FINE LIBRARY
 PRINCETON UNIV.

AECD-1870
(IADC-464)

METHODS OF OPACITY CALCULATIONS

py
Harris Mayer

Los Alamos Scientific Laboratory

```
Date of Manuscript: October 31, 1947 Date Declassified: April 9, 1948
```

This document is for official use. Its issuance does not constitute authority for declassification of classified copies of the same or similar content and title and by the same author.

Technical Information Branch, Oak Ridge, Tennessee AEC, Oak Ridge, Tern., $4-8-49-\cdots 400-A^{4} 771$
II.

ABSTRACT

Mothods for caloulating the opacity of materials at high temperatures are discussed in this report. Minor improvements are outlined for the treatment of continuous absorption processes, and a small error usually made in treating the scattering process is corrected. In contrast to all previous oaloulations of opacity, the effect of line absorption is carefully examined, for it may well be the dominant process under oertain conditions of temperature and density. Detailed methods for calculating the line absorption contribution are, therefore, developed. To illustrate the principles involved, the opacity of pure iron at a temperature of 1000 volts and normal density is worked out in detail. For this case, the opacity. is $20.2 \mathrm{~cm}^{2} / \mathrm{gram}_{\text {, }}$ corresponding to a mean free path for radiation of $\operatorname{sa81} \times 10^{-3} \mathrm{~cm}_{\text {。 }}$ The ratio of the opacity including line effects to the opacity without Ines is 3.2..

TABIE OF CONTENTS

Chapter

> Page
ABSTRACT II
I INTRODUCTION2
II THE PROCESSES CONTRIBUTING TO THE OPACITY 6

1. Line Absorption 7
2. Photo-electric Absorption 11
3. Free-Free Absorption 13
4. Pair Production 15
5. Scattering 16
IIITHE OPACITY COEFFICIENT19
IV STATISTICAL MECHANICS OF IONIZED ATMOSPHERES 25
6. Introductory 25
7. Quantum Mechanical Description of the System 25
8. Statistical Mechanics - Independent Electron Approxima- tion 29
9. Statistical Mechanics - Dependent Electrons 31
10. Ionic Ocoupation Numbers 38
11. The Influenoe of Nuclear Motion 42
12. Fluctuations 46
V EFFECT OF LINES ON OPACITY. METHODS FOR TREATING LINE CONTRIBUTION 47
13. Separation of Line Contribution 47
14. Effect of a Single Line 48
15. Effeot of Two Lines 55
16. Effect of Many Line Spectrum 60
17. General Statistioal Features of Lines. Statistical Treatment of the Effect of Lino Spectra. 65
18. Statistical Treatment of Absorption Edges 74
19. Simplified Practioal Treatment of Lines 79
Chapter Page
VI SUMMARY OF FORMULAE FOR COMPUTING OPACITIES 81
20. Oocupation Numbers 81
21. Thermodynamic Funotions 83
22. Continuous Opacity 83
23. Line Absorption Contribution 86
VII SIMILARITY PROPERTIES AND LIMITING FORMS FOR THE OPACITY 89
24. Similarity Transformations 89
25. Limiting Values for the Opacity 91
26. Variation of Opacity with Temperature, Density, and Atomic Number 94
VIII TEE OPACITY OF IRON 97
27. Occupation Numbers 97
28. Thermodynamic Propertios 100
29. Continuous Opacity 101
30. Contribution of Lines 104
a. Position 104
b. Doppler Breadth 108
c. Natural Breadth 108
d. Collision Breadth 111
e. Stark Breadth 114
f. Treatment and Effect of Lines 118
APPENDIX I
Thermodynamic Functions and Pressure 121
APPENDIX II
Treatment of Non-Uniform Free Eleotron Distribution 127
APPENDIX III
Formulae and Tables of Gaunt Factors 129
LIST OF TABLES AND FIGURES ∇
GLOSSARY OF NOTATION VII

LIST OF TABLES

Table Number

I FORMULAE FOR DIPOLE OSCILLATOR STRENGTHS 131

Ia DIPOLE OSCILLATOR STRENGTHS 132
107

Title
Page
NON-RELATIVISTIC SCREENING CONSTANTS $\sigma_{i, j}$ 133
ONE ELECTRON ENERGY LEVELS 134-5
AVERAGE SQUARE RADIUS OF ELECTRON ORBITS $\overrightarrow{\mathbf{r}}^{2}$ 136
THE FREQUENCY FACTOR $F(a, u) / F(a, \infty)$ FOR.LINES . OF EQUAL STREMGTH 137-8THE WEIGHTING FUNCTION $W(u)$ AND THE STRONGR FUNCTION $\int_{0}^{u} W(x) d x \quad 139-140$FORIUULAE FOR THE NON-RELATIVISTIC ONE ELECTRON GAUNT FACTORS141-2VALUES OF THE GAUNT FACTORS143-5THE INTEGRAL $\frac{1}{\sqrt{\pi}} \int_{a}^{\infty} x^{-\frac{1}{2}} e^{-x} \operatorname{lnx} d x$LIST OF TABLES FOR CALCULATIONOF THE OPACITY OF IRON
OCCUPATION NUMBERS OF IRON 98
IONIC OCCUPATIONS OF IRON. 99
NUMBER OF K ELECTRONS PER ATOM IN VARIOUS ION TYPES 99
ENERGY AND PRESSURE 100
CONTINUOUS OPACITY 104
IONIZATION LIMIT 105
CONTRIBUTION OF ADDITION BOUND ELECTRONS TO LINE POSITION 108
SPECTRUM OF K ELECTRON LINES 109
CONTRIBUTIONS TO NATURAL AND COLLISION BREADTHS 113
BREADTHS OF LINES 117
DATA FOR LINE GROUPS 119
RESULTS OF OPACITY CALCULATIONG 120

A Reciprooal length, defined by (6.21).
A Helmholz free energy, (AI.4).
a. Bohr radius $=.5291 \times 10^{-8} \mathrm{~cm}$.
$a_{n i}$ defined by (5.72). (6.46).
a_{Z}, radius of ionic sphere, (4.24)
$B=\frac{\mathrm{Mc}^{2}}{2 k u_{0}^{2}}$ in (5.33)
$B=\frac{2 h \nu^{3}}{e^{2}} \frac{e^{-u}}{1-e^{-u}}$ as defined by (3.8)
$b_{b_{2}}(\nu)$ dispersion factor for line absorptions (2.6)
b^{\prime} (u) dispersion factor for line absorption (5.11a)
c velocity of light
$o\left(\mathcal{E}_{f}\right)$ density of states of the free electron per unit energy interval (2.29)
$o_{i z}$ degeneracy of the ith ionic level.
c_{f} density of initial state per df (2.26)
$D=-\frac{u^{3} \mu_{c}}{A}$ reduced absorption coefficient (6.20)
E_{a} energy of quantum state a of an ion (2.4)
E_{J} energy of quantum state J of entire system (4.11)
e positive electronic charge
$f_{b a,} f_{i}$ electron number defined by (2.3)
$F(\gamma, w)$ function defined by (2.34)
$g_{b \rightarrow f}(\nu)$ Gaunt factor for bound-free transitions (2.22)
$g_{f f}(\nu)$ Gaunt factor for free-free transitions
$\bar{E}_{f f}$ Average Gaunt factor defined by (6.27)
$g_{n k}(u)$ Frequency factor (5.82)
$g^{\prime} n k(u)$ Frequenoy factor (5,71)
h Planek's constant
$h=\frac{h}{2 \pi}$
$I(\nu)$ Specific intensity of radiation see (2.2)
In Ionization energy of an electron bound in the n shell, (2.21)
K Mean opacity coefficient per unit mass $\mathrm{cm}^{2} / \mathrm{gm}$.
$k \quad$ Boltzmann's constant
$\overrightarrow{\mathrm{k}}$ Wave number vector in direction of propagation, (2.1)
l_{ν} Mean free path for radiation of frequency $\nu,(3.15)$
M Mass of absorbing atoms, (2.16)
M_{2} Gram atomic weight, (6.1)
M_{K} Number lines in Kth class, (6.44)
m Mass of electron, (2.3)
$H_{0}=6.023 \times 10^{23}$ Avogadro's Number
$N \mathrm{~b}$ Number of atoms in initial state $\mathrm{b}(2,9)$
x_{b} Number of bound electrons
n_{f} Number of free electrons
$n=n_{b}+n_{f}$ Total number of electrons in system (4.8)
N Total number of atoms in system (4.6)
N_{Z} Number of nucleii of atomic number Z in system (2.29)
n_{0} Initial state of the scattering particle (2.32)
\hat{n} Unit vector (3.17)
$\overline{\bar{n}} \nu$ Average number of quanta in each radiation oscillator (2.1)
$n\left(\varepsilon_{f}\right) d\left(\varepsilon_{f}\right)$ Number of states of free electron in energy interval $d\left(\varepsilon_{f}\right)$
$n(\vec{N}) d \vec{N}$ Number of electron with velocity vector betweenv and $v+d v(3.3$
$P=\frac{1}{1+r}(5.5)$.
P Pressure, (6.17)

```
Glossary of Notation (continued)
P J Probability given by (4.13)
Q Electronic partition function of the system (AI.1)
q Availability of final state (2.29)
r=}\frac{\mp@subsup{\mu}{\ell}{}}{\mp@subsup{\mu}{c}{}}=\mathrm{ ratio of line absorption to continuous background (5.5)
\mp@subsup{r}{}{2}
ro = \frac{\mp@subsup{e}{}{2}}{m\mp@subsup{c}{}{2}}\mathrm{ Classical electrons radius (2.34)}
Rhe Rydberg energy = 13.607 volts (2.25)
S(u) Stromgrem function Tabulated in Table VI (6.30)
S Eq. (5.11a)
S Entropy (AI.11)
T Absolute temperature (2.16)
u= h\nu
V Volume of system (2.9)
Vi,j Sum of Couloumb and exchange electron interactions (4.12)
w Transition probability as defined by (2.1)
w}=\operatorname{cos}0\mathrm{ (2.34)
w
wab
z' Effective muclear change (2.25)
Z* Effective nuclear charge (6.7)
Z Effective nuclear charge (AI.15)
\alpha= e
\alpha' See (4.13)
\alpha\prime\prime See (4.17)
\alpha*:-kT * is free energy of electrons (4.4la)
\mp@subsup{\stackrel{\alpha}{j}}{j}{}\mathrm{ Dirac velocity matrix for jth electron (2.1)}
```

$$
-\mathrm{x}
$$

```
    Glossary of Notation (continued)
\beta=\frac{l}{kT}
\Gamma=\frac{\gamma}{4\pi}\mathrm{ Dimensionless half breadth, defined in (5.21)}
\frac{\gamma}{2\pi}}\mathrm{ Breadth of spectral line (2.15)
\gamma=\frac{h\nu}{m\mp@subsup{c}{}{2}}}\mathrm{ (2.34)
\vec{\varepsilon}}\mathrm{ Direction of polarization (2.1)
\varepsilon(r) Potential energy (4.49)
\epsilonf Energy of free electron
\varepsilon
\overline{\varepsilon}}\mp@subsup{i}{i}{}\mathrm{ Average energy of electron in fth state 
Scattering angle (2.32)
\osseland mean-free path (3.18)
\Lambdac Mean fre0 path ignoring lines (5.7)
\Lambda\ell Contribution of lines to Rosseland mean free path (5.8)
Absorption coefficient, as defined in (5.3)
\muc Absorption due to continuous processes alone (5.4)
\mu}\mp@subsup{l}{l}{}\mathrm{ Absorption due to lines (2.9), (5.4)
\mu
    \nu Frequency
    \rho Density (3.25)
\mp@subsup{\sigma}{i,j}{}\mathrm{ Screening constants,, defined by (4.23) Tabulated in Table }
d\sigma Surface element (3.1)
\phi _ { 0 } = \frac { 8 \pi } { 3 } \{ \frac { \theta ^ { 2 } } { m ^ { 2 } } \} ^ { 2 } = . 6 6 5 4 \times 1 0 ^ { - 2 4 } \mathrm { cm } . \text { Thomson cross-section (6.24)}
\mp@subsup{\emptyset}{ba}{}(\nu) Absorption cross-section. Eq. (2.8)
```

Glossary of Notation (continued)
\varnothing_{f} Electrostatic potential, defined by (4.26)
\varnothing Differential scattering cross-section (2.32)
x_{k} Electron wave function (4.2)
Ω Density of states, defined by (4.14)

Errata

$L A-647$

I. IITRODUCTIOS

 therefore, the problem vas 2 mestigatod enew.
 presest in the 2 ine spectiran to inoroase the opeoity be factorn of 2 to 49.1 IJ

 path for radiation (freciprooal of the opatity) is a woighted fitequeneg ayptuaf,

 under noryal terrestrial denditions 2) There would we an enormous nitubineibr

 temperatures, an eleniont will be found in miny states of landestione Finfogmphov each ion type will exist in a nuber of exaited states. For extmifis, oajeulations
 (1)

Astrophysieal Journals 92 pp. $27-49,1940$.
(2) Menzel and Perkeriat Monthly Notices of the Reyal Astronomioal Soatiety, V. 96, p. 77. (1935); S. Rosseland, Handbuoh der Aatrophysik, V_{*} g 3 teile.
crams/om ${ }^{3}$, (eonditions available in stellar interiors) will have on the average 2 sleotrons, 1.24 Leleotrons, 1.10 M electrons, etc. - In all a total average of $4 \mathrm{~s}^{3}$ bound electrons. We may expeot appreciable numbers of ions with eroia 2 to 7 bound electron. Koreover of the ions with say 6 bound electrons there will be some with 2x, 4L, others with $\mathbf{2 X}, \$ \mathrm{I}, 1 \mathrm{M}$, still others with $\mathbf{2 X}, 2 \mathrm{~L}, 21 \mathrm{~d}$, and so on. Eaoh oonfiguration of thess ions gites a rather complex line spectrum - the total number of lines from the assemblage will be gnormous. Mixtures of elenents will give even a richer lins spectrun.

Among the causes for line broadening are 1) Natural breadth; 2) Collision breadth; 3) Stark breadth; 4) Doppler breadth. Each of the se is much more important at high temperatures and densities than at ordinary oonditions. Because many electrons are in excitod orbitals a large number of emission transitions can destroy the initial gtate of an ion. In addition the intense temperature radiation present cen induce absorption transitions. Both effects enhance the natural breadth. At high terperatures collisions with free electrons will frequently occur - a process alnogt entirely excluded under ordinary conditions. Moreover tha high velocity of the ions creutes an appreciable Doppler broadening. It also enables relatively high oharged ions to approach so close that enormous fields are available to cause Stark broadening. In many oases the lines will be so broadenad as to form pirtually continuous absorption band, very effective in producing high opacity.

It will be realized that it is the hioh exoitation of the material, ombined with the pervading electrosiatio interactions that makes line absorption so important a feature in opacity oalculations. Previous treatments of the problemessentially negleoted all these interactions except those betwenn a muoleus and its own bound eleotron. It was felt worthwhile to include thesp interactions in some moderately sat: sfactory form in order to insure the accuracy of the calculations of the line absorption. This problen is traated at some length in Chapter IV of this paper.

An imediate byproduct of the statictical mechanioal oaloulation which is there pere formad, is the thermodynamic properities and the equation of state of material. It it generaliy ascumed in wark on stellar intoriors that the material obeys a perfect, gat equation of state with an effootive number of partioles equal to the eum of all the eleotrons and nuolei in the system. In Appendix I, the appropriate modifiention of the equation taking into ooount the presenoe of bound blectrons, lectrostatio fintere Actions, an a samil correction for rolativity offeots io given.

- The compleacity of the line spectrun precludes any straightforward attack on the problome tiller, howevar, wen he proposed oonsidering the line absorption, also seggested the ase of a stectistian method of finding the eontribution to the dindettye The method is developed in detail in Chapter V whioh congtitutes the gignificant nev contribution to the gitudy of opmeity.

During our reescamination of the opacity problem, Dr. Maris Mayer notiaed that the equttering eontribution has always been treated by analogy with the absorptionenission contribution This proves to be inoorreat, although the muerieal ervor if mall. The differenoe between the two types of process lies in the effects of induced omiseion and induoed scattering. The presence of induced emiselon strengthens a bean In it passage through matter, thus tending to reduce the opacity. In the soattering proeess, on the othar hand, the induced soattering put of a beam compennates for the induoed soattering into the beam. The correct oaloulation af opacity due to sonttere ing therefore given a resnat greator (actually 5 greater) than the conventional ones.

Although there are may features in comon, the treatment of the opaity of heavy elomenta, is different in many detalls from the treatment for light elenents. This results becauee the relativistic effects completely ohange the nature of the 14 spectrum of haty compared to light elements. A companion paper to this by (3)

Borí Jacobsohn, gives speaific artention to the oalculation of ppacities for the
(3) Dissertation, University of Chioago, Degt, of Physios, 1947.
heavy elements.
The author wishes to thank Dr. Maria yor and Dr. Edward Teller for suggesting the problem and for much valuable assistance in attacking it. It is a sinoere pleasure, moreover, to acknowledge my indebtedness to Dr. Boris Jacobsohn for many discussions on every phase of this proolem, and to Mr. Rudy Sternheimer for his valuable work on line broadeaing without which this paper would have littile practical sígnificance•
II. THE PROCESSES COITRIBUTING TO TES OPACITY

Any process capable of romoving quanta from an inoident beam, or omitting quanta into that beam mast be considered in the opacity problemg The most important of these processes is simple absorption and its inverse. In this oase a quantum is absorbed by an atomic system, its energy being transferred to exoftation of the eleotrons. Wo may distinguish with profit three different types of absorption. In the first an electron in a bound state of the aton a excited to another bound state. This is the familiar line absorption. In the second the bound state eleotron is removed from the atom, going into one of the continuum of free states available, the usual photoeleotric offeot. In contrast to line absorption, this process is possible for any energy of the ineident quantua greater than the lonisation energy of the electron, Lastly, an eloetron in a feee state absarb energy by a transition to another free state. Ary amount of onvergy Whatever may be aborbed in this process. The inverse processes to the three men tioned are, in order: line omission, lectron oapture, and Brementrahlumg.

A seoond absorption process is pair produstion with its inverse prooest annihilation.

The last group of processes is seattering. Here an incident quantran is deviated fron its original path by an atom or electron. If the aton remains In its initial state after the soattering, we hav ordinary ooherent soatterings if it does not, the phenomenon is known as Raman soattering. A special oese ocours if the frequeney of incident radiation is equal to the frequeney of an abserption line of the atom, Seattering by free oleotrons is terned ption soattering.

The remainder of this chapter gives the transition probabllitios for these prooesses.

1. Ling Absorption

The three types of simple absorption - line absorybion, photoelectric absorybion, and absorption due to freearee transitions differ only in the nature of the initial and final states of the atom. It is therefore possible to develop the treatment of all three at once up to an advanced point and there introduce the differenees.

The transition probability for the absorption of a quantuan of energy $h \nu$ from an inoident beam is
(2.1) $m_{b a} d \Omega=\left.\left.\frac{e^{2}}{x_{0}} \sqrt{n_{\nu}} d \Omega\right|_{j}\left(\overrightarrow{\alpha_{j}} \cdot \vec{\varepsilon} \cdot i \vec{k} \cdot \vec{r}_{j}\right)_{a b}\right|^{2} \vec{\varepsilon}, \vec{x}$

In this formuia $\vec{\alpha}_{j}$ is the Dirae velooity matrix for the jth eleotron, $\vec{\varepsilon}$ is the direction of polarization of the inoident light beam which has the wave number veotor \vec{k} in the direction of propagation. The matrix element connecte the initial state of the atom b with the final state a and is averaged over all directions of polarization and orientations of the atom - Which latter is the same as the average over directions of propagation of the light. The inoident beam has on the average \bar{n}_{ν} quanta in each radiation osciliator, that is the intensity of the beam direoted within a solid angle $d \Omega$ is
(2.2) I(v) dvd $\Omega=\operatorname{zve} \bar{x}_{\nu} \frac{2 \nu^{2} d \nu d \Omega}{0}$.

It is convenient to introduce the eleotron number defined by
(2.3) $f_{b a}=\left.\frac{2 m c^{2}}{h \nu} \sum_{a b}\left(\left(\vec{\alpha}_{j} \cdot \vec{\varepsilon}\right) e^{i \vec{k} \bullet \vec{r}_{j}}\right)_{a b}\right|^{2} \vec{\varepsilon}, \vec{k}$
where
(2.4) $\quad h \nu_{a b}=\left(E_{a}-B_{b}\right)_{0}$

This definition reduces to the usual one for one electron aten in nonarelativistic approximation, when $e^{i \overrightarrow{\mathrm{z}} \cdot \overrightarrow{\mathrm{r}}}$ is roplaced by unity - the oonventiomal dipole approximation. Combining (1), (2), and (3) wet the transition prodability as
-80
(8.5)

$$
\psi_{b \rightarrow a} d \Omega=\frac{\pi i^{2}}{m o} \frac{\nu / a b}{\nu} f_{b a} \frac{I(\nu)}{h \nu} d \Omega
$$

In auy actual physical systom the absorption is not comfined to a singlo free queney, but it is posaible for a range of Arequencies in the neichborhood of 2 ab We shall therefore introduce the dispersion faotor for line absorptions bea (2) by the definition that the probability of absoxting light of frequeney betreen ν and ν d $d y$ by the transition $b \rightarrow a$ is

$$
\text { (2.6) } \quad \quad_{b a}(\nu) d \dot{\nu} d \Omega=\frac{\pi a^{2}}{m c} \frac{\nu / a b}{\nu} f_{b_{a}} \frac{I(\nu)}{h \nu} \Omega_{b_{b a}}(\nu) d \nu
$$

The alspersion factor will have a sharp maximum at $\nu, \nu_{a b}$ and furthernone $(2.7) \quad \int_{0}^{\infty} b(\nu) d \nu=1$.

The abserption oross-section of this transition per aton for light of smequenoy ν is then

$$
\begin{equation*}
\phi_{b a}(\nu)=\frac{\pi e^{2}}{m w_{b a}} f_{b a}(\nu) \tag{8,8}
\end{equation*}
$$

Where we have put $\nu_{y}=\nu_{a b}$ in the slowly varying function of frequeney multipiying b(ν). From the orossesection we get imediately the absorption ceerfioient or inverse mean free path for line absorption

where s^{b} is the number of atoms in initial state b, and the sumation extende over all majitifons whioh may absorb the frequeney ν.
 and ano for indmoed omission. The transition probability for the thontancous omitemion of a quantur hy within a selild angle $\alpha \Omega$ due to an atomic trainitition from state b to a. 4
$(2.10){ }_{a b}^{s}(\nu) d \nu a \Omega_{0} \frac{2 \pi x^{2}}{m 0^{3}} \quad \nu^{2}\left|r_{a b}\right|{ }_{a b}(\nu) d \nu d \Omega$,

While the probability for fraduoed omission is

$$
\begin{equation*}
\frac{1}{a b}(\nu) d \nu d \Omega=\left.\frac{\pi 8^{2}}{m o}\right|_{a b} \int \frac{I(\nu)}{h \nu} b_{a b}(\nu) d \nu d \Omega \tag{2.11}
\end{equation*}
$$

The quantum theory moreover gives the general result required by thermodynamies that
(2.12) $\left|f_{a b}\right|=f_{b a} \quad b_{a b}(x)=b_{b a}(x)^{\prime}$
so that
(2.13) $\frac{w_{a b}(\nu)}{w_{b a}(\nu)}=1+\frac{2 m p^{3}}{c^{2}} \frac{1}{I(\nu)}$.

An adequate discussion of the eleotron numbers is given by Jecobsohn ${ }^{(1)}$. He considers an ion with only one eleotron and treats different order terns arising from the expansion of the factor $e^{i \vec{k} \cdot \vec{F}}$ in (2.5). The leading tern gives the mafor fraction of the eleotric dipole strength. Munerical oaloulation for this term in the nonmerelativistic ease wioh extend and correct similar oaloulations by Bethe ${ }^{(2)}$ are presented in Table 1 of Jaoobsohn's paper and are reproduced here In fable 1. It should be noted that the f muber in these bables is the average from a level ($n h$) to a level (n^{\prime} / ℓ) found by sumaing over all states in the final level. In order to divide the f number properly between the transitions $n l_{j} \rightarrow n \cdot l^{\prime} j^{\prime}$ wo use the relations

$$
s_{n} \ell_{x \rightarrow n^{\prime}} l^{\prime} x+1=s_{n} l_{\rightarrow n^{\prime}} l^{\prime}
$$

$$
\begin{align*}
& I_{n} l_{k \rightarrow n^{\prime}} l^{\prime} k=1=\frac{(k-1)(2 k+n)}{k(2 k-1)} I_{n} l_{\rightarrow 1} l^{\prime} l^{\prime} . \tag{2.14}\\
& I_{n} \ell_{k \rightarrow n^{\prime}} l^{\prime}(-k)=\frac{1}{k(2 k-1)} I_{n} l_{\rightarrow n^{\prime} l^{\prime}}
\end{align*}
$$

where $|k|=j t \frac{1}{c}$ and $k_{a} \ell$ or $-(\ell+1), k$ being the quantum number which repiaces ℓ in the Dirac theory. Jaeobsohm also presents some formula and tables for the relativistic eleotrio dipole and non-relativistic eleotric quadripole osoillatop strength.
(I) Op. cit.
(2) H. Bethe, Handbueh der Physik (2nd Ed.) 2 V. Furt 1, pp. 443.

For approximate calualations, and to preserwe the analogy between treatmonts of line absorption and continuous absorption, we may use an asymptotic expansion for the dipole f mumber (energy of transition $h \nu$) of a hydrogente atomaveraged over all initial states in a sholl of the principal quantum muber n_{0} This is (3) (2.14a) $\bar{f}_{n \rightarrow m}=\frac{2^{6}}{3 \pi \sqrt{3}}\left\{\frac{1}{n^{2}}-\frac{1}{m^{2}}\right\}^{-8} \frac{1}{n^{8} m^{3}} \frac{5_{b}}{2 n^{2}}$
wherem is the prinoipal quantum number of the final, n of the initial state, and $(2.24 b) \quad \delta_{b} \sim 2-0.2728\left(\frac{h \nu}{R h e z^{2}}\right)^{1 / 3} \cdot\left[\frac{2}{n^{2}} \cdot \frac{R_{h o z^{2}}^{h}}{h^{2}}-1\right]+\ldots \ldots \ldots$
This expansion becomes better as both a and m inerease.
The dispersion is due to the finite breadith of the athiniowstates la the system oaused by the interactions with light and with other partioles. Thia yreblem has been treated in a thorough going fashion in an unpublished paper by, Sterrbeimero For diapersion caused by the interaetions with the radiation field, the 1 ine hase natural breadth $\frac{\gamma_{b a}}{8 i s}$ and a dispersion $\gamma_{\text {be }}$ (2.15)

$$
b_{b a}(\nu)=
$$

We note that whon $2 \pi\left(\nu /-\nu_{0}\right)=\frac{\gamma_{b a}}{2}$. the oross-seotion has callen off to helf 15F maximum value. Interactions with fast electrons will cause collision broadening of the innes with the sane dispersion form as (2.15). However, interaotions with slow moving partioles like neighboring muclei are best greated by an adiabatio approximation and the dispersion curve then falls off exponentially with distanos from the line oenters. Another cause of exponential type dispersion is the DepplerEffeet whiah gives
$(2.16) \quad b(\nu)=\left\{\frac{\mu_{0}^{2}}{2 \pi V_{T}}\left(\frac{1}{\nu_{a b}^{2}}\right)\right\}^{\frac{2}{2}} \exp \left\{\frac{\mu_{c}^{2}}{2 K T} \frac{\left(\nu-\nu_{a b}\right)^{2}}{\nu_{a b}^{2}}\right\}$.
M being the mass of the absorbing atoms and I the absolute tomperature.
(3) Monzel and Poriceris. Opo Cit.
2. Photoelectric absorption.

In the case of line absorption we found a non-sero probability for absorption of frequencies differing slightly from that of the atomic transitions due to the splitting of the atonic states into a continuum by interactions with, for example, the radiation field. For boundfree absorption (photoelectric absorption) the final state is already a member of a continuum, and we will therefore have a finite absorption probability for a continuum of incident frequencies. The probability of absorbing light with frequency between ν and $\nu+\Delta \nu$ is from (2.5)

The ores section may therefore be written as

$$
\begin{equation*}
\phi_{b f}(\nu)=\frac{\pi e^{2}}{\pi c} \frac{d}{d \nu} f_{b f} \tag{2.18}
\end{equation*}
$$

where by $\frac{d f_{b f}}{d \nu}$ we mean

The absorption coefficient is, ven
$(2.20) \mu_{b p}(\nu)=\sum_{b} \overbrace{v}^{8} \phi_{b f}(\nu)$.
where the summation is extended over all states b which can absorb the frequency \mathcal{L}. Naturally precisely the same expression (2.13) as in line absorption relates the probability of the inverse process of electron capture with photoelectron absorption.

Wo shall follow historical precedent in transforming (2.18) and (2.20). When Framers first attacked the problem of the photoelectric effect using the machinery of the old Bohr theory, he found the orossmsection for a complete shell of principal quantum number n to be

$$
\varphi_{n f}(\nu)=\frac{2^{5}}{3 \sqrt{3}} \frac{h \rho^{2}}{m 0} \frac{n}{h 2}\left(\frac{I}{h z}\right)^{2-120}
$$

where I_{n} is the ionisation energy of an electron bound in the n shell. Later workers, Gaunt ${ }^{(4)}$ and Stobbe ${ }^{(5)}$, computing the cross section with the new wave mechanics, expressed their result in terms of Kramer'g formula (2.21), corrected by a factor, the somalled Gaunt Pretor g. It is useful to retain this notation, since Hansel \& Polaris ${ }^{(6)}$ have shown that the Gaunt factor g per electron is close to unity when averaged over a complete shell for transitions to free states near the ionisation limit (the region of interest in opacity calculations). To rewrite our oross-section (2.18) in terms of this notation, we define the Gaunt factor by

$$
\begin{equation*}
\operatorname{gbr}(\nu)=\frac{3 \sqrt{3} \pi}{2^{4}} n\left(\frac{M \nu}{I_{2}}\right)^{2} \nu \frac{d b_{p}}{d \nu} \tag{2.22}
\end{equation*}
$$

Thus (2.20) becomes

$$
(2,28) \mu_{b f}(2)=\sum_{b} \frac{\frac{1}{b}^{b}}{\frac{2^{4}}{3 \sqrt{3}} \frac{h_{0}^{2}}{m 0} \frac{1}{n} \frac{1}{h 2}\left(\frac{I_{n}}{h 2}\right)^{2} g_{b f}(\nu) ~ . ~}
$$

As defined here, the f number, and hence the Gaunt factor refer to atomic transitions and \hat{H}^{b} is the atomic occupation number. It is frequently more convenient to use f numbers and hence Gaunt factors per electron. The atomic occupation X^{b} must then be replaced by n_{1}, the number of electrons in the initial state capable of absorbing the frequency ν. The transition probabilities must then be multiplied by a factor q, the probability that the final state will be available. For non-degenerate free - leotrons this is practically unity.

A discussion of the Gaunt factors with numerical tables is given by Jacobson. He chows that for absorption by L electrons, the dipole Gam factors for individual transitions varies considerably from transition to transition and moreover vary with frequency, especially in the region near the ionization edge. The average Gaunt

[^0]factor per electron is, however, clese to unity. Moreover using relativistic wave functions, while it drastically effects the results for individusi transitions, has little effect on the average, even for the very heavy elements. The Gaunt factors for quadrupole transitions are smaller than those for dipole transitions by the factor $.13(z \alpha)^{2}$ for the L.shell at the fonisation limit $\left(\alpha=\frac{1}{137}=\right.$ fine structure constant), and even smaller for the higher shells. For mary cases. therefore, it will be a sufficient epproximation to replace g per electron by unity。

3. PreemFree Absorption.

The ability of an eleotron to absorb light depends on its binding to a mucleus, for a free electron oannot conserve momentum in absorption. Hence we expect a tightly bound electron to have a much larger photoelectric crossesection than a loosely bound one, and therefore the free-free transitions should be a small effect. There are two factors which nevertheless make it worthwhile to oonsider the process. In our hichly ionized medium a great portion of the electrons are free-in extreme cases there may be no bound eleotrons at all. Furthermore, absorption by a boundfree transition can only take plase for frequencies higher than the ionization potential for removal of the electron in question. For low frequencies the freefree transition may be the only possible one, or at least an compete favorably with a bound-free transition of a very loosely held bound electron.

The transition probability from one definite initial free state f to a range of final free states with the absorption of light of frequency between
ν and $\nu \nmid \triangle \nu$ is of course the same as (2.16) for the bound-fres transitions. However, the same frequency can be absorbed by starting from agy initial free state. Hence, to find the absorption coefficient, we must multiply the oross section (2.17) by the number of lectrons per unit volume $\frac{n\left(\mathcal{E}_{f}\right)}{V}$ d \mathcal{E} occupying a range of free states between \mathcal{E}_{f} and $\mathcal{E}_{f}+d \mathcal{E}_{f}$ and integrating over all energies, keeping 2 oonstant.
(2.24) $\mu_{f f^{\prime}}(\nu)=\int_{\varepsilon_{f}} \frac{n\left(\varepsilon_{\rho}\right)}{\nabla} \frac{\pi e^{2}}{m e} \frac{d f_{f f^{\prime}}}{d \nu} d \varepsilon_{f^{\bullet}}$

Monzel and Pekeris ${ }^{(7)}$ derive an asymptotio expression for $\frac{d f_{f P}}{d \nu}$ whose leading term is that given by the Kramer's formula. We oan see heuristically what the reault must be by amalogy with their asymptotio expansion ($2.14 a, b$) for bound-bound transitions. If the initial free state is specified by a quantum mumber f_{0} and the final free state after absorption of light energy h \mathcal{D} is speoified by k, then
(a) $h \nu /=\varepsilon_{k}-\varepsilon_{p}$;
(b) $\varepsilon_{f}=\frac{\mathrm{KhcZ} \mathrm{T}^{2}}{\mathrm{f}^{2}}$;
(o) $\varepsilon_{k}=\frac{\text { सhe } Z^{2}}{k^{2}}$
where z^{\prime} is the effective nuclear charge. The f number for this transition is obtained from (2.24a) by replacing n by if, m by ik, the degeneracy $2 n^{2}$ by 0_{f}, the donsity of initial states per d f, and the bound Gaunt factor g_{b} by a free-free factor $\mathrm{g}_{\mathrm{ff}}{ }^{\circ}$ Using the relations (2.25) we obtain
(2.26) $\quad f_{f k}=\frac{2^{6}}{3 \sqrt{3} \pi} \frac{(\mathrm{Rho})^{3 / 2} z^{, 3}}{(h \nu)^{3}} \frac{\varepsilon_{f}^{3 / 2}}{k^{3}} \frac{\mathrm{~g}_{f f}}{0_{f}}$
where
$(2.27) \quad g_{f f} \approx 1+0.1728\left(\frac{h \nu}{\mathrm{Rho}^{\circ 2}}\right)^{1 / 3}\left[1+\frac{2 \varepsilon_{f}}{h \nu}\right]+\ldots$.
Then
(2.28) $\quad \frac{d f}{d \nu}=f_{f k} \frac{d k}{d \nu}=\frac{2^{5}}{8 \sqrt{3 \pi}} \frac{\left(\mathrm{Rhc}^{\frac{1}{2}} z^{\prime}\right.}{(h \nu)^{3}} \quad \frac{\left(\varepsilon_{f}\right)^{3 / 2}}{o_{f}} G_{E f}$

It might be thought at first that a faotor of 2 is lacking from the above equation, sinee the number of states within a frequency $d \nu$ is $2 \frac{d k}{d \nu} d \nu$, sinee eech level k mey have an electron with either of two spins. But for a dipole, one eleetron trensitione the $f_{f z}$ would be zero for a change of spin direction, so we need count only the states of one spin.

We now substitute (2.28) into (2.24). We shall later show (see Chapter IV) that $n\left(\varepsilon_{f}\right)=o\left(\varepsilon_{f}\right)\left\{0^{\alpha *} \not \beta \varepsilon_{f}\right\}^{-1}$, where o($\left.\varepsilon_{f}\right)$ is the density of states of the free
electron por unit onergy interval and $\beta=1 / k$. Wo obtain from (3.25b)
$o\left(\varepsilon_{\rho}\right) / o_{\rho}=\frac{K_{2}}{2} d \varepsilon_{f} / \alpha_{\rho}=\frac{N_{Z}}{2}$ (Rho $)^{\frac{2}{2}} z^{1} / \varepsilon_{f}^{3 / 2}$ where N_{Z} is the number of molei of atoric mumber 2 in our system and the factor 2 takes aare of eleotron spin. Gathering togetber the terms givan
(2,29)
where a factor q for the availabillty of the final state has been addede For nondegenerate free electrons we mafely nogleot the tern 1 in the denominator and put q=1. Then the integral gives $\frac{1}{\beta} e^{-\alpha^{\prime}}$ so that

where
$(2.51) \bar{g}_{\mathrm{Pf}}=1+.1728\left(\frac{\mathrm{KI}}{\mathrm{Rhoz}^{22}}\right)^{1 / 3}\left(\frac{h \nu}{E^{2}}\right)^{\frac{1}{2}}\left[1+\frac{212}{h \nu}\right]$.
and α "is given by (4.4la) below.
Just as with photoelectric absorption have the relation (2.18) for the probability of the inverse prooess.
4. Pair Production.

To produce a free eleatron-positron pair requires inoident quanta of energy at least $2 \mathrm{mc}^{2}$, while oven the production of a bound electron and a positron requires onergies greater than $m c^{2}$. In all our discussions the temperature will be so low that the amount of railation of such high energies is negligible. We may, therefore, safely negleet pair production. Moreover there will be practically no positrons in equilibrium at these temperatures and so we may neglect the inverse process of annihilation.
5. Soattoring.

The oross-seotions for scattering - coherent, Ramen, and Compton - may be found, for example, in Heitler ${ }^{(8)}$. There, however, the case in which initially only one quantum is in the radiation oscillator of the incident beam and none at all In the scattered beam is considered. In order to find the transition probability 43 *e must multiply these orossmsections by the incident intensity and by a factor $\left(1+\bar{m}_{b}\right)$, \bar{g}_{b} being the average number of quanta in the radiation oscillator of the scattered beam. The term in $\overline{n_{b}}$ is the induoed scattering.

Consider then an incident beam in the direction specified by the vector $\vec{l}_{\text {, }}$ having specific intensity $I_{\nu}(\vec{l})$. The probability that a transition will take place, scattering a quantum of energy ν^{\prime} in a direction specified by $\overrightarrow{\ell^{\prime}}$ within $d \Omega^{\prime}$ is
(2.32) : $\nu_{\nu, \nu}^{\eta_{0}} d \nu d \Omega d \Omega^{\prime}=d \varphi\left(\nu, n_{0}, \theta\right) \frac{I(\nu \vec{b})}{h \nu} d \nu d \Omega\left\{+\frac{c^{2}}{2 \nu_{\nu}^{\prime 3}} I_{\nu},\left(\overrightarrow{\ell^{\prime}}\right)\right\}$.
where n_{0} specifies the initial state of the scattering particle, $\theta_{\text {is }}$ scattering angle and $d \varnothing$ is the usual differential scattering cross section. The soattering coefficient, i.0., the inverse mean free path for scattering is then
(2.33) $\mu_{s}(\nu)=\sum_{n_{0}} \frac{\left.H^{(} n_{0}\right)}{\int_{\Omega^{\prime}} w_{\nu \nu} n_{0} d \Omega^{\prime} \frac{h \nu}{I \nu L)}, ~}$
where the sum extends over all states which can scatter this frequency.
For Compton scattering from free electrons initially at rest, the differential ores section is
(2.34) $\quad \mathrm{d} \varphi(\nu, 0, \theta)=\frac{r_{\theta}^{2}}{2} d \Omega^{\prime} F\left(\gamma_{0} w\right)$.

$$
\begin{aligned}
& F(\gamma, w)=\frac{1 w^{2}}{[1+\gamma(1-w)]^{2}}\left\{1+\frac{\gamma^{2}(1-w)^{2}}{\left(1+w^{2}\right)(1+\gamma[1-w])}\right\} . \\
& w=0080 . \\
& \gamma=h \nu / \mathrm{mo}^{2} \text {, and } r_{0}=0^{2} / \mathrm{mo}^{2}=\text { olassioal electron radius. }
\end{aligned}
$$

里-Anst onder in γ. this reduoes to

$$
\begin{equation*}
d \varphi(\nu, 0, \theta) \leq \frac{r_{0}^{2}}{2} a \Omega^{\prime}\left(1 w^{2}\right)[1-2 \gamma(1-\pi)] \tag{2.85}
\end{equation*}
$$

which is sufficiently acourate for our purposes. To get the oross soction for senttoring from an eleetron moring with veloaity $\overrightarrow{\mathcal{V}}$, we simply apply a Loremtz traseformetison the result, to the same order as $(2,36)$ is

$$
\begin{equation*}
\mathrm{d} \phi(t, \vec{v}, \theta)=\frac{r_{0}^{2}}{2} \mathrm{~d} \Omega^{\prime}\left(1-w^{2}\right)\{[1-2 \gamma(3-w)] \tag{2,36}
\end{equation*}
$$

$$
\left.+\frac{v}{0} \cos \alpha+\left(v^{2} / 0^{2}\right)\left[\left(\cos ^{2} \alpha+\frac{1}{2}\right)+\left(\cos \alpha-\cos \alpha^{\prime}\right)^{2}\left(1-\pi^{2}\right)-1\right]\right\} .
$$

Another relation we shall meod is the comnection between incident and soattered frequencies

$$
(2.37) \frac{h \dot{\nu}}{k \nu}=\frac{1}{\pi \gamma(2-w)}, \frac{h \nu}{h \nu}: \frac{1}{20 \gamma^{\prime}(2-w)}: \gamma^{\prime}=h \dot{\nu}^{\prime} / m^{2} \text {. }
$$

The Krameriaflelsenberg formula for coherent or Raman soattering gives a orossseotion mifich, except for frequenoies near a resonanoe line of the atom, is of the sane oxder of magaitude as (2,35). This formala givee the soattering ountribution of bound eleetrons. How there are usunlly many more free eleetrons than bound $s 0$ that the mijor part of the scatbering will be of the form (2.36) Moreover, the eattering orosseseation for bound eleotrong is generalif small compared to the photo-electrio aross-seotion. We will, therefore, nover ooundt a serfous egror if We uee the erossmsection (2.36) as if it held for ell the eloctrons, bound and free.

The question of resonanoe saettering must new be dieposed of, for the orosssections then peeene exoeedingly large and it would be improper to use the simple formule (2,36) y . Heitior disoussee just this question and he ooneluded that if the atom is irrelfated by a oontinuous spectrum "the resonance fluesescence behaves WIth regard to the shape of the line absorbed and reenitted exaotly as if two in dopendent processes, an absorption and e subsequert emission took place" We must not regard abgorption and resohance soattering as two indopendent fates which may overtalas an aton, but rather opssider that an atom ney be exeited to an internediary state, and either remain there, in which case wo have true absorption, or else rem turns to a lower state in wich oase wo have resonanoe fluoresconee. In oaleulet-
-18*
ing the total orossmsection for all processes, wo see that resonanoe fureresouse has been inoluded in the tern for line absorption.

III. THE OPACITY GOBFFICIENI

The opacity coefficient is a partioular weighted average of the absorption coefficient discussed in the previous chapter. This relation results from a oonsideration of the equation for energy transport by radiation. A very oomplete treatment of this equation of radiative transfer and the solution appropriate to stellar interiors is given in Chandraselhar ${ }^{(1)}$. Ghandraselthar's disoussion, homever, is restricted to simple absorption and emission processes, other workers (2) in the field of stellar opacities have, by analegy, used the same relations for the seattering process, or combinations of scattering and absorption. It was pointed out by Dr. Maria G. Mayer that this is only approximately trues for pure seatbering, the error made overestimates the mean ryee path for radiation by 8 思. Although the difference is small, it is necessary to see how it arises. We shall, therefore,
the repeat, oonventional derivation of the opacity ooefficient, including the scattering terms.

We shall first write the equation of radiative transfer in terms of the quantum mechanieal oross-seotions or transition probabilitios diseussed in Chapter II. We consider a beam of photons having on $\nu \mathrm{d} \nu \mathrm{d} \Omega \mathrm{d} \sigma$ of of frequency between ν and $\nu+d \nu$ travelling Within the solid anele $d \Omega$ of a specifio direotion, and normally incident per unit time upon a surface element do. The specifio intenaity of the beam is then $I(\nu)=h_{\nu} 0 n_{\nu}$. In traversing a length ds in the direction of propagation some photons will be absorbed or knocked out of the beam, while others will be added to the beam by emission or scatteringe The number absorbed from the beam in unit time is
(3.1) Absorbed $=\sum_{b a} \omega_{b a}(\nu) d \nu d \Omega \frac{y^{b}}{V} d s d \sigma_{0}$

The sum is over all transitions, bound-bound, bound-free, or rree-free, which can absorb the frequency ν. The number emitted into the beam per unit time is
(1) S. Chandraseichar, Stellar Struoture, pp. 198-213
(2) Moisa ustrophysical fourmal, 92. p. 30, 1940.
(3.2) Butted $=\sum_{a b} w_{a b}(2) d v d \Omega \frac{N^{2}}{V^{2}}$ de $d \sigma$.

The number per exit time scattered out of the beam is
(3.3) Scattered out $\equiv \int_{\vec{v}} \int_{\Omega^{\prime}} \frac{n(\vec{v})}{\nabla} d \vec{v} w_{\nu} \nu_{\nu}^{\prime} \vec{v} d \nu d \Omega d \Omega^{\prime} d s d \sigma$.
where $n(\vec{v}) d \vec{v}$ is the mater of electrons with velocity vector between \vec{v} and $\overrightarrow{\mathbf{V}}$ \& $\mathrm{d} \overrightarrow{\mathbf{v}}$. The member scattered into the beam is
(3.4) Soattered in $=\int_{\vec{\nabla}} \int_{\Omega^{\prime}} \frac{n}{\vec{v}}(\vec{\nabla}) d \vec{v} w \nu^{\prime \prime} \nu \vec{\nabla} d \nu^{\prime \prime} d \Omega d \Omega^{\prime} d \in d \sigma$.

Adding up the 4 contributions $(3,1)$ to $(3,4)$ with the proper signs gives the net gain in number of photons $d\left\{c_{\nu} d \nu d \Omega d \sigma\right\}$ in the beam se it traverses as in the steady state. Then
(3.5) $\quad \frac{\partial w_{\nu}}{\partial z}=\sum_{b a} w_{b a}(\nu) \frac{n^{b}}{V}\left[-1+\frac{N^{a}}{N^{b}} \frac{w_{a b}(\nu)}{w_{b a}(\nu)}\right]$
$+\int_{\vec{v}} \frac{(\vec{v})}{\nabla} d \vec{v} \int_{\Omega^{\prime}}\left(w_{\nu} \nu^{\prime \prime} \nu \vec{v} \frac{d \nu^{\prime \prime}}{d \nu}-w_{\nu \nu} \nu^{\prime} \vec{\nabla}\right) d \Omega^{\prime}$.
We new Introduce the assumption that, at each point in our medium local thermodynamic equilibrium exists. Then $(3.6) \frac{x^{2}}{y^{b}}=e^{-\frac{E c^{h}}{x^{h}}}=e^{-\frac{h \nu_{a b}}{L^{r}}}=e^{-u_{a b}}$.

Furthermore introducing the relation (2.13), the terms involving absorption procosses give

$$
\begin{aligned}
& \sum_{b a} w_{b a}(\nu) \frac{x^{b}}{\nabla}\left\{e^{-u_{a b}}-1+\frac{2 h \nu^{3}}{a^{2}} \frac{e^{-u_{a b}}}{I(\nu)}\right\} \\
& =\sum_{b a} \frac{d_{b a}}{h_{\nu}}{ }^{(\nu)} \frac{a^{b}}{v^{2}}\left(2 e^{-a_{a b}}\right)\left\{\frac{2 h \nu^{3}}{a^{2}} \frac{e^{-a_{a b}}}{2 a^{-4 k_{a b}}}-I(\nu)\right\}
\end{aligned}
$$

Since $\varphi_{b a}(\nu)$ has a sharp maximum e at $\nu=\nu_{a b}$, it is pormisatbie to put $u_{a b} a u$ in all places in the sum except in $\phi_{b a}(2)$.

With the use of definitions like $(2.9),(2.20)$, we then get
(3.7) $\frac{d I_{2}}{d s}($ absorption $)=\mu_{a b s}(\nu)\left(1-e^{-\alpha}\right)\left(B_{1}-I_{\nu}\right)$.
(3,8) $\quad B_{\nu}=\frac{2 h \nu^{3}}{e^{2}} \frac{e^{-u}}{1 m^{-u}}$;
(3.3a) $u=\frac{h \nu}{z^{r}}$.

The terms involving scattering may now be simplified by replacing the transtion probabilities by (2.32). This gives
(3.9) $\frac{d I_{\nu}}{d s}$ (scattering) $=\int_{\vec{v}} \frac{n(\vec{v})}{v} d \vec{v} \int_{\Omega^{\prime}}\left\{\frac{d \phi\left(\nu, v^{\prime}, \theta^{\prime}\right) I_{\nu}^{\prime}\left(\overrightarrow{l^{\prime}}\right)}{d \Omega}\right.$

$$
\begin{aligned}
& \frac{d \nu}{d \nu} \frac{\nu}{\nu}\left(1+0^{2} \frac{I_{\nu}(\vec{l})}{2 h \nu^{3}}\right. \\
& \left.\frac{d \delta\left(\nu, \vec{v}_{3} \theta\right)}{d \Omega^{\prime}} I_{\nu}(\vec{l})\left(1+\frac{\left.e^{2} I_{\nu}\right)^{\prime}\left(\ell^{\prime}\right)}{2 h \nu^{\prime 3}}\right)\right\} d \Omega^{\prime}
\end{aligned}
$$

It is worthwhile to note that since the oross-sections involve θ only in the form $\sigma=\cos \theta$, and since $\theta^{\prime}=-\theta$, it is permissible to replace θ^{\prime} by θ°. For the simple case of Thomson scattering from electrons at rest - the most important case in practice, we get
(s.10) $\frac{d I_{\nu}}{d s}$ (scattering $)=\frac{n}{v} \frac{r_{0}^{2}}{2} \int_{\Omega^{\prime}} \int_{0}\left(1+w^{2}\right) I_{\nu}\left(\overrightarrow{l^{1}}\right)\left(1+\frac{I_{\nu}(\vec{l})_{o}^{2}}{2 h_{2}{ }^{3}}\right)$

$$
\left.-\left(1+x^{2}\right) I_{\nu}(\vec{l})\left(1+\frac{I_{\nu}\left(\vec{l}^{\prime}\right) o^{2}}{2 h_{\nu}^{3}}\right)\right\} d \Omega^{\prime}
$$

It can be seen immediately that the terms in induced scattering cancel exactly, leaving
(3.11) $\frac{d x_{\nu}}{d s}($ scat. $)=\frac{a}{V}\left\{-\frac{8 \pi}{3} r_{0}{ }^{2} I_{\nu}(\vec{\ell})+\frac{r_{0}{ }^{2}}{2} \int_{\Omega}\left(1 m^{2}\right) I_{\nu} \cdot\left(\vec{l}^{\prime}\right) \mathrm{d} \Omega^{\prime}\right\}$. The exact solution to the equation of transfer for absorption alone may be worked out. The result can then be expanded, the zero order term giving isotropic
radiation, and the first order term giving the diffusion theory type of approximan tion. It is only in this type of approximation that the Rosselend mean opacity appears - however, the approximation is an excellent one in systems when sh il consider. We, therefore, employ this expansion to solve the combined equation (3,7) (3.11), by putting
(3.22) $I_{\nu}=I_{\nu}^{0}-l_{\nu} \frac{\partial}{\partial_{s}} I_{\nu}^{0}+l_{\nu} \frac{\partial}{\partial s} h_{\nu} \frac{\partial I_{\nu}^{0}}{\partial_{s}} \& \ldots$

Substituting this expansion in (3.7) and (3.11), and collecting term not containing $\frac{\partial}{\partial s} I_{\nu}^{0}$ gives

$$
0=\mu_{\text {abs }}\left(1-0^{-1}\right)\left(B_{\nu}=I_{\nu}^{0}\right)_{0}
$$

since the scattering terms cancel to this order. Hence we mast have
(3.13)

$$
I_{\nu}^{0}=B_{\nu}
$$

The terms in $\frac{\partial}{\partial^{3}} I_{\nu}^{0}$ give

$$
\begin{gathered}
(3.14) \frac{\partial I_{\nu}^{0}}{\partial s}\left(1-\frac{\partial l_{\nu}}{\partial s}\right)=\mu_{a b s}(\nu)\left(1-e^{-u}\right) l_{\nu} \frac{\partial I_{\nu}^{0}}{\partial s}\left(1-\frac{\partial}{\partial s} l_{\nu}\right) \\
+l_{\nu} \frac{\partial I_{\nu}^{0}}{\partial s}\left(1-\frac{\partial}{\partial s} l_{\nu}\right) \frac{n}{v} \frac{8 \pi}{s} r_{0}^{2}
\end{gathered}
$$

since the contribution of the integral in (3.11) is negligible to this order. In order to satisfy $(3.14) \ell_{\nu}$ must be
(3.15) $\quad \ell_{\nu}=\frac{1}{\mu_{a b s}(\nu)\left(1-e^{-u}\right)+\mu_{B}(\nu)}$
where

$$
\begin{equation*}
\mu_{s}(\nu)=\frac{\mathrm{R}}{\mathrm{~T}} \quad \varphi_{0}: \phi_{0}=\frac{8 \pi}{3} r_{0}^{2} \tag{3.16}
\end{equation*}
$$

Thus we see that in this approximation scattering and absorption must be treated in different fashion. The physical reason for this is that the stimulated scattering tending to weaken the beam is exactly compensated by stipulated scattering tending
to strengthen the beam. On the other hand the stimulated emission strengthens the beam and nothing can compensate for this. The effective absorption coefficient must, therefore, be reduced by the factor ($1-e^{-u}$).

Using the zero and first order terms in (3.12) we can compute the flux of
energy of frequencies between ν and $\nu+d \nu$
(3.17) $\hat{n} \cdot \vec{F}(\nu) d \nu=\int \hat{n} \cdot I(\nu) d \nu d \Omega=-\frac{4 \pi}{3} \ell_{\nu} \nu_{\mathrm{n}} \cdot \mathrm{grad} \quad \mathrm{B}_{\nu} d \nu$

$$
=-\frac{4 \pi}{3} l_{\nu} \quad \frac{d}{d T} B_{\nu} d \nu \hat{n} \cdot g r a d T_{0}
$$

where \hat{n} is a unit vector normal to the surface over which the flux is desired, and we have assumed that the spatial variations in the conditions of the system are solely due to a temperature gradient. The integrated flux is then $\vec{F}=\int_{0}^{\infty} F(\nu) d \nu$. By introducing a mean free path properly averaged over all frequencies -the so-called Rosseland mean
(3.18) $\quad \Lambda=\frac{\int_{0}^{\infty} l_{\nu} \frac{d}{d T} B_{\nu} d \nu}{\int_{0}^{\infty} \frac{d}{d T} B_{\nu} d \nu}$
the integrated flux cen be written
(3.19) $\quad \vec{F}=-\frac{4 \pi}{3} \quad \Lambda_{\mathrm{grad}} \mathrm{I} \frac{\mathrm{dB}}{\mathrm{d} T}$,
where
(3.20) $\quad B=\int_{0}^{\infty}{ }^{3} \nu d \nu=\frac{2 \pi^{4} k^{4}}{15 c^{2} h^{3}} T^{4}$.

The energy density may be found from (3.12) since
(3.21) $u_{2}=\int \frac{I_{2}}{0} \mathrm{~d} \Omega=\frac{B_{2}}{0} d \Omega_{2} \ldots=\frac{4 \pi}{c} B_{y}$. Ω
whence
(3.22)
$u=\int_{0}^{\infty} u_{\nu} d \nu=\frac{4 \pi}{0} B_{0}$

The first order term in l_{y} in both these equations vanishes identically, so that (3.21) and (3.22) are correct to the same order as (3.29). Combining (3.22) with (产, 19) , we have
(3.23) $\vec{F}=-\frac{c}{3} \quad$ grad u.

By introducing the expression $(3,8)$ for B_{ν} and $(3,20)$ for B, the expression (3.18) simplifies to
(3.24) $\quad \Lambda=\frac{15}{4 \pi^{4}} \int_{0}^{\infty} l_{\nu} u^{4} e^{u}\left(e^{u}-1\right)^{-2} d u$

The effective mean free path for radiation may be alternatively expressed in terms of the mean opacity coefficient per unit mess $\%$ by the relation

$$
\begin{equation*}
x=\frac{1}{e} \tag{3.25}
\end{equation*}
$$

ρ being the density. It is this quantity which is usually used in astronomical disoussions.

The effect of the present treatment of scattering, compared to the natal practice In opacity discussions 18 now clear. If there is no absorption, our treatmati gives (s.26) $\Lambda=\frac{1}{\rho}=\frac{15}{4 \pi^{4}} \int_{0}^{\infty} \frac{T}{n \varphi_{0}} u^{4} e^{u}\left(e^{u}-1\right)^{-2} d u=\frac{\nabla}{\Delta \varphi_{0}}=\frac{1}{\mu_{\operatorname{sett}}}$

While the conventional treatment gives
(3.26a) $\Lambda=\frac{15}{4 \pi^{4}} \int_{0}^{\infty} \frac{\nabla}{n \phi_{0}} u^{4} e^{2 u}\left(e^{n}-1\right)^{-3} d u=\frac{1,065}{\mu_{s 0 a t t}}$.

In most eases of astrophysical interest, scattering is not the most important process involved and the error is correspondingly mach less.

We can now see in outline the steps needed to carry out the calculation of the opacity coefficient. We mast first determine the absorption and scattering coefficlients. This requires a knowledge of the cross-sections listed in Chapter II and the occupation number - the subject of the next chapter. The averaging process indicated by $(3,24)$ must then be carried out.

2V. STATISTICAI MECHANICS OF IONIZED ATNOSPHERES

1. Intraductory.

The methods of statistical mechanies will furnish the oocupation numbers needed in the aleulation of the aboarption oeeffioient. The suoceeding sections develop a oomveniont method for perfortaing this caloulation to good appraximation. In addition, statistieal mechanies gives a description of phonomena related to the breadth and dispersion of speettral lines. This angle is discussed in sections 6 and 7. Lastly, it is a simple matter to oaloulate the thermodymanie funtions of our material once the ocoupation numbers have been treated. mile this is not aotualiy needed in a caloulation of the opacity ooeffioient, it is an extromely useful by-produot. We carry out this treatment in the Appendix I.
2. Qusatum Mochariteal Deteription of the System.

Fo assune that the system we deal with is in thermodynamio equilibrium at a temperature I and oocupies a volume ∇. Although our entire system is not in suoh an equilibrim, the gradients of the thermodynamio variables are so small, that we may constier that at each point such a local thermodynamie equilibrium does exist. Furthernore, the temperatures we disouss will be so low that we may completely ignore nuolear reactions and pair produotion. Then we may desoribe our system as composed of I nuclei of whioh H_{2} have atomio number Z, associated with a eleotrons just suffioient in muber to make N neutral atons. That is

$$
\text { (4.1) } \quad N=\sum_{z} H_{z}, \quad n=\sum_{z} z N_{z}
$$

Claarly we have a systam of many partiolos with strong interactions. Following the usual method of separating out the effeets of the nuclear motions, we then express the electronie wave funotion of the systam as a properly antisymetiacied product of one eleatron funotions obeying the Hartree-Fook Equations (1).

The essential features of the ons eleotron wave functions ars apparent from physioal considerations, and may also be derived by inspeotion of the Fock Hamiltonian. For large energies, the kinetic energy term in the Hamiltonian dominates, and the wave functions approach those of a free electron. They are, therefore, independent of the positions of the mulei. For low energies, on the other hand, the interaction term with the melear potential becomes of equal importance to the kinetic onergy terms Beeause of the singularity in the potential at the position of each macleus, the bee
 of the nearest nuoleus, secondarily by the nearest melghbors, and is haraly affeoted by more distant nuclei. We, therefore, expeot that near a mueleus, the one eleotron function will approximate the shape of the asoande wave fruotion of the isolated ion. In this extreme the wave funetions depend only on the distanoe from the nearest nucleus - and are indepenteitit. of the miathve position of the nuclei, just as for the free eleotron extreme.

A model which embodies these essential features is the orystalline solsd. At first sight this appears to be a Fioleat distortion of the aotual stete of the system, since we should not expect any longrange oryetalline order at the high temperatures with whioh we deal. The model Will, however, provide the proper qualitative features of the wave functions for a systom of many nuoled throughout which the electrons are free to roam. Naturally, any features characteristic of the strict periodicity of the lattice are simply introdpoed artificially by our model. Those features of the arystal madel, however, which depend on near neighbors only should apply to our system, for there will be a local ordering effect oorresponding to that present in ordinery liquids.

Freeisely, as in the usual theory of metals, wo can use the Blook appreximation of periodic wave functions for the electrons. In the low energy asse the energy levels will correspond olosely to those in the isolated ion, exeept that a single ionic state is N_{Z} foll degenerate. Mis results beoauso we can
oonstruct N_{Z} independent periodio Bloch functions from the N_{Z} zero order function, each of which corresponds to the electron being on any one of N_{2} different ions. This degeneracy is removed by intereotions with neighboring nuclei, so that finally we shall have in our crystal a narrow band of siz states in the neighborhood of each state of the isolated ion. The wave functions are of the form

where $\lambda\left(\vec{r}^{r}-\vec{r}_{n}\right)$ is an atomic wave function with origin at the nucleus looated at \vec{r}_{n}. As the energy is inoreased, the atoric wave functions of neighboring ions overlap more and more, thus widening the band. Eventually, the band widths will exceed the distance between atomic levels, and we shall have a quasi-continuua of states. At about this energy the approximation of localized atomic type wave funotions breaks down, for the functions overiap several nuclei. Moreover, atomic functions from several levels mist be considered in building up a good approximation fron (4.2). The transition stage of the onset of the continuua leads naturally into the stage when the atomic wave functions becone constant throughout the orystal. For high enough energies the funotions (4.2), are of the free-electron type.

The nature of the eigenfuactions in the transition region is complicated. We are fortunate, therefore, that in our system (in contrast to the usual metallic state) only a very small fraction of the electrons will populate states in this region. This results because the Boltzmann factor in the probability of ocoupation of these states is rather small compared to that of the olosely bound low onergy states, while the a priori probability factor is not yet so large as in the high energy free states. The contribution of these transition states to the partition function of the system is, therefore, small, and for the thermodynamic properties of the system we may treat them roughly. The approximation we shall use in our statistioal mechanios is to ignore the details of these transition states completely. For the low energy states, we shall use atonic wave functions
and henoe. term them bound states. For onergies greater than a oertain limit Whioh we term the out-off energy, we shem use the elgenfunotions for free electrons. Since the transition states are statistically unimportant, the exact position of the out off energy is not oritical. Wo shall return later to the question of fixing the out off onergy.

The oircumstance that the transition states io not affeot the thermodymanic propertios of our system is no guarantee that they will not seriousiy affeot the optioal properties. We shall seo later that the most oritioel element in the Rosseland meen opaoity is the presence or absence of absorption in certain frequeney regions. We must, therefore, examine whether the onset of a contimum of one electron energy states will lead to a continuous absorption spectrusn In the Blooh sehame an examination of the transition probabilitios proves this to be the case. Thie is not necessarily true in other approximation schemes. The irregalarities in our lattioe, however, will undoubtediy provide the oentinuous absorption wo assume.

There is still another and more serious shorteooming of our onealeotron approximation. This is the negleot of correlations between electrons positions, exoept for that diotatel by the Pauli prinuiple. These correlation energies are se small that they do not affeot the oocupation numbers of the one eleotron states. They are, however, deoisive in determining the line absorption contribution to the opacity. This is so becaus o the mumber of bound onergy levels in our complicated orystal, is, in the one electron function approximation, exaotly the same as in an isolated one electron atom. The spectrum would then appear to consist of justa very few very atrong lines. Taking oorrelations into account would split these Inte very many lines of the same total absorption strength. The next ohapter shors that having the absorption strength distributed among many lines very muoh onhanoes their effeot on the opaoity. The treatment of these correlations by
the "ionic" method is the topic of section 5 .
Another feature of orr approximation wioh bears watching is the "missing" bound states which have been excluded by the out off. of oourse, these are not missing at all but have been merged with the continunu. The absorption strength of the out off bound states should be distributed at the beginning of the frae states.

With this quantum mechanical approximation, we now proceed to examine the statistiasl mechanios of our idealized model.
3. Statistical Mechanics - Independert Eleotron Approximation.

The object of this seotion is to use the methocis of statistical mechanics to find the number of electrons in esoh electronic state in equilibrium at tre tonperature T. We shall here assune for simplicity that the electrons are completely independent of each other. The next section will treat the electronic internctions, but the final resuits oan be throw into essentially the sane form as for independent eleotrons.

The nature of the energy leveis and the density of states has been disouseed In the previous sections. If $c_{i z}$ is the degenerecy of the ith ionio level, enercy $\varepsilon_{1 Z}$ of a nuoleus of charge Z, there vill te a band of $N_{Z} C_{i \sim}$ states at this enerey in the system. Such bands will persist for all energies $\mathcal{E}_{12}<\mathcal{E}_{\mathrm{c}}$ less than the cut off. Since eleotrons obey the Fermi-Iirac statistios, the mumer of electrons in the i_{Z} th level will then be

where $\rho=\frac{1}{K T}$ and α is the normalization constant with the physical interpretation trat $\mu=-k^{T} \alpha$ is the free energy of the electrons.

For energies greater than \mathcal{E}_{0}, the density of state will be that of a free eleotron with kinetic energy $\varepsilon-\varepsilon_{c}$. This is, in the relativistio ase $(4.4) \quad o_{p}(\varepsilon)=\frac{8 \pi \nabla}{(a h)^{3}}\left\{2\left(\varepsilon-\varepsilon_{c}\right) \operatorname{mos}^{2}+\left(\varepsilon-\varepsilon_{c}\right)^{2}\right\}^{\frac{3}{2}}\left\{\left(\varepsilon-\varepsilon_{c}\right)+m 0^{2}\right\}$. or expanding for kinetic energies small ocmpared to mo ${ }^{2}$ (4.4a) $\quad o_{f}(\varepsilon)=\frac{8 \pi \nabla m}{h^{3}}\left\{2\left(\varepsilon-\varepsilon_{0}\right)_{m}\right\}^{\frac{2}{8}}\left\{2+\frac{5}{4} \frac{\varepsilon-\varepsilon_{e}}{m o^{2}}+\cdots\right\}$.

Then the number of free electrons with energies botween \mathcal{E} and $\mathcal{E}+\alpha \mathcal{E}$ is*
(4.5) $\quad n_{f}(\varepsilon) d \varepsilon=\frac{a_{f}(\varepsilon) d \varepsilon}{\alpha+\beta \varepsilon}$.

The total number of bound lectrons is found from (4.3)
$(4.6) \quad n_{b}=\sum_{z} \sum_{i} m_{1 z}$
While the total number of free electrons is from (4.5)

$$
\begin{equation*}
n_{p}=\int_{\varepsilon^{m}}^{\infty} n_{c} n_{f}(\varepsilon) d \varepsilon \tag{4.7}
\end{equation*}
$$

Of course, the total number of electrons in the system is the sum of bound and free

$$
\text { (4.8) } \quad n=n_{b}+n_{p}
$$

and it is this condition which determines the normalization oonstant α of (4.3) and (4.5).

To use these oocupation mumbers (4.3) and (4.5) we must deternine α. We note that $(4,7)$ is the equation for a free electron gas, except for the one faot that n_{P} is not a constant given by the physical nature of the system, but instoad varies with the temperature and volume. (nf may, however, be a rather insensitive function, and we may then employ the folloring scheme of successive approximetions to determine α. Assume a trial $n_{f} ;$ usually we may start by taking $n_{f}=n$ the
total number of electrons. Then use (4.7) to calculate α. For the case in which relativistic and degeneracy effects are small corrections - the region of greatest interest - a suitable expansion of (4.7) gives
(4.9) $\alpha^{*}=\ln \frac{2 V}{n_{f}}\left(\frac{2 \pi m \mathrm{~m} T}{h^{2}}\right)^{3 / 2}+\frac{15}{8} \frac{\mathrm{kT}}{m_{c}^{2}}-\frac{e^{-\alpha^{*}}}{2^{3 / 2}}$.
where
$(4.10) \quad \alpha^{*}=\alpha+\beta \varepsilon_{0}$ 。
Knowing α, the sum in (4.6) must be carried out explicitly, giving n_{b} and by $(4,8)$ a second approximation to n_{f}. The oyele is very rapidly convergent.

If a long series of computations must be made, it is more convenient to fix α to start. Then using (4.6) we find n_{b} / \mathbb{N} while (4.7) gives n_{f} / V_{0}. (Here is the total number of atoms in the system). Then we may find out to what value of $n / \nabla ; 1 . e .$, to what density; the value of α corresponds.
4. Statistiosl Uechanies - Dependant Electrons.

We now treat our system including the electronic interactions by the method of the canonical ensemble. A state of the entire system, symbolized by J, will be determined if we know the number of electrons in each onemeleotron orbital af the Fiartreo-Fook set of equations. Although each of these non-degenerate orbitals may have either one electron pr none at all, we find it more convenient to group degenerate or marly degenerate orbitals together and such groups we will designate by mall subscript 1 or f or l. The number of such orbitals in the $i \frac{\text { th }}{}$ energy group; ie. the degeneracy; we denote by c_{1}. The energy of the state is is (4.11) $E_{J}=\sum_{i} n_{J i}\left\{\varepsilon_{J i}+\frac{1}{2} \sum_{j \neq 1} n_{J j} \nabla_{J i j}+\frac{1}{2}\left(n_{J i-1}\right) \nabla_{J i 1}\right\}$. $A_{J 1}$ is the number of electrons occupying orbitals in the energy interval when the system is in the state J. Now the partition function will involve sums over all
states J of the system, but only states near the equilitrium value will contribute heavily. Since the dependence on J of the interactions $\mathcal{E}_{J i}$ and $\nabla_{J i j}$ is not pronounced, we may insert some average value ε_{1} and $\nabla_{1 j}$ independent of J instead. Moreover, we introduce the set of numbers \bar{n}_{j}, at present wholely arbitrary but later destined to represent some average occupation of the region. Ther (4.11) becomes

$$
\begin{aligned}
(4.12) E_{J}=\sum_{i} n_{J i} & \left\{\left[\varepsilon_{1}+\frac{2}{2} \sum_{j \neq 1} \bar{n}_{j} \nabla_{i j}+\frac{2}{2}\left(\bar{n}_{1}-1\right) \vec{\nabla}_{i 1}\right]\right. \\
& \left.+\left[\frac{2}{2} \sum_{j \neq 1}\left(n_{j j}-\bar{n}_{j}\right) \nabla_{i j}+\frac{2}{2}\left(n_{j 1}-\bar{n}_{i}\right) \nabla_{i 1}\right]\right\} .
\end{aligned}
$$

The first term in square brackets in (4.12) is independent of the coupations and may be regarded as the zero order approximation to the effective energy of the electron. The second term in square brackets gives the difference between the detefled interaction between electrons and the avarage interaotion. We mey expect this to be small and hence treat it as a perturbation.

Now according to the canonical ensemble treatment, the probability of finding our ontire system in an energy level between \mathbb{B}_{J} and $\mathrm{E}_{\mathrm{J}}+\Delta E_{\mathrm{J}}$ is

$$
\begin{equation*}
P_{J}=\Omega_{J} e^{-\alpha^{2}-\beta E_{J}} \tag{4.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{j}=\prod_{i} \frac{o_{i} d}{n_{j i} b\left(o_{i}-n_{j i}\right) t} \tag{4.14}
\end{equation*}
$$

is the number of states in the energy interval $\Delta \mathrm{E}_{\mathrm{J}}$ and α^{\prime} is the normalization constent determined so that

$$
(4.15) \quad \sum_{J} P_{J}=1
$$

Hence in equilibrium in our system the number of electrons in the $l \frac{\text { th }}{}$ region will be
(4.16)

$$
{ }^{n} h=\sum_{J} n_{u \ell}{ }^{p} J .
$$

Substitute in (4.16) the appropriate expressions from (4.12), (4.13), (4.14), introduce the quantity $\alpha^{\prime \prime}$ by the relation

$$
\text { (4.17) } \quad \alpha^{\prime}=n \alpha^{\prime \prime}=\alpha^{n} \sum_{1} n_{J 1}
$$

and carry out the indicated operations to first order terms in the $\nabla_{i j}$. The treatmont is characteristic of the grand ensemble method. The manipulations are todiove and 8 cnowhat tricky but the result is comparatively simple, namely

$$
\begin{align*}
n_{\ell} & =c_{\ell} p \ell\left\{1-\beta_{q} \quad\left\{\left[(\bar{n}-1)-2\left(o_{\ell}-1\right)_{\ell \ell}\right] \frac{\nabla_{\ell l}}{2}\right.\right. \tag{4.18}\\
& \left.\left.+\frac{2}{8} \sum_{\substack{ \\
i \neq \ell}} \nabla_{\ell l}-\sum_{i \neq \ell} o_{1} p_{1} \nabla_{1 l}\right\}\right\} .
\end{align*}
$$

where
(4.19) $\quad q_{\ell}={ }^{1-p} p_{l}$.
(4.20) $\quad \underset{\ell}{ } \quad=\left\{1+\exp \left\{\alpha^{n}+\beta\left[\varepsilon_{l}+\frac{2}{2} \sum_{j \neq l} \bar{n}_{j} \bar{\nabla}_{\ell j}+\frac{1}{2}\left(\bar{n}_{l}-1\right) \bar{\nabla}_{l} \ell\right]\right\}\right\}^{-1}$

We now choose the arbitrary parameters so that the first order terms in (4.18) vanish identically. This gives
(4.21)

$$
\begin{aligned}
& \bar{n}_{1}=2 o_{1} p_{1} \quad i \neq \ell \\
& \bar{n}_{\ell}=1+2\left(o_{\ell}-1\right) \mathrm{p} \ell
\end{aligned}
$$

Although the two equations in (4.21) seem contradictory, this really is not so, for there is absolutely nothing which forbids us to use a different set \bar{n}_{j} for each $\square \ell$ in (4.16). Substituting (4.21) into (4.18) and (4.20) gives our answer
(4.18a) $\quad n_{\ell}={ }^{\circ}{ }^{p} p_{\ell}$
(4.20a) $\quad p_{\ell}=\left\{1+\exp \left(\alpha^{\prime \prime}+\beta \bar{\varepsilon}_{\ell}\right)\right\}^{-1}$
（4．22）$\quad \bar{\varepsilon}_{\ell}=\varepsilon_{\ell}+\sum_{j \neq \ell} c_{j} p_{j} \nabla \ell_{j}+\left(0_{\ell}-1\right) p_{\ell} \nabla \ell \ell$
Compering our results of the last three equations with these of the independent electron treatment，(4.3) for example，shows them to be of the same form，except the energy $\varepsilon_{i 2}$ of the independent electron case is replaced by an effective energy $\varepsilon_{\hat{l}}$ of (4.22) ．We have，therefore，justified using an independent electron approximation with each electron subject to some averaged potential of its neigh－ bors，and we have found that potential correct to first order．

He can considerably simplify the result（4．22）Suppose l represents a
bound level．Then the interaction $V \ell_{j}$ between the two bound levels can be shown to be exactly the same as that calculated using atomic wave functions which localize both the l and j orbitals on one partioular ion．The terms in (4.22) due to the interaction of a bound electron with the other bounds is，therefore，
 exchange interactions of atomic theory．By far，the largest contribution comes from the spherically symmetric part of the coulomb integral，usually denoted by $F^{\circ}(i, j)$ in theoretical spectroscopy．It is more convenient，however，to use screening constants $\sigma_{1, j}$ instead of the $F^{O_{1}} s$ ，defined by

The interaction energy of a bound electron with the frees can likewise be ap－ proximated by the interaction of an atomic wave function with the charge density of the free electrons in the neighborhood of one particular ion．Suppose，there－ fore，we break up our crystal into polyhedra，each containing a nucleus and of suffi－ oielit size to enclose a negative charge Z^{\prime} e where $Z^{\prime}=Z-\frac{n_{2}}{N_{Z}}$ is the average
charge of the nucleus and its bound electrons．Approximate the polyhedre by spheres of the same volume，隹位 radius ny．Ne then have
(4.24) $\quad \sum_{2} \frac{4}{3} \pi \quad a_{2}^{3}, N_{2}=V_{0}$

If the electrons are really completely free, the charge density will be uniform throughout the crystal, and therefore
(4.25) $\quad \frac{4}{3} \pi a_{2}^{3}=\frac{z^{\prime} v}{n_{f}}$.

Moreover, there will be an electrostatic potential
(4.26) $\quad \phi_{f}=\frac{z^{\prime} \theta}{2 a_{z} \cdot}\left\{\frac{r^{2}}{a_{z}^{2}}-3\right\}$
within each sphere due to the free eleotrons, and wo obtain for the bound l to free interaction energy
(4.27)

$$
\rightarrow \int|\psi l|^{2} \phi_{f} d^{r}=\frac{z^{\prime} s^{2}}{2 a_{z^{2}}}\left\{3-\left(\overline{\frac{r}{a_{z}}}\right)^{2}\right\}
$$

where \bar{r}^{2} is the value of r^{2} averaged over the l bound wave function. For a bound state l, then, the energy $\bar{\varepsilon}_{l}$ becomes
(4.28) $\bar{\varepsilon}_{l}=\varepsilon_{l z}^{o}-\left.\frac{d_{l l}}{d z}\right|_{z}\left\{\sum_{j}^{\prime} \frac{n_{k z}}{N_{z}} \quad \sigma_{l o j}+\frac{p l z}{N_{Z}}\left(0_{l z}-1\right) \sigma_{l o l \text { melon }} l\right\}$.

$$
+\frac{z_{0}^{\prime} 0^{2}}{2 a_{z^{\prime}}}\left\{3-\left(\frac{\left.\frac{r}{z_{z}^{\prime}}\right)^{2}}{}\right\}\right.
$$

To first order in $\frac{d \mathcal{L}}{d Z}$, this is the same as

$$
\begin{equation*}
\bar{\varepsilon}_{l}=\varepsilon_{l}^{0}\left(z_{l}^{*}\right)+\frac{z_{0}^{0} e^{2}}{2 e_{z^{*}}}\left\{3-\left(\frac{\bar{r}}{z_{z^{*}}}\right)^{2}\right\} \tag{4.29}
\end{equation*}
$$

where
(4.30) $\quad z=2-\sum_{j \neq \ell} \frac{n_{j 2}}{N_{z}} \sigma_{l_{0 j}}-\frac{a_{\ell Z}}{N_{z}}\left(1-\frac{1}{\delta_{\ell z}}\right) \sigma_{l, l}$

We now must rewrite (4.22) for the ouse that l represents a free electron. For this purpose, wo assume the bound electrons are localized at the nucleus. This is generally an excellent approximation. The free electrons move in the potential
field, which is in each ionic sphere
$(4.31) \quad \hat{y}=\frac{z^{\prime} \cdot}{2 a_{z}}\left\{\frac{2 a_{z^{\prime}}}{r}-3 * \frac{r^{2}}{a_{z}^{2}}\right\}$.

This is due to the nucleus and bound electrons, and the frons. The energy \mathcal{E}_{ℓ} of (4,22) in this case includes the kinetic energy \mathcal{E}_{f} and the interaction with the nuclei. while the other terms in $(4,22)$ give the interactions with other bound and free electrons. All these interactions are just $-\bar{\varphi}, \bar{\varphi}$ being averaged over the volume of the Lon. Hence, for a free electron
(4.32) $\bar{\varepsilon}_{f}=\varepsilon_{f}-\frac{3}{5} \sum_{z} \frac{\mu_{z}}{n_{f}} \frac{z^{2} e^{2}}{2 a_{z}{ }^{i}}$

We note that the interactions have raised the energies of the bound electrons from the zero order approximation of interaction with the nucleus alone, while for free electrons the energy has been lowered from the different zero order an proximation of no interactions. We now shift the zero of energy, so that a free electron with zero kinetic energy has zero total energy, by adding the constant $\frac{3}{5} \sum_{z} \frac{N_{2}}{n_{2}} \frac{z^{2} \theta^{2}}{2 e_{z}}$. This will have the advantage that the density of states for the free electrons takes the simple form o($\left.\overline{\mathcal{C}}_{\mathrm{f}}\right) \mathrm{d} \overline{\mathcal{E}}_{\mathrm{f}}=o\left(\mathcal{E}_{f}\right) \mathrm{d} \mathcal{E}_{\mathrm{f}}$ and hence (4.23) become
$(4.33) n\left(\bar{\varepsilon}_{f}\right) d \bar{\varepsilon}_{p}=\frac{c\left(\varepsilon_{p}\right) d \varepsilon_{f}}{\alpha^{*}+\beta \varepsilon_{f}}$

Of course, changing the zero of energy has no effect on the occupation numbers, since it merely replaces $\alpha^{\prime \prime}$ by another normalization constant
$\alpha^{*}=\alpha^{\prime \prime}-\frac{3}{5} \beta \sum_{Z} \frac{N_{Z}}{n_{f}} \frac{Z^{\prime 2} \theta^{2}}{2 s_{z}}$. With this change in zero of energy, (4.29)

becomes

(4.34) $\bar{\varepsilon}^{\prime} \ell_{Z}=\varepsilon_{l}\left(z_{l}^{*}\right)+\frac{z^{1} \theta^{2}}{2 a_{Z}}\left\{3-\left(\frac{r}{\left.\alpha_{Z}\right)^{2}}\right)^{l}\right\} \frac{3}{5} \sum_{z} \frac{N_{Z}}{n_{1}} \frac{z^{i} \theta^{2}}{2 a_{z}^{i}}$

How we shall somewhat arbitrarily place our division into bound and free states at the zero in our new energy scale. This means that whenever $\bar{\varepsilon}_{l Z}^{\prime}$ of (4.54) is positive, that state is not bound. In most oases the higher states of an ion have their olpotrons rather uniformly distributed in the ions sphere and, therefore, $\left(\frac{r}{\varepsilon_{2} z^{\dagger}}\right)^{2} \sim 3 / 5$. We can, therefore, generally "out off" the bound states at about

$$
(4.35) \quad-\varepsilon_{l}^{0}\left(z_{l}^{*}\right)=3 \frac{z_{0}^{\prime} \theta^{2}}{2 a_{z}^{1}}
$$

The relevant equations for calculating the occupation mummers will now be s ummarized in final form.
(4.36) $\frac{n_{l z}}{n_{z}}=\frac{\ell z}{\alpha^{*}+\beta \bar{\varepsilon}^{\prime} \ell z+1}$,

(4.38). $z_{l}^{\prime \prime}=-\sum_{j \neq l} \frac{n_{j z}}{n_{z}} \sigma_{l a j}^{\prime}-\frac{n_{l}}{N_{z}}\left(1-\frac{1}{\delta_{l}}\right) \sigma_{l_{0}}^{\prime} \ell$.
(4.39) $\quad\left(\overline{\mathcal{E}}_{f}^{\prime}\right) d \bar{\varepsilon}_{f}^{\prime}=\frac{\frac{8 \pi \nabla_{m}}{h^{8}}\left(2 m{\overline{\varepsilon_{p}^{\prime}}}_{\prime}^{\prime \frac{1}{2}}\left\{1+\frac{5}{4} \frac{\bar{\varepsilon}_{f}^{\prime}}{m_{0}^{2}}+\cdots\right\}\right.}{\alpha^{\prime}+\beta \varepsilon_{p}^{\prime \prime}}$
$(4.40) \quad n_{b}=\sum_{z} H_{z} \sum_{l} n_{l z}$ sum for all $\bar{\varepsilon}_{l z}^{\prime}<0$.
$(4,41) n_{f}=\int_{\mathcal{E}_{1}^{\prime}}^{\infty} n\left(\bar{\varepsilon}_{f}^{\prime}\right) d \bar{\varepsilon}_{f^{\prime}}^{\prime}$.
(4042) $n=n_{b}+n_{f}$ 。
$(4.43) \frac{4 \pi}{3} a_{Z}^{3}=\frac{z^{2} y}{n_{f}} ; \quad(4.43 a) \quad V=\frac{4 \pi}{3} \sum_{z} a_{Z}^{3} N_{Z}$
(4.44) $\quad z^{\prime} \equiv z-\frac{\sum}{\bar{\ell}} \frac{n_{\ell Z}}{\bar{x}_{Z}}$
and as an explioitly equivalent of (4.41)
(4.4la) $\alpha=\ln \frac{2 V}{n_{f}}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}+\frac{15}{8} \frac{k T}{m c^{2}}-\frac{15}{I B}\left(\frac{k T}{m^{2}}\right)^{2}$

$$
\frac{e^{-\alpha^{*}}}{2^{3 / 2}}\left(1-\frac{15}{16} \frac{\mathrm{kT}}{m e^{2}}\right)+e^{-2 \alpha^{*}}\left(\frac{1}{3^{3 / 2}}-\frac{1}{16}\right)+\cdots
$$

This set of equations is somewhat deoeptively simple in form, for it must ontually be solved by a somowhat lengthy series of successive approximations, If we are given the temperature I and volume ∇_{0} we must assume a set of $n_{l}{ }_{2}$ 。 an α^{*}, and a set of a z^{\prime} satisfying (4.43). (The latter is, of oourse, trivial if our system has only one element.) We then oaloulate $z^{*} /$ by (4,38) and by interpolation in a table of energy levels find $\varepsilon_{\ell}^{0}\left(z_{l}^{*}\right)$. Moammile, by (4 . 44) caloulate z^{\prime}. We can then immediately get $\varepsilon^{\prime} \ell_{2}$ and by (4.36) a now set of $n l 2$. By (4.40) we get n_{f} wioh with (4.42) gives n_{f}. Employing n_{f} in (4.4la) we arrive at a new α^{*}. Moreover, using (4.45a) gives a new set of az'. Continuing this cyole, we can ostablish our final oocupation numbers. The tables of soreening sons tants $\sigma_{1, j}$ energy levels, and $\bar{r}^{2} l$ needed for the calculation are presented here as Pable 2, 3, and 4 respectively.

One approximation made in the foregoing set of equation is the assumption of the uniforn charge distribution of the free eleotrons. An improvement on this approximation, whioh also demonstrates the range of its validity, is given in Appendix II.

5. Ionio Ocoupation Numbers.

A somewhat different model for our system was mentioned briefly in the last seotion - the ionic model. We shall now describe the basis for this model somevhat more fully, show its relevanoy to the opacity problem, and indicate how our previous results may be applied in this arse.

We know that if an olectron is in a state of suffioiently low energy, it will be temporarily bound to one nuoleus. Because of the high coulamb berrier between noighboring nuclei, it will remain bound for a considersble time - indeou it would be improper to use atomio wave functions for the olootron umless it remained bound for times long compared to the time of revolution of its Bohr orbit. Naturally, several eleotrons mey be bound to the same nucleus at the same time. The interactions between the electrons will not be expressible in terms of the treatment we have hitherto used, for the correlations whioh were negleeted are now of deoisive importance. For example, a nucleus with two bound K eleotrons will behave much differently, partioularly with regard to its speotrum, than one with 2 K and four bound L electrons. We can take these correlations into aocount by abadoning our simple "product of one eleotron functions" approximation and using instead functions whiah depend upon all the coordinates of the bound eleotrons of each nucleus. This is equivalent to describing our system as ocmposed of many difforent ions in a dynamio equilibrium in a sos of free eleotrons. Applying the statistioal meohanics appropriate for systems undergoing "chemical" reactions, we can get, for example, the number of ions of each type in our system, and the distribution of the ions among ionic quantum states. Essentially the same result is obtained by the use of the canonical ensemble treatment for dependent particle systems if we appropriately express the energy of the system as the sum of ionic onergies, free electron energies, and interaction energies between these oomponents. The latter mothod has the advantage that are able to take into eccount, to first order at any rate, the interactions of the free electrons and ions. This model, which is certainly to be preferred to that of the previous section, gives the speotrum of our system as the superposition of the many different ionio spectra. It is precisely this very rioh line spectrum wioh causes the lines to so important in the opecity problem.

Despite the apparent dissimilarity of the ionic and "one-eleotron function" models, we can show an intimate relationship between the two. In our ionic model we may use for each ion the conventional treatment of many eleotron lons. This consists in expressing the wave function of the ion as antisymetrized products of one \rightarrow lectron functions and then earrying out perturbation calculations - usually only to first order. Suppose we then neglect all but the spherioally symmetric Qoulomb interaction. This makes many of the ionic levels degenerate, of course, but the energy changes are so slight as not to change the ionic oocupations. If we then take the average number of electrons in a partiouiar orbital throughout all the ions in our system, we get, to first order, the results of section 4. The userul point about this relationship is that wo can use the occupation numbers of section 4, giving the average ocoupation, to find the lonic oocupations to good accuracy without the need of starting off afresh in a laborious caloulation from the ionic model. Thus the work of the previous section gave the number of electrons $\frac{n_{l Z}}{N_{Z}}$ in the $l^{\text {th }}$ level of an ion of nuolear change Z, or alternatively $\mathrm{p}_{\ell z}=\frac{n_{l Z}}{\mathrm{o}_{l z}}$ the probability of occupation of the states of that level. Prom this we caloulate the probability of finding an ion in our system with several bound - lectrons arranged to give sone perticular quantum state of the ion. For example. the probability of having an ion with electron oonfiguration $(10)^{2}\left(2 \pi \frac{1}{2}\right)\left(3 p_{3 / 2}\right)$. in the K, L and shells, whatever the configuration of the higher shalls may be, is (4.45) $p_{1 s}^{2} \times 2 p_{2 s} q_{2 s} \times q_{2 p \frac{1}{2}}^{2} \times q_{2 p 3 / 2}^{4} \times q_{36}^{2} \times q_{3 p \frac{1}{2}}^{2} \times 4 p_{3 p 3 / 2} q_{3 p 3 / 2}^{3} \times q_{3 d 3 / 2}^{4} \times q_{3 d 5 / 2}^{6}$ where
(4.46) $\quad q /=(1-p l)$.

In general the probability of having an ion with ν_{l} electrons in the l th level regardless of the occupation of the other levels is given by the binomial distribution
(4.47) $\quad P_{\nu l}=\frac{0 l!}{\nu_{l}!\left(0 l-\nu_{l}\right)!} P_{l} l^{\frac{41-}{l^{2}} q_{l} \ell^{-2} l}$

As is well known, for large O and small Pl, (which is the case for the higher bound levels of an ion) this reduces to the Poisson distribution (4.48) $\quad P_{\nu l} \sim \frac{\bar{\nu}_{l}{ }^{2} l}{\nu l} \cdot \bar{\nu}_{l} \quad \quad \bar{\nu}_{l}=\mathrm{c}_{l} \mathrm{P}_{l}$:

The ionic model gives a simple physical interpretation to the rather surprisetrig looking formulae of section 4. Consider, for example, the term $-\frac{d \varepsilon}{d z} \frac{n_{g} z}{\eta_{z}} \sigma_{l_{g} j}^{\prime}$ in (4.28) the energy $\bar{\varepsilon}_{l}$. The factor $-\frac{{ }^{d} \varepsilon}{d z} \sigma_{l, j}$ is the interaction between the $j^{\text {th }}$ and the $l^{\text {th }}$ bound electron levels in an ion. Averaging ever all the ions of the system; some having no electrons in the fth level, others having one, others having two, etc. gives precisely the term wo are considering. Again consider the ions which definitely have electron in the $l^{\text {th }}$. level. The average occupation among these ions of the other $0 \ell z^{-1}$ states in the level is ${ }^{p} \ell_{Z}\left(0 Z_{2}-1\right)$. The average interaction energy between one particular ℓ electron and the others then is just $p_{\ell Z}\left(0_{\ell Z}-1\right) \sigma_{l_{0} l}\left(\frac{d \varepsilon_{l}}{d Z}\right)$. This is precisely the third term in (4.28). We see that the energies involved in the dependent electron treatment are averages over the ions of the system. Going a little further, we on show that (4.28) is actually the average ionization energy of an lh level electron in our ionic system. To prove this, wo note that if an ion has x_{j} electrons in the fin level, its energy to first order is approximately

$$
E\left(x_{1}, x_{2} \cdots x_{i} \bullet\right) E=\sum_{j} x_{j} \varepsilon_{j z}^{0}+\frac{1}{2} \sum_{i} \sum_{j \neq i} x_{i} x_{j} F^{0}(i, j)+\sum_{i} x_{i}\left(x_{i}-1\right) \frac{F^{0}}{2}(i, i)
$$

so that the ionization energy of the l th electron is

$$
\begin{aligned}
& E\left(x_{1}, x_{2} \ldots x_{l} \cdots\right)-S\left(x_{1}, x_{2} \ldots x_{l}-1 \ldots\right) \\
&=\varepsilon_{l z}^{0}+\sum_{j \neq l} x_{j} F^{0}\left(l_{0} j\right)+\left(x_{l}-1\right) F^{0}(\ell, \ell)
\end{aligned}
$$

Averaging this fonization energy over all the lons having at least one bound l eleotron gives (4.28) exdept for the terms involving the interections with the free electrons.

This completes our discussion of the ocoupation numbers in our system, which are needed to get the absorption coefficient.
6. The Influence of Nuolear Motion.

Thus far we have considered the nuclei as fixed in a lattioe position. This is justified, sinee Hefther the bound nor free wave functions depends appreciably on the relative pesition of nuclei. All our oooupation numbers are, therefore, correot. There are two phenomena, however, whieh depend on the nuclear motions 1) the totel nergy of the system has a contribution fram the kinetic and potential energies of the nuolei; 2) in their motion, melei Will exert varying eleotric fields upon the bound electrons of neighbors, thus causing Stark offect hifts and splittings of the spectral lines. The first effect is of some small importance in the thermedyamile properties of our system, while the second may be very important in influenoing the offect of lines on the opacity.

The result of separating the wave equation for our entire system se as to give the electronio energy separately, desaribes the motion of the nuclei as if proceeding in a potential determined by the electronic energy. This potential is in our oase approximatrily the olassical potential of an assembly of positive ions moving in a uniform charge density due to the free electrons. Wo treat this potential in two limiting cesses. Assume first that the nuelei are at lattice positions, whioh configuration represeats the zero of potential energy. For small deviations from this position the potential inereases. For example, the change in potential energy. If a single ion of effective oharge z^{\prime} is at a small distance r from its equilibrium position is
$(4.49) z^{\prime} \cdot\left[\varphi_{\rho}(r)-\varphi_{\rho}(c)\right]=\frac{z^{2} e^{2}}{2 a_{z}} \frac{-43}{a_{z}{ }^{2}}=\varepsilon(r)$.
where \oint_{f} given by (4.26), is the electrostatio potential of the free eleotrons. So long as (4.49) holds, the nuolei will perform aimple harmonic vibrations about their pesition of equilibrium. The heavy mass of the nuclei will make the frequenoy so low that the contribution to the energy of the system is olassical
(4.50) $\quad E_{n u c l e 1}=3 \mathrm{MET}$.

Continuing the treatment of this approximation, we consider the Stark effect due to this motion. The number of ions with displacement r to r dr is (4.51) $N(r) d r=\mathbb{N}_{Z} \frac{4 \pi r^{2} \exp \left(-\varepsilon(r) / \mathrm{kr}^{r}\right) d r}{\int_{0}^{2} 4 \pi r^{2} \operatorname{expm}(\mathcal{Z}(r) / \pi r) d r}$.
where $\mathcal{E}(r)$ is given by (4.49). Carrying out the integration gives (4.52)

$$
\frac{\mathrm{N}(r) \mathrm{d} r}{Z_{Z^{\prime}}}=\frac{\left(\frac{s r}{2 Z^{1}}\right)^{2} \exp -\left(\frac{s r}{a_{Z^{1}}}\right)^{2} d\left(\frac{r}{a_{Z^{1}}}\right)}{\sqrt{\frac{\pi}{4}} \operatorname{erf} s-(8 / 2) \exp -s^{2}}
$$

where
(4.52a) erf $x=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y$,
and
(4.53) $s^{2}=\frac{z^{2} e^{2}}{2 K \mathrm{Ta}_{z}}$.

One important result of this formula is obvious the Stark effeot dispersion will fall off exponentially with distance from the lime oenter.

To examine the range of applicability of this approximation, we oalculate the average displacement
-44-
(4.54) $\quad \frac{\vec{r}}{a_{Z^{\prime}}}=\int_{0}^{a_{2}} \frac{r}{\alpha_{Z}} \frac{N(r) d r}{N_{Z}}=\frac{\frac{1}{2 s}\left\{1-e^{-s^{2}\left(s^{2}+1\right)}\right.}{\frac{\sqrt{\pi}}{4} \operatorname{erp} \sin -(s / 2) e^{-s^{2}}}$.

For $8 \gg 1$ this becomes
(4.54a) $\frac{\bar{r}}{a_{z}} \sim \frac{2}{\sqrt{\pi_{s}}}$.
while for $s \ll 1$
$(4.54 b) \quad \frac{\bar{r}}{z^{1}}=\frac{3}{4}\left(1-\frac{8^{2}}{1 s}\right)$.
The expansion shows that for $s \ll 1$, thit is high temperature, low density (large ${ }^{R_{Z}}{ }^{\prime}$, or small muclear cherge, the average displacement of the molel will be $3 / 8$ of the average internuclear distance. This is the result if the mucleus could be With equal probability at any point in the spheye. In this case wo cotld scarcely speal: of harmonic vibrations and the method of treatment is not applicable. For large s however, thet is low temperature, high density, and/or high muclear charge, (4.54a) shows our approximation to be adequate. Figure 2 shows the beherior of the \vec{r} / a_{z}, as a function of s.

For the cases whers the approxination is velid, the electric field on a mucleus siturted at r is iireoted toward the lattioe point and has magniture (4.55) $|\vec{\varepsilon}|=\frac{d}{d r} \phi_{f}=\frac{z^{\prime} \theta}{a_{z}^{\prime}{ }^{2}} \frac{r}{a_{z}}$.

The distribution of nuelear positions will lead to a distribution of electric field magnitudes, and hence a continuous dispersion of the observed spectral lines of the assembly of ions. The fraction of ions of effeotive charge Z^{\prime} which will be subjeot to a field of betwgen $|\vec{E}|$ and $|\vec{Z}| \vec{d} \mid$ is

Formula (4.55), while correct in order of meriltude, does not tell the white story. position for neighboring ions will be displaced from their equilitriumand give rise to a dipole field. The resultant of all dipoles $\begin{aligned} & \\ & \text { ill } \text { give a field of the same order as }\end{aligned}$ (4.55). Moreover, in applications to Stark affect, it should be remembered that the field (4.55) is radial, not linear as in the usual considerations.

We now turn to the case where $S \ll 1$ and harmonic vibrations do not describe the motion. Here the nuclei may wander rather freely about, except when one nucleus makes a very close approach to another. The energy contribution will be essentially that of a perfect gas

$$
(4.57) \quad E_{\text {nuclei }}=3 / 2 \mathrm{NkT}
$$

The spatial distribution of the ions will be determined by their mutual potential energy for close approaches. To good approximation this is simply (4.58) $\quad \varepsilon\left(r_{12}\right)=\frac{z^{\prime} z^{n} e^{2}}{r_{22}}$ for $r_{12}<\frac{a_{2}{ }^{\prime}+a_{2}{ }^{n}}{2}$

$$
\varepsilon_{\left(r_{12}\right)}=0 \quad \text { elsewhere }
$$

Then

$$
(4.59) \quad N\left(r_{12}\right) d r_{12}=\frac{\mathrm{N}_{Z^{\prime}}}{\nabla} \cdot-\mathcal{E (r _ { 1 2 }) / k T} 4 \pi r_{12}^{2} \mathrm{~d} r_{12}
$$

The electric field felt by the ion $Z^{\prime \prime}$ as it approaches $Z^{\prime \prime}$ is
$(4.60) \quad|\vec{\varepsilon}|=\frac{z^{\prime \prime}{ }^{2}}{r_{12}^{2}}$.
so that the number of ions in fields between $|\mathcal{E}|$ and $|\overrightarrow{\mathcal{E}}|+d|\overrightarrow{\mathcal{E}}|$ is
(4.61) $\frac{N_{Z^{\prime \prime}} \overrightarrow{Q E D} d \vec{\varepsilon} \mid}{N_{Z^{\prime \prime}}}=\left.\frac{2 \pi}{\vec{\nabla}} \frac{\left(z^{\prime} e\right)^{3 / 2}}{|\vec{\varepsilon}|^{5 / 2}} d \vec{\varepsilon}\right|_{\exp }=\frac{\left\lvert\, \vec{\varepsilon}^{\frac{1}{2}}\left(Z^{\prime} \theta\right)^{3 / 2}\right.}{\mathrm{KT}^{T}}$.

Here again we can see that, the Stark effect dispersion will fall off exponentially.

7. Pluctuations.

The quantum mechanioal treatment we have used did not actually find the stationary energy levels of our system. The approximations whioh we were foreed to introduce had the result that we treated the ions as if they were independent systems, ant then introduoed interactions between other ions and the free eleotrons a perturbations. The true stationary states, of oourse, will resemble the zero order approximation except that interactions will have removed seme of the degeneracy. This splitting is very important as a sourse of iine breadth. To include this splitting we can oonsider the interactions as time dependent perturbations or Pluotuations.

One of thesefluatuations is eaused by the nuclear motions just discussed in section 6. The nuelei boing so massive be thought of elassioelly. Simee they have in equilibrivan the same energy as the elecurons, their velocity will be a factor $\sqrt{\text { 㗐 }}$ smaller. (M is the muclear mass, in the elestronic mass). The motion Will be so siow compared to that of the eleotrons that we may use adiabatio epproximation for the interactions. The result is that eleotronio levels are shifted by a Stark offect when two nuclei approach, but no electronic transitions are induced.

If we thought of the free electrons classioally, they would be randonly distributed in space. We would then obtain oonsiderable density fluotuations in the neighborhood of each ion and it might be imagined these effeots must be considered, Our quantren meohanioal treatment of the free eleotrons, however, is mach oloser to the truth. We must really consider the wave function of a free electron to eactend throughout the solid. This eliminates the density fluctuations. But, because we have meglected correlations, there is another offeot have missed. This is the collision of free lectrons with the ions. Since this is a fast process, It will Induce transitions from one lonio state to another, giving the states a cellision breadth. It is well known that sueh breadth gives the same form of dispersien as the natural breadth.
V. EFFECT OF LINES ON OPACITY.

METED FOR TREATING ZINE CONTRIBUTION.

1. Separation of Line Contribution

The Roseoland mean opacity K as is shown in Chapter III (3.24) and (z.15)
is a weighted average absorption coefficient given by
(5.1) $\quad \Lambda=\frac{1}{O \mathbb{R}}=\int_{0}^{\infty} \frac{W(u)}{\mu u^{3}} d u$.
where
(5.2) $\quad W(u)=\frac{15}{4 \pi^{4}} u^{7} e^{2 u}\left(\theta^{u}-1\right)^{-8}$.
and
(sis) $\quad \mu=\mu_{a b s}+\mu_{\text {seat }}\left(1 \infty^{-i,}\right)^{-1}$.
It is usually convenient to consider the absorption coefficient resolved into sro terms
(5.4)

$$
\mu=\mu_{0}+\mu_{l}
$$

i_{0} being the absorption due to continuous processes alone, and $\mu \mu$ the absorption due to the lines. The reason for this division is that μ_{0} is a moderately smooth function of frequency except at the location of an absorption edge, while μ_{l} is a very ragged function with sharp maxims at the frequency of each absorption line. Substituting (4) in (1) and introducing the notation

$$
\text { (5.5) } \quad r=\frac{\mu_{2}}{\mu_{0}} ; \quad P=\frac{1}{1+r} \text {. }
$$

we get for the mean free path
(5. ε) $\quad \Lambda=\frac{1}{\rho \mathbb{Z}}=\int_{0}^{\infty} P \frac{W(u) d u}{\mu_{0} u^{3}}=\Lambda_{0}-\Lambda_{l}$.
where

$$
\begin{equation*}
\Lambda_{c}=\int_{0}^{\infty} \frac{w(u) d u}{u_{c} u^{3}} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{l}=\int_{0}^{\infty} \frac{r}{1+r} w(u) d u . \tag{5.8}
\end{equation*}
$$

The latter form of (5.5) shows how the lines reduce the mean free path from the value Λ_{c} obtained by considering continuous processes alone. The contribution. Λ_{c} of the continuous processes has been treated by all workers in the field of stellar opacities with varying degrees of completeness, but the contribution of lines has hitherto been ignored.
2. Effect of a single line

To understand the effect lines make on the opacity, and to help in developing methods of treating lines, we start by considering the simplest case of a spectrum with only one line. The line absorption coefficient in that case is (c.f. equation (2.9))
(5.9) $\mu_{e}(v)=\frac{\pi e^{2}}{m c} \frac{N^{b}}{V} f_{b a} b_{b a}$.
where $f(2)$, the dispersion factor shows the frequency dependence of the absorption. $f(v)$ has a sharp maximum at $\nu=\nu_{0}$, the frequency of the center of the absorption line, and is so normalized that
(5.10) $\int_{0}^{\infty} f(z) d v=1$.

Without considering further details, we can see qualitatively what is the contribution of this single line to the opacity. Dropping the subscripts for the moment, we have

$$
\begin{equation*}
\frac{r}{1+r}=1+\frac{1}{\frac{s}{N f} w^{\prime}} \tag{5.11}
\end{equation*}
$$

where

$$
\text { (5.11e) } \quad S=\frac{k T}{h} \frac{m c}{\pi_{e}} V \mu_{c} ; \quad b^{\prime}(u)=\frac{k T}{h} \quad b(v) \text {. }
$$

The frequency variation of this function for a typical case is shown in the accompanying figure. It is seen that this function

approaches unity when r is a maximum at the frecuency of the center of the ilne, decreases slowly with displacement from the center until it becomes $\frac{1}{2}$ when the Ifne absorption is equal to the continuous absorption backeround. The variation of the function in the neighborhood of $\frac{1}{2}$ is rapid, the transition from values nes. unity to values near zero occurring within a small frequency range. For greeter displacements the function falls off rapidly, soon behavine sirply as r. The contrast between the function r which one might naively expect to determine the ine erfect and $r / 1 \nmid r$ is marked. Whereas r drops to $\frac{1}{2}$ its value at (u-u $)=\Gamma$, we find that $r / 1 \neq r$ drops to half its value only at $f u=u_{0}$ in Γ_{3}.

The integrel (5.8) giving the contribution of the line is afproximately (5.12) $\left.\Lambda_{l}=\int_{0}^{\infty} \frac{r}{1 r^{*}} d u \frac{W(u)}{\mu_{0} u^{s}}\right]_{u=u_{0}}$
since the integrend is neglicible except for frequencies near $\nu=\nu_{0}$, hast is
important then is $\int_{0}^{\infty} \frac{r_{c}}{1 / r}$ du. The greatest part of the contribution to this integral comes in the range where $r /(1+r) \cong 1$; practieally nothing is epatributed by regions where $r /(14 r)<\frac{1}{2}$. Thus if wis the distanee between $u_{0}=h /{ }_{c} / 2 T$ and the frequency u gh $2 / \mathrm{kP}$ at which $r=1$, the integral is approximately

$$
\begin{equation*}
\Lambda_{l}=\left.\frac{W(u)}{\mu_{0} u^{3}}\right|_{=2 w} \times n_{0} \tag{5,13}
\end{equation*}
$$

The quantity $2 w$ we shall term the wingspread of the IIne upon its continuous bacicground. It is this quantity, as is shown by (5.15), vather that the dispersion breadth of the line which determines the contribution of the line to the opacity. The mat actually think of the line, according to (5.18), as leaving the transmission of light unaffected thr oughout the speetrum exdept in the region of its wingspread. Where it oompletely blocks the transmission.

The wingspread of the line is deternined by the condition
$(5,14) \quad \frac{N N^{\prime}}{S} \quad b^{*}\left(w-a_{0}\right)=14$
thus it depends on the ratio of line strength $N f$ to oontinuous background, and the alspersion. Even a line whioh has very small dispersive breadth may have a considerable wingspread if it is strong enough. On the other hand, a broed line耳ay have very mall or zero wingspread if it is weak compared to its background. Arguments for neglecting line contributions beoause of the small dispersive breadths alane are, therefore, inearrect. Another important conclusion we may draw is the following. Sinoe the wingspread does not depend on the position of the line, the Lime contribution in the ase of an isolated line is not sensitive to position. Suppose we consider first an artifioial example of a line with a rectangular shaped dispersion

$$
\left\{\begin{array}{l}
b(\nu)=\frac{1}{2 \Delta \nu} \text { for } \nu_{0}-\Delta \nu \leqslant \nu \leqslant \nu_{0}+\Delta \nu \tag{5,15}\\
b(\nu)=0 \quad \text { otherwise. }
\end{array}\right.
$$

Then

If the line absorption is very strong. oompared to the contimuous abredition, obtain the obvious result that

$$
(5.17) \quad \Lambda_{2}=\left.\frac{W(u)}{\mu_{e} u^{3}}\right|_{u_{j=u_{0}}} \times 2 \Delta u_{0}
$$

that is, the line eliminates the entire transulssion of the frequitivi interncif $2 \Delta u_{0}$. It seoms at first sight a littlo anazing that this reanit dots piet dopeng
 another will have just the same effect on opacity. But a Intaris whrintion ahomb that if a line oompletely absorbs the radiation in an intervaz, it shata hive
 On the other hand, if the ilno absurption coefficiont is weak eampared tid and continuous background, that is
$(5.18) \frac{H P}{2 \Delta \vec{F} V_{Q}} \ll 1$,
we get
(5.19) $\quad \Lambda_{l}=\left.\frac{H(u)}{\mu_{0} s^{3}}\right|_{=m_{0}} \frac{M f}{S}$.

Here we get the imphetant result (In comtrast to (5.17) abeve) that the effect of the line is direotiy proportional to its integrated stronfth tif tiut si indet pendent of the dispersion interval $2 \Delta \nu$. As an impediate consequonee of thas, wh have that Λ_{l} is independent of the dispersion shape whateves that way bet Iome as the analogue to (5,18) is fuleilled. This is a very inportant reinalto rer moak
 and it is unnecessary to inquire into the details dr the diaperalions singe most of the lines in a speotrum are of this natire, $(5,49)$ solves a great deal of the problem.

Proceeding now to the actual types of dispersion we shall encounter, the specific ease of natural and/or collision breadth has the dispersion formula (emf. (2.015).
$(5.20) \quad b(\nu)=\frac{\gamma}{4 \pi^{2}\left(\nu-\nu_{0}\right)^{2}+\gamma^{2} / 4}$ $b^{\prime}(u)=\frac{1}{\pi} \frac{\Gamma}{\left(u-n_{0}\right)^{2} \in \Gamma^{2}}$
where $8 / 4 \pi$ is the half breadth, and
$(5.21) \quad \Gamma=\frac{h r}{4 \pi I T}$
The wingspread w is obtained from (6,14) giving
$(5.22) \quad w=\left\{\frac{\pi \Gamma}{\pi S}-\mu^{2}\right\}^{\frac{1}{2}}=\left\{\frac{\Gamma}{\pi}\right\}^{\frac{1}{2}}$.
the latter approximation being valid if

$$
(5.23) \quad \frac{\pi g C}{W} \ll 1
$$

1.0. if $\Gamma \ll w$, a condition m itch is frequently the oases. The wingspread is then proportional to $\Gamma^{\frac{1}{2}}$ and to the square root of the 11 ne strength (ne) ${ }^{\frac{1}{2}}$. Carrying pit the integration of (5.12), we get
(5.24) $\Lambda_{l}=\left.\frac{w(u)}{\mu_{8} u^{s}}\right|_{u_{m} n_{0}} \pi\left(\frac{\pi \Gamma \Gamma}{\pi s}\right)^{\frac{1}{2}}\left\{1 \% \frac{\pi s \Gamma}{\nabla \Gamma}\right\}^{-\frac{2}{2}}$.

In the ease where $\pi S \Gamma /(N f) \ll l$ we may put the last factor equal to $l_{\text {. }}$ In just this case the wingspread is given by the simplified form of $(5,22)$ and the remit is (5.25) $\Lambda_{l}=\frac{\pi}{2} \times\left. 2 \pi \frac{W(u)}{\mu_{Q} u^{3}}\right|_{w_{0} n_{0}}$.

The fact that the lIne blacks out a frequency fatervel $\pi / 2$ times the wingspread is a confirmation of the general qualitative result in (5.28). The reason the manerical factor is so different (1.57 instead of 1) is that the natural breadth dispersion gives appreciable absorption even rather for from the tint enter. We shall generally speak of the extra contgithution to the opacity of regions
beyond the wing spread as a "tail" effect, because it is due to the tail ends of the dispersion curve.

In the other extreme case of wok lines (5.24) reduces to

$$
(5.26) \quad \Lambda_{l}=\left.\frac{N(u)}{\mu_{0}^{u} u^{3}}\right|_{u_{u u_{0}}} \frac{N f}{S}
$$

This result is precisely the same as (5.19) for the case of step-like dispersion, and is a special illustration of the general validity of the weak line formula, regardless of type of dispersion or breadth.

Turning next to the case of Doppler broadening, the dispersion is
$(5.27) \quad b(y)=\frac{h}{k T}\left\{\frac{M c^{2}}{2 \pi k T u_{0}^{2}}\right\}^{\frac{1}{2}} \quad \exp -\left\{\frac{M a^{2}}{2 K T} \frac{\left(u-u_{0}\right)^{2}}{u_{0}{ }^{2}}\right\}$.
The half breadth is given by the value γ which makes
$(5.28) \quad b\left(\gamma-\nu_{0}\right)=\frac{2}{2} b\left(\nu_{0}\right)_{0}$
We see from (5.28) and (5.27) that
$(5.2 \theta) \quad \Gamma=\frac{h \gamma}{K I}=u_{0}\left\{\frac{2 \pi R}{\omega_{0}^{2}} \ln 2\right\}^{\frac{1}{2}}$.
The wingspread, however, is given by the condition that

$$
\frac{\pi f}{S}\left\{\frac{M_{0}^{2}}{2 \pi K u_{0}^{2}}\right\}^{\frac{1}{2}} \quad \exp =\left\{\frac{M_{0}^{2} w^{2}}{2 K u_{0}^{2}}\right\}=1
$$

whence
$(5.30) w=\left\{\frac{2 K T u_{0}^{2}}{M a^{2}} \ln \left[\frac{N f}{S}\left(\frac{M 0^{2}}{2 \pi K T u_{0}^{2}}\right)^{\frac{2}{2}}\right]\right\}^{\frac{1}{8}}$.
Thus
$(8.31)=F\left\{1.443 \ln \left[0.469 \frac{\mathrm{NI}}{\mathrm{S} \Gamma}\right]\right\}^{\frac{2}{8}} \quad$
Aside from the logan thais factor, the expressions for the wingspread (5.30) and the dispersion breadth agree. This is, of course, due to the exponentially fallInt off of the dispersion curve with distance from the line center; as a ouse-
quence, the line has effective absorption only in the region of its dispersion: breadth.

The actual contribution of the line with Doppler breadth to the opacity is from (5.11). (5.12), and (5.27)
(5.32) $\quad \Lambda_{l}=\left.\frac{W(u)}{\mu_{0} u^{3}}\right|_{u=u_{0}} \int_{0}^{\infty} \frac{d u}{1 \& \frac{\sqrt{\pi} S B^{-\frac{1}{2}}}{N f} e^{q 3\left(u-u_{0}\right)^{2}}}$.
where

$$
(5.33) \quad B=\frac{M_{0}^{2}}{2 K u_{0}^{2}}
$$

We can express the integral as
$(5.54) \Lambda_{l}=\left.\frac{(1)}{\mu_{0} u^{3}}\right|_{u=u_{0}} \frac{\sqrt{\pi}}{a} \sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{B^{\frac{1}{2}}}{a}\right)^{n-1} \frac{1}{n^{2}}: \quad a=\frac{v \pi^{7} S}{N f}$,
which for small values of $B^{\frac{1}{2}} / a$ develops as
(5.55) $\Lambda_{l}=\left.\frac{W(u)}{\mu_{0} u^{3}}\right|_{u=u_{0}} \frac{N f}{S}\left\{1-\frac{N f}{S} \frac{1}{\sqrt{2 \pi}}\left(\frac{M_{0}^{2}}{2 k T u_{0}^{2}}\right)^{\frac{1}{2}}+\cdots\right\}$.

The leading terns of this expansion is the weak line result (5.19) as should indeed be expected, for the condition
(5.36) $\frac{B^{\frac{7}{8}}}{2} \equiv \frac{\mathrm{Xf}}{\mathrm{S}}\left(\frac{\mathrm{Mo}^{2}}{2 \pi \mathrm{Mu} u_{0}^{2}}\right)^{\frac{7}{2}} \ll 1$
means that the lines are weak.
For large values of $\mathrm{s}^{\frac{2}{3}} / \mathrm{a}$, the analytic form (5.34) is inconvenient for calculatron. We then develop the integral from (5.32) as

$$
\int_{0}^{\infty} \frac{\frac{x}{}_{-\frac{1}{2}}^{d x}}{\frac{B^{\frac{1}{2}}}{a}+e^{x}}=\int_{0}^{\ln } \frac{B^{\frac{1}{2}}}{2} \frac{x^{\frac{1}{2}}}{\frac{B^{\frac{1}{2}}}{a}\left(1+\frac{B^{\frac{1}{2}}}{a} e^{x}\right)}+\int_{\ln ^{\frac{B^{\frac{1}{2}}}{2}}}^{\infty} \frac{x^{-\frac{1}{2}} d x}{e^{x}\left(1+\frac{B^{\frac{1}{2}}}{a} e^{-x}\right)}
$$

The leading term in the development is $2\left(\mathrm{a} / \mathrm{B}^{\frac{1}{2}}\right) \sqrt{\mathrm{fn} B^{\frac{1}{2}} / a}$.

Whence (5.37) $\Lambda_{l}=\left.\frac{\Pi(u)}{\mu_{0} u^{3}}\right|_{u_{m 0}} \times 2 w_{0}$

Thi higher order terms constitube a tail offect.
It is instructive to oprpare the effect of two IInes having the wame tetial strength and the same half breadth. althorigh the dispersion in one is aaured by netural and/or collision breadth, while in the other it $1 s$ eaused by Ppppler braadth. For meak lines (5.19) tells us the result i identieal. For strong Ines, have

$$
\begin{equation*}
\frac{\Lambda_{l} \text { natural }}{\Lambda_{l} \text { Doppler }}=1.57\left\{\frac{\text { Pe }}{\pi S T}\right\}^{\frac{2}{8}} \tag{5,38}
\end{equation*}
$$

For the ease of strong lines this ratio is always much greater than unity. Fib oan, therefore, conclude that the natural breadth diapersion is always as effootive as or more offeetive than Doppler dispersion in ineceasing the opadty.

3. Efceet of TNo UAmes

How that we maleretread the comtribution of a single Ling to the opacity, san investigate the offect of a iive spectrum. It is charaeteristie of this problem that the superposition prindiple does not hold in general, t.e. the offect of IInes Is not simpiy additive. Tnstead, it depends upon the reletive pesitions of the Iines. To iliustrate this most llearly, we shall consider the conticibution of two lines to the opecity. The line absorption coefficient will then be

$$
\text { (8.39) } \quad \mu_{l}=\sum_{j=1}^{2} \frac{m^{2}}{\text { MC }} \frac{m_{f}{ }_{j}}{V} b_{j}(\nu)
$$

where j denotes the number of the line. Suppose first, that the lines are very far away from each other oompared to their wingspread (not their breadth). Then the function $\frac{r}{1 \times T}$ in the integrand of $(5,8)$ will have tive widely separated humps, * illustrated in the ecocmpanying figure.

Sinee the individual line absorption coefficients in the regions outside the wingspread of a line are very small compared to the continuous absorption, we will have, as suggested by (5.19) and demonstrated later on, that the contributions to the integrel of this region are almost precisely additive. Moreover, they are small, so it is not necessaxy to worry about the very slight deviations from additivity. Within the wingspreed of each line, the contribution to r of the neighborIng line is small; the ratio $\mathrm{r} /(1 \mathrm{lr})$ is almost unity. Inereasing; $\mathrm{r}^{\hat{*}}$ slightly will have even less effeot on $r /(1+r)$. Thus, within the wingspread each line makes the same contribution to the opacity whether its neighbor is present or not. Hence, the overall effect of the two lines is very nearly additive.

The additivity feature breaks down as soon as the wingspread of the lines overlap apprectably. Going to the extreme case of overlapping, we conslder two Idention I Ifes at the same frequency. The line absorption ceefficient will then be (5.40)

$$
\mu_{l}=2 \mu_{l_{1}}
$$

where $\mu_{l} l_{l}$. Indicates the line absorption coefficient of the single line. The matio $x f(1+r)=2 r_{1} /\left(1+2 r_{1}\right)$. New within the wingepread of the IIne (if the line is sfrong $r_{1}>1$) we have that $2 r_{1} /\left(1 Q 2 r_{1}\right) \sim 1 \sim r_{1}\left(1 \nmid x_{1}\right)$. Hence, the two lines together have no more effect on the transmission than the single iine. This result was again Poreshadowed by (5.17). The tails of the two 11 nes go as $2 r_{1}$ compared to ry for a singla line, and adjitivity will oharacterize their contribution. However, the tail effeet is usfaily small, so roughly we have the result that two strongly overlapping lines do not inorease the opacity much beyond that resulting from the stronger of the two IInes.

Naturaily for oases of intermediary overlapping we shall have the situation between the extremes of striot additivity for no overlapping, and no added offeot for complete overlapping. Thus, we conclude that the relative sosition of the
two lines is oritical, although their absolute position is not.
We shall now reinforce these qualitative conolusions with examples for the sase of stepwise dispersion, natural breadth dispersion, and Doppler dispersion. For the oase of stepwise dispersion we take (5.42) $\left\{\begin{array}{l}b_{1}(\nu)=\frac{1}{2 \Delta \nu_{2}} \text { for } \nu_{1}-\Delta \nu \nu_{1} \leqslant \nu \leqslant L_{1} * \Delta L_{1} \text {. } \\ b_{1}(\nu)=0 \text { otherwise. }\end{array}\right.$
and similarly with $b_{2}(\nu)$. Then
(5.42) $\Lambda_{l}=\int_{0}^{\infty} \frac{1(u)}{\mu_{0} u^{0}} \frac{x}{x r} d u=\int_{0}^{\infty} \frac{v(u)}{\mu_{0} u^{s}} \frac{d u}{1+\frac{s}{\sum_{j} H^{3} \rho_{j} b_{j}^{\prime}(u)}}$

If the two stepe do not overlap, that is $\nu_{2}-\nu_{1}>\Delta \nu_{1} \leqslant \Delta \nu_{2}$, an break up the Integral $\int_{0}^{\infty}=\int_{0}^{\nu^{*}}+\int_{\nu^{\prime}}^{\infty}$ where ν^{\prime} is any frequency $\nu_{1}+\Delta \nu_{1}<\nu^{\prime}<\nu_{2}-\Delta \nu_{2}$ between the steps. In each integral; the integrand is oxsatly the same as for the case of each line taken alone. Thus

where we have extended the upper limit from u^{\prime} to ∞ besause the integrand is sere In that region. We thus obtain axaot auditivity for the no overlapping atse.

Suppose now there is some overlapoing. Then $\sum_{j=1}^{2} \operatorname{li}^{1} f_{j} b_{j}(\nu)$ will behave as

folleme:

(5.44)

where e is is mean frequency of the two lines whose value is not orifices.
In the sage where the lines are walk ehpared to the background, wean neglect the atty in each of the three denominators. We then get
(-10) $\left.\Lambda_{l} \cong \frac{W(u)}{\mu_{c} u^{3}}\right|_{u=u^{*}}\left\{\frac{N^{\prime} f_{1}}{s}+\frac{N^{2} f_{2}}{s}\right\}$.
the f is the onitilibutfandewiwnill exactly auditive despite the overlaplage. Incidentally this shows the the contributions of any set of wee absorptions upon a strong onntimotis background are additive, for any lite absorption oofficient
 pf overituptrg lite tails are yevaily abiditive

If the line are strong compared to the backgryme we may neglect the second term in each denominator gi ting
(5.47)

$$
\Lambda_{l}=\left.\frac{W(u)}{u^{3} \mu_{c}}\right|_{u+u_{0}}\left\{u_{2}+\Delta u_{3}-\left(u_{1}-\Delta u_{1}\right)\right\} .
$$

Here we can definitely the non aditivity of the line contribution but if is oven more striking if the lines exactly overlap. Then we get (5.48)

$$
\left.\Lambda_{l} \cong \frac{W(u)}{\mu_{c} u^{3}}\right|_{u=u^{*}} 2 \Delta u_{1}
$$

which is preaisely the same as the effect of either line alone.
The generml oonolusions about additivity hold for the osse of natural and/or oollision breadth dispersion, 'but are somewhav influenoed by the pronouneed tail in this type of dispersion. For the oase of two identioal lines when the wings spreads do not overlag the contribution to the opacity is $\Lambda_{l}=21_{l}$. where Λ_{l}, is the contribution of each line individually. But suppose the ifnes are oxactly superposed. Then from (5.24) we get

$$
\begin{equation*}
A_{l}=\left.\frac{w(u)}{\mu_{c} u^{3}}\right|_{u=u^{*}} \pi\left\{\frac{2 N^{\prime} f_{1}}{\pi S}\right\}^{1 / 2}\left\{1+\frac{\pi S \pi}{2 N f}\right\}^{-1 / 2} \tag{5.49}
\end{equation*}
$$

For strang lines the last factor is unity and can that $\Lambda_{l}=\sqrt{2} \Lambda_{l}$. The factop $\sqrt{2}$ is eegy to underatand, since the contribution of the region inside the ringepread is the vame in the cuse of twu lines as whth one, while the tail regt on if additive. Referring to (5.25) wee that the tail oontributes $(\pi / 2-1)$ times the contriaution withite the wingaprasd. Thus

$$
\begin{equation*}
\Lambda_{\ell}=\left.\left\{2\left(\frac{\pi}{2}-1\right)+i\right\} 2 w \frac{w / u)}{u_{1} u^{3}}\right|_{u=u_{1}}=1.364 \Lambda_{l, \ldots} . \tag{5.50}
\end{equation*}
$$

The numerionl faotior 1.364 is quite olose to $\sqrt{2}=2.414$.
For wakk ilnos, on the other hand wo maglect 1 oomparea to $\pi s r /(2 N f)$ and we get
(8,51) $\Lambda_{l}=\left.\frac{W(u)}{u_{\ell} u^{3}}\right|_{u_{2} u^{*}} \frac{2 N f}{S}=2 \Lambda_{l}$,
and thus the contributions are additive.

4. Fffect of magy line speotrum

From the preceding discussion of the oontribution of two lines, the features and diffiautios of the treatment of many lines appears. The most oritical factor is whether or not the winggpread of the lines overlap. If there Is no overlapping the contributions are additive. The case of weak lines which are alweys aadivive is really included in the category or noumoverlapping wingspread, beeause the whagspread of a weak Jine is zero. When overlapping exist no simple treatment is readily available, but we may say the contribution of the lines is Iess than in the non-overlapping case.

In general, even if the contributions of the lines are additive, the result Is still not simple enough to permit ready caloulation for a complicaved line spectrum, because the effect of thousands of individual lines has to be computed wad then sumed. This requires knowing the strengths, positions and dispersions of every Iine. Such a calculation is practicat only for a very simple spectrum 112. thit characteristic of a one-lectron ion. However, such cases are of some. practioal importanee for often we shall have an assemblage of ions having either no bound leatrons at all, or only I bound X electron. Eten the oase of 2 bound I- electrons is simple enough, as is a 180 the oase of a single bound eleotron outside a closed shell. The weak lina case, however, is much more readily adapted to computation. Wean see by our consideration of the step type dispersion that the contribution of the line is independent of the dispersion intervate Generalising, sinoe any dispersion eurve may be made up by superposing steps, conclude that the effect of weak IInes is independent or the dispersion shape and breadth as well. This is eonfirmed by the specific results for natural breadth dispersion and Doppler dispersion. Hence the jth weak line gives contribution (5.19) and if
we tare a group of lines in the nelghborhood of a perticular frequency u^{*}, we tet (5.52) $\hat{L}_{l}=\sum_{j} \Lambda_{l_{j}}=\left.\frac{W(u)}{\mu_{0} u^{3}}\right|_{u_{m u^{*}}} \sum_{j} \frac{w^{j_{r}},}{S}$, since the contributions are additive end the ocntinuous absorption μ_{0} and the weighting factors $W(u) / u^{3}$ do not alter much frcm one member of the croup to another. The important point about this formula is that oniy the tatel sironsth $\sum_{j} x_{s} f_{j}$ of the group of lines enters. Thus, we noed not oaloulate strengths of individual iines, for eften the total strength is given directly by the theory of the opectruit. There is aiso no need to calculate the dispersion. The resulting simplification of aslculation is enormous. Since most of the lines are weak, equation (5.52) solves a great deal of our problem in a simple nanner.

Because of its importance, we shall present another aerivation of (5.52) which emphasizes a different aspect of its physical intepretation. Consider a group of many lines with conters in the interval $u^{*}-\Delta u$ to $u^{*} \& \Delta u$, none of which very much exceeds the average in strength. Assume also that the lines are distributed fairly uniformiy and thickly over the region. Then the absorption coefficient for all these lines will no longer be a very jageed function; for, although it still may have mary marima and minima, and even more infleotions, the variations from a smoothed average ourve will be small. This is illustrated in the accompanym ing figure

[^1]aint of average which is important. The average absorption ooefficient may be phtained by coneldering the total etreligth of the group of limes $\sum N^{j} f_{j}$ uniformly "seaped out" ever the Interval $2 \Delta u$ centered at U^{*}. Then (5.5s) $\mu_{e}=\frac{\pi c^{2}}{m c} \frac{\sum_{i} w^{j} f_{s}}{2 \Delta u}$.
 (5.54)
$$
\Lambda_{\ell}=\left.\frac{W(u)}{u^{3} \mu_{c}}\right|_{u} 2 \Delta u \frac{r}{1+r} .
$$

If the extire absorption due to the group of lines is weak this reduces to (5.52). If we compare the contribution of continuous processes in the same interval we get from (6.7) simply $\left.\frac{W(u)}{u^{3} \mu_{c}}\right|_{u v} " 2 \Delta U$. Comparing with (5.54) we see that a Praction $/(i+r)$ of the continuous transmission of the region remains. Because of thit derivation we shall call (5.54) the "smearing out" apprcaimation. Whould emphaite some of the limitations of this approxination. First, ail the absorption etrength has been artificially canfined to the region $u^{*}-\Delta u_{0} t_{0} u^{*}+\Delta u$ Recause of the dispersion, there is a tail effect of some absorption cutside this regiohe If the region within whiah the strengthe were smeared out has been made very black, the inclusion of some extra absorption whioh should properly go into the tails will not change the contribution of this region. The absenoe of aborption in the tails, may, however, considerably over estimate the transmission there. The tail effeot has thus eqused us to underestimate the opacity. Badancing this is the fact that smearing out overestimates the opacity due to the contribution of lines in the smearef out regions. Furthermore when the total absorption coefficient due to lines is compared to the background, the contributions are strictily adaitive, and not inoluding the tails is exactly compensated by putting the extre etrength into the interval $2 \Delta U$. We conclude that it is generaily better to for-
get sbout the tail effect, unless something is also dowe to improve the maning out approximation.

A second limitation of this approximation oceure if on or a few lise⿻ oarry the bulk of the strength. While smearing out is valid for that gutatex inturpt of lines, the few strong lines should not be meared outs A postible piraciedure to follow in this oase is to smear out the weak Ines and adoulthe frays. contribution to the line absorption ooefficient $\mu_{l} w$ Add this ta the eantinuum μ_{c} to form new background, and superimposed the otrong lipes Inpon thite The strong line coptribution will be given by $(5,8)$ except thet 5 nef Jotletha significance $\quad r=\frac{\mu_{l} \text { s } T_{r o n g}}{\mu_{c}+\mu_{l} \text { weate }}$.

The opposing extreme to the smearing out approximation oocura wheh ming. Iines

 components for example. In general it will be sufficient to detervint the wing

 be inereased by the factor $\pi / 2$ to acoount for the prongunoed tand fiftedt:
 1) the total strength $x_{i} N f$ of the lines is equaliy diatributedretang and
 dent. In 2) the contributions are additive and (5.55) $\Lambda_{\ell}=M \Lambda_{l,}$.
whic in 2)
(5.56) $\quad \Lambda_{i}=M^{1 / 2} \Lambda_{\ell,}$.

Intermediary oesas will Iis betwren the two extremese

While we aannot earry out the treatment for the intermediary cases in detail except by a devise, soon to be disoussed, which treats the lines statistieally, we can make an approximate treatment correct to first order terms. Suppose we have a group of several lines all with about the same dispersion and all at almost the same frequency. Then if we consider the Iine absorption contribution to the opeity aud expand the result in pewers of the deviations of the ilnes fren some average position, we get the result that the zero order term is precisely the same as would result if we had a single line with the totel strength of the group Iscated at the average pesition. The first order term may be made to vanish by appropriately shoosing this average position. Calculations show that tho proper method of averaging is to weight each line position and breadth by $I f \Gamma$, the produet of strength and breadth of the ilne. Indeed the prinoiple of a strengthe breadth waighted average is general.

The Poregoing considarations vill enable us to make rough estimates of the contribution of limes to the opacity. In many cases this will suffice, sinoe the Iine contribution it small, or else may be of the type given by the extremes censidered hers. But we should exandine the more general problem of an arbitray srray of IInes, The line sbsorption soefficient is then

$$
\begin{equation*}
\mu_{l}=\prod_{m 0}^{\pi} \sum_{j=1} \prod_{1}^{f_{1}} b_{j}(2) \tag{5.57}
\end{equation*}
$$

and we moreiy need earry eut the opervtions indicated in (5.6). But let us note whet this requires. We need the following deta for each individual line. 1) position, 2) strength, 3) dispersion. Then we have to perform a very ocmplicated mumerioal integration. In prinoiple all this may be done, in praotioe the come plexity of the celculations makes the job prohibitively long unless we wish to treat a small spectral region with fev lines.
5. General Statistioal Features of Lines.

Statistical Treatment of Line Spectra.

The very oomplexity of a line spectrum may be the means of providing a simple method of caloulating its effeot on opacities. For, if the enomons number of lines preoludes an individual treatment, it makes possible a statistical approach. This approach will be developed in general in the suoceeding paragraphe and then applied later in the special cases of interest.

Now the ine absorption coetficient $\mu /$ and consequently r is the sum of contributions from every line in the spectrum. The ith line gives an absorption coefficient μ_{l} which has a sharp maximan at the frequenoy $u=u_{1}$ of the center of the line and approaches zero for frequencies far from the oenter. The aum $r=\sum_{1} r_{1}=\sum_{i} \frac{\mu_{l_{1}}}{\mu_{0}}$ therefore appears as a very irregular funotion of u with many maxima, which it is practioally hopeless to, calculate. We see, however, that in order to caloulate the mean opacity, it is not striotly necessary to know all the details of the line absorption coefficient itself as a function of frequenoy, but it would suffice to know the average vaine. At first sight, however, the calculation of the proper average would seem to involve evaluation of the very same integral (5.6) as needed to find the opaoity. Here it is that the statistical approach proves useful. Suppose in (5.6) instead of the actual value of P, we insert a statistieal average \bar{P}, averaged over certain distributions of line position, strength, and breadth. It may turn out that this average is rether easily susoeptible to calculation compared to P itsolf. While the two funetions may not have the same detailed dependence on frequency, we may hope that, if a sensible statistical average is used, the integral (5.6) itself will not be very much altered by the substitution of \bar{P} for $P_{\text {. }}$

To understand the physical basis for the statistics wo shall use, let us eousider the very idealized case of a line spectrum having just two lines, separated sufficiently so that there is very little overlap of the dispersion curves of each line. of course, in this case wo can calculate P and, therefore, the opacity K. We can also caloulate the opacity if the two lines were a little funther apart or a little oloser together, and we would get substantially the same result, simo the integral is insensitive to the position of each line, except for the overlap which is assumed mmall. We can indeed piok a number of different distributions of the positions of the two lines, which will not give very different values of $1 /(\rho \mathbb{K})$, calculate these values, and average them. The average ${ }^{2} 111$ neturaliy agree rather olesely with the true value, since every member of the group averaged agreed rather closely by itself. It will not affect the average very much even if we inelude a fer distributions (for example, one in which the oentert of boti lines ooincide), whose resultant opacity is quite different fram the true value. Now, it is immaterial whether we calculate P for each distribution, integrate atoh one, and then average, or invert the order of averaging and integraGian, the finding the average \bar{P} for all the distributions and then integrating to find the averaged opecity.

The question now arises as to what distribution should be included in our aversge. To answer this, look at a line spectrum composed of several groups of two lines, sach group in a slightly different frequency range so that lines In different groups do not overlap to any extent. Some of these groups undoubtedly will have the two lines far apart and others will have them oloser together. We ean treat each group separately by the averaging procedure because of the honmoverlap between groups. If in the distributions we averaged, we never inoluded axy in which the two linee strongly overlap, we would estimate the opecity due to the groups with overlap too high, while wo would be substantialIy cerrect for all the groups without overlap. It is better to make compensating errers by including in our average some distributions with strong overlap. For
then; while we would estimate the opacity of a group having list le overlap too low, would on the other hand estimate too high for the groups with strong overlap. If the proportion of strong to weak overlap digtribuifons included in our averages is the same as the proportion of strong to weak overlap groups in the actual spectrum, the errors will exactly compensate. This principle is of course applicable to the general case of a line spectrum, as well as to the specipis example discussed hers.

Now there are laws which tell, in any actual spectrum, exactly where mach line must be. These are extremely complicated, and because of trig fact the distribution of line positions in the groups of a complioqued spectrum is vary marly random, that is, considering all groups, a line has about equal probability of ocouring anywhere within the frequency range covered by the group. It is just this distribution of line positions then which we shall use in our statistical average. Now if the th line or a spectrum can with equal probability lie anywhere in the region $u_{i}^{*}-\Delta_{i}$ to $u_{i}^{*}+\Delta_{i}$, the expected average of

$$
P\left(u_{;} u_{1}, u_{2}, \cdots u_{i}, \cdots\right)=1 /(1+r) \text { over a } 11 \text { distributions of line }
$$

positions consistent with this probability is

$$
\begin{equation*}
\bar{P}\left(u_{j} u_{i}^{*} \cdots u_{i}^{*}, \cdots ; \Delta_{1}, \cdots \Delta_{i} \cdots\right)=\frac{1}{\prod_{i} 2 \Delta_{i}} \int_{u_{1}^{*}-\Delta_{1}} \cdots \int_{u_{i}^{*}-\Delta_{i}} P\left(u_{i} u_{1}, \cdots u_{i} \cdots\right) d u_{i}, \cdots d u_{i} \tag{5.5B}
\end{equation*}
$$

This iterated integral is even more hopelessly complicated than (5.6) but it yields its value to any desired degree of approximation by the use of an extremely ingenious device suggested by Dr . Edward Teller. Develop the function $P=1 /(1+x)$

as an exponential series

$$
\begin{equation*}
P=\frac{1}{1+r}=\sum_{x} a_{\mu} e^{-b_{n} r}=\sum_{n} a_{\mu} e^{-b_{n} \sum_{i} r_{i}}=\sum_{n}^{\prime} a_{\mu} \prod_{i} e^{-b_{\mu} t_{i}} \tag{5.59}
\end{equation*}
$$

By properly choosing the a_{n} and b_{m}, it is possible to get good numerical agreement (2 or 3%) between the series $\not \mathbb{Z}_{k} a_{n} e^{-b_{n} r}$ and the function $1 /(1+r)$ in the range $0 \leq r \leq 100$, taking only four terms. This range of π will usually be sufficient; in any case the contributions to the opacity of regions where $r>100$ will be negligible. The series wo shall use is (5.60)

$$
\frac{1}{1+r}=.470 e^{-1.70 r}+.370 e^{-.35 r}+.120 e^{-.10 r}+.040 e^{-.015 r}
$$

Inserting (5.59) into (5.58) reduces the iterated integral to a product of single integrals each of the same type.

$$
\begin{equation*}
\bar{p}=\sum_{m} a_{m} \prod_{i} \frac{1}{2 \Delta_{i}} \int_{a_{i}^{*}-\Delta_{i}}^{u_{i}^{2}+\Delta_{i}} e^{-r_{m} \mu_{i}} d u_{i} . \tag{5.61}
\end{equation*}
$$

Although the eseential simplification has now been made, (5.61) can be transformed into more convenient form, as follows:
(5.62)

$$
\bar{P}=\sum_{n} a_{\mu} \prod_{i}\left\{1-\frac{j_{m i}}{2 \Delta_{i}}\right\}=\sum_{n} a_{n} \exp \left\{\sum_{i}^{\prime} \ln \left(1-\frac{j_{m i}}{2 \Delta_{i}}\right)\right\}
$$

where

$$
\begin{equation*}
\frac{j_{n_{i}}}{2 \Delta_{i}}=\frac{1}{2 \Delta_{i}} \int_{u_{i}^{*}-\Delta_{i}}^{u_{i}^{*}+\Delta_{i}}\left\{1-e^{-b_{m} x_{i}}\right\} d u_{i} . \tag{5.63}
\end{equation*}
$$

Further defining

$$
\begin{equation*}
E_{n}=-\frac{1}{b_{n}} \sum_{i}^{\prime} \ln \left(1-\frac{i_{n i}}{2 \Delta_{i}}\right), \tag{5.64}
\end{equation*}
$$

equation (5.62) becomes
(5.65) $\quad \bar{P}=\sum_{x} a_{n} e^{-b_{n} L_{\mu}}$

The quantity F, a function of frequency H_{0}, may now be inserted into (5.6) in place of P, with the expectation that the integral itself will not be very much altered. A straightforward numerical integration will then give the opacity.

We now examine the quentity E_{n}, une eseantial ractor in \bar{P}, more alose $2 y$. It involves a sum over all lines in the entire speotrum. It appears then that we are up againgt the same difficulty which provented the caloulation of $r=Z_{i} r_{i}$ itself, before we introduced the statisticas approach, temely too many lines to caloulate individually. But closer examinavion shows we have made some progress. Firgt, En does not require knowledge of the exact position of every line, but only the limiting frequencies of the region within which it may be found in the statistical treatment. Many lines have these same limits, aud we thus have oliminated very much of the data required for the opeatty caloulation. Second, it is generally possibie to group lines into classes such that the sum over the lines in a class is simple. As one important example of such a case, suppose the Mhe lines $i_{1}, i_{2} \cdots i_{k} \cdots i_{M h}$ whioh both fall into the same frequency region and have the same value for the iategras $j_{\text {Mi }}$ are treavod togeuher. Then (5.66) - $\frac{1}{V_{n}} \sum_{i_{k}=1}^{N_{k j}} \ln \left(1-\frac{j_{n i}}{2 \Delta i}\right)=-M_{k i} \ln \left(1-\frac{j_{n k}}{2 L_{k N}}\right) \equiv E_{n k}$, and part of the sum occuring in E_{n} has been periomed by reducing it to one terno. Other ways of grouping lines into classes may also be used, the common feature of all guch devices beine the reduction of the sum over all lines E_{n} to a sum over classes of lines $Z_{k} E_{x_{k}}$, the sum over the lines if each olass being alroady performed. Thus we no longer treat individual lines, but classes with tens, hundreds or thousands of lines. Furtherrore, it may be possible to use oversil properties of a class, for example the total absorptionstrength of all the lines in the class, or again the average breadth, ingiead of requiring detailed caloulation of this data for each line. Looking further ahead we may even find features among the classes which facilitate sumning over them. For the moment pause to consider the special cases with which we shall be mainly conoorned in our applioations.

We first consider the case in which natural and/or collision breadth are the determining factors in dispersion. In that case the absorption coefficient for the ith line is given by (2.15) and (2.0). Inserting the value of $\mu_{i}=\mu_{i} / \mu_{c}$ into (5.63) we obtain:
(5.67) $\frac{j_{M i}}{2 \Delta_{i}}=\frac{1}{2 \Delta_{i}} \int_{u_{i}^{*}-\Delta_{i}}^{u_{i}^{*}+\Delta_{i}}\left\{1-\operatorname{cxp}\left(-b_{\mu} \frac{N_{i}^{i} f_{i} \Gamma_{i}}{\pi_{i}}\left(u_{\left.-u_{i}\right)^{2}+\Gamma_{i}^{2}}\right)\right\} d u_{i} \cdot\right.$

Changing variable of integration in (5.67), $x=u_{i}^{-4}$, gives

The result is a definite integral which depends on one parameter and the limits of integration. By defining
(5.69) $F(a, u)=\frac{2}{\pi a} \int_{0}^{u}\left\{1-\exp \left(-\frac{a}{1+x^{2}}\right)\right\} d x$,
we can write (5.68) as
(5.70)

$$
\frac{j_{n_{i}}}{2 \Delta_{i}}=\frac{b_{x}}{2 \Delta_{i}} \frac{N^{i} f_{i}}{S} F\left(a_{n_{i}}, x\right) g_{n_{i}}^{\prime}(u) \text {, }
$$

where
(5.71)

$$
g_{m_{i}}^{\prime}(u)=\frac{F\left(a_{m_{i}}, \frac{u_{i}^{*}-u+\Delta_{i}}{r_{i}}\right)-F\left(a_{m_{i}}, u_{i}^{*}-u-\Delta_{i}\right)}{2 F\left(a_{m_{i}}, \infty\right)}
$$

and
(5.72)

$$
a_{M i}=\frac{b_{M} N^{i} f_{i}}{\pi s r_{i}}
$$

Values of the integral are presented in Table V; so that it is a comparatively simple matter to compute $j_{m i}$

If, in a certain frequency interval
, there are many lines \mathbb{K}_{k} having the same value of $j_{M_{i}}$, such a set of lines oar be considered as a class and formula (5.66) applies. This will occur for example if all lines had the same strength, breadth and dispersion. As pointed out previously this means a great simplification. If in addition the $j_{k k} / 2 \Delta_{k} \ll 1$, wo con expand the logarithm obtaining
(5.73) $\quad E_{m k}=-\frac{M_{k}}{b_{m}} \ln \left(1-\frac{j_{m k}}{2 D_{k}}\right) \sim \frac{M_{k}}{b_{m}} \frac{j_{m k}}{2 D_{k}}=\frac{\mu_{k}}{2 D_{k}} \frac{N^{j} f_{j}}{s} F\left(a_{m k}, \infty\right) g_{m k}^{\prime}(u)$.

The first set of factors $\quad M_{k} N^{j} f_{j}\left(2 \Delta_{k} S\right)$ is independent of n, the term number in the series development of $/(U+r)$, and depends only slightly on frequency through the factor $\$;$ also $M_{k} N^{j} f_{j} \quad$ is the total absorption strength of all lines in the group. The second factor $F\left(a_{k k}, \infty\right)$ is less than unity, approaching unity as a limit as $a_{k k} \rightarrow 0$. In a great many cases this limiting value can be inserted, if not for all values of n, at least for the higher values. The strong irequency dependence of $E_{m h}$ is exhibited in the factor $g_{m k}^{\prime}(u)$ which is close to unity within the region $u_{k}-\Delta_{k} \leqslant U \leqslant U_{k}^{*}+\Delta_{k} \quad$ and is close to zero outside this region. Similar to the factor $F\left(a_{n k}, \infty\right)$, the factor $g^{\prime}{ }^{\prime}(u)$ depends upon n only through the appearance of $a_{m} h$ and if $a_{m k} \lll$, the dependene on n disappears entirely. Thus if $a_{m h} \ll / E_{\mu} h$ is independent of n and we have the interesting result that

$$
\begin{equation*}
\bar{P}=\sum_{n} a_{n} e^{-b_{n} \sum_{k} E_{m k N}}=\frac{1}{1+\sum_{k} E_{m k}} \tag{5.74}
\end{equation*}
$$

We shall later give an important physical interpretation to this result after we have seen it appear in other connections.

It may happen that in a region there are lines which have the sane breadth, but
not the same strength. While the simplification (5.73) does not apply, an even simpler result can be obtained in one important case by use of a treatment due to (1)

Boris Jacobson. Let the number of lines of the group we are treating as a class which have a strength times breadth $N^{i} f_{i} r_{i}$ between Q_{j} and $Q_{j}+\Delta Q_{j}$ be $N_{k,}\left(Q_{j}\right) \Delta Q_{j}$. Then
(5.75) $E_{n k}=-\frac{1}{b_{n}} \sum_{i_{n}=1}^{M_{k}} \ln \left(1-\frac{j_{n i k}}{2 \Delta_{i, k}}\right)=-\frac{1}{b_{n}} \sum_{Q_{j}} N_{k}\left(Q_{j}\right) \Delta Q_{j} \ln \left(1-\frac{j_{k k_{j}}}{2 \Delta h}\right)$,
or, if one may expand the logarithm,

$$
\begin{equation*}
E_{m k} \cong \frac{1}{t_{m}} \sum_{Q_{j}} N_{k}\left(Q_{j}\right) \Delta Q_{j} \frac{j_{m Q_{j}}}{2 \Delta k} \tag{5.76}
\end{equation*}
$$

If there are very may lines they will form a practically continuous distribution in Q_{j}, and the sum over all Q_{j} in (5.76) may be replaced by an integral. Referring to (5.68), however, we see that $j M_{S_{J}}$ is also an integral, but the variable of integration is related to the frequency u_{i} of the center of the In ne. The order of the two integrations may be reversed and we obtain

$$
\begin{equation*}
E_{M k} \cong \frac{1}{b_{n k}} \frac{\Gamma_{n}}{2 D_{k}} \int_{\frac{\mu_{k}^{+}-u-\Delta_{n}}{\Gamma_{n}}}^{\frac{\Gamma_{k}-\mu+\Delta_{n}}{\Gamma_{n}}} \int_{Q}\left\{N_{n}(Q)-N_{p_{k}}(Q) \exp -\left(\frac{t_{m} N^{b} f_{n}}{\pi^{S} \Gamma_{n}} \frac{1}{x^{2}+1}\right)\right\} d Q d x . \tag{5.77}
\end{equation*}
$$

Now the essential point of the method is to find a distribution of strengths which occurs frequently in practice, and which enables both integrations in (5.77) to be performed analytically. Such a distribution is

$$
\begin{equation*}
N_{k}(Q)=\frac{M_{k}}{Q_{k}} \exp -\left(\frac{Q}{Q_{k}}\right) \tag{5.78}
\end{equation*}
$$

where M_{k} is the total number of lines in the $k t h$ class and \bar{Q}_{k} is the average $N f f$ of the class. Although it is physically impossible to have any lines of infinite
(1) op. sit.
strength, the upper limit of the integral over Q may well be extended to infinity, since because of the exponential nature of the distribution (5.78) the contribution of the very large Q is negligible. The integrating over Q from 0 to ∞ gives

$$
(5.79) E_{n k} \cong \frac{1}{b_{n}} \frac{M_{k} \Gamma_{k}}{2 \Delta k} \int \frac{u_{k}^{*}-u_{k} \Delta k}{\Gamma_{k}} \frac{b_{n} \overline{N f} /(\pi s \Gamma)}{1+x^{2}+b_{n} \overline{N f} /(\pi s \Gamma)} d x
$$

Integrating now over x, we have
(5.80) $E_{n k} \cong \frac{M_{k} \overline{N f^{k}}}{2 \Delta k} S \frac{g_{n k}(u)}{\sqrt{1+a_{n k}}} \quad$.
where

$$
\text { (5.8I) } a_{n k}=b_{n} \frac{\overline{\mathrm{~N} \rho^{k}}}{\pi S \Gamma_{k}}
$$

is exactly the same quantity previousiy defined in connection with a distribution of lines of equal strength and

$$
\text { (5.82) } g_{n k}(u)=\frac{1}{\pi}\left\{\tan ^{-1} \frac{u_{k}^{*}-u_{n} \phi \Delta_{k}}{\Gamma_{k} \sqrt{1+a_{n k}}}-\tan ^{-1} \frac{u_{k}^{*}-v-\Delta k}{\Gamma k \sqrt{1+a n_{k}}}\right\}
$$

To facilitate computations of this function, nomographs have been prepared, (Fig. 3a, Fig. 3b, Fig. 4). A comparison of (5.80) and (5.73) shows the extreme similarity of the results for these two different distributions. The first set of factors $\frac{M_{k} \overline{M f}^{k}}{2 \Delta k}$ giving the essential magnitude of $E_{n k}$ is identical. The second factor $F\left(a_{n k} \infty\right)$ or $\left(1+a_{n k}\right)^{-\frac{1}{2}}$ is less than unity and independent of $a_{n k}$ as $a_{n k} \rightarrow 0$. The last factor in both cases contains the important frequency dependence, and has the same qualitative features. In the limit $a_{n k} \rightarrow 0$ the two formulae become identical as considerations of the properties of $F(a, u)$ shows. In that case equation $(5,74)$ applies to this type of distribution also.

To explain why the results are identical in the limit $a_{n k} \rightarrow 0$, and what the simple form (5.74 means, we return to the smearing out approximation (5.57).
$\begin{aligned} \text { Using this approximation gives } r & =\frac{\sum_{J}^{-74-} N_{j} f_{j}}{S 2 \Delta u} \text { and } \\ (5.83) \quad P & =\frac{1}{\sum_{j} N_{j_{f}}}\end{aligned}$
The only difference between (5.83) and (5.74) is the fact that in the latter oese $E_{n k}$ is not quite zero outside the interval $u_{k}^{*}-c_{k}$ to $u_{k}^{*}+\Delta_{k}$, and it is not quite equal to r_{k}, differing by the factor $g_{n k}$ wtich may be .8 to $\cdot 98$ in typical cases, within the interval. The first difference mentioned, the soo oalled tail effect, is the more importent. Now it is just under the assumptions used in making this derivation that the quantity $a_{n k} \ll 1$ and $\frac{j_{n k}}{2 \Delta_{k}} \ll 1$. The approximation (5.74) is thus essentially equivalent to oontinuously smearing out the absorption strength of the lines in the regions where they occur.
6. Statistical Troatment of Absorption Edges.

The very same type of statistical treatment appropriate for lines should also be used to treat the bound-free (photoelectric) absorptions, for there will be a very large number of absorption edges. In this section whall develop this method, and also discuss some rather less acourate approximations. The bound free absorption cross-section given by (2.23) may be rewritten as (5.84) $\quad \mu_{b p}(\nu)=\frac{2^{4}}{3 \sqrt{3}} \frac{h e^{2}}{k T m c} \frac{1}{u^{3}} \sum_{b} \frac{N^{b}}{V} \frac{1}{n}\left(\frac{I_{n}}{V^{T}}\right)^{2} \quad g_{b p}(\nu)$

In the neighborhood of the ionization potential of an electron shell, say the I sholl, the function $u^{3} \mu_{b f}$ will have a large number of small steps due to the appearance of a now term in the sum at each absorption odge. It may well have somewhet the shape indicated by the accompanying figure

$$
\uparrow u^{3} u_{b f}(v)
$$

$\nu \longrightarrow$

Between such groups of edges, $\mu_{b f}$ and consequently μ_{c}, the continuous absorption, is a smoothly varying function.

By means of a statistical treatment completely analogous to our treatment of lines, the function $1 / \mu$, jagged near each group of edges, is replaced by a smoothly varying average chosen so that the final opacity is not falsified. To do this, we artificially divided the absorption coefficient into three contributions:
(5.84a) $\quad \mu=\bar{\mu}_{c}+\left(\mu_{c}-\bar{\mu}_{c}\right)+\mu_{l}$,
where $\bar{\mu}_{\mathrm{c}}$ is some average function approximately representing the gross aspects of μ_{c}. Then
(5.85) $\mu=\bar{\mu}_{\mathrm{c}}\left(1+r^{*}\right)(1+r)$,
where
(5.86) $\quad r^{\prime}=\frac{\mu_{c}-\bar{\mu}_{c}}{\bar{\mu}_{c}} ; \quad r=\frac{\mu_{l}}{\mu_{c}} ;$
and introducing

$$
(5.87) \quad P=\frac{1}{1+r} ; \quad P^{\prime}=\frac{1}{1+r} \quad .
$$

the opacity formula becomes
(5.88) $\quad \Lambda=\frac{1}{\rho \mathbb{R}}=\int_{0}^{\infty} \frac{P P^{\prime} N(u)}{u^{3} \mu_{0}} d u_{0}$

We shall endeavor to replace P^{\prime} by \bar{P}^{\prime} its statistical average. Then since $1 / \mu_{c}=P^{\prime} / \bar{\mu}_{c}$ we have approximately
(5.89) $\frac{1}{\mu_{0}}=\frac{p^{\prime}}{\bar{\mu}_{c}}$;
(5.90) $r=\frac{\mu_{\ell}}{\mu_{0}} \approx \frac{\mu_{\ell} P^{\prime}}{\mu_{0}}$.

The entire statistical treatment of lines of the last section oar be carried through unaltered but we now interpret r by (5.90) which involves only the statistical average of μ_{c}, not its small details.

Suppose now that the ith absorption edge might with equal probability fall anywhere in the interval from $u_{i}^{*}-\Delta_{i}$ to $u_{i}^{*}+\Delta_{i}$. Then by following standar steps to those in the statistioal treatment of lines which lead to (5.61), we get (5.91) $\bar{p}^{\prime}(u)=\sum_{n} a_{n} \prod_{i} \frac{1}{2 \Delta_{i}} \int_{u_{i}^{*}-\Delta_{i}}^{u_{i}^{*}+\Delta_{i}} e^{-b_{n} r_{1}^{\prime}} d u_{i}$,
where r_{i} is the contribution to r^{\prime} of the ith term in the sum (5.54). We thus see that

$$
r_{i}^{\prime}=0 \quad \text { for } u<u_{1} \text {, }
$$

(5.92)

$$
r_{i}^{\prime}=\rho_{i} \quad \text { for } u \geqslant u_{i} \text {, }
$$

and P_{i} is a slowly varying function of frequency. Now considar the edges arranged in order of ascending ionization frequency. For the particular frequency u at which $\vec{P}^{\prime}(u)$ is to be evaluated, assume that the edges $1,2 \ldots j(u)$ all certainly lis below u, that is

$$
\begin{equation*}
u_{1}^{*}+\Delta_{1}<u \quad \text { for } 1 \leqslant i \leqslant j(u) \tag{5.93}
\end{equation*}
$$

Also assume that the regions in which edges $j(u)+1, \ldots k(a)$ fall inelude u, that is
(5.94) $\quad u_{-}^{*}-\Delta_{i} \leqslant u \leqslant u_{i}^{*}+\Delta_{i}$ for $f(u)+1 \leqslant i \leqslant k(u)$.

Tastily, the other edges will all certainly lie above u, the is
(5.05) $u<u_{i}^{*}-\Delta_{i}$ for $k(u)<i$.

For the edges of (5.95) the integral in (5.91) is fist 2Δ i, for those of (5.94) it is $\left[u-\left(u_{i}^{*}-\Delta_{i}\right)\right] e^{-b_{n} P_{i}}+\left(u_{i}^{*}+\Delta_{i}-u\right)$, while for those of (5.93) it is $2 \Delta_{1} e^{-b} P_{i}$ Ne, therefore, hate for (5.91)
$(5.96) \quad \vec{P}^{\prime}(u)=\sum_{n} a_{n} \prod_{i=1}^{j(u)} e^{-b_{n} \rho_{i}} \prod_{i=j\{u)+1}^{k(u)}\left\{1-\frac{u_{0}\left(u_{i}^{*} \Delta_{i}\right)}{2 \Delta_{i}}\left(1-a^{\left.-b_{n} \rho_{i}\right)}\right\}_{1}^{k(u) \neq 1} 1\right.$
The absorption edges occur in groups with long frequency intervals between groups. Lat us follow the variation on $\overrightarrow{P^{\prime}}(u)$ with u from a frequency $u_{n} u_{1}$, which is below a parificular group of edges-mor concreteness say below the L shell ionization edges, $-\infty$ to a frequency $u_{=} u_{2}$ above the group edges. At $u_{m} u_{1}$, there will be no terms in the second product, so that

$$
\bar{P}^{\prime}\left(u_{1}\right)=\sum_{n} a_{n} \prod_{i=1}^{j(u)} e^{-3_{n} \rho_{i}}=\sum_{n} a_{n} \exp b_{n} \sum_{i=1}^{j(u)} \rho_{i}
$$

whence by (5.59)
(5.97) $\quad \bar{p}^{\prime}\left(u_{1}\right)=\frac{1}{1 * \sum_{i=1}^{j\left(u_{1}\right)} \rho_{i}} \quad$.

Likewise for $u=u_{2}$, there will be no terms in second product of (5.96) but there will be additional terms in the first product giving
(5.98) $\quad \bar{p}^{\prime}\left(u_{2}\right)=\frac{1}{1 \& \sum_{i=1}^{j\left(u_{2}\right)} \rho_{2}}$.

The form (5.97) will hold as u increases from u_{1} until u becomes equal to the limit of the region available to the lowest edge. Then some terms in the second product begin to appear and $\vec{p}^{\prime}(u)$ decrease until after u hes passed through the region of the edges, it takes the form (5.98). The variation through the region of the edges
takes a very simple form in the oase where there are very many, N, edges all haring the same $\rho_{1}=\rho_{\text {and }}$ the same region in which they may fall. Then the seoond product beomes

$$
\left\{1-\frac{u-\left(u^{*}-\Delta\right)}{2 \Delta}\left(1-\theta^{-b_{n} \rho}\right)\right\}^{M} \sim\left\{1-\frac{u-\left(u^{*}-\Delta\right)}{2 \Delta} \frac{b_{n} M \rho}{M}\right\}^{M}
$$

Now assume that the total strencth of the edges remains fixed but M increases approaching ∞. Then the second product approaches exp $-\frac{u-\left(u^{*}-\Delta\right)}{2 \Delta}$ b $_{n}$ Mpand (5.96) itself becomes
$(5.99) \bar{P}^{\prime}(u)=\frac{1}{1+\sum_{i=1}^{j\left(u_{1}\right)} \rho_{1}+\frac{u^{m}\left(u^{*}-\Delta\right)}{2 \Delta}} u \rho$.
A reasonable choioe for $\bar{\mu}_{\mathrm{c}}$ would be to make $\bar{\mu}_{\mathrm{c}}=\mu_{0}$ between the groups of edges, but to hars $\bar{\mu}_{c}$ jump in one step from its value before the group to its value after the group at the frequency of the highest edge in the group. The behavior of $u^{3} \mu_{0}, u^{3} \bar{\mu}_{c}$ and $\bar{\mu}_{0} u^{3} \bar{P}^{\prime}$ in the noighborhood of a group of edges are illustrated sohematically in the accompanying figure.

As a crude approxination, one oan simply use a single absorption edge to replace a whole group of edges. Whenever this is legitimate, the position of the edge is not critioal, and we may place it at the ionization energy of the ion with average occupation, that is at the ionization energies $\bar{\varepsilon}_{l z}$ of (4.37). The reas on the position of the edge is not oritical is that there are always a great number of lines noar the edges. Their high absorption ooefficient hides any small
siteration in eige absorptinn. Jacobsohn has worked out a refinement of this treatment placing the effeotive edge of a group so as to make the average of $1 / \mu \mathrm{C}$ oorreot throughout the group but it is rarely necossary to use this treatment.
7. Simplified Practioal Preatment of Lines.

TVe have thus far discussed two detailed methods of treating lines. The straightforward approach is exact but impossibly complicated except for a small frequency region. The statistical approach brings the problem within the limits of human computation and should be nearly as acourate as the exact treatment. However, even the statistical approaoh involves as much as 6 computermonths work to get a single value of the opadity. When flexible rapid electronic computing machines become available, the statistical method will come into its oum as a good method of treating the lines. Until such time, we shall have to content ourselves with rougher approximations. It is these rougher treatments which we investigate here.

The clue to the problem is the smearing out'approximation. Instead of using the full statistical treatment to give $\overline{P_{0}}$, we may use the approximate formula.

$$
\text { (5.94) } \quad \bar{P}=\frac{1}{1+\sum_{k} E_{n k}} \approx \frac{1}{1+\sum_{k} r_{k}} \text {. }
$$

wisere

$$
(5.95) \quad \boldsymbol{r}_{k}=\sum_{j k} \frac{\mathbb{N}^{j k_{f}}{ }_{j k}}{S 2 \Delta k}
$$

In the most detailed troatment of this type, way oonsider a class as composed of all the lines from a particular ion type arising from the same one electronie transition. We would also incorporate three features which will very much enhanee the acouracy of our result; namely, 1) Treat strongest lines individually by superm imposing them upon the beokground absorption of the oontinum plus the weak smoared out lines; 2) Incorporate an empirical oorrection factor to reduce the contribution of each group of lines, sinoe the smearine out treatment overemphatizes line effects.

80-

Muse feotor must be determined by comparing the genuine statistical traatment With the smearin out treatment in several representutive cases, 3) Take into aocount the tail effect nerlactod by smearing out troatment. Corrections 2 \& 3 are of opposita sifn and experience may show that it is sufficientiy accurate to neslect both.

It may even prove possible to do a much less detailed smearing out treatment oy considering a class of lines as composed of all lines from a single or small group of one electron transitions. This treatment should also inolude an empirieal Factor designed to force its results to agroe with the detailed statistioal treatment. By this method the work for oomputing the line effeot oould be reduced to 3 computer weoks.

An entirely different approsch in modifying the detailed statistical troatment is to use the so-0alled pattern treatment. This treatment is based on the fact that relative positions of classes of lines are the same for two groups of one elootron transitions differing only in the principal quantum mumber of of the final state. Moreover, the ratio of strength of each ine in one group to that In another is a constant for all lines. Then the value of $\sum_{k} E$ nk at one frequency can be oiteined from that at another, by the so-oalled pattern transfarmation

$$
\text { (5..5) } \sum_{k} E_{n k}(u)=\operatorname{const} \cdot \sum_{k} E_{n k}(\text { utoonst. })
$$

VI. SUAMARY OF FORMULAE FOR COMPUTING OPACITIES.

In this Chapter all the formulae essential for opacity oalculations are oollected in form for computation. Energies are expressed in terms of the Rydberg energy Rho $=13.61$ electron volts and lengths in terms of the pirst Bohr radius for Hydrozon $a_{0}=.5291 \times 10^{-8}$ om .

1. Formalae for Oocupation Numbers:

The volune V is relatod to the density ρ by
(6.1) $\frac{V}{N_{0}{ }^{3}}=\frac{\sum_{z} W_{2} \frac{N_{z}}{\frac{\pi}{3}}}{\rho N_{0} a_{0}^{3}}$.

$$
\begin{aligned}
& M_{Z}=\text { gram atomio weight } \\
& N_{0}=6.023 \times 10^{23}=\text { Avogadro's number. }
\end{aligned}
$$

The radius of the ion spheres is from (4.43),
(6.2) $\frac{a_{z_{1}}}{a_{0}}=\left\{\frac{3}{4 \pi} z^{1} \frac{V}{N a_{0}^{3}} \frac{N}{n_{f}}\right\}^{1 / 3}$.
where
(6.3) $z^{\prime}=z-\sum_{\ell} \frac{n_{\ell Z}}{N_{Z}}$.

The number of bound electrons n_{b} is from (4.40)
$(6.4) \cdot \frac{n_{b}}{N}=\sum_{Z} \frac{N_{2}}{N} \sum_{l} \frac{n_{p_{i}}}{N_{Z}}$,
and the number of frees n_{f} from (4.42) is
(6.5) $\frac{n_{p}}{N}=\frac{n}{N}-\frac{n_{b}}{N}$.

The free energy - $1 \times T \alpha^{*}$ of the electrons is given by (4.41a)

$$
\text { (6.6) } \begin{aligned}
\alpha^{*}= & -3.1034+\ln \frac{V}{\mathrm{Na}_{0}^{3}}-\ln \frac{\mathrm{n}_{f}}{\mathrm{~T}}+3 / 2 \ln (\mathrm{kT} / \mathrm{Rho}) \\
& +\frac{15}{16} \alpha^{2} \frac{\mathrm{kT}}{\mathrm{Rhc}}-\frac{15}{64} \alpha^{4}\left(\frac{\mathrm{KT}}{\mathrm{Rho}}\right)^{2} \\
& -.35355 e^{-\alpha^{*}}\left(1-\frac{1 \tau}{64} \alpha^{2} \frac{\mathrm{kT}}{\mathrm{Kho}}\right)+.12995 e^{-* *}
\end{aligned}
$$

where $\alpha=1 / 137.03$ is the fine structure constant.
From (4.35) we et
(6.7) $z_{l}^{*}=z-\sum_{j \neq \ell} \frac{n_{j Z}}{N_{Z}} \quad \sigma_{l,}-\frac{n_{l}}{N_{z}}\left(1-\frac{1}{Q_{l Z}}\right) \sigma_{l l} \quad l_{b} \quad$

Table II Iras the screening constants $\sigma_{\ell, j}$. Then from (4.37)
(6.8) $\frac{\bar{\varepsilon}_{2}}{L_{2}}=-\frac{\varepsilon_{l}^{0}\left(z_{l}^{*}\right)}{R_{2}}-2 \cdot \frac{a_{0}}{a_{n 1}}\left\{3-\left(\frac{r}{a_{0}}\right)^{2}\left(\frac{a_{0}}{a_{2}}\right)^{2}\right\}-3 / 5 \sum_{Z} \frac{N_{Z}}{N} \frac{N}{n_{2}} 2^{2} \frac{a_{0}}{a_{Z}}$.

Table III gives the on electron $\frac{e^{2}}{2} \ell^{\prime}$ levels $-\varepsilon_{l}^{0}\left(Z_{\ell}^{\prime}\right)$ /pho and table IV gives
the atrerafe square radius $\left(r / a_{0}\right)^{2}$. Finally, the occupation mimers are (4.36)

The ionic occupations are found from (4.47). The probability of having an ion with ν_{l} electrons in the l level is
(6.10) $\quad \nu_{L l}=\frac{c_{l}}{2 l^{1}\left(c_{l}-\nu_{l}\right)!}{ }^{2} l^{2 / l}{ }^{3} l^{c-2 l}$.
where
(e.11) $F_{\ell}=n_{\ell}{ }^{\circ} o_{\ell}$.
(6.12) $q \ell=10 p_{l}$.

These formulae must be modified if

$$
\text { (6.13) } \lambda=22^{\circ} \frac{a_{0}}{a_{z}} \frac{R h c}{k T}>1
$$

and the appropriate chance is discussed in Appendix II.
2. Formulae for Thermodynamic Functions oof. Appendix I.

The total energy of the system E is obtained from (AI 16, 17, 18) and following discussion.
(6.14) $\frac{E}{N R h c}=\sum_{Z} \frac{N_{Z}}{N} \sum_{i} \frac{N_{i Z}}{N_{Z}} \frac{\varepsilon_{i}^{0}}{R h c}\left(\bar{Z}_{i}\right)-\frac{9}{5} \sum_{Z} \frac{N_{Z}}{N} z^{2}\left(\frac{a_{0}}{a_{Z}}\right)$

$$
\begin{aligned}
& +(3 / 2) \frac{n_{f}}{\pi} \frac{k T}{R h c}\left\{1+\frac{5}{8} \alpha^{2} \frac{k T}{R h c}-\frac{5}{16} \alpha^{4}\left(\frac{k T}{R h c}\right)^{2} \cdots\right\}\left\{1+.17678 e^{-\alpha^{*}}\left(1-\frac{15}{32} \alpha^{2} \frac{k T}{R h c}\right) \cdots\right\} \\
& +\left[\begin{array}{l}
3 \\
o r \\
3 / 2
\end{array}\right] \frac{k T}{R h c}
\end{aligned}
$$

where oof. AI. 15

$$
\text { (6.15) } \bar{Z}_{i}=z-\frac{1}{2} \sum_{j \neq i} \frac{n_{j Z}}{N_{Z}} \sigma_{i, j}-\frac{1}{2} \frac{n_{i 2}}{N_{z}}\left(1-\frac{1}{c_{12}}\right) \sigma_{1,1}=z-\frac{2}{2}\left(2-z_{i}^{*}\right)
$$

The zero of energy is taken as the state in which all the nuclei and electrons are infinitely separated and at rest. We should use the upper value 3 in the last term when

$$
(6.16) z^{.2} \frac{a_{0}}{a_{z} i} \frac{R h c}{k T}>11.6
$$

and the lower value $3 / 2$ in other cases.
The pressure P is obtained from (AI.20). It is

$$
\text { (6.17) } \begin{aligned}
\frac{P V}{N k T}=\frac{n_{f}}{N} & \left\{1+.17678 e^{-\alpha^{*}}\left(1-\frac{15}{32} \alpha^{2} \frac{k T}{R h c}\right)\right\}-3 / 5 \sum_{Z} \frac{N_{Z}}{N} z^{2} \frac{R h c}{k T} \frac{a_{0}}{a_{2}} \\
& +\left[\begin{array}{c}
3 / 2 \\
\text { or } \\
1
\end{array}\right] .
\end{aligned}
$$

where the condition (6.13) requires the use of upper values $3 / 2$ in square bracket when fulfilled, and the lower values when violated.

3. Continuous Opacity Formulae

The continuous transmission Λ_{c} is defined by (5.7) as being the value of the mean free path found by neglecting line absorption. We write this in the form

$$
\begin{equation*}
A \Lambda_{c}=\int_{0}^{\infty} \frac{W(u)}{D(u)} d u \tag{6.18}
\end{equation*}
$$

where the weighting function
(6.19) $W(u)=\frac{15}{4 \pi^{4}} u^{7} e^{2 u}\left(e^{u}-1\right)^{-3}$
is recorded in Table $V I$, and the reduced absorption D is
(6.20) $\quad D=\frac{u^{3} \mu_{c}}{A}$.

The reciprocal length A is introduced to give the quantities in the integral (6.15)
simple coefficients and make them dimensionless. It as the value
(6.21)

$$
A=\frac{2^{4}}{3 \sqrt{3}} \frac{h e^{2}}{m c} \frac{1}{k T} \frac{N}{V}=4.762 \times 10^{6} \frac{\mathrm{Rhc}}{\mathrm{kT}} \frac{\rho}{\sum_{Z} N_{Z} \frac{N_{2}}{N}}
$$

where c.g.e. units ere used for p end N_{Z}. The continuous absorption coefficient and consequently D is the sum of 3 terms, D_{s} from scattering, $D_{\text {ff }}$ from free -free transition and $D_{b f}$ from bound-free transitions
(6.22) $D=D_{\mathbf{g}}+D_{f f}+D_{b f}$.

The scattering term is
$(6.23) \quad I_{s}=\frac{n}{V} \frac{\boldsymbol{\varphi}}{A} \frac{u^{3}}{1-0^{-u}}=\sqrt{\frac{3}{8}} a^{3} \frac{n}{N} \frac{k T}{R h c} \frac{u^{3}}{1-e^{-u}} \frac{\boldsymbol{\varphi}}{\boldsymbol{\varphi}}$
where the scattering cross section is
(6.24) $\frac{Q}{Q_{0}}=\left(1-u a^{2} \frac{k T}{R h c}\right)\left[1+\left(\frac{k T}{m c^{2}}\right)^{2}\right]$.

Were, of course, I is the fine structure constant $=1 / 137$. 33 and φ o the mompson cress section $\boldsymbol{Q}_{0}=\frac{8 \pi}{3}\left(e^{2} /\left(m c^{2}\right)\right)^{2}=.6654 \times 10^{-24} \mathrm{~cm}^{2}$. The free -free absorption term follows from (2.30).
(6.25) $D_{f f}=\frac{R h c}{k T} \sum_{Z} \frac{N_{N}}{N} i^{2} e^{-\alpha^{2}} \overline{V f f}^{2}$

If we neglect small correction terms in a^{*}, we obtain from (4.41s)

where $\bar{M}=\sum_{Z}^{7} u_{2} \quad \frac{N_{2}}{\pi}$, and putting this with (6.2) into (6.25) we get
(6.26) $\quad D_{\text {ff }}=3 \sqrt{\pi}\left(\frac{R h c}{k T}\right)^{5 / 2} \sum_{2} \frac{N_{Z}}{N} z^{.3}\left(\frac{a_{0}}{a_{2}}\right)^{85} \bar{g}_{f f}$,
where

The bound free absorption tern (2.23) gives simply,
(6.28) $\quad D_{b f}=\sum_{b} \frac{N^{b}}{n} \frac{1}{n}\left(\frac{I_{n}}{K T}\right)^{2} g_{b f}(u)$,
the Gaunt factors being defined by (2.22). They are disoussed further in Appendix III. Fig. I is a graph of these factors.

In most cases the function $D(u)$ varies rather slowly with frequency except in the neighborhood of an absorption edge, where $D_{b f}$ is discontinuous. It is the usual practice among astrophysicists to break up the integration range into interrals within which $D(u)$ may be considered constent, and thus

where $S(u)$ is the Strömgren function
(6.30) $S(u) \int_{0}^{u} W(x) d x$.

Values of this function are given in Table VI. Formula (6.29) is valuable for quickly obtaining approximate results, if we approximate all the absorption edges associated with a one electron ionization by a single edge.

For more accurate results, we should use the statistical treatment of absorption edgea disoussed in $V-E$. In this treatment $B(u)$ of (6.18) is replaood by $\bar{D}(u) / p^{\prime}(u)$ where from (5.99)
(6.31) $\frac{\bar{D}(u)}{\bar{P}^{\prime}(u)}=D(u)\left\{1+\sum_{i=1}^{j\left(u_{k}\right)} \rho_{i}+\frac{u-\left(u_{k}^{*}-\Delta_{k}\right)}{2 \Delta_{k}} u_{k} \rho_{k}\right\}$.

In this result, the kth group of u_{k} edges lies between $u_{k}^{*}-\Delta_{k}$ and $u_{k}^{*}+\Delta_{k}$. Each edge has a relative jump, fron (5.92), (5.86)
(6.32) $\rho_{i}=\frac{\mu_{c i}-\bar{\mu}_{c i}}{\bar{\mu}_{0}}$.
and $\bar{\mu}_{c}$ is a function such that
(6.33) $\bar{\mu}_{\mathrm{c}}(\mathrm{u})=\mu_{\mathrm{c}}(\mathrm{u})$ between groups of edges

$$
\bar{\mu}_{c}(u)=\mu_{\mathrm{c}}\left(u_{\mathrm{k}}^{*}-\Delta_{\mathrm{k}}\right) \text { for } u_{\mathrm{k}}^{*}-\Delta_{\mathrm{k}}<u<u_{\mathrm{k}}^{*}+\Delta_{\mathrm{k}} \text {. }
$$

The reduced absorption $\overline{\mathrm{D}}(\mathrm{u})$ is

$$
\text { (6.34) } \quad \bar{D}(u)=\frac{u^{3} \bar{\mu}_{c}}{A} .
$$

4. Line Absorption Contribution.

The line absorption coefficient is defined by (5.8) as the reduction in the continuous mean free path, due to the effect of the lines. It is
(6.35) $A \Lambda_{l}=\int_{0}^{\infty} \frac{r}{1+r} \frac{\vec{p}^{\prime}(u) w(u)}{D(u)} d u$.
where
(6.36) $\quad r=\mu_{l} / \bar{\mu}_{0}$
is the ratio of the line absorption coefficient to the continuous background statistically averaged in regions of absorption edges. For a line of natural and. for collision breadth dispersion this is c.f. (5.24)
(6.37) $\quad A \Lambda_{l}=\left.\frac{\bar{P}^{\prime}(u) W(u)}{\bar{D}(u)}\right|_{u=u_{i}} \pi\left(\frac{N^{i} f_{i} \Gamma_{i}}{\pi^{S}}\right)^{\frac{1}{2}} \frac{1}{\left(1+\frac{\pi^{S} \Gamma^{i}}{N^{i} f^{i}}\right)^{\frac{T}{2}}}$.
where
(6.38) $\quad \Gamma_{i}=\frac{h \gamma_{i}}{4 \pi k T}, \frac{h \gamma_{i}}{4 \pi}$ is the energy half breadth,
(6.39)

$$
S=\frac{2^{4}}{3 \sqrt{3} \pi} \frac{N \bar{D}(u)}{\bar{P}^{\prime}(u)}=0.95015 \quad \frac{\bar{D}(u)}{u^{3} \overline{F^{\prime}}(u)}
$$

N^{i} is the number of ions in the initial state, and f_{i} is the electron number for the transition.

If the absorption strength may be smeared out over the interval u - Δ to $\mathbf{u}^{*}+\Delta$, we ret from (5.54)
(6.40) $A \Lambda_{l}=\left\{\frac{\sum_{j} \frac{N^{j} f_{j}}{2 \Delta u S}}{1+\frac{\sum N^{j} f_{j}}{2 \Delta u S}}\right\}\left\{\frac{S\left(u^{*}+\Delta i-S\left(u^{*}-\Delta\right)\right.}{D\left(u^{*}\right) / P^{\prime}\left(u^{*}\right)}\right\}$.

When recourse is made to the statistical treatment of lines, the following formulae should be used:
(6.41) $A \Lambda=\frac{A}{\rho K} \int_{0}^{\infty} \bar{P}(u) \frac{\vec{P}^{\prime}(u)}{\bar{D}(u)} W(u) d u \quad$.
$(6.42) \quad \vec{P}(u)=\sum_{n} a_{n} e^{-b_{n} E_{n}(u)}$

$$
=.47 e^{-1 . T E_{2}}+.37 e^{-.35 E_{2}}+.12 e^{-.10 E_{z}}+.040 e^{-.015 E_{4}}
$$

(6.43) $\begin{aligned} & E_{n}= \sum_{1} E_{n i}=\sum_{k} \sum_{i_{k}} E_{n i k}=\sum_{k} E_{n k} . \\ & \text { all ines } \begin{aligned} & \text { all lines } \\ & \text { classes } \text { in a class }\end{aligned}\end{aligned}$
(6.44) $E_{n k}=-\frac{v_{k}}{b_{n}} \ln \left(1-\frac{j_{n k}}{2 \Delta_{k}}\right) \sim \frac{M_{k}}{b_{n}} \frac{j_{n k}}{2 \Delta_{k}}$.
where \mathbb{M}_{k} is the number of lines in the kith class.
For natural breadth type dispersion, if a line may with equal probability fall anywhere in the region $u_{i}^{*}-\Delta_{i}$ to $u_{i}^{*}+\Delta_{i}$
(6.45) $\frac{j_{n i}}{2 \Delta_{i}}=\frac{b_{n}}{2 \Delta_{i}} \frac{N^{i} f_{i}}{S} F\left(a_{n i}, \infty\right) g_{n i}^{\prime}(u)$,
where
(6.46) $a_{n i}=\frac{b_{n}}{\pi \Gamma_{i}} \frac{N^{i} f_{i}}{s}$.
$(0.47) g_{n i}^{\prime}(u)=\frac{F\left(a_{n i}\left(u_{i}^{*}-u_{i}+\Delta_{i}\right) / \Gamma_{i}\right)-F\left(a_{n i} ;\left(u_{1}-u-\Delta_{1}\right) / \Gamma_{i}\right)}{2 F\left(a_{n i}, \infty\right)}$,
and the function $F(a, u)$ is recorded in Table V.

If it is valid to use an exponential distribution of strength within a group

$$
(\varepsilon .48) \quad E_{n k} \cong \frac{M_{k}}{2 \Delta_{k}^{3}} \frac{\overline{N e}^{k}}{\sqrt{1 t_{n k}}} g_{n k}(u)
$$

where $\overline{\text { Nf }}$ is the average strength of each lIne and

$$
(\varepsilon .45) \quad a_{n k}=\frac{b_{n}}{\pi} \frac{1}{S} \frac{\overline{\nabla f^{k}}}{\Gamma_{k}}
$$

A homograph of the function

$$
(\epsilon .50) \varepsilon_{n k}(u)=\frac{1}{\pi}\left\{\tan ^{-1} \frac{\left(u_{k}^{*}-u \not-\Delta_{k}\right)}{\Gamma_{k} \sqrt{1+\alpha_{n k}}}-\tan ^{-1} \frac{u_{k}^{*}-a^{-}-\Delta_{k}}{\Gamma_{k} \sqrt{1+\alpha_{n k}}}\right\}
$$

is given in Fig. III to facilitate oaloulations.

VII Similarity Propertios and Iimiting Foras of the Opacity

1. Similarity transfomations for apacity calculations.

Since the oaloulation of even a single opacity coefficient is laborious, it is desirable to have approximate similarity transformations, whioh if given walues of the opacity coefficient for one olerent at one temperature and density, will prollot raluss for other olements under relatad onditions. This an be done aqnatimataly if line absorgtion is not too inportant a factor.

We refor to our aurmary of formulae, Chaptar VII, specialized for the ase of a single ciement. From (6.2) we aan gen that the occupation numbers will be the same for two ases (subsaripts (1) and (2)) provided that d^{*} is the same and (7.1)

$$
\frac{\bar{E}_{f Z}^{\prime}(0)}{k T_{1}}=\frac{\bar{\epsilon}_{\ell z(2)}^{\prime}}{k T_{2}} .
$$

The amjor contribution to these energies is just the interaction with the molef, so that (7.1) is essontially oquivalant to (7.2) $\quad z_{1}^{2} \frac{R A C}{R T_{1}}=z_{2}^{2} \frac{R H C}{k T_{2}}$.
(1) has auggested a rofinement which partially tabes into acoount the soreening of the nuciel by the bound electrons. . He requires that

$$
\begin{equation*}
\gamma=\left(Z_{1}-\Delta\right)^{2} \frac{R \hbar C}{k T_{1}}=\left(L_{2}-\Delta\right)^{2} \frac{R K C}{k T_{2}} \tag{7.3}
\end{equation*}
$$

wiane a is the goreoning of the level with probability of occupation $1 / 2$. This forces the ocouparions of the half filled lavels to be the sane; the lower energy lavels will je completely filled anywy, while the higher ones will have so small an oosupation as not to affect the opacity.
(I) John /a;e日: Similarity Lam for Opaoity of Light Elements. Unpublished.

We next exarine the continuous opeoity of two different elemente under oonditions such that α^{\prime} and are the same for oach. From (0.25) we oan soe that the free-free absorptions $D_{f f}$ Will have the same contribution to $A \Lambda_{c}$ in oach sase $\sin 30(7.4) \quad D_{f f} \bumpeq \gamma e^{-\alpha^{\prime}}$.

The sane result is also evident for the bound-frog transitions, gince from (6.23) (7.5) $D_{\text {ff }} \sim \overrightarrow{2} \frac{N^{b}}{N} \frac{1}{H^{5}} \gamma^{\dot{\alpha}}$
(The sum oxtonding over all states with $I_{m} / \mathrm{c} T \mathrm{\gamma} / \mathrm{m}^{2}<u$) and $\mathbb{N}^{2} / \mathrm{N}$, the oocupstion numbers ars fúnctions of α^{*} and γ alone. The soattering oontribution (6.23), however, cannot be writton as a univeras function of α^{*} and γ, and henoe spoils the similarity tranaformation. If there are any bound electrons at all, howergr, scattering will play only a minor roll, while in the absence of bound elsatrons, the oalculation of the opacity coefficient is simple enough so that no resort need be had to similarity traneformations. We can say therefore that in most oases $A A_{c}$ of (6.12) is a function of α^{7} and γ slone.

Fron (6.25π) we see that if x^{*} is the same in two oases then must have approximataly
(7.6) $\quad \frac{z_{1}}{M_{1}} \frac{U_{1}}{T_{1}^{3 / 2}}=\frac{42}{M_{2}} J_{2} T^{3 / 2}$
or silaoe $Z_{1} / M_{1} \cdots Z_{2} / H_{2} \div 2$ for light elements except hydrogen
(7.7)

$$
\frac{\rho_{1}}{\rho_{2}}=\left(\frac{T_{1}}{T_{i}}\right)^{2 / 2} .
$$

But if r is the same in the two ceses
(7.3)

$$
\frac{T_{1}}{T_{2}}=\frac{z_{1}^{2}}{Z_{2}^{2}}
$$

so that
(7.9)

$$
\frac{p_{1}}{p_{2}}=\frac{z_{1}}{z_{2}^{3}}
$$

Usiag (7.3) and (7.9) oan find the terperature and densitien for whioh two differeut elements will have the sane values of $A \Lambda_{c}$ *Moreover since from (6.21) $A \propto \beta \rho /\left(L^{2} M\right)$ get that, under these conditions,

$$
K_{c}, \propto\left(Z_{1}^{2} M_{1} A \Lambda_{c}\right)^{-1}
$$

(7.10)

$$
\frac{K_{c}}{K_{c_{2}}}=\frac{Z_{2}{ }^{2} M_{2}}{Z_{1}{ }^{2} M_{1}} \sim\left(\frac{Z_{2}}{Z_{1}}\right)^{3} .
$$

The lin absorption contribution does not land itself to a similarity treatment. The most important single factor in the effect of lines is the spread of each groupe This spread, being due to electrostatio and exohange interaotion is proportional to $之$. If we keep $Z^{2} /(k T)$ constant, then, on the froquency soale $a=h 2 /(k T)$ the spread of the groups will be inversely proportional to 4 . Hence the lipe contribution will be more important for light elements than for heavy lements under conditions of similarity for the sontinuous opacity.

Relativity effects are to first order proportional to z^{4}. This again spoils the similarity transformation, even when lines are unimportant. It also spoils any attempt to scale the il ae outribution separately. This is just another example of the qualitative differeno in opacity oalculations between the light and heary -loments.

2. Liniting taves for the opacity.

At very high tomperatures, all the electrons will be ionized so that the only proossses contributing to the opacity are the froe-free transitions and the soattering. Sinee seattering is proportional to the number of electrons per unit volume, while the free-free transitions are proportional to the square of the electrou density, the former will be dominant at low densities, the latter at highe活 examine the results to be expeoted under these extrene conditions.

If there arg to be no bound electrons, the quantity $\alpha^{*}+\beta \bar{\delta}_{l}^{\prime}$ must be muon grater than unity for all states. Fating $\bar{\varepsilon}_{i z}^{\prime} \sim-z^{2}$ thc and using (0.6) for α^{*}, this condition gives approximately
(7.11) $\quad \ln \frac{1}{\rho}\left(\frac{k T}{p h c}\right)^{z / 2}-z^{2} \frac{k h c}{k T}-1$.

This result clearly indicates that increasing temperature favors increased ionizeion. But it also predicts that increasing the density always decreases the ionizetion. This is not altogether true; the reason our result is misleading le our neglect of the interaction terms in $\bar{\varepsilon}_{\ell / 4}^{\prime}$. These give a pressure ionization for high densities.

In the low density, high temperature limit, where the only process contributing to the opacity is scattering we get (7.12) $\Lambda_{\text {ALa } Y}=\frac{1}{\rho k}=\frac{15}{4 \pi^{4}} \int_{0}^{\infty} \frac{u^{4} \epsilon^{u}\left(e^{4}-1\right)^{-2} d u}{\frac{M}{V} \phi_{0}\left(1-\frac{3 k T}{m c^{2}}\right)\left(1-2 u \frac{k T}{m c^{2}}\right)}$.

The denominator is independent of frequency except for the correction fetor $\left(1-2 u \frac{i T}{n c^{2}}\right)$. We may replace u by $U_{\text {max }}{ }^{4}$, the value maximizing the integrand in (7.12) without fear of serious error. Then

$$
\text { (7.13) } \Lambda_{\text {scat }}=\left\{\frac{n}{v} \phi_{0}\left[1-1 \frac{k T}{m c^{2}}\right]\right\}^{-1} \text {, }
$$

or
(7.14) $r_{\text {scat }}=\frac{1}{n}=N_{o} \phi_{0}\left[1-11 \frac{k T}{n+c^{2}}\right] \frac{\bar{z}}{M_{0}}$

Where $\sum_{Z} y_{2} \frac{L_{2}}{F}=$ ave molecular weight $\bar{z}=\sum_{4} \frac{N_{2}}{N}=$ average atomic number

$$
\begin{aligned}
& \phi_{0}=\text { Thomson cross-section }=.5654 \times 10^{-24} \text { and } \\
& N_{0}=\text { Avogadro's numioer } 6.023 \times 10^{23}
\end{aligned}
$$

In this 11 int the oferty is ludepondent of density and virtually independent of temperature. Moreover for the light elements $Z / 4 z=1 / 2$ so that except for inydrogenous material the opacity is independent of composition.

In the hi ch density hi ch temperature ragion free-free transitions become the dominant eroegss. Then using (6.13) and (3.25)
(7.20) $A \Lambda_{c}=\int_{0}^{\infty} \frac{R(u) d u}{R_{R T} \sum_{4}^{2} \frac{N_{2} 2^{2}}{N} \quad . \quad .}$

The only frequency dependent factor in the denominator is the slowly varying gif . We replace u by $u_{\text {max }}{ }^{2} 7$ in this factor. Then wo an use $\int_{0}^{\infty} w(u) d u=S(\infty)$ giving.
(7.15) $A A_{C}=$
196.5
or putting in the value of x^{*} iron (6.25 a) we get (7.17)
or Luseiting the value of Alp from (6.21), we have in ceg.9. units
(7.13)

In contrast to the scattering, the frae-froo opacity is proportional to the density, varies almost as $T^{-7 / 2}$ and is also approximately proportional to 2 . It is because of this limiting form that astronomers have used the temperature dependence of the opacity as $T^{-7 / 2}$. But the limitations of this law should be claariy understood.
3. Variation of opacity with Temperature, Density and Atomic Number.

The qualitetive variation of the opacity with various factors is evident to a considerable extent by a consideration of the oquations, although the quantitative evaluation requires an immense amount of computation. Consider first to variation of opacity with density. At the lowest density the only importent process is scattering. So long as this is true the opactiy is independent of density. But as tre density incresses, the K electrons become bound with apprecaible probability, unlese the temperature is too high. For temperatures at wrich the K electrons can become bound $k T \sim\left(\frac{1}{10}\right.$ to $\left.1 / 3\right) Z^{2}$ Rhc, the ionization limit of the P electrons is low enough so that thejr photoelectric atsorption will occur in a region where there is considerable radiation. Their absorption will, therefore, be very important in reducing the transmission. For low densities the k occupation will increase proportionally to the donsity; then $A \Lambda_{C} a^{-1}$ and Kap. Superimposed upon this lirear variation of the contiruous opacity is the effect of lines. So long as only K electrons ere bound, this is usually a small effect, sirce the line spectrum is simple. As the density firther increases, the K shell becomes full. The increase ir density then can cause no further increase in K occupation. For a short while, therefore, the opacity is afain independent of the density. But then the L sholl begins to fill. Initially the acopution of this sholl again varies as p and it may well be that consideratle radiation is in the frequencies which thoy will absorb photoelectrically. For awhile, therefore, we again have the continuous opacity K_{c} ap. However, eventually tre I shell will be filled and then K_{c} will be independent of P. In this case, in contrast to the filling of the K sholl. the lines are very often of decisive importence. The line spectrum will be very simple for a prectically empty I shell, increase to a maximum complexity as 4 or 5 electrons became bound, and thon decrease in complexity as the shell fills up full. The interplay of the line and continuous process is shown schematically in the fifure.

The ratio riw will have a broad maximum near the density at whioh the I shell is half Aull. This pattera of behervior is repeated but much less distinotly as the higher sholls fill in. Finally, however, increasing density "outs off" more and nore bound state. Eventually all the leotrons are prossure ionized and the deter mining proopss is freefrae sonttering. The opacity then increases proportional to the donsity. It if doubtful, however, that the methods outined in this paper are dequate to cope in detail with the free-free absorptions at gueh high densitios, since thes dry based upon hydrogenig wave functions for the electrons.

The variation with temperature is much more oomplicated than with density becaust, not only do the occupation numbers ohange, but the frequency region in whioh
 begia to z2ll up at a temperatur fram $1 / 10$ to $1 / 3$ times its fonisation energy, (Hat thas the absorption from the latest bound shell is always of decisive importance in determining the opacity. The occupations vary as $k y / f-\left(I_{m} / k r\right)$, the bound eree ebsorption ooeffiolent as $D_{b f} \sim\left(I_{m} / k T\right)^{2}$ lipp $-\left(T^{T} / k T\right)$ and hence $A A \sim\left(k T / L_{1}\right)^{2} \operatorname{eisp}\left(I_{n / k T}\right) \quad \operatorname{ramy} \quad K_{c}=1 /\left(p n_{c}\right) \propto \frac{I_{n^{2} R h c}}{(k T)^{3}} e^{-I_{n} / k T}$ i.e. $k_{C} \propto T^{-3}$ exp - conat $\left./ T\right)$. This vitiation is quite a bit more rapid than the $\mathrm{F}^{-7 / 2}$ law for free-free propesses. In addition the line contribution nust be superposed upon this.

The variation with atomio numbers is related to that with tamperature indeed we discussed a similarity transformation with the parameter $z^{i} k \mathrm{k} / \mathrm{k}$? Hence roughly $K_{c} \propto Z^{4}$ eyp (comy 4^{2}) . The line effects are important but too varied to dischas in brief. As mentioned previously the lines ohange their qualitative behavior when relativity effects become important, that is for high $\quad 幺>60$ or 70. A somprehensive discussion of the high \sum phenomen is given by Jacobsohn.

VIII Opacity of Iron.

To illustrato the prinofples of the preceding chapters, the calcuiation of the opacity of pure iron, $z=26$, at normal density $e=7.85$ grame/ cm^{3} and at a temperature of kT $=1 \mathrm{kilovolt}$ will now be disenssed in detail.

1. Oocupation Numbers

The data for the calculation are

$$
\text { (8.1) } \quad \begin{aligned}
& \mathrm{Z}=26 \\
& \\
& \mathrm{e}=7.85 \mathrm{grams} / \mathrm{cm}^{3} \\
& \\
& \\
& \\
& \\
& \\
& \frac{\mathrm{KI}}{\text { Rhe }}=55.85 \mathrm{grams}=73.49
\end{aligned}
$$

Usicg the above data and (6.2) we deternine the radius of the ion spheres - a particuiariy simple job, in the case of a pure element. From (6.2)

$$
V=\frac{4 \pi}{3} N a_{2}^{3}, ; \quad\left(\frac{a_{2}{ }_{2}^{\prime}}{a_{0}}\right)=\left(\frac{3}{4 \pi} \frac{V}{N a_{0}^{3}}\right)^{1 / 3}
$$

But

Tonce

$$
(8 . z) \frac{a_{z}{ }^{\prime}}{a_{0}}=2.670
$$

The successive approximation prooedure must now be usod to isnd the actau? ocoupation number. The last oycle of the anproximation is sumarized in the accompanying tablea Table A. CoIum (I) Eives the crbital (specified by l), colum (2) the degeneracy $C_{l Z}$. and colunn (3) the assumed ralues for the occuration. The sum $\sum_{l} \frac{n_{l} Z}{N}=\frac{n_{b}}{N}=2.025$ at the foot of the colunk gives the number of bound electrone, and herive $n_{\mathrm{f}} / \mathrm{N}=\frac{\mathrm{n}-\mathbf{m}_{\mathrm{b}}}{\mathrm{N}}=23.075$. $\mathcal{E}_{l}^{0}\left(厶^{*}\right)$ can be dotermined by the use of (6.7) and interpolation in Table III, the table of energy levels. This is racorded in column (4). With a knowledge of \boldsymbol{a}_{2} and $z^{\prime}=2-\sum_{l} \frac{n_{l} Z}{\pi}=20-2.2251=23.075$ we can compute the correction terms in (6.8),
and the final value of $\overline{\mathcal{E}}_{\text {PZ }}$ ' is recorded in golumn (5) 。 Whenever this energy becomes positive wo know that the bound state has been out off, and merged with the free states. This haprens for levels with $n>4 . \quad \alpha^{*}$, determined by (6.6), has the value 4.5826 so that by tha use of $(6,9)$ a final set of occupation numbers, listed in column (6), is obtained. The value of $i_{b} / N=2.024$ is is close asreement with $n y / N=2.925$ assumed in column (3) incicating that the successive aproximations have setisfactorily converged. it will be noted that only the F. shell is suostantially ocoupied under these conditione.

The ionic ocoupation numbers may now be found. The fraction of ions laving electrons in thetth shell is recorded in Table B following. More important for our later calculations is the number of V electrons in ions of a given confjguration. This number is fiven in Tabloc.

$$
e=7.85 \frac{\text { Tabie A Ocoupation Numbers of }}{\text { grams } / \mathrm{cm}^{3}} \frac{\text { Iron }}{\mathrm{kT}=1 \mathrm{kilonolt}}
$$

$\omega=7.85$ grans $/ \mathrm{cm}^{3} \quad \mathrm{kT}=1 \mathrm{kilovolt}$

Shell	Fraction of ions with the following number of electrons in the shell					
	0	1	2	3	4	5
K	. 000529	.04494	. 95453			
L	. 59616	. 25794	. 041808	.003873	. 000224	neg.
M	. 75864	. 21117	. 027759	D022894	.000133	neg.
N	. 70922	. 24509	. 041025	.004431	. 000347	neg.

Table C Ionic Occupation of Iron $Z=26$
$P=7.85 \mathrm{grams} / \mathrm{cm}^{3}$

$$
k T=1 \text { kilovolt }
$$

Shell	Number of K electrons per atom in 1ons having the follow- ing number of electrons in tho		
	0	1	2
	0	.04494	1.9091

2. Thernodynamio Properties

Using the occupation numbers found in the preceding section and the formulas of Appendix I it is a simple matter to compute the energy and the pressure. The various terms are given in the following table.

Binding energy of ions $\frac{\mathrm{E}_{\mathrm{b}}}{\mathrm{N} \mathrm{Phc}}$ (AI.17)	- 1381.6
Potential enersy $\frac{\mathrm{PaF}_{\circ}}{\mathrm{N} \mathrm{Rhc}}$ (AI. 17$)$	- 15.56
Kinatic energy of froo electrons $\frac{\mathrm{K}_{\mathrm{E}} \mathrm{E}_{\mathrm{f}}}{\text { NRhor }}(\mathrm{AI} .18)$	2550.1
Energy of nuciei $\frac{\text { E nucioi }}{N}=\frac{3}{2} \frac{\mathrm{kl}}{\text { Rho }}$	110.2
Potal Energy $\frac{\mathrm{E}}{\mathrm{N} \text { Rho }}$	1263.1
Free electrons $\quad \frac{\mathrm{PV}}{\text { Nhio }}(A I .20)$Kinetic energy term Potential energy term	$\begin{array}{r} 1695.0 \\ -5.19 \end{array}$
Nuclei $\frac{\mathrm{PV}}{\mathrm{~N} R \mathrm{Rh} c}=\frac{\mathrm{LP}}{\mathrm{Rhc}}$	73.49
$\text { Total pressure } \frac{\mathrm{PV}}{\mathrm{~N} \text { Rho }}$	1764.3
$\frac{\mathrm{PV}}{(\mathrm{Z}+1) N k T}$. 8897

For this calculation the nuclei were treated as free, because $\mathrm{S}=\frac{\mathrm{Z}^{\prime} \theta}{\sqrt{2 k a_{z}^{\prime}}}=1.65 \ll 3.4$
(c.e. Appendix I). We note that the material does not behave like a perfect gas of $(Z+1) N$ particles, but instead behaves as if only 80% of the particles werg completely free. Furthermore this percentage will vary rapidly with tomperature and somewhat more slowly with density. With regard to the energy, we can see that the potential energy and nuclear energy terms are suall corrections; it is not necessary to further refine our treatment of them. To the other terms we may attach a high degree of reliability. It is also worthy of note that the kinetic energy is almost twice the total ionization energy of the remaining bound electrons.

3. The Continuous Opacity

The caloulation of the scattering and. free-froe absorption contributions is a straightforward application of (6.23) and (6.25). The bound-freo contribution requires some care, however. We first make a preliminary calculation which assumes that all the ions have the same ionization potentials for a particular one electron transition. This is the average ionization potential $-\overline{\mathcal{E}}_{8 Z}$ reoorded in Tabls A column 5. We notice that the subshells 2s, $2 p^{\frac{1}{2}}, 2 \mathrm{p}^{3 / 2}$ have very nearly the same ionization potential and for simplicity we take an occupation weighted average value- $\bar{\varepsilon} \frac{1}{2}=211.0$ Rhe. Similarly for the $n=3$ sheil, we use $-\overline{\mathcal{E}}_{3}^{\prime}=30.36$ Rhe. Table D suramarizes the continuous opacity results. In column 1 the frequency $u=\frac{h v}{\mathrm{kT}}$ for which the reduced absorption coefficient $D(u)$ is to be calculated is given. Entries with an asterisk are the ionization frequencies. The contribution of the various absorption processes is given in co'xmns 2 to 7 and the total $D(u)$ in column 8. Column 9 gives the difference $\Delta S=S\left(u_{\mathbf{k}+1}\right)-S\left(u_{\mathbf{k}}\right)$ of the Stromgren functions for the interval between the two frequencies. This is a measure of hov important the contribution of the region may be. In the final column is given $\Delta S / D(\bar{u})$, the contribution to the reduced mean free path $A \Lambda_{0}$ of the region.

For the very lowest frequencies, the only important process is free ofree absorption. It is only above the ionization potential of the L electrons that the bound-free absarptions become of dominant importance. Even here the free-free contribution is 16% while
the soattering contribution is $\sim 10 \%$ of $D(u)$. Sinoe it is the region between the K and L ionization limits which, acoording to the last colum, contributes practically 100% to the mean free path, it is not possible to dismiss scattering and free-free absorption lightly. Above the K ionization linit, however, the bound-free absorption of the K electrons alone is sufficient to black out the region, so the other processes need hardly be considered.

In the K to L window the Gaunt factor for the L electron absorption varies from .375 at the L edge to 1.05 at the K edge. The error made by putting the Gaunt factor exactly equal to unity, that is, by using the old Kramer's formula is not large.

The neighborhood of the K edge is one in which the weighting function $\mathbb{W}(u)$ is particularly large, and in which $D(u)$ take a very large jump. The details of the absorption in this region will therefore have a considerable effect on the final transmission. We therefore return to our lonic picture for an accurate treatment of this region. The results are sumarized in Table 4 . The first column gives the ion type, that is the number of electrons in each of the K, L, M, and N shells. The second column gives the number of K electrons per atom of the system, which are in the various ions. The fourth column gives the contribution to the absorption coefficient of each ion type at the ionization frequency which is given by column 3. Since the Gaunt factor varies slowly with frequency, we may assume these contributions do not change within the region occupied by the K edges of the various ions. The next oolumn (5) gives the absorption coefficient and the final colum $\Delta S / D(\bar{u})$ the contribution of the region to $A \Lambda_{c}$, the reduced mean free path. Whereas this region gave a contribution 15.37 in the rough treatment of Table D, we now get .939 , reducing the total transmission to $A \Lambda_{0}=186.31$ a change of 7.7%. Such a large change is only to be expected for even the few ions which have small ionization potential still have sufficient strength in their K absorption to wipe out most of the tranamission left by the weaic L absorptions.

To avoid all the labor of this detailed calculation we could use a statistical treatment of the edges. This gives a transmission in the region of the edges as .565 instead of the accurate result . 306. The agreement within the region of the edges cannot be considered too good, but this is unimportant for the error in the total transmission is only 0.13%.

TABLE E

CONTINUOUS OPACITY OF IRON $Z_{2} 26$

CONTRIBUTION TO THE COIPINUOUS OPACITY NEAR THE K EDG: IONIC TRFATMENT

4. Contribution of Lines

From our rosults on the continuous opacity, we seo that the only importants spectral region is that betwen the L ionization limit $u=1.510$ or hy $=111.0$ Rho and the lowngt, lying, odge of the K innization Ilmit $u-7.987$, ho~ 587.0 Rho. Tha only linas in this rapion will be those in whioh a ls alootron is raigad to an axoitod statio, and wh may restrict our anaiderations to this rathor gimpla portion of the speotrim. a. Position of the Ifmes

At. firgt we gxambe the pross struature of the line spaterum by aonflterine only the mpherloally eymmetris fart. of the olootrostintio intarantions. Lator wo shall man that the mplittinge of the 11 nes ure unimportante In order to pot. tion positions of the Ilnes In the oorroot ralative positions to the absorption odfros, it in anstatio to ompute the linos by the differonos in tondzation potantiala of the olactron involvad in the transition. In an fon with $x y$ alootrons in the fth leval, the fonliation potantint of an aleotron in tho lith level if approsimately

$$
\begin{align*}
& 1_{k}=-\varepsilon_{k}^{0}(z)- \\
& j \neq k^{x} j F^{o}(1, k)-\left(x_{k}-1\right) F^{o}\left(k_{0} k\right) \\
&-\frac{z^{\prime} c^{2}}{2 a_{z}^{\prime \prime}}\left\{s-\left(\frac{r}{A_{Z}^{\prime}}\right)^{2} k\right\}-3 / 5 \sum_{z} \frac{N_{z}}{n_{f}} \frac{Z^{\prime 2} e^{2}}{B_{Z^{\prime}}}
\end{align*}
$$

The frequenay of the line resultinf: frow the one electron transition $k \rightarrow \ell$ is (3.5)

$$
\begin{aligned}
& 1_{k}-I_{l}=-\varepsilon_{k}^{o}+\mathcal{E}_{\ell}^{n}-\% \frac{e^{2}}{2 a_{0}}\left(\frac{a_{0}}{a_{z}}\right)^{3}\left\{\left(\frac{r}{a_{0}}\right)^{2 \ell}-\left(\overline{\left.\frac{r}{a_{0}}\right)^{2}}\right\}\right. \\
& +\left\{\left(x_{k}-x_{\ell}-1\right) F^{\circ}(\ell, k)-\left(x_{k}-1\right) F^{\circ}(k, k)+x_{\ell} F^{\circ}(\ell, \ell)\right\} \\
& -\sum_{j \neq k}^{2} \quad \pi_{j}\left[F^{0}(j, k)-F^{0}(j, k)\right] \\
& \text { } \ddagger \ddagger \ell
\end{aligned}
$$

The first two terms are the frequency of the one eleotron line in the ivolated ion; the next terin is the lowering of the frequency caused by the electrostatic shielding of the
free electrons. This latter term is a constant for all ions with the same nuclar charge. The next set of terms in (8.5) give the interaction with electrons in the same shell as the initial and final shells of the transition electron. The final set gives the electru* statis screening of the remaining bound electrons. This last contribution is additive for the electrons of any ion undergoing a particular transition. In Table f are recorded the firgt two sets of terms of (8.5), that is the frequency of a one electron line in the free electron atmosphere.

$$
\text { Table } F
$$

Transition	Frequency of Line in Isolated Ion $\mathrm{h} / \text { /Rhc }=\frac{-\varepsilon_{\mathrm{k}}^{0}+\varepsilon_{\ell}^{0}}{\text { Rhc }}$	Scroening of Frees $\left.z^{\prime}\left(\frac{a_{0}}{a_{2}}\right)^{3}\left\{\frac{\bar{r}}{a_{0}}\right)^{2 l}\left(\frac{r}{a_{0}}\right)^{2}\right\}$	Frequency of Line in free electron atmosphere hv/rnc
$1 s \rightarrow 2 p^{\frac{1}{2}}$	$511 . ? 5$. 048	511.20
Is $\rightarrow 2 p^{3} / 2$	512.81	.048	522.76
Is $\rightarrow 3 \mathrm{p} \frac{1}{2}$	606.39	. 317	606.07
$1 \mathrm{~s} \rightarrow 3 \mathrm{p}^{3 / 2}$	606.35	. 317	606.53
$1 \mathrm{~s} \rightarrow 4 \mathrm{p} \frac{1}{2}$	639.63	. 941	638.59
1s $\rightarrow 4 p^{3} / 2$	639.32	. 941	638.38

If we neglect the small differences in scroening of $n s$, n, nd etce electrons we can readily express the contributions of the last two sets of terms to the line frequency. The folloving Table G gives the energy in units of 22 Rhe which must be subtracted from the values in Table F for each bound electron in the ion in addition to the transition - lectron.

Table G Contribution of Additional Bound Electron (Units of $2 Z$ Rhc)

	Shell of Additional Bound Electron			
Transition	$\mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	n
$1 \mathrm{~m} \rightarrow 2 \mathrm{p}$.3822	.0578	4	
$1 \mathrm{l} \rightarrow 3 \mathrm{p}$.5162	.0090	.0029	
$1 s \rightarrow 4 p$.5633	.1416	.0347	.0086

As mentioned above the contributions of the additional bound electrons in the ion are additive.

With the use of Tables F and G, we prepare a list, Table H, of the stronger Is $\rightarrow n p^{2}$ lines and their frequencies. The $1 s \rightarrow n p^{3} / 2$ line will be split from their ls $\rightarrow n p^{1 / 2}$ counterpart by just the splitting of Table F. We can see that for each transition the lines form into 2 groups, one formed from ions with a single K electron, the other from ions with 2 K electrons. The $\mathrm{p}_{2}, \mathrm{p}^{3} / 2$ splitting, and also the electrostatic splitting will not change the group to which a line belongs, but will simply increase the number of lines in each group. The differences within each group are so small that we may well expect them to be smaller than the wingspread of the lines. In that event it is no longer necessary to consider all the details of each line. We therefore stop to consider the dispersion of the lines. b. The Doppler Breadth.

The energy half breadth for Doppler broadening is given by (5.29). The calculation for iron at $k T=1000$ volts gives to lines of frequency $\sim 7 k T$ (the K electron lines) a half breadth of .0836 Rydberg units, or $\Gamma=\frac{h \gamma}{k T}=1.138 \times 10^{-3}$. c. The Natural Breadth:

In opacity calculations, the natural breadth phenomenon differs in two important respects from the ordinary case encountered in optical spectra. First the radiation density is so high that absorption and induced emission processes as well as spontaneous emission contribute to the breadth of the levels. Second the atoms are so highly ionized that

TABLE H
Spectrum of K Electron Lines (Rhc units)

many transitions contribute to the breadth.
In general the energy half breadth at half maximum is $\pi / \bar{L} / 2$, and this breadth is the sum of the breadths of the initial and final states of the transition. The half breadth of a leveliis

$$
\begin{equation*}
\Gamma_{i}=\frac{\not k \gamma_{i}}{2 k T}=\frac{\alpha^{3}}{2} \frac{k T}{R h c} \sum_{j} \frac{u_{i j} £_{i j}}{e^{u}{ }_{i j}-1} \tag{5.5}
\end{equation*}
$$

where $u_{i j}=\frac{h_{\nu_{i j}}}{k T}$ and $h v_{i j}$ is the energy of the transition i to j. We note that $u_{i j}$ and $f_{i j}$ are both negative for downward transitions. The sum \sum_{j} includes all possible transition which shift the frequency of the line in question by more than its breadth.

While (8.6) is very convenient for transitions between discrete states, we can put it into simpler form for transitions to and from the continuum. For transitions from a bound to a free state

$$
\text { (8.7) } \sum_{j} \frac{u_{i j}^{2} f_{i j}}{e^{u} i j-1} \quad \text { goes over into } \int_{u_{i}}^{\infty} \frac{u^{2} \frac{d f}{d u} d u}{e^{u-1}}
$$

where $u_{i j}$ is the ionization potential in units of $k T$ of the $i t h$ level. Introducing the result of (2.22) into (8.7) we get

$$
\sum_{j} \text { continuum }=\frac{2^{4}}{3 \sqrt{3} \pi} \frac{1}{n_{i}} u_{i}^{2} \int_{u_{i}}^{\infty} \frac{g_{i}(u) d u}{u\left(e^{u}-1\right)}
$$

The maximum value of the integrand occurs at $u=u_{i}$ and we nay replace the slowly varying function $g i(u)$ by $g i(u i)$. Then the integral may be expressed in terms of the exponential integral - $E_{i}(-x)$ tabulated, for example, in Jahnke ind Emde, pp. 6 ff. The contribution of the bound-free transitions to the breadth is thus
(ع. $\delta) \quad \Gamma_{i b f}=\sum_{\substack{a 11 \text { bound } \\ \text { electrons }}} \frac{\alpha^{3}}{2} \frac{k^{m}}{R h c} \frac{2^{4}}{3 \sqrt{3} \pi} \frac{1}{n_{l}}\left(u_{l}{ }^{2} g_{l}\left(u_{l}\right) \sum_{\lambda=1}^{\infty}-E_{i}\left(-\lambda u_{l}\right)\right.$.
In addition to the bound free transitions, the process of free electron capture contributes to the breadth of a level. In this case we must multiply the contribution from a free to a bound state transition by the probability that the free state is occupied, $\mathrm{p} \cong e^{-\alpha^{x}-3 \varepsilon_{f}}=e^{-\alpha^{x}-u+u k}$, and sum over all free states. We get exactly the same
internal as in (8.7) so the resulting contribution of these processes is
(8.0) $\left.\Gamma_{f \rightarrow b}=\sum \frac{\alpha^{3}}{2} \frac{k^{m}}{F h_{c}} e^{-\left(\alpha^{*}\right.}+u_{k}\right)\left\{\frac{2^{4}}{3 \sqrt{3}} \pi \frac{1}{n_{k}} u_{k}^{2} g_{k}\left(u_{k}\right) \sum_{\lambda=1}^{\infty}-F_{i}\left(-\lambda u_{k}\right)\right\}$.
all empty
bound states k
(not levels)

The contributions (8.8) and (8.9) are generally small compared to that of the bound -bound transitions. In Table I are recorded the natural breadth contributions of the various transitions for the case of iron $Z=26, k T=1000$ volts and normal density. The natural breadths of the stronger F electron lines is given in table J. The natural breadth is much smaller than the Doppler breadth and the collision breadth (see next section) and may therefore be neglected.
d. The Collission Breadth:

The problem of collision broadening has been analyzed by K . Sternheimer. We quote Wis results without proof. The energy half breadth at half maximum is analogous to the natural breadth $t \gamma / 2$. The breadth. is the sum of the initial and final breadths of the states involved in the transition. In turn the breadth of a state is the sum of contributrons from all the transitions which the ion can undergo which shift the line more than the breadth. A transition of an electron from an initial state to a final state j, both discrete states, gives the contribution to the energy half breadth on an ionic level

$$
\begin{equation*}
\left.\frac{2}{3} \sqrt{2 \pi} \frac{n_{f}}{\nabla} \frac{1}{z^{2}} \sqrt{\frac{m c^{2}}{k^{T}}}\left(\frac{\hbar}{m c}\right)^{3} m c^{2} \frac{\ell m a x}{2 \ell_{i}+1} \right\rvert\, R_{n_{i}} l_{i}, n_{j} \ell_{j} \|_{i j}^{2} I_{i} \tag{8.10}
\end{equation*}
$$

where

$$
I_{i j}=e^{-u_{i j}} \frac{4\left|\beta \bar{\varepsilon}_{i z}^{\prime}\right|}{u_{i j}}-E_{i}\left(-u_{i j}\right) \quad \text { if } \quad\left|u_{i j}\right|>\frac{u^{2} i_{j}}{4\left|\beta \bar{\varepsilon}_{i z}^{\prime}\right|}>\frac{\hbar a^{\prime}}{k T}
$$

(S.11) $I_{i j}=-E_{i}\left(-\frac{u_{i j}^{2}}{\left.4 \beta \xi_{i 2}^{\prime}\right)}\right)$
if $\left.\frac{u^{2} i j^{4}}{4\left|\beta \bar{\varepsilon}_{i z}^{\prime}\right|}>\left.\right|_{i j \mid} \right\rvert\, \frac{\hbar a^{\prime}}{k T}$

$$
I_{i}=\ln \frac{4\left|3 z_{i z}\right|}{\left(\frac{\hbar a^{i}}{R T^{\prime}}\right)^{2}}-.577216
$$

if $\left|u_{i j}\right|<\frac{\hbar a^{\prime}}{k T}$

1. Unpublished report.
and, ha' the plasma energy is given by
(8.12) $\hbar a^{\prime}=\sqrt{\frac{n_{f}}{\nabla^{*}} \frac{e^{2}}{\pi m}}=\sqrt{\frac{4}{\pi} \frac{n_{f}}{N}} \frac{N a_{0}^{31}}{V} \mathrm{Rhc}$
while $\left|R_{n i} l_{i}, n_{j} l_{j}\right|^{2}$ is recorded in Tables by Bethe ${ }^{2}$. We rust sum (8.10) over all final states j available for the transition and all initial state i occupied by electrons in the ion. We then get for the partial energy half breadth of the level due to discrete transitions
(8.13)

$$
\frac{\hbar \gamma_{\ell}}{2 \pi h c}=\frac{8}{3} \sqrt{\pi} \frac{n_{f}}{N} \frac{N \varepsilon_{0}^{3}}{\nabla}\left(\frac{R h o}{k T}\right)^{\frac{1}{2}}-\frac{1}{2} 2 \sum_{i} \sum_{j} \frac{\ell_{\max }}{2 \ell_{i}+1}\left|R_{i, j}\right|^{2} I_{i j} .
$$

Transitions to and from the free states should also be included as contributing to the breadth. For the former we may use the results of Bethe ${ }^{3}$ quoted by Mott and Mossey. 4^{4} He gives the cross-section for ionization which leads to a collision breadth contribution of.

$$
\frac{h_{1} \gamma_{l}}{2 R h c}=4 \pi^{3 / 2} \frac{n_{p}}{V} \frac{N a_{0}^{3}}{V}\left(\frac{R h c}{k T}\right)^{\frac{1}{2}} \frac{n^{2} c_{n e}}{2 n e} x
$$

$$
\begin{equation*}
x\left\{\operatorname{erfe} \left\lvert\, \frac{\bar{\varepsilon}_{n s} \mid}{k T} \ln \frac{80 \mathrm{kT}}{\left|\bar{\varepsilon}_{n \ell}^{\prime}\right|}+\chi\left(\frac{\bar{\varepsilon}_{n e}^{\prime}}{\mathrm{kT}}\right)\right.\right\} ; \tag{8.14}
\end{equation*}
$$

where
(8.15)

$$
\operatorname{erfc} x=1-\operatorname{erf} x=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-y^{2}} d y
$$

$$
\chi(x)=\frac{1}{\sqrt{\pi}} \int_{x}^{\infty} y^{-\frac{2}{2} e-y} \ln y d y
$$

and ${ }^{c_{n}}{ }^{n}$ is given in the following table.

$$
\underline{\text { Table of }{ }^{n} n_{\ell}}
$$

State	1 s	2 s	2 p	3 s	3 p	3 d	4 s	4 p	4 d	4 f
$\mathrm{c}_{\mathrm{n}}^{\ell}$		0.28	0.21	0.12	0.17	0.14	0.07	0.25	0.13	0.09

2. Handbuch der Physic: Second Edition, Vol. 24, 1; p. 442
3. Annalen der Physic, $\underline{5}$ (1930) pp. 325 H.
4. Theory of Atomic Collisions, Oxford 1933, p. 182.

Table I: Contributions to Energy Half Breadth of Eleotronio Transition

The integral (8.75) has been evaluated through the good ofiices of Mr. Bengt Carlgon, whoso results are contained in Table IX.

Transitions involving the capture of an electron will be relatively unimportant, and transitions from one free state to another will not appreciably alter the frequency of the absorption line and hence must not be considered as contributing to the collision width.

In Table I, the contributions of the various transitions to the collision breadth is given. The largest contributions come from those transitions requiring very. little energy change. The contribution of ionizing transitions also is appreciable except for the most tightly bound electrons. Values of the breadths for the strong K lines of iron are recorded in Table J along with the natural breadths.
A. Stark Broadening

To adequately discuss the Stark Effect broadening of the lines we shall have to refine slightly the treatment given in IV 6 to include offects of shielding by the free electrons. As before (c.f. 4.59) the number of ions with effective charge z^{\prime} at a distance rl2 from a particular ion with effective charge $Z^{\prime \prime}$ is (8.15) $N_{Z}^{\prime}\left(r_{12}\right) d r=\frac{N_{Z}^{\prime}}{V}\left\{e^{-\varepsilon\left(r_{12}\right) / K T}\right\} 4 \pi r_{12}^{2} d r_{12}$

The mutual potential energy $\varepsilon\left(r_{12}\right)$ is not given, however, by the simple form (4.58), but instead by
(8.16)

$$
\begin{aligned}
& \varepsilon\left(r_{12}\right)=z^{\prime} z^{n} \frac{e^{2}}{a_{0}}\left\{\frac{a_{0}}{r_{12}}-\frac{3}{2} \frac{a_{0}}{a_{2}^{\prime \prime}}+\frac{r_{12}^{2}}{2 a_{0}^{2}}\left(\frac{a_{0}}{a_{z}^{n}}\right)^{3}\right\}^{r} r_{12} \leq a_{z^{n}} \\
& \varepsilon\left(r_{12}\right) \sim 0, r_{12}>a_{z^{\prime \prime}}
\end{aligned}
$$

The elective field due to the invading ion is
(8.17)

$$
\stackrel{\rightharpoonup}{\varepsilon}=\frac{z^{1} e}{a_{0}^{2}}\left\{\frac{a_{0}^{2}}{r_{12}^{2}}-\frac{r_{12}}{a_{0}}\left(\frac{a_{0}}{a_{z^{n}}^{n}}\right)^{3}\right\}
$$

dirooted radially. This field is not uniform as is the case in the laboratory Stark effect

However we may expand the field in spherical harmonics. Keeping only the leading term, we get the usual uniform field oase. The terms we neglect in the development are of the same order as effects not considered at all in this crude treatment, for example the resultant field due to all neighboring ions and fres electrons acting as an assemblage of dipoles, and indeed these neglected terms are of about the order of the term considered.

The electric fielc $\overrightarrow{\mathcal{E}}$ will split and shift the levels of the ion affected, causing a displacement of the absorption line of magnitude.

$$
\begin{equation*}
\Delta=\left(C_{n}+C_{n}^{\prime}\right)|\vec{\varepsilon}|+\left(C_{n}^{\prime}+C_{n}^{\prime}{ }_{n}^{\prime}\right)|\vec{\varepsilon}|^{2}+\ldots \tag{8.18}
\end{equation*}
$$

where the first term gives the linear Stark effect shift, the second term the quadratic, etc. The quantity $C_{n}|\overrightarrow{\mathcal{E}}|$ is the change in energy of the state n caused by the linear Stark effect of the fielc $|\overrightarrow{\mathcal{E}}|$; for example, in a one electron ion

$$
\begin{equation*}
C_{n}|\vec{k}|=-\frac{3}{2} \frac{a_{0}}{2^{n}} n k e|\vec{d}| k=0, \pm 1, \pm 2 \ldots \tag{8.19}
\end{equation*}
$$

For the higher levels of an ion where the Stark effect is most important, the livear Stark effect may be present. In this case the number of ions which suffer a shift between Δ and $\Delta+d h \nu i n$ a particular line can be approximated by
(8.20)

$$
\begin{aligned}
& x \exp \left\{-2 \bar{Z} \cdot Z^{n} \frac{R h c}{k^{\prime}}\left[\left(\frac{D}{C_{n n}}\right)^{\frac{1}{2}}-3 / 2\left(\frac{a_{0}}{a_{Z} n}\right)+\left(\frac{C_{n n^{\prime}}}{D}\right)\left(\frac{a_{0}}{a_{Z}}\right)^{3} \cdots\right\}\right.
\end{aligned}
$$

where
(8.21) $\quad C_{n n \prime}=\left(C_{n}+C_{n}{ }^{\prime}\right) Z^{\prime} \frac{e}{s_{0}^{2}}$

This asymptotic development is valid for large Δ, the region in which we are particularly interested.

We carnot use this expression directly to define a half intensity half breadth, for it diverges for no shift $\Delta=0$. However, we can compere the number of ions having a shift Δ_{2}
with the number having a shift Δ_{2} provided both shifts are fairly large. This gives, with neglect of the c reaction terms
(8.22) $\frac{N_{2} 2^{\prime \prime}\left(\Delta_{0}\right)}{N_{Z^{\prime \prime}}\left(\Delta_{4}\right)}=\left(\frac{\Delta_{1}}{\Delta_{2}}\right)^{5 / 2} \exp -\frac{2 Z^{\prime \prime} Z^{\prime \prime}}{\left(\mathrm{kT} / \mathrm{Rhc}_{0}\right)}\left[\left(\frac{\Delta_{2}}{\operatorname{cnn})^{\prime}}\right)^{1 / 2}-\left(\frac{\Delta_{1}^{1 / 2}}{\Delta_{n m^{\prime}}}\right)^{1 /}\right.$.

Now a great nut. r of ions will be at a distance $a_{2} n$. To the same approximation as (8.22) these will caume a shift
(8.23) $\quad \Delta_{1}=\left(c_{n}+c_{n},\right) \frac{\overline{z^{\prime} e}}{a_{z^{\prime \prime}}^{2}}=C n n^{\prime}\left(\frac{a_{0}}{a_{2}^{\prime \prime}}\right)^{2}$

We can define somewhat arbitrarily a half breadth Δ_{2}, by requiring that the ratio (8.22) be $\frac{1}{2}$ when Δ_{1} is given by (8.23). This gives
(8.24) $\frac{\Delta_{2}}{c_{n n}}=\frac{(\mathrm{kT} / \mathrm{Rhc})^{2}}{4 \mathrm{Zl}^{2} Z^{n 2}}\left(\ln 2+\frac{2 \bar{z}^{\prime} z^{\prime \prime}}{(\mathrm{kT} / \mathrm{Rhc})} \frac{a_{0}}{a_{z}^{\prime \prime}}+5 / 2 \ln \frac{\Delta_{1}}{\Delta_{2}}\right\}^{2}$

For the case of iron at $\mathrm{kT}=1000$ volts, $\rho=7.85 \mathrm{gm} / \mathrm{cm}^{3}$. This gives $\boldsymbol{\Delta}_{2} / \mathrm{c} \mathrm{nnl}=.162$ or by means of (8.21) and (8.19)
(8.25) $\Delta_{2}=.486\left(n k+n^{\prime} k^{\prime}\right)$ Rho
which corresponds to a field of intensity
(8.26) $|\varepsilon|=.162 \frac{z \cdot e}{a_{0}^{2}}$.

We will get the maximum shift and split from the unperturbed line when $\mathbb{E}=(n-1)$. $k^{\prime}=(n-1)$. For K electron lines this gives a half breadth in Rydberg units as follows

$$
\begin{array}{cr}
\text { Final state } & \Delta_{2} / \text { Rho } \\
n=2 & .972 \\
n=3 & 2.82 \\
n=4 & 5.83
\end{array}
$$

To test whether our approximation of the linear Stark shift is correct, we examine the splittings of the upper states of our ions. For example, we have the following deviations from the zero order energy.

Contribution of Additional Electrons to Collision Breadth

Shell of Additional Electron	$2 \times$ Contribution to Hialf Breadth Rhe
2	1.176
3	2.49
4	

State	Bnergies in $\frac{\text { Rhc }}{22}$		
	$n=2$	n $\quad 3$	n $\quad 4$
(1s) (ns) 1_{S}	.2318	.1053	.060
(1s) (ns) ${ }^{3} \mathrm{~S}$. 1875	.0937	. 0552
(1s) (np) ${ }^{1} P$	-2559	.1108	.0624
(2s) (np) ${ }^{3} \mathrm{p}$. 22257	.1068	.0607

For the $n=4$ state the largest splitting that affects the calculation is 286 Rhc and for $n=3$ it is 681 Rhe so we are quite safe in using a linear Stark effect.for these lines. For $n=2$, however, the split is l. 97 Rhe compared to a linear Stark effect shift of .972 Rhc, so we must use the formula for the quadratic Stark effect. This will give a result of aproximatelyO. Eho.
f. Treatment and effect of the Lines.

A glance at Tables D and E shows that only those lines with energies below 590 Rhe can affect the tranmission appreciably. Referring to Table H we find that three groups of lines - $1 \mathrm{~s} \rightarrow 2 p$ with 1 K electron, $1 s \rightarrow 2 p$ and $1 s \rightarrow 3 p$ with 2 K electrons have appreciable strength below this linit.

From the table of line breadths, Table J, we see that the lines will be sufficiently broad so that different components of a line caused by electrostatic and spin interactions will overlap. Furthermore most of the lines from the different ions will overlap. Beoause of this extensive overlapping the smearing out formula will apply. In its most refined form, this afroximation is gen by (5.74) which correctly treats the contribution of the lines outside of their groups. We have, therefore, for the line contribution

$$
\begin{equation*}
A \Lambda_{l}=\int_{0} \frac{W(u)}{D(u)} \frac{\sum E_{n k}}{1+\sum^{\pi} n k} d u, \tag{8.27}
\end{equation*}
$$

where
(8.28) $\sum_{k} E_{n k}=\sum_{k} \frac{N^{k} f_{k} q_{k}}{2 \Delta} S_{k} E_{k}$ (u).

Here N^{k} is the electron in ion occupation number, Table C, \hat{i}_{k} the one electron f number. q_{k} the probability that the final sta ${ }^{+} e$ of the transition is uncocupied and $2 \Delta_{k}$ the extent (in units of $h \nu / k T$) of the group of lines. The function g_{k} can be obtained from the nomographs, Fig. IIIa, and b, with
(8.29) $x=\frac{\mid u_{k}^{*}-u_{1} 1}{\Gamma_{k}} \quad y=\frac{\Delta_{k}}{\Gamma_{k}}$

For values of $x \gg y$, it is a valid approximation to use
(8.30) $\quad 5(x, y)=\frac{2}{\pi} \frac{y}{x^{2}-y^{2}+1}$.

The data for the three groups of lines is collected in the following table.
Table K:

Group	```Group I Is}->2 1K Electron```	```Group 2 Is }->2 2K electrons```	$\begin{aligned} & \text { Group } 3 \\ & \text { ls } \Rightarrow 3 p \\ & 2 \mathrm{~K} \text { Electrons } \end{aligned}$
u_{k}^{*} in Rhe	508.2	486.8	568.2
N^{k}	. .04494	1.9091	1.9091
f_{k}	.4162	.4162	. 07910
9_{k}	. 9564	. 9564	. 9847
$2 \Delta k$ in Rhe	6.02	9.02	22.09
Γ_{k} in Rhe	. 52	. 62	1.00

For the breadths of the lines we have used a strength weighted arerace collision plus natural breadth for the ions present. Doppler breadth is small enough to neglect. The Stark broadening, though larger than the collisior broadening has an exponential dispersion shape, and will not be important much outside the group limits. Within the group limits, it is the Stark breadth which effectively smears out the line strength. The formulae we have used are appropriate for a smeared out group of lines with the collistion shape dispersion outside the group limits. We may factor out the slowly varyine function W (u) - Then the integration (8.27) is done numerically in the neighborhood of the
center of the group. The region far from the group center can be done analytically, for then

$$
\frac{\sum E_{n k}}{1+\sum E_{n k}} \sim \sum E_{n k} \times \frac{\sum N^{k_{f_{k}} q_{k}}}{2 \Delta k S} \frac{2}{\pi} \frac{\Gamma_{k} \Delta_{k}}{\left|u_{k}^{*}-u\right|^{2}}
$$

and

$$
\int_{u_{1}}^{\infty} \frac{\sum E_{n k}}{1+\sum E_{n k}} d u \sim \frac{\sum N^{k_{f_{k}} q_{k}}}{2 \Delta k_{k}} \frac{2}{\pi} \frac{\Gamma_{k} \Delta k}{\left(u_{k}^{*}-u_{l} \mid\right)}
$$

The contribution (8.31), we term the long range tail effect.
The calculation gives a contribution to K_{l} of group 1 as \therefore.
2.. a. The final result for the opacity of iron may now given.

Table L

Appendix It Thermodynamic．Properties
The appendix continue the statioticel mechanical treatimat of chapter．IV． 4 ＊ Whitens the latter section merely derived the occupation suitors for the system，wis简 proceed to calculate，the thermodynamic fractions and the pressure．From the It it we the equation of state．

The electronic partition function of the nyetein is
（12．2）

$$
Q=\sum_{J} \Omega_{J} e^{-\beta E_{J}}
$$

where F_{y} ie given by (4.12) and Ω_{J} by (4.14) ．We can wewilte tit by virtue of $(4,18)$ an
（11．2）

$$
Q=e^{\alpha^{\prime}} \sum_{J} P_{J}=e^{x \alpha^{\prime \prime}} \sum_{J} P_{J}
$$

Carrying out the summation to first order in $V_{i, i}$ ，the iuteraotiona，int （aIs）

$$
\begin{aligned}
\ln Q & =x \alpha^{\prime \prime}-\sum_{i} c_{i} \ln q_{i} \\
& +\frac{\beta}{2} \sum_{i} V_{i i} c_{i} p_{i}\left(\bar{X}_{i}-c_{i} p_{i}-q_{i}\right)+\beta / 2 \sum Z V_{i j} c_{i} \phi_{i}\left(x_{j}-c_{j} p_{j}\right)
\end{aligned}
$$

Wo introduce the wame values for the arbitrary parameters \bar{M}_{j} as da ld ide the treatment of cocupation number：（ 4.21 ）．These were selected to make the first eccles term in the occupation numbers（4．18）vanish．Such estotot then ane occupation mimers identical in form to an independent electron treatment and ageteipg with
 （ $4 x, 4$ ）．

$$
\begin{gathered}
H=-k T x \alpha^{\prime \prime}+k T \sum_{i} C_{i} \ln q_{i}-1 / 2 \sum_{i} V_{i i} M_{i}^{2}\left(1-1 / c_{i}\right) \\
-1 / 2 \sum_{i}^{\prime} \sum_{j \neq i}^{\prime} V_{i j} M_{i} M_{j}
\end{gathered}
$$

Frodo this equation we find the chemical potential

$$
\left.\mu=\frac{\partial A}{\partial m}\right)_{V, T}=-b \tau \alpha^{\prime \prime}
$$

By differentiation we can now get the other thermodynamic functions. It is easier In the case of the anergy, however, to return to our general treatment. The - nervy is
(AEQ) $\quad E=Z_{J} E_{J} P_{J}$

The energy If from (4.12) can be written as
(1I.5)

$$
E_{J}=\sum_{i} M_{J i}\left(E_{i}^{0}+E_{J_{i}}^{\prime}\right)
$$

where
(AI.6) $E_{i}^{0}=\varepsilon_{i}+1 / 2 \sum_{j \neq i}^{\gamma} \bar{M}_{j} V_{i j}+1 / 2\left(\bar{n}_{i}-1\right) V_{i i}$
(AI.7) $E_{J i}^{\prime}=1 / 2 \sum_{j \neq i}\left(H_{j j}-\bar{M}_{j}\right) V_{i j}+1 / 2\left(M_{J i}-M_{i}\right) V_{i i}$

Then in (AI. the summation order may be inverted, giving (4t.E)

$$
E=\sum_{i}^{\prime} E_{i} \sum_{J} M_{J i} P_{J}+\sum_{i} \sum_{J} M_{J i} E_{J i}^{\prime} P_{J}
$$

We recognise in the fIrst term the quantity $M_{i}=\sum_{j} M_{S i} P_{j}$ of $(4,16)$. The second ter extern parts all of when oceurred in the evaluative of the partition function, The result of the operations on (AI.8) is
(AI.9) $E=\sum_{i} E_{i}^{0} r_{i} p_{i}\left\{_{0}^{0} 1+\beta / 2 q_{i}\left\{V_{i}\left[\left(\bar{H}_{i}-1\right)-2\left(c_{i}-1\right) \phi_{i}\right]\right.\right.$

$$
\left.\left.+\sum_{j \neq i} V_{i j} \bar{M}_{j}-\sum_{j \neq i} V_{j i} \epsilon_{j} P_{j}\right\}\right\}
$$

$$
+\sum_{i}\left\{\frac{1}{2} V_{i i} r_{i} p_{i}\left(C_{i} p_{i}-\bar{n}_{i}+q_{i}\right)+\sum_{j \neq i} 1 / 2 V_{i j} C_{i} p_{i}\left(c_{i} p_{j}-\bar{n}_{j}\right)\right\}
$$

Again introducing the values of \bar{M}_{j} from (4.21) and E_{i}° from (A I.6) this reduces to (AI.10) $\quad E=\sum_{i} n_{i} \overline{\bar{c}}_{i}$

$$
\overline{\bar{\varepsilon}}_{i}=\varepsilon_{i}+n_{i}\left(1-\frac{1}{r_{i}}\right) \frac{v_{i i}}{2}+\sum_{i f i} n_{j} V_{i j}
$$

We see that for purposes of calculating the total gergy of the system we can assume that sach electron has the energy $\overline{\bar{\varepsilon}}_{i}$ and that the energy of the systom is just the sum of these anergies of the individual elsotrons. We should contrast this energy with ε_{i} of (4.22). The latter gives the ionization energy of the i th electron, and the sum of the ionization energies is not the total energy of the systom.

The entropy may now be found from (AI.4) and (AI.10) by the equation $S=(E-\Lambda) / T$. We obtain
(AI.11) $S=k n \alpha-k \sum_{i} c_{i} \ln q_{i}+\frac{1}{T} \sum_{i} n_{i} \bar{\xi}_{i}$,
where
(AI.12) $z_{i} \varepsilon_{i}+n_{i}\left(1-\frac{1}{c_{i}}\right) v_{i i}+\sum_{j \neq i} n_{j} V_{i j}$
is the ionization energy (4.22).
We nov matura to (AI.10) and introduce the same type of approximations whioh lead to (4.34). Firgt broak up the energy
(AI.13)

$$
\tilde{E}=\sum_{i} M_{i} \overline{\bar{\varepsilon}}_{i}=\sum_{Z} N_{Z} \sum_{i}^{\prime} \frac{M_{i} \hat{z}^{2}}{N_{4}} \overline{\bar{\varepsilon}}_{i z}
$$

into sums of energy of average type ions. We now compute $\overline{\bar{\varepsilon}}_{i z}$.
For a bound electron, we have the following contributions.

1) Rinetic energy plus full interaction with the nucleus $=\varepsilon_{i z}^{0}$,
2) $1 / 2$ interaction with all ouher bounds $=$

$$
-1 / 2 \frac{d \varepsilon_{i}^{0}}{d z}\left\{\sum_{j \neq i} \frac{N_{j z}}{N_{z}} \sigma_{i, j}+\frac{M_{i z}}{N_{z}}\left(1-\frac{1}{c_{i z}}\right) \sigma_{i, i}\right\},
$$

3) $1 / 2$ intergction with frees $=1 / 2 \frac{z^{\prime} e^{2}}{2 a_{z^{\prime}}}\left\{3-\left(\frac{\left.\overline{a_{z^{\prime}}}\right)^{2}}{}{ }^{i}\right\}\right.$.

For a free electron, we get

1) Kinetic energy $=\varepsilon_{f}$
2) Full interqetion with nucleus $=\quad-3 \sum_{z} \frac{N_{z}}{M_{f}} \frac{z^{\prime} \frac{z}{z} e^{2}}{2 a_{z}}$
$\begin{aligned} & \text { 3) } 1 / 2 \text { interaction with bounds } \\ & \text { (considered at the nucleus) }\end{aligned} \quad=\frac{3}{2} \sum_{z}^{1} \frac{N_{z}}{M_{f}} Z^{\prime}\left(z-z^{\prime}\right) \frac{e^{2}}{2 a_{z}}$,
3) $1 / 2$ interaction with other frees $=\frac{6}{5} \sum_{2} \frac{N_{z}}{M_{f}} \frac{z^{\prime} e^{2}}{2 a_{z^{\prime}}}$,

Now the number of bound electrons attached to the average type ion of nucleus Z is $M_{b Z} / N_{2}=\left(Z-Z^{\prime}\right)$

- Using these relations, we gather all the terms contributing to (AI.13). It is a good approximation to consider the bound electrons at the nucleus in computing the interaction with the frees - hence $\mathrm{r}^{2}{ }^{i}$ is put equal to zero. We have finally
(AI.14) $E=\sum_{z} N_{z}\left\{_{0}^{0} \sum_{i} \frac{H_{i z}}{N_{z}} \varepsilon_{i}^{0}\left(\bar{z}_{i}\right)+\frac{e^{2}}{2 q_{z}}\left\{3 / 2 z^{\prime}\left(z-z^{\prime}\right)-3 z z^{\prime}+3 / 2 z^{\prime}\left(z-z^{\prime}\right)\right.\right.$

$$
\left.\left.+6 / 5 z^{\prime 2}\right\}\right\}_{0}^{\infty}+\int_{0}^{\infty} \varepsilon_{f} M\left(\varepsilon_{f}\right) d \varepsilon_{f}
$$

where
(AI.15)

$$
\vec{Z}_{i}=Z-\frac{1}{2} \sum_{j \neq i} \frac{M_{j Z}}{N_{z}} \sigma_{i j j}-1 / 2 \frac{M_{i z}}{N_{z}}\left(1-\frac{1}{C_{i z}}\right) \sigma_{i j i}
$$

We can rewrite (AI.14) in a way goon to prove significant.
(AI.16) $E=E_{b}+P \cdot E+\left(\dot{K} \cdot E_{\cdot}\right)_{f}$,
where
(AI.17)

$$
E_{b}=\sum_{Z} N_{z} \sum_{i} \frac{H_{i}}{N_{z}} \varepsilon_{i}^{0}\left(\bar{z}_{i}\right)
$$

is the energy of the bound electrons excluding interactions with the frees
(AI. 17)

$$
P . E=-\frac{9}{5} \sum_{2} N_{z} \frac{z^{\prime} e^{2}}{2 a_{z^{\prime}}^{\prime}}
$$

is a potential energy terms, and
(AI.18)

$$
\begin{aligned}
(K . E .)_{f} & =\int_{0}^{\infty} \varepsilon_{f} M\left(\varepsilon_{f}\right) d \varepsilon_{f} \\
& =3 / 2 M_{f} k T\left\{1+\frac{5}{4} \frac{k T}{M c^{2}}-\frac{5}{4}\left(\frac{k T c^{2}}{m} \cdots\right\}\left\{1+\frac{e^{-\alpha^{+}}}{25 / 2}\left(1-\frac{15}{16} \frac{k^{m}}{m c^{2}} \cdots\right) \cdots\right\}\right.
\end{aligned}
$$

is the kinetic energy of the free electrons corrected for degeneracy and relativity.
The pressure may be found from the Helmholtz free energy A, since $\left.P=-\frac{D A}{\delta V}\right)_{T}$ This complicated computation can be avoided to the approximation we are working here, since all the forces are due to the coulomb interactions. (We have neglected exchange energies). Then we may use the virial theorem to find the pressure. In non relativistic theory this gives

$$
\begin{equation*}
P V=2 / 3 K . E . \quad+1 / 3 \text { Potential Energy } . \tag{AI.19}
\end{equation*}
$$

In relativistic theory as well ae non-relativistic, the bound electrons include the proper balance of kinetic and potential energy to make the contribution to the pressure zero. The kinetic of the free electrons, hoverer, does not cont ribute the full $2 / 3 \mathbb{K}_{0} \mathbb{E}_{0}$ to the pressure bouse of the relativity correction. This is knows to five exactly for the non-degenerate case, and we merely beep the additional degeneracy corrections. Se, Anally we get (AI.20) $P V=N_{+} k T\left\{1+E^{-\alpha^{5 / 2}}\left(1-\frac{15}{16} \frac{k T}{2^{5 / 2}}\right)\right\}-\frac{3}{5} \sum_{2} N_{z} \frac{L^{2} e^{2}}{2 Q_{z}}$.

Thus far we have not considered the nuclease notion. This contribution has been wor'sod out in Chapter IV, section 6. We get the following additive contributions to the energy and the pressure in the two limiting oases considered:

Freo Nucloi

Kinetic Energy

Potential Bnergy
Total Energy
(PV) Muolei
(3/2) Mat
0
(3/2) Mas
NKP

Hermonic Vibrationg $(3 / 2)$ Nater
($3 / 2$) natry
3 mel
($3 / 2$) NKT

The nuolear contribution to the energy and the pressure is so smiall (since $N \ll M_{f}$) that we need not bother refining our treafinent of them further. We can use a rough oriterion that when $r / a_{z^{\prime}}$ of (4.54) is lese than $1 / 3$ we oonsider the nuciel to exert pure hamonio vibrations, wile if $\bar{r} / a_{2},>1 / 3$ we shall oonsider the nuclei as free. Referring to Fig. 2, wo see that $r / a_{z^{\prime}}=1 / 3$ when $s=\frac{z^{\prime} e}{\sqrt{2 k T a_{z}}}=3.4$. For sroaller values of s should use the free nuolel approximation, while for larger values of s hould use the approxination of hamonic vibrations.

Appendix II

 approach. Within each ionic polyhedron, assume we have an lectrostifidu What h \& . Then the density of electrons in phase space will be

$$
\text { (AII.1) } \left.n(\vec{g}, \vec{p})=\frac{2}{h^{3}} \operatorname{expf}-\alpha-\frac{p^{2}}{2 m k T}-\frac{e q}{k T}\right\} \sim \frac{2}{h^{3}}\left(\operatorname{axp}\left(-\alpha-\frac{p}{2 m k T}\right)\right\} \text { whisk }
$$

 This gives a charge density $\rho=-e m(\vec{q})$, and the potentigin wide satisfy Poisson's equation with this density. Since have used the stitidut
 potential wis oh replaces (4.31) is
(AII.2)

$$
\mathscr{f}=\frac{z^{\prime} \epsilon}{r}\left[\frac{\sinh x\left(1-4 / a_{2^{\prime}}\right)-x \cosh \times\left(1-\mu / a_{2} \prime\right)}{\sinh x-x \cosh x}\right]-\frac{k T}{e},
$$

where x is a root of the transcendental equation
(AIT. $) \quad \cos h x-\frac{\sinh x}{x}=\lambda$,
(AIT) $\quad \lambda=z^{\prime} e^{2} /\left(a_{2}, k T\right)$.
Exapading in powers of
(AII.5)

$$
\begin{aligned}
& x^{2}=3 \lambda-0.9 \lambda^{2}+.44358 \lambda^{3}+\cdots \\
& \frac{1}{x^{2}}=\frac{1}{5 \lambda}\left[1+0.3 \lambda-05786 \lambda^{2}+\cdots\right]
\end{aligned}
$$

The quantity which replaces $-3 / 5 \cdot \frac{z_{1} e^{2}}{2 a_{2}}$ in (4.32) is $\frac{3 z^{4} e^{2}}{A_{2}, x^{2}}$, it and on putting in our expansion for $1 / x^{2}$ we get
(AII.6)

$$
\varepsilon_{f}-\varepsilon_{f}-\frac{1}{v} \sum_{z} N_{z} \frac{1 \pi}{3} a_{z^{3}}^{3} \frac{z^{\prime} e^{2}}{2 a_{z^{\prime}}}(3 / 51-1+r \lambda)
$$

The radii a_{z}, must be chosen so that (4.24) is satisfied* Howeyax 20 longer appropriate to usn (4.25), for the olegtwhen distribution is not ryafolige

Instead we magi be sure that the free energy of the electrons is the sam throughout the system. This is so in the quantity,
(AII.7) $Q=\frac{k T}{4 \pi e^{2} a_{2}^{2}} x^{2}, \frac{3 \hbar^{\prime} t^{2}}{4 \pi a_{2}^{\prime}}\left[1-.3 \lambda+.443=8 \lambda^{2}\right]$,
is independent of 2 . The a_{z}, then are chosen to satisfy (4.24) and (4.25).
In most cases the effect of nonuniform froe electron distribution may be disregarded. The criterion for this is
(AII.3)

$$
\lambda=\frac{z^{\prime} e^{2}}{a_{z} \cdot k T}<1
$$

Referring to Chapter IV, section 5 , we find that the criterion for the nuclei to be considered as performing harmonic vibrations in a lattice is $s=\frac{z^{\prime} e}{\sqrt{2 k T a} z^{\prime}}>3.4$ Covinalng this with (AII, 8) we find the condition for uniformity in the diatribuion of free electrons, simultaneously with a lattice structure for the nuclei is

AII.9) $\quad \frac{23}{z^{\prime}}<\frac{z^{\prime} e^{2}}{k T a_{2}}<1$.

This an never be true for the very light nuclei, but is fulfilled by the hoariest nuclei. This is another reason for the qualitative difference between the opacity of high \geqslant and low Z elements.

Appendix III: Formulae and Tables of Gaunt Factors

This Appendix sumarizes the formulae and numerioal results for the boundfree Gaunt factors applicable to a non-relativistic electron in a Coulomb field. Only the leading dipole contribution is considered, so that these Gaunt factors are the appropriate analogue of the electron numbers recorded in Table I. Most of the results and computations are the work of Dr. Boris Jacobsohn.

The Gaunt factor is defined by (2.22).
(AIII.1) $E_{b f}=\frac{3 \sqrt{3} \pi}{2^{4}} m\left(\frac{h v}{I_{n}}\right)^{2} \nu \frac{d f B f}{d \nu}$.
The ionization potential I_{n} is, however
(AIII.2) $I_{n}=\frac{2^{2}}{n^{2}}$ Rhe.
We can also express the energy of the free electron after ionization by a quantum number k, definec so that
(AIII.3) $\varepsilon_{f}=\frac{z^{2} R h c}{k^{2}}$ 。
We then have for the frequency
(AIII.4) $h \nu=I_{n}+\varepsilon_{f}$,
whence
(AIII.5) $\quad \nu \frac{d f}{d \nu}=\nu \frac{d k}{d \nu} \frac{d f}{d k}=\frac{k^{3}}{2}\left[\frac{1}{n^{2}}+\frac{1}{k^{2}}\right] \frac{d f}{d k}$.
so that the Gaunt factor reduces to
(AIII.6) $G_{n k}=\frac{3 \sqrt{3} \pi}{2^{5}} \frac{k^{3}}{n}\left[1+\frac{n^{2}}{k^{2}}\right]^{3}(-1) \frac{d f}{d k}$.
The f numbers for bound-bound transitions have been computed by many previous workers. Since it is possible to find the bound-free $\frac{d f}{d k}$ rather simply from the appropriate bound-bound f number, we have included a list of formulas, Table I, for the latter. The procedure to be used in going from $f_{n^{\prime} \ell^{\prime} \rightarrow n_{\ell}}$ to $\frac{d f}{d k} n^{\prime} \ell^{i} \rightarrow k l$ is to

illustrace in the simplest case, if
(AIII.7) $f_{1 s} \rightarrow n p=\frac{2^{3}}{3} \frac{n^{5}}{\left(n^{2}-1\right)^{4}}\left(\frac{n-1}{n+1}\right)^{2 n}$,
then we get

$$
\frac{d r_{1 s}+k p}{d k}=\frac{i}{1-e^{-2} \pi k} \quad \frac{2^{8}}{3} \frac{(i k)^{5}}{\left(k^{2}+1\right)^{4}}\left(\frac{i k-1}{i k+1}\right)^{2 i k}
$$

or
(AII.8) $\frac{\mathrm{df}_{1 s}+\mathrm{p}}{\mathrm{dk}}=-\frac{2^{8}}{3} \frac{\mathrm{k}^{5}}{\left(\mathrm{k}^{2}+1\right)^{4}} \frac{\exp \left(-\operatorname{skct}^{-2} \mathrm{k}\right)}{1-\exp (-2 \pi k)}$.
Substitution in AIII. 6 gives the appropriate boundefree Gaunt factor. The resulting formulae for this and other cases are sumarized in Table VIl. Numerical values ar. $\begin{gathered}\text { recorded in Table VIII. For } n=1,2,3,4 \text {, these values wero calculated from }\end{gathered}$ the formulae of pable VII. For $\mathrm{n} \mathbf{\Xi 0}$ it is possible to obtain the asymptotio expression prosented in Taole VII for the Gaunt factor, and the values are based upon this expression except for that at $k=1$ which was calculated exactly. The asymptotic formula is good to $.08 \%$ at $k=1$, and is even better for larger k. Valuas of the Gaunt factor for $n=5,6,7,8,9,10$ wero found by graphical interPolation. In most instances a plot of $g_{\pi} \rightarrow \mathrm{k}$ vS. $1 / \mathrm{n}^{2}$ for fixed k gave a smooth curve whion did not deviate markedly fron a straitht line, permitting accurate interpolation. Fic. I presents graphically the values for the Gaunt factor averaged over a conplete shell.

1 Venzel F Pekeris op. cit.

Table I
Formulae for Dipole Oscillator Strengths
For Coulomb Field (Non-Relativistic)
Transition
Electron Number
Is $\rightarrow \mathrm{np}$

$$
f=\frac{2^{8}}{3} \frac{n^{5}}{\left(n^{2}-1\right)^{4}} \frac{(n-1)^{2 n}}{(n+1)^{2 n}}
$$

$2 s \rightarrow n p$

$$
f=\frac{2^{15}}{8} n^{5} \frac{\left(n^{2}-1\right)}{\left(n^{2}-4\right)^{5}} \quad\left(\frac{n-2}{n+2}\right)^{2 n}
$$

$2 p \rightarrow n s$
$f=\frac{2^{13}}{3^{3}} \frac{n^{7}}{\left(n^{2}-4\right)^{5}}\left(\frac{n-2}{n+2}\right)^{2 n}$
$2 p \rightarrow n d$

$$
f=\frac{2^{18}}{3^{3}} \frac{n^{7}\left(n^{2}-1\right)}{\left(n^{4}-4\right)^{6}}\left(\frac{n-2}{n+2}\right)^{2 n}
$$

$3 s \rightarrow \mathrm{np}$

$$
f=2^{8} 3^{4} n^{5}\left(n^{2}-1\right) \frac{\left(7 n^{2}-27\right)^{2}}{\left(n^{2}-9\right)^{7}} \frac{(n-3)^{2 n}}{(n+3)^{2 n}}
$$

$3 p \rightarrow n s$

$$
f=2^{11} 3^{3} n^{7} \frac{\left(n^{2}-3\right)^{3}}{\left(n^{2}-9\right)^{7}}\left(\frac{n-3}{n+3}\right)^{2 n}
$$

$3 p \rightarrow n d$
$f=2^{12} 3^{5} n^{7} \frac{\left(n^{2}-1\right)\left(n^{2}-4\right)}{\left(n^{2}-9\right)^{7}}\left(\frac{n-3}{n+3}\right)^{2 n}$
$3 \mathrm{~d} \rightarrow \mathrm{np}$

$$
f=\frac{2^{12} 3^{4}}{5^{2}} \frac{n^{9}\left(n^{2}-1\right)}{\left(n^{2}-9\right)^{7}}\left(\frac{n-3}{n+3}\right)^{2 n}
$$

$3 \mathrm{~d} \rightarrow \mathrm{nf}$

$$
f=\frac{2^{13} 3^{\prime \prime}}{5^{2}} \frac{n^{9}\left(n^{2}-4\right)\left(n^{2}-1\right)}{\left(n^{2}-9\right)^{8}}\left(\frac{n-3}{n+3}\right)^{2 n}
$$

TAPTE I 8
DIPOIE CGCILLATOR STRENGMY: (NON-RELATIVISTIC)
FOR COULOMB FIELD

n	$\mathrm{f}_{1 \mathrm{~s} \rightarrow \mathrm{np}}$	$\mathrm{f}_{2 \mathrm{~s} \rightarrow \mathrm{np}}$	$\mathrm{f}_{2 \mathrm{p} \rightarrow \mathrm{ns}}$	${ }^{\mathrm{f}} 2 \mathrm{p} \rightarrow \mathrm{nd}$	$\mathrm{f}_{3 s \rightarrow \mathrm{np}}$	$\int_{3 p \rightarrow n s}$	$f_{3 p \rightarrow n d}$	$\mathrm{f}_{3 \mathrm{~d} \rightarrow \mathrm{np}}$	$f_{3 \mathrm{~d}} \rightarrow \mathrm{nf}$
1	0	---	-. 13873	--	---	-. 026367	---	---	---
2	. 41620	0	0	---	-. 040769	. .14495	---	-. 41693	---
3	. 079102	. 43488	.013590	. 69580	0	0	0	0	---
4	. 028991	. 20277	. 003044	. 12181	.48472	. 032250	-618285	.010957	1.01432
5	. 012938	. 04193	. 001213	. 04437	.12102	70428×10^{-8}	. 139235	.002210	. 15649
- 6	.007799	. 02163	6.180×10^{-4}	. 02163	.051394	3.032	.056136	8.420×10^{-4}	. 05388
7	. 004814	. 01274	3.613	. 01233	. 027369	1.579	. 029009	4.213	. 02559
8	. 003183	.00818	2.309	. 007757	. 016549	-941	. 017210	2.448	. 01442
9	.002216	-00558	1.570	. 005221	. 010863	. 612	. 011153	1.564	. 00903
10	.001605	.00399	1.119×10^{-4}	*003693	.007554	$.218 \times 10^{-8}$.003972	$.552 \times 10^{-4}$. 00314
$\mathrm{n}>10$	$1.6 \mathrm{n}^{-3}$	$3.7 \mathrm{n}^{-3}$	$0.1 \mathrm{n}^{-3}$	$3.3 \mathrm{n}^{-3}$	$6.2 \mathrm{n}^{-3}$. $5 \mathrm{n}^{-3}$	$6.1 \mathrm{n}^{-8}$	$.07 \mathrm{n}^{-3}$	$4.4 n^{-3}$
Discrete Speotrum . 5641 Coatinuum 4359									
		. 638	-. 119	. 923	. 707	-. 121	.904	-. 402	1.302
		. 362	. 008	. 293	. 293	. 010	207.	.002	. 098
		1.000	-.0111	1.111	1.000	-. 111	1.111	-. 400	1.400

TABLE IX
NON-RELATIVISTIC SCNHEHING DONSTANTS

$$
\sigma_{i j}=\frac{F_{0}\left(i_{2} j\right)}{d \varepsilon_{i}}
$$

${ }^{1}$	1s	25	2 p	35	3p	3d
1 s	-6250	-8395	.9712	-8954	.9795	. 9992
25	-2099	- 5016	-6484	$\bigcirc 7570$.8101	-9322
2 p	-2428	-6484	-7266	.7808	-8455	. 9570
35	. 0995	. 3365	. 3470	.5977	.6191	. 6582
35	. 1088	-3600	-3758	.6191	. 6464	-6924
3 d	.1110	. 4143	. 4253	-6582	. 6924	.7744

TABLE III
RELATIVISTIC ENERGY LEVELS FOR BLECTRON IN COULOKB FISLD
Values tabulated are $-\frac{\varepsilon_{n_{0} j}^{0}(z)}{2 h c}$

2	$\sum_{j=\frac{1}{2}}^{n_{2}}$	$\begin{aligned} & n=2 \\ & j=\frac{2}{2} \end{aligned}$	$\begin{aligned} & n=2 \\ & j=3 / 2 \end{aligned}$	$\begin{aligned} & n=3 \\ & j=\frac{1}{2} \end{aligned}$	$\begin{aligned} & n=3 \\ & j=3 / 2 \end{aligned}$	$\begin{aligned} & n=3 \\ & j=5 / 2 \end{aligned}$	ne4	$n=5$	$\mathrm{n}=6$	$n=7$	$n=8$	ne9	$n=10$
10	100.13	25.042	25:0083	11.1259	11.1160	11.1127	6.2521	4.0009	2.7782	2.0411	1.5626	1:2347	1.0001
11	121.20	30.3111	30.2622	13.4662	13.4516	13.4468	7.5655	4.8413	3.3617	2.4698	1.8908	1.4940	1.2101
12	144.28	36.087	36.0173	16.0308	16.0102	16.0034	9.0043	5.7619	4.0009	2.9393	2.2503	1.7780	1.4401
13	169.38	42.3694	42.2738	18.8202	18.7918	18.7825	10.5684	6.7626	4.6957	3.4497	2.6411	2.0867	1.5901
14	196.51	49.161	49.0320	21.8349	21.7967	21.7841	12.2580	7.8434	5.4462	4.0009	3.0631	2.4201	1.9602
15	225.68	56.4619	56.2922	25.0753	25.0250	25.0083	14.0730	9.0045	6.2523	4.5931	3.5164	2.7732	2.2503
16	256.98	64.274	64.0546	28.5420	28.4768	28.4552	16.0136	10.2459	7.1141	5.2261	4.0010	3.1611	2.5604
17	290.12	72.6002	72.3196	32.2355	32.1523	32.1248	18.0798	11.5675	8.0316	5.9000	4.5169	3.5687	2.8905
18	325.41	81.441	81.0875	36.1565	36.0518	36.0172	20.2718	12.9694	9.0047	6.6148	5.0640	4.0010	3.2406
19	362.75	90.7975	90.3589	40.3056	40.1755	40.1325	22.5896	14.4517	10.0336	7.3705	5.6425	4.4530	3.6108
20	402.15	100.67	100.134	44.6834	44.5235	44.4707	25.0333	16.0143	11.1183	8.1672	6.2523	4.9398	4.0010
21	443.62	111.059	110.413	49.2908	49.0961	49.0320	27.6030	17.6574	12:2587	9:0048	6.8934	5.4463	4.4112
22	487.16	121:99	121.196	54.1284	53.8936	53.8163	30:2987	19.3810	13.4549	9.8833	7.5659	5.9775	4.3414
23	532.78	133.431	132.484	59.1971	58.9162	58.8238	33.1207	21.1851	14.7069	10,8028	8.2697	6.5335	5.2917
24	580.48	145.40	144.277	64.4978	64.1642	64.0546	36.0690	23.0697	16.0148	11.7632	9:0048	7.1142	5.7620
25	630.28	157.903	156.576	70.0313	69.5378	69.5087	39.1437	25.0350	17.3786	12.7646	9.7713	7.7197	6.2524
26	682.19	170.94	169.382	75.7985	75.3374	75.1863	42.3450	27.0809	18.7982	13.8071	10.5692	8.3499	6.7628
27	736.21	184.506	182.694	81.3005	81.2633	81.0875	45.6730	29.2076	20.2738	14.8906	11.3984	9.0049	7.2933
28	792.36	198.51	196.514	88.0382	87.4158	87.2123	49.1278	31.4150	21.8052	16.0150	12.2590	9.5847	7.3438
29	850.64	213.251	210.842	94.5127	93.7953	93.5608	52.7096	33.7033	23.3927	17.1806	13.1510	10.3893	8.4144
30	911.05	228.46	225.678	101.225	100.408	100.133	56.4185	36.0725	25.0362	18.3872	14.0743	11.1186	9.0050

Values tabulated are $-\frac{\mathcal{E}_{n_{0} j^{\prime}}^{0}}{R h c}$

2	$\begin{aligned} & n=1 \\ & j \geq 1 / 2 \end{aligned}$	$\begin{aligned} & n=2 \\ & j=1 / 2 \end{aligned}$	$\begin{aligned} & n=2 \\ & j=3 / 2 \end{aligned}$	$\begin{aligned} & n=3 \\ & j=1 / 2 \end{aligned}$	$\begin{aligned} & n=3 \\ & j=3 / 2 \\ & \hline \end{aligned}$	$\begin{aligned} & n=3 \\ & j=5 / 2 \end{aligned}$	$\begin{aligned} & n=1 \\ & j=1 / 2 \end{aligned}$	$\begin{aligned} & n=1 \\ & j=3 / 2 \end{aligned}$	$\begin{aligned} & n=1 \\ & i=5 / 2 \end{aligned}$	$\begin{aligned} & n=4 \\ & j=7 / 2 \end{aligned}$	$\mathrm{n}=5$	$n=6$	$n=7$	$n=8$	$n=9$	$n=10$
60	3791.2	960.28	911:07	421.15	406:56	402.15	234:57	228:46	226.59	225.59	145:2	100.5	73.8	56.4	44.6	36.1
61	3925.S	994.54	942:01	436.12	420.46	415.75	242.92	$236: 26$	234.27	233.29	150.0	104:0	76.3	58.3	46.1	37.3
62	4063.4	1030.0	973.53	451.40	434.50	429.57	251.24	244.20	242.07	241.22	155.1	107.4	78.8	60.3	47.5	38.5
63	4203.9	1066.1	1005.6	466.99	448.99	443.52	259.82	252.28	250.00	248.38	160.2	111.0	81.4	62.2	49.1	39.8
54	4347.5	1103.1	1038.3	482.89	463.53	457.91	268.57	260.50	258.06	256.86	165.3	114.5	84.0	64.3	50.7	41.1
65	4493.9	1140.8	1071.5	499.12	478.52	472.42	277.49	268.95	266.25	264.98	170.5	118.2	86.7	66.3	52.3	42.4
66	4643.0	1179.2	1105.2	515.56	493.56	487.16	286.57	277.34	274.57	273.23	175.9	121:8	89.4	68.3	54.0	43.7
67	4795.1	1218.5	1139.5	532:54	509.05	502.14	295.83	285.97	283.03	281.61	181.4	$125: 5$	92.1	70.4	55.6	45.0
68	4950.3	1258.5	1174.3	549.76	524.59	517.34	305.26	294.74	291.62	290.11	186.9	129.4	94.9	72.5	57.3	46.4
69	5108.4	1299.5	1209.7	567.31	540.57	532.79	314.86	303.56	300.35	298.73	192.4	133.3	97.7	74.7	59.0	47.3
70	5269.5	1341.4	1245.6	585.21	556.71	548.45	324.55	312.71	309.21	307.49	198.2	137.2	100.5	76.9	60.7	49.1
71	5434.0	1384.0	1282.1	603.45	573.11	564.34	334.52	321.91	318.20	316.38	203.9	141.1	103.5	79.1 81.4	62.5	50.6
72	5601.5	1427.5	1319.2	622.03	589.76	580.44	344.77 355	331.24	327.31 336.54	325.40 334.55	209.8 215.7	145.2 149.3	106.5 109.5	81.4 83.7	64.2	52.0 53.5
73	5772.3	1471.9	1356.8	640.97	606.57	596.83	355.09	340.72 350.35	336.54 345.91	334.55 343.82	215.7 221.7	149.3 153.4	109.5 112.5	83.7 86.0	66.1 67.9	53.5 54.9
74	5946.5	, 1517.3	1394.9	660.29	623.83	613.45	365.51	350.35	345.91	343.52	221.7	153.4	112.5	86.0	67.9	54.9
75	6124.1	1563.5	1433.5	679.98	641.26	630.29	376.33	360.12	355.43	353.22	227.8	157.7	115.5	88.4	69.7	56.4
76	6305.1	1610.8	1472.9	700.05	658.94	647.35	387.24	370.04	365.11	362.76	234.0	161.9	118.7	90.7	71.5	58.0
77	6489.5	1659.0	1512.7	720.49	676.88	664.55	398.34	380.10	374.91	372.42	240.3	166.3	121.9	93.2	73.5	59.5
78	6677.6	1708.2	1553.1	741.31	695:09	$682: 19$	409.55	390.30	384.34	- 382.20	246.7	170.5	125.1	95.5	75.5	61.1
79	6869.0	1758.5	1594.1	762.51	713.57	699.97	421.15	400.54	394.89	392.11	253.1	175.1	128.3	98.1	77.4	62.7
80	7064.3	1809.7	1635.6	784.18	732.27	718.00	432:86	411.15	405.07	402. 14	259.7	179.6	131.6	100.5	79.4	64.3
81	7263.1	1862.0	1677:7	806.18	751.28	736.23	444:75	421:30	415.41	412.31	266.3	184.2	135.0	103.2	81.4	65.9
82	7465.8	1915.4	1720:4	828.62	770.55	754.70	$456 \cdot 87$	432.50	425.88	422.51	273.0	188.3	141.8	108.3	85.5	69.2
83	7672.5	1969.9	1763.5	851.52	790.08	773.40	469.21	443.55	436.47	433.06	279.8	193.5	141.8 145.2	108.3	87.5	69.2
84	7883.1	2025.5	1807.4	874.86	809.37	792.33	481.77	454.55	447.18	443.64	286.7	198.2	145.2	111.0	87.5	70.9
85	8097.8	2082.3	1851.8	898.51	829.94	811.53	494.55	465:90	458.05	454.33	293.7	203.0	148.3	113.7	89.7	72.5
. 86	8316.5	2140.2	1896.9	922:79	850.29	830.98	507:54	477:30	469.07	$465: 13$	300.7	207.9	152.3	116.4	91.8	74.3
87	8539.7	2199.3	1942:4	947:46	870.87	850.53	520:76	488.79	480.19	476.96	$307 \cdot 9$	212.8	155.9 159.5	119.1	94.0	77.8
88	8767.0	$2259 \cdot 7$	1988.6	972.53	891.76	870.54	534.21	500.44	491.46	487.18	315.2	217.8	159.5	121.9	96.2 98.4	77.8 79.6
89	8998.7	2321.5	2035.3	998.21	912.94	890.57	547.92	$512: 31$	502.84	498.37	322.5	222.5	163.2	124.7	98.4	79.6
90	9235.0	2384.4	2082.7	1024.4	934.32	911.03	561.85	524.33	514.41	509.58	329.9	227:9	166.9	127.5	100.6	81.4
91	9476.1	2448.9	2130.5	1051:0	956.07	931.55	576.05	536.50	526.09	521.17	337.4	233.1	170.7	130.4 133	102.9	83.2
92	9722.2	2514.7	2179.2	1078.2	978.08	$952 \cdot 53$	590.51	548.82	538.00	532.78	345.0	238.3	174.5	133.3	105.2	85.1

TABLE IV

Values or $\left(\frac{r}{a_{0}}\right)^{2^{n}}$ and $\left(\frac{r}{a_{0}}\right)^{2^{n}}$
$\frac{n^{4}}{Z^{2}}\left\{1+5 / 2\left[1-\frac{\ell(\ell+1 j \omega 1 / 3}{n^{2}}\right]\right\}$
$\left(\frac{r_{0}}{a_{0}}\right)^{2}=\frac{n^{4}}{z^{2}}\left\{1+5 / 2\left[1-\frac{l(\ell+1 j \omega 1 / 3}{n^{2}}\right]\right\}$
$\left(\frac{r}{a_{0}}\right)^{2 n}=\frac{2 n^{4}}{2^{2}}\left\{1+\frac{1}{2 n^{2}}\right\}$

FOR IIIES OF EQUAL STRENGTH

$$
F(a, u)=\frac{2}{\pi a} \int_{0}^{u}\left\{1-e^{-\frac{a}{1+z^{2}}}\right\} d z
$$

u	$i=\frac{1}{12}$	0	0.1	0.2	0.3	0.4	0.5	1.0	1.5	2.0
	$F(a, \infty)$	2.0000	. 9761	. 9528	. 9307	. 9096	. 8896	. 80182	. 73138	. 67399
∞	0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
. 3589	. 05	. 8564	. 8530	. 84.96	. 8461	. 8427	. 8393	. 8225	. 8061	.7905
3	. 10	. 7952	. 7902	. 7855	. 7808	. 7761	. 7714	.7485	. 7265	. 7056
2.3805	. 15	. 7474	.7411	. 7354	. 7298	. 7235	. 7187	-6918	. 6662	. 6421
2.	. 20	. 7048	. 6984	. 6921	. 6859	. 6796	.6735	. 5438	. 6157	. 5895
1.7321	. 25	. 6667	. 6597	. 6529	. 6462	. 6395	.6329	. 6011	. 5714	. 5439
1.5275	. 30	. 6310	. 6237	. 6165	. 6094	. 6024	. 5955	. 5622	. 5314	. 5032
1.3623	. 35	. 5970	. 5894	. 5819	. 5746	. 5673	. 5602	. 5260	. 4946	-4661
1.2247	. 40	. 5641	. 5563	. 5487	. 5412	. 5337	. 5265	. 4918	- 4602	- 4317
1.2055	. 45	. 5319	. 5240	. 5163	. 5087	. 5012	. 4938	. 4591	. 4276	. 3995
1.0000	. 50	. 5000	. 4921	. 4844	.4767	. 4693	.4619	. 4274	. 3965	. 3670
.9045	. 55	. 4681	. 4603	04526	. 4450	. 4376	. 4304	. 3965	. 3663	. 3397
.8155	. 60	. 4359	. 4282	. 4207	.4233	.4030	.3989	. 3659	. 3368	. 3113
. 7071	. 65	. 3918	. 3956	. 3882	. 3810	. 3740	. 3672	. 3354	. 3076	. 2834
. 6547	. 70	. 3690	. 3619	. 3548	. 3480	. 3413	. 3347	. 2046	. 2783	. 2558
.. 5774	. 75	. 3333	. 3266	. 3200	. 3135	. 3072	. 3011	. 2729	. 2486	. 2278
. 5	. 80	. 2952	. 2890	. 2828	. 2769	. 2711	. 2655	. 2398	. 2178	. 1990
-4201	-85	. 2532	. 2477	. 2422	. 2369	. 2318	. 2268	. 2041	. 1848	. 1685
. 3333	. 90	-2048	. 2003	. 1957	. 1913	. 1870	. 1829	. 1640	. 1481	. 1347
. 2294	. 95	.1436	. 1400	. 1368	. 1335	. 1305	. 1275	. 1148	. 1026	. 0982
0	1.00	0	0	0	0	0	0	0	0	0

TIE WEIGHTING FUYCIION
$\because(u)=\frac{15}{4 \pi^{4}} \quad u^{7} e^{2 u}\left(\theta^{u}-1\right)^{-3}$
AND THE STROMGREN FUIUTIO:
$S(u)=\int_{0}^{u} w(x) d x$

u	W(u)	$S(u)$	u	W(u)	S(u)
0.0	0	0	3.5	8.2003	6.2881
. 1	4.0390×10^{-6}	8.015×10^{-3}	3.5	8.9572	7.1469
${ }^{2}$	6.7737×10^{-5}	2.669×10^{-6}	3.7	9.7404	8.0819
. 3	3.5814×10^{-4}	2.103×10^{-5}	3.8	10.546	9.0957
. 4	1.1801×10^{-3}	9.185×10^{-5}	3.9	11.372	10.1902
. 5	2.9948×10^{-3}	2.902×10^{-4}	4.0	12.211	11.3676
. 6	5.4396×10^{-3}	7.454×10^{-4}	4.1	13.084	12.6309
. 7	. 012339	1. 660×10^{-3}	4.2	13.926	13.9808
-8	.021726	3.751×10^{-3}	4.3	14.793	15.4174
-9	.035822	6.170×10^{-3}	4.4	15.660	16.9409
1.0	. 056077	1.071×10^{-2}	4.5	18.525	18.45493
1.1	. 084103	1.755×10^{-2}	4.6	17.384	20.2410
1.2	. 12175	2.787×10^{-2}	4.7	18.232	22.0290
1.3	. 17101	4.214×10^{-2}	4.9	19.067	23.8940
1.4	. 23401	6.257×10^{-2}	4.9	19.884	25.8403
1.5	.31303	8.981×10^{-2}	5.0	20.681	27.8664
1.6	.41042	.1258 *	5.1	21.453	29.9725
1.7	- 52859	.1724	5.2	22.199	32.1510
1.8	- 57054	. 2318	5.3	22.915	34.4014
1.3	. 83581	. 3066	5.4	23.599	36.7225
2.0	1.0316	. 3994	5.5	24.249	39.1128
2.7	1.2564	. 5129	5.5	24.861	41.5698
2.2	1.5134	.6502	5.7	25.436	44.0895
2.3	1.7970	. 8144	5.8	25.970	46.6656
2.4	2.1307	1.009	5.9	26.463	49.2917
2.5	2.4940	1.238	6.0	26.913	51.9633
?. 6	2.3948	1.505	6.1	27.319	54,5755
2.7	3.3344	1.815	6.2	27.682	57.4249
2.8	3.8128	2.178	6.3	28.000	60.2082
2.9	4.3302	2.582	6.4	28.273	63.0213
3.0	4.8857	3,048	6.5	28.502	65.3537
3.1	5, 4791	3.568	0.5	23.586	68.7225
3.2	5.1087	4.1483	6.7	28.826	71.5978
3.3	6.7735	4.7923	6.8	28.923	74.4853
${ }^{3} .4$	7.4715	5.5041	6.9	28.977	77.3810

LABTE VI (Continueti)

u	$W\left(\begin{array}{l}\text { (}\end{array}\right.$	S(u)	u	W(u)	S(u)
7.0	28.991	80.2800	10.2	17.027	157.1759
7.1	28.961	83.1773	10.4	16.163	160.3624
7.2	28.895	86.0698	10.8	15.053	165.3490
78	28.783	88.9546	10.8	23.815	166.1404
7.4	28. 546	91.8283			
7.5	28.470	34.5856	11.0	12.550	163.7454
7.5	28.258	97:5:19	11.5	10.787	174.4525
7.7	28.015	100.3346	12.0	8.4757	179.1535
7.3	27.742	103.1223	12.5	7.0717	182. 9749
7.3	27.439	105.8825	15.0	5.4602	186.0388
8.0	27.110	108.5119	27.5	4.4377	188.476 5
8.2	25.757	112.3053	14.0	3.3745	10C. 3846
8.2	26.379	113.9606	15.0	2.0121	193.0267
8.3	25.981	116.5737	16.0	1.2629	194.5800
8.4	25.362	113.1587	18.0	. 35896	155.9583
8.5	25.126	121.6939	20.0	. 10157	196.3685
3.3	24.573	124.1825	23.0	. 026787	196.4813
8.7	24.256	126.5251	24.6	. 0066659	196.5103
8.6	23.726	129.0210	26.0	. 0015798	196.5174
8.8	23.234	131.3692	\%0.0	.000071419	196.5194
2.0	22.732	$183.6 \in 82$	∞	0	196.5194
$\bigcirc .1$	22.222	135.01:			
3.2	21. 706	138.1127			
9.3	21.183	140.2571			
2.1	20.658	142.3489			
9.5	20.127	144.3892			
9.6	19.596	146:374?			
9.7	15:06	148.5066			
C.8	18,535	150.185 6			
9.9	13:007	152.0229			
10.0	17.480	153.7656			

Fable VII Formae for Sound Free Gaunt Factors

$$
\begin{aligned}
& \text { Derive } F_{n}(k)=\frac{\exp \left(-4 k \tan ^{-1} n / k\right)}{\frac{1}{-\exp (-2 \pi k)}} \\
& g_{18} \rightarrow k p=8 \pi \sqrt{3} \frac{k^{2}}{k^{2}+1} F_{1}(k) \\
& g_{2 s} \rightarrow k p=2^{9} \pi \sqrt{3} \frac{\left(1+1 / k^{2}\right)}{\left(1+\frac{4}{k^{2}}\right)^{2}} F_{2}(k) \\
& g_{2 p} \rightarrow k=\frac{2^{7} \pi \sqrt{3}}{3^{2}} \frac{1}{\left(1+4 / 3^{2}\right)^{2}} F_{2}(k) \\
& g_{2 p \rightarrow k d}=\frac{2^{12 \pi \sqrt{3}}}{3^{2}} \frac{\left(1+1 / k^{2}\right)}{\left(1+4 / k^{2}\right)^{3}} F_{2}(k) \\
& g_{2 D} \rightarrow k=\frac{z^{2} \pi \sqrt{3}}{3^{2}} \frac{\left(33+\frac{36}{k^{2}}\right)}{\left(1+4 / k^{2}\right)^{3}} \quad F_{2}(k) \\
& g_{2} \rightarrow k=\frac{2^{5} \pi \sqrt{3}\left(15+\frac{2}{k^{2}}+\frac{1}{k^{4}}\right)}{\left(1+\frac{4}{k^{2}}\right)^{3}} \quad F_{2}(k) \\
& g_{s_{s} \rightarrow k p}=\frac{2^{3} \sqrt{3^{4} \sqrt{3} \pi\left(1+\frac{1}{k^{2}}\right)\left(7+\frac{27}{k^{2}}\right)}}{k^{2}\left(1+9 / k^{2}\right)^{4}} F_{3}(k) \\
& g_{3 p \rightarrow k}=2^{6} 3^{3} \sqrt{3 \pi} \frac{\left(19+\frac{96}{k^{2}}+\frac{81}{k^{4}}\right)}{\left(1+9 / k^{2}\right)^{4}} \quad F_{z}(k) \\
& g_{g d \rightarrow k}=\frac{2^{7} 3^{4} \sqrt{3} \pi}{5} \frac{\left(1+1 / k^{2}\right)\left(11+\frac{45}{2}\right)}{\left(1+9 / k^{2}\right)^{5}} F_{3}(k)
\end{aligned}
$$

TABLE VII (Continued)

$$
\begin{aligned}
& z_{z} \Rightarrow z^{3} 3^{2} \sqrt{3} \pi \frac{\left[23+\frac{7 \varepsilon}{x^{2}}+\frac{31}{k^{4}}\right]\left[25+\frac{136}{k^{2}}+\frac{1}{k^{4}}\right]}{\left(1+3 / x^{2}\right)^{5}} F_{8}(x) \\
& k_{4}+1:=\frac{\frac{3}{}^{7} \sqrt{3} \pi}{3^{2}\left(1+\frac{16}{k^{2}}\right)^{7}}\left[539+\frac{6800}{k^{2}}+\frac{2075}{k^{4}}+\frac{12286}{k^{6}}\right] \\
& x\left[197+\frac{3152}{k^{2}}+\frac{13056}{k^{4}}+\frac{12280}{k^{6}}\right] \Gamma_{4}(\mathrm{k}) \\
& \operatorname{Lim}_{n \rightarrow \infty} E_{n} \rightarrow_{k}=\left\{1+\frac{.1728261}{k^{2 / 3}}-\frac{.0405957}{k^{4 / 5}}\right. \\
& \left.-\frac{.0171429}{k^{2}}+\frac{.0020450}{k \delta / \%}\right\}
\end{aligned}
$$

Table VIII Values for Bound Free Gaunt Factors

$1 / k^{2}$	k	$g_{I_{s} \rightarrow \mathrm{kp}}$
0	∞	.79730
.001	31.623	.79770
.01	10	.79989
.05	4.4721	.81001
.1	3.1623	.82167
.2	2.2361	.84331
.5000	1.414	.89240
1.000	1.000	.94236
2.0	.70711	.98447
5.0	.44721	.98592

Table VIII Values for Bound Froe Gaunt Factors (Continived)

2/22	k	$\mathrm{E}_{2 S} \rightarrow k_{P}$	$\mathrm{E}_{2 \mathrm{p}} \rightarrow \mathrm{ks}$	$\mathrm{g}_{2 p} \rightarrow \mathrm{kd}$	${ }_{2} 2 p \rightarrow k$	$\delta^{\overline{2}} \rightarrow \mathrm{k}$
0	∞	. 93460	. 025961	. 23075	. 85071	. 87679
. 0625	4.	1.13689	. 029723	. 20845	- 2 - 18	-212
$.10 \sim 55$	2.8	2.32462	. 032632	-. 77965	- 21229	- 2×12
. 25	2.03	1. 02502	. 036129	. 72258	. 75971	.97549
. 37180	1.64	1.87276	$.03 \overline{7922}$.67064	. 70856	. 99800
. 52510	1.38	2.12688	. 038738	- Cogn\%	4.852	
.74316	1.16	2.41104	. 038420	. 53946	- E7790	(1)
1.000	1.000	2.66420	. 037003	. 47363	. 51064	1. 4000
1.5625	. 8 ccicr	3.05132	. 032860	. 27165	. 40455	1.06120
2.25	-66867	3.28819	. 028104	. 29228	. 32039	1.0023

$1 / k^{2}$	k	${ }_{3 S} \rightarrow \mathrm{kP}$	$\mathrm{g}_{3 \mathrm{p} \rightarrow \mathrm{k}}$	$\mathrm{S}_{3 \mathrm{~d}} \rightarrow \mathrm{k}$	$\mathrm{g}_{3} \rightarrow \mathrm{k}$
0	∞	1.06160	1. 09768	. 76259	. 90751
-02777	6.	1.31070	1.23028	. 68433	. 93591
. 056689	4.2	1.55462	1.33175	. 61340	. 05743
. 11111	3.0	1.9759	1.4544	. 5058	. 9854
. 23338	2.07	2.77863	1.55574	. 34854	1.02095
. 2333	1.732	3.32160	1.55697	. 26988	1.03799
- 4444	1.5	3.83427	1.52290	.21072	1.05073
. 6944	1.2	4.73641	1.40219	. 13321	1.06767
1.000	1.000	5.52416	1.24884	. 085635	1.07765

Table VIII Values for Bound Free Gaunt Factors (Concluded)

$1 / k^{2}$	k	${ }_{\overline{4} \rightarrow x}$	$\stackrel{\text { b }}{5}{ }^{\text {c }}$	$\overline{6} \rightarrow k$		$\overline{8} \rightarrow k$	${ }_{9 \rightarrow k}$		$\stackrel{\infty}{\infty} \rightarrow$
0	∞	-92474	. 9360						
001111	30	.92672*	. 9386	. 9470	. 9535	. 9588	. 9.9625	. 9605	1.0000 1.01735
-01	30	.941*	. 9590	. 9722	. 982	. 9895	. 995	1.00	1.0349
. 027778	6	.9618*	. 980	. 994	1.0035	1.0115	1.0175	1.022	1.04733
-0¢250	4	-98992	1.0088	1.0210	1.0290	1.0353	1.0395	1.0427	1.05976
. 1111	3	1.0132*	1.0290	1.0401	1.0470				
. 25000	2.00	1.04743	1.0597	1.0668	1.0712	1.0518	1.0557	1.0579 1.0781	1.0693
. 5000	1.414	1.0728*	1.0807	1.0857	1.0888	1.0909	1.0923	1.0781 1.0955	1.0853 1.0982
1.0000	1.000	1.08874	1.0945	1.0983	1.1003	1.1026	1.1036	1.1044	1.1088

* Indicates interpolated valus.

TABLE IX

The function $\chi(x)=\frac{1}{\sqrt{\pi}} \int_{x}^{\infty} y^{-\frac{1}{2}} e^{-y} \ln y d y$

\mathbf{x}	$\chi(\mathrm{x})$
0	-1.9636
.01	-1.2202
.05	-.7183
.1	-.26279
.2	-.0907
.3	-.0190
.4	+.0241
.5	.0507
.6	.0754
.8	.0807
1.0	.0799
1.1	.0776
1.2	.0744
1.3	.0707
1.4	.0666
1.5	.0624
1.6	.0582
1.7	.0541
1.8	.0501
1.9	.0462
2.0	.0426
2.1	.0392
2.2	.0359
2.3	.0329
2.4	

x	$\chi(x)$
2.5	.0302
2.6	.0276
2.7	.0252
2.8	.0230
2.9	.0210
3.0	.0191
3.2	.0158
3.4	.0131
3.6	.0108
3.3	.0089
4.0	.0073
4.2	.0060
4.4	.0049
4.6	.0040
4.8	.0033
5.0	.0027
5.5	.0016
6.0	.0009
6.5	.0005
7.0	.0002
7.5	.0001
8.0	

FIG III a

150
FIG III b
NOMOGRAPH OF

$$
g(x, y)=\frac{1}{\pi}\left\{\tan ^{-1}(x+y)-\tan ^{-1}(x-y)\right\}
$$

8

[^0]: (a)
 (5) A. Gaunt, Phil Trans, A 229 pp. $16 \$$ (1930)
 (5) stobbe, Am. d. Phys, 1 pp .661 (1/s0)
 (6) Op. Cit.

[^1]: Sinoe the oontribution to the opacity is determined by an integ'al, it is only some

