titt flanges ($\pm 2^{\circ}$) allowed for precise alignment of target and substrate.

Provisions were made to heat the substrate, either indirectly on a Ni block or radiativelyie]. Deposition rates were measured by substituting a Inficon XTC, quartz microbalance (QCM) at the substrate position. Measured thickness values were callbrated by Rutherford backscattering (RBS) measurements. Processing gases were introduced into the deposition chamber using mass flow control to maintain a censtant pressure. The excimer laser used in these experiments (Lambde Physik 203EMG) produced $200 \mathrm{~mJ}, 20$ nsec pulses at 308 nm at ropetition rates typically around 10 Hz .

Additionally, for some of the experiments described here, the plume optical emission was collected and analyzed|9. One of two methods was used, def. anding on whether spatial or spectral resolution was required. In the former case, emission from the plume was passed through a narrow-band ($\sim 2 \mathrm{~nm}$) interference fliter, collected by a compound lens, and focussed onto a gated, intenatied CCD detector. This allowed spatially resolved measurements, with a temporal resolution of $\mathbf{- 2 5}$ nsec. In the latter case, light was collected by a 7.5 cm . diamoter, 500 cm focal length quartz lens, and focussed onto the end of a ($200 \mu \mathrm{~m}$ diameter) multi-mode fiber optic cable (FOC), 10 m in length. The
distal end of the fiber optic cable was coupled to an 0.5 m monochromator equipped the CCD camera for spectrally resolved detection.

For experiments in laser writing, the thin films, after inerma!ly annealing the films in an argon atmosphere at a temperature of $400^{\circ} \mathrm{C}$ for $5-20$ minutes, exhibited etther no superconducting transition, or a transition temperature less than 60 K due to oxygen loss. Selected areas of the depleted film were then regenerated to 90 K by placing the sample in an oxygen chamber and radiating with $1.08 \mu \mathrm{~m}$ light from a $\mathrm{Nd}^{+3} \mathrm{Y}$ YAG laser operating at 80 MHz to produce 3.5 W of output. The beam was focused to approximately $0.5 \mathrm{~mm}^{2}$. Patterns were established by having the sample in a windowed chamber which was mounter on a programmable, X-Y translatienal stage. The rate of travel of the stage was varied in the range near $0.1 \mathrm{mmi} / \mathrm{min}$. The patterna were then characterized by four-point probe and ri-eddy current measuremants, as well as optical and electron spectroscopieo.

The experiments on critical current modification used a simple contact mask design to pattern bridges for J_{c} measurements. The largest of three bridges was $200 \mu \mathrm{~m}$ by 2 mm and the other two bridges were $100 \mu \mathrm{~m}$ by 0.5 mm and 1 mm , respectively. The patterning laser output was homogenized and fucused to a 7 mm by 12 mm spot size to overfill slightly the masked region. During patterning, the laser repetition rate was 10 Hz and an Inert gas flow (Ar or N_{2}) was maintained across the mask to assist in cooling the mack and removing ablated particulates. Twelve 1 mm by 1 mm contact pads were deposited onto the three bridge structures by thermally evaporating silver. A tive minute anneal under O_{2} at $400{ }^{\circ} \mathrm{C}$ improved adhesion and lowered the contact resistance between the silver and the superconductor. The patterned film was wired into a 14 pin IC socket using a low melting indlum solder. All I_{c} measurements were performed at a temperature of boiling liquid N_{2} and zero applied magnetic field, using a $1 \mu \mathrm{~V} / \mathrm{cm}$ criterion.

3. DISCUSSION AND RESULTS

A. Laser Deposition

The pulsed laser deposition technique was pursued as the physical vapor deposition technique of choice due to its unparalleled research and development versatility. The goals for this work were twofold. First, to develop an understanding of the basic physics and chemistry associated with the lasertarget interaction, plume dynamics, and film growth. Second, to develop the technology to produce high-quality HTS (YBa2Cu3O7-8) thin films over larger areas (> 1 sq. in.) which is essential for the development of passive ricrowave devices. This includes correlating the measured deposition rates and angular distributions, and the parametric dependence of film crystallinity and morphology with laser fluence and spatial proflle, repettion rate, wavelengih, target density and microstructure, ambient pressure and substrate temperature|10].

Parametric Studies. Radial variations in film thickness, fit to $\cos ^{n}(\theta)$, and stoichiometry were investigatedi7] as a function of laser fluence, spot size and number of shots (exposure time). Small spot sizes and long exposure times produced broad angular distributions ($n=1.5$), whereas large spot sizes at short exposure times produced highly forward directed angular distributions ($n>8$). Under typical spot size (2 mm) and exposuref7, plumes exhibited a cos3.i(θ) spread and the resulting films showed a Y deficiency for $\theta>20^{\circ}$. These results are consistent with a mechanism combining Knudsen layer formation(111,(12), resulting from collisional processes in the high density material withir a fow microns of the targot surface, followed by unstable adiabatic expansion.

Deposition temperature and oxygen pressure were systematically varied between 600-800 ${ }^{\circ} \mathrm{C}$ and $1-20 \mathrm{~Pa}$ during film growth. A series of 200 nm
$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$ films were grown on (100) $\mathrm{Zr}\left(\mathrm{Y} \mathrm{O}_{2}\right.$ substrates (YSZ) as a function of deposition temperatures between $550-800^{\circ} \mathrm{C}$. Dynamic impedance and XRD analysis showed that the best films could be grown at surface temperatures of $750^{\circ} \mathrm{C}$. A systematic variation in the magnitude and transition width of the dynamic impedance response suggests that the growth of epitaxial films is an activated process with an activation barrier of rcughly 1.5 eV .

The deposition rate was found to decrease exponentially by up to an order of magnitude then level off at a PD product of $54 \mathrm{~Pa}-\mathrm{cm}$, where \mathbf{P} is the static gas pressure and D is the target-substrate distance. A similar response has been observed for N_{2} and O_{2} which suggests that this behavior is not due to reactive scattering, however, Ar and He cause essentially no deposition rate decrease over the same PD range. Plume angular distributions and film stoichiometry were found to be independent of oxygen pressures out to 33 Pa , again consistent with Knudsen layar theory [11],12]. Various post-deposition O_{2} anneal protocols were also attempted. The simplest, an increase in the O_{2} pressure to 27 kPa for a cool down time of 20 min ., was effective to oxygenate the films.

Emission spectra were obtained as a function of pressure from the plume in the spectral region near 600 nm , where both atomic yttrium emission (Y^{*}) and yttrium monoxide emission (YO') could be observed. Figure 2 displays a spectrum obtained at an oxygen pressure of 7×10^{-2} torr. The two starred transitions correspond to Y^{*} while most of the remaining features are due to YO'. The ratio of YO' to Y^{*} emission was found to change dramatically with pressure of the ambient oxygen atmosphere. In general, it was observed that the ratio YO' Y^{\prime} Increased linearly with pressure at low oxygen pressures, and approached a limiting value at pressures ≥ 0.4 torr.

In order to interpret these results, a kinetic model was developed: reaction of Y with O_{2} was assumed to produce all observed YO°, while the ablation process was assumed to produce Y and Y^{\bullet}, and collisions were allowed to convert Y - $\mathbf{Y}^{\text {e }}$, and to quench the varlous excted states. Applying the steady-state approximation to the model results in the expression: $\left[Y O \mathcal{Y} / Y|=\mathrm{A}| \mathrm{O}_{2}\right] /\left(\mathrm{B}+\mathrm{C}\left[\mathrm{O}_{2} \mid\right)\right.$, where the constants A, B, and C are sums of products of the rates and rate constants, and $\left[\mathrm{O}_{2}\right]$ represents the oxygen pressure. This iesult obeys the same limiting forms at the experimental data.

These reaults indigate that collisions play a major role in the laser deposition process. This includes both intra-plume collisions, and plume-gas interactions, which will effect deposition rate and nomogenelity. The latter can be seen by simple consideration of gas-kinetic affects. Under typical deposition conditions, the target-subatrate distance will be several centimeters, and the pressure of processing gas will be a fraction of a Torr. Gas kinetic theory predicts that this will lead to $1-10$ colisions for laser-ablated specles between evolution form the target surface and deposition on the substrate. Since -10 collisions is typically sufficient to relax translationally
excited atoms and small molecules, this means that at the upper end of the range for pressure-distance products that the deposition plume will be diffusing toward the substrate rather than being "sprayed" on as part of a well-directed plume. This places an upper limit on the pressure that can be used for efficient deposition. On the other hand, numerous measurements of chemical speciation in the plume, as well as our recent measurement of chemical reactivity with the processing gas, mandate that a reactive source of oxygen be present in the deposition atmosphere. This, in turn, places a lower limit on the oxygen pressure that can be used for the production of in-situ HTSC films.

Figure 2. Emission spectrum from ablation of solid $\mathrm{Y}_{2} \mathrm{O}_{3}$
In separate experiments, the quality of superconducting thin films (200 nm thick) of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$ on (100) SrTiO_{3} were monitored as a function of deposition rate from 1 to $14.5 \mathrm{~nm} / \mathrm{s}$. The latter exceeded any previously reported deposifion rates for epitaxially grown, laser deposited films [13]. Crystallinity of the films was examined by Rutherford backscattering in the channeling mode. The backscattering minimum yieid ($x_{\text {min }}$) was seen to increase monotonically with the deposition (laser repettion) rate. A $x_{\text {min }}$ of 3\% was observed in the films deposited at the lowest dedosition rate. Even at a deposition rate of $14.5 \mathrm{~nm} / \mathrm{s}$, the films show good crystallinity with $x_{\text {min }}$ of 15%, indicating epitaxial growth. Critical current densities $\mathrm{J}_{C}(\mathrm{~B}=0)$ greater than $10^{6} \mathrm{Acm}{ }^{2}$ at 75 K have been measuredibj for films grown on (100) SrTiO_{3} at deposition rates up to $14.5 \mathrm{n} \cdot \mathrm{m} / \mathrm{sec}$.

Target modification effects. The deposition rate was always observed to decrease exponentially (by factor 2-10) as a function of laser exposure[14]; when this response is factored out the deposition rate is seen to increase linearly with laser fluence above an evaporation threshold at $0.1-0.5 \mathrm{~J} / \mathrm{cm}^{2}$ out to the highest fluence which we could obtain ($30 \mathrm{~J} / \mathrm{cm}^{2}$). As expected, the
deposition rate was found to increase linearly with laser irradiated area for a constant fluence and exposure.

The exposure dependent deposition rate decrease was usually accompanied by the gradual loss of proper stoichiometry (Cu/Y ratio increase) in the deposited films. Electron microprobe analysis of the resulting adation track (no scanning) un the target showed significant Y enrichment with respect to Ba and $\mathrm{Cu}[15]$, as shown in Figure 3.

Figure 3. Electron microprobe measurements on exposed(right) and unexposed(left) regions of a YBCO target.

SEM showed adifference in target surface morphclogy for the laser irradiated (nielted) region that in many cases exhibits a columnar regrowth structure. These results suggest that during the ablation process, the incongruently metted zone is larger than the congruently evaporated layer (etch depth). Additionally, incroprobe analysls of the target surface unexposed by the laser also showed a relathe Y deficiency. This is due to redeposition of Cu and Ba rich particulates from the ablation plume.

B. Laser Writing

We have demonstrated[10] a process for modification of a film's superconducting properties consisting of: 1) deposition of a high-quality HTSC thin film; 2) annealing the film in an Ar-atmosphere which lowers of eliminates T_{c}; and 3) local re-oxygenation by laser direct-write heating in an O_{2} atmosphere. It is important to emphasize ihat this is a relatively gentle process; the laser heating is used to enhance oxygen diffusion and uptake in the material. The heating is substantially below ievels it at resuth in meiting or other
structural changes in the $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ crystal structurel17). There is no exposure of the HTSC to potential contaminates as is inherent in conventional lithographic and etching fabrication technologies.

The rf-eddy current response iur an as-grown $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7 \text {-d }}$ sample on LaAlO_{3} showed an onset of the supercurrents in the sample at 92 K . The same type of onset was observed at 58 K after the thermal annealing. Four-point probe measurements confirmed these transitions. Because the annealing procedure was pertormed under such mild conditions ($400^{\circ} \mathrm{C}$) the drop in the transition temperature is due to the loss of oxygen in the lattice, rather than alteration of the crystal structure of the material. This allows for relatively easy migration of the oxygen back into the film. Similar responses were observed for the film deposited on SrTiO_{3}.

The ri-eddy current response of the film after the patterning clearly showed two different transitions. A large transition at 58 K was due to the response of the unpatterned material. Because the patterned lines are on the order of 0.4 X $3.0 \mathrm{~mm}^{2}$, while the total detectable area is approximately $14 \mathrm{~mm}^{2}$ the percentage of overall material converted to the higher transition temperature was less than 10\%. This is consistent with the relatively small transition observed at 92 K . Furthermore, a 4-point measurement of the resistance, which measures only the first percolating pathway and not the amount of superconducting material, clearly showed a resistive transition at 92 K when the probes were on the patterned lines.

C. Laser Modification of Critical Current

In order to produce even simple devices from HTSC films, it may be necessary to control either the transition ternperature or critical current with a high degree of precision. In few instances has reproducible modification of film transport properties been demonstrated. It is well established that changing the oxygen content of $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-5}$ can affect the J_{c} [Singh, 1990 \#24]. However, a change in the oxygen stoichiometry also changes T_{c} of the material[Gupta, 1990 "13).

Previous work involving laser processing of HTSC thin films has concentrated on laser etching (Inam, 1987 "26), patiorning [Zheng, 1989 "17], or annealing [Otaubo, 1989 "18]. Recent work by Helvajian has suggested that atom and ion emission can be observed at fluences as low as $50 \mathrm{~mJ} / \mathrm{cm}^{2}$ at 308 nm (Wiedeman, 1990 "14).(Wiedeman, 1991 \#15). The pronounced wavelength dependence of the threshold implies that the mechanism may include a photophysical component. We have examined the electrical and structural behavior of YBCO thin films as a function of 308 nm excimer laser exposure, at fluences below the ablation threshold. This meihod can lower the J_{c} of the film with a high degree of accuracy and reliability without significantly lowering T_{c}.

The superconducting properties of the irradiated films were monitored indictively by dynamic impedance (DI) to determine the effect exposure has on Tc. The dynamic impedance technique uses a single sense/drive coil 6 mm in diameter and placed 0.05 mm above the HTSC sample, and measures the out-of-phase (reactive) component at a set drive frequency. One obtains a direct measure of the impedance change in the coil caused by the coupling between the coil and the eddy-currents induced in the film[Libby, 1971 \#23]. Using this monitor, the unirradiated film produced a sharp transition at 91 K with a width of only 1 degree. The inductive transition develops a tail in the curve after laser exposure; however, the onset transition temperature stays at 91 K past 2400 shots. Even after 6000 shots the onset T_{c} is only reduced by $\sim 4^{\circ} \mathrm{C}$. The inductive transition rapidly deteriorates beyond 6000 shots to 7200 shots; by 7000 shots the film does not show an induction transition.

To further investigate the electrical properties of the laser-irradiated film, I_{c} measurements were made. The critical current measurements as a function of laser shots and laser fluence are shown in Fig. 4. These measurements indicate that the critical current is a sensitive function of film exposure. At a laser fluence of $20 \mathrm{~mW} / \mathrm{cm}^{2}$ the film did not indicate any degradation of I_{c}, while a shot dependent trend does begin at a fluence of $30 \mathrm{~mJ} / \mathrm{cm}^{2}$. This suggests that the modification process has a threshold of $25 \pm 5 \mathrm{~mJ} / \mathrm{cm}^{2}$. This modification rate grows rapidly when the fluence is increased to $100 \mathrm{mj} / \mathrm{cm}^{2}$. At a constant J_{c}, l_{c} is proportional to the thickness of the remaining undamaged layer. The monotonic decrease in Ic can be explained by assuming that the measured critical current is proportional to the thickness of the unmodified layer.

Figure 4. Normalized critical current measurements for laser (308 nm) Irradiated films.

Rutherford backscattering (RBS) channeling data also taken on a film exposed to a laser fluence of $70 \mathrm{~mJ} / \mathrm{cm}^{2}$ further indicated that a disordered layer was being formed as a result of laser irradiation. Qualitatively, an increased channeling yield correlates with greater disorder in the film. Furthermore, the shape of the peaks indicated greater disorder at the surface: the surface. Within the error of the RBS measurement no material from the film is being removed, i.e., the film thickness ($\mathbf{\pm 1 0 \%}$) and stoichiometry ($\pm 3 \%$) remain constant with this laser fluence. At a fluence of $70 \mathrm{~mJ} / \mathrm{cm}^{2}$, SEM showed no visible change in film morphology from that of the unexposed sample. Melting of the film was clearly observed when the fluence is increased to $150 \mathrm{~mJ} / \mathrm{cm}^{2}$. Optical micrographs revealed a slight color change in the film beginning at a fluence of $100 \mathrm{~mJ} / \mathrm{cm}^{2}$.

By adjusting the laser fluence and the number of laser shots the effective J_{c} in a thin film could thus be controlled to within $255 \mathbf{N c m}^{2}$. The laser damage begins at a fluence of $25 \pm 5 \mathrm{~mJ} / \mathrm{cm}^{2}$. Optical changes are observed at a fluence of $100 \mathrm{~mJ} / \mathrm{cm}^{2}$ and meling occurs at $150 \mathrm{~mJ} / \mathrm{cm}^{2}$.

ACKNOWLEDGEMENTS

This work was partially supported by the Superconductivity Pilot Center.

REFERENCES

[1] J. T. Cheung and H. Sankur. Crit. Rev. Solid State Mater. Sci., 15, 63109 (1988).
[2] M. Leskela, J. K. Truman, C. H. Mueller and P. H. Holloway. :ac. Soc. A7, 3147-3171 (1989).
[3] J. Geerk, G. Linker and O. Meyer. Mat. Sci. Reps., 4, 193-260 (1989).
[4] T. Venkatesan, X.D. Wu, A. Inam, C. C. Chang, M. S. Hegde and B. Dutta. IEEE J. Quantum Electron, 25, 2388-93 (1989).
[5] X. D. Wu, R. E. Muenchausen, S. Folkyn, R. C. Estler, R. C. Dye, C. Flarmme, N. S. Nogar, A. R. Garcia, J. Martin and J. Tesmer. Appl. Phys. Lett., 58, 1481-3 (1990).
[6] T. VanDuzer. IEEE Jour. of Quant. Electron., 25, 2365 (1989).
$[7] \quad$ R. E. Muenchausen, K. M. Hubbard, S. Foltyn, R. C. Estler, N. S. Nogar and C. Jenkins. Appl. Phys. Lett., 56, 578-80 (1990).
[8] R. C. Estler, N. S. Nogar, R. E. Muenshausen, X. D. Wu, S. Foltyn and A. R. Garcia. Rev. Sci. inst., 62, 437 (1991).
[9] R. C. Dye, N. S. Nogar and R. E. Muenchausen. Chem. Phys. Lett., 181, 531 (1991).
[10] F. Heidelbach, R. E. Muenchausen, S. R. Foltyn, N. S. Nogar and A .D. Rollett., J. Mater. Res. submitted (1991).
[11] P W. Kelly and R.W. Dreyfus. Nucl. Instr. and Meth., B32, 321-348 . 388).
[12] Roger Kelly. J. Chem. Phys., 92, 5047-56 (1990).
[13] X. D. Wu, R. E. Muenchausen, S. Foltyn, R. C. Estler, R. C. Dye, A. R. Garcia, N. S. Nogar, P. England, R. Ramesh and a. I. et. Appl. Phys. Lett., 57, 523-5 (1990).
$[14]$ R. E. Muenchausen, S. R. Foltyn, N. S. Nogar, R. C. Estler, E. J. Peterson and X. D. Wu. Nucl. Instrum. Methods Phys. Res., Sect. A, A303, (1991).
[15] S. R. Foltyn, R. C. Dye, K. C. Ot, E. Peterson, K. M. Hubbard, W. Hutchinson, R. E. Muenchausen, R. C. Estler and X. D. Wu. Appl. Phys. Lett., 59, 594-6 (1991).
$[16]$ R. C. Dye, R. E. Muenchausen, N. S. Nogar, A. Mukherjee and S. A. J. Brueck. Appl. Phys. Lett., 57, 1149-51 (1990).
$[17]$ R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg. M. Marezio, K. M. Rabe, J. J. Krajewski, Jr , W. F. Peck and L. W. Rupp. Physica C, 165, 419-433 (1990).
title A NEW, LOW-PROFILE NEUTRON DETECTOR JUNCTION BOX

AUTHOR(S) B. G. Strait, H. R. Dye, and K. E. Kroncke

| SUBmitted to | 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference
 Santa Fe, New Mexico
 November 2-9, 1991
 (Full Paper) |
| :---: | :---: |

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United Stalas Government Neither the United States Covernment nor any agency thereof, nor any of their employees. maken any warranty, expreas or impired, or asumen any legal liability or reaponsibility for the acrufacy. completeness. or usefulness of any information. apparatus, product, or process disclosed. or represents that is use would not infringe privately owned rights Refer. ence herein to any specific commercial product. process, or service by trade name. Irademart. manufacturet, or otherwise doen not necesmarily constitute or imply its endorsement, recommendation, of favoring by the United States Government of any agency therenf The views and iprinms of authors expreaned herein do not necesarily wate or reflect thowe of the United Siaten (jovernment or any agency thereof

A NEW, LOW-PROFILE NEUTRON DETECTOR JUNCTION BOX*

B. G. Strait, H. R. Dye, and K. E. Kroncke
Safeguards Assay Group, N-1
Los Alamos National Laboratory
Los Alamos, New Mexico

Abstract

We have designed a new junction box for nondesurucuive assay instruments that is eassier to build, maintain, and repair. Morthig-voluge componens are seated from the aumosphere using pooing material, therefore eliminating the maintenance requirement of replacing desiccators. The mechanical design cuts the coast of machining and makes it easy to remove and replace the ${ }^{3} \mathrm{He}$ whes.

Neution detectors in nondestructive assay instruments use junction boxes to disuribuse the high votuge to the ${ }^{3} \mathrm{He}$ tubes, to bouse the amplifier circuils, and to hold the ${ }^{3} \mathrm{He}$ tubes mechanically. The current design of a junction box is shown in Fig. 1. Operntionally, this design has proven satisfaciory althurgh it does have several deficiencies, principelly that it requires maintenance of desiccators to remove moisture from the high-voltage cavity of the junction box. As the desiccators become salurated with moisture, they must be replaced. Moistare in the high-voluge cavity causes high-voluge leak. age or breakdown, which generites counts that are not related to neutrons. The new junction box design uses a polling maerial to seal out moisture from the high-volage cavity and thus eliminaten the maintenence problem of changing desicestors.

The current junction box design is 3 -in. all and 4 -in. deep. The new design has a profile of only 1.5 in . and is 3.125 in . deep allowing 0.875 in . of polyechylene to be placed between the junction box and the insprument cavity if needed.

High-voluge disaribution to the ${ }^{3} \mathrm{He}$ tubes in the convenLional junction box is made by plugging a small-pin connector into the connector for the whe high-voluge interface for the ${ }^{3} \mathrm{He}$ ubes and soldering a bus wire berween the tubes to this smal-pin connector. This wiring procedure requires the tubes to be screwed in place in the junction box during the fabrication and remain in place during the junction box assembly. The probtem with this design is that if the ${ }^{3} \mathrm{H}$ c tubes need to be removed for replacement or removed because of detecior spece constraints during installation, the smal - pin connectors

[^14]must be removed from each wbe and replaced during the reassembly. The high-voluage cavily of the conventional junccion box is locased below the amplifier cavity. To disassemble the high-voluge circuits, as just described, one must also disassemble the amplifier circuits to otcain access to the highvoluage cavity. Significant disassembly and rewiring are necessary to remove wios from the conventional junction box. Simple removal and replecement of ${ }^{3} \mathrm{He}$ tubes was a design goal for the new junction box, as discussed laver.

Manufacuring cost is a ways a concern in producing detecLers. The new junction box design simplifies the mechanical fabrication of the junction box and reduces the wiring cost The new junction box is less coaly io build. It is machined from suandard 1.5 in . by 1.5 in . aluminum slock with orily simple drilling and milling. The adjacent junction boxes and the inpit connectors to the firse amplifier card are connected with tax cables on which the conneciors are easily insulled

Figure 2 is a drawing of the new low-profile junction box. Parts (A and C) of the drawing show the four cavities then the tubes screw into and the two cavities that contain the inpul/output prinied circuit cards. The cross-sectional view of part (D) shows the insert for the interface with the ${ }^{3} \mathrm{He}$-lube connector. It is machined out of KEL.F material, which provides high-voltage insulation between the high valuge on the pin and the junction box case. Bias voluge, usually about 1680 Vdc , is distributed to the four ubes using a bus wire soldered to the cop of the four pins. A stor is machined in the ends of the jins to eccommodate the bus wire. The KEL-F insert is press filted nto the cavity screw threads and epoxied to the junction box case ax the top interface of the insert. The pin is also epoxied intu the hole of se insert. The KEL.F inser and pin arrangement provides an interface that allows easy insertion and removal of the ${ }^{3} \mathrm{He}$ tube unto and out of the junction box withoul having to rewive the junction box.

The ${ }^{3} \mathrm{He}$ tube ourpur signal is a small current pulse produced x a result of neutrons interacting witt. the ${ }^{3} \mathrm{He}$ gas. The signal is coupled to m Amptek amplifier (see below for descripion) through a coupting ci pacior. The coupling r apecitor and a blewel resistor are mounced on a amal-prined-circuit card and pleced in the oulpus caviry with in electices connection to the bus wire. The oupput signal is unamitted to the Amplek amplifier by a small coax cable, RGI74. Figure 3 , per (B), is in schematic diagram of the oucpu: circuil. The

Fig. 1. Pase.through shupler juaction bax, corventional design.

Fig. 2. New low.profule junction bax.

Fig. 3. Low-profile junction bax circuis boards.
coupling capacitor is a ceramic disk made by TDK Corporation of America and was selected to withstend the high voluage and have a low-corona discharge, which can elicit superfluous counts from the detector.

After soldering the bus wire on the pins and installing the inpulfoutput printed-circuit cards, we filled the six cavities of the junction box with a poting material to seal moisture from the high-voluge components. An epoxy rean. STYCAST 2651 made hy Emerson and Cuming, Inc., is used for the porting material. It was selected because it could be poured at room temperature and it had good high-voluge charactenstics such as a dielectric surength of $450 \mathrm{~V} / 0.001 \mathrm{in}$. and volume resistivity of $5 \times 10^{16} \Omega-\mathrm{cm}$. O-rings are used at the base of the ${ }^{3} \mathrm{He}$ tubes and the junction box to keep moisture from getuing inis the ares where the tubes interface with the juncuon box.

Figure 2, pert (B), shows a cross section from the end view of the junction box. This view shows the porled cavity cover and the dust cover of the junctuon box. 'The dust cover is a one-piece, right-angle cover, which fastens to the main junction box body with rwo screws on the top for eary removal of the cover. A seperate cavity cover is used to contain the mag. netic field in the area of the high.voluge components while adjusuments are made on the amplifier card. This view also
shows the connector interface panel; there is one for cach bank of three junction boxes. Three cables are connected to each bank: the high-voltage cable, the +5 V power cable, and the output signal cable. Within the junction boxes, the high voltage is distributed to each junction box input cavity with coax cables and T-connectors. The +5 V and the detector oulpst signals are distribuled beiween amplifier cards using a sevenconnector flat cable. A circuit diagram of the connector printed-circuit card is shown in Fig. 3. part (C).

The drawing in Fig. 4 illustrates a typical detector bank consisting of three modules, each with four ${ }^{3} \mathrm{He}$ ubes and one amplifier board. This figure also shows how the amplifiers in the three modules are connected by flat cables. The amplifier for the conventional junction box was repacknged to provide a more narruw printed-circuit card that better fits the new juncuon box layout. A schematic of the amplifier is shown in Fig. 5. The analog amplifier circuit and digital circuit are identical to the conventional junction box amplifier. The ana\log amplifier is a hybrid, charge-sensitive preamplifier discriminator made by Amptek, Inc. that has proven very reliable and is well suited for this application. Digital processing includes a single-shor that produces a 50 -ns output pulse for cach neutron event, a line driver, and a circuit 10 OR the signals from other amplifier cards. Light emituing diodes (LEDs) are used with the detectors to indicate visually when neutron events are being processed and are used during adjusument of the amplifier input threshold. In order to view the light from the LEDs after the detector module is assembled, a plasic fiber-optic cable conducts the LED light to a display panel at the electronics rack. The fiber optic interface to the LED uses a housir.g and liber conneciors made by AMP.

The new junction boi was extensively tested to verify its pcrformarice and to determine if the potting material is successful in prohibiting moisture from enterin; the high-voltage aren of the junction box. For comperison, identical tests were performed side-by-side with the conventional junction box because its performance is well established. Therefore, cest dave are presented for boh junction boxes. Figure 6 shows the high-volage-profile colibration piots for the junction boxes. The profile was aken using an AmLi source, the ${ }^{3} \mathrm{He}$ tubes were inserted in polyethylene, and the caca were taken with a JSR- 11 coincidence counter. As the plots indicate, the highvolage profiles are alioost identical.

Results of humidity tests on the new junction box before the polling material was added are shown in Fig. 7. The effects of humidity began 10 show at about 40% relative humidity. Above that amount, the counts of the unpotled new junction box increased considerably as shuwn in the graph. Increased humidity did not effect the counts for these testa on the rionventional junction box because the desiccatore were still effective in removing the emall amount of moisture entering the junction box. The humidity tests were performed using an environmentul chamber tha can control both temperature and relative humidity. The tempenture was set to 80' F for the unpolted humidity texte.

The moisture resisunce of the poring material was lested by placing the polted junction box in the environmental

Fig. 4. Neurron delector benk.
chamber with high humidity at several different temperatures for a long time and measuring the background cnunt rate. Tests were perfonned on the conventional junction box at the same time for comparison. Backpround tests were done with the ${ }^{3} \mathrm{He}$ ubes covered with sheets of cadmium but without usirg polyethylene. JSR- 11 coincidence counters were used to collect the data and the results are shown in Fig. 8. The count rate shown is the counter's total counts accumulated over 1000 seconds and averaged over many hours, that is, 24 hours in many of the tests. The standard deviation of the count rates for the tests. which contained up ω one hundred 1000 -second runs ranged from 0.001 to 0.006 counts/s. The high voluge was set a 1680 V and the gare length of the JSR- 11 was set to $128 \mu \mathrm{~s}$. The background count rate for the new low-profile junction box shows a slight increase over the 40 days of lesting. The same upward trend was also present in the conven-
tional junction box. After about 30 days of continued cxposure to the 90% relative humidity and the temperature of from $90^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$, the conventional junction bnx experienced some high-count rates for a couple of days, but then the count rates retumed to normal. The desiccators had umed slighly pink by this time, indicaling they were becoming saturated with moisture. Time did net permit testing beyond the 40 days. We believe that this was sufficient time at elevated humidity and temperatures to demonstrate the moisture resiscance capability of the pouing material.

In conclusion, we designed and lested a simple junction box that provides counting performance equal to that of the proven junction box design and has several significant improvements. This new junction box is cheaper to make, its design allows easy removil and replacement of ${ }^{3} \mathrm{He}$ wbes, and it is expected to require leas mintenance.

Fig. S. Neulron detcrior amplifier schemaic.

Fig. 6. High-voltage-profile calihration.

Fig. 7. Humidity test results on unpolted junction box.

Fig. 8. Long.term humidity lest results.

tithe Warhead Counting Using Neutron Scintillators: Detector Development, Testing and Demonstration

authoris! R.C. Byrd, G.F. Auchampaugh, C.E. Moss, W.C. Feldman

Submitted to Conference Record and Proceedings 1991 IEEE Nuclear Science
Symposium, 2-9 November 1991, Santa Fe, NM

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United Sitates Government. Neither the United States (iovernment nor any akency thereof, nor any of their employecs, maker any warranty. express or implied, or assumes any legal hability of responsihility for the accuracy, completeness, or uvefulness of any information, appuratus, product, or process disclosed, of represents that its use would not infringe privalely uwned rights. Keference herein to any specific commercial priduct, priness, ar service by trade name. Irademark, manufabluret, of oherwise dies not necessarily constitute or imply its endorsement, recommendation, of favoriong hy the United Slaten Government on any agency thereof the views and opmions of authors expressed herein do not necessarily state or reflect those of the United Sitaten fioveinment or any agency thereof

[^15]

Warhead Counting Using Neutron Scintillators: Detector Development, Testing, and Demonstration*

R. C. Byrd, G. F. Auchampaugh, C. E. Moss, and W. C. Feldman
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Although the number of warheads on a missile can be determined relatively simply by a acan of the emitted gamma radiation, this approach may be considered too intrusive because of the possibility of revealing high-resolution energy or position information. Neutron spectra are nearly featureless, and obtaining the position resolution needed to reveal warhead details would be very difficult. We describe the development of a fast-neutron detector based on a boron-loaded plastic scintillator used previously for space applications. The detector rejects gammas and scattered low-energy neutrons, and its segmentation allows narrow fan-shaped collimation within $\pm 20^{\circ}$ horizontally and $\pm 50^{\circ}$ vertically. Testing includes distinguishing between mockups with either two or three warhead and locating the ten warheads on a silo-based Peacekeeper missile.

I. INTRODUCTION

As a possible application of radiation-detection technology to treaty verification, we have developed a fast-neutron detector capable of resolving individual warheads on a missile deployed inside an underground silo. The system uses BC454 boron-loaded plastic acintillator, which was originally developed for spurc-based neutron detectors.[1] The present application takes advantage of the detector's ability to antomatically correct for backgrounds from gammas and alow neutrons, and it introduces a similar technique that restricts the response to fast nemtrons within a narrow forward-pointing collimato, opening. 'Thin paper (1) explains the operating principles. (2) discusser the inmprovements in directionality, and (3) describen teste on missile mockupe nad " silo bused mismile ne F. Li. Wareen AFB. We conclude that the detector's neutron eflleciolly, background rejertion, and directionality may be useful in treaty verili ation and other applications.

[^16]

Figure 1: Cutaway View of the Neutron Detector

II. DETECTOR

The use of boron-loaded scintillators as fast-neutron detectors and their adaptation for space-based measurements have been describea previously.[1] Figure 1 showa a cutaway view of the space instrument (the Army Background Experiment, or ABE); an identical unit was used for the current project. Four tightly-packed acintillator rods (7.6 cm in diameter and 20 cm in length) with phototubes at each end are enclosed in a light-tight housing that also contains the IIV supplies and signal preamplifiers; a second package contains a CPU with a microprocessor and one inegabyte of "torage. Figure 2 shows the unit as deployed for warhead counting. The detector is completely surrounded by a $1-\mathrm{cm}$ lead shield to reduce the gamma flux. A polyethylene neutron shied ($65 \times 42 \times 33 \mathrm{~cm}^{3}$) hange from the nilo wall und includen a narrow $5-\mathrm{cm} \times 20-\mathrm{cm}$ nperture that fares inward toward the miseile. By mountang the rod $n x e n$ vertically nad rotating the houning by 450, the front rod (Rod 1) is whimded by the three rmin

 13 kg for ther lend, nad 96 kg tior the (' H_{2}.

The basic detertor principhe is illuatrated arhematically
 of enenterisage from, thr II, $(:$, und II in the boron-londed organir acimillators. Most of the incidont anergy in trman-

Figure 2: Detector and Shielding as Deployed in a Silo

Figure 3: Schematic Operation of a Borated-Plastic Neti(ron Scintillation Defecter
fercal to recoil protons, which produce a detectable first light pulse for energy depositions above nbout 0.5 MeV . Neutrons that lose most of hewir emergy are likely to be captured by the ${ }^{10} \mathrm{~B}(n, \alpha)^{7} \mathrm{li} \boldsymbol{P}^{\text {a }}$ raction, which provides a .nerond pulse. For the menadard boron density (5% by weight) of the B(45 d semtillator, the capture time con4tan is $2: 2.5$ /as, depending on surrominding materials. Aler a 350 ns delay to exchude photolube after-pulsing, is combidence kate opens to acrept areond pulsere oceuring whhin 2fot: pas. These "verits are hored to memory for "ff line mialysis.

 randont combidencers (late window) or true sathe: ath

Figure 4: Time-Difference Spectrum with Windows for Neutron Capture and Random Coincidences

Figure 5: Light-Output Spectra for the Capture Pulse
surement of the incident fast-neutron llua. Alternatively, subtracting the corstant raudom level from the raw data gives a spectrum: ("subtd data") that is corrected for ranic.n coincidences. The agreement between this subtracted npectrum and the 2.5 - $/ \mathrm{s}$ decay curve shows this interpretation es validity for events in either of the two time windows. The intermediate times are contmmated by mentron rescattering and are excluded from further amalysis.

Another reguirement for the identification of capture mente is shown in fig. 5, which giver the light-sutput nperetra for events with second (S2) pulsen oesurring in the rarly and late wimdows. Ther units of krVer, or "krV Mertron "gumatem" normalize the lisht outpent in termes of
 ration lior the highly wizing recoll ione (I) 'Itre sharp perak
 des. will complete encaper of the läk knV kamme from

confirms the detector's selectivity for fast-neutron capture events. The locations of the peak and the Compton edge (at 93 and $404 \mathrm{ke} \mathrm{V}_{e e}$) also provide the absolute calibration of the detector's light-output scale. Obtaining the spectrum in the lower panel therefore ensures that the detector is operating properly, that is, it is accepting only captıred fast neutrous, correcting for accidental coincidences, and maintaining its absolute calibration.

A feature which is important in some applications[2] is the measurement of the energy of individual neutrons. Because the capture coincidence is obtained only for fast neutrons that scatter and moderate to essentially zero energy, the amplituce of the $S 1$ pulse is directly related to the incident neutron energy. Correcting for nonlinearities in detection efficiency and energy conversion[1] gives a normalized spectrum of incident neutron energies, as shown in Fig. 6 for $3.2-\mathrm{MeV}$ Am-B isotopic neutron source. This spectrum is not obtained by unfolding a proton-recoil distribution, as for standard organic scintillators, but by simply histogramming the individual energy depositions.

Firure 6: Am-1) Finergy Spectrum from the First Pulse

The subtraction of events in the two time windows also provides a differemt nppronch to gamma rejection. Because a single gamma cannot produce two pulses separated by the minimum time difference of 350 us, all recorded gammas are random coincidences, as shown by the nearly flat time-difference spertrum in Fig, 7 . The very alight falloft in rate is a dead-time alfect; the line shows the calculated correction. Subtracting the corrected St2 spectra for the early and late windows gives abmost perfect concellation;
 aron barkgromid gemerated by cosmac ray matractions.

III. DIRL: "TlONALITY

The sedter abil raplure repuirement ensures that the

Figure 7: Time-Difference Spectrum for a Gamma Source
efficiency must be much higher for on-axis sources than for ones at the sides and rear. 'The use of a proton-recoil scintillator, which can reject neutr uns that have scattered to energies below 0.5 MeV , increases the effectiveness of the CH_{2} collimation (see Fig. 2), but much greater shielding would be needed to eliminate the count rate for off-axis fast neutrons from all directions. We have therefore devised a method to measure and then correct for the leakage of fast neutrons through the detector shielding.

Figure 8 illustrates the developinent of the technique. A ${ }^{252} \mathrm{Cr}$ fission source was moved around the detector in a horizontal plane. The curves show the measured count rates for the individual rods, normalized to the flux incideit on a single rod to give a detection efficiency. Although the curve for the forward rod (Rod I) peaks strongly at the collimator opening, it also has a $10-20 \%$ response to off-axis sources, especially at the thinner shielding on the enclosure's sides ($\pm 90^{\circ}$) and rear (180°). The other three rods-especially the rear ltod 4-further emphasize this transparency. For sources near the collimator opening, the three rarar rods also show the effect of viewing the neutron source through slightly rifferent apertures. Juat in mevnurements made with the collimator open and closed could be subtracted, the count rates from difictrat rods can be combined to cancel out the response to olf-axis sources. The lower part of Fig. 8 shows the result of subtracting an empirical background given by $N_{b}=0.4\left(N_{2}+N_{3}\right)-0.125 N_{4}$. The nubtracted ellicielley for ulf-axis souries beyond $\pm 20^{\circ}$ is reduced drastically, and the subtraction of the olfart contributions from the two side rods also alightly improver the detedor's position resolo tions. Therentecese of the woightiong fintition may not be
 that llor smbe finiction also works for a vertical scall. This ligure also whews the downeard directed meceptaner of the colhmator, which wis designed to look down on the war liemde frome above. Not shown here are ther coergy apere. era fier the calculated batkpromads, which have reasomaile shapere at all romporis.

Figure 8: Development of Background Correction Using a Horizontal Angular Scan for a ${ }^{252} \mathrm{Cf}$ Fission Source

This discussion has not emphasized the significance of the "One-Rod" events in Figs. 8-9. Neutrons that pass through the shielding from the sides or rear are likely to lire a shuelding rod before reaching the forward rod. Selecting only one-rod events improves the off-axis background rejection, but it reduces the on-axis efficiency because neutrons cam scatter from Rod 1 into a rear rod. After applying the barkground corrections above, however, the added complexity of this anti-coincidence techaique piovides only a slight improvement in directionality.

IV. MOCKUP AND MISSILE TESTS

The dentertor listing relies on two setes of andarurments, one ofl missile mockups and the other on a silo-bused Prabekerper missile. Figure 10 shows the layout for the morkifp tiste The detector was lorated mext to a large larmathe that carrod mockups made from cither two or Harer dist ributed fission sourcers aurromaded with simmlated
 and beloud (5.1 com) the detector 1. represent scattering from the mdditional milo muteriala dencribed bedow. By ro
 a finnetion ef sumere angle. Figure II compares the two and lheer sumere contigurations and alowe that the nigun-

Figure 9: Background Correction for a Vertical Scan
ture of the third source is the filled-in valley between the other two.

Figure 12 shows a standard warhead arrangement for a Peacekeeper missile, with nine positions evenly spacing around the perimeter and a tenth located on a inner ring at the gap between positions 1 and 2. The figure also shows some important silo features. The outermost cylinder is the steel launch tube from the converted Minuteman silo; the next inner cylinder is the steel canister that contains the Peacekeeper missile. The detector is designed to fit in the $70-\mathrm{cm}$ gap between the canister and launch tube and roll along the launch tube's upper rim es shown in Fig. 2. The large amount of scattering from the steel canister and launch tube explains the steel plates included in the mockup measurements.

The two- and three-source mockup scans can be used to predict the intensity pattern expected in the missile test. The three-source mockup represents the arrangement at the gap for the tenth warhead, and the two-source acan corresponds to the warheads at the emply gaps. To produce the nine-fold symmetry of the outer ring, the angle scale is simply compressed by factor of three and then repeated over 360 degrees. Based on this analogy, we would expect all ten Peacekeeper wneheads to be readily identifiable, 'lo illustrate, in Fig. 13 the two sets of mockup measurements are replaced by apline fits and shown as mooth curves. The angles for the menamements were selected to emphasize the differmees between the peaks and valleys at the warhends and gaps. The is overlaid data points are the results of the silo measurements, with a slight acale adjust ment that matches the (wo normatizations. The data generally finvor the two-smerer pattern at all nagles ererpt at the gat bertweell warhemele 1 and 2 , where the inner temb warhered is locmed. Hecmase of the large ntatistical "rrors, it is impossible to gunrmitere that firther medmorementes would previde the mambiguous pattern predicted by the mochup text.

Fillally we retura to the mesertion that nentron minamare

Figure 10: Layout foi Mockup Scans

Figure 11: Mockup Scens for One or Two Sources
tween the measured energy spectrum for a warhead viewed through a missile canister and that for a warhead mockup viewed through a steel plate is a small increase in the number of low-eneigy scattered neutrons inside the closed silo. Furthermore, removing the steel plate in the mockup measurement provides an energy spectrum that is almost indistinguishable from a ${ }^{252} \mathrm{Cf}$ fission distribution. Thus, even spectral measurements reveal nothing more than the fact that a distributed fission source is being observed through a thick steel canister.

V. CONCLUSIONS

The boron toaded scintillators ased for thege testa provide same advantages over the liguid scintillators and puise-shape diserimination typically used in fast-neutron medsurements. The ruggediress and eane of calibration that led to the detector's use in spbere instruments also supports ite use for tield operatious such se the preserot silo mensurements. 'The hackgromed coreection techmigue developerd to improve the denector's directiomality complementes the axisting approach to rliminating berkgromodes
 rations, it is muportant to mote the restriction to relatively low-rate operation, because of the the low threshold needed (1) detect the sercond pulse, the high sing, les rate for howraregy mentron caplure, and the insermantal dead time

Figure 12: Silo Layout for a Peacekeeper Missile

Figure 13: Missile Data versus Mockup Patterns
required for coincidence processing.
For warhead-counting applications, the results presented here indicate that collimated proton-recoil scintillators can, at least in some circumstances, provide the poation resolution needed to sesolve individual warheads without revealing intrusive information about their design. The actual utility of any radiation-detection approach, however, depends primarily on issues of treaty protocol, not on technical feasibility.

References

(I) D. M. Drnke et al, "New Electronically Black Neutron Detectors," Nucl lnst and Meth, A247:570 582, 1986; W ('. Frldmanı at al., "A Novel Fast-Neutron Detector for Spher Applications," Nucl Inst und Meth, A $300: 350$ 365, 1901.
[2] ('. F: Mose at al., "I)etection of Uramiam-Baned Naclene Weapens Itaing Nentron-Induced Fismion," Paper H136.

AUTHOR(S)

```
John M. Walsh, P-14
Gary L. Straditng, P-l4
George C. Idzorek, P-14
Barry P. Shafer, WX-DO
Harold L. Curling Jr., SAIC, Albuquerque, NM 87106
```

SUBMITTED TO Hypervelocity lmpacts in Space

DISCIAIMER

This repmit was prepared an an account of work sponsored ha an apency of the linited tiates Givernment Nether the l'nted 'itates (iovernment nor ant apenct therest, nor ant ol their

On Size Scaling in Shock Hydrodynamics and the Stress-Strain Behavior of Copper at Exceedingly High Strain Rates

John M. Walsh, Gary L. Stradling, George C. İzorek, P-14
Barry P. Shafer, WX-DO
Harold L. Curling, Jr. SAIC

Abstract

Summary In recent years the Hypervelocity Microparticle Impact (HMI) project at Los Alamos 'ias utilized electrostatically accelerated iron spheres of microscopic dimensions to extend the range of controlled hypervelocity impact experiments to about $100 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$, well beyond the meteoroid velocity range and about an order of magnitude beyond the data range for precisely controlled impact tests with ordinary macroscopic particles. But the extreme smallness of the micro impact events brings into question whecher the usual shock-hydrodynamic size scaling can be assumed. It is to this question of the validity of size scaling (and its refinement) that the present study is directed.

Hypervelocity impact craters are compared in which the two impact events are essentially identical except that the projectile masses and crater volumes differ by nearly 12 orders of magnitude--linear dimensions and times differing by 4 orders of magnitude. S'rain rates ar corresponding points increase 4 crders of magnitude in the size reduction.

Departures from exact scaling, by a factor of 3.7 in crater volume, are observed for copper targets--with the micro craters being smaller than scaling would predict.

This is attributef, using a well-established relation for the dependence of crater volume upon target yield stress, to a factor 4.7 higher effective yield stress occurring in the micro cratering flow. This, in turn, is because the strain rate there is about $10^{8} / \mathrm{sec}$ as compared to a strain rate of unily $104 / \mathrm{sec}$ in the macto impact. This pronounced strain rate effect in copper is compatible with recent theoretical models by Follansbee, Kocks, Rollett and nthers.

Aluminum targets are found to behave similarly, though primary emphasis has been placed on the copper data because the high strain rate properties of copper have been discussed more fully in recent literature.

Work in this area may be of interest for several reasons: The classical laws of shock-hydrodynamic size scaling, as applied to condensed media, are put to a much more stringent test than iutherto. The depariure from strict size scaling is quantified and explained in terms of basic material properies. Also the measurement of impaat craters for very small impact events leads to the determination of metal yield stresses at strain rates more than two orders of magnitude greate: than have been obtained by other methods. The determination of material strengths at these exceedingly higit strain rates is of obvious fundamental imporance.

$$
\text { Page -1. } 10 / 15 / 91
$$

On Size Scaling in Shock Hydrodynamics and the Stress-Strain Behavior of Copper at Exceedingly High Strain Rates

John M. Walsh, Gary L. Stradling, George C. Idzorek, P-14 Barty P. Shafer, WX-DO, Los Alamos National Laboratory
P. O. Box 1663, MS-D4 10
Los Alamos, New Mexico 87545
Harold L. Curling, Jr.
Science Applications Intemational Corporation
2301 Yale S. E. Suite E, Albuquerque, NM 87106

Abstract

In recent years the Hypervelocity Microparticle Impact (HMI) project at Los Alamos has utilized electrostatically accelerated iron spheres of microscopic dimensicns to generate hypervelocity impact experiments to about $100 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$, about an order of magnitude beyond the data range for precisely controlled impact tests with ordinary mactoscopic particles. But the externe smallness of the micro impact events brings into question whether the usual shock-hydrodynamic size scaling can be assumed. It is to this question of the validity of size scaling (and its refinement) that the present study is directed.

Hyperveloci.y impact craters are compared in which the two impact events are essentially identical except that the projectile masses and crater volumes differ by nearly 12 orders of magnitude---linear dimensions and times differing by 4 orders of magnitude. Strain rates at corresponding points increase 4 orders of magnitude in the size reduction. Departures from exact scaling, by a factor of 3.7 in crater volume, are observed for copper targets--with the micro craters being smaller than scaling would predict. This is atributed to a factor 4.7 higher effective yield stress occurring in the micro cratering flow. This, in turm, is because the strain rate there is about $10^{8} / \mathrm{sec}$ as compared to a strain rate of only $104 / \mathrm{sec}$ in the macto impact.

The measurement of impact craters for very small impact events leads to the determination of metal yield stresses at strain rates more than two orders of magnitude greater than have been obtained by other metiods. The determination of material strengths at these exceedingly high strain rates is of obvious fundamental imporance.

I. Introduction

The Hypervelocity Microparticle Impact (HMI) project, ${ }^{1}$ has obtained impact data from microscopic iron spheres impacting targets at impact velocities from $1 \times 10^{5} \mathrm{~cm} / \mathrm{sec} 10100 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$. The iron spheres are charged and accelerated electrostatically ${ }^{2}$ in a 6 MeV Van de Graaff accelerator. Each impact is characterized by simultaneous measurement of projectile charge and velocity using careful cross-correlation techniques? ${ }^{3}$. Measurement of impact crater characteristics is performed using a scanning electron microscope. A typical crater in copper is hown it. Fig. I. Impact studies have been performed on a variety of materials relevant both to practical impacts in space and to the study of impaci physics. In this diseix-cion we focus on impacts in copper and aluminum in order to compare with existing libraries of data from itacroscopic impact physics research.

11. Departure From Strict Size Scaling for Impact Craters In Soft Copper Targets

Micre, impacts, when compared to the same impacts at ordinary sizes, make it possible to put classical shock-hydrodynamic size scaling to severe tests in which corresponding masses (and other
extensive variables) are scaled down nearly 12 orders of magnitude---linear dimensions and times being scaled down 4 rorders of magnitude. Strain rates increase four orders oi magnitude in the size reduction.

Fig. 1. A typical hypervelocity impact crater in copper produced by a microscopic iron sphere impacting at $12.5 \times 10^{5} \mathrm{~cm} / \mathrm{s}$. The craters produced by microscopic impacts are axisymmeteric and appear to be geometrically similar to the craters produced by macroscopic impacts.

As Fig. 2 we reproduce the pertinent data for copper, to call attention to the fast that the normalized target crater volume is a factor of 3.7 smaller for the IBF micro-impacts (projectile masses $0.25 \times 10^{-12} \mathrm{gm}$ and $1.5 \times 10^{-12} \mathrm{gm}$) than for the large scale impacts (projectile masses 0.15 gm and 0.50 gm) at the same impact velocity ($6 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$). Exact size scaling would, of course, require that these normalized crater volumes be equal. Thus, tine size reduction, by a factor ${ }^{4}$ of about 0.3 x 10^{12} in the projectile mass (or, equivalently, by a factor of 0.7×10^{4} in projectile diameter) his not only reduced the crater volume by a factor of 0.3×10^{12}, as it should in accord with strict scaline, but also by an additional factor of 3.7 .

III. Strain-Rate Effect As a Reason for Scaling Failure

We believe that this failure to scale exaculy is due to strain-rate effects within the copper. More fully, we develop here the notion that the higher strain rates in the smaller flows ${ }^{5}$ cause a higher effertive flow stess in the smaller flows and a correspondingly smaller crater.

In Fig. 3 we reproduce (in addition to impact data for copper) a well-known correlation formula due to Sorensen ${ }^{6}$ for hypervelocity impact data. It shows, in particular, that crater volume V varies with target shear yield strength sas $5^{-0.4 a s}$. This dependence of V on s is shown by Sorensen to fil a wide range of impact data for metal targets, encompassing a variation of 5 from 0.13 kilobars for lead to nearly 10 kilobars for a sleel. See Ref. 6 for a detailed discussion. Similar dependences of V on s have been established in hydrocode studies. Thus, adopting Sorensen's correlation, we find that the observed 3.7 -fold reducion in crater volume could be caused by a yield stress increase by a factor of 4.7.

Fig. 2. Hypervelocity impact cratering data for copper. The upper curve, with four representative data points, is from Sorensen's empirical correlation of (macro) impact data for copper. See also Fig. 3 and Sorensen's paper (Ref. 6) for further information on Sorensen's work. The lower curve shows the (micro) impact data on copper. Of importance to the present discussion is the fact that the normalized crater volumes in the micro impacts are smaller by a factor of 3.7. The two curves would coincide if size scaling were exact.

IV. Strain Ratcs in Hypervelocity Impact

Next, we need a reasonably good estimate of the strain rates occurrirg in the cratering process. Specifically, it will suffice to estimate the average strain rate during the crater formation for the 0.3 gm (macro) impact at $6 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ since we already know the ratio of the strain rates in the micro and macro events. Making this estimate is the object of the present Section.

It is useful to recall the prominent features of such a hypervelocity impact. The iritial shock pressure is given by

$$
P=\rho U_{s} U_{p}=1.9 \times 10^{12} \text { dynes } / \mathrm{cm}^{2}=1.9 \text { megabars },
$$

since the shock particle velocity U_{p} is $3 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ from symmetry, the density ρ is $8.9 \mathrm{gm} / \mathrm{cc}$ and the shock wave velocity U_{s} associated with the given paricle velocity is $7 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$. Tnis is more than three orders of magnitude greater than material strength, implying that the early phases of the impact are hydrodynamic with strength playing a negligible role. This shock front and the attached pressure pulse propagate almost hemispherically into the thick copper target, and serve to set the engulfed copper irto neaily hemispherical motion. Were it not for the finite yield strengit of th: copper the (nearly hemispherical) crater would grow without limit. What happens instead is that the i. 385 kilobar copper yield strengit limits the crater volume to about 8.3 times the volume of the impacting projectile, in accord with Sorensen's correlation formula as applied to this impact.

Two-dimensional finite difference hydrocode calculations (axisymmetric and time dependent. incorporatiag material compressibility and strength effects by utilizing available material propery: formulations) can provide us with a very detailed description of the impact process, and such calculations have been provided by a number of investigators over the past 3() years.

Fig. 3. Sorensen's data correlation for copper, from Ref. 6. The data extend to about $7.5 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$. The analytical correlation is for several metals and therefore does not fit copper exaculy, although quite well. It may be noted that the factor 3 variation in projectile diameters (27 in masses) does not cause an apparent size effect in the macro data points. The point at $v=6 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ on the micro curve (Fig. 2) has been transformed to this plot and is seen to be substantially below the macro data. (To transform this point the values $\rho=8.9 \mathrm{gm} / \mathrm{cm}^{3}$ and $\mathrm{s}=1.385 \times 10^{9}$ dynes $/ \mathrm{cm}^{2}$ were used for the density and shear yield strength of annealed copper.) The projectile mass ratio between the micro and macro experiments is nearly welve orders of magnitude, as explained in tie fourth footnote.

While a specific computation has not yet been performed for our $0.3 \mathrm{gm}, 6 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ impact into copper, suitable computed resuits from other impacts have been reported in the literature and can be used to deduce (using only Sorensen's correlation formula and dimensional analysis) useful estimates of the effective strain rate in our impact. Dienes ${ }^{7}$ has reponed calculations for a spherical aluminum projectile (diameter 0.476 cm) impacting a hard aluminum target (shear yield strength 2.39 kilobars) of density $2.7 \mathrm{gm} / \mathrm{cc}$ at a velocity of $7.3 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$. He finds for times of 2.4 .8 and 16 microseconds that the crater depth is $0.4,0.8,0.9$, an 1.0 of its final value. Hence for present purposes we can take this aluminum crater formation time to be 15 microseconds. Next we note that Sorensen's correlation formula:

$$
V / V_{0}=C_{1}\left(\rho v^{2 / s}\right)^{.84 .5}
$$

is entirely equivalent to

$$
T / T_{v}=C_{2}\left(\rho v^{2} /\right)^{\frac{. R 49}{3}}=C_{2}\left(\rho v^{2} / s\right)^{.282}
$$

when re-expressed to give the time T for crater formation. Here T_{0} is any suitable measure of the impacting projectile size (such as the time it takes the free flying projectile to move one diameter) that must, of cour.e, be the same measure for the two impacts under consideration. Thus T_{0}, would be:

$$
\mathrm{T}_{0}=0.476 \mathrm{~cm} /\left(7.3 \times 10^{5} \mathrm{~cm} / \mathrm{sec}\right)=.65 \text { microseconds }
$$

for the aluminum problem and

$$
T_{0}=0.400 \mathrm{~cm} /\left(6.0 \times 10^{5} \mathrm{~cm} / \mathrm{sec}\right)=.67 \text { microseconds }
$$

for our copper impact. Next for the two cases of aluminum and copper impacts, the quantities ($\rho v^{2} / \mathrm{s}$) and ($\left.p v^{2} / \mathrm{s}\right)^{282}$ would be:

$$
\left(\rho v^{2} / s\right)=602 ; \quad\left(\rho v^{2} / s\right)^{282}=6.08
$$

and for the copper impact;

$$
\left(\rho v^{2} / \varepsilon\right)=2313
$$

$$
\left(\rho v^{2} / \mathrm{s}\right)^{282}=8.88
$$

Hence the 15 microsecond crater formation time for aluminum scales to

$$
\mathrm{T}=(8.88 / 6.08)(.67 / 65) 15 \text { microseconds }=23 \text { microseconds }
$$

for our copper impact.
In another problem from Ref. 7 a soft aluminum target (shear yield 0.75 kilobars) was used and total plastic work was reporied instead of crater depth. (Ocher problem parameters were the same as in the hard aluminum impact.) At 4,8 and 16 microseconds the total plastic work was $20 \%, 50 \%$, and 95% of the final value when the flow was compietely arrested. This again sugges's a time like 15 microseconds for flow arrest. Scaling this over to our copper impaci, by a calculation similar to that detailed for the hard aluminum, gives a time of 16 mictoseconds for the copper impact.

We need also to know the average strain occurring in the plastically deforming material when the crater is formed. Here both computational and experimental evidence (where targets thicker than about two crater depths react much the same as semi-infinite targets subjected to the same projectile impact) suggest that the target material within about one crater radius of the crater is effective in arresting the flow. For this material the strain field is a maximum, about 0.6 at the crater surface, dropping to essentially zero a crater depth into the material. A suitable average strain for this plastically deforming matenal is about 0.2 . (This value may be reliable only to about a factor of two.) Dividing it by the above crater formation times of 23 microseconds and 16 microseconds implies average strain rates of $0.86 \times 10^{4} / \mathrm{sec}$ and $1.25 \times 10^{4} / \mathrm{sec}$. Hence we adopt a value of $1.0 \times 10^{4} / \mathrm{sec}$ as an average strain rate in our 0.3 gm copper impact, recognizirg that this value in uncertain by a factor of two. Surprisingly, perhaps, this uncertainty is tolerable in present considerations because of the weak dependence of yield stress on strain rate.

It may be noted that a more accurate determination of this average strain rate could be made as par of a hydrocode computation of our copper impact. For this purpose we suggest

$$
\overline{\dot{\varepsilon}}_{P}=\frac{\sum_{N} \sum_{K} W_{F}(K . N) \dot{\varepsilon}_{F}(K . N)}{\sum_{N} \sum_{K} W_{p}\left(K, N^{\prime}\right)}
$$

where K is the cell number and N is the time step number. The formula gives an average strain rate. averaged over all (Eulerian) cells and all time steps, with each $\dot{\varepsilon}_{p}(K, N)$ weighted in proporion to the amount oi plastic work $W_{p}(\mathbb{K}, N$) occurri,g in the cell during the ime step.

V. Comparison of Results With Recent Theoretical Expectations

In Section II we saw tha: when the projectile mass was reduced by a factor 0.3×10^{12}, the crater volume was reduced not only by this factor, as expected from size scaling, but by an additional factor of 3.7 .

In Section III we found, using a well-established empirical correlation, that the factor 3.7 crater volume reduction would be caused by a yield stress increase by a factor of 4.7.

In Section IV we used published computational results for the crater formation process, together with the Sorensen correlation formula, to establish that the average strain rate in the macro impact was about $1.0 \times 10^{4} / \mathrm{sec}$. This means that the average strain rate in our micro impact [which must be greater by a factor of $\left(0.3 \times 10^{12} \times 3.7 ; 333=1.03 \times 10^{4}\right.$] is about $1.0 \times 10^{8} / \mathrm{sec}$. So it remains to ask whether it is indeed reasonable to expect a factor 4.7 increase in the flow stress over this strain rate regime.

Any such estimates must be theoretical because measurements have been limited to strain rates below about $106 / \mathrm{sec}$. Fortunately, the properties of copper at exceedingly high strain rates has been the subject of recent investigations by Follansbee, Kocks, Rollett and others. (See Refs 8 and 9 and literature cited there.) In Fig. 4 the theoretical stress versus strain rate curve is reproduced (from Fig. 2 of Ref. 9) for a constant strain of 0.1 . This strain is taken to be an average strain during the cratering flow, corresponding to the estimate made in Section III that the average iotal strain is about 0.2 . (Also the theoretical stresses were reduced by a factor of $\sqrt{3}$, in accord with the von Mises ! ield condition, because longitudinal yield stresses were used, whereas shear yield stresses are used throughout the present paper.)

Plotted also in Fig. 4 are our two experimental points $\sigma=1.385$ kilobars at $\dot{\varepsilon}_{\mathrm{p}}=10^{4} / \mathrm{sec}$ and $\sigma=6.5$ kilobars at $\varepsilon_{p}=10^{8} / \mathrm{sec}$

Fig. 4. Shear yield stress σ versus strain rate for copper strained to 0.1 . The theoretical curve is from Ref. 9, the results from Fig. 2 of the reference being re-presented here in terms of shear yield stress at a constant strain of 0.1 .

The most imporant conclusion to be drawn from the present comparison is that both the theory (Refs 8 and 9) and experiment are indicating a very substantial strain rate effect in copper in the $10^{4} / \mathrm{sec}$ to $10^{k} / \mathrm{sec}$ strain rate regime. The experimental effect is some what the larger, the yield stress increasing by a factor of 4.7 as compared to 2.8 for the theoretical curve. In the theoretical modelling ${ }^{9}$ this strain rate effect has been attributed to a gradual transition, as the strain rate is increased, from thermally-activated to viscous-drag controlled deformation.

The experimental factor of 4.7 depends upon only the experimental volume ratio of 3.7 (Fig. 2) and the Sorensei correlation formula, and is estimated here to be reliable to 10% or less. Other aspects of the comparison are discussed in the next section.

VI. Comments on Sources of Error

It was remarked in Section IV that the estimate of the average strain rate in the macro impact was uncertain by a factor of about two. In the Fig. 4 data plot ihe experimental points are represented as circles with diameters spanning a factor of four in the strain rate. It is readily apparent that a lateral shift of the macro data point to either of the extreme positions (causing an equal lateral shift of the micro point) would have only a very small effect on the comparison.

In Section V we estimated an average strain in the cratering flow to be 0.1 . This strain was used to select the appropriate constant-strain theoretical zurve from Ref.(9). Had one used 0.05 or 0.2 instead of 0.1 , the corresponding averige-strain theoretical curve, in the two cases, would be below or above the macro experimental point and in somewhat poorer agreement with that point. Here, however, an alternative interpretation is useful: The properties of copper at strain rates around $10^{4} / \mathrm{sec}$ and below, where test data and theoretical understanding have been in accord for years, cari be assumed known. One then selects that particular constant-strain curve from Ref. (9) that causes agreement with the macto data point. This constant-strain curve is the one for an average strain in the cratering flow of about 0.13 , instead of our estimated value of 0.1 given above. (This might, in the present situation, be a better way to estimate the average strain in the cratering flow). In any event the theoretical strain rate enhancement factor (taken to be 2.8 in the last paragraph of Sec. V) is a weak function of which constant-strain curve one uses and would not be substantially affected.

Finally, we recall that the impacting spheres in the micro experiments are actually iron instead of copper. In our comparison of the micro- and macro-events these iron projectiles are assumed to be equivalent to copper projectiles of equal mass. This equal-mass assumption has been investigated extensively in test work and in computer studies ${ }^{7}$ and is found to be accurate for sufficiently high velocities and/or density ratios sufficiently close to unity. For the present application at 6 x $10^{5} \mathrm{~cm} / \mathrm{sec}$, with iron and copper projectiles, the cratering effects on thick copper targets are expected to be essentially identical.

VII. Extension to Aluminum

The IBF data for aluminum target impacts exhibits essentially the same behavior as copper, i. e. the micro crater volumes are small by about a factor of 4 , corresponding to a strain rate enhancement of yield stress by a factor of 5 .

Attention heie has been focussed on copper because its constitutive modelling appears to be more advanced, but it seems likely that aluminum (another FCC metal) will exhibit similar behavior to copper at high strain rates ${ }^{10}$.

VI. Conclusion

The classical laws of size scaling, as applied to the shock hydrodynamics of condensed media, have been put to severe test. The size reduction spans four orders of magnitude in length or time dimensions, or 12 orders of magnitude in extensive variables, such as corresponding masses or volumes. The observed departure from exact scaling is by a factor of 3.7 in extensive variables, or by 1.5 in corresponding lengths or times.

The departure is attributed to strain rate enhancement of the flow stress in the copper targets. This dramatic rise in flow stress at very high strain rates had already been anticipated in the theoretical literature.

Work in this area is of interest for several reasons:

1. It validates and/or refines classical shock-hydrodynamic size scaling, and thus perains directly to the important engineering area of scale model experimentation.
2. For velocities above about $15 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$, the only precisely controlled hypervelocity experiments have been performed, at Los Alamos and elsewhere, with electrostatically accelerated microparticles. Experimental data are available for velocities throughout the meteoroid velocity range (to about $70 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$) and beyond. 'To understand this valuable data source, and to be able to scale it with confidence to larger impact events we need, as done here for c.pper, to quantify the depanures from exact size sialing and atribute such departures to appropriate material properies.
3. Strain rates attainable in microparticle impacts extend the present day test range by more that two orcers of magnitude. The determination of material strengths at these exceedingly high strain is of obvious fundamental importance.

REFERENCES

1P. W. Keaton, et. al., "A hypervelocity-microparticle-impacts laboratory with $100 \mathrm{~km} / \mathrm{s}$ projectiles," Int. J. Impact Engng. 10, pp. 295-308, 1990; G. L. Stradling, et. al. , "Searching for momentum enhancement in hypervelocity impacts," Int. J. Impact Engng. 10, pp. 555-570, 1990.

2Friichtenich, J. F. (1962), "Two million volt electrostatic accelerator for hypervelocity research," Rev. Sci. Irst., 33, 209. Friichtenicht, J. F. (1964), "Micrometeroid simulation using nuclear accelerator techniques," Nucl. Inst. Meth. 28, 70. Lewis, A. R. and R. A. Walter (1970). Electrostatic acceleration system for hypervelocity microparticles with selected kinematic properies. NASA TN D-5780, Electronics Research Center, Cambridge, MA.
${ }^{3}$ Idzorek, G. C., P. W. Keaton, G. L. Stradling, M. T. Collopy, H. L. Curling Jr., and D. B. McColl (1989). "Data acquisition system for a hypervelocity-microparticle-impacts laboratory," International Journal of Impact Engineering, 10, 1990.
${ }^{4}$ The average mass of the bigger impacts is $(0.5+0.15) / 2=0.3 \mathrm{gm}$. The average mass of the HMI impacts is $(0.25+1.5) \times 10^{-12} / 2=0.9 \times 10^{-12} \mathrm{gm}$. Thus the reduction is by a factor of about 0.3×10^{12} on mass, or 0.7×10^{4} on linear dimensions and times.
5 By the above factor of 0.7×10^{4} if the flows scaled exactly, and by an additional factor of $3.70 .333=1.5$ because of the smaller-than-expected craters--combining for a factor of 10^{4}.
${ }^{6}$ Neil R. Sorensen, "Systematic investigation of crater formation in metals," in Preveedings of Seventh Hypervelocity Impact Symposium. Martin Company, Orlando, 1965.
7 J. K. Dienes and J. M. Walsh. "Theory of Hypervelocity Impact," S-Cubed Repor 3SIR-676, May 1969. See also J. K. Dienes and J. M. Walsh. "Theory of Impact: Some general principles and the method of Eulerian codes," in Hyper Velocity Impact Phenomena, Edited by Ray Kinslow, Academic Press, 1970.
${ }^{8}$ P. S. Follansbee. "The rate dependence of structural evolution in copper and its influence on the stress-strain behavior at very high strain rates." Impact Loading and Dynamic Behavior of Marerials, Edited by, C. Y. Chiem, H. D. Kunze, and L. W. Myer, Vol. 1, Informationsgesellschaft, Verlag 1988.
${ }^{9}$ P. S. Follansbee, "Shear prediction in shock loaded copper," In Proceedings of 1991 APS Topical Conference on Shock Compression of Condensed Matter. Also available as Los Alamos document, LA-UR 91-1994.
${ }^{10}$ Private communications with A. D. Rollett and P. S. Follansbee.

LA-UR : 1-3497.

title Exploration of the Neutron-Rich Mass Surface from ${ }^{11} \mathrm{Li}$ to ${ }^{66} \mathbf{F e}$

AUTHORS)
D.J. Vieira, X.G. Zhou, X.L. Tu. J.M. Wouters, H.L. Siefert, K.E.G. Löbner, Z.Y. Zhou. V.G. Lind, and G.N. Butler

SUBmitted to Proc. International Workshop on "Nuclear Shapes and Nuclear Structure at Low Excitation Energies". Cargese. Corsica, June 3-7. 1991

DISCLAIMER

This report was prepared as an account of work somentred by an agency if the United States Government Neither the United States Government nor any agency thereof, nut any of their employees, makes any warranty, express of implied, of assumes any legal lability of responsebills for the accuracy. completeness. or usefulness of any information, apparatus. product, of prices disclosed. of represents that is use would not infringe privately owned rights Referene herein to any specific commercial product, process, br service by trade name. Itademarh.
 mentation, or favoring by the : lated States Government or any agency thereat the views and opinions of authors expressed herein do not necessarily state of reflect those of the United Sines (Government of any agency thereof

Contribution to the Int"l. Workshop on "Nuclear Shapes and Nuclear Structure at Low Excitation Energies", Cargese, Corsica, June 3-7, 1991

EXPLORATION OF THE NEUTRON-RICH MASS SLRFACE FROM ${ }^{11} \mathrm{Li}$ TO ${ }^{66} \mathrm{Fe}$

D. J. Vieira ${ }^{1}$, X. G. Zhou 2, X. L. Tu ${ }^{2}$. J. M. Wouters ${ }^{1}$, M. I. Seifert ${ }^{1,3}$, K. E. G. Löbner ${ }^{4}$, Z. Y. Zhou ${ }^{1,5}$, V. G. Lind ${ }^{2}$, and G. W. Butler ${ }^{1}$
${ }^{1}$ Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory. Los Alamos, NM 87545, USA
${ }^{2}$ Department of Physics, Utah State University, Logan, UT, 84322 USA
${ }^{3}$ II. Physikalisches Institut, Universität Giessen, D-6300 Giessen, FRG
${ }^{4}$ Sektion Physik, Universität München, D-8046 Garching. FRG
${ }^{5}$ Department of Physics, Nanjing U'niversity, Nanjing, P ${ }^{\text {PC }}$

INTRODUCTION

A small revolution in our ability to perform mass measurements of light-mass. neutronrich nuclei has occurred during the last five years with the extension of the dirert. total mass measurement method to fast recoiling nuclei. To date the work of two groups, one using the SPEG specirometer at GANIL and the other using the TOFI spectrometer at LAMPF, has yielded over 85 mass measurements of which $\mathbf{6 2}$ had not been reported previously. Extending from the neutron-halo nucleus ${ }^{11} \mathrm{Li}$ up to ${ }^{66} \mathrm{Fe}$. a region relevant to the astrophysical r process, these measurements have provided a valuable first glimpse into the interesting nurlear structure present in many of these exotic nuclei.

Herein we highlight the nuclear structure insight which has been gained from these measurements, especially that learned from a comparison to recent shell model calculations. Attention is given to: (1) the binding of loosely-bound neutron halo nuclei; (2) the $N=14-16$ region in the neutron-rich isotopes of $0, F$, and Ne where the strong two-body interaction plays an important role; (3) the deformed intruder state region around ${ }^{31} \mathrm{Na}$ of long standing intrest; (4) the neutron-rich isotopes of sulfur and chlorine: and (5) the question of the isospin dependence (or independence) of neutron and proton pairing energies in the fp shell. Only the briefest account of this work can be given here; emphasis is plare on the most rerent results.

DIRECT MASS MEASUREMENTS OF FAST RECOILS

As mentioned above two separate groups have pioneered nlightly different approarches for determining the total mass of fant recoiling nurlei. In the mass measuremente using the Energy-lonn Spectrometer SPE(; ${ }^{1-3}$, a rombined two-parameter determination of vilority and magnetic rigidity is carricd out, while at TOFI^{4-7} a single- parameter measurement of the ion's time-rf-fight through the Time. Of Flight Isorhronous spertrometer areven to determinn the mans-to-charge ratio of the ion. Z and Q identiftations were obtained in both approarhes fiom additionad measurementa of stopping power, velority, total kinetie energy, and/or ranke. The SPEG experiments rely on the concentation of projectile fragmentation products at forward anglea using $30-100 \mathrm{MeV} / \mathrm{u}$ hea, inn bmams, while the TOFI meanuremente utilize
fast ($1-4 \mathrm{MeV} / \mathrm{I}$) recoils produced in $\times 00-\mathrm{MeV}$ proton-induced target fragmentation and fission reactions. Given that a large variety of recoils are produced in these reactions and that both methods have reasonably large acceptances and are fast (with fight times typically of $1 \mu \mathrm{~s}$ or less), both gioups have been abie to make a wide range of systematic measurements which extend far from the valley of β-stability. Typical mass resolutions for both approaches are on the order of 3×10^{-4} with mass measurement accuracies rangine from $\mathbf{i} 0 \mathrm{keV}$ to 1.6 Mel' depending on counting statistics. For the most part, good agreement between these two fast recoil methods has been found (see Fig. 1 caption for noteworthy exceptions).

A convenient way of display .ag the nuciear mass surface without the cornplication of the odd-even staggering due to neutron pairing is to plot the masses in terms of twoneutron separation energies ($S_{2 n}$) versus neutron number. Severa! interesting nuclear structure features can be gleamed from such a plot (see Fig. 1 and the discussion that follous).

Fix. 1. Two-neutron separation energy versus neutron number for the neutron-rich isotopes of lithium to iron. Small data points (e) represent isotopes with wrll known masses". Open symbols indicate those isotopes for which maises have bern remeasured and the solid symbols are given for those nuclei where the first mass determination was reported by either the SPEC or TOFI kroups ${ }^{1-7}$. $=$ SPEG + TOFI overlapping measurements; $\boldsymbol{A}=$ SPEC measurementa atid; $\boldsymbol{=}$ TOFI measurements. A weighted average of all reported masses is plotind with the "xelusion of ${ }^{27} \mathrm{Ne}$ and ${ }^{30}$: ia from Ref. ${ }^{7}$. ${ }^{37} \mathrm{P}$ from Ref. ${ }^{2}$, ${ }^{31-34}$ Na from Ref. ${ }^{9.10}$. and "Mg from Ref.". Firror bars are given where they exered the symbol size.

$\%=3$ 15 NEUTRON-RICH NUCLEI

Of rurent excitement are those muthi which are wery loosely fwo neutron (or simplneutron) bound, such os ${ }^{11} \mathrm{Li},\left({ }^{11} \mathrm{Br}\right)$, ${ }^{14} \mathrm{Hr},{ }^{17} \mathrm{H}$, where cuhanend interaction (both total and electromapnetic dissociation) crose sertions have bern observed. These results are being interpreted in terms of an increased nentron radins, i.e., "a nentron hato", die extension of which is directly related to how wrakly bound the last nentrons are". In the case of "li, for
example. the rms radius of the last two neutrons is calculated ${ }^{12.13}$ to be anywhere froin 5 to 12 fm (i.e., roughly 2 to ${ }^{\text {a }}$ imes the size of the proton rms radius) depeading on which model is used. To date three mass measurements ${ }^{9.6 .14}$ have been performed for ${ }^{11} \mathrm{Li}$ yielding $S_{2_{n}}$ values of $190(110), 720(120)$ and $340(50) \mathrm{keV}$, respectively. The resulting weighted average is $315(43) \mathrm{keV}$. Given that the size of the neutron halo is extremely sensitive to the $S_{2 n}$ value. additional higher precision measurements are needed to further constrain and test the validity of these models.

Other reutron-halo randidates worthy of attention are those of ${ }^{19} \mathrm{~B}$ and ${ }^{22} \mathrm{C}$ which have been observed to be particle stable, but for which no mass determinations have been possible as yet due to their small production cross sections (roughly two orders of magnitude smaller than ${ }^{17} \mathrm{~B}$ and ${ }^{20} \mathrm{C}$). Using tine latest SI'EG and TOFI masses, the transverse Garvey-Kelson mass relationship ${ }^{15}$ predicts $S_{2 n}$ values for ${ }^{19} \mathrm{~B}$ and ${ }^{22} \mathrm{C}$ to be 360 and 110 keV , respectively. As such these nuclei should have neutron halos which are similar, if not laiger, than that of ${ }^{11}$ Li. Intensity and acceptance upgrades now being planned or built at several rescarch facilities are likely to make the first measurement of such rare species possible.

Returning to Fig. 1, one prominent feature evident in this plot is the rapid $\mathrm{S}_{2 n}$ falloff that occurs after $N=8$ which is then followed by a much slower decrease in $S_{2 n}$ values dfter $N=10$. This behavior is characteristic of a shell closure, in this case the completion of the p shell. Similar features, although less dramatic and not fully delineated here due to limitations in the vertical axis (i.e., several neutron-deficient isotopes have been excluded), are observed for the sd shell closure at $N=20$ and the completion of the $0 f_{i / 2}$ subshell at $N=28$. Analogous to the latter case, one might expect to see a sudden transition in the $S_{2 n}$ trend occurring at $\mathrm{N}=14$ due to the completion of the $0 \mathrm{~d}_{3 / 2}$ subshell. However, as is evident in the neutron-rich isotopes of O, F, and Ne, this transition orcurs at $N=15$, not $N=14$. The explanation ${ }^{6}$ of this effect came out of a detailed comparison to the shell model calculations of Wildenthad et al. ${ }^{16}$ whose predictions, in contrast to most other mass models, were found to reproduce the observed $S_{2 n}$ trend in this region extremely well. In these calculations the single-particho energy spacing between the $0 \mathrm{~d}_{3 / 2}$ and $1 s_{1 / 2}$ levels is fairly small ($\sim 0.9 \mathrm{MeV}$), so the strong S_{A}, decrease observed in going from $\mathrm{N}=15$ and $\mathrm{N}=16$ results primarily from the interplay of twobody interactions, in this case the strongly attractive $\left[0 d_{3 / 2}-0 d_{s / 2}\right]_{J=0}(\sim 3$ MeV) interaction is dominant. At $N=14$ and $N=15$ the contribution made by this $0 d_{3 / 2}$ Ods/2 interartion to the calculated $S_{2 n}$ value is sizable, while at $N=16$ its effect is minimal. In a strong sense thes woik has provided a challenging test of the sheli model and verified the iwo body interaction energies relevant to this region.

Moving up to the $\mathrm{N}=20$ region one comes to the ${ }^{31} \mathrm{Na}$ region where enhanced binting energies relative to systematics and the predictions of most models has ben noted for somin time ${ }^{9}$. The SPEG and TOFI groups have now remeasured the masses of severad Na isotepme and provided a number of new mass measurements for the adjoining Ni, Ma, and Al isotoprs (sre Fig. 1). The picture is now clear, given thegood agreement betwren the SPEC and TOFI results, that the original ${ }^{9}$ and subsequent ${ }^{10}$ measurements of the ()rsay group yielded masson which where consistently too bound with increasing deviatons observed with increasing mass number, i.e., ${ }^{31} \mathrm{Na}$ (2.0 and 0.8 MeV , respectively), ${ }^{32} \mathrm{Na}(2.0$ and 19 MeV$)$, and ${ }^{33} \mathrm{Na}(\mathrm{Nand}$ 4.0 Minv). Although the reported Orsay error bars are large (0.6 to 1.1 MrV), most of these deviations fall betwern 2 and 3 ntandard deviations.

After diacussions ${ }^{17}$ with the Oramy group, it npprars that thrre where many possilibu souress of erfor in this carly work, surh an interferener due to hydrocarbons, a bad divider network, and sagging high voltage during the nerelerator beam pulans. Determini,ig the trum source of these errors now appears difficult and for the most part acadomic. Hownorer, tho suggention ${ }^{4}$ that these crrors may have arison from boot strapping pronss. analogous to thond found ${ }^{1 /}$ in the neutron-defirimt Ce isotopen, is unfounded given that the different isolobit combinations uned in the Na triplet (or double doublat) measurements nover involvad morn than one unknown.

As can lin steen in Fig. 1, an up-to-date view of the ${ }^{31-32}$ Na region no longer shows a dramatic $S_{2 n}$ upturn only a small increase, while the adjacent isotopes of Ne and Mgexiibit a slowly decreasing $S_{2 n}$ trend. However. evidence of enhanced binding in these nuclei is still indicated. These enhancements can be seen better in Fig. 2 where we contrast the experimental masses to recent shell model calculations. Concentrating on the solid line. i.e., the comparison to the normal $0 \mathrm{~K} \omega$ calculations of Wildenthal et al. ${ }^{16}$ and Warburton et al. ${ }^{19}$. a large deficiency in binding ($2-3 \mathrm{MeV}$) is predicted in the $\mathrm{N}=20-21$ isotones of Ne . Na, and Mg . By including two particle-two hole neutron excitations from the sd shell to the fp shell, so-called $2 \hbar \omega$ excitations, Warburton et al. ${ }^{19}$ has shown in the limit of weak coupling that increased binding in these nuclei occurs. In particular, a deformed intre ier state which is dominated by neutron $(\mathrm{fp})^{2}$-(sd $)^{-2}$ configurations is found to be more bound (by 0.4 to 1.1 MeV) than the lowest 0 h w state in the localized $\mathrm{Z}=10-12, \mathrm{~N}=20-22$ region. Moreover, Warburton et al. go on to show that the lowest 1 k witate in the odd neutron $\mathrm{N}=21.23$ isotones compctes with the lowest $2 \hbar \omega$ state as being the nost bound state.

Other shell model calculations have been performed by Poves and Retamosa ${ }^{20}$ in the limit of $(0+2) h_{\omega}$ mixing. Even better agreement is noted in Fig. 2, however, there is considerable debate as to the validity of these calculations. For example, this calcuation could suffer from the exclusion of 4 hw and higher order excitations which are known ${ }^{21}$ to strongly mix with $0+2 \hbar \omega$ configurations causing a binding energy shift in the ground state. Yo the less, both approaches result in the same basi- finding - that a deformed intruder state is more bound than the lowest 0 h state giving rise to enhanced binding of $\mathrm{Z}=10-12$. $N=20-22$ nuclei. Given the very localized nature of this strongly prolate deformed region and the rich nuclear spectroscopy that these nuclei promise, additional investigations are clearly needed.

Fig. 2. A difference between the calculated wo neutron sep. aration energies and the experimental S :n values is ploted versus a atron number for the neutron ruch isotopes of $Z=\alpha$. 13. The symbols are as defimed in Fig. 1. The solid line indicates the the shell modn cal culations of Wildenthal ot al. ${ }^{11}$ for $\mathrm{N}<18$ or Warburton et al. ${ }^{19}$ for $\mathrm{S} \geq \mathrm{is}$. The dashed limes are for the 2tw woak rompling calculations of Warburton ot al. ${ }^{11}$ and the doted lines indicate the mixed $(0+2) h w$ shell model calculations of Powes and Retamosa ${ }^{20}$.

As is noted in Fig. I several new mass measurements have recently benn reported in the heavier nuclei by the TOFI group ${ }^{4.5}$. Two major features are worth mentioning here one is a sholl model comparison to several neutron-rich S and Cl isotopes and the second is the neutron and proton pairing encrgies for several $Z=2 l-26$ isotopes. Concrrning the firut topic. remarkably good agreement (mis deviation $=280 \mathrm{kel}$) between the experimental mass wi
 calculations of Hsieh et al. ${ }^{11}$ was found. This agreement confirms the general observation that in the middle of both proton and neutron shells the shell model works yuith well ewen within a limited basis space. while near shell closiares problems of en dewelop if the basis space is hat large enough to include important cross-shell contributions.

Finally. we would like to turn your attention to pairing energies and the guestion of their isospin dependence. An evaluation ${ }^{2,3}$ of pairing energy systematies has rewaled an apparent
 However. we suspect that the observed dependence rould arise from the natural correlation of pairing energy with mass number rather than with neuron-exeess since the manses waid in the evaluation covered a large mass range and that their fits where dominated hy thon' nuclei tying along the valley of j-stability (i.e., the average neutron-pxesss and mass muminer are strongly correlated along stability. Moreover, the recem pairing rargy study by Miller and Nix's finds that no inherent neutron excess dependence in the paring intraction itsulf is required. To experimentally answers this question a localized test of pairing merpios in a limited A region which covers a wille range of neutron-excess is needed. (iiven the strong increase in binding energy per nucleon and the individual character of light nuclei, the first regior. where such a test could be made is in the fp shell. Thus we have applied our latt'st mass measurements of neutron-rich of F_{2} subshell nuclei ${ }^{5}$ to examining the nentron excwis dependence of pairing energies (see Fig. 3).

Fig. 3. 1 plot of (a) $>, A^{1,1}$ and (b) $\Delta_{n} i^{1 / 3}$ versums i. Z) ${ }^{2} / A^{2}$. The solid symaires midirate the wrighted average value of data points reported by lin it al. ${ }^{5}$ and the opron circlow inth cate those data that wrere pervi ously known ${ }^{\text {s }}$. The dashod linnare the genbal fits of Jenwen it al. ${ }^{23}$ while the wolid lines are a fit to the data shown. The dor ted lines indirate \pm a a lituits of the latter fit.

Although there is a considerable amount of scater in the data and the latent meanure. ments have larger error bars than are desired, the data show considerably less neutron excmen depridence than that obtained by Jensen et al. ${ }^{23}$. (Note that we are not so concerned with the offse: difference, but rather the siopes of these fits.) In particular, for the neutron pairing energies the neutron-excess dependence is roughly half as large as that of Jensen et al. while the proton pairing energies are one quarter as large. Morr to the point, in the case of proton pairing energies no neutron-excess dependence at all is indicated at the le level. Clearly additional measurements of this type and further theoretical efforts are needed to elicit the underlying nature of nuclear pairing interactions and to show to which degree they are isospin dependent.

ACK.NOWLEDGEMENTS

One of us (DJV) wishes to acknowledge support from the Alexander von Humboldt Foundation and the warm hospitality of the Gesellschaft für Schwerionenforschung mbH, Darmstadt, while on leave frcm Los Alamos National Laboratory. This work was performed under the auspices of the L'.S. Department of Energy.

REFERENCES

1. N. A. Orr et al., Phes Lett, B 258:29 (1991).
2. A. Gillibert at al Rhis. Lell B 192:39 (108:).
3. A. Gillibert et al. Phic. Leit. I3 176:317 (1986).
4. X. G. Zhou et al., Phys, Lett. B 200:285 (1991).
5. X. L. Tu et al., Z. Phys._A 337:361 (1990).
6. J. M. Wouiers et al., Z. Phys. A 331:229 (1988).
i. D. J. Vieira et al., Phis, Rev. Lett. 57:3253 (1986).
K. G. Audi and A. H. Wapstra, Interim Atomic Mass Adjustment (Iune 19x9), private communication.
7. C. Thibault ot al., Ehys,_Rev. C 12:614 (1975).
8. C. Thibault et al.. in: "Atomic Masses and Fundamental Constants 6". J. R. Noien and W. Benenson, eds., Plenum, Vew York (1980) p.291; A. 11. Wapstra and G. Audi. Nucl Phis A432:1 (1985).
il. C. Dètraz et al. Nucl. Ploss A39.4:37× (1083).
9. W. R. Gibbs and A. C. Hayes. Phis. Kev. Let1, 67:1:305 (1091), and refermees therein.
10. R. Anne nt al. Phes. Lete. 18 250:19 (1990).
11. Г. Kobayashi et al.. Spectroscopy of the Exotir Nurleus "Li via Pion-DCX Reaction ${ }^{11} 13\left(\pi^{-} . \pi^{+}\right)^{11} \mathrm{Li}, \mathrm{K} E K$ Preprint $91-22$ (1991), submitted to Phas. Rev. Latt.
1i. (i. T. (iarvey and I. Kelson. Phys, Rey. Lell, 16:197 (1966); (i. 1. (iarvey, W. J. (irace. R. I. Jaffo, I. Talmi, Kev. Mod_ Dhis 41:S1 (1960).
12. 13. H. Wildenthal, Prog Lare_Nud_Plus 11:5 (198.1); 13. II. Wildenthal. M. S. C'urtin, 13. A. Brown, Dhis, Rev, C 2R:1343 (10x:3); 13. II. Wildenthal, private commanication.

1i. (i. Audi, private communication.
18. II. Stozenberg et al., Phys_ilev, Lalt gis:3104 (1990).
19. E. K. Warburton, J. A. Berker, and IB. A. Brown. Whis, Zev. (. 41:11.1" (1090).
20. A. Poves and J. Rotamosa, "A Theoretical Sudy of the Very Neutoon Rich Nuclei Around $\mathcal{N}=20^{\prime \prime}$. submitted to Nurl Heys: A. Powes and J. Relamosal. private communication.

DISCLAIMER

This repori was prepared as an account of wort smonmored by an agency of the Uniled Siates Government Neither the United Siates (iovernment nor any agency thereof, nur any of their employess, makes any warfanty, enpress or implied, or assumes any legal lability of renponsahility for the accuracy, completeness, of usefulness of ant information, apparatus, product, of pr:cess disilised, or represents that its use would not infi:nge privately owned rinhts Kefeience herein to any speciln commercial producit. prosess, or service by trade name. Irademart.
 mendalon. of fuvoing hy the linited Sitales fiovernment if any afency thereal the viewa and \quad umions of authom expressel herein dis not necessurily state ur reflect thone of the I inited Siaten Government or any anency therear

Direct Speciation of Motal and Matalloid Ions by Optical Spectroscopies

C. Drew Tait, David R. Janecky, David i. Clark, Scott A. Ekberg, Paul K. Dixon, John A. Musgrave; Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Philip C. Bennett; Department of Geological Sciences, University of Texas, Austin, TX 78713

Chemical Interactions between dissolved organics and mineral surfaces have been increasingly the focus of investigations of diagenetic processes in sedimentary basins and in oil fields. These interactions can significantly influence the release, sequestering and transport of metals in low- to moderate-temperature hydrothermal ore systems such as the Mississippi Valley Type (MVT) deposits, und be a critical component of creation, destruction and reorganization of permeability through complex formation with the metalloids Si and Al . Our recent efforts have concentrated on organic-metalloid interactions because of their importance in rock alteration/weathering and in primary and enhanced oil recovery (EOR) processes.

Molecular level spectroscopic investigations of organic/inorganic interactions provide important new information on sedimentary geochemistry through the identification of interactions over moderate temperature and pH ranges. Although the official title of this project indicates the use of only optical spectroscopies, a £gmbinatiog of Uv/Vis/IR absoption, Raman scatteing, and ${ }^{29}$ Si and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) experiments are actually employed. A major advantage of $\pm n t e g r a t i n g$ spectroscopic results with diagenesis studies is the ability to directly examine the mechanisms of interactions, even in complex matrices and with compering processes. Furthermore, we are extending these technfques to probe fluid inclusions with micro Raman and luminescence techniques to directly compare laboratory results with natural reservoir systems.

The mobility and transport of silica in natural waturs has been a subject of debate for over a century (JULIEN, 1879; ILER, 1979). Field studies have found direct correlations between dissolved organic carbon (DOC) and dissolved sillica in soll pore waters (CHESWORTH and MACIASVASCUEZ, 1985; WILLIAMS et al., 1985), lake and marine sediment pore waters (ASTON, 1983), shale pore waters (LERMAN, 1979), oil field formation waters (SURDAM et al., 1984), and oil-contaminated shallow groundwater (BENNETT and SIEGEL, 1987). This latter field study was especially important because it also correlated quartz etching under neutral pHs with DOC concentration. Therefore, matrixdestroying complexation of other rock-forming cationic
constituents, especially Al, could not be invoked. The DOC's implicated in these correlations consist primarily of complex organic acids, including aromatic, keto- and hydroxy-acids, and other partially oxidized carbon species (AIKEN, 1987;BAEDECKER et al., 1987). Enhanced silicon mobility is thought to involve either an increase in proton availability from these acids or significant organo-silica interactions.

Decreased pH due to organic acids cannot account for the increased silicon mobility and quartz etching found in the near nestral ($\mathrm{pH}=6$ to 7) oil-contaminated groundwater site near Bemidji, MN (BENNETT and SIEGEL, 1987), thereby implicating organo-silica interactions. Thes interactions may include hydrogen bonded charge transfer complexes as well as covalently bonded structures (ILER, 1979), although reliable direct evidence of these interactions is rare (FARMER, 1986; EVANS et al., 1990). Laboratory work by BENNETT et al. (1988) and BENNETT (1991) show that only poiy-functional organic acids increase the dissolution rate of quartz and the final solubility of the mobilized silicon, so our studies have primarily focused on oxalate and citrate anions. Oxalate is the simplest difunctional acid anion and is also found naturally in concentrations of up to 3 mm in Oil field brines (KHARAKA et al., 1984, 1987), while citrare is produced in significant quantities biologically and can exist in local environments, especially in soils near rockweathering fungi. Furthermore, citrate is more active in mobilizing silica than oxalate (BENNETT et al., 1988). Other naturally occurring acids such as fulvic and humic acids are also implicated in silicon mobilization, but are too complex for these initial spectroscopic studies.

In a previous paper, Raman scattering and infrared abscrption experiments purported to show spectroscopic evidence for a strong, covalently bonded silicon ester formed between oxalate and silicic acid (soluble silicon source) (MARLEY et al., 1989). As these experiments were only done at room temperature and at neutral pH , we decided to pursue them to examine the range of conditions in which this silicon ester could be expected to form. A diagnostic vibrational peak at $1305 \mathrm{~cm}^{-1}$, both Reman and $I R$ active ard attributed t' V_{C}-0-Si (MARLEY et al., 1989), was used as the ester marker. This marker was observed in the IR when $4<$ $\mathrm{pH}<12$, and also showed no dissociation to at least $125^{\circ} \mathrm{C}$. In fact, the spectrum was qualitatively unchanged to $175^{\circ} \mathrm{C}$, but leakage from the cell precluded any quantitative conclusions. This temperature stability was considered especially important because organics in oil field brines and sedimentary basins in general exist between 85 and $200^{\circ} \mathrm{C}$ (i.e. between the temperatures at which organic-corsuming bujs are significant and at which the organics decarboxylate - KHARAKA et al., 1984, 1987). Furthermore, this is also the temperature range of MVT deposit formation. However,
${ }^{13} \mathrm{C}$ NMR studies performed to corroborate the bidentate nature of the oxalate interaction with silicon did not revealed a ${ }^{13}$ C chemical shift between pure oxalate and oxalate.'ilicic acid solutions (Figure l), implying that any complexation must be below the NMR detection limit. Subsequent IR and Raman control erperiments involying oxalate-only solutions also detected the $1305 \mathrm{~cm}^{-1}$ "marker" peak (Figure 1). Moreover, when we went back to the original paper (MARLEY et $31 ., 1989$), we discovered that the published control experiments involved oxalic acid rather than oxalate! Our experiments to determine the ervironment under which a silicon ester could exist instead turn into experiments that show where no detectable ester for any other covalently bound Si-oxalate) is observed. Because silicon oxalate ester bond formation may be expected to strengthen at higher temperatures (see Al-oxalate data below), the negative findings from elevated temperature experiments are nonetheless a significant contribution.

In order to improve our detection limit to see if any significant organic-silicon interaction can occur, we have turned to ${ }^{29}$ Si NMR experiments. These experiments probe the chemical environment of the Si atom rather than the organic carbons, and hence allow us to try to push the equilibrium toward complex formation by using excess organic species. Near-neutral solutions of ${ }^{29}$ Si (introduced as enriched ${ }^{9} \mathrm{SiO}_{2}$ below the concentration that would result in dimerization / polymerization) and oxalate/citrate ligands were allowed to sit at room temperature for two months. Figure 2 shows the room temperature spectra for 2 mM Si alone and with 50 mm citrate or oxalate. No obvi力us new peak appears in the organic containing solutions, although a small hump wossibly appears at $\sim-50 \mathrm{ppm}$ in the oxalate spectrum. Therefore, mofinitive evidence for a silicon ester is found, either because it is below the detection limit of the spectrometer, close to the detection limit (if the -50 ppm peak is real), or it is buried under the host Si peak at -116 ppm. However, tnese experiments are continuing, and, because they are new and an interpretational database has not yet been established, no final conclusions can ret be drawr from them. A stiziking feature of tho spperra is the broadness of the parent Si peak (21 ppm or 1046 Hz), indicating exchange of the deuterium on $S_{i}(O D)_{4}$ and $D_{2} O$ solvent, where $D_{2} O$ was used to provide an NMR signal "lock" to eliminate any signal drift problem. Because the broad signal implies either intermediate exchange kinetics or multiple species idimers, trimers, etc.) with unresolved feaks, the temperature was both increased $\left(52^{\prime \prime} \mathrm{C}\right)$ and decreased in an effort to narrow the signal by entering the slow or fast exchange regimes. Furthermore, the $\mathrm{Si}(\mathrm{OD})_{4} / \mathrm{D}_{2} \mathrm{O}$ sample has also been diluted by a factor of 10 with $H_{2} 0$ to try tu eliminate the possibility that dimers/polymers contribute to the peak broadness. Not. all of this data has been analyzed yet. However, the fact.
that $200 \mu \mathrm{M}$ Si species can be observed with NMR is remarkable as it is a directly relevant environmental concentration. For example, [Si] in the Rio Grande reaches concentrations of 320 M.

Besides silicon(IV), aluminum(III) is another major cationic constituent of rock d: i soil matrices. Aluminum is known to form multiligand compleies with oxalate at room temperature (BOTTARI and CIAVATTA, 1968; SJOBERG and OHMAN, 1985; THOMAS et al., 1991). In fact, oxalate solutions can leach aluminum from the relatively insoluble solid $\mathrm{Al}_{2} \mathrm{O}_{3}$ by stirring a slurrey with sodium oxalate a* near neutral pH's (between 5 and 8). Aluminum-oxalate peaks are found in boch IR and Raman spectra. Besides increasing the weathering of silicace minerals and consequently affecting geochemical cycles, biochemical cycles may also be affected by the simultaneous liberation of toxic Al and nutrients such as Ee, Ca, K, and Mg Erom mineral matrices (SJOBERG and OHMAN, 1985).

The effects of $A l$ complexation by oxalate are easily Eollowed spectroscopically, in contrast to the difficulty presented by $S i$ complexation described above. Specifically, we have initiated experiments to determine the temperature dependerce of Al-oxalate species, particularly to the moderate temperature regime relevant to sedimentary basins. As a pre-requisite, we first had to determine the spectroscopic signatures of the individual Ai (ox) nan species. This process inas been aided by previous room temperature speciation studies, mostly based on potentiometric results, which defined experimental conditions dominated by different complexes. Figure 3 shows the results of modifying the Al/oxalate ratio on the spectra. Since che log of the step-wise association constants for $A 1(O X)^{+}$, $A 1(O X) 2^{-}$, and $A 1(O X) 3^{-1}$ are 6.0, 5.0, and 4.0 respectively (BOTTARI and CIAVATTA, 1968 ; SJOBERG and OHMAN, 1985), the $1428 \mathrm{~cm}^{-1}$ peak seen to dominate at oxalate/Al ratios $>{ }^{3}$ can be assigned to Al (ox) 3^{3-}, while the peak at $1408 \mathrm{~cm}^{-1}$ can be assigney to $A 1(0 x) 2^{-}$. A peak associated with $A 1(0 x)^{+}$can not be definitely assigned, either because it is weak or buried beneath other peaks. The assigned peaks represent coordinated oxalate vibrations (major contributions from $C-O$ and $C-C$ stretches) with different force constants due to Al complexation. Peak assignments are also consistent with changes in oxalate availability as a function of FH (SJOBERG and OHMAN, 1985).

The major solution effert of increasing temperature is the decrease in solvent dielectric constant (BRIMHALL and CPERAR, 1987; SEWARD, 1984). Highly charged species are therefore destabilized relative to lower charyed ones, and stability constants change to reflect this. Therefore, when conditions were set for equal concentrations of Al(ox) 3 and $A(O X)_{2}^{-}$at room temperature, we expected an increase in
temperature to lower the concentration of the highly charged Al (ox) $3^{\text {3- }}$ species. However, figure 4 shows no change in the populations of the two species, implying an increase in the association constant for Al(ox) 3^{3-}. This is even more remarkable when the lower availability of oxalate is taken into account in this $\mathrm{pH}=3$ solution, as logk for oxalic acid increases from -4.29 at $25^{\circ} \mathrm{C}$ to -4.42 at $50^{\circ} \mathrm{C}$ and -4.69 at $80^{\circ} \mathrm{C}$. Therefore, our emphasis has shifted to competition studies for oxalate as temperature is changed. For sedimentary basin geochemistry, a competing cation such as zinc, calcium, or iron could be tried. The oxalates of the first two, however, are not soluble enough for spectroscopic examination, so we will continue our experiments with Al (III) and $\mathrm{Fe}(\mathrm{III})$ competition for oxalate.

With enhanced understanding of rock matrix - organic interactions and spectral signatures of these interactions provided by the laboratory analogue studies, we intend to pursue investigations of organic species in fluid inclusions in sedimentary basins such as the oil-producing Austin Chalk. Geochemical issues of importance include thermal maturation and porosity of the surrounding rock matrix, fetroleum migration history, and interactions of enhanced oil recovery (EOR) techniques. Fluid inclusions allow us to study these issues because they preserve the paleo-chemistry of the fluids that led to oil field development and contain the well-equilibrated fluid/mineral surface environment that is needed to predict the effects of EOR techniques. A range of temperatures is also readily accessible. Toward this end, we are acquiring a Raman microprobe accessory to allow examination of the vibrational fingerprints of organic species in inclusions down to 5 microns in size, and also the monochromaror attachments for a UV adapted microscope to allow us to use synchronously scanned fluorescence. This latter technique has recently been used with macroscopic samples to add molecular specificity to sensitive luminescence measurements (PHARR et al. 1991; PHARR, 1991; CABANISS, 1991), and will be adapted here to microscopic measurements $: 0$ probe the organics in fluid inclusions. The combined application of Raman microprobe and fluorescence will provide important cross checks. Demonstration of microscopic scale results will allow investigations of a diverse range of problems, including paleochemistry / paleoclimate of Yucca Mountain and ore-deposits in geothermal systems such as Carlin type gold deposits with organic-rich fluid inclusions (Jeff Hulen, Univ. of Utah, personal communication). Note that organics are unexpectedly present and largely ignored compcnents in some geothermal systems such as the Valles Caldera drillcore fluid inclusions (MUSGRAVE and NORMAN, 1991; MUSGRAVE et al. 1991). Organic species are also often discissed but little quantified in many other systems, nartirularly with respect to potential coupled interactions with metais and metalloids which are direct applications c! this work.

REFERENCES

Aiken, G.R.; Thorn, K.A.; Brooks, M.H. (1987) Nonvolatile organic acids in grolnd water contaminated with crude oil. U.S. Geol. Survey Open-Eile Rept. 87-109.

Aston, S.R. (1985) Silicon Geochemistry and Biogeochemistry. Academic Press, New York.

Baedecker, M.J.; Cossarelli, I.M.; Hopple, J.A. (1987) The composition and fate of hydrocarbons in a shallow ylacialoutwash aquifer. U.S. Geol. Survey Open-File Rept. 87-109.

Bennett, P.C. and Siegel, D.I. (1987) Increased solubility of quartz in water due to complexation by dissolved organic compounds. Nature 326, 684-687.

Bennett, P.C.; Melcher, M.E.; Siegel, D.I.; Hassett, J.P. (1988) The dissolution of quartz in dilute aqueois solutions of organic acids at $25^{\circ} \mathrm{C}$. Geochim. et Cosmochim. Acta 52, 1521-1530.

Bennett, P.C. (1991) Geochin. et Cosmochim. Acta 55,
Bottari, E. and Ciavatta (1968) , Gazz. Chim. İal. 1004.
Brimhall, G.H. and Crerar, D.A. (1987) Ore fluids: Magmatic to supergene. In Thermodynamic Modeling of Geological Materials: Mircrals, Fluids, and Mrits; (eds. I.S.E. Carmichael and H.P. Eugster; ; Review in Mineralogy 17 pp. 255-321.

Cabaniss, S.E. (1991) Synchronous fluorescence studies of metal-fulvic acid equilibria [abs]. Conference on Metal Speciation and Contamination of Soil, May 22-24, Jekyll Island, GA.

Chesworth, W. and Macias-Vasquez, F. (1995) pE, pH, and podzolization. Amer. J. Sci. 285, 128-146.

Evans, D.F.; Parr, J.; Coker, E.N. (1990) Nuclear Magnetic Resonance studies of silicon(IV) somplexes in aqueous solution - I. Tris-Catncholato complexes. Polyhedron, 9, 813-823.

Farmer, V.C. (1986) Sources and speciation of aluminum and silicon in natural waters. In Silicon Biochemistry (eds. D. Evered and M. O'Connor), pp. 4-23. J. Wiley \& Sons, New York.

Iler, R.K. (1979) Chemistry of Silica. Wiley-Interscience, New York.

Julien, A.A. (1879) On the geological action of the humus acids. Amer. Assoc. Adv. Sci. Proc. 28, 311-410.

Kharaka, Y.K.; Law, L.M.; Carothers, W.W.; Goerlitz, D.F. (1984) Role of organic species dissolved in formation waters from sedimentary basins in mineral diagenesis. In The Society of Econ. Paleontologists and Mineralogists Symposium on Relationship of Organic Matter and Mineral Diagenesis (D.L. Gautier, Ed.) 38, pp. 111-122.

Kharaka, Y.K.; Maist, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L. (1987) Geochemistry of metal-rich brines from Central Mississippi Salt Dome Basin, USA. Appi. Geochem. 2, 543-561.

Lerman, A. (1979) Geochemical Processes, Water and Sediment Environments. J. Wiley \& Sons, Toronto.

Marley, N.A.; Bennett, P.; Janceky, D.R.; Gaffney, J.S. (1989) Spectroscopic evidence for organic diacid complexaton with dissolved silica in aqueous systems. I. Oxalic acid. Org. Geochem. 14, 525-528.

Musgrave, J.A. and Norman, D.I. (1991) Fluid inclusion evidence for the evolution of the Sulphur Springs hydrothermal system, Valles caldera, New Mexico. Econ. Geol. submitted.

Musgrave, J.A.; Charles, R.W.; Goff, E.; Norman, D.I. (1991) Geochemistry of hydrothermal alteration and mineralization, Sulfur Springs, Valles caldera, New Mexico, in prep.

Pharr, D.Y. (1991) Analysis for groundwater petroleum contamination using synchronous scanning iluorescence [abs]. 2lst Internationa: Symposium on Environmental Analytical Chemistry, May 20-22, Jekyll Island, GA.

Pharr, D.Y.; McKenzie, J.K.; Hickman, A.B. (1991) Fingerprinting petroleum contamination using synchronous scanning fluorescence spectroscopy. J. Groundwater, submitt 2 d.

Seward, T.M. (1984) The formation of lead(II) chloride complexes to 3000 C : A spectrophotometric study. Geochim. et Cosmochim. Acta 48, 121-134.

Sjoberg, S. and Ohman, L. -0. (1985) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. Part 13. A Potentiometric and 27 Al nuclear magnetic resonance study of speciation and equilibria in the aluminium(III)-oxalic acid-hydroxide system. J. Chem. Soc., Daltion Trans. 2665-2669.

Surdam, R.C.; Boese, S.W.; Crossey, L.J. (1984) The chemistry of secondary porosicy. In Clastic Diagenesis (eds. D.A. McDonald and R.C. Surdam); AAPG Memoir 37, pp. 127-150.

Thomas, F.; Masion, A.; Bottero, J.Y.; Rouiller, J.; Genevrier, $F . ;$ Boudot, D. (1991) Aluminum(III) speciation with acetate and oxalate. A potentiometric and 27 Al NMR study. Environ. Sci. Technol. 25, 1553-1559.

Williams, L.A.; Parks, G.A.; Crerar, D.A. (1985) Silica diagenesis. I. Solubility controls. J. Sediment. Petrol. 55, 301-311.

EIGURE CAPTIONS

1.(a) FTIR spectrum of a sodium oxalate / silicic acid mixture at neutral pH and the corresponding pectrum of sodium oxalate with no added silicon (inset, on different horizontal scale). The $1308 \mathrm{~cm}^{-1}$ peak is therefore not diagnostic of silicon ester formation as concluded by MARLEY et al. (1989). (b) Carbon-13 FT-NMR specirum of a sodium oxaiate / silicic acid mixture at neutral $p D$ and the corresponding spectrum of sodium oxalate with no added silicon. (Because the spectra were obtained in $D_{2} O$ to provide a frequency lock from deuterium to prevent frequency drift, $p D$ is rioted rather than pH). The identical chemical shifts argue for identical chemical environments for the oxalate carbons - namely, one not involved in a strong covalent bond witn the silicon compound.
2. Room temperature ${ }^{29}$ Si NMR spectra of (from bottom spectrum to top) $2 \mathrm{mM}{ }^{29} \mathrm{Si}$ (OD) 4 (from an enriched 97\% ${ }^{29} \mathrm{SiO} 2$ silicon source) with no organic ligand ($p D=6.7$), 2 mM ${ }_{2} \mathrm{~S}_{\mathrm{Si}}(O D)_{4} / 50 \mathrm{mM}$ sodium citrate $(\mathrm{PD}=7.4)$, and 2 mM $29^{5 i}(O D)_{4}^{4} / 50 \mathrm{mM}$ sodium oxalate $(\mathrm{PD}=7.4)$. Note that the spectra were taken in $D_{2} 0$ to provide a frequency lock to prevent signal drift, and that neutral $D_{2} 0$ has a pD of 7.5. For our 250 MHz spectrometer, we used a $10 \mu s e c$ pulsewidth (180 pulsewidth measurement for Si(OD) 4 was determined to be 43 usec), a relaxation time of 90 seconds (Tp for silicon is notoriously long), and an acquisition time of 0.82 sec . The lack of significant spectral change, despite the excess organic ligand, demonstrates the weakness (or extremely slow kinetics) of any chemical reaction between the silicic acid and organic bases.
3. Raman vibrational spectra from solutions of different $\mathrm{Al}^{3+} /$ oxalate ${ }^{2-}$ concentration ratios at near neutral pH . Note that at near neutral pH , there is considerable precipitation for the (1:1) and (1:2) samples, as well as the presence of other Al-oxalate species such as $\mathrm{Al}_{2}(\mathrm{OH})_{2}(\mathrm{OX})_{2}$ and $\mathrm{Al}_{3}(\mathrm{OH})_{3}(\mathrm{OX})_{3}$ (SJOBERG and OHM V , 1985) These additional species may be the cause of the $1449 \mathrm{~cm}^{-1}$
peak observed only at these concentration ratios. The peaks at $1408 \mathrm{~cm}^{-1}$ and $1429 \mathrm{~cm}^{-1}$ are assigged to oxalate vibrations from $\mathrm{Al}(\mathrm{Ox})_{2}^{-}$and $\mathrm{Al}(0 \mathrm{x}) 3^{-1}$ respectively.
4. Temperature dependent Raman spectra for a solution of 20 $\mathrm{mM} \mathrm{Al}{ }^{37} / 50 \mathrm{mM}$ oxalate at $\mathrm{pH}=2.9$. Under these conditions, the ratio of $\mathrm{Al}(\mathrm{Ox}) 2^{-}$to $\mathrm{Al}(0 \mathrm{x}) 3^{3-}$ is 1 at $25^{\circ} \mathrm{C}$ (SJOBERG and OHMAN, 1985). Although the $142 \mathrm{~g} \mathrm{~cm}^{-1}$ peak from Al (Ox) ${ }^{3}$ was expected to lose intensity relative to the $1408 \mathrm{~cm}^{3}$ peak of $\mathrm{Al}(\mathrm{Ox}) 2^{-}$as the temperature was increased, the spectra show a lack of change with temperature, indicating that the third association constant (Al (Ox) $2^{-}+O x^{2-}-->$ Al (Ox) 3^{3-}, actually inçreases with temperature, despite the high charge of Al (Ox) 3^{-7} and the lower availability of oxalate at higher temperatures.

[NFRARED ABSORP'TION SPECTRA

Silicic Acid / Oxalic Acid Mixture $\mathrm{pH}=8.7$

MAX= 0.50

NMR SPECTRA

$$
\begin{aligned}
& \text { Silicic Acid / Oxalic Acid Mixture } \\
& \text { FD }=8
\end{aligned}
$$

Sodium Oxalate (no Silicic Acid) $\mathrm{pD}=8$

fitle STANDARDIZED RADIOLOG[CAL. HAZARD ANALYSIS FOR A BROAD BASED OPERATIONAL. SAFETY PROGRAM
auinorss William W. Wabilan III
LARRY (1. ANDREW.;
sugmitteo ro [NTFRNAT[ONAI RADIAT:OS PPOTECTION ASSOCIATION (LRPAB)

DISCLAIMER

BTANDAKDIZED RADIOZOGICAL HAZARD NALIY8IB FOR A BROAD BAEED OPERATIONDL BRFETY PROGRNM

W. Wadman $I I I^{1}$ and L. Andrews ${ }^{2}$
Health and Safety Division
Los Alamos National Laboratory (LANL) Los Alamos, New Mexico

ARETRACT

The Radiological Hazard Analysis (RHA) Manual provides a methodology and detailed guidance for systematic analysis of radiological hazards over a broad spectrum of program functions, housed in a wide variety of facilities. Radiological programs at LANL include: research and experimentation; routine materials operations; production; non-destructive examination or testing; isotope and machine produced radiations; chemistry; and metallurgy. The RHA permits uniform evaluation of hazard types over a range of several orders of magnitude of hazard severity. The results are used to estimate risk, evaluate types and level of resource allocations, identify deficiencies, and plan corrective actions for safe working environments.

INTRODOCTION

Laboratories within the U.S. Department of Energy are undergoing significant changes in the manner by which they conduct operations. Operational Health Physics groups are not an exception. With bucgetary constraints becoming more severe, staffing and resources strained or severely limited, methods had to be devised to provide equal or better service in spite of the hardships. Standardization of the methodology and consistency of evaluating the types and levels of radiological hazards involving several nundred projects in over 150 facilities, spread over 43 square miles, was essential for the operational Health Physics personnel. The Standardized Radiological Hazard Analysis Manual was determined to be one of several practical working tools for liealth Physicists in the field. The 300 page manual starts with a detailed index from which an analysis plan is constructed. Once in the field, the use of the manual index provides ready access to guidance, assessment details, and forms for other hazards or issues that were either unexpected or not obvious during the initial assessment. The guidance contained in the manual is detailed, but allows for independent input by each Health physicist that uses it. The training on the use of the RHA Manual emphasizes that the guidance should be used as a tool to direct and focus analysis thought processes, but should not limit the RHA performance to merely a check list task.

Data from the detailed Radiological Mazard Analysis report sheets is subsequentiy input to a commercialıy available relational database which is both an analysis tool and the database for each and every facility for which a Radiological Hazard Analysis has been performed.

Blank pages of forms and reports are obtained from stock to replace those used from the binder to he ready for the next facility analysis.

DEVELOPMENT OF THE REA MNNUAL

There are existing methodologies for risk assessments of specific processes, and a few for wulti-function facilities. The Nevada Operations Office of the DOF, produced the 150 page "Radiological Saf =ty Functional Appraisal and Program Review Guide," in 1990. (DO90) This has direct application to DOE/NVO facilities. It is based upon a radiological environmental program. A method for determining hazard classifications of DOE facilities was developed at Battelle PNL (Lu91). The hazard classification required a walkthrough by an inspection team of persons with considerable expertise in the various disciplines. More than one DOE Operations Office required the technique to be used by operating contractors of DOE facilities, to determine gross hazard classification values for their facilities. These determinations were not sufficiently in-depth to provide the level of detail LANL felt to be necessary for our operational hazard evaluations. The technique also did not provide useful data regarding operational hazards routinely faced by facility operations personnel, or health and safety support personnel.

The concept of the Standardized Radiological Hazard Analysis Manual was originated by one of the authors (LA). With access to a consultant with a brcad spectrum of "hands-on" experience in the field of Health Physics, Industrial Hygiene, and Radiological Environmental Monitoring Programs, the project was undertaken.

The manual was conceived as a light-weight, notepad-sized document with outline formatted "reminders" for review while doing field facility walk-throughs. The document is now about 300 single side printed pages, maintained in a three inch thick binder, and requires training in its use to provide familiarity and a reasonable level of surety that it will be used uniformly by the trained staff.

Each type of radiological facility or operation was considered as an incependent unit during the drafting of the RHA Manual. Details from observations, physical measurements, radiological measurements, locations cf components, and similar pertinent data, are called out in the text of each hazard analysis section. In the initial draft, in beth the manual and the software, each hazardous item was separate, as was each mitigation process, and was considered only for that room, building, or process. Subsequently, common items, such asiglove boxes, filtrations, detection and alarm systens, were coded in the relational database software. This served to provide more rapid input, reduction in errors, and sonservation of RAM and storage required by the computer program.

Hazird levels, risk assessments and hazard mitigating equipment or engineered feJtures are analyzed in the software. All values obtained from the analytical results, relate to hazards present during normal operational circumstances. No attempt has been made to extend the analysis into accident scenarios. With the avallability of information regarding radionuclides, inventory on hand, physical and/or chemical form, and details of the
monito: ing sys \ddagger ems, and ventilation systems, assessing limited accident scenarios remains a possibility.

Each developmental iteration has only expanded the size of thr overall program, both software arid Manual. Some future consideration may be to purchase the relational database "engine", and write the specific RHA database applications program. Several advantages would be, easier commercial or public domain releases of the software component which could save 50\% of the RAM occupied by features that are not used from the standard database product. Time savings could be realized by having direct page access to pertinent input requirements, rather than have to page through irrelevant subject matter to arrive at the appropriate page for the next input.

TYPES OF PACILITIES INCLUDED

The RHA Manual is designed to be used to evaluate radiological hazards associated with the following programmatic alements:

Research and Experimentation: explosion dynamics; armor, antiarmor: criticality: weapons enhancement; controlled thermonuclear reactions; free electron lasers,
Rcutine operations: reactor operations; radioactive waste management: weapons production related operations; weapons testing operations; retirement storage operations,
Production: quality control; materials purity; lathe and milling shop operations: purification; enrichment; weapons related activities; medical aspects of LAMPF operations; X-ray crystallography confirmations,
Non-Destructive Examination or Testing: fixed X-Ray radiographic facilities; fired facility Van de Graaf radiography; high speed x-ray of explosive events; portable radiographic unit safety; eddy current testing of radioactive materials; magnaflux testing of radioactive materials; betatron narrow beam, thick target radiography,
Isotope Produced Radiat is: calibrations: sealed source radiography; activet.a scelerator component radiclogical protection; heat source 1 diological protecticn; incidental weapons component axposure control: weapons debris analysis; reactor fuel processing hot cell operations.
Machine Produced Radiation:: tos Alamos Meson Physics Facility; IBF tandem Van de Gradf: single stage Van de Graf; free electron laser: plasma focus devices; pulsed po'ver conversion; health center x-rays; neutron generator facility; electron guns; ion implantation,
Chemistry: analytical: alloy: quality control: quality assurance: medical isotope purification not cell operations,
Metallurgy: analytical; developmental; design improvement: stability improvement; yield improvement; induction heating; laser isotope separation,
Transportation: On-site, inter-area, intra-area, for safety and compliance with State and Federal shippinf requirements on public roads.
Compliance R.ssessment: Confirm compliance with Health and Safety
requirements imposed by all applicable state, Federal Agency requirements, laws, DOE Orders.

In the above 10 major areas, each of the 56 categories of operation, project, or facility has its own set of RHA forms. Each analysis must te independent in-so-far that it is not a component of a larger complex. If the latter is the case, the RHA forms are grouped into a facility package. The results of the full analysis of the units as a system will result in a different hazard rating because of the concurrent and dependent mode of operation.

CONCLOEIONS

Present operating facility inspections are performed with a perspective focused on the problem of immediate concern. The use of the RHA Manual will provide consistency for sush evaluations. Performing full facility radiological hazards analyses will accomplish several objectives: Advance knowledge of the facility's or operation's hazards; provide a global perspec':ive of concurrent but unrelated hazards of adjacent operations; consistent or uniform approach to evaluations and solutions; applications of "lessons learned"; greater confidence to younger professionals in the Health Physics Groups; a crosstraining tool for professionals and technicians not familiar with areas outside of their duty areas; a computerized database with rapid access for rapid retrieval for the line organization, security, fire, and emergency response teams. Two peripheral uses of the RHA Manual may be:

1. The RHA may have use as a formal tool during the drafting of facility Safety Analysis Reports (SAR) and Updated Safety Analysis Reports (USAR).
2. There may be some value in training the facility supervision to use the system, to provire thom with the capability to perform more frequent reviews of their facilities than can the limited staff of operational Health Physicists. This is beneficial for the Laboratory through the heightened awareness for radiological hazards in the workplace.

1 Private Consultant to LANL. ${ }^{2}$ IANI. HS-12 Health Physicist

REFERENCEB

Do90 U.S. Department of Energy, Nevada Operations Office, Environmental Compliance Branch, Environmental Protection Division, Ias Vegas, Nevada. "Radiological Safcty Functional Appraisal and Program Review Guide". (1990)

Luil Lucas, D.E., A Practical Approach to Mazard Classification. Rev 1., Battelle, Pacific Northwest Laboratories, Richland, Washington. March 1991.

This work was performed under the auspices of the University of California operated Ios Alamos National Iaboratory.

[^0]: -Supported in Part by the U.S. National Science Frundation. Grani Number PHY 80.13018

[^1]: - Wirk mupported it pari by U.S Departmat of Eaergy Contract ASOS-80ER 10006

[^2]: 1: : MAliYi, lE Lun

[^3]: -Suppored in Part by the I's Nallomal Srienie Foumiation.

[^4]:
 い隹学

[^5]:
 Huran ('irp, Nowhury, ()hod dokis

[^6]:

 - I'SA Svitems. L.d. I unginome ('o kosol

[^7]:
 FF 91%

[^8]:

[^9]:

[^10]: I In Raf. [4] the conatent ($\left.g_{i, L}^{V}\right)_{1,}$ in denoted an $\left(C_{i, 1} / \sqrt{2}\right) y_{1,}^{I I}$: the rorreapondence betment the notationa for the other conataite is andigerima.

[^11]: d We remind the reater that we ume the tenil "nentrituatale

[^12]: ${ }^{3}$ Further cources of poaitrons could be neutrince from ordinary μ^{+}-decay due to oecillations, or even without oecillations if the weak eigenatate neutrinot coniain heavy mea-eigenataten which cannot be produced in the decay(14). A Majorana $\nu_{a} L$ can alen produce a positron, but the amplitude is proportional to the neutrino mase.
 1 It should be noted that the limit (12) holds only for such decaye $\mu^{+} \rightarrow e^{+} n_{A} n_{s}$ where the opectrum of n_{4} (or the apectrum of n_{s}, if n_{g} can produce poaitrone) is the aame or the opectrum of $\bar{\nu}_{\mu}$ in μ^{\dagger}-decay. I an grateful to R. L,. Rurman for calling my altention to this eepect of the experiment. The experiment of Hef. (12], in which the reaction $\nu_{r}+\mathrm{e}^{-} \rightarrow \mu^{-} n_{\text {e }}$ rather than munn decay was searched for, aetn allmit only for the branching ratio of $\mu^{+} \rightarrow e^{+} n_{n} V_{m}$.
 3 The ν_{4} and ν_{μ} in this deray mode are by iefinition identica or nearly nquad to the weak eigensiateen ν_{a}^{\prime} and ν_{μ}^{\prime}. If ν_{a} is a Majurana neutrino, then fur left-handed (right-handed) couplinge $\nu_{\text {a }}$ to the right-handed (left-handed) component of v_{a}.
 " It la interesting to mention however the model of Ilef. [10], where it wes ahown that the three-fandly ntenderd model for the leptona can be extended in auch a way that a multiplicative puan. tum umabier le roneervei, witle the conastration of the lepton fantily numbere ie broken. 'Thie te wheved by raquiting invari ance uf the unbroken theory uniter the permutation groups S_{n}, and

[^13]: If the cuarke aut treated In thie model in the mane way as tlie feplons, the model runa litu contraliction with experiment.

 7 This is andogroua to the coupiling of a doubly charged alugtet
 [17].

[^14]: *This wort was sponsored by the US Deparment of Energy. Ofllee of Safegurde and Security.

[^15]:

[^16]: - Ihim mork wan partially nupportual by the (Altur of Arom ('ontrol

