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II.

ABS TRACT

Methods for calculating the opacity of materials at high tempera-

tures are discussed in this report. Minor improvements are outlined for

the treatment of continuous absorption processes, and a small error usually

made in treating the scattering process is corrected. In contrast to all

previous calculations of opacity, the effect of line absorption is carefully

examined, for it may well be the dominant process under certain conditions

of temperature and density. Detailed methods for calculating the line

absorption contribution are, therefore, developed. To illustrate the

principles involved, the opacity of pure iron at a temperature of 1000

volts and normal density is worked out in detail. For this case, the opacity

is 2.2 cm/gram, corresponding to a mean free path for radiation of "Nlx 19 cm.

The ratio of the opacity including line effects to the opacity without lines

is 3.l..
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GLOSSARY OF NOTATION

A Reciprocal length, defined by (6.21).

A Helmholz free energy, (AI.4).

a, o Bohr radius 3 *5291 x 10-8 cm.

ani defined by (5.72), (6.46).

azI radius of ionic sphere, (4.24)

B - Me2  in (5.33)

2kTu
0

B 2hZj 3  e -u as defined by (3.8)

c2 1'®-u

bba (i/) dispersion factor for line absorptions (2.6)

b' (u) dispersion factor for line absorption (5.1la)

c velocity of light

c(&f) density of states of the free electron per unit energy interval (2.29)

0 iZ degeneracy of the ith ionic level

Of density of initial state per df (2.26)

D : u 3 Ac reduced absorption coefficient (6.20)
A

Ea energy of quantum state a of an ion (2.4)

Ej energy of quantum state J of entire system (4.11)

e positive electronic charge

fbaf1 electron number defined by (2.3)

F(1) w) function defined by (2.34)

g (1) Gaunt factor for bound-free transitions (2.22)

g ff(/) Gaunt factor for free-free transitions

gff Average Gaunt factor defined by (6.27)

g (u) Frequency factor (5..82)

nk(u) Frequency factor (5.71)
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Glossary of Notation (continued)

h Plankls constant

= _..h .

21r

I(Z/) Specific intensity of radiation see (2.2)

I Ionization energy of an electron bound in the n shell, (2.21)

K Mean opacity coefficient per unit mass cm2/gn.

k Boltzmann's constant

k Wave number vector in direction of propagation,(2.1)

Mean free patbi for radiation of frequency$(3.15)

M Mass of absorbing atoms, (2.16 )

J, Gram atomic we i ght , (6.1)

Number lines in Kth class, (6.44)

m Mass of electron, (2.3)

Ro : 6.023 x 102 3 Avogadro's Number

Nib Number of atoms in initial state b (2.9)

Number of bound electrons

of Number of free electrons

n : n+ nf Total number of electrons in system (4.8)

N Total number of atoms in system (4.6)

NZ. Number of nuclei of atomic number Z in system (2.29)

no Initial state of the scattering particle (2.32)

A Unit vector (3.17)

-Ay Average number of quanta in each radiation oscillator (2.1)

n(e f) d(6.+) Number of states of free electron in energy interval d( Ef)

n(o) de Number of electron with velocity vector betweenv andy + dv (3.3

P- 1 (5.5).
P Pr

P Pressure , (6.17)
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Glossary of Notation (continued)

P Probability given by (4.13)

Q Electronic partition function of the system (AI.1)

q Availability of final state (2.29)

r : ratio of line absorption to continuous background (5.5)
Iuc

r Value of r2 averaged over the bound wave functions (4.27)

r - e 2 Classical electrons radius (2.34)
in-

Rho Rydberg energy : 13.607 volts (2.25)

S(u) Stromgrem function Tabulated in Table VI (6.30)

S Eq. (5.lla)

S Entropy (AI.11)

T Absolute temperature (2.16)

u - h as defined by (3.8a)

V Volume of system (2.9)

Vi Sum of Couloumb and exchange electron interactions (4.12)

w Transition probability as defined by (2.1)

w = Cos & (2.34)

w (z)) Transition probability for spontaneous emission (2.10)

wb (v') Probability for induced emission (2.11)
ab

Z' Effective uclear change (2.25)

Z* Effective nuclear charge (6.7)

% Effective nuclear charge (AI.15)

p( : e 14 0  1/137.03 fine structure constant

See (4.13)

See (4.17)

0: -kToL is free energy of electrons (4.41&)

Dirac velocity matrix for jth electron (2.1)



Jlossary of Notation (continued)

p-1

F- Dimensionless half breadth, defined in (5.21)

4/7 kT

Breadth of spectral line (2.15)
27

- Z (2.34)

mc2

Direction of polarization (2.1)

(r) Potential energy (4.49)

E f 'nergy of free electron

Ionization energy of the ith electron (4.22)

Average energy of electron in ith state (AI.10)

9 Scattering angle (2.32)

A Rosseland mean-free path (3.18)

A Mean free path ignoring lines (5.7)

A 2t Contribution of lines to Rosseland mean free path (5.8)

Absorption coefficient, as defined in (5.3)

,l4 Absorption due to continuous processes alone (5.4)

Absorption due to lines (2.9), (5.4)

/ Scattering coefficient, i.e. inverse mean free path for scattering. (2.33)

Z) Frequency

P Density (3.25)

ij Screening oonstants,,defined by (4.23) Tabulated in Table II

dtr Surface element (3.1)

2 - .6654x10 cm. Thomson cross-section (6.24)

Absorption cross-section. Eq. (2.8)



Glossary of Notation (continued)

Electrostatic potential, defined by (4.26)

Differential scattering cross-section (2.32)

'Ik Electron wave function (4.2)

Lj Density of states, defined by (4.14)
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I, I]Ci MCUCT ION

The opamity or storials at etr.1y hIgh t-mp@ttsws is iuports .

t*lr of s"lr Ut9riors. As tUoh, it has eaga the i -aa 4- I

ol&t fw Mte lISt thirty y7ar . &he uwt resut siy of *A pP'U*1A tob

liora{ j Fella t he tradition is the 14 MIA ..d wwL uL e ft0

ns prIoeeases as 4Intrib*Az to *. opi .ity - Awto..Rs1* a aswpioS (

re trasitions), eolliaion absorption (ftve.- r.. t Asfto"1.m 4a 0 la i um s a

ing. It as polated out by Edward ?ellw that * Nw* masa lfee4w* *14w

migbt often prowv to be the determining .n in * opsoL , At bit *Eng'sWIj

therefore, the problem was Suvmstigabed anews

Previous worw.n (2) had resognised that surfti r tr a orption tregt

preset in th line speetrwi to insreease the opsaity by tears of 2 t #e

Waa rtnsd, hoeeor, that i iVidUal lines ure xtrS3517 siWrp, at alSIW$o l

a? very strong o iered to the oonti owa absorption pro e , vw e my (*W

wake a very stall r*Cion of the s peotrm opaque to radiation. Sims .te '

path for radiate ion (~reeiprooal of the ops4.ty) is a wehdt fW.seny XsstWt
of the roipreoal absorption oeffielwbt, the blatne.ss of Waeso wig ie'gq -%

rot approeoably alter the mean free path. ?ellIr pointed oub Wq4 f'slr

paoting thee oonalusions s 1) lndiv vanl lines wmre apt to be' vws i sa l

under the extrm teperaeire and density coMit ions of teller iwbas44 i

adar norml terrestrial dandition 2) Thire would be am *aewas Aimb'*t4

lines arising from the complicated eleotrostati intrationas at maaeta ia.

The reasonig bolind these suspieone is t* itative y diy diMple. - __A&

temperatures, an .lemnt will be found in "ma states of a ti*s*e.% 3*%bsinvrr

each ion type will exist in a n mber of exeited states. For .enp1..d ae *ut3ttons

show that iron at teuperatures of 1000 volts and deseits 5 *isb 6S~ i. * 08

Astrophysioal Journals 92 pp. 27-49, 1940.

(2) ensel and Perkeris: Monthly Notices of the oyal Astronouloal So81.ty, V. N,
p. 77, (1935); S. Rosseland, Handbuoh der Astrophysik, V% $' 3 teil.



gras/om3, (conditions available in stellar interiors) will have on the average 2 1

electrons, 1.24 L electrons, 1.10 M electrons, etc. - in all a total average of 4r3

bound electrons. We may expect appreciable numbers of ions with fro-A 2 to 7 bound

electron. 'Moreover of the ions with say 6 bound electrons there will be som with 21,

4L, others with 21, $L, 1, still othere with 21, 2L, 271, and so on. Eaoh oonfigura-

tion of these ions gives a rather complex line 9gotrum - the total number of lines

from the assemblage will be enormous. Mixtures of elements will give even a richer

line spectruji.

Among the causes for line broadening are 1) Natural breadth; 2) Collision

(
breadth; 3) Stark breadth; 4) Doppler areadth. Each of these is much more important

at high temperatures and densities than at ordinary conditions. Because many electrons

are in excited orbitals a large number of emission transitions can destroy the initial

state of an ion. In addition the intenee temperature radiation present can induce

absorption transitions. Both effects enhance the natural breadth. At high te-ppratures

collisions with free electrons will frequently occur - a process almost entirely

excluded under ordinary conditions. Moreover tho high velocity of the ions creates

an appreciable Doppler broadening. It also enables relatively high charged ions to

approach so close that enormous fields are available to cause Stark broadening.

In many oases the lines will be so broadeneid as to form a virtually continuous absorp-

tion band, very effective in proluding high opacity.

It will be realized that it is thp high excitation of the material, combined with

the pervading electrostatie interactions that makes line absorption so important a

feature in opacity calculations. Previous treatments of the problem essentially

neglected all these interaotionq except those between a nucleus and its *wn bound

electron. It vas felt worthwhile to include these interactions in some moderately

sat' sfactory formi in order to insure the accuracy of the calculations of the line

absor-ption. This problem is tr:ta a at sont length in chapter is of this paper.



a ine diate byprodnot of the artist te aalmeeb hioa % alulatioa mileh is there per-

formw4 is the thermodyamic properties and the equation of state of material. It I$

generally ass d in work -en stellar interiors that the material obeys a perleot gas

equation of state with an effective wimber of partioles equal to the suw of all the

eleotrous and nuolei in the system. In Appvix I, the appropriate modifi atlon st

the equatiou taking into aooeunt the presence of bound electrons, eleotrostamte inter-

aotiosuz ad a sMl *Orrectien for irelatIvity efffets is given.

Tlb oouplesity of the line spectrum precludes any straightforward attok on the

problem. t iler, hower, when he proposed ao sidering the line absorption, also

pted the use of a vbt istioal setlod of finding the onAtribution to the 4**tty.

The wothod As developed in detail in Chapter V which eonstiteus the si gn eant sww

aGotributtQo to the study of opacity.

During our reemaminati on of the opaeity problem, Dr. laria Ihyer noticed that tbe

"eattering eantribution has always been tres ed by analogy with the absorptian-

etdosion contribution. This praes to be incorrect, although the rutweriual error iS

small, The differenos between the two types of process lies in the effects of induced

emission and induoed scattering. The presence of induced emission strengtbens a beam

in its passage through matter, thus tending to reduce the opacity. In the suatteriug

proes, on the other hand, the induced soattering out of a beam oompensaes for the

induoed soattering into the beam. The correct oa Lulation of opacity due to wtter"

ing therefore gives a resf1t greater actuallyy 5 1 peeater) than the o oventi onal ore.

Although, there are macy features in common, the treatment of the opacity of

heavy elew ts, is different in many 4etaile from the treatment for light elements.

This resuts because the relativistie effects completely change the nature of the

Ue spectrum of heavy compared to light elements. A eopation paper tio this by

Boris Jacobsohe , gives speeifio aitentisn to the calculation of ppacities for the

gDssertation, University of Chi1ago, Dept, of Physios, 1947.



heavy elements.

The author wishes to thank Dr. aria layer anO Dr. Edward Teller for suggesting

the problem and for much valuable assistance in attacking it. It is a sincere

pleasure, moreover, to acknowledge my indebtednes3 to Drs Boris Jacobsnhn for many

discussions on every phase of this problem, and to Mr. Rudy Sternhe-riter for his

valuable work on line broadening without which this paper would have little practical

significance.



II. THE PROCESS CORIBUTID TO OPACITY

Any process oapable of removing quanta from an incident beam, or smittSg

quanta into that beam aust be considered in the opacity problem. The meet

important of these prwewsses is simple absorption and its inverse. In tis

case a quantum is absorbed by an atomic system, its energy being bransfurred to

excitation of the electrons. We ay distinguish with profit three different

types of absorption. In the first an electron in a bound state of the atm is

excited to another bound state. This is the familiar line absorption. In the

second the bound state electron is removed from the atoem, going into ane of the

contimtm of free states available, the usual photoelietrio effect. 'In ooube et

to line absorption, this process is possible for atW energy of the Imeideut quamtbe

greater than the ionisation energy of the electron. Lastly, an eseotren in a here

state my absorb energy by a transition to another free state. Ao axmb* of mrg

whatever may be absorbed in this process. The inverse processes to the three meon

tionod are, in order: line emission, electron capture, and Breenrahlung

A second absorption process is pair production with its inverse pre"ee

annihilation.

The last group of processes is scattering. Here an incident quasntm is

deviated from its original path by an atom or electron. If the atom rsemaly

in its initial state after the scattering, we have ordinary coherent soatteritg

if it does not, the phene anon is know as Raman scattering. A special oe

occurs if the frequsney of incident radiation is equal to the frequsnqW of M

abserptioa line of the atom. Scattering by free electrons is termed $'50

scattering.

The reminder of this chapter gives the transition probabilities far those

prosessee.
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1e Lim Absorption

the three types of simple absorption - line absorption, photoelectrio absozybioe,

and absorption due to free-.rse transitions differ only in the nature of the

initial and final states of the atom. It is therefore possible to develop the

treatment of all three at onob up to an advanced point and there introduce the

dif ferenees.

The transition probability for the absorption of a quantum of energy hv

from an inoident beam is

( 2 . 1 ) 11 . - 2n y d . e Q i er b

In this formula oL is the Dirac velocity matrix for the jth electron, N is the

direction of polarization of the incident light beam which has the wave number

vector k in the direction of propagation. The matrix element oonneota the ini-

tial state of the atom b with the final state; a and is averaged over all directions

of polarization and orientations of the atom - which latter is the same as the

average over directions of propagation of the light. The incident beam has ou the

average li-y quanta in each radiation oscillator, that is the intensity of the beam

directed within a solid angle d n is

(2.2) I(-v) dv dg(2 ie 2ny 2 d df
3

e

It is conrvenient to introduce the eleotron number defined by

a 2  ) 2 t
( . )ab

where.

(2.4) h -Vab -: (Ea - 3)

This definition reduces to the usual one for one electron ats in non-relativistic

approximation, when eikr is replkoed by unity - the oonventiota dipole approxi-

mation. Combining (1), (2), and (3) we get the transition proability as



d r2 A . d "

It OW actual physical system tie abs orptioa is Uot manined to a siglo f"*.

qu*We sr but it is possible for a range of frqte7 ies in the eigbo$ood od Of

We shall therefore introduce the dispersion factor for line abswrptiops bba(i) ty

the definition that the probability of absoMvg light of frequm'u betwoz 2/ amai

-/4 dz2by the transition bra is

(2.6 ) _= 0b.bba(2)4

The dispersion factor will have a sharp maximum at / a /ab and ftutherme

00

(2,7) ob(y) di/ 1.

The absorption oross-seetion of this transition per atom for light. e frtikmsy 2)

is then

iore we have put 2)s 2b in the slowly varying function of freqaweq mltiplyie

b(y). From the erms-seotion we get isaediately the abserptiou oPSEtitUlt or Iw

verse man fmr path for line absorption

b 2 b

a wa

where Yb is the nw lbr of atoms in initial state b, and the essatiea eotsms erm

all transition which my absorb the frequemey /.

2M ixwerse process, line mission, is the sws of two terse # go for spsmet s

and eve for indwed emission. The transition probability tor the tpoatauesmus ewL.4oa

of a quantum hi within a SeOU4 angle d 2dv to an atomic t Mtsition from sta'e b to

(2.1d)- crab (V/)4y; to a v f bb(v)d/ d ,
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while the probability for tdued ission ii

(2.11) ()2 S a
ab oI b

The qinwztu theory moreover gives the general result required by thermodyzwai.s

that

(,12) : f bb(y) bb

so that

(zl) Wb(V) 2hnP I(2,13) 1 b(".

An adequate discussion of the electron numbers is given by Jaoobsoh" 1 ). P!e

considers an ion with only one electron and treats different order terms arising

from the expansion of the factor a * in (2.3). The leading term gives te major

fraction of the electric dipole strength. Nuserioal oalaulatiofs for this term

in the non'relativiztio ease which extend and correct s luilar calculat ions by

Bcthe(2) are presented in Table 1 of Jaoobsohn's paper and are reprodused here

in Table 1. It should be noted that the f number in these tables is the average

from a level (nJ) to a level (nl t) found by summing over all states in the final

level. In order to divide the f number properly between he transitions

n) j -+n>'Pj' we use the relations

(3'14 f n, - n',L'k lc "--.n' i

f

lpk-mo (.k) k 21" -+n

where i k: = Jil and kaj or -V+1), k being te quantum number whio replaoes I in
the Dirno theory. Jaeebsae also presents sm fomla and tables for the relativistic

electric dipole and non-relativistic electric quadripole osillatg* strength.

(1) op. Cit.

(2) H. Bethe, Handbueh der Physik (2nd Ed.) .2 Y, Part 1, pp. 443
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Far approximate calealations, and to preserve the analogy between trsatmets

of line absorption and gaontinuous absorption, we =y use an asymptotic exp&sion

for the dipole f wmabor (energy of transition h /) of a hydrgense atom avmrs.e4

over all initial states in a shell of the principal quantum cmmber n. This is(S)

(2+14a) fur. s " 23- rT' j' n j m 2n~

whwre a is the principal quantum nmaber of the final, n of the initial state, awd

(2. lb) at ~v1 - 0*1728 WT o " ....

This expans ion besons better as both n and a ineresse.

The dispersion is due to the finite breadth at tho a ma-states In th e3Pvb.

caused by the interaotiow with light and with other particles. This "ssla bls

been treated in a thorough going fashion in an unpublished papr by ., Ster~eesemr

For dispersion eaved by the interactions with the radIatieo field, the li has t

natural breadth and a dispersion

(2.is) ( s -t2 ({.. zba e

We note that when 2r ( h. ) a ethe eross-section 1as fallen off to haef i s

maximum value~ Interactions with fast electrons will cause collision bradenigg

of the lines with the same dispersion farm as (2.15). However, interactions with

slow moving particles like neighboring nuclei are best eeo4ad by an adiabatie

approximation and the dispersion curve then falls off exponuulall2y with distance

from the line centers. Another ease of exponential type dispersion is the D pper-

Etfeet whioh gives

(2.16) b(3) 2exp. _ _2 2

Y being the mass of the absorbing atoms and T the absolute temperature.

3 Wenzel and Perkeris. Op. Cit.
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2. Phto-eleotrio absorption.

In the oase of line absorption we found a non-zero probability for absorption

of frequencies differing slightly from that of the atomic transitions due to the

splitting of the atomic states into a continuum by interactions with, for example,

tbi. radiation field. For boundffree absorption (photoelectric absorption) the

final state is already a member of a continuum, and we will therefore have a

finite absorption probability for a continuum of incident frequencies. The

probability of absorbing light with frequency between 2) and 2/4 AL2/ is from

(s0s)

(2.17) wbf(2) aT 2) we2  I(V f
h all i bt i

in 2)

The aross section may therefore be written as

(2.18) bf('-') : n ef2  d .

wbers by dfbf we swa

(2018) 40f . fbfi for O 2 small.
all i
in a 2/

The absorption coefficient is, Vnen

( 2.20) f(2y) = bf
b

where the suwation is extended over all states b which can absorb the frequency 2/.

Naturally precisely the same expression (2.13) as in line absorption relates the

probability of the inverse process of electron oaptbure with photoelectron absorption.

We shall follow historical president in transforming (2.18) and (2.20). When

Kvmwrs first attacked the problem of the photoelectric effect using the machinery

of the old Bohr theory, he found the cross-section for a complete shell of principal

quantum number n to be
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(2.21) { (7) a ' w n

dere I is the ionisation energy of an electron bound in the n shell. Later
U

workers, Gaunt(4) and Stobb ) oaputing the cross section with the maw wave

meahanios, ezpresed their result in terms of Kramer's formula (2.21), corrected

by a factor, the so-called Gaunt actor g. It is useful to retain this notation,

sinoe ensel & PNlers(6) have shown that the Gaunt factor g per electron is close

to unity when averaged over a complete shell for transitions to free states near

the ionisation limit (the region of interest in opacity calculations). To rewrite

our cross-sestion (2.18) in terms of this notation, we define the Oatut factor by

(2.22) Cyr ( S 3 n Z

Thkm (2.20) beeows

(2 2-) (m) he 1 g.

As defined here, the f watber, and heome the Gaunt factor refer to atomie transitions

and is the atomio occupation number. It is frequently more convenient to use f

numbers .and hence Gaunt factors per electron. The atcmio occupation b must then be

replaced by ni, the number of eleetrons in the initial state capable of absorbing

the frequency jJ. The transition probabilities must then be multiplied by a factor

q, the probability that the final state will be available. For non-degenerate free

electrons this is practically unity.

A discussion of the Gaunt factors with nuterioal tables is given by Jacobshn.

He shows that for absorption by L electrons, the dipole Gaunt factors for individual

transitiomsvaries considerably from transition to transition and moreover wary with

frequwny, especially in the region near the ionization edge. The average Gaunt

JA. Gaunt, Phil Trans. A 229 pp. 163 (1930)

Stobbe, Ann. d. Phys. 1 pp. 681 (bo)
(e) s P
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factor per electron is, however, close to unity. Moreover using relativistic wave

functions, while it drastically effects the results for individual transitions,

has little effect on the average, even for the very heavy elements. The Gaunt

factors for quadrupole transitions are smaller than those for dipole transitions

21
by the factor .13(ZOL,) for the L pbhell at the ionization limit (ci, g : fine

structure constant), and even smaller for the higher shells. For ma y oases,

therefore, it will be a sufficient approximation to replace g per electron by

unity.

3. Pr*-*Fro* Absorption.

The ability of an electron to absorb light depends on its binding to a nucleus,

for a free electron cannot conserve momentum in absorption. Hence we expect a

tightly bound electron to have a much larger photoelectric cross-seotion than a

loosely bound one, and therefore the free-free transitions should be a small effect.

There are two factors which nevertheless make it worthwhile to consider the process.

In our highly ionized medium a great portion of the electrons are free--in extreme

oases there may be no bound electrons at all. Furthermore, absorption by a bound-

free transition can only take place for frequencies higher than the ionization

potential for removal of the electron in question. For low- frequencies the free-

free transition may be the only possible one, or at least can compete favorably

with a bound-free transition of a very loosely held bound electron.

The transition probability from one definite initial free state f to a

range of final free states with the absorption of light of frequency between

z-and 2V}f A2) is of course the same as (2.16) for the bound-free transitions.

However, the same frequency can be absorbed by starting from ! initial free

state. owe, to find the absorption coefficient, we must multiply the cross section

(2.17) by the number of Electrons per unit volum n(Ef) d f occupying a range
V

of free states between g and 4 dif and integrating over all energies, keeping

'2J constant.
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( 2.24) 2() n d df".

(7) dffo...

Ibuzel and Pekeri( derive an asymptotio expression for .-- whose leading term

is that given by the Kramer's f ormla. We can see heuristically what the result

must be by analogy with their asymptotio expansion (2.14a,b) for bound-bound traasi-

tions. If the initial free state is specified by a quantum number f, and the final

free state after absorption of light energy h12) is specified by k, then

RhZ 2
(2.25) (a) h2/:Ek 4 F (b) ,f: .2  ,c) a 2

where Z' is the effective nuclear charge. The f number for this transition is ob-

tained from (2.14a) by replacing n by if, a by ik, the degeneracy 2n2 by of t

density of initial states per df, and the bound Gaunt factor gb by a free-free factor

gif. Using the relations (2.25) we obtain

(2 ~ 6 Fat3/2 ,t s 3/2

(2.26) f - rr (h2) kf

where

(2.27) gif j 1 4 0.1728 1 h * ""**

Then

d f dk 2 M ) Z _..,...
(2.28) r : ef (h v )I f

It might be thought at first that a fNator of 2 is lacking true the above equation,

since the oudber of states within a frequency d2/ is 2 dam, sin.e esek level k my

have an electron with either of two spins. But for a dipoleone electron transition,

the f would be zero for a change of spin direction, so we need count only the

states of on spin.

We now substitute (2.28) into (2.24). We shall later show (see Chapter IT) that

: (f) a +'1 s where o( 6f) is the density of states of the free

(7) ibid.
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elotren per unit energy interval and 14k. We obtain from (3.25b)

o(Uf )fet r dE/df a Z Zt z/3/2 where NZ is the number of nuolei of atoade

'+-r iIn owr system and the factor 2 takes oars of eleobron spin, Gathering

tegsher the terms givam

(49 4 { () era (hvm -TZg o i2

wigs a fa etor q far the availability of the fina.1 tate has been add94 For wn-

dege.rate fro* .leotrone we my safely neglect the taim 1 in th* den mintor and

put q3,U Then the integral gives 1 e so that

~~ _a a~4 be2 Rh R5 "z ,2 .. cJC2_

( Zso) ( " g-mme

kT 1/ 3 hV UT
(2091) Z 1 .1728 I 0 /

and oC. is given by (4.41a) below.

Just as with photoelectrio absorption we have the relation (2.13) for the

probability of the inverse process.

4. Pair Production.

To produ8. a free eleotron-positron pair requires incident quanta of energy

at least 2mc', while even the production of a bound electron and a positron re-

quires energies greater than sot. In all our discussions the temperature will

be so lvw that the amount of radiation of such high energies is negligible. We

ray, therefore, safely neglect pair production. Moreover there will be practically

no potitrons in equilibrium at these temperatures and so we may negleet the inverse

press of annihilation.
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6. Soatterint.

The oross-seotioas for scattering - coherent, Raman, and Compton - may be

found, for example, in Heitler(8.There, however, the case in which initially

only ow quantum is in the radiation osoillator of the incident beam and none at

all in the scattered beam is considered. In order to find the transition probability

we must multiply these cross-sections by the incident intensity and by a factor

(1 + i~), % being the average number of quanta in the radiation oscillator of the

scattered beam. The term in n is the induced scattering.

Consider then an incident beam in the direction specified by the vector,

having specific intensity Iy /). The probability that a transition will take

pla.e, scattering a quantum of energy ) in a direction specified byP within dAD

is

(2.S2) t dzJ t d12 d 9( ) 4, C9) h /dv d12 ' ; '

where no specifies the initial state of the scattering particle, &is scattering

angle and d i is the usftl differential scattering cross section. The scattering

coefficient, i.e., the inverse mean free path for scattering is then

( 2.33 ) ( ) *v v

where the sum extends over all states which can scatter this frecuency.

For Compton scattering from free electrons initially at rest, the differential

cross section is

r 2
(2.34) d P(i',o.0) 4 d2 F( dfl,

F1~w 1 - (1)2F(row) ~~Q
[umy (lar)]2  L (14* )(l+r~ il-J)

W: ooe d,

:ha/ms/2 , and r0 a e2/mo2 : classical electron radius.

W. Heitler, Qantum Theory of Radiation, pp. 129-157.
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9s.. et pus. $a , his reduces to

2

vhl*h is s.ffoiently asouae for our purpose. To get the ross section for

seettoriog frm s Est'ra UOVitg with velocity 2), we simply apply a Loreuts

tranr t'm u&. Ae result, to the saws order as (2.36) is -

)o d. (1a-w 2 ) ..2b(l'r)i(a,56) (cm

+' sa vt - (v2/02 os2j + b) f (ss4 - aes d')2{(1.02 )

Ather relation we shall Seed is the oonnetion betwoe incident and scattered

(137) s 1(luer) I t 1.ui)

The K r'sHeisenberg torzla fae oohereat or Raman sOattering gives a cross,

setion whiok, except for frequencies near a resonance linc of the atom, is of the

Sex order of magnitude as (2.36), This formula gives the scattering oontribution

of bosnd e-1orans. Ner there are as4,11y man more free electrons that bo*4

se that the va jor part of the sobtering will be of the omr: (2.3$)i orsuier,

e osaattering oresI-sedblon for bound eleotrons is geerally small eostprd to the

photo-eletrio eoss-seoion. We will, therefore, ever oomit a serious error it

we se the erovs-ssotion (2.58) as if it held for j the eletrosa .bound and free.

Me question of remamoe sattering- must naw be disposed of, for the roess-

seatiou the beoog e oeedirgly large and it would be iapropr to use the simple

f uwulo (2.36)v 'itler discusses just this quest n And he enluoed that if

the atom is irrndiated by a ooRitinuous speetru nthe resonanze fl *eseenoe behaves

with regard to the shape of the lice absorbed and reemitted exactly as if two in-

depssdent process., an absorption and a subsequent emiceioz took place." We mast

not regard abqrption and resomoane scattering as two independent fates which my

omrtake an ate,, but rather easuider that an atom may be excited to an intermediary

state, and either remain there, in which case we have true absorption, or else re-

tu to a lower State in whish ease we have resonance fluoresoenes. In oalsulat--
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ing the total oross-seetion for all processes, we see that re.ownoe f worsese

has been iuoluded in the term for litre absorption.
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III. TE OPACTY CCBFFICIEW

The opacity coefficient is a particular weighted average of the absorplbon

coefficient discussed in the previous chapter. This relation results from a

consideration of the equation for energy transport by radiation. A very complete

treatment of this equation of radiative transfer and the solution appropriate to

stellar interiors is given in Chandraselxar(l). Chandrasekhar's discussion, ho6-

ever, is restricted to simple absorption and emission processes. Other workers(2)

in the field of stellar opacities have, by analegy, used the snS relations for the

scattering process, or combinations of scattering and absorption. It was pointed

out by Dr. Maria G. Mayer that this is only approximately trsa for pure scatter-

ing, the error made overestimates the me" free path for radiation by 65*. Although

the difference is small, it is necessary to see how it arises. We shall, therefore,

repeat conventional derivation of the opacity ooefficient, including the scattering

terms.

We shall first write the equation of radiative transfer in terms of the

quantum mechanical oross-seotions or transition probabilities discussed is

Chapter II. We consider a beam of photons having ony dy do d cr q*s2 of

frequency between V and J4 djj travelling within the solid a"s3 d12 of a

specific direction, and normally incident per unit time upon a surface element dcr.

The specific imteasity of the beam is then I(v) ; hy o ny . In traversing a lengi

ds in the direction of propagation some photons will be absorbed or knocokd out of

the beam, while others will be added to the beam by emission or scattering. The

anber absorbed from the beam in unit time is

( S.1) Absorbed w b(2)) d d1.2 de d(c,.
be

The sun is over all transitions, bound-bound, bound-free, or iyee-free, which can

absorb the frequency :) . The number emitted into the beam per unit time is

S. Chandrasedhar, Stellar StruoturA, pp. 198-'1l

-,~ t 1~i1" ~ri02*~, p 1o



-20w

(3.8) itted : ab Wab(y) dv d1 2  do do .

The tuber per wait tim3 scattered out of the beam is

(3.3) Satter4d out s is y'w dy d d12 ds do- ,
d9~ ~ nIJ P~sd~

Iwre n(+) di is the number of electrons with veloeity vector between -" aad

9' do. The number scattered into the beam is

(3.4) Scattered in ff ) ay -b d V d1 d di 4cr.

Adding up the 4 contributions (5.1) to (3.4) with the proper signs gives the nwt

gain in ber of photons d e 2dvd12d ca in the beam as it traverses dA in the

steady state. Then

baa xbg 2

(3.8) e 1e(N ?

+ d; (wy,, 2 d -M W2 v ) d -2 ,

v J2

We news introduce the assumption thatat eah point in our =dim los

therwoyai equilibrium exists. These

e , P . , h V ab "a

Furthe. ane intrw-%%W ng the relation (2.13), the terms involving aboorpbion pro-.

ossset give 
e'a

OUW1b '"b g 94wab y

SIWOe Wy has a sharp =xsimn at 2Vz VNa, it is pwr-"sW~k2* t" put dabs n in

all places in the sum except In (o/)



With the use of definitions lIke (2.9), (2.20), we then get

(37) d I(absorption) : babs ( - em) (3v *

hire 2hv 3  ,u
(3.0) By : .-. 2. ;

(3.9) uZ .

The terms involving scattering may now be simplified by replacing the trail-

tion probabilities by (2.52). This gives

(3.9) d-- (scattering ) p }d, d Z/v, o') I" / 

2h2)3

®,) Iy () 1i d12'.

It is worthwhile to note that sinoe the cross-seotions involve C only in the forn

w : oos C , and since - , it is permissible to replace 0 by C. For the

simple case of Thomson scattering from electrons at rest - the most important

case im praotlee, we get

dIy n r ; = )02
(5.10) . (scattering) "' + w,) Iy ) } 2

.~ ~ ~ ~ I { )#}IyG)li3d2Z

Zhh'

It can be seen irmdiately that the terms in induced scattering cancel eaetly,

leaving

(3.11) day (seat.) : .. ro2 i ) r f (hW2 )IV( V)d-d }

The exact solution to the equation of transfer for absorption alone my be

worked out. The result oan thorn be expanded, the zero order term giving isotropic
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radiation, and the first order term giving the diffusion theory type of appsonimaa.

tion. It is only in this type of approximtion that the Rosseland san opa.ity

appears - however, the approximation is an excellewb oge in systems w. shall .om-

cider. We, therefore, employ this expansion to solve the ecmbined equation (3.7)*

(3.11), by putting

c1I2
(3,012 ) 12 aj 0 .. ?

Substituting this expansion in (3,7) and (3,11), and oolleeting terns neg oorublSnin

i~y gives

0 -b ( 1-em)(By - I ),

since the scattering terms cancel to this order. Rene we must hart

(3.1!) I : - By .

The terms is Zf givs

( ) (1 - ()'

I n 87r 2

fJV Ca as "T 0

sines the sontribution of the integral in (3.11) is negligible to tbia ser. In

order to satisfy (3914) A) must be

1
(3.1b) Jy ,

abs (y) C1-e ),A* ( 24)

it ere

(16 ) s().i : r,

Thus we see that in this approximation scattering and abserpgon must be treated in

different fashion. The physical reason for this is that the stimulated shattering

tending to weaken the beam is exactly compensated by stt)*leted scattering tending
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to strengthen the beam. On the other hand the stimulated emission strengthens

the beam and nothing can compensate for this. The effective absorption eoeffioiert

must, therefore, be reduced by the factor ( 1 -e-u)"

Using the zero and first order terms in (3.12) we can compute the flux of

energy of frequencies between z/ and }2g' d V

(3.17) ti F(-v)du: nI( /)d2/dI2: - 4 a nograd B/ d /

47r T , d
- B 2 dznograd %,

A
where n is a unit vector normal to the surface over which the flux is desired, and

we have assumed that the spatial variations in the conditions of the system sri

solely due to a temperature gradient. The integrated flux is then F n F(./) d/.

By introducing a mean free path properly averaged over all frequencies--the so-called

Rosseland mean

fid By, d2)oo

0 d By d2)

the integrated flu can be written

(3194 F Agrad ?T

where

00 4

(3.20) B : BF T "

0

The energy density may be found from (3.12) since

(.3.21) U2 - d12 : By d Tr B y Be

whence

(3.22) u : J y dV -a B.



The first order term in I.in both these equations vanishes identically, so that

(3.21) and (3.22) are correct to the sams order as (3.19). Combining (3.22) with

(1,19 ), we have

(3.23) F - Arad u.

By introducing the expression (3.8) for By and (3.20) for B, the expression

(3.18) simplifies to

00

(3.24) A= 154 u 0U (e ( -1) du.

The effootive man free path for radiation may be alternatively expressed in terms

of the mean opacity coefficient per unit mass I by the relation

(3.85) K s

(0 being the density. It is this quantity which is usually used in astromical dis-

cats s ions.

The effect of the present treatment of scoattering, osapared to the aual praoties

in opa*ty disewsions is now olear. If there is no absorption, ar tree!at gives
00

( 6.28) A: Q u4  (e' .. ) d

while the cotem*tional treatment gives

(3.26.) : V u e2u s d.

In most eases of astrophysical interest, scattering is not the most important process

inv lred and the error is correspondingly much less.

We can now see in outline the steps needed to earry out the calculation of the

opacity coefficient. We must first determine the absorption and scattering coeffi-

cients. This requires a knowledge of the cross-seations listed in Chapter II and

the oocupation number - the subject of the next chapter. The averaging process

indicated by (3.24) must then be carried out.



V. STATISTICAL MECHANICS OF IONIZ2MD ATMPHERES

1. Intgduct ory.

The methods of statistical meoanios will furnish, the oooupation numbers

n*4ded in the calculation of the abscrption oseffioiezt. The succeeding sootions

4rvelop a oonvnint srthod for perfaening this calculation to good appreimation.

1a addition, statistical neahanies gives a description of penoana related to

the breadth and dispersion of speett-a lines. This angle is discussed in sea-

tions 6 and 7. ILstly, it is a simple matter to calculate the thermodyn.zais

ftaetions of our material once the occupation nwbere have been treated. While

this is not aotmlly needed in a oaloulation of the opacity coefficient, it is

an ez*remely useful IV-product. We oarry out this treatment in the Appendix I.

2. Meehanieal Detription of the System.

We assiw that the system we deal with is in thernodynamic equilibrisa at i

teupvr ture T and eupies a volme V. Although ur entire system is not in s uwb

ap equilibrl1., the gradients of the thermodymmio variables are so small, that me

my consider that at each point such a local thermodywamie-equilibrium does exist.

Furthermore, the temperatures we discuss will be so low that we umy conpietely

ignore nuclear reactions and pair production. Then we may describe our system

as composed of I nmolei of which NZ have atmio number Z, associated with n

electrons just sufficient in number to ake N neutral ato. That is

(4.1) N : Z, n z Nz.
Z Z

Clearly we have a system of many particles with strovC interactions. Followirg

the usual method of separating out the effects of the nuclear motions, we then

exps'ess the electronic wae function of the system as a properly antisy lsied

product of one electron functions obeying the Hartree-Fook Equations(1)

F, Seitz, Uodern Theory of Solids, pp. 243 ff.
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The essential features of the one electron wave functioru are apparent

from physical considerations, and may also be derived by inspection of the

Fook Hamiltonian. For large energies, the kinetic energy term in the

Hamiltonian dominates, and the wave functions approach those of a free

electron. They are, therefore, independent of the positions of the nelei.

For low energies, on the other hand, the interaction term with the n1 slear

potential becomes of equal importance to the kinetic energy term* Ieeause

of the singularity in the potential at the position of each nueleis, te be..

"havior of the wave function at ary position is largely sonditiea*6 'ix, f 1b

of the nearest nucleus, secondarily by the nearest neighbors, and is hardly

affected by more distant nuclei. We, therefore, expect that near a wulonot

the one electron function will approximate the shape of the a.*i. wave fuew

tion of the isolated ion. In this extreme the wave finmtiow depend OU) an

the distance from the nearest nucleus - and are .,opeatskift' the relafiw

position of the nualei, just as for the free electron .xtrem.

A model which embodies these essential features is the orystalline *bl$4.

At first sight this appears to be a violent distortion of be -actual sate sf

the system, since we should not expect any long-range orxetalline ardor at the

high temperatures with which we deal. The model 1will, hmever, provide the

proper qualitative features of the wave funoti.ns tfor a system of mant nuel.j

throughout which the electrons are free to roam. Naturally, any features

characteristic of the strict periodicity of the lattice are simply intr doe4

artificially by our model. Those features of the crystal mNdel hawtwr, whieh

depend on near neighbors only should apply to our system, for there will be a

local ordering effect corresponding to that present in ordinary liquids.

PVeisely, as in the usual theory of metals, we can use the Blook approziw

nation of periodic wave functions for the electrons. In the low energy ease

the energy levels will correspond closely to those in the isolated ion, exqopt

that a single ionic state is bz fold degenerate. This results because we can
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oonstruot NZ independent periodic Bloch functi ons from the Nz aero order

function, each of which corresponds to the electron being on any one of NZ

different ions. This degeneracy is removed by interactions with neighboring

nuclei, so that finally we shall -have in our crystal a narrow band of Z states

in the neighborhood of each state of the isolated ion. The wave functions are

of the form

(4.2) -k n n(n) ,

where 1; rn) is an atomic wave function with origin at the nucleus located at

rn. As the energy is increased, the atomic wave functions of neighboring ions

overlap more and more, thus widening the band. Eventually, the band widths will

exceed the distance between atomic levels, and we shall have a quasi-continu~u

of states. At about this energy the approximation of localized atomic type wave

functions breaks down, for the functions overlap several nuclei. Moreover, atmic

functions from several levels muat be considered in building up a good approxima.-

tion from (4.2). The transition stage of the onset of the continuum leads naturally

into the stage when the atomic wave functions become constant throughout the crystal.

For high enough energies the functions (4.2), are of the free-electron type.

The nature of the eigenfunctions in the transition region is complicated. We

are fortunate, therefore, that in our system (in contrast to the usual metallic

state) only & very small fraction of the electrons will populate states in this

region. This results because the Boltzmann factor in the probability, of ocoupa-

tion of these states is rather small compared. to that of the closely bound low

energy states, while the a priori probability factor is not yet so large as in

the hiph energy free states. The contribution of these transition states to the

partition function of the system is, therefore, small, and for the thermodynamics

properties of the system we may treat them roughly. The appr rizmation we shall

use in our statistical mechanics is to ignore the details of these transition

states completely. For the low enert5y states, we shall use ~atonic wave functions



-ta-

and hene, term them bound states* For energies greater than a oortain limit

wioh we term the out-off energy, we sill use the eigenfunotions for free

electrons. Since the transition states are statistically unimportant, the

exact position o the out off energy is not oritioal. We shall return later

to the question of fixing the out off energy.

The oireanstanoe that the trans it ion states do not affect the thermodywsaic

properties of our system is no guarantee that they will not seriously atfeet

the optical proprties. We shall see later that the most critical element in

the Rosseland mean opaoity is the presence or absence of absorption in certain

frequeny regions. We must, therefore, examim whether the onset of a oontinu

of owe electron energy states will lead to a continuous absorption spectran.

In the Bloch sohae an examination of the trans ition probabilities proves this

to be the ease. eie is not neeestarily true in other approximation schemes.

fS irregularities in our lattice, however, will undoubtedly provide the ooro.

tinuous absarpbion we assu.

There is still anther and more serious short-ooming of our one-elee.ran

approximation. This is the neglect of correlations between electrons positions,

except for that diotatet by tke Pauli principle. These correlation energies are

me small that they do not affect the occupation nubers of the one electron states.

They are, however, deoisivv in determining the line absorption Contribution to the

opacity. This is se because the number of bound energy levels in our complicated

crystal, is, in the one electron funotion approximtion,exaotly the same as in an

isolated one electron atom. The spectrum would then appear to consist of just a

very few very strong lines. Taking sorrelations into aount would split these

int. very mete lines of the same total absorption strength. The next chapter

hw's that having the absorption strength distributed amng marWr lines very muoh

enhances their effect on the opacity. The treatment of these correlations by
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tha "ionic" method is the topic of section 5.

Another feature of o"ur approximation which bears watching is the "!nissin"

bou-v states which have been excluded by the out off. Of course, these are not

missing at all but have been merged with the oontinuum. The absorption strength

of the out off bound states should be listributed at the be Pinning of the free

states.

With this quantum mechanical approximation, we now proceed to examine the

statistloal nechanios of',ur idealized model.

3. Statistical Mehanies - Independent Ilectron Aproximation.

The object of this section is to use th9 methods of statistical meohsnics to

find the number of electrons in each electronic state in equilibrium at the

tonperature T. We shall here assume for simplicity that the electrons are copletely

independent of- each other. The next seoticn will treat the electronic interreticns,

but the final results can be thrown into essentially the sare form as for inde-

pendent electrons.

The nature of the energy levels and the density of states has been discussed

in the previous sections. If ej, i$ the degeneracy of the it ionio level, energy

iz ,of a nucleus of charge Z, there will be a band of N j states at this energy

in the system. Such bands will persist for all energies i ' less than the

cut off. Since electrons obey the Ferri-Pirac statistics, the umxler of electrons

-n the iz level will then be

r 
-

(4 . i < 0

where - 1 and cZ is the norimlization constant with the physical interpretati on

that .:- -kt is the free energy of the electrons.



For energies greater than 6,, the dens ity of state will be that of a free

electron with kinetic energy - 6 This is, in the relativistic case

(4.4) Bz ( : 2 2 2 - 2o ) L (2 ,
(ah)

or expanding for kinetic energies small compared to ma2

Then the number of free eloctrom with energies between and f 4 4 is

The total nuner of bound electrons is found from (4.3)

(4.6) n
Z i

Wile the total number of free electrons is from (4.5)
00

(4.7) ofl 2 nf(E )dE

Of course, the total number of electrons in the system is the sum of bound and free

(4.8) n :3nb 4 nt

and it is this condition which determines the normalization oonstaxt oc of (4.3)

and (4.5).

To use these oceoupation cnunbers (4.3) and (4.5) we must determine OC . We

note that (4.7) is the equation for a free electron gas, except for the ow tact

that ', is not a sonstat given by the physical nature of the system, but instead

varies with the temperature and volume. nf may, however, be a rather insensitive

function, and we say then employ the following scheme of successive approximtions

to determine aL . Assume a trial nf ; usually we may start by, taking nf s n the
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total n wber of electrons. Then use (4.7) to calculate o(, . For the case in which

relativistic and degeneracy effects are small corrections - the region of greatest

interest - a suitable expansion of (4.7) gives

/ 2r kT 3/2 5 -o *
(4.9) In* -

3 
kT e

where

(4.10) C: : o 6 .

!nowing a-, the sta in (4.6) must be carried out explioitly, giving b and by

(4.8) a second approximation to nf. The oyale is very rapidly convergent.

If a long series of computations must be made, it is more coveient to fix

c. to start. Then using (4.6) we find nb/N while (4.7) gives nf/V. (Here I is

the total number of atoms in the system). Then we may find out to what value of

n/v i.e., to what density; the value of OC corresponds.

4. Statistical Mechanies - Depdet Electrons.

We now treat our system including the electronic interaotions by the method

of the Oanonieal ensemble. A state of the entire system, symbolised by J, will

be determined if we know the ?naber of electrons in each oneaeleotron orbital ef

the Hartroeo-ook set of eauations. Although eaeh of these non-degenerate orbitals

may have either one electron pr none at all, we find it more oonvenient to group

dgenerate or nearly d.gerwrate orbitals together and suoh groups we will des ignite

by small subscript i or j or 4 . The mnaber of such orbitals in the itl energy

group$ i.e. the degeneracy; we denote by o. The energy of the state J is

(.1 E ni E6 # J i f (ngi-1) oui ,

i is the mber of electrons occupying orbitals in the energy interval when the

system is in the state J. Now the partition function will involve sum over all



states J of the system, but only state near the equilibrium value will contri-

bute heavily.~ Since the dependence on J of the interactions i and V jj is

not ^ronounoed, we may insert s a average value 5 and V independent of J

instead. Moreover, we introduce the set of numbers np, at present wholely

arbitrary but later destined to represent sora average occupation of the region.

The (4.11) becomes

t4.12) F4  nJi i 4 ? n Vi 4 Q (^ '1}ij

7ht first term in square brackets in (4.12) is independent of the occupations and

:-ay be regarded as the zero order approximat ion to the effective energy of the

electron. The second term in square brackets gives the difference between the

detailed interaction between electrons and the average interaction. We may expect

this to be Smll and hence treat it as a perturbation.

Now according to the canonical ensemble treatment, the probability of finding

our entire system in an energy level between EJ and E4 + dE is

J-., Je ,

where

(4.14)
i n it(or-n': t

is the number of states in the energy interval o EJ and c( is the normalizat ion

^onstant determined so that

(4l 1.

fence in equilibrium in our system the number of electrons in the i$ region will

be
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(4.16) n.

Substitute in (4.16) the appropriate expressions from (4.12 ),(4.13 ), (4.4),

introduce the quantity oC by the relation

(4.17) o(, no( o( .C n
i 

Vi

and carry out the indicated operations to first order terms in the Vi. The treat-

ment is chsarateristio of the grand ensemble method, The muipulations are tedious

and a aaewhat tricky but the result is comparatively simple, ma.1ly

(4.18) a 6 - c p 1 - q {(i--.)ae(og-1) 4

* ~ p YiiQl " 1O~

where

(4.19) q2  : 1-p ,
-1

(4.20) p : 4 exp 4 Kr ( } &.(

We now choose the arbitrary parameters so that the first order terms in (4.18)

vanish identically. This gives

(4.21) n: 2 oip1

Although the two equations in (4.21) seem oontradiotory, this really is ant se,

tfor them is absolutely nothing whiob forbids us to use a different set i for

ench nq in (4.16). Substituting (4.21) into (4.18) and (4.20) gives our

answer

(4.18a) nr : oj pj

(4.20a) p : 4 exp (c?
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(4 .2 2) [ - P V p 2 , (oi .1) P f

Cozmparingr our results of the last three equations with these of the independent

electron treatment, (4.3) for example, shows then to be of the same form, except

the energy t of the independent electron case is replaced by an effective

energy of' (4.22). We have, therefore, justified using an ird eendent electr:-n

ar'roximation with each electron subject to some averaged potential of its neigh-

hors, an, we have found that potential correct to first order.

We can ,-^n iderably simplify the result (4.2? Suppose l repr-cents a

,ound level. Then th-e interaction V) between the two bound levels can be ser.

to be exactly the same as that calculated using atomic wave functions which localize

both the l and j orbitals on one particular ion. The terns in (4.22) due to the

interaction of a bound electron with the other bounds is, there fore,

' (c -1) Vgj, where now the 's are the ordinamy 7uloml and

exchange interactions of atomic theory. By far, the largest contribution 0oons from

the spherically symmuetric part of the coulomb integral, usually denoted by F'0 i v)

in theoretical spectroscopy. It is more convernient, however, to use screening

,onstarnts c0 instead of the F0 's, defined by

po(ij)

(4.23) 4

az

The interaction energy of a bound electron with the frees can likewise be ap-

proximated by the interaction of an atomic wave function with the charge density

of the free electrons in the neighborhood of one particular ion. Suppose, there.

fore, we break up our crystal into polyhedrs, each containing a nucleus and of suffi-

oielt size to enclose a negative charge Z'e where Z' s Z - nZb is the average

c1a.rge of the nucleus and its bound electrons. Approximte the polyhedra by spheres

of the ser volume, wi r r.dius f. '* We theni have
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(4.24) 3 [ 4 NZ 7.
Z

If the Aleetrons are really completely free, the charge density will be uniform

throughout the crystal, and therefore

4 3 ZY
(4.25 ) -gT

Moreover, there will 1e an eleetrostatio potential

r2 /
(4.26) - - "

within each sphere due to the free electrons, and we obtain for the bound-,e< to

free interaction energy

(4,2 7) - d -

where r is the value of r2 averaged over the bound wave function. For a

bound state , then, the ener r beomes

(4.28) (C -0 } 1-1) O

bound electron

2 &

To first order in , this is the same as

(4.'9) 5.- (*) 3-

where

(4.30) Z :Z _ - - (1 *0
z Li1Z;E ~

We now must rewrite (4.22) for the case that I represents a free electron.

For this purpose, we assume the bound electrons are localized at the nucleus. This

is generally an excellent approximation. The free electrons move in the potential



field, whI-h is in each ionic sphere

t 2aZe , r2

(4.31)r

This is due to the nucleus and bound electrons, and the frees. The energy F
c! (4.22) in this case inolides the kinetic energy fg and the interaction with

the nuclei, while the other terms in (4.22) give the interactions with other

bound and free electrons. All these interactions are just .e , being averaged

ower the volea of the ion. Hence, for a free electron
2

x(4.32) Er = f - E
Z

We note that the interactions have raised the energies of the bound electrons

from The zero order approximation of interaction with the nucleus alone, while

for free electrons the energr has been lcImered from the different zero order

a-;roximation of no interactions. We now 'shift the zero of ener y, so that a free

elpotron with zero kinetic energy has zero total energy, by adding the constant

. . . This will have the advantage that the density of states for the
5 Z of

free electrons takes the simple form o( f)df a c(&f)d &f and hence (4.23)

be oogs s

o(E )id
(4.33) n( ,)d~ *f

Of oourse, changing the zero of energy has no effect on the occupation lumbers,
A

mince it ,rely replaces & by another normalization constant

Zt2 62
Z -*Z &Z * With this change in zero of energy, (4.29)

Cv- C"z A f

hf o a

Z.2 Pt ,z
Z Zr~f z
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New we shall sewhat arbitrarily plaoe our ailis ion into bound and tree states

at the zero in our new energy scale. This means that whenever EZZ of (4.54)

is positive, that state is not bound. In most oases the higher states of an

ion have their otrons rather uniformly distributed in the ions sphere and,

therefore, s/s. We can, therefore, generally "out off" the bound states

at about

(4.35)
Zte9

- (Z~):3,7

The relevant equations for calculating the occupation mnbers will now be

suamzrized in final form.

(4.'36) 4z, 
s1

.. 2
(4.37) 0'ja E Z ) Z

A~j-,, (1

(4.3 _ Z " - n (1

(4.59) w a' 8- (2m ) 1 5

40s 

T 

t 
1

nl f aZ e

1

-V

t +
Mot

9

(4.40) nb:n NZ nj

f(4441) Ur f )d

two

(4.42) n : b n f

47r 3 Z" _
(4,43) -y T" --P

sum for all E 0,

f )

(4.43&) v :r~ az. NZZz

) 0

...
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(4.44) Z' r x --

and as an explicitly equivalent of (4.41)

, 2v 2 rr S 15 kT . 15 2

} ***

This set of' equations is aomewhat deooptively simple in f'orm, for it must

etu2lly be solved by a somewhat 1mtgthy series of successive approximations,

If' we are given the temperature T and volan V, we must assumze a set of n

ano* and a set of s.Ze satisfying (4.43). (The latter is, of' course, trivial 1$

our system has only oes eletient.) We thum oaloulate Zj by (4.38) and by inter-

polat ion in a table of' energy levels find '(Z ). Msaseile, by (44 calculate

* We cam then izmediately get 8 >Z and by (4.38) a new set of nez. 34 ('I.
w et % whih with (4.42) gives n. Employing ng in (4.41a) we arrive at a sw

*s

* Moreover, using (4.43a) gives a new set of' 521. Continuing this ogyol.,

we oan establish our f'ial oooupeation wi.bers. The tables of screening oatctts

,ensrgy le-els, and r needed for the calculation are presented hreu

Tabis 2, 3, and 4 respectively.

One aprodtion ae in the foregoing set of equation is the as option

of' the uniform charge distribution of the free eleores. An iprovenb' ,w this

approximation,whih also danstraes the range ofa its validity, is given if

Appendix II.

5. Ionic Ooouation Nrmabers.

A somewhat different model for our system as mentioned briefly in the last

section - the ionic model. We shall now describe the basis for this model scwhat

more fully, show its relevany to the opacity problem, and indicate how our previous

results may be applied in this aase.
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We know that if an electron is in a state of suIfioiently low energy, it

will be temporarily bound to one nucleus. Because of the high coulomb barrier

between neighboring nuclei, it will remain bound for a considerable tim - indeed

it would be improper to use atomic wave functions for the electron unless it re-

mained bound for times long compared to the time of revolution of its Bohr orbit.

Naturally, several electrons may be bound to the saw nucleus at the eame time.

The interactions between the electrons will not be expressible in terms of the

treatment we have hitherto used, for the correlations which were neglected are

now of decisive importance. For example, a nucleus with two bound K electrons

will behave much differently, particularly with regard to its speotrun, than

one with 2K and four bound L electrons. We can take these correlations into

account by abandoning our simple "product of one electron functions" approxi-

mation ard using instead functions which depend upon all the coordinates of

the bound electrons of each nucleus. This is equivalent to describing our system

as composed of many different ions in a dynamic equilibrium in a sea of free

electrons. Applying the statistical mechanics appropriate for systems undergoing

"chemical" reactions, we can get, for example, the number of ions of each type

in our system, and the distribution of the ions among ionic quantum states.

Essentially the same result is obtained by the use of the canonical ensemble

treatment for dependent particle systems if we appropriately express the energy

of the system as the sum of ionio energies, free electron energies, and inter-

action energies between these components. The latter method has the advantage

that we are able to take into account, to first order at any rate, the inter-

actions of the free electrons and ions. This model, which is certainly to be

preferred to that of the previous section, gives the speotru of our system as

the superposition of the many different ionic spectra. It is precisely this very

rich line spectrum which causes the lines to be so important in the opacity problem.
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Despite the apparent dissimilarity of the ionic and "one-electron function"

models, we can shor an intimate relationship between the two. In our ionic model

we may use for each ion the conventional treatment of many electron ions. This

consists in expressing the wave function of the ion as antisynmetriled products

of one-electron functions and then carrying out perturbation calculations - usually

only to first order. Suppose we then neglect all but the spherically symnetrie

coulomb interaction. This makes many of the ionic levels degenerate, of course,

but the energy changes are so slight as not to change the ionic occupations.

If we then take the average number of electrons in a particular orbital through-

out all the ions in our system, we get, to first order, the results of section 4.

The useful point about this relationship is that we can use the occupation nu-mbers

of section 4, giving the average occupation, to find the ionic ooou-ations t,

good accuracy without the need of starting off afresh in' a laborious calculation

from the ionic model. Thus the work of the previous seotin gave the number of

electrons n1Z in the Yth level of an ion of nuclear change Z, or alternatively

the probability of occupation of the states of that level. Prow: this

we calculate the probability of finding an ion in our system with several bound

electrons arranged to give some particular quantum state of the ion. For exa.3ple,

the probability of having an ion with electron configuration (1s) 2 (24) (3p )

in the K, L and M shells, whatever the configuration of the higher shells may be, is

2 2 4 2 2 3 4 6
(4.45) pls x 2p2e5 2 s x q 2p} x 2p3/2 x q 3a x X3p xPp3/2g 3 V3/2 x g3 d 3/x2 X3d5

where

In general the probability of having an ion with 2g electrons in the level

regardless of the occupation of the other levels is given by the binomial distri-

bution
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As is well known, for large oe and small ,j , (which is the case for the higher

bound levels of an ion) this reduces to the Poisson distribution

(4.48) p d v -i - -

The ionic model gives a simple physical interpretation to the rather surpris-

ing looking formulae of section 4. Consider, for example, the term

- , in (4.28) the energy The factor d i is the inter-

action between the j and the2-h bound electron levels in an ion. Averaging

over all the ions of the system, some having no electrons in the jt level, others

having oae, others having two, etc. gives precisely the term we are considering.

Again consider the ions which definitely have am electron in the - level. The

average occupation among these ions of the other oez-1 states in the level is

py (e Z-1) The average interaction energy between one particular i electron

and the others then is just ppZ (oiZ-1) (22ed- ). This is precisely the

third term in (4.28). We see that the energies involved in the dependent electron

treatment are averages over the ions of the system. Going a little further, we

oan show that (4.28) is actually the average ionization energy of an M level

electron in our ionic system. To prove this, we note that if an ion has x

electrons in the ji level, its energy to first order is approximately

E(Xjz 2 ... xi..) )E:Z Xj 5z f xi XjX i(i,j) } Exix..1) Fo(ili)
i j T 2

so that the iobization energy of the 5 electron is

E( ,x2***..,i .0)* ~( 1 0E 2 ***El *..)

: * g F ?(j,j) * (xpl-)F 0 (f,f).
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Averaging this ionization energy over all the ions having at least one bound 2

eleotrou gives (4.28) except for the terms involving the interactions with the

free electrons.

This completes our discussion of the occupation numbers in our system, which

are needed to get the absorption coefficient.

E. The Influenc, of Nuolear Motion.

Thus far we have considered the nuclei as fixed in a lattice position.

This is justified, sinoe 'neither the bound nor free wave functions depends

appreciably on the relative position of nuclei. All our occupation numbers

are, therefore, correct. There are two phenomena, however, which depend en

the nuclear motion: 1) the total energy of the system has a contribution frem

the kintio and potential energies of the nuclei; 2) in their motion, nlei

will exert vwayiMg electric fields upon the bound electrons of neighbors, thus

causing Stark effect shifts and splitting of the spectral lines. The first

effect is of some sall Importance in the thernody ami properties of our systems

while the secomi my be very important in influenoing the effect of lines o the

opacity.

The result of separating the wave equation for our entire system se as to give

the *lectronle energy separately, describes the motion of the nuclei as if proceed-

ing in a potential determined by the electronic energy. This potential is in our

case apprlimbately the olamsical potential of an assembly of positive ios moving

in a uniform charge density due to the free electrons. We treat this potential in

two limiting oases, Assume first that the nuelei are at latties positions, which

configuration represents the zero of potential energy. For small- deviations from

this position the potential increases. For example, the change in potential energy ,

if a single ion of effective charge Z* is at a small distance r from its equilibrium

position is
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(4.49) Z e r(r) - r(')

where qr, gIven by (4.26), is the electrostatio potential of tUe free eleetrous.

So long as (4.49) holds, the nuclei will perform simple harmonio vibrations about

their position of equilibrium. The heavy mass of the nuclei will make the frequency

so leer that the oontribution to the energy of the system is classical

(4.50) Enu 0 ei : 3kT

Continuing the treatment of this approximatio4, we consider the Stark effect

due to this motion. The number of ions with displaoevient r to rfdr is

477rr2 exp(. 6(r) krldr
(4.51) N(r)dr : N

f4Tr2 expmw(r )/kcTdr
J e

where E(r) is given by (4.49). Carrying out the integration gives

(452) r (2) .2 2 r

erf .- (0/2exp - s2

where

(4.52a) erf x emy

aznd

,2 *2
z

(4,52) er2 - y

(4,b5) s = 2kT& Z

One important result of this formula is obioms the Stark effect dispersion will

fall off exponentially with distance from the line center.

To examine the range of applicability of this approximation, we calculate the

average displaemnt
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, N r rN r -e {S( 1)4.4 ; :, ,)-- 2 a

" ..T- ~err s -(s/j2} e'

For s >>l this }ecom s

(4.54a) 
- -

a' T ,

while for a <1-1

2

(4.54b) *

The expansion ohws that for s <<1, thit is high temperature, low deraizty (large

.,t )or small nuclear charge, the average displacement of the nuclei will be 3/8

of'-the average internuclAar distance. This is the result if the nucleus could be

with ecustl probability at arty point in the -sphere. In this case we oct1ld scarcely

speak of harmonic vibrations and the method of treatment is not applicable. For

large a however, that is low temperature, high density, and/or high nuclear

charge, (4.54a) shows our approximation to be adequate. Figure 2 shows the behx ior

of the rla ,t as a function of s.

For the eases where the approxiation is valid, the electric field on a

nucleus situated at r is lireoted toward the lattice point and has magnitude

The distribution of nuclear position will lead to a distribution of electric

field magnitudes, and hence a continuous dispersion of the observed spectral lines

of the assembly of ions. The fraction of ions of effective charge Z which will be

subj ect to a field of betr I and IOlis 22 2
a-*~~~ 

_ 
'* "

z EL 3 8 dexp 1;2...
(4.53) !z,2 JE0 dIE1 <Z'e .5

2
4 L4 erfs - s/2e's
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Frruila (4.55), while correct in order of T^rritue, does not tell the vhcle story,
position

for neighboring ions will be displaced from their equilibriimaamnd give rise to a

dipole fie i. The resultant of all dipoles will glvc a field of the sanm order as

(4.55). moreover, in applications to Stark 5f"'ect, it should be remembered that

the field (4.55) is radial, not linear as in the usual consieeratiors.

1 e now turn to the case where S <<1 and harmonic vibrations do not describe

the motion. Here the nuclei may wander rather freely about, except when one nucleus

akes a very close approach to another. The energy contribution Fill be essentially

that of a pnrf'eot gas

4.5-) : A/ NkT.

The sptial distribution of the ions will be aeterm- ,d by their rutua2

potential energy for close arproaohes. To goo2 approximtirn this is sir1y

Z " 2 tt 4,aZ"
(4.58) (rz q2 for r 1 2 < i2-2

:(r12) 0 elsewhere.

Then

(4.59; N(r12 )dry a 2 m (r12)/kT 47rr2  dr .
:1 1

The eleotrio field felt by the ion Z" as it approachec Z' is

r12

so that the nmiber of ions in fields between El and 1 i dj is

(4.61) L o/ exp . k *'

'Ier,- a4.n we can see that the Sterk effect disprsion will fal o f exponentially.



7* Fluttuatlons.

The quantnan uaohanioal treatment we have used did net actually find the

stationary ersrgy levels of our system. The approxiat ions which we were forced

to introduce had the result that we treated the iowa as if they were independent

systems, ant .then we intrduwed interactions boees other ions and the free

electrons as perturbations. The true stationary states, of course, will reses ble

the sero order approximation except that interactions will have removed sam of

the degeneraey. This splitting is vwry *portant as a souwe of lin breadfi.

To inclnde this splitting we can oobsider the intermations as time dependent

jorturbat ions or f luetuations..r

One of theso...flatuations is caused by the nuclear wationm just discussed

in section 6. The nwlesi being so mass o hbe teght of elassioally. Sie

they have in equilibritmi the sane energy as the elVTW5ns, their velocity will be

a factor smaller. (x is the nuclear mass, . the electronic mass). The motion

will be so sle1 eompared to that of the electrons that we my use the adiabatic

approximation for *1s interactions. The result is that electronic levels are

shifted by a Stark effect when two nuclei approach, but no electronic transitions

are induced.

If we thought of the free electrons classically, they would be randomly

distributed in space. We would then obtain considerable density fluctuations in

the neighborhood of eAh ion and it might be imagimsd these effects must be

considered. Our qutu meehanioal treatment of the free electrons, however, is

umeh.oloser to the traWh. We vm t really consider the wave function of a free

electron to etend throughout the solid. This eliminates the density fluctuations.

But, because we have neglected correlations, there is another effect we have missed.

This is Vw collision of free electrons with the ions. Sinoe this is a fast process,

it will iSnsli transitions from one ionio state to another, giving the states a

6ellisl n breadth. It is well know that such breadth gives the s ne form of dis-

persien as the natural breadth.
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V. TFMCT S LIES CN OPACITY.

REThEC! FOR T:RArING :IN cCNTRIB" cr.

1. Separation of Line 7ontributio.

The Rosseland wran opacity Y as is shown in Chapter III (3.24) and (3.is)

is a "ighted average absorption coefficient given by

W(u) du
(5.1) /: - : [

where

(5 ) ) 15 u? *2u (u- 7'
47T

and

(543) ab " lleatt (1*

It is Usually conr'nient to consider the absorption coeffiaient reeclved into w.c

term

(5.4) <, a >

being the absorption duie to continuous proosses alone, and-,j the ebsorption

due to the lines. The reason for this division is thatfu is a moderstey smooth

function of frequency except at the location of an absorption edge, while A is

a very ragged function with sharp ma iia at the frecuenoy of each absorption :.ine.

Substituting (4) in (1) and introducing the notation

(55) r --- ; P : - ,
1fr

we get for the mean free path

0o

5.t. / ' (u)du
0 U
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whe re

tIo

(5.7) )3

and

(5.8 ) /

The latter form of(5.5)shows how the lines reduce the mean free path from

the value Ae obtained by considering continuous processes alone. The contri-

bution of the continuous processes has been treated by all workers in the

field of stellar opacities with varying degrees of completeness, but the con-

tribution of lines has hitherto been ignored.

2. Effect of a single line

To understand the effect lines make on the opacity, and to help in develop-

ink methods of treating lines, we start by considering the simplest case of a

spectrum with only one line. The line absorption coefficient in that case is

(c.f. equation (2.9))

where , the dispersion factor shows the frequency dependence of the absorp-

tion. has a sharp maximum at Z=Z'i , the frequency of the center of the

absorption line, and is so normalized that

(5.10) b 4 ' ,

Without considering further details, we can see qualitatively what is the contri-

bution of this single line to the opacity. Dropninr the subscripts for the moment,

we have

(5.11) -
/- -

Al -c'



where

kTkmo b , kT bv).
(5.i1.) S a - c h

The frequency variation of this function for a typical oase is shcmn in the ac-

'companying figure. It is seen that this function

. 0

0. -

0.6

0+4

0.

. -0

I - 711
I U

approaches unity when r is a maxir n mi at the frequency yr te center of the line,

decreases slowly with displacement from the center until it becomes } when the

line absorption is equal to the continuous absorption backround. The variation

of the 'unction in the neighborhood of A is rapid, the transition from values near

unity to values near zero oocurrinp within a small frequency range. For greater

3isplacements the function falls off ra:i'2ly, soon behaving siraly as r. The cor.-

trast betvmen the function r which one night naively expect to determine the line

effect and r/lr is marked. Whereas r drops to its value at (u-u )-, we

find that rulfr drops to half its value only at (u-uG'-3 F.

The integral (5.8) giving the contributing of the line i; approximately

5. ) du

g U/ 0

since the integrend is negi-able exet o requ-3nc1i'c noer y)- 21 Th
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00

isrtant then is du. The greatest part of the contribution to this

integral comes in the range where r/(l4r)alz praetieally nothing is .setributed

by regions where r/(l4r) -. Thus if w is the distenee between uox hW*4 and

the frequency ulhy/kT at whtoh r-l, the integral is approximately

(s.1I) A x

The quamntity 2w we shall term the wingspread of the line upon its continuous back.

grovrA* It is this quantity, as is shown by (5.15), rather than the dispersion

breadth of the line which determines the contribution at the line to the opaoity.

,S y actually think of the line, according to (5.13), as leaving the transmission

of light unaffected throughout the speetrum except in the region of its wingspread,

*w1re it completely blocks the transmission.

The wingspread of the line is determined by the condition

(5.14) -- b' {(1u ) :

thus it depends on the ratio of line strength if to continuous background, and

*e dispersion. Even a line whieh has very small dispersive breadth Way have a

.cnsiderable wingspread if it is strong enough. On the other head, a broad line

may have very small or ser'o wingspread if it is weak compared to its baekgrund.

Argvmnts for neglecting line contributions because of the small dispersive breodthe

alons are, therefore, incorrect. Another important conclusion we my draw is the

following* Singe the wingspread does not depend on the position of the line, the

1i* oontribution in the case of an isolated line is not sensitive to position.

Suppose we consider first an artificial ample of a line with a rectangular

shaped dispersion

b( ) - y ffor J,-l

5015) b(y) : 0 otherwise.
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Then

(5.16)} do 3
ne onU l A

If the lime abeorption is very strovw. compared to the oostiuonaa #%*etsrtionu 6-

obtain the obvious result that

(5.17) } W t,

that is, the line eliminate# the entire transidssion of te f*.q*gO iukdnaWsU

2 A u. It seems at first sight a little aaasing tha this resat -e s.t

on. Nt the lve Strength, for this implies that a lime 10 tie s ag* * as

another will have just the sa. effect on opaoity. but ! *U$ w iAim efte

that if a line canplstely absorbs the fadia;& in On intvSM4 it

m ximum effect in reducing the tr*2nission. A yO r lime 031 a.

On the other hand, if the line absorption eoeffi.Sent U* weak .we t (Ma

oouxbinuous background, that is

we get

(5.19) S

here we get the i*o-tant result (In contrast to (1.17) Wbom) that i-be a fet

of the line is directly proportional to its integrated &tf * w hut ii U IM.a

pendent of the dispersion interval 2 L V . As a Inadiste eneqqueest it tbis, v

have that n is independent of the dispersion ships 1tever that my boa so IMg

as the anmlogUe to (5.18) is fulfilled. This is a very Impest*at fte' we*a

lines# that is, U3eS for whi& If b' (u)/ <4 alwsfw give th o~5i* 1b*-e (o)

and it is umeeoessary to inquire into the details dt the diapore*sa Sim s mik

of the lines in a speetr=m are of this natre, (5.,9) solves a great 4fat of the

problem.



Proceeding now to the actual types of dispersion we shall .n moter, th

sposifie ease of natural and/or oollision bdreadt bs the dispersion forLaUa

(egf. (z.iji).

(5.20)
4 (,P -M Z4 ?fir

Si(u)
-r

*mere V/4n is the half breadth, and

(5.21)

The wingspread w is obtaisrd from (5.14) ivi g

(5.22) J -I

the latter apprzimnation being valid if

(5.23) << i,

i.e. if F'<.w, a .onditton bich is froq ent ly the ease. 1%. w1ingprad is 1 r

proportion l to r and to the square root of the lie streorzt (if CSrXyiag s :

the integration of (5.12), we get

(5.24 ) /\ a -" T 1; "'

In the eas where Trs r/(Wr),c1 we may put the last faobW oqu#Ll to i E ut his

ease the wingspread is given b y th simplified fxmm of (5,22) alkI ta 'Ovnt is

(a.25) A,1  f

The fact that the line blacks out a frequency ibr l i $J/2 tim t tp wi gpr.M

is a confirmation of the general qualitative result is (5.13). The rsa t the

-dz-erioal factor Is so different (1.57 instead of 1) is that the natUrl breadth

dispersion gives appreciable -absorption even rather tsr frw the rln. eeater.

We shall generally speak of the extre 1)t i n to the "*.ity 01 rm.gions

r~



beyond the wing spread as a "tail" effect, because it iS due to the tail minds of

the dispersion curve.

In the other extreme case of weak lines (5.4) reduces to

(5.26) /

This result is precisely the same as (5.19) for the case of step-like dispersion,

and is a special illustration of the general validity of the week line formula,

ftpirdless of type of dispersion or breadth.

Turning next to the case of Doppler broadening, the dispersion is

h Lo2  1 r,2 (u-u0)2
(5.Z'T) b(*) : g ,x -- ap' C

2 7r kTu uo

The half breadth is given by the value y which msrkes

(5.28) b((y- ) : b( 2)o).

We *"' frn (5.28) and (5.27) that

(5.29) r' u a u A 2.

The wi spread, hcmever, is given by the condition that

Xf + M2V0r... ..... ,.- .*

whence

(5 W0 2kuO nfM2

.~31) w Z.F 1.443 in .4696 .

Aside'fram the iogarithio factor, the expressions for the wingsproad (5.03) aad

the dispersion bradth agree. This is, of course, dvW to the exponentially fall-

'! off of the dispersion curve with dPUtanoe from the line center; as a oonse-



quenoe, the line has effeotivr absorption only in the region of its dispernio:n

breadth.

The actual contribution of the line with Donpler breadth to the opacity is

from (5.11), (5.12), and (5.27)

(5.32 )
/\ 0

du

coB i2 / *

where

(5.33) B - --

2 ku

We can express the i

(5.54) A

fu a

ntegra; as

n- nB
T

Dal

1

N'
a :

which far small values of Bi/a develops as

Nt
(5.55) j1 s uuK

1 b d~
- "T 2k%.u

4. 0

rhe leading terms of this expansion is the weak line r,;sult (5.19) as should ndeed

_e expected, for the condition

1( o3 ) arge vaT- s do c

sam that the lines aro weak.

For large values of' n "a, the analytic form (5.34) is incon-enient for calaula-

tion. We then develop the nebgral front (5.32) as

xdx -- 4 d: -

e B 
x 

o

B4

x dx

.~e )

The leading term in the,,development is 2(a/B )V BS/a
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(5.1?) Aats2*

The higher order tws somtitube a tail Offeet.

It is instraxtiw to oqspaxe the effect of two Itnes having the Sam total

strengib and the eamm halt breadth. although ke d ispersotn in *n is eauxod by

atur.1 and/1or eollisims breadth, while in the Wtsr it is saued br Dnppler

breadth. For 'weak limas (5.19) toll' us the result JA identical. For strg

lin, we have

'5 n 2,ra g157 r'0 ~) / w
) Doppler

For the ease of strong liaer bbis ratio is always mseh greater than ur Ws

oa., therefore, eavolude that the !natural breadth dispersion is always s OtIve

as or srn ffeetive than Doppler dispersion in iaeasing the opaeityp

New *at East"** the Qooiftribution of a li 4le lie to s .paelty, #p

san inestigat the effect of a lino spoetrm. It is oharaeteristi# at this prebism

tat the s1perposition primeiple does not hold in general, i.e. the effect of lines

is net aS ply additive. Iass4, it depend s upon the rWtMive positi om of the

lina. To illustrate Win mOt Imarly, we shall consider the contribution of

two uwem to the optri. The line absorption ooe"fts1At will then be

.3.a

Otiare j denotes the huimber of the line. Suppose first. that the lines are very

far ay from each fher aoapared to their wingspred ( their breadth). Then

the fuunot i on - in late grand of (5.8) will have trn widely separated hmps,

as illustrated in the oosapsa ing figure.
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Sirme the individual line absorption coefficients in the regions outside the

wingspread of a line are very small compared to the continuous absorption, we

will have, as suggested by (5.19) and demonstrated later on, that the contributions

to the integral of this region are almost precisely additive. Moreover, they are

small, so it is not necessary to worry about the very slight deviations from addi-

tivity. Within the wingspread of each line, the contribution to r of the neighbor-

ing ,line is small; the ratio r/(lr) is almost unity. Inereasin; r slightly will

have even less effect on r/(lfr). Thus, within the wingspread each line makes the

seine contribution to the opacity whether its neighbor is present or not. Hence,

the overall effect of the two lines is very nearly additive.

The additivity feature breaks down as soon as the wingspread of the lines

verlap Appr~ojably. Going to the extreme case of overlapping, we consider two

identioa l nes at the same frequoey. The line absorption efficient will then be

(5.40) 2

',iere indicates the line absorption coefficient of the single line.

The ratio r/(lfr) c 2r 1/(12r 1 ). Now within the wingspread of the line (if the line

1s *trong r1 ,>1) we have that Zrl/(1}r;2 1 )~1i rl(tr 1 ). Henoe, the two lines together

have no more effect on the transmission than the single line. This result was again

foreshadowed by (6.17). The tails of the two lines go as 2r1 compared to rl for a

single line, and d Utivity will oharaoterize their contribution. However, the

tail effect is us 4ly small, so rourhly we have the result that two strongly over-

lapping lines do not increase the opacity much beyond that resulting from the stronger

of the two lines.

Naturally for cases of intermediary overlapping we shall have the situation

between the extremes of strict additivity for no overlapping, and Ao added effect

for complete overlapping. Thus, we conclude that the relative position of the



two lines is critical, although their absolute position is nob.

We shall now reinfere thUes qualitative conolusions with examples for mie

ease of stepwrise dispersion, natwal breadth dispersion, and Doppl*r dispersion.

ror the oase of stepwise dispersion we take

( .41) b(y f -Min V i a 2-j

bl (y ) 0 otherwise ,

and similarly with b2 *

W() r duz
(5.42) /\ _ du s

~ fb (u)

If the two ste Oo not overlap, that is 32.24> 1 A w a break up the

integral wire is anr frequeney 4 '631 < 22 between

the steps. In each integral the integrand is exactly the same as for th ease

of each line taken alone. Thus
.ao

n' g du di
(5 .4 ) o u 3 15 r ...... s" y ou 14 , - -

Iff b s N f1b1

where we have extended the upper limit from u' to oo because the integrad is serc

in that reion. We thus obtain exaot auditivity for the nn overlapping ease.
2

Suppose %uw there is saew overlving. Then L Nf b (W) will bebave as

toliew.

2

j1:1E b (2)-0g <W zd.

Et

(5.44 )Y W - -- f20 6

1 2412-

:0;f b$~ aky
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Thi fuwa4$on;1a A1N trAted is tbs accompaaying fiparWs0

2
}V I Ar')

TJa

=Zf4;z ; + ,(4e)
(B.4r5)

lv A

whbI'-% is sew Uean fsqteor -of the twq lines whose value is not .rIt is.,

Zu the q wh re,tw 1La0-sre-wk pred to the baokgrouind, vs oan tngue*

the tty, in eaah of the three donordnators. We then got

-b~ 4;.

thi44s the esa #ibt Mi exactly additive despite th. -'oeer fcg,

Insd4* alN this swbur tws t W- #ontributians of. amy set of bak abSorpttons

Upon A strong ooitimmuas bUctgrauud are additive for arY 1, absor*10t eoeffiee

*&n b. app'roimat4 by a e.riis of stop fanmtious. In peicI4ular the contribute

yp "Vrlapg 2 ta4 l sais . 1ammi ly alattMe6

If the Ui* are strong somprod to the backgroad ae may n.glet 11* ses

term in each aoeiniAop tig

(5.4'7) w/Cu)



Here we can definitely see thq non auditivity of .he line contribution but it is

even more striking if the lines exactly overlap. Then we get

(5.48) WMk)

which is precisely the saee as the effect of either line alone.

The general oonolusions about additivity hold for the oae of natural

and/or collision breadth dispersion, 'bun are sorewhav influenced by the pronouosed

tail in this type of dispersion. For the case of two identical lines when the

wings spreads do not overla4j the contribution to the opacity is At =? A/,

where A., is the contribution of each line individually. But suppose the lines

are ,e otly superposed. Then from (5.24) we get

(45.49) ~ a) S '/ p U -'/

For nreng lines the last factor ii unity and we oan fee thay A= A . The

feetor el is easy to understand, since the contribution of the region inside

the wingspread is the maw in the case of twu lies as i-t one, while the tail

region is additive. Referring to (5.25) we see that the tail contributes &/g -k/)

times the contr'1ation 1Ith nthe wingspread. *h us

U6.50)W/

Wks *eerieal f aotair 1.564 is quito lose to 'a. 1*414.

For weak lines, on the other band we may electt 1 compared to ) r.f,

Iad we get

(5.61) I bAy,
u*2
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and thus the contributions are additive.

4. 3ifet of sma lime spectrum

From the preceding discussion of the oontribut ion of two lines, the

features and difiealties of the treatment of mauy lines appears. The most

eritical factor is whether or tot the wingspread of the lines overlap. If there

is ne overlapping the contributions are additive. The ease of weak lines which

aye always audivive is really included in the category or nou-overlapping wingspread,

bioause the wigspread of a weak line is iero. When overlapping exists no simpLe

treatment is readily available, but we may say the contribution of the lines is

less then in the non-overlapping case.

In 1sneral, even if the contributions of tbs lines are additive9 the result

is still not simple enough to permit ready oaloulation for a complicated line

spectrum, because the effect of thousands of individual lines has to be computed

and then ruamed. This requires knowing the strengths, positions and disperseons

of e-*ry line. Such a calculation is practicaL only for a very simple spectrum

litr tbkt charaoteristis of a one-electron ion. However, such cases are of some.

praetioal importance for often we shall have an assemblage of ions having either

no bound electrons at all, or only 1 bound K electron. Even the case of 2 bound

I electrons is simple enough, as is also the case of a single bound ejeatron out-

side a closed shell. The wear linEs case, however, is such more readily adapted

to copatation. We can see by our consideration of the step type dispersion that

the contribution of. the line is independent of the dispersion i ntervai. ''rneralising

since any dispersion curve ay be made up by superposing steps, w, conclude that

the effect of wear lines is independent or the dispersion shape and breadth as wel'.

This is confirmed by the specific results for natural breadth dispersion and

Doppler dispersion. Hence the jth weak line gives a contribution (5.19) and if



we ts-A f. group of liras in the not hborhro'i of P_ ;erticuia.r frequency $i, we

(5.52 ) /\: A -

u::

since the contributions are additive and th o etinunus abs orpt ion "M0 and th

veiF~hting factors W(u)/u' do not alter ruch frc- one member of the ironp to another.

The important point aboit this formula is that rnly the total stren-th 1 f,
S v

of the group of lines enters. Thus, we need not calculate strenMths ->f individual

lines, for cften the total strength is given 63rectly by the theory cf the rpectrv:..

There is also no need to calculate the dispersion. The resultinm simplification

of oalculat!on is enormous. Since most of the lines are weak, equation (5.52.)

solves a great deal of our problem in a simple runner.

Because of its importance, we shall present another derivation of (5.52) which

emphasizes a different aspect of its physical intepretation. Consider a group

of mrny lines with centers in the interval u* - Lu to u*f du, none of which very

much exceeds the average in strength. Assume also that the lines are distributed

fairly uniformly and thickly over the region. There the absorption coefficient

for all these lines will no longer be a very jagged function; for, although it

still may have many maxima and minima, and even more inflections, the variations

from a smoothed average curve will be small. This is illustrated in the accrmpany

ing figure

Few lines in region Many weak
lines in
region.

Since the contribution to the opacity is determined by an isntet+W, it Is only som.



sert of avdwg twb eb js imp tant. The average absorption coefficient may be

it d by oozoi deri5 the total stre ngth of the group of lives 4

unitormly waved vut* ever the interval 4 '( entered at * Then

IZA ~PpO si& gi'te n in ik logy with "{.el) as

(v.64)

O - "---(u)

If the asttire absorption due to the group of lines is creak this reduoss to (5.5Z).

If we care the contribution of continuous processes in the same interval ve

gat from {'.1) simply ti A -' -6 Comparing with (5.54) vae age that a

trsction of the continuous transmission of the region remains

Because of this .derivation ire shall call (5.54) the "smearing out' approximation.

WO should eSNhAsiss some of the limitations of this approxivation. Firet,all the

absorption strength has been artificially co. ind to the region u #-b vu' o a'f t a

Eevauoe, of ' tb dispersion, there is a tail effect of some absorption Outside this

reg1#k., If the region within xa4c the eitrengthe were am ared out has been made very

blaok;, the twclusion of some extra absorption whioh should properly go into the tails

will not ahango tho contribution of this region. The absence of absorption in the

,tails, may, however, considerably over estimate t7:e transmission t here. The tail

effect hag thus caused us to underestimate the opacity. Balancing this iF the fact

that wwearinG out overestimates the opacity due to the contribution of linen in

the smeare out regions. Furthermore whuen the total absorption coefficient due

to 11 ass Ase small compared to the background, the contributions are strictly

additive, and not including the tails Is exactly coml.^nsated by putting the extra

srtgth into the interval a bl . No ooncluda that it is generally better to for-



get about the tail effect, unless something is also dew to improve es smmarisg

out approximation.

A second limitation of this approximation oceuue It m"6 or a fet lIts*

oarry the bulk of the strength. While wearing out is, valid gor tb* gIW*a 000

of lines, the few strong lines should not be sweared outo A po*ssbIe dmeedure

to follow in this ease is to smer out the weak lines and "Iou 1 S2i .

contribution to the line absorption ooefficien- t / Add t-4s * b 1o -

tinuum Ac to fort a new background, and superimposed the strong limn OpR this

The strong line a retribution will be given by (5,8) except th1* r m.s =tbe

s-ignifioance A

The opposing extreme to the smearing out approxiaten OeOCr* 1 b;tty lines

very clearly overlap. This ose is also extremely f e4aezt boatt** r SO 4t"

every lim isn a spectrum is accompanied by many close slAs , iS ftiw g %r

components for ezaniple. Itn general it will be ouf'ficiert to 4etet i tawe wtM

spread of the group of loosely speed lines and assume that the *ri tmWe a Is

tero within the wingspread. FTr -atural breadth dispersiaa this ftt gest

be increased by the factor t/2 to account for the pronqunoed tal *,

We may contrast the results in the case of natural breadth for *h4gsO*

1) the total strength I of the lines is equally distribat ".'W1 W

non-overlapping lines giving a strength Alf to each Z) t1e R I

dent. In 1) the contributions are aeeitive and

(5.55) Aj = M A., ,

while i* 2) we find

(5.56) Al 'A,,

Iniormediary oe-se aill lie between the two 6xtremesa
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While we cannot earry out the treatment for the intermediary cases in detail

except by a device, soon to be discussed, which treats the lines statistically,

we can rake an approximate treatment correct to first order terns. Suppose we

have a group of several lines all with about the sawi dispersion and all at

almost the sase fryquombM. Then if we consider the line absorption seafTbution

to te opacity and expand the result in powers of the deviations of the lines frem

sami average position, we get the result that the zero order term is precisely the

same as would result if we had a single line with the total strength of the group

Isolated at the average position. The first order term may be made to vanish by

appropriately shoosbig this average position. Calculations show that the proper

method of averaging is to weight each line position and breadth by Nf r, the

product of strength and breadth of the line. Indeed the principle of a strenglb-

breadth veightef average is general.

The foregoing acrs derations will enable us to make rough estimates of the

contribution of lines to the opacity. In manry cases this will suffice, since the

line contribution U eall, or else may be of the type given by the extremes

mansidered here. But we should examine the more general problem of an arbitrary

array of lines. ?Ip line absorption coefficient is then

(T.O2 b (3A

and wee merely need earry out the operations indicated in (5.6). But let an note

what this requires. We need the fol'Lowing data for each individual lie. 1)

position, 2) strength, 3) dispersion. Then we have to perform a vary complicated

mmteriaal integration. In principle all this may be done, - in praotioe the som w

plexity of the calculations makes the job prohibitively long unjess we wish to

treat a sall speotral region with few lines.
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5. General Statistical Features of Lines.

Statistical Treatment of Lin Spectra,.

The very complexity of a line spectrum ray be the means of providing a

simple method of calculating its effect on opacities. For, if the enormous

number of lines precludes an individual treatment, it makes possible a statistiesi

approach. This approach will be developed in general in the suoceeding paragraphe

and then applied later in the special cases of interest.

Nor the line absorption coeffieient.,Ag and consequently r is the sum of

contributions from every line in the speotrim. The ith line gives an absorption

coefficient which has a sharp maximwzn at the frequency u : ui of the center

of the line and approaches zero for frequencies far from the center. the stmm

r : ri t1 therefore appears as a very irregular function of u with
i i Juo

many maximi, which it is practically hopeless to, calculate. We see, however, that

in order to calculate the mean opacity, it is not strictly necessary to kam all

the details of the line absorption coefficient itself as a tNmotion of frequency,

but it would suffice to knor the average value. At first sight, however, the

calculation of the proper average would seem to involve evaluation of the very

saw integral (5.6) as needed to find the opacity. Here it is that the statisti-

cal approach proves useful. Suppose in (5.6) instead of the actual value of P,

we insert a statistical average P. averaged over certain distributions of line

position, strength, and breadth. It ma.y turn out that this average is rather

easily susceptible to calculation compared to P itself. While the two tNwtions

msy not have the same detailed dependence on frequent, we my hope that, if a

sensible statistical average is used, the integral (5.6) itself will mt be very

muoh altered by the substitution of P for P.
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To understand tbw plsical basis for the statistics we shall use, let us

*etsider the very idealised case of a line spectrum having just two lines,

separated sufficiently so that there is very little overlap of the dispersion

eures of eeh line. Of course, in this case we can calculate P and, therefore,

the opacity K. W. can also calculate the opacity if the two lines were a little

fta other apart wi a little closer together, and we would get substantially the

seaw result, sine the integral is insensitive to the position of each line, except

for the overlap which is assumed ianll. We can indeed piok a number of different

distributions at the positions of the two lines, which will not give very different

values /(e K), calculate these values, and average them,. The average will

nturaI4ly agree rather olesely with the true value, since every member of the

group averaged agreed rather closely by itself. It will not affect the average

vary =ch ewan if we include a few distributions (for example, one in which the

oeutere of both lions coincide), whose resultant opacity is quite different frof

the true 'vale, Nor, it is immaterial whether we calculate P for each distribution,

inbgrat .ch one, and then average, or invert the order of averaging and integra-

Ua34L tap finding the average P for all the distributions and then integrating to

fand the averaged opacity.

The question am arises as to what distribution should be included in our

average. To answer this, we look at a line spectrum imposed of several groups

of Uo lines, eaeh group in a slightly different frequency range so that lines

in differet groups do not overlap to any extent. Some of these groups uAoubtedly

will kvo the two lines far apart and others will have them closer together*

We oaa treat eaoh group separately by the averaging procedure because of the

bAomw clap between group. If in the distributions we averaged, we never

imlud*d ezny in whieh the two lines strongly overlap, we would estimate the

spapity due to Vie groups with overlap too high, while we would be substantial-

ly anrreot for all the groups without overlap. It is better to make compensating

errreW by including in our average some distributions with strong overlap. For



then, while we would estimae the opaoity of a group having litle o-erlar

too lour, we would on the other hand estimate too high for the groups with strong

overlap. If the proportion of strong to weak overlap istribuzlons inclcied in

our averages is the save as the proportion of strong to weak overlap grou-f in the

na ual spectrum, the errors wall exactly .ompensste. This principle iS ' cours

aprl.zaole to tho general case of a line spectrum, as well as to 'he spec;fic

exsmp'le discussed ?e re.

Now there are laws which tell, in any actual sectrum, exactly where esch

line must be. These are extremely complicated, and because tras fact the

distribution of line positions in the groups of a complicated epectrua is very

nearly random, that is)considering sl groupsa line has about e4qal probe ability

of oocur ig anywhere within the frequency range covered by the group. It is must

this distribution of line pobitious then whtoh we shall use in our stati+tiosi

av rage. Now if the ith line or a spectrum can with equal probability lie

anywhere in the region t4 uNt + ' , the expected average of,

Pa , ', ) /( over ali distributions of line

positions consistent with this probability is

I I

This iterated integral is even more hopelessly complicated than (5.6) but it

yields its value to any desired degree of approximation by the use of an extremely

ingenious device suggested by Dr. Edward Teller. Develop the function P

as an exponential series

(5.55) ! ,- y
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By properly choosing the 4, and ir,

agreement (2 or 3%) between the series

function /(fA--) in the range o A

range of A will usually be sufficient

opacity of regions where A; 100 will t

(5.60)
//. -.-

L- i70~ C+.3

, it is possible to get good numerical

ate e kand the

/00 , taking only four terms. This

; in any case the contributions to the

>e negligible. The series ve shall use is

..35Jv
+ . .0 C

-. /0 X -. '0 ,6je,
+ .05/0 C

Insering (5.59) into (5.58) reduces the iterated integral to a product of single

integrals each of the same type.

(5.61) h'

Cb
M-U a I

Although the essential simplification has now been made, (5.61) can be transformed

into more convenient form, as follows:

( 5.62)

where 
I- }o

(5.63) ~~( 
Fu t e d f n n

Further defining

(5.64) -

equation (5.62) becomes

(5.65) I'-

~,- C
L

11''

- A44kL

1 44 C

The quantity T, a function of frequency .U, may now be inserted into (5.6) in

place of F, with the expectation that the integral itself will not be very much

altered. A straightforward numerical integration will then give the opacity.

.

P c.



-G9-(~

We now examine the quantity E4 , ,nn essential ao-cor ir. 7, more 1iosely.
it involves a sum over all lines in 'h entre speotrurm. It appears then that

we are up against the same difficulty which r ientee the caioulation of f = 2 <

itself, bpforo we introduced the statistics. appra;h, !mevy tuc many lines to

calculate individually. But closer examirmation shows me have made some progress.

4 irst, f .L does not require knuwle.dge of the exact position of every line, but

only the linting frequencies of the region within which it may be found in the

statistical treatment. M'auy lines have these same limit, aid we thus have

elimi.Tated very much of the data required for the opacity calculation. Second,

it is geoPrally possible to group lines into classes such that the sum over the

lines in a class is simple. As one important e-ample of such a case, suppose the

lines c~ ~ which both ''all int o +e same frequency

region and have the same value for the integral L are treav.va tug-her.

Then

t .&) '. G4 I / iLsd
(5.66)- A-

and part of the sum occuring in 7r has been performed by reducing it to one term.

Sther ways of grouping lines into classes may also be used, thv common feature of

a s% devicess bei14 the reduction of 'The sum over all lines En to a sum over

lasses f lines E- , the sum over the lines iu each class being already

perform .ed3. Thus we no longer treat individual iines, bu classes with tens,

hundreds :r thousands of lines. Furthermore, it may be possible to use overall

properties of a class, for example the total a'-sorptioa-strength of all the lines

in the class, or again the aver%:e breadth, ino-.ead of requiring detailed calcula-

tioo of this data for each line. Looking further ahead we -my even find features

among the classes which facilitate summing over them. For the moment we pause to

cons der the special cases with which we shall be mainly concerned in our applioa-

tions.



We first consider the case in which natural and/or ccllisfon breadth are the

determininL factors in dispersion. In that case the absorption coefficient for the

ith line is given by (2.1.5) and (2.). Inserting the value of * icdc into

(5 we obtain:

( 15, 6 7 ) . 7
%J#L

&/k J,
LIc ~~t*

-I
-~

-t )

Charging variable of

( 5.68) 3 T -

integration in (5.67),

VI- i

al. 4
r-

7?

gives

(4

4! -l-C

The result is a definite integral which depends

integration. By de iring

at

r La)"I,
J

on ome parameter and the limits of

- ~Y~ ~pqL
)

ue car; write (5.68) as

(

(5.70) L<
N$-L F ( (t)

where

(5.71)

(5.72 )

0z ( Fo

a rce

are

4'A 41
I Sf 0L

9

.. u x Cy.

i_

/M

A
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Values of the integral F (4),u) are presented in Table V; so that it is a

comparatively simple matter to compute J,

If, in a certain frequency interval L'j A4 , there are

many lines M' having the same value of jM; , such a set of lines can be con-

sidered as a class and formula (5.66) applies. This will occur for example if all

lines had the same strength, breadth and dispersion. As pointed out previously this

means a great simplification. If in addition the V"- - / , we can

expand the logarithm obtaining

The first set of factors A 4 S) is independent of n, the term number in

the series development of / , and depends only slightly on frequency

through the factor S ,also /9k AJ T) is the total absorption strength of

all lines in the group. The second factor F(4*k" ) is less than unity, approaching

unity as a limit as *A-O In a great many cases this limiting value can be insert-

ed, if not for all values of n , at least for the higher values. The strong fre-

quency dependence of is exhibited in the factor O (') which is close to

unity within the region '14 - u all 'I64 and is close to zero

outside this region. Similar to the factor F ( t4., k) ), the factor 6Ak() depends

upon a only through the appearance, of 4 .k and if 4 , the depen-

dence on n disappears entirely. Thus if 4 / , Fdk is independent of

n and we have the interesting result that

(5.74) - lr4 9

We shall later give an important physical interpretation to this result after we have

seen it appear in other connections.

It may happen that in a region there are lines which have the sane breadth, but



not the same strength. While the simplification (5.73) does not apply, an even

simpler result can be obtaired in one important case by use of a treatment due to

(1)
Boris Jaoobsohn. Let

which have a strength

L Q . Then

(5.75) _

the number of lines of

times breadth N r C

hM , ~k

the group we are treating as

between 4 and Q4 + G4

a class

be

or, if one may expand

(5s.76)

the logarithm,

If there are very r*ny lines they will form a practically continuous distribution

in 9 and the sum over all Q in (5.76) may be replaced by an integral.

Referring to (5.68)0 however, we see that J , . is also an integral, but the

variable of integra' ion is related to the frequency I of the center of the line.

The order of the t o integrations may be reversed and we obtain

( 5.77)-

Now the essential point of the method is to find a distribution of strengths

which occurs frequently in practice, and which enables both integrations in (5.77)

to be performed ar 1ytically. Such a distribution is

(5.75) A'({(kk

where Mk is the total number of lines in the kth class and QyL is the average NE

of the elabs. Aithbugh it is physically impossible to have any lines of infinite

(1) Op. ait.

E 4-3 (Q A
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stren th, the upper limit of the integral over Q ray well be extended to infinity,

since because of the exponential nature of the distribution (5.78) the contribution

of the very large Q is negligible. The integrating over Q from 0 to c* gives

(51 k uk-u} Ok b Nf/(TrS r ) dx
-nk bn 2 k x2 +b nNf/(rs r)

u k-u-

Uk

Integrating now over x, we have

~ik (u)
(5.80, 

260k
14 ank

where

(5.81) ank bu Tr
k

is exactly the same quantity previously defined in connection with a distribution

of lines of equal strength and

an 1 "neo -l u_-_- _

(5.82) g (u, i - tan- -tan .0
-I/ rk J1aa Fk l14ank

To facilitate computations of this function, nomgraphs have been prepared,

(Fig. 3a, Fig. 3b, Fig. 4). A comparison of (5.80) and (5.73) shows the extreme

similarity of the results for these two different distributions. The first set

of factors giving the essential magnitude of E is identical. The second- 9 - nk
2Lok

factor F(a C0) or lfa ) is less than unity and independent of ag as an-*0.

The last factor in both cases contains the important frequency dependence, and has

the sane qualitative features. In the limit ank --+) the two formulae become identi-

cal as considerations of the properties of F(a,u) shows. In that case equation

(5.74) applies to this type of distribution also.

To explain why the results are identical in the limit an-+ 0, and what the

simple form (5.74 means, we return to the shearing out approximation (5.57).
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J 3j
Using this ap)rorimati on gives r : n 2 gd

(s.83) P : =d

1 f--
S 26u

The only difference between (5.87) and (5.74) is the fact that in the latter

sase is not quite zero outside the interval u- 4% to u 4 nk, and it

is not quite equal to r, , differing by the factor g, wfich may be .8 to .98

in typical cases, within the interval. The first difference mentioned, the so-

called tail effect, is the more important. Now it is just under the assumptions

used in making this derivation that the quantity ank <1 and <<1. The ap-
2ek

proximation (5.74) is thus essentially equivalent to continuously smearing out

the absorption strength of the lines in the regions where they occur,

6. Statistical Treatment of Absorption Edges.

The very sazw type of statistical treatment appropriate for lines should

also be used to treat the bound-free (photoelectric) absorptions, for there

will be a very large number of absorption edges. In this section me shall

develop this method, and also discuss some rather less accurate approximations.

The bound-free absorption cross-section given by (2.23) may be rewritten as

(5.84) r- km , V T '

In the neighborhood of the ionization potential of an electron shell, say the L

shell, the function u3 ,,f will have a large number of small steps due to the

appearance of a new term in the sum at each absorption edge. It may well have

somewhat the shape indicr;ei by the accompanying figure
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J 6 .4'f (V/

fr 9

Between such groups of edges, bf and consequently/,' the continuous absorption,

is a smoothly varying function.

By means of a statistical treatment completely analogous to our treat.,ent of

lines, the function ij, jagged near each group o" edges, is rep4rced by a smoothly

varying. average 3hOsen so that the final opacity is not Cwlsified. To do this, we

artificially divided the absorption coefficient into three contributions:

(5.84a) ___ * (\-/-<) +*9,

wherejC is some average function approximately reprosenting the gross aspects of

c. Ten

(5.85)

where

(5.86) r ;

and introducing

Sir

r :--. ;
-,Q

-I

the opacity formula beoores

.t- ' 1i,-rtil r),c
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00

A: 1PP'N(u) di

(OK e U

We shall endeavor to replace P

1/,c : ie have approximately

,X9 1 P
(5.8 9) -- : -=- IA0o

by P' its statistical average. Then since

(5.90) r - --

, o .ic

The entire statistical treatment of lines of the last section oats be carried thr

unaltered but we now interpret r by (5.90) which involves only the statistical

average of/-o, not its small details.

Suppose now that the ith absorption edge might with equal probability fall

anywhere in the interval from u*.. i to ui '8 Then by following SLimlar steps

to those in the statistical treatment of lines which lead to (5.61), we get

(5.91) P'(u) _ a ... L. e-bnr' . du,
n i 2 j

where ri is the contribution to r of the ith term in the sum (5.54). We thus

see that

(5,92)

ri : 0

r

for u .uj,

for u >, u,

and ( is a slowly vs.ryling function of frequency. Now consider the edges ar-

ranged in order of ascending ionization frequency. For the particular frequency

u at which P'(u) is to be evaluated, assume that the edges 1, 2 ... j(u) all

certainly lie below u, that is

(5.93-) u di <. u for 1$ i j(u).

Also assuM t1hat the regions in which edges j (u) } 1,...k (6) fall include u,

that is

ough



.94 u. - j 6 u . u } 4, for j*- :

, tih -'th r edges will all certainly 1b above, t, rt. is

u U1

c ryr thA edges of $5.95) the integral in (5.91) i >t i44 for those of 5.94)

it is u-n. -A) el . (u4 ), while for those & (5.9') it is 2a3.r

ne, the re or? , have: f or ' .91)

(6.96 ) t(u): an -bO ----- 1

n i J); k u i l

The absorption ediges occur in groups with long frequency intervals beween groups.

us follw the variation o' ?'(u; with u from a frequency u-u,, which is belrw

p "articultr Croup of edcges--for conore enoss vay below The L shell ionization

ei~es,--to a frequency u:ug above the group edges. At u Tu, There will be no

terms in the second product, so that

j(u) (

P (u.) C an /j e bnia e2; .l ,
n n

;hence by (5.59)

-i 3
(s.97) P'(u ) 1u

14 E
1:1

Likewise for u : "2, there will he no terms in second product of (5.96) but there

will be additional terms in the first product giving

(5.98 ) P'(u,

j (u

i:1

The form (5.97) will hold as u increases from u until u becomes equal to the limit

of the region available to the lost edge. Then sorry terms in the second product

begin to ar'ear and P' (u) decrease until after u has pass& throirh the region of

the elges, it takes the form (5.983). The variation through the region of the edges
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takes a very simple form in the case where there are very many, V:, edges all

having the sa wn : (Pand the same region in which they may fall. Then the

second product becomes

u-(u- ) bn e]{ U-(U*- bi $ /
1 ''' 24 1 - 2.4M

Now assume that the total strength of the edges remains fixed but x increases ap-

proachingro. Then the second product approaches exp - 2 b nTd (5.96)

itself beosnes

1
(5.99) r(u) P ((ul) u-(u*-d) *

14 f ' P 2 6 l
Li

A reasonable choice fcr1tA would be to make A between the groups of edges,

but to hav) jump in one step from its value before the group to its value

after the group at the frequency of the highest edge in the group. The behavior

of u , u nd/, u3 /'p in the neighborhood of a group of edges are illustrated

schematically in the acocmpanying figure.

3

/ i -- - 3 - -- P

4 -A

As a crale approximation, one can simply use a single absorption edge to re-

place a whole group of edges. Whenever this is legitimate, the position of the

edge is not critical, and we my place it at the ionization energy or the ion

with average occupation, that is at the ionization energies JZ of (4.37). The

reason the position of the edge is not critical is that there are always a great

number of lines near the edges. Their high absorption ooefficient hides any small
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alteration in edie absorptl-n. Jaoobsohn has worked out a refinement of this

treatment placing the effective edge of a group so as to make this average of lfc

correct throughout the group but it is rarely necessary to use this treatment*

7. Simplified Practical Treatment of Limes.

We have thus far discussed two detailed methods of treating lines. The

straightforward approach is exact but impossibly conplioated except for a small

frequency region. The statistical approach brings the problem within the limits

of human computation and should be nearly as accurate as the exact treatment.

However, even the statistical approach involves as much as 6 computer-months work

to get a single value of the opacity. When flexible rapid electronic computing

mohines become available, the statistical method will come into its own as a

good method of treating the lines., Until such time, we shall have to content

ourselves with rougher approximtions. It is these rougher treatments which we

inve3.tigate here.

The clue to the problem is the smearing out 'approximation. Instead of using

the full statistical treatment to give P, we my use the approximate formula.

(5.94) F 1 ' 1
14 6 14 Y rk *

where

w im re

(5.96) r : n . k
. jk S 2 k

In the most detailed treatment of this type, we may cons ider a class as composed of

all the lines from a particular ion type arising from the same one electronic transi-

tion. We would also incorporate three features which will very much enhance the

accuracy of our result; namely, 1) Treat strongest lines individually by super.-

inmosing them upon the background abeorptifon of the continrm plus the weak smeared

out lines; 2) Incorporate an empirical correction factor to reduce the contribution

of aoh group of lines., sinoe the amearinv ot treatment overemphalizes line effects.



hi Maotor rust be detrrineJ by comphri the genuine statistical treatment

:ith the smearirr rut treatment In several represerntative cases, 3) Take into

account the tai effect n,1e-leCt3d by sriarinr our: treatment. (orrootions 2 & 3

are o: opT:osiYt sign and ex erien.ceo my show that it ;s su+'fioiently accurate

to neglect "oth.

It may ven prove ossible to do a much less -detailed srearing out treatment

.y considering a class of lines as oOrn osed of all lies from a single or small

7roup of one electron transitions. This treatment sh:ou1 also include an e.mpirioal

fPct r designed to force its results to agree with the detailed statistical treat-

ment. By this method tho wore for computing the line effect could be reduced to

2 cjm:uter weeks.

An entirely different approach in modifying the detailed statistical treat-

mont is to use the so-called pattern treatment. ThLs treatment is based on the fact

that relative positions of classes of lines are the samne for two groups of one

^lsotron transitions differing only in the principal quantum number n of the

final state. Moreover, the ratio of strength of each line in one group to that

in another is a constant for all lines. Then the value of % at onA frequency
k

can be '-tained from that at another, by the so-called pattern transfdination

5 :-) ( :: j o on. t. ,11K onst. ).
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TI. SU'AART OF FORMULAE FOR COMPUTING OPACITIES.

In this Chapter all the formulae essential for opacity oaloulatins are

collected in form for computation. Energies are expressed in terms of the Rydberg

energy Rho : 13.61 electron volts and lengths in terms of the first Bohr radius

for Hydrozen ao - .5291x10 am.-

1. Formulae for Oooupation numbers:

The volae V is related to the density P by

y Z M NZ
(.1) z T a gram atomic weight

( NIa 3  No : 6.023x1023 y Avogadrot s number.

The radius of the ion spheres is from (4.43),

(6.2) - N

whore

(6.3) Z' : Z .. " iz
Z'2 z

The number of bound electrons n is from (4.40)

n z -

and the number of frees nf from (4.42) is

(6.5) ~T' " -'

The free energy -kTo'! of the electrons is given by (4.41&)

(_.) i.* - 3.1034 4 n -in 3/2 in (kT/ Rho)

1 d2 kT 15 24 '

-. 35355 e (1- '2 T .12995 e .



z'era o- 1'1 .03 is the fine structure Oonstant.

rm (4. S we "et

Z . - C - n; -

,able I T .- v-s 4,he screenirT contIA's O'i . Thnr f'ror (4.7)
--..

( -. : --- j--- ---.-( ---< -3/5
- e - -h U ,,a a,

21 N N ,2 a0

zn,, a,

i'aIle iI - iv&s the ons eletr n e erKr leve - (Zj /'h and ta-le IV ;ives

. inaakly, the occu-at!on nMbers are :4.36)

ionc -- h""

"h ionic oeit~ ione ar' founird fror N.4>. ThA orohabi11ty of having an ion

w~.221eletr-o ia the1 lee i

Jjc - PV

'.11;

.12) q :

These f'ormule rnu a' be mo i~f I'e i if

a Rho
.1, \ . 1

a,. kT

an' t'- l. f' reriaie ne is dis ussp in AvnrenKdx II.

the erwesquae raius r a
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2. Formulae for Thermodynamic Functions c.f. Appendix I.

The totaf energy of the system E is obtained from (Al 16, 17, 18) and follow-

ing discussion.

E N i () - .i. 4Z2
(6.14) O N N Rho 5 N aIZ

nfkT 3 2kT 2... 1(,017678e - 2 kT
} 32 x'Rco 8~ Rho 1C) \Te"" 2Rhc

3 kT
} or h *

where c.f. AI.15

(6.15) Z i Z -Z 1- '.

Z iz,

The zero of energy is taken as the state in which all the nuclei and electrons are

infinitely separated and at rest. We should use the upper value 3 in the last term

when

ZOL a0  Rho > 11.6
(J.16 ) Z >-

and the lower value 3/2 in other cases.

The pressure P is obtained from (Ai.2'). It is

P nf .oG * -15 2 kT \ N ,2 Rho
(F.17) T N 1 } .17678 e h -)J 3/ -

3 /2
+ or,

ao
r?

where the condition (6.13) requires the use of upper value 3/2 in square bracket

when fulfilled, and the lower values when violated.

3. Continuous Opacity Formulaes

The continuous transmission A 0 is defined by (5.7) as being the value of

the mean free path found by neglecting line absorption. We write this in the form

.r18)

co

Ac (u du

e

9



where the wei r ting f actionn

(6.19 ) t.u _ = u e2u (eu 1 )
4n

is recorded in Table VI, and the reduced absorption D is

3

The reciprocal len-t1 . is introduced to rive t:e quantities in t e inteFrnl 6.)F )

simple coefficients And make them dimersionless. It as tve val1fe

4 2
2 he 1 "6 Rh

'6.21 1- - - 4.762 x 1. .. P
3 , kY V kT? v

wh-ere c.g.s. jr. ts cre sed for N end Iz. The continuous absorption coefficient

and conseon:ertly is t,'-e sum of 3 terms, I; from scattering, Dff from free-free

transition and Dbf from bound-free trnsitionis

(6.?? ) P = 8 D * + * b

T1e scattering term is

(C.?3~ - f _ f 3 n kT u
(1 .? 3 C_ --- --- --S V A i-e-U N Rhc 1_-u

wl-ere tt-e scattering cross section is

(e.?4 ) - 2 kT + kT j

ere, of r urse, x is t e fine str c't re cc -stant _ /137.03 end I0  t e ~'o mpson

cr0ss section . -= (e mc 2  2 .6654 x ;r 24Cm 'he free-free ab sorption

term follows from 2.3^ ) ,

h. 'ff - 4 riff

If we neglect small correction terms in i* , we obtair fr:, '4.41a )

4)3 2 .n "a 3 r 2 2n ?
*.5 3- f n o 1t f (Thc\

2 V k T1.c'75 <

w' ere 7n , And rutting this wit, "6.2 ) into (6.?5 we get



where

/kT 1/
(6.27) r : I4 .1728 ---- ;g u (1 4 2/u).

The bound free absorption tern (2.23) gives si ply,

(6.28) Dbf Zbf
b

the aunt factors being defined by (2.22). They are discussed further in Appendix

III. Fig. I is a graph of these factors.

In most cases the function D(u) varies rather slowly with frequency except

ir the neighborhood of an absorption edge, where Dbf is discontinuous. It is the

usual practice among astrophysicists to break up the integration range into inter-

vals within which D(u) ray be considered constant, and thus

1 K T 1 S ( u k , 1) - S ( u k ) 2 Z I ." * ~

uk

where S(u) is the Strorgren function

u

(6.30) S(u)& W(x)dx.

Values of this function are given in :able VI. Formula (6.29) is valuable for

quickly obtaining approximate results, if we approximte all the absorption edges

associated with a one electron ionization by a single edge.

For more accurate results, we should use the statistical treatment of absorp-

ticn edges discussed in V-6. In this treatment D(u) of (6.18) is replaced by

5 (u)/P' (u) where frotn (5.99)

u) .. JUk) u'(uL -4 k )

(6.31) P ) D(u) 14 2 (k (k *

In this result, the kth group of Mk edges lies between u* - ak and uk 4 L . Each

edre has a relat ire jump front (5.92;, (5.8)



1 -,ci ,-ci

and is a function such that

(6.33) ~(u) - cc(u) between groups of edges

c(u) -:/ / (u -ak) for u* -k u u uk 'ak*

The reduced absorption D(u) is

(6.34) (u - .
A

4. Line Absorption Contribution.

The line absorption coefficient is defined by (5.) as the reduction in the

continuous mean free path, due to the effect of the lines. It is

00

( r F( (U . )u) du ,

where

(6.36) r

is the ratio of the line absorption coefficient to the continuous background -

statistically averaged in regions of absorption edges. For a line of natural and/Or

collision breadth dispersion this is c.f. (5.24)

P'(u)W(u) 7 Nif .

(6.37) AAg - T)u i 1T 7
ugu i WS r

where

(6.38) r is the energy half breadth,
i 4i k "4-r

(6.39) S - 2 N D(u) .,x15
3 /n P' (u)1~f(

Ni is the number of ions in the initial state, and fi is the elec'ron number for

thle transition.



If the absorption strength m.p. be caere, out over thf !nterval u -6to

u*f , w& ret from (5.54)

(E.40) AA 2  j 2A j u j- S(u *

E - Nf "(* F(*
ii' ----

When reef'rse is made to the stat istica2 treatments of lines, the folalwring

formulae should be used:

(6.41) AA : - u '

(e.42) f(u) - an e

.751 -. 4' 0E, 66.0 15,57 .0Ce

(F4) En ni
i

alp lines

(6.44) Enk

. 3 En3k -
k i. - k

all ll lines
clssses In a CIass

"nk k

a1 b

2 nk

:here k is the number of lines in the 'th class.

For natural breadth typE (ispersior, if F line may with equal probability f.ll

anywhere in the region u - d to u 4 ZI

(6.45)

where

(6.46)
ni- -n

F(a ,c ) 1(U),- I

N'.

S '

(

(,C,. 4t7' -ri '' -

F(a ;u-uj.u ) ,f5 - F{ (ui-u )

2F(a ,oo

and the function F(a,u) is recorded, in Table V.

- .47

9



If it is valid to use an exponential distribution of strength within a group

-_ (u)

where ' is the avere.-e strength of each line and

(%.49) a k.....
T S e f

A n mcF-nph or the :'unction

C'.5O) g tan

** Th
( k-u Qk) -1 uk__k_

- tan

/kjC

is given in Fig. III to facilitate calculations.
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AI . alrt rp te n iii Forrms of the opacity

1SIrilar;.itrYa mse~tons "cr jo t ,aljuations.

Since the calc.latlon of even a single opacity coeffiilent is laborious, it

is desirable to have approxiaat9 similarity transformations, which, if given values

of the opacity ^otfficient for one element au one temperature and density, will

pre E' m xso for W'er eleirns under relat-d ains. This rn be done

a:r:ximVly if li-ne nbL-rftc.on is rot too inpo:taint a factor.

We rcfjr to our sumay of )rriulae, Chapter VII, specializ-d for the oasg of

a si' ;cle OlFent. From (6.9) 1, oan sm9 that the occupation nurbers will be the

sae 'or two aases (subscripts (1) and (2) ) provided that is the same and

(7.1)

.he major ,oatributio.n to these enerie s is just the interaction with the ou.loei,

so that (7.1) is esse tially equi :(nt to

(7.2) 4, 2 k e

*7, kTL

'agee ryas aug estsd a refinerietat which partially takes into a-count the screening

of the nuclei by the bou d ele*trons. .He requ rya that

w .ere AL is the scre-ning of the 1evl with probaility of occupation 1/2. This

forces e cc ations of the hall fillet? lnve's to be the sane; the lower energy

levls will -e completely fIllel anyway, while the higher ones will hae so small

an o0,u at on as not to af foot t'r opacqty.

oTT n~ ~i R:ity for gait, of Light 'Elements. Unpublished.
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We next exarai t the oontinuous o paity of two different elements u nder

oditions sach that o/f and " arc the sane for each. From (6.25) we can see that

the free-free absorptions Us4 will ,a" the same contribution to q Acin each case

3,inc9 ( 7.4) f) D ,e

Ahe sace result is also evident for the bound-f'ro transitions, since from (6.23)

(7.5)~ V 5 j
tI

(The sam extending over all states w-Sth 7 fad ' ) a, the

oocupation numbers are ;motions of Jf and Y alone. The scattering contribution

(6.2S), however, cannot be written as a univnra 1 function of e and ?, and heooe

spoils the similarity transformation. If there are any bound electrons at all,

howierr, scattering will play only a minor roll, while in the absence of bound

Plectroas, the calculati.n of thi opacity coefficient is simple "enough so that no

resort need be had to similarity traneformations. We can say therefore that in

most cases A Ak of (6.13) is a function of andan alone.

Frou (6.25a we see that if ,/1 is the same in tw-o eses then we must have

approx7nat ly

7.6/1. W., T, 1 3
T Al2 is

or sice _ /M for li ht elements except hydrogen

(7. )' 7, %I

But if is it sa ire i s tn two 0ases

'T , -
3~. <Alt

4,
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Usiag (7.) and (7.9) we oan find the te perature and densiti*s fPt -which two

dif fore ut e lame nt a will have the same, values of A A. . U Iore ove r since from

(6.21) A P Az1Al) -se get that, under these conditions,

(7.10) 3

The line absorption contribution does not lend itself to a similarity treatment.

The Host important single factor in the effect of lines is the spread of saah group.

This spread, being due to eleotrostatic and exchange interaction, is proportional

to - . If we keep 1/4' T) constant, then, on the frequency scale a = L-J(.T)

the spread of the groups will be iuvereely proportional te . Hence the line

contribution will be more important for light elements than for heavy elomenuts

under conditions of similarity for the continuous opacity.

Relativity effects are to first; order proportional to Z * This again spoils

the similarity transfMr ation, even when lines are unimporftnt. It aljo spoils any

attempt to scale the line contribution separately. This is just another example

of the qualitative difference In opaoty calculations between the light and heavy

elements.

2 Limb t ing ita s for th opkelty.

At very high temperatures, all the electrons will be ionized so that the only

processes coitribixting to the opacity are the free-free transitions and the satter-

jag. Since scattering is proportional to the murmber of electrons per unit voluzt,

while the free-free transitions are proportional to the square of the electron

density, the former will be dominnt at low denitias, the latter at high.

-e examine the results to be expected under these extreme conditions.



If 4 he'e ar to ',e no bound electrons, the quanttity C j a must be

mush greater than unity for all states. Futt ing f - an using (6.6)

for /!, this cnvi;ion gives approximately

(7.11) A \
kT

.his re:i1t olea rir indicates that increasing temperature favors increased ioniza-

ti n. But it alsD predicts that increasing the density alhys decreases the ioniza-

tion. This is not altogeth-r true; the reason our result is misleading is our

regict of the inte ration tars in . These give a pressure ionization for

his~h de-~sities.

r V. loor density, high temperature limit, where the only process ourtbri ig

to the opacity is scattering we get :

(z.12) /eei )/

The denominator is independent of rraquenoy except for the correction Metor

/. We :nay replace ( by ; the value maximizin; the integranA

: (7.12) without fear of serious error. Then

(7.13) T
L ' )

or

(7.14) A C

where

avw molecular weight 1 A average atomic number

:; Thomson cross-section - .554 x 10-24 m2

N0 : Avogadro's number 6.023 x 132



!a this in he. +- y is LU 7 n Fnt f' density and virtually ird4p1nsq

of tper:at . '' c r or .:e li -t rl'n1nt G/'t 1/2 ho that excCpt for

hydro;i: v ;:r ia the y . s " Tii at of ctompohSitiOTI.

aor fchdes .ty hi-eprtr ,ian rn'-fre> trastionsa becOri tr.

Ji1nt v1r . Thrn u n ir (6.18) n= ".: )

.=e ly frqpeqncy dpendrnt factor In the derion>&h:r is the slowly varying jg .

We replace a by .' 7 in this fact- r. T>on 'me oarn use W( ) = '*') giving.

or pu -&- iii the vlu9 of x' froi (.? ;a) we get

y -

Tn oonxtrxt to the stltering, the fr .=-f:r se ip erop ,ii t- 4h AAity,

v ari almost as T '/72 and 1S also ar pr: ion1a to . 1- is

because of this Ii-iting for'* t'%at astr on-rs nas jsed the ter rtur3 deplndc 1oe

J the Q ity as * 2 . Dt th 1 limitations of this law should b. e carly



3. 'variation C'nacity wit emperst re, ensity and atomic 'Trmrber.

The oualitetIve veriet ion %f the oppcity wit -arious factors is evident to

a considerable extent by a consideration of the equations, although te quantitative

e:l upt inn req sires en immense Ernount of computetion. (onsider first tie varietion

of opacitv with density. At the lowest densit the only important process is

scatterirng. So ioni as this is true the opact>, is independent of density. But

as t-e dens ty increases, the K electrons become hound with aeprecaible probability,

unless the temperature is too high. po r temperatures et w'rich the K electrons can

become bound kT~ _ to 1,3 RPhc, the iori7.at -cn limit cf the F electrons is low

enough so that their hictoelectric a1sorption wil l occur in a region where there

is ccns deral le redintion. Their absorption will, therefore, be very important

:n reducitg te trarsn'ission. 'or low densities the K occupation will increase

proportionally to the Oersity, then AA 1 and KaP. Superimposed upon this

liredr variatii of tie cont r uous cpacity is t'e effect of lines. :o long as only

K elec.rors ere bound, this is usually a small effect, sir.ce the line spectrum is

simple, As tie density further increases, the Y shell becomes fill. The increase

'r densit' then cnr cause no further increase in F occupation. ror a short w ile,

therefore, the opecity is aain independent of tie density. But then the 1, shell

begins to fill. initially the occupation of this shell agair varies as P and it

mrA welE be that considerslle red iation is in the frequencies which thea w'11

absorb photoelectrically. "'or awhile, t erefore, we again have the continuous

opacity K0 cP. However, eventua lly tHe L shell will be filled and then Yc will

be indepenrderit of P. Tn this case, in contrast to the filling nf t;e K shell,

the lires are very often of decisive imrortence. The line spectrum will be very

simple for a practically empty 1 shell, increase to a maximum corplexity as 4 or

A lectruns tecone bound, ard tIen decrease in complexity as tHe shell fills up

full. Te interplay of the line and continuous process is showr: schematicnlly

in the Cif""re.



SOpaCity with lines

Zx Opacity due to
oontinuoas prooessos

Emptylf ull Full
L Shell L abeU L Shell

The ratio 'will have a broad maxims near the density at which the L shell

is halt Null. This pattern of behertior is repeated but much lees diptiasly as

the higer shells till in. Finally, hov*ver, increasing density "outs off" more and

more bound state. S'wentually all the eleatrans are pressure ionised and the deter-

Wining press is Free-fres scattering. The opacity thet increases proportional

to the density, It is doubtful, hrwever, that the methods outlined in this papr

are adeqztte to cope is detail with the free-free absorptions at sua hiigh densities,

si io* they .J based upft hydrogeni9 %ave functions for the electrons.

The variation with temperature is much more complicated than with density,

because, not only do the ocupation embers change, but the frequency region in which

the lxnjuau radfaton li present also changeW,. A usual deasit1ee a shell will

begin to fill up at a temperature frw 1/10 to 1/3 times its ionizatio4 energy 7 .

.4 thus the absorption from the latest bound shell is always of decisive imper-

4Aaoa in determining the. opacity. The occupations vary as Ajr) , the

bound free absorption ooef fiole nt ts D4 g ^- (J((.k) L' -3P/* T) and hence

A (kT6K (ff' /4 ) Fially A c 7

1#6. kc V 'T Ayq Thin 'rr itta tion is quite a bit more rapid than the

law for free-free prepesves. In addition the ling contribution must be super-

posed upon this.



The variation with atomio wabers is related to that with temperature -

indeed we discussed a sizailarity transformation with the parameter .%

:ienr roughly A' d ' ?( y -*B y . The line effects are important but

too varied to disAcse in brief. As 1as mentioned previously the lines change

their qualitative behavior when relativity effects become important, that is for

high Z ' 60 m 70. A oomprehensive discussion o. the high 5 phenor!Aoa is given

by Jacobsohn.
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VII OCpcit f I ron r

To illuStrate' the r of the precedi3 ; chaters, the ce c :lai f he

spacity ol pure ircrn, Z : 26, at tnrmn2 ernity ( 7 grrQe - -r at a-

ture of k a 1 kilovolt wi31 oww be diacksed in det...

A. " s rapatn ru7!beis

The data fo- the c elation are

(:.5 gravis /ClM
"l weiht

kT. . e
Rhc-

sir-; the above data and .) we det reir P the radius ^f' the ion apheres - a gartiuiarily

mpb> job 2.n the case of a pure e e ont. :r or; (.2)

V - 4 n t

- W'*L E -AoarT o

number. The last cycl> of the s- prcxr-atio'i is rur- e'ized! the accomraying~ taiiea

e oue(3) the asiur Iulw- fo *ee~paim The su:u Z 4. - ab .
....... - .- 5 a,

O; ot c: tw- c. au Xnu mxr :.f hciur me:r~ *, - ,n- nr / n :2.05

) 2 n -a detcrmine6 by t}-e use of (.7) dvr iteryolst io i-n "'ab' Ill, L' tabLe

" t n r mow. s . .r+ . is r 1.e ir A*" ( ) li h a c e g a e

- .. ... : . - P.- -: e' -'7 -. -- 'C *. ' ' ' ri.rr re r n r-

_ . _ .. _ : v " - ....s. r ti ' a .: L - e ;.[7 . .. .;y + -'9 . n i



n. Pe f.n- value= g i. re c:r !k' L" n ({> v.r 'K> _ e r, ,comre

Th 'appe ns for leve Is wit ' , , . W, ' n :y (6. h '> 1. . ' b o ti+

:y t he ; ,. ( 6.lb a i .al s t of cecu tionr .. ra. r ., i +- '.r r lu (,C),; i 'ba e .

i. eatin- that a ho sucCesvive a roxi-atlons have sa tifc9orily lo ver {. P1 wlI be

ne hs1t only the i she> is uQ5s ta) .y 3CcupiLd ui e these ~eit -a

~'h? i'n1ie C :XYVEt IY: >umbr 2sy noW be? *oe '" z' fr'a:rt . 'if' ibzs >a' . e r'

in !;'eft S>&l 5s reecr C in ~Ab>? f: >Cdiw;. 'c'rm i*ur~- fcr or lker cauati,rs

is the 1nunf2ar of K eectrcre in ions of a~ 21en con25g'ira~I on. T7i n ai gie

4~1 *

T 2 15 _".9 1
7- " iJ . ,t : "G . ,. "Y .1 ) 't 1 }.3541

L --

7'- T- 11)C A. %0

3--*-% I

C' * ,.e r *

4 y/

- 2 . 4
N



Table B Ionic Occupations of Iron Z =26

t 7.85 grans/cm 3 kT=1 kilovolt

Table I Ioni- Occupation of Iron Z =26

F: 7.85 grams/cm 3 kT : 1 kilovolt

shell.

Fraction of ions with the following number

Shell of electrons in the shell

0 1 2 3 4 5

K .000529 .04494 .95453

L ,69616 .25794 .041908 .003873 .000224 neg.

M .75864 .2111'7 .027759 0022894 .000133 neg.

N .70922 .24509 .041025 .004431 .000347 neg.

Number of K electrons per
Shell atom in ions having the follow

inf number of electrons in th

0 1 2

K 0 .04494 1.9091



2. Thermodynamic Properties

Using the occupation numbers found in the preceding section and the formulae of

Appendix I it is a simple matter to compute the energy and the pressure. The various

terms are given in the following table.

Table D Energy and Pressure for Iron

E 7.35 gm/cm3 kT : 1 kilovolt

Binding
energy of ions

Potential energy

Kinetic energy
of free electrons

Energy of nuclei

Eb (AI.17)
N Rho

P.. (AI.17)
N Rho

K.E.- (AI.18)
I=No

E nuclei. 3 kT
N Rho TRTho

T-tal Energy E
In hc

Free electrons

Nu cle i

V (AI.20) Kinetic energy term
Potential energy term

FT _ ET
1c - W

Total pressure

P'
(tJ T

PV
N Rho

- 1381.6

- 15.56

2550.1

110.2

1263.1

1695.0
-5.19

73.49

1764.3

8897

- m e



For this calculation the nuclei were treated as free, because $ : Zte a 1.65<<3.4

\V2kTs S

(c.f. Appendix I). 74e note that the material does not behave like a perfect gas of

(Z+ 1)N particles, but instead behaves as if only 890 of the particles were completely

free. Furthermore this percentage will vary rapidly with temperature and some-what more

slowly with density. With regard to the energy, we can see that the potential energy

and nuclear energy terms are small corrections; it is not necessary to further refine our

treatment of them. To the other terms ie may attach a high degree of reliability.

It is also worthy of note that the kinetic energy is almost twice the total ionization

energy of the remaining bound electrons.

3. The Continuous Opcity

The calculation of the scattering and free-free absorption contributions is a

straightforward application of (6. 3) and (6.25). The bound-free contribution requires

some care, however. We first make a preliminary calculation which assumes that all the

ions have the same ionization potentials for a particular one electron transition. This

is the average ionization potential - recorded in Table A column 5. We notice that

the subehells 2s, 2pi, 2p3/2 have very nearly the same ionization potential and for

simplicity we take an occupation weighted average value-2 = 111.0 Rho. Similarly for

the n : 3 shell, we use-Z3 a 30.36 Rho. Table D summarizes the continuous opacity

results. In column 1 the frequency u a ifor which the reduced absorption coefficient
kT

D(u) is to be calculated is given. Entries with an asterisk are the ionization frequencies.

The contribution of the various absorption processes is given in c,' ,mns 2 to 7 and the

total D(u) in column 8. Column 9 gives the difference AS a S(uk+ 1) -S(uk) of the

Strongren functions for the interval between the two frequencies. This is a measure at

how important the contribution of the region may be. In the final column is given

AS/D(~u), the contribution to the reduced mean free path AA, of the region.

For the very lowest frequencies, the only important process is free-free absorption.

It is only above the ionization potential of the L electrons that the bound-free absorp-

tions become of dominant importance. Even here the free-free contribution is 16; while
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the scattering contribution is -10'lO% of D(u). Since it is the region between the K and

L ionization limits whichaccording to the last column ,contributes practically 10' to

the mean free path, it is not possible to dismiss scattering and free-free absorpti4

lightly.' Above the K ionization, linit, however, the bound-free absorption of the K

electrons alone is sufficient to black out the region, so the other processes need

hardly be considered.

* In the K to L window the Gaunt factor for the L electron absorption varies from

.375 at the L edge to 1.05 at the K edge. The error made by putting the Gaunt factor

exactly equal to unity, that is, by using the old Kraner's formula is not 'large.

The neighborhood of the K edge is one in which the weighting function W(u) is particu-

larly large, and in which D(u) take a vry large jump. The details of the absorption

in this region will therefore have a considerable effect on the final transmission.

We therefore return to our ionic picture for an accurate treat-rent of this region. The

results are sumarized in Table E. The first column gives the ion type, that is the

number of electrons in each of the K, L, M, and N shells. The second column gives the

number of K electrons per atom of the system, which are in the various ions. The fourth

column gives the contribution to the absorption coefficient of each ion type at the

ionization frequency which is given by column 3. Since the Gaunt factor varies slowly

with frequency, we may assume these contributions do not change within the region occupied

by the K edges of the various ions. The next column (5) gives the absorption coefficient

and the final column 66S/ D(-u) the contribution of the region to A AC, the reduced

mean free path. whereas this region gave a contribution 15.37 in the rough treatment of

Table D, we now get .939, reducing the total transmission to AA 186.31 a change of

7.7". Such a large change is only to be expected for even the few ions which have small

ionization potential still have sufficient strength in their K absorption to wipe out most

of the transmission left by the weak L absorptions.



To avoid all the labor of this detailed calculation we could use a statistical

treatment of the edges. This gives a transmission in the region of the edges as .565

instead of the accurate result .306. The agreement within the region of the edges cannot

be considered too good, but this is unimportant for the error in the total transmission

is only 0.133.
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TABIL

CONTINU US OPACITY OF IRON ZS28

Bound-Free Absorpion

Contribution to

Frequency Scattering Free-Free Abs. Dbr from the Following Shells

u S D K shell L shell M shell N shell D(u) AS D(ii 0u)

3.492 10 .02686
1J 1271 .4 127.7 39.241 1219 .3219177

10- $ 115.5 .4 1161 20.117 112.7 .17850

9 .112 07853 108.7 .4 109.3 16;2-98 109.0 .14952

K 8.3305* .0895 .07371 108.1 .4 108.7 8.76 .5985 14.637

8 .07928 .07880 0 .4221 .0168 .5970 28.33 .5828 48610.

7 .05336 .07912 .4192 .;16 . 5685 28.317 5572 50820

6 .03379 .07952 .4156 .0167 .5458 24.097 .5356 44.991 199.1666

5 .01972 .08004 .4087 .OV1C .5254 16.499 .5166 31.938

4 .01025 .08074 .3999 .0165 .5077 8.320 .4999 16.643

3 .00449 .08176 .3894 .0162 .4921 2.49 .4814 5.503

2 * .00147 .08348 .369C .0159 .4707 .3063 .4630 .5616

L 1.5104 6.92x10-4 .08538 .3534 .0156 .4553 .06240 .1034 .7969

1.0 2.52x10 .08736 0 .0151 .00026 .1030 .01042 .1026 .1016 .90002

.5 .507x10'4 .08746 .0144 .00025 .1022 1.55x10'4 .1020 1.520x10" 3

.4152* .419x10"' .06746 . .0142 .00025 .1019 1.35x10 .09769 1.540x10-3

8 .05414* .549x10~ .08746 0.00023 .08769 4.34x10 .08746 4.962x10

0 0 .08746 0 0 0 0 .08746

AA : 200.745
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C"'NTRIPLUTION

TAB1E EC

TG THE COl INTIOUS OPACI7Y HEAR THE ! ED.: I ,IC TREAT?.':T

Ion Types Electron in Ion I ',iT or u Contribution
K L M N Occupation to Dbf D(u)

Sx x x

? 0 0 0

?O Q 1

200

N Dl V

er r der

.04494

.7151

.247;,

.190

.0414

.0cP" ~

.02617

. 649

.0L9I E

.0737

.C4 295

. 1383

9.)

8.7630

8.4145

8.3713

8.3358

8.2950

8.?2619

8.250r

8.2 (88

8.1747

8.9$81

7.9873

2.7514

40.367

13.307

13.312

3."2

1.424

14.; '9

4.c3

3, 9

7.03 ,

109.3

108.56

105.80

65.43

21.3~

38.3 "'

34. 3

33.fl

13.809

9.87r

7.67

.05076

.08138

.01772

.01691

.02761

.024i9

. 0090C

.0585C

3 c ;

105

; 93cr



4. Contributin of' Lines

Fron our rosu t s on 1in continiuoi opeAtty, wO Sn thiAt t.hm only impornth stral

r on - t i tiha. bItwen « t l I. hn )1 i-,t on li i u - I ! *' 1.') or / i 11.0 Pho 'tnd th hnl 1ownst

lyin o ; of to 1: i-n cti >n ) Imit u - 7.997, lvh'--5R7.0 ! iho. 'Th' on Jy 1in" n in !.bijA

r OtAn will tn those In wI I hIi n Is FIooloron i_ rAIn(I to qn n eIttmI Ai ,;' Ard w my

ro tr~i ,t our eripni inrAt. inn to thi f r ther i- n{ 1 port rin o' tho ettt;ruv.

n. Vos'tion of the 11 ne's

At. N ruL. wv 1 XrAin i t IIho t ro . trit ro of thti ] I rw mpof. r1InI by (iOn Iif ri n l only

the rphnriully nymriT r?, o" the nlointrontra .i inta.rntoliont. titar wn rtnIIl nrn

th t t e twe p i tt.Inf of the l Tit, artl miniupurtantr . In or(1Or to -Et. ti he porn It n o -tf the

1 inut In th oi- kt. -r 1:0.t vr i posIti nu i to thn absorptI:>n -: i IV n, 1it int U nni - . to ( n n

th11; 1 inon l by tho d I'meroneo I n ionI :-. tion potlo tinirn or tho ol0 t 0 rn involv in l t,

rtari'ni lion. in *nu I (Il Wti1.h xj 0eIntrcronn Ini 1,h th nth ove', t.hnj IonIuirt.i in potorntimt1 of

At o lmotronm I i tho 1th Imve'l Am a1,piro i'im*t' y

(;,", -' k (p (;k-1) *'(kk)

''The frequieo y c)f 'the~ 11 ri re ttl .1n;, 1roua the onm oletr on trnin i tin . t u + i t

o .. .a,

() h/

+ (.- -1 E"( ,k) -(xk) 1.'(kk ) + xgE"v
0

Th' first two terms ar: the freqoncy of the ono electron lire in thn leolatnd ion; thIn

rinxt tirm is the lowering, of the froquenoy caused by the electroastati, shi1ldinf of tho



free electrons. This latter term is a constant for all ions with the same nuclear charge.

The next set of terns in (8.5) give the interaction with electrons in the same shell as

th initial and final shells of the transition electron. '"he final set rdves the electro-

stat - screening of the remaining bound electrons. This last contribution is additive

for the electrons of any ion undergoing a particular transition. In Tai'le F are recorded

the first two sets of terns of (8.5), that is the frequency of a one -lectron line in the

free electron atmosphere.

Table F

Transition

is -- 2p2

Is -+ ^ 22

1e - 3p i

ls -. p3/

is -. 4p

Fr uenoy of tine in
ISO ated Ion

o 
0

h he

511.?

512.81

', .3

6 19.35

639.63

Scr er n of r ^s

Zr r .

.04S'

.?17

.941

Frequency of Line
in free electron
atmnsphere

hvhlo-.

-
511.?0

l1y.76

606.m"

606 .53

638.69

is 4r3/2 n39.32 .941 638.38

If we neglect the small differences in scroenin- of ns, np, rnd etc. el e vrons we can

readily express the contributions of the last two sets of terms to the line frequency.

The following Table G gives the energy in units of 2Z Rho which must be subtracted from

the values in Table F for each bound electron in the ion in addition to the transition

electron.



Table G Contribution of Additional Bound Electron (Units of 2Z Rho)

As mentioned above the con ributions of the additi onal bound electrons in the ion are

hdditiv.

Yth the use of Tables F and 3, we prepare a list, Table H, of the stronger

is -~ np lines and their frequencies. The ls-np3,/2 line will be split from their

is - np'/ counlerpart by ust the splitting of Table F. We can see that for each transi-

tion the lines form into groups, one formed from ions with a single K electron, the

other from ions with 2K electrons. The p2, p3 2 splitting, and also the electrostatic

splitting will not change te group to which a line belongs, but will simply increase the

number of lines in each croup. The differences within each group are so small that we

ma, well expect them to be smaller than the wingspread of the lines. In that event it

is no longer necessary to consider all the details of each line. We therefore stop to

consider the dispersion of the lines.

b. The Doppler Breadth.

The energy half breadth for Doppler broadening is given by (5.29). The calculation

for iron at kT = 1000 volts gives to lines of frequency ~ 7kT (the K electron lines) a

half breadth of .0836 Rydberg units, or : hY 1.138 x 10-3.

o. The Natural Breadth:

In opacity calculations, the natural breadth phenomenon differs in two important

respects from the ordinary case encountered in optical spectra. First the radiation density

is so high that absorption and induced emission processes as well as spontaneous emission

contribute to the breadth of the levels. Secondthe atoms are so highly ionized that

Shell of Additional Bound electron
Transition n= 1 n= 2 n 3 n . 4

is - ?p .7822 .0578 .0090 .0029

lI -93 . 1'? .141 .0347 .0086

Is 4 4p .1 .l75F" .0559 .0177
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TAPI2 'A

Spectrum of K Electron Lines (Rie units o

K Electron In Ion

,)Coupaltion

.01683
.00605
.00468

.01114

. '151

.2471
.1990
.2649
.0414

.02617

. 0I295

.06F78
'),l;

is 2p. is 3 p

511.20
511.05
510.7 3
50.22

09 . 16

491.33
491.17
490.8 O

491.02

420.39
4' .31

. .17

4 . .r

4 62.31

606.07
C05.R2
60402?

579.23
572.78

577' .42
571.87
57.33

1. 7

633.759

. -

609.40
02.48

606.4 C
600.26
607 .56

576.62 602.5
504.50 521.12

571.42 5$.:
570.06 V1.97
.'57.3 4

Ion

K L

10
10
1 0

1 ,

Type

14 N

0 0
0 1
1 0

i nde r

00
0 1
1 0
0 0
0 2

C

0

0

2
2
2
2

20 2 0

2 00

1 ' 0 .7Z7 -



nany transitions contribute to the breadth.

In general the energy half breadth at half maximum is "/2, and this breadth is

L h sum of the breadths of t.e initial and final states of the transition. The half

brei+th f a l!v-l is

2

2d 2 Rhc J euLj -

where u t .j and hz/ is the energ, of the transition Lto j. We note that ulj and

f are both ne-ative for downward transitions. The sum includes all possible transi-

tion which shift the fre uency of the line in question more than its breadth.

While (".6) is very convenient for transitions between discrete states, we can put it

into simpler form for transitions to and from the continuum. For transitions from a bound

to a free State
00

.e r. 2 f u 2  df du

J g U E. i )
where u is the ionization potential in units of kT of the i, th level. Introducing

the result of (2.22) into (8.7) we get
o~o

continuum : 2 1 u2 Z(u) du
J ~ T nZ

L u(eu.1)

The maximum value of the into'rand occorc at u; u[ and we may replace the slowly varying

function gt(u) by !t(uL). Then the integral r'ay be exprewfed in terms of the exponential

rtegral - E (-x) tabulpted, for examTple, in Jahnke -und Emde, pp. 6 ff. The contribution

of 4 he bound-free transition- to the breath is thus
(DIV

0 4 2 5'

b~ a'. boured ~ Rhc Rff2 A:
eplectrr.ns

In adM-t ion to the hcunO free transi*;icns, the process of free electron capture

o tributes to the Urea"it. ,f a lEvel. In this case we must multiply the contribution

front a free to a bou d state transition by the probability that the free state is occupied

p 5 e f k and sum over all free states. We get exactly the same



itnterra? as in (7.7) so tie resu4. in;g contribtuticrn of these processes is

~ - k"e~6 u)2 1

.g. 1 7 Y n-r 'T( n

all empty
bound states k
(not 1-vp7c

u k(u, ) -F- (-A u ) -
-A

The contributions (S.C) and (8.9) are generally small compared to that of the bound-bound

transitions. In Table I aro reoorde(' the natural breadth contributions of the various

trar.s.tions for the case of iron Z - 2 , kT ; 1000 volts and normal density. The natural

treidths of the strorger K electrcn lir-es i E, iv4n ir. table J. The natural breadth is much

srma ler than the Doppler breadth and the collision breadth (see next section) and may

+h;:P:'r; be ne ected.

0. The Collission 'readth:

The problem of collis'cn T'roaderirjg has been analyzed by R. Sternheimer. We q, ote

:s results withou4- rrocf. 4.e energy half breadth at half maximurn is analogous to the

na}.ral trpad+;t 4 Jz. The breast. is the sut; of the initial and final breadths of the

states invol d ir the trEAns tion. In turn the breadtii of a state is the sum of contribu-

' rzns from all the trarsi+ icns which the ion can underrc which shift the line more than the

rea dct. A tranition of an electron from an initial state to a final state j , both

K ,screte elates, -ives the contribution to the ewrgyi half breadth on an ionic level

S3

2 f 1 meC .2 )3 max
S - T Ime/ c 2

-I4 --1P , -ti

T - 7

.Unpub isheC e or4 .

2

--

ni xQ S nki

2.. 

.

' 

>

L~ u f

- .577216

.e0)

where

(U. IL a

r
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and, fia' the plastia energy is given by

(n.1..'e2 - 4 nf hao Rhc

2
ile K ~2 s recorded i. Tables by Bethe . Ve must

states j available for the transition and all initial state i

the ion. We then Vet for the partial energy half breadth of the

transitions

sum (x.10) over all final

occupied by electrons in

level due to discrete

2
- 8 "1f Na0 (ho 1 max R I .

Transitions to and fro;., the free states should also be included as contributing to

the breadth. For the foner we may use the results of Bethe3 quoted by 4tt and Mossey.

He ives the cross-section for ionization which leads to a collision breadth contribution

of

(8.14)

1
712

4 f N / hf n' c
rfho ie T

p rf c. kBC +

where

erfe x 1- erf x - e dy,

(x)- e "y l i y dys

Lpc cr l ;in in the rolkowina table.

Table of c

State IS1 2S 21 3s 3p 3d 4s 4d 4f

Cn~e 0.28 0.21 C.I3 .17 G.4 C 0. 1J5 0.13 0,09 0,04

2'. iandbuoh der Fhysic: Second 'dtion,' Vol. 24, 1; p. 442

3. Annalen der Physic, 5 (1930) pp. 32b 1-.

4. Theory of Atonic Collisions, Oxford 1e33, p. 182.
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Table I: Contributions to Ener Half Breadth
of eotron o 'ransition

Electron TransitionI

1s is -l2p
is - 3p
1s - 4p

Total isl-- np

1- free
Grand Total

2s 28 2p
28 - 3p

28 - 4p

Total 28 - np
28 - free

Grand Total

2p 2p - ls
2p - 2s
2p- 3s
2p- 3d

2p - 48

2p - 4d

Total 2p - n
2p- free

Grand Total

3s 3s- 2p
38 - 3p

35 - 4p

Total 3s - np
3s - free

Grand Total

3p Sp -=ls
3p - 29

3p - 3e
3p - 3d

3p - 4d

Total 3p - n
3p - free

Grand Total

Natural Breadth

't6ea

21.01
1.5624
.4074

22.98

2.960
25.94

0
288.0
69.62

357.6
204.7
562.3

6940.0
0
8.999

460.8
2.058

82.52

7494.
207.2

7701.2

96.87
0

180.5

277.4

125.1
402.5

1Collision Breadth

106 1Y
hZo

1.360
.05395
.01163

1.427

0
1.427

.1382

.002519

.000233

.1410
8646.0
8546.1

.01108

.45900
79.00

4049.0
6.9

270.3

50310.

9555.
59865.

1004.
731600.

21140.

753700.

263200.
1016900.

1851. 47020
344.4 311.8
8 2429004
0 3302000

230.2 26500.

2438. 601300.

123.3 216770.
2561. 818070.

Electron

3d

Transition

3d -
3d -
3d -
3d -

Total 3d -

3d -
Grand Total

4e

4p

4d

4s -
49 -
49 -

2p
3

p

4p
4f

n"

tree

2 p

3p

4p

Total 4s - up
4s - free

Grand Total

4p - 1
4p - 2a

4p - 3s
4p - 3d

4p- 4s

4p - 4d

Total 4p - n
4p - free

Grand Total

4d -2p
4d - 3p
4d -4p
4d - 4f

Total 4d - n
4p - free

Grand Total

Natural Breadth

106 A.Y-
.2 Rho

990.7
0
4.084

377.7

1372.

121.97
1494.

1064.
1060.
0

2124.
22.83

2147.

1488.
1104.
1067.
1053.

0
0

4712.
22.83

4735.

1168.
1089.

0
0

2257.
22.83

2280.

Collision Breadth
106 J.Y

Rho

883.1
181500.

467.
43110.

256000.

108400.
364400.

.005938
707.7

1910600.

1911300.

859300.
2770600.

14.16
0.0

1171.
133.7

635800.
1018000.

1655100.
744700.

2399800.

0
1345.

610800.
534300.

1146000.
515600.

1661600.

4f 4f - 3d 1128. 5292.
4f -4d 0 0

4f - free 22.83 32MS0.
Grand Total 1151. 234420.

Free Free - 1 251.Q
Free - 2e 19.76
Free - 2p 56.87
Free - 3 34.18
Free - 4 7.889

Total Free - Bound 369.7

L ________________________________

.. 4 ;;



The inte;ral (1 '5) has been evaluated through the good -fices of "r. 3engt Carlson,

whosn results are contained in Table IX.

Transitions involving the capture of an electron will be relatively unimportant,

and transitions "ro: one fren statp to another will not appreciably alter the frequency

of the absorption line and hence must not be considered as contributing to the collision

widt n.

In Table 1, the contributions of the various transitions to the collisionbreadth

is given. The largest contributions come from those transitions requiring very,little

energy change. The contribution of ionizing transitions also is appreciable except for

the most tightly bound electrons. Values of the breadths for the strong K lines of iron

are recorded in Table J along with the natural breadths.

e. Stark roadeninG

To adequately discuss The Stark :affect broadening of the lines we shall have to

refine slightly the treat-ient given in IV 6 to include effects of shielding by the free

electrons. As be',re (c.f. 4.59) the nriber of ions with effective charge Z at a

distance r 12 from a articular bon with effective charge Z' is

(3.15) ItZ'(rl2) dr a Z (1291 4Ttr2 dr
12 2

The mutual potential energy (r 1 2 ) is not given, however, by the simple form (4.58),

but instead by
2

ao r12 a " 2a2 \aZ" 12

6(rl2) ...O r12>a 7

The elective field due to the invading ion is

(g.17) 2 r a
Z 2  a^ r12 a

o 12

directed radially. This field is not uniform as is the case in the laboratory Stark effab



:owver we may exiard the field in spherical harmoriics. Keeping only the leading term,

we ;et tho usual uniform field oase. The terms we neglect in the developMent are of

the sane order as o'ffect not considered at all ir. this crude treatment, for example

the resultant fieiC. due to all neighboring ions and free electrons acting as an assem-

blage of dipoles, and indeed these neglected terms are of abou- the order of the term

Sslidered.

The electric fie> will split and shift the lnvls of the ion affected, causing

a displacement of the absorption line of magnitude.

a - (a+Ca't ) k.J+(Cn+Cn')H4

where the first term dives the linear Stark effect shift, the second term the quadratic,

etc. The quantity n I I it the change in energy of the state n caused by the linear

Stark effect of tbe field 4 ; for example, in a one electron ion

(8.1U) Cn : - 3 ao n kE14 k : o, 1, * 2 ...

For the higher levels of an icn where the Stark effect is most important, the linear Stark

effect may be present. In this case the number of ions which suffer a shift between

o and o+biin a articular line can be approximated by

(E.2O) (3Z2 3

u -

x x -27 z Ro D z /2 at (ca / 3
nnj DUI -- 3,

where

(8.21)

0

This asymptotic development is valid for large d , the region in which we are particu-

larlir interested.

We ca,,not use this ex-ression directly to define a half intensity half breadth, for

it diverges for no shift 4 0. Howpr-er, we can compere the number of ions having a shift4z

ynro _ (nn+ Jn )I'6



with the number having a shift Alsprovided both shifts are fairly large. This gives, with

neglect of the c rA t inr terms

(8.22) NA" pj 5/2 exp - 2Z'Z IA,

NK z g TThcL \Cmn / \ '/

Yow a great nu, r of ions will be at a distance a2n. To the same approximation as (8.22)

these will cau,-P a shift

(8.2') Z c : (n+ n' ) Z' e Cnnl 2a '

Ne can define somewhat arbitrarily a half breadth QL, by reqrpiring that the ratio (8.22)

be a when .Dl is given by (8.23). This gives

_ 2
(c .24) -L1 (kT + 4)hc) 2 2 ZtZ ao 52 . i

Gnal 4 aZ Q" )2,il

For the case of iron at kT : 1000 volts, (: 7.85 gm/cm3 . This gives 02/C nfn :.162 or

by means of (P.21) and (8.19)

(8.25) 4 2 a .486 (nktn'k') Rho

which corresponds to a field of intensity

(8.26) f .162 Z'e

We will get the maximum shift and split from the unperturbed line when k _ (n-1),

k' _ (n-l). For K electron lines this gives a half breadth in Rydberg units as follows

Final state . 2, a hc
n - 2 .972

12:3 2.J2

n 4 5.83

To test whether our approxirmation of the linear Stark shift is correct, we examine the

splittings of the upper states of our ions. ,,or example, we have the following deviations

from the zero order -nerg.
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Table J

rner 'y ialf Breadths of Strong K 7lectrrn Lines (Rho Units)

Transition Doppler Natural
breadth Breadth

2 x Collision
Breadth

Stark Breadth

Cotribution of Additional Electrons
to Collision Breadth

Shell of
Adli tional electron

2 xContribUtion

to Ia' i3readth -Rho

.0941
1.176
2.49

1s-+2p .034 .00833 .0599 .5

(1s)-+(1s)(2p) .084 .00466 .0599 .5
(19)2 (2s)--,(1s)(2s)(2p) .094 .0576 .1710 .5
(ls )2 (2pl)-(1s) ( 2p) 2  .084 .00937 .1796 .5

(is)2 -+(ls) (3p) .084 .0021 . 18 2.9

(1s) 2.. l1s)(4p) .084 .0044 2.40 5.3

2
3
4



S:nerf;ies in rYhc Tinits

State --

-( la) ( n*) 2 "1E .1C053 .060

(ls) (n 3 .7_' .09727 .0562

(1s) (n1 1 ;F 130 .0624

()(n) .2 .1 06 07

For t.e r = 4 state "he largest s, litt in- 1Iat affects the -alculation is .286 Phc and

for n :3 it is .t _%lhc so vr arr ,uite safe in osin' a linear Starkr effectfor these

linos. For 2, - -ever, t.- split is 1.97 Pho corapared to a linr'ar Stark effect shift

of .972 he, so we must >rc t> formula for thF quadratic Stark effect. This will give

a result of' a,_ r:;Y. :a ,:eO." ;W'.

f. Treatment and effect of the Lires.

A glance at Tables r and F shows that only those lines with enerf;ies below 590 Rhc

can affect the transm'ssior: ajrec ia ly. Referring to Table V we find that threo groups

of lines - is ->2p with 1 K eer-ron, 1s -i2p and is -pr with 2h; eleci-rons have

ag reclable stren t .c1cw this liniAt.

From the ta 'le of line breadths, ?able J, we see that the lines will be sufficiently

broad so that different comn, :nente of a line caused by electrostatic and spin interactions

will overlap. Iurt'rmwre most of the lines from the different ions will overlap. Because

of thi s extensive overlapping the smearirn7 out formula will apply. In its most rf'ined

form, this a prcxiiti.cr: is "en 1, (r.74) which correctly treats the contribution of the

lines outside cf their groups. We hWve, therefore, for t e lire contribution

A : tk) -nk du ,

0



where
k

(8.28) E - N fk~k g()
iA nk - -k

Here Nk is the electron in ion occupation number, Thble ', 2. the one eern ,

qx the probability that the final sta'e of the transitio . and Cdk The exent

(in units of hz-//) of the group of lines. he function: g -ar be obtained fromr the nomo-

graphs, Fig. TIIa, and b, with

(8.29) x k"

Fk k

For values of x>y, it is a valid approxirmttion to use

(8.30 ) g (x,y ) .

The data for the three Mroups of lines .s collected in the followin table.

Table K:

^roup I Group 2 Gr-up

Group . 4 2p ys 4 p is + 3p
1K Electron '5 e crons 3K lectrons

in Rhc 50.2 ..

Nk . . 494 1.9091 1.9091

fk .4162 .4162 .0"910

k .9564 .?564

2Ak in ' . 2.09

r-in R c .:2 1.00

For the breadt'.hs of the lines we have used a stren th veighted a-eraTe collision

plus natural breadth for the ions present. Dorppler hreadth is small enough to neglect.

The Stark broadenin-, though larger than the collision broadenirng has an exponential dis-

persion shape, and will not be important much oute de the group limits. ' ith;n the r:rrup

limits, it is the Stark breadth which effectively smears out the line strength. The

formulae we ':ve used are apropriate for a smeared ont -rr-ur of lines with the colle:;

hape isj ,: ) Th te groIp limits. Wo m iia or oo' the s l l f ri":.- 3 ' : n

W u) . 'E ;e itit 1rP 1 tin .'?i) is done nu-r ical 1 in <. aelLTh d of the



center of the group. The reion far from the group center can be done analytically, for

tt'n it

2Ak S

du r. " Nkfkqk

0 k

2rk r k

7 Iuk -UI)

/7(ajuk -u 1

The contribution (8. 31), we term the long range tail effect.

The calculation gives a contribution t .. A ,f . .. .. +

. ... The final result for the opacity of iron may now be given.

Table L

A ti cA A
AA,

AA

= 186

= 129.

3 b"7.6

KC s 6.24 cM2/gm.

K = 20.2 cm2/gm.

K = 3.24

. c c
A = 5.3 x10 'cm.

1# 7:1 n l

and

(9.31 )

00

E nk

1 + Z E nk
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AEn44f I .. hraduio Pro "eres

Uts 1Lpptndi: a ont imO b t ht stat ist ioe l saha nioa l t retat* <f Qat y r TV. 4,*

ft,.aw the latter sotion merely derived the ooaupat of rs fNs tbe ar w1

emoceed to oalavlote, the thermodynmkio fsnotioue ard the pressure-. ?ruo th

iet we Ct the equation of state.

T lesttrosio partition function of the syeaem Is

.(3 
7

wabre a ii given by (4,12) and L by (4.14). We oa aite. .tt br virtue

pf (4.18) as

(Aze) =zP JP

Cetyitg out the eamation to first order in , . the ith.raorio1 ip, jpt

.zL4

W introduce the rame malaes for the arbitrary parameters 1S te W did 1A the

trestmnt af occupation numbers (4.21). These were selevi"W to valo the first order

berm In the oseupitio numbers (4.18) vanish. Such e V ta., t to . wp; .ouation

mtabero identical Ia form to an indspe ndnt elootro n treatment uad agjewiv with

it to firvt order terms. This choice has no particular &dvantag beuId* eostss

for the ow.sg* calculation. ?ben, simo the 1*hs free erg j is

Fros this equat ion we f ind the chemiest potent ft1

Al< T o
2KV T



37 diffetentiation we can nor get the other thermodynamio functions. It is easier

in the oate of the se.rgy, however, to return to our general treatment. The

en*rs is -

(AI4) Ps +

The enrg RI 1 from (4.12) can be writtenn as

(A.) E J = nJ C, . ) I

where
(t

J~ j ;

(AI.7?) '4''4' '/ $')V

Thea in (Al. ) the summat ion order may be inverted, giving

E . E 4 ~ f~ F M-
J J T a

W& reo~ Istin the first tomrr the qu~antity Mt- z- MsP o-C t'y')
3

The seeond terp eosteina parts all of vhie ooeurred is the eval1attow of the

partition ftanti n. Th result of the operations on (1I.8) is

Again introducing the values of 1 from (4.21) and iF from (AI.8) thts red.es to

(AI.10)



We see that for purposes of calculating

that 3aah electron has the energy (C

the total e rgy of the system we oan assume

and that the energy of the system is just

the 8uA of these

energy with FI

electron, and the

system.

The entropy

S -( - A) /T.

(AI.ll)

energies of

of (4.22).

sun of the

the individual electrons. We should contrast this

The latter gives the ionization energy of the i th

ionization energies is not the total energy of the

may now be found froa (AI

We obtain

k' {0at

.4) and (AI.lO) by the equation

2' ~1&T ~ C

whe re

-4l I14 12 ;
(L .;-4

is the ionization energy (4.22).

We now -etura to (AI.10) and introduce the same type of approximations which

lead to (4.34'. First we break up the energy

into sums of energy of average type ions. We now compute Ea.

For a -)otund alectron, we have the following contributions.

0
1) Kiatic energy plus full interaction with the nucleus CLZ

2) 1/2 interaction with all other bounds

z tL ,v ' L' tz ' a-

3) 1/2 interaction with frees - /2 3

For a free electron, we get

1) Kinetic energy -

-1/?

n14 Ot

,O ; Vt -
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3) 1/2 interaction with bounds .
1'(Z-- e

(considered at the nucleus)

4) 1/2 interaction with other frees s Z Z e
2 4Z

Now the number of bound electrons attached to the average type ion of nucleus

Z is Alz /1 / = (-Z-') . Using these relations, we gather all the

terms contributing to (AI.13). It is a good approximation to consider the bound

electrons at the nucleus in computing the interaction with the frees - hence -

is put equal to zero. We have finally

(AI.14 ) E = A/ & ) 4 z'(z-') - 3 '- z' (z-')

where

(AI.15)

Ja2 .ZZ A

We can rewrite (AI.14) in a way soon to prove significant.

(AI.16 = fb 4 P, E. 4 k

where

(AI.17) N4 '

is the energy of the bound electrons excluding interactions with the frees

27a

(A.l.7) P. E. - 2 z

is a potential energy term and
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o

(TA .1() (K.**M/)d

is the kinetic energy of the free electrons corrected for degeneracy and relativity.

The pressure may be found from the E-elmholz free energy A, sinp - V

This complicated computation can be avoided to the approximation we are working

here, since all the forces are due to the coulomb interactions. ('e have neglected

exchange energies). Then we may use the virial theorer to find the pressure.

In non relativistic theory this gives

* P /3 E Potential Energy "

In relativistic theory as well as non-relativistio, the bound electrons include

the proper balance of kinetio and potential energy +o -ke the contribution to the

pressure zero. The kinetic of the free electrons, however, does not con+rbute

the full 2/3 A. . to the pressure because of the relativ-ity correction. This Is

known to ive exactly PV T for the non-degenerate oas an we

merely keep the additional la?,eneraoy corrections. So, "inal ly we get

Thus far we have not considered the nucle r -otion. This contribution

has seen worked out in Chapter IV, section 6. We >et the foilorrin additiv

oontributi ns to the energy and the pressure in the two li"itino cases consilernd:



Free Nuclei IHrmonic Vibrationg

M{Tetic Energy 3/2)?kr (3/2) NRd:

Potential F er 0 (3/2) -;

Total Energy X3/2)NkT 3 Wld

(PV) Nuo le i NkT (3/2) NkT

The nucle r uontribution to the energy and the pressure is so mall

(since A ) that Ys need not bother refining our treat ent of

them further. We can use a rough criterion that when zi of (4.54) is less

than 1/3 we oo sider the nuclei to exert pure harmonic vibrations, wile if

'/3 we shall consider the nuclei as free. Referring to Fig. 2, we see

that h-4 /3 when 3 - 3.4. For smaller aluese of i 1o

should use the tree nuclei approximation, while for larger valuep of S vs *huld

use the approx mration of harmonic Vibrations.

-1284P
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Appn dix II

The assurpti ou that the free elect res are unari ty distribute Agi

thoughout Chapter IV, We can oorreot this by the use o. -vai

approach. With4n aah ionic polyhedron, assume we have al 4letrot btMNI3-hI

. Then the duaity of electrons in phase space will be

(AII.l)

The density in configuration paoe t 4i is found by iatogiatig over

This givs a charge density e = - e At(j) , and the po dlptta3

satisfy Poisson's equation with this density. Since we have used 01 q Ms

e / 4 w keep terms in our result only to det "r

potential whioh replaced (4.31) is

(AII.2) JA x(/'- /o,) - 1 e_

I: ,d. e.t. X d cX

where x

(AIl A

xanndi ng

(All.5)

is a root of the transsendental equation

in povirs of

e- 3a- 4 '3S

/ , D.rj -. 7

The quantity which replaces -: - 4 e in (4.?) is

arind on putting in our expansion for //1x W9 get

(A;I.6)

- f

The ratdii ''muttt L, chosen so that (4.24) i "atisfied0  Ro"Vws $)p

l.mer approprate to us, (4.2r), for the elsp IV distribAtion is hot u$W6vE.

34
)

3

zd ' -' .-- . /



we :rugt be sure that the frea energy of +he electr:)ns is the same through-

systei. This is so i' the quantity,

'k T 32t
Ali e --X -- .3Ae. ' a

1/i~ea7

is Indape adent of % . The dz' the, are cho sn to

In most cases the effect. of non-uniform frog

disrasrled. The grit r;on for this is

(AII.k) '

satisfy (4.U4) and (4.25').

Alectr- : distribution rmy he

Referring to mhapler IV, section S, we find that the criterion for the nuclei to

be considered as performing harnjonio vijrtions in a lattice is S - - > .

Coabinitg this with (Af .) we fid the condition for uni'rmity in the diatribu-

tion of free elsetrons, si ltaneoLsly with a lattice structure ffor the nUolei is

AzI.9 ) 13

z-

T1
Ti .4/

This *an never be true for the very light nue cIi, but is fullfilledi by the

heaviest iclei. This Is Anothor reason for the qualitativq difference between

the opacity of hgh 7 and low Zele«e-its.

I ted

ut the

(.4.1,7 )



Appendix III: Formulae and Tables of Gaunt Factors

This Appendix sunmarizes the formulae and numerical results for the bound-

free Gaunt factors applicable to a non-relativistic electron in a Coulomb field.

Only the leading dipole contribution is considered, so that these Gaunt factors

are the appropriate analogue of the electron numbers recorded in Table I. Most

of the res,;lts and computations are the work of Dr. Boris Jacobsohn.

The Gaunt factor is defined by (2.22).

(AI II.1) g f- 3 1 b dfy V

24 It( dz/

The ionization potential I is, howeverQ

(AIIT.2) In _ .L. Rho.

n
We can also express the energy of the free electron after ionization by a quantum

number k, defined so that

(AIII.3)e -f Z2Rhe

k2

We then have for the frequency

(AIII.4) hz/ - I n

whence

(AIII.5) - dk df - k + 1 df ,

so that the :aunt factor reduces to
3

(AI iI.6) gn -= k3

25 n- . . ^ -d f
2" k dk

The f numbers for bound-bound transitions have been c-omputed by mar previous

workers. Since it is possible to find the bound-free df rather simply from the
dk

appropriate bound-bound f number, wo have included a list of fornula3, Table I, for

the latter. The procedure to be used in going from fn't14 q to n't..4.kl is to
dk

substitute ik for n in fn't t ,, nj and multiply the result by /(e k). T o



"l Ltra 1n thS ip f3-t '.ase, if

(AITI.7) C /
f, - n n-

JI -n - - ' 4

tten we get

S? .~ 8 , 5 21kCa -: k S i '2 ( ik; s . 1

d -- 'fk 3 ( , 1) ik +t 1

or

d fis p kex -4 t k .

Subs i1tin i7[ AIII. gives the appropriate bound-frse saint factor. The resulting

ormiulae or :.is and olher cases are smried in 'ab1e VII. Nurnrical v lues

are recorded ;n T&1e VII. For n : 1, 2, 3, 4, these values r"e ro calculated from

th for"iulae 3f 2'ab>l VII. For n zg'o it is possible to obtain the asymptotic ex-

press In presentii Tn 'able VII for the amt factor, and the values are based upon

this expressin excEpt for that a: k : ? whihi was Oalcu1atad exactly. T'he

ayte~ic for-ula is good to .C8 at k : I, ant is even beer Aor larger k.

Val es of the amt actor for n n, , ', 8, 2, 10 trr-, found b- graphical inter-

_ . -' at Tnstanoes a plo of -k * l2 or ixed k ,ave a s -

:r did devia .r ncl dr rvi: . s:'ra5 tY+t .inr aprcili+c ace ra' ity-, -

; L;n . I :r s.rs ;;raphic&Ur value' f'or the 4nun Caetor avera.-e over

a 'svilete shell 3

1 e '-ze- ?&eris op. cit.



Table I

Formulae for Dipole oscillator Stren'ths

For Coulomb Field (Non-Relativistic)

Transition

Is -4 np f . 2 n5
3 (n2.1)

=Electron Number

(n - 1)2n

(n -'-1)

2s 4 np f - 5n5 (n .1)S

?S (r2.-4 )5

7 n 2

(n2 -4 )"n+2

n7 (n '-1)

(n4..,)

28 34 n5 (n2 -1) (7n 2 - 27)2

o )7

f - 211 33 n7

212 35 n7

f - 212 34

52

: 213 3

5.

(n?- )

2n-3

n9 (n2 .1)

(&-.9 )7

2p -+ ns

2p -4 nd

f - 213

33

f - a18

33-

ti2n

n+4)

f 35 . np

3p .- tie

3p.- nd

3d - np

3d - nf n9(n2-4)(n2 Cfl3

2n

Sn-2
n, n+

-12n

(nm . g)
f -

n.
r.+3



DIPOLI7 CCLATGP ' 2EWG dN-RE1ATIV 11JIC)

0012L0.'B ?'IELD

-- - -z

10

.42620

.07 1 2

.028991

.012938

.007799

.004814

.003183

.002216

.001605

1,6 n"3

_sr_ - fns 2p-+nd 3s-+np

0

.43488

.1]r2 77

.04193

.021C3

.01274

.00818

.00538

.00399

3.7 n-3

-. 33873

0

.013590

.003544

.001213

6.180x1c

3.613

2.309

1.570

1.119x10"4

0.1 nr"
- -~r 1 - -

.69580

.12181

.04417 r

.02163

.01233

.007757

.006221

.003693

3.3 r- 3

-0040769

0

.48472

.12102

.051394

.027369

.016549

.010863

.007554

G.2 n"3

-. 026367

-. 14495

0

.03 "2

74428x10

3.032

1.579

.941

.612

.218x10 0

.3 e-3

.618285

.139235

.05613

.029009

.017210

.011153

.003972

0.1 "-3

3d-+np

---

-. 41693

.010957

.002210

8.420x10

4.213

2.448

1.564

.552E010

.07 n4

z pe trum f 641 .638 ".119 .923 .707 ".121 .904 -. 402 1.302
Continuum .4359 .362 .008 .?93 0293 .010 0207. 0002 .096
'dotal ,0040 1.000 --.O111 1.111 1.00 "-.111 1.11 ...406 1.40

FnT
1

2

93

4

5

t7

9

[>10

m--

1.01432

.15649

.0r389

.02559

.01442

.00903

.00314

.4 4-e

3pr a



NON-RELATIVISTIC C E 4G OONSTANTS

- -d

is 2s 2p 3a 3p 3d

1s .6250 .8395 .9712 .8954 .9795 *9992
2s .2099 .6016 .6484 ;7570 .8101 .9322
2p I .2428 96484 ;7266 ;7808 .8455 .9570

>.0995 .3365 .3471 .5977 .6191 .6582
p 1088 .3600 .37.8 .6191 .6464 .6924

.1114 .4143 .4253 06582 .6924 .7744

i 1 2 3 4 5 6 7 8 9 10

1 .6250 .9383 .9811 .987 .994 .997 .999 1.000 1.000 1.000
G .2346 .6895 .8932 .94 .97 .984 .990 .993 .995 1.00
3 .1090 .3970 ;701P .85 .92 .955 .97 .98 .99 1.00
4 .06169 .2350 4781 .705 .83 .90 .95 .97 .98 .99
5 .03976 .1552 .3312 .531 .72 .83 .90 ,95 .97 .98

6 ;02769 .1093 .2388 .400 .854 0735 .83 0 0 .95 .97
7 .02039 .08082 .1782 .3102 .459 .610 .745 .83 .90 .95
8 .01563 .06250 .1378 .2425 .371 .506 0635 .750 .83 .90
9 .01234 .04938 .1106 .193E .299 .431 .544 .656 .760 ,83

10 .01000 .04001 .0900 .1584 .245 .353 .466 .576 .87 .765



TA32 III

RELATSVITIC ENERGY LEVEIS FOR TIECTR0N TN COULOMB FIELD

E* (z)
Values tabulated are -

Dal n 2 n=2 n"3 ne3 n3 n84 n:5 :: n.7 nu8 n"9 n:10
Z Jeg J; J=3/2 j:21 3=3/2 J=5/A

1 00.13 25.042 25.0083 11.1259 11.1160 11.1127 6.2521 4.0009 2.7782 2.0411 1.5626 1;2347 1.0001
11 121.20 30.311 30.2622 13.4062 13.4516 13.4468 7.5655 4.8413 3.3617 2.4698 1.8908 1.4940 1.2101
12 144.28 36.087 36.0173 16.0308 16.0102 16.0034 9.0043 5.7619 4.0009 2.9393 2.2503 1.7780 1.4401
13 169.38 42.3694 42.2738 18.8202 18.7918 18.7825 10.5684 6.7626 4.6967 3.4497 2.6411 2.0867 1.6901
14 196.51 49.161 49.0320 21.8349 21.7967 21.7841 12.2580 7.8434 5.4462 4.0009 3.0631 2.4201 1.9602
15 225.68 56.461 56.2922 25.0753 25.0250 25.0083 14.0730 9.0045 6.2523 4.5931 3.5164 2.7782 2.2503

16 256.88 64.274 64.0546 28.5420 28.4768 28.4552 16.0136 10.2459 741141 5.2261 4.0010 3.1611 2.5604
17 290.12 72.6002 72.3196 32.2355 32.1523 32.1248 18.0798 11.5675 8.0316 5.9000 4.5169 3.5687 2.8905
18#325.41 81.441 81.0875 36.1565 36.0518 36.0172 20.2718 12.9694 9.0(47 6;6148 5.0640 4.0010 3.2406
19 362.75 90.797 90.3689 40.3056 40.1755. 40.1325 22.5896 14.4517 10.0336 7.3705 5.6425 4.4580 3.6108
20 402.15 100.67 100.134 44.6834 44.5235 44.4707 25.0333 16.0143 11.1183 8.1672 6.2523 4.9398 1.0010

2 443.62 111.069 110.413 49.2908 49.0961 49.0320 27.6030 17;6574 12.2587 9.0048 6.8934 5.4463 4.4112
22 487.16 121;99 121.196 54.1284 53.8936 53.8163 30.2987 19.3810 13'4549 9.8833 7.5679 5.9775 4.3414
23 532.78 133.431 132.484 59.1971 58.9162 58;8238 33.1207 21.1851 14.7069 10.8028 8.2697 6.5335 5.2917
24 580.48 145.40 144.277 64.4978 64.1642 54.0546 36.0690 23.0697 16.0148 11.7632 9.0048 7.1142 5.7620
-5 530.28 157.903 156.576 70.0313 69.6378 69.5087 39.1457 25.0350 17.3786 12.7646 9.7713 7.7197 6.2524

26 682.19 170.94 169.382 75.7985 75.3374 75.1863 42.3450 27.0809 18.7982 13.8071 10.6692 8.3499 6.7628
2 736.21 184.506 182.694 81.8005 81.2633 81.0875 45.6730 29.2076 20.2738 14.8906 11.3984 9.0049 7.2933
28 792.36 198.61 196.514 88.0382 87.4158 87.2123 49.1278 31.4150 21.8052 16.0150 12.2590 9.6847 7.3438
29 850.64 213.261 210.842 94.5127 93.7953 93.5608 52.7096 33.7033 23.3927 17.1806 13.1510 10.3893 8.4144
3 911.05 228.46 225.678 101.225 100.402 100.133 56.4185 36.0725 25.0362 18.3872 14.0743 11.1186 9.0050



RTLATIVI3TI2 RGY K71 LS FOR ''CT2R&1', U COULYJ3

Values tabulate, ar -in

Rho

911
942
973

1005
1038

4493.9 1140.3 1071
4643.0 1179.2 11)5
4795.1 1213.5 1139
4950.3 1258.5 1174
5108.4 1239.5 1209

5269.5 1341.4 1245
5434. 1364.0 1282
5e01.5 142''.5 1319

-772. 1471.9 1356

5940. 517.3 1394

6124.1 1563.5 1433
6305.1 1610.8 1472
6429. 1659.0 1512
66W .6 1408.~2 155~
6869.0 1 "58.5 1594

V34.3 1KY9.7 163~

4 .31915.4 j7
7 6 7 2 . z 1 9 6 9 . 9 1 76
7SS$.1 '2025. 180'

80;7. 2082.3 185:
8316.6 2140.2 189(
6539.7 2199.3 1942
3 '7.0 2259.7 198
8998.7 2321.5 2035

9235.0 2384.4 208
9422. 2448.7 213
9722.? '2514.7 2 17~

5

9

5

V
2
3
41

5
7

3,

7,

1,
6,

2

2

0,

9,

T1 i"7 a3 n;3
3/ _ j:2

06.56

20.46
34.60
48.99
63.53

78.52
93.565
09.05
24.69
40.57

3791.1
392 .

4063.4
4203.9
4347.5

96 0.08
994.64

1030.0
1066.1
1103.1

:1 /2
n=4

J r 1P
4 A n1:4

-17/2
n:5

- - 4 i I T

!2 jAl2

.07 421.15 4

.01 43612 4

.53 451.40 4
.6 466.99 4"
.3 482.89 4

.5 499.12 4
.2 515.56 j4
.5 532;54 5

.3 549.76:5

.7 567.31 5

.6 585.21 5

.1 603.45 5

.2 622.03 I5

.8 640.97 6

.9 660.29

.5 679.98

.9 700.05 6

.7 720.49 6

.1 741.31 6

.1 762.51 7

.6 784.18 7
';7 806.18 7

.4 828.62 7

.5 81.52 7

.4 874.86 8

..8 898.51 8
.9 922;79 8
;4 947;46 8
.6 972;53 8
.3 998.21;9

7 1024.4 9
.S 1051,0 9

i,2' 1078.2 9

r- T

56.71
73.11
89.76
06.67
23.33

41.2 C
58.94
7688
95.09
'13.57

'32.27
'51.28
770.55
790.08

09.87

29.94
50.29
70.87
91.76
12.94

334.32
56.07
78.08

402.15

415.75
429.57
443.52
457.91

472.42
487.16
502 .14
517.34
532.79

548.45
564.34
580.44
596.83
613.45

630.29
647.35
664.65
68219
699.97

713.)0
736.23
754.70
773.40
792.33

811.53
830.98
850.63
870.54
890.67

911.03
931.65
952.53

L. -.

T

n-7 rn)

75

76

79

90
91
92

234;57
242.52
251.24
259.82
268.57

277.49
286.57
295.83
305.26
314.86

324.5
334.52

344.77

355.09

365.61

370.33
387.24
398.34
409.55

1 421.15

432.86
444.75

456.87

469.21
481.77

494.55
507054
520.76
534.21
547.92

561.85
576.05
590.51

228.4G
230.26
244.20
252;28
260.50

268.35
277.34
285.97
294.74
303.66

312.71
321.91
331.24

340.72
350.35

360.12
370.04
380.10
390.30
400.54

411.15
421.30
432.60
443.55
454.65

465.90
477?30
488;79
500.44
512.31

524.33
536.50
548082

226.59
234.27
242.07
250.00
258.00

266.25
274.57
283.03
291.62
300.35

309.21
318.20
327.31
336.54
345.91

355.43
365.11
374.91
384.84
394.89

405.07
415.41
425.88
436:47

I..

225.59
233.29
241.02
248.38
256.86

264.98
273.23
281.61
290.11
298.73'

307.49
316.38
325.40
334.55
343.52

353.22
362.76
372.42

.382.20
392.11

402.14
412.31
422.51
43306
443.64

454.33
465.13
476.06
487.18
498.37

n:1

145.2
150.0
155.1
160.2
165.3

170.6
175.9
181.4
186.9
192.4

198.2
203.9
209.8
215.7
221.7

227.8
234.0
240.3
246.7
253.1

259.7
266.3
273.0
279.8
286.7

293.7
300;7
307.9
3152
322.5

100.6
104,0
107.4
111.0
114.5

118.2
121.8
125;6
129.4
133.3

137.2
141.1
145.2
149.3
153.4

157.7
161.9
166.3
170.5
175.1

-- 46

r----r

73.8
76.3
78.8
81.4
84.0

86.7
89.4
92.1
94.9
97.7

100.01
103.5
106.5
109.5
112.5

1'5.6
118.7
121.9
125.1
128.3

131.6
135.0
138.3
141.8
145.2

148.9
152.3
155;9
1'9.5
163.2

166.9
170.7
174.5

179.6
184.2
188.9
193.5
198.2

203.0
207.9
212.8
217.8
222.6

227.9
233.1
238.3

509.68 329.9
521.17 337.4
532.78 345.0

16.4
58 v3
60.3
62.2
64,3

66.3
68.3
70.4
72.6
74.7

76.9
79.1
81.4
83.7
86.0

88.4
90.7
93.2
95.E
98.1

100.6
103.2
105.7
108.3
111.0

113.7
115.4
119.1
121.9
124.7

127.5
130.4
133.3

T.__ _ ' ' T _ - _ T-'*'.

447.18

458.05
469.07
480019
491.46
'020M4

514.41
526.09
538.00

44 06
46.1
47.53
49.1
50.7

52.3
54.0
55.6
57.3
59.0

C 0.7
62.5
64.2
660.1
67.9

69.7
71.6
73.5
75.5
77.4

79.4
81.4
83.4
85.5
87.5

89.7
91.8
94.0
96.2
98.4

100.6
102.9
105.2

36.1
37.3
38.5
39.8
41.1

42.4
43.7
45.0
46.4
47.5

49.1
50x6
52.0
53.5
54.9

56.4
58.0
59.5
61.1
62.7

64.3
65.9
67.5
69.2
70.9

72.S
74,3
76.0
77.8
79.6

81.4
83.2
85.1

i

I

A

i

t

{I

i

t

i

i



TABtA IV

AVERAGE SQUARE RAIUIS (I? ELECTRONT ORBITS

Values of and

4

.a.\O

r

a 0

2 4
7 ?2

{14 1

2 n2,

Averaged rver all Angular Meta

.2~ 
2

Principal I
Orbital Quaitmin NAhber n CO

le ab 1 3.00

28 4A,00m) 2 S6.00

2 p 50.o 3 171.00

Se 207.DO 4 528.00

Sp 180.00 5 1"T5.0

3d 126.00 6 2628.0

7 4851.0

8255.9

9 13"03.

10 20100.

M low- }1'.. 31

n



TA3Lo V

THE FREQTENCY FACTOR F(a,u)/F(a,ao)

FOR LTIES OF EOUAL STRENGTH

F(a&u) :dz
Ira

0 0.1 0.2 0.3 0.4 0.5 100 1.5 2.0

F(oo) .0000 .9761 .9528 .9307 .9096 .8896 .801a .73138 .67399

C 0 L.OODO 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

.3589 . .2564 .8530 . 496 .8461 .8427 .8393 .8225 ; .061 .?99
3 .10 .79- .7902 .7655 .7808 .7761 .7714 .7485 .7265 .7056

.3805 .15 .7474 .7411 ,7354 .7"08 .7^35 .7187 ,6918 .66c .6421
2) .20 .704f .6984 .6921 .0859 .6796 .6735 .6438 .6157 .5895

1.7321 . .":.7 .6597 .6529 .6462 .6395 .6329 .6011 .5714 .5439
1.5275 .30 .C.10 .6237 .6165 .;094 .6024 .5955 .5622 .5314 .5332
x.3.35 .5970 .5894 .5819 .5746 .5073 .5602 .S260 .4948 .4681
1.2247 .40 .=641 .5563 .5487 .5412 .337 .5265 .4918 .4602 .6;17

1.3 O .45 .S319 .5940 .5163 .5057 .5012 .4938 .4591 .4276 .3995
1.00:. .50 .5000 .4921 .4844 .4707 .4693 .4619 .4274 .3965 .3670

.0045 .55 .4681 .4603 44520 .44,x% .4376 .4304 .3965 .3663 .3397

.8U'5 .60 .4359 .4282 .4201 .4133 .4060 .3989 .3659 .3368 .3113

.'7i71 .65 .3918 .39505 .3882 .310 .3740 .3072 .3354 .3076 .2834

.,547 .70 .3690 .3619 .3548 .348Q .3413 .3347 . 04c .2783 .2558
,.5774 .75 .3333 .3266 .3200 .313" .3072 .3011 .2729 .2486 .2278

.5 .e0 .295< .2890 .2828 .2769 .2711 .2665 .2398 .2178 .1990

X4201 .85 .232 .'4'7 .2422 .2 369 .2318 .2268 .2041 .1848 1h85
.3333 .90 .2048 .2003 .1957 .1913 .1870' .1829 .1640 .1481 .1347
.2294 .95 .1436 .1400 .2368 .13% .1305 .1275 .1148 .102G .0932
0 1.00 0 0 0 0 0 0 0 t



4.

F( a, a .5241

411. 41.

0. - -

.

.30

.35
.40
.45

.50

.9499

275

1.3626
1.3347
1.1055

.9045

.8165

.'4071

. 547

*4?01
.3333

.2294
0

.55

.63

.70

.75
080

.90

.95
1.00

U

.4 f47

.413

7 Nor V

.314',

.2877

.2622

.2382

.2151

. 1927

.1705

.1481

.1247

.0992

.0683
0

1.000r

. 9502

.>6 B

---

--

.205

.2146

.1747

.1335

.0890

0

13.

.33>
.

.4 95

.3916

.:C19
.2379

.2159
.1953
.1'59
.1571

.1387

.1010

.080?

.0551
0

.356v

.2432

.2236
.2021

.3.55

.134'
.1199

.1057

.0916

.0769
.0611

.0420
0

.34 U

-w

.1815

.4

.1210

.097"'

.0741

.0494

. 4

1.*0(4

.1 2

.1278

.2043

.3837

.0C30
.- 4s/

.9931

.34>2

.23 Y~

.2053

.1859

.1679

.151

.. 347

.1138

.1030

.08666

.0688

.0473
0

I .2 )43

1. )3h'

9

.1741...

. '39;

".-114

.0570

.380

-rw

.314r

.-

.1587

.127?

.1039

.0680

.051)

.034,

.+r

.386 G



4-op/3 y-6

TABLE .I

T?3E WEIG:iTPE FTXCT2IO N

.,u) 15 u7 e2u gu 1 -- )

- AND THE

S(u) :

STROE REC 7U>.T I,-

t:(x )dx

u W(u) S(u) u W(u) S(u)

0
4.0390x10-5
6.'73 7x1o-5

3.58 14x10-4
18 018-c10-3

2.9948x10"3
6.4396x10-3

.012339

.0?1726

.035822

.056077

.084103

.12175

.17101

.23401

.31303

.41042

.57054

.83681

1.0316
1.2564
1;5134
1.7970
2.1307

2.4940
2.3948
3.3344
3.812x1
4.3302

4.8857
X47-'

6.7733
7.4715

0'
3.015xU0 )
2.669x10
2,103x10-'
9.185x10"

2.902x10-
7.454x1 r 4

1;66Ox10 3

6.170x10'0

1.0710c102
1.765x10- 2

2.787x1 -2
4.214xl0-2
6.257x10 2

8.93 1,0
,1258
.1724
.231
.3066

.3994

.5129

.6502

.8144
10009

1.238
1.505
1.815
2.173
2.582

3,048
3.50-3

4.14?
4.7923
5.2-41

3.5
U.-
3.7
3.3
3.

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7

4.9

5.0
7.1
5.2

5.4

5.5
5.6
5.7
5.,R
5.9

G.0
6.1
6.2
3.3
6.4

6.5
C.'3

.7
6.3
r.9

- I ________________________________ II I

8.2003
8.9572
9.7404

10.546
11.3'2

12.211
13.004
13.926
14.793
15.660

16#526
17.384
18.232
19.067
19.884

20.681
21.453
22.199
22.915
23.599

24.249
24.861
25.436
25.970
26.463

26.913
27.319
27.682
28.000
281273

23.502
29.x86
2R .826
28.'23
28.977

TOA69
8.0619
9.0957

10.1902=

ll.*W?$
12.$3 ?9
13.9808
15.4174
16.9409

15.
20.Z4 O
$2.294

3,894Q
25.84a3

29.97?5
32.1510
54.4014

6."7225

39.1128
41.4E9
44.0545
46.6656
49%29)7

0.0
.1
.2
.3
.4

.6

.7

.9

1.0
1.1
1.2
1.3
1.4

1.5
i,6
1.7
1.9
1.=

2.0

f .

2.9

'.0
s.4

51.9633
54.$75S
57.4249
eo.2082

68,0213

65.537
68.7225
71.5973
74.4853
77.3810

y

d

I.



L.

ABLLVI (Corti ied)

"

'I( )

f7.0
7.2

1 . r

.7

7.8

u

17.027
10.163
15.053
1:'.815

10.787
3.4757
7.0711i
5.Q 6 02

4I." 77

.3745

.2. 1

.0267E7

.00 6G 59
.0C15798
.000071419

0

8.0

348.3
0.4

65
SS

4..

o.7

8.9

S.C
2

9.3
G.4

9.6
M9.a7

u

10.2
1C.4
10.
10.8

11.0
11.5
12.0
12.5

14.0

10 .2

?4..
4.0 'C

2?.0

S ( u)

28.9OM
28.961

2 3.895
2 .789
28.946

28.025
27.742

77.439

27.113
29757
26.379

Lb .981

25.1,6
24.673
24.2 X6
?4.,3^X

22.732
22.222
21.706
21.183
20.658

20.22
19.596

18.535
23.007
17.484

80.2800
23.1773
86.'98
88.9546
9 1 .832 3

34 .0858
97.5' 2

103.122?
135.8525

1J8.s119
1 :.3053

113.9c )6
116. 7 )7
113. 19S7

1221.c ;z9
124 .1 25
126. 251
129.021.
131.9I

135.'2
138.1127
140.2571
142.3489

14 ,2 .$
146. y"4 "
143JL66
150.1856

15 .- 6Cr

S (u)

157.1759
160.3624
16 1.3490

166.1404

165.74"4
174.4525
170, .15 5

182.9749

10.3846

193.0267

194.5800

1P5.9583

19.3685
196.4833
196.5103

196.5194

196.,5194

-41 + ___________________A____

e



/ ,/

Fo-,,mae for ourd Free ^aunt Factors

Drine Fn(k) exp(-4k tan D/k)

- exp(-2Tr k)

cP /. ank
Jk .i

F2

2wg 7 7r F3

- 21 r

3

_.r __ F2(k)

(1 +4/)2

(1 3 / ') F2 (k)

(+4/ k2)

36
133+/)
{I+t4/k2 )3

: 26 33 ar +

Table VII

9p -i kd

2
32

F2 ''

F2 (k)

.1
k )

F (k)

F (k)

F3 (k)

81\
3p- k

*-* k

45
S 2 34 ;- , + )

1 +i / ^5

1+.- f

$4 ?T (1 +" (--+ )k2 1

(1 f4 ;2

9 6~(15+

23

(1+1/



ABLE VII ("Ontinued)

2'
'r

4 - 1

( t s'.

k

V'O 3C

U--A
- 1 .1722C1 . . 04 ,7

) /~

.002'M50

)

1 '. 4).

1 3 + 1Z
kE

31r2
0 ~x 17 +

a

+6a00

4(1-)

40 14, 01,t .. V n

k

.22&b



/ / 7

Table VIII Val uos for 7ound Free Gaunt Factors

/, re s -+ kp

0 00.49 4
.0C1 21.623 .. 9770
.01 10 .g9S99
.05 4.4721 .310C1
.1 3.1623 .82167

.2 2.2361 .84331

.5000 1.414 .89240
1.000 1.000 .94236
2.0 .70711 .98447
5.0 *44"21 .98592



1 I ~ -

1 -4 *-.--.----~--.--.--4--------

. r

.6 7064

,

.:r; >

.7'971

.70856

."790
.>1664 4- ..4 4 2

*2 3^

964 1.02095

988 1.03799
07 1.05073

321
r6 :. .p ,

Y
-I -~

~'

0
O 

r

.37190

*%1C
1.000

.14"1

.,2i
.3780

.r 50

.C2'77

.11111

.3333

. 0 944
I.000

0
n" I

. I

1.64

1 a ;

1.000

I5

00

" .*

f.7

:1.'
*. 5'

.934 0

1. 72 76

2.4 1104
. 6420

r.0,' 7

1.31070
1.5S462

2.77,63

3.52160

A.7364I1

S.52416

.9754?

4.'I 0'

.0"6129
,0?7922

.084 0 

.0260
.02" 104

1.0976
1.23028

1.4544
13 5574

1.56 t7
1.52290
1.4C219
1.24884

. 76

.

. 261

.21

.1

l

I



.c.. ir hAl eIur, ci ;ou~na Frce raura actors i~n u4d

Ft *..7 : G! 4. *

- 9'474 .9760 .9438 . 49 *9545 . .9 (W , (y

%1111 947Q .95 . .[ 9{

30 .941* . .. '-

. .994 1.0035 0.011V l.u173 0"3E.0C0f4 . I" .flr8 l.02,10 I.29 .r035 1.YT9 1.410597C

.1111 3 1.01'* 1. .0401 1.7. 1. -

.25000 2.< 1.04743 1.0597 1.066 1.0'1? 1.0744 1.07W' 1 O81 1,.5000 1.41 1.072 1.O07 1. 7 ;.,, 1.0909 1,093e
1000 .0" 74 1.0945 . C.

* 'ndicates interpolated val ws.



The function (x)

X Xx)

-1.9F 36
-1.2202
- .7 183

*4627
.2149

0
.01
.05
.1
.2

.3

.4

.5

.6

.8

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

.0907

.0190

.0241

.0507

.0754

.0307

.0799

.0776

.0744

.0707

.0666

.0624

.0582

.0541

.0501

.0462

.0426

.0392

.0359

.0329

--146-

TAB LL IX

*

-

2.5
2.6
2.7
2.8
2.9

3.0
3.2
3.4
3.6
3.2

4.0
4.2
4.4
4.6
4.8

5.0
5.5
6.0
6.5
7.0

7.5
8.0

.0302

.0276

.0252

.0230

.0210

.0191

.0158

.0131

.0108

. 008 9

.0073

.0060

. 0049

.0040

.0033

.0027

.0016

.0009

.0005

.0002

.0001

-l- y e n y dy



IEN IEJ L & (S f-m CO. N. V. NO. 3 9-*at
Seen-Logartthmir, I (ynie. / 10 t! tt in nh.

MAO& IN U. S. A.

H N 4f # N. CI VO 0
- w *a Wiio -0-

1.10 - --

1.09 - -

c~ _C ER Ir'r niOPF

1.08 -NrnR -T _- E r

1.07 -

1.06 - a
t I 'F

1.05

1.04-- ---- -

1.03 -- - -

1.0 2-

1.01

1.00 -

0.99 -__ z- _-

0.98

0.85 1-0

0.97 - 0

0.94

0.895

0.84 ------

0.83i--- - - -- - -5-. --.. _'H-0.83 '

0.81

0.8C. -.. -- ---
0.001 0.01 0.1 1.0

k2

5



AE PI

0.8 AVERAGE D S-LAOEMENT N Jf P I E

; i -

<T

, ! I 
+. r a__)--J4 

0.5

- I

0.3 --- --

- _ t t V I 4

1 ~ ii

0.2~ ~I4-~ ~ Iki
4- - I }'J4

1 
11

I- I ii -j j-t- 4
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FIG 1110

NOMOGRAPH

g(xy) {tan (x+y) - tan (x-y)}
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FIG Ib

NOMOGRAPH OF

S-1 -1
g(x,y) =-{ ton (x+y) ton (x-y)
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y 20 - 3.0
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