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Abstract

Low rate speech coders have recently undergone extensive development. However little

effort has gone into developing low rate coders for noisy channels.

This thesis is concerned with methods for protecting speech coding parameters trans-

mitted over noisy channels. A linear prediction (LP) coder is employed to remove the

short term correlations of speech. Protection of two sets of parameters are investigated:

the short term spectral (LP) information and the excitation sequence. Errors in the

LP coefficients cause particularly annoying distortions in the reconstructed speech'

Both techniques proposed for protecting spectral information employ the line spectral

pair (LSP) representation of LP coefficients. The first scheme relies on the monotonicity

of the LSP representation to detect erIoIS, and uses a vector codebook for substitution

of corrupted coefficients. The second scheme uses a multi-stage vector quantizer at the

transmit end. Error protection is employed on the most significant bits of the codebook

index and non-redundant pseudo-gray coding on the least signifrcant bits'

To mask errors in the excitation sequence, trellis source coding is examined as a possible

error robust technique. This form of excitation for modern LP analysis by synthesis

cod.ers is not well known. Trellis encoding is investigated specifically for rates less than

1 bit per sample (bp.). An efficient encoding is achieved using the M,L algorithm

for trellises of 64 to l2g states. Subjective tests reveal that for trellis excitation at

less than I bps, regular pulse excitation is not perceptibly difierent from a purely

stochastic excitation. significant perceptual improvement is found on training the

codebook. An efficient analysis by synthesis training method for regular pulse trellis

excitation codebooks is presented. The segmental signal to noise ratio for the proposed

cod.er is 5.3d8 for a transmission bit rate of 5.5kb per second, which is superior than

the original multiPulse coders'
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Chapter 1

Speech Coders for NoisY Channels

1.1 Introduction

The aim of this thesis is to investigate error correction and error masking procedures

suitable for speech cod.ers operating over additive white Gaussian noise and burst noise

channels. Many modern mobile communications systems are subject to channels that

vary greatly in signal strength and interference levels. Much interest has recently been

shown in mobile satellite communications which allows users to communicate from any

position under the satellite's footprint into the public switched telephone network. It

is necessary to operate within narrow bandwidths in order to maximise the usage of

the satellite transponder and make the scheme economically viable. It is this class of

channels that is of primary interest in this thesis. The narrow bandwidths employed by

modern speech coders for these kinds of channels make them very susceptible to deep

fades. At the receiver end a deep fade is associated with a burst of errors. Although

random errors are covered in the investigation the burst noise channel is of major

importance as it is characteristic of the mobile communications channel.

It has become quite evident that due to the natural redundancy of speech it is far

more efficient to base error protection for bursty channels on reconstruction techniques

and methods of selected bit error protection, rather than brute force classical error

correction coding. These issues will be discussed at length within the main body of

the thesis.

As a vehicle for study this thesis examines the robustness of the class of Code Excited

Linear Predictive (cELP) coders t1l t2l t3l t4l t37l t5l t6l t7l tsl tel [10] [11] [103]'

Mulripulse t12l [13] [14] [15] and Regular Pulse Excited coders [16] [17] [18] with respect
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to errors suffered during transmission of the coder parameters. A generic CELP coder

was chosen as the main vehicle for the investigation as it is capable of delivering near

toll quality speech at the rates of the order of T,kilobit per second. CELP coders,

discussed in more detail in Chapter 2, comprise a class of well understood algorithms.

Key features include a linear predictive all pole recursive prediction filter [19] and

stochastic noise sources used to excite the predictive filter. A United States Federal

Standard 1016 [3] [1] has been set for CELP coding. The algorithm is also in the

public domain which allows the comparison of developed coders with the Standard.

The Multipulse coder developed by Araseki [13] and the Regular Pulse Excited coder

developed by Kroon [16] are also used as reference models for the thesis'

A simplified version of the CtrLP coder without the long term predictor, similar to

multipulse coders, was studied to determine the suitability of trellis encoding of the

excitation sequence for the predictive frlter at low bit rates. It was found that an

implementation based on regular pulse excitation proved to be the best option in terms

of computational load.

A considerable amount of literature exists on CELP, Multipulse and Regular Pulse

Excited coders and their performance over good channels, which make them good

vehicles to study in the context of designs to counter channel noise. Only a limited

amount of work, see for example (t20] t8] [37] [21]), has been done in the area of making

these coders robust to noise. Some of the results of these efforts, are discussed in the

overview below.

L.2 Thesis Goals and Historical Perspective

Most of the efiort in CELP coding has been in the area of extracting as much perfor-

mance as possible from coders on a clear channel at a given bit rate'

The traditional view of making digital data robust to noisy channels is to compress the

source code to as low a rate as possible and then use a forward error correcting code to

obtain robustness. This approach was soon shown to be wasteful as not all parameters

are as sensitive as others to noise. An important paper by Cox et al' [20] investigated

the sensitivity of the various parameters to channel noise. The most sensitive parame-

ters to noise are the linear prediction coefficients (LPC) parameters which are normally

transformed to line spectral pairs (LSP's) before quantisation [31]. These parameters

give the short term spectral information; errors give annoying whistling and banging

2



sounds. The next most sensitive parameter to noise is the stochastic codebook gain'

This is followed by the adaptive codebook index, the gain and frnally the stochastic

codebook index. cox went on to discuss some coÏrection strategies based on the re-

dundancy of the speech signal rather than specifrcally adding coding redundancy' The

techniques discussed include substitution of previously correctly received frames' and

replacing LSP parameters found to be in error. cox also considered Gray coding of

quantiser indices to minimise the effect of single bit errors'

The main instrument for burst noise error correction/masking was found by noting

that speech is highly redundant and if a framel, or subframe' was found to be cor-

rupted beyond correction, various substitutions of previous frames' parameters and/or

excitation parameters are possible. Error correction/masking is made possible through

natural redundancy within natural speech and redundancy specifrcally added'

The ultimate goal of the thesis was to develop a speech coder that operated at 5 kilo-

bits per second or below that had excellent noise immunity' The particular aspects

that were addressed in order to achieve this goal were:

o the short term spectral information was to be encoded in such a way that either

the errors could easily be masked at the receiver, or that it was robustly encoded

at the transmitter giving direct immunity to channel noise;

o to use a fractional sample pitch predictor to enhance encoded speech quality and

use pitch tracking algorithms to eliminate gross pitch errors caused by transmis-

sion bit errors;

o to use a trellis encoding scheme for the excitation sequence due to its alleged

robustness to bit errors;

o and post processing to improve perceived reception quality'

Not all of these goals were met, in particular long term prediction using a pitch predictor

was not incorporated into the frnal coder design due to difficulties with the trellis

excitation scheme. A description of the contents of the thesis and the historical context

in which the investigations were undertaken is given below'

with a view to the final speech coder design an interesting and robust pitch estimation

1A frame of speech is typically 20 to 30 milliseconds of speech which is commonly sampled at 8

kHz for coding aPPlications'
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algorithm was designed in chapter 3. Beside the pitch2 estimation aspect, pitch tracking

could be useful for detecting gross pitch errors, assuming that a pitch predictor type

speech coder was used.

Many CELP coders use a pitch predictor but it was noted that a non-integer pitch

predictor 12] lzzl,gave superior results. An aim of the thesis was to use the concepts of

dynamical systems theory 123] 124] to extract pitch information. Tishby [25] explored

the validity of describing the voice generation process as a nonlinear dynamical system

and applying modern analytical concepts in describing the speech waveform' It was

hoped that a dynamical systems approach would give good pitch information' Dynam-

ical systems generate an orbit in an arbitrary space, called phase spacet as the system

evolves. The orbits generated. by the speech waveform were studied to obtain pitch

estimates.

Poincaré investigated dynamical systems by observing how a phase space track pierced

a plane (section in higher dimensions) from a given direction' Grebogi, ott & York

[66] illustrate the idea. ott [73] discusses the idea with a little more detail' The idea

of a Poincaré section is useful in this application for finding points close to each other

in difierent cycles of the orbit and extracting pitch information at the same time' This

technique worked providing that the orbit did not vary too much within the window

of observation.

A correlational approach to match the shapes of the orbits in multiple dimensions \ryas

chosen as the best approach to obtain the pitch. The developed fractional sample pitch

estimator \ /as presented in part to the Speech Science and Technology (SST) conference

in Brisbane Decembe r 1992 [50]. Feed-back from the conference allowed refinement of

the algorithm to make it simpler and more robust. A useful voiced/unvoiced indicator

was also develoPed.

one of the best pitch estimators developed' in recent years is that of Medan [76]' when

the pitch estimator in the thesis is compared' to Medan's many similarities become

apparent although the one in the thesis was developed from another view point' one

obvious advantage of using multiple dimensions was found in the improvement of the

Absolute Magnitude Difference Function [26] (AMDF) when three dimensions were

used for estimating the integer sample pitch'

An estimate of the pitch was also found to be useful for the post processing of speech'

2Pitch in this context was taken to mean the distance between glottal pulses, or the point where

the speech waveform appeared to almost repeat itself'
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Kroon [4] used spectral shaping for the post processing of speech and Transcoso [27]

used a frequency domain approach to improve the perceived quality of CELP type

coders. other authors have used harmonic processing to remove unwanted noise from

noisy speech [28]. A new method of pitch synchronous post processing of noisy speech

was investigated at the end of Chapter 6. Implementation of the post processing

required pitch information, preferably transmitted from the source end' The post

processing improved the perceived quality of the reconstructed speech.

A primary interest of the thesis was the burst noise case common on mobile communi-

cations channels. work by Perkis [21] and the author with colleagues (Rowe et' al' [51])

have studied the effects of burst noise and the masking of errors when entire frames

were rendered. unusable. A key factor to good performance in a burst noise environ-

ment was not only error correction for random erÍors but also more importantly error

detection to determine when an encoded frame is deemed useless.

The parameters transmitted over the channel may be considered to be in different

classes depend.ing on their sensitivity to errors. As the short term spectral information

is very sensitive to ertors, it was dealt with separately using two different approaches

to improve performance. The short term spectral information must be well protected

to minimizelhe perceived annoying tonal distortions'

Two chapters of the thesis, chapters 4 and 5, each present a different approach, to

increasing the spectral parameters robustness to noise. chapter 4 investigated a scheme

of scalar quantising the line spectral pairs (LSP's) [30] [31] [32] at the transmitting

terminal and then using a vector quantiser [33] at the receiver terminal to match

the received scalar quantised LSP's with entries in the LSP vector codebook' If a

component of the received LSP vector was deemed'to be in error then it was corrected

using components from the sample vector stored in the codebook. This method made

use of the natural redundancy within speech by noting that a limited number of LSP

vector shapes can d.escribe most voice vectors with small distortion and that signifrcant

correlations exist between LSP vector components. The application of using a vector

codebook to mask errors in the transmission of vectors is novel. Traditionally if an error

was found in the LSP's they were sorted, or the previous frame's LSP's substituted [20]

[21] [b1]. The scheme described in the thesis was enhanced, so that the vector codebook

performing the error masking was trained on-line and thus avoided the need for a large

static codebook at the receiver. The superiority of the proposed scheme was clearly

demonstrated.
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In Chapter 5 the vector quantisation process was moved to the transmitting end' This

application of vector quantisation is the more traditional one' several attempts have

been made at designing vector quantisation codebooks for the short term spectral

information:ozawa [22], Kroon [34], Grass [35]. However rather than just using vector

quantisation to reduce the bit rate, and then adding an error correcting code to obtain

integrity of the transmitted data, a more detailed study was undertaken' By using

the inherent redundancy within speech and error masking properties of the auditory

system a method of unequal error protection was possible, where the most significant

bits of the codebook index was forward error protected and the least significant bits

used to ind.ex vectors in close proximity to each other' use of vector quantisation to

reduce the bit rate for speech parameters for the noisy channel scenario has not been

extensively studied elsewhere'

various authors have attempted to design joint source channel coders for vector quan-

tisation. The most notable work in the area has been done by Ayanoglu and Gray

[3g] and Farvardin [39] [40]. Each of the joint souÏce channel coders perform well un-

der the conditions they were designed for, that is, at a particular channel error rate'

secker [41] applied Ayanoglu's design algorithm to the encoding of LsP parameters'

Although for a given bit rate significant performance improvement was found for the

codebooks designed for a particular bìt error rate, when the channel was error free a

performance degradation was observed. compared to source coders designed for the er-

ror free channel. Farvardin also observed similar degradation on the error free channel

in his articles.

zegerand, Gersh o lazlinvestigated generalised Gray coding to add non-redundant error

minimization. conceptually, indices to codebooks or other quantisers should be organ-

ised such that if an error occurs during transmission the reconstructed values (despite

an erroneous index) will resurt in a vector/value as close as possible to the original

vector/value. This id,ea is developed further in the thesis where the most signifrcant

bits were forward error protected and the less significant bits Gray coded' coupled

with these concepts an implementation that could run in real time was sought' Due the

very large codebooks required to encode the short term spectral information (indices

ol x24bits) a structure was placed on the codebook. The structures investigated were

the binary decision tree, and. the split and multistage vector quantisers; these struc-

tured vector quantisers are covered in some detail in the book by Gersho and Gray [33]'

which covers most aspects of vector quantisation'

The encoded stochastic excitation sequence has low sensitivity to errors which cause

6



wideband noise. Due to the lower noise sensitivity the stochastic coding was considered

separately, as a careful coding procedure without any further protection was coniec-

tured to be adequate for the encoded excitation sequence. This did indeed prove the

case.

salami t8] t37] considered embedding forward errol collection coding into the speech

coder to protect only certain bits to achieve robustness. This idea of unequal error

protection also makes use of the fact that various parameters are more sensitive to

errors than others.

chapter 6 deals with a trellis excitation mechanism for CELP coders. The main ratio-

nale for using a trellis coding mechanism is to limit the range of the effect of bit errors

within the excitation sequence. saiami [43] has commented on the usefulness of making

the excitation sequence (the stochastic codebook excitation) robust to channel errors'

The concept of using trellis excitation for predictive waveform coding was briefly men-

tioned by stewart [44] who called it hybrid tree coding. The new model described in

the thesis advanced the concept considerably. The reason for the localization of error

events is briefly described as follows. Trellis coding generates a bit stream which is used

to generate a sequence of states within a state machine3 and subsequently produces a

series of excitation vectors at the receiver. The memory of the state machine together

with the memory of the synthesis frlter at the receiver determines the duration of any

corruptive efiect of channel eïrors in the excitation bit stream. For the moderate sized

trellises used, the state memories were small' As the new model has small localised

efiects for bit errors, it has a large advantage over the standard CELP model which

uses large vectors and a single index. In the standard CELP model an erfof event

in the index, causes an incorrect vector to be chosen resulting in a complete vectora

of incorrect excitation, in addition to the memory hangover effect into the following

excitation vector. For mod.est trellis sizes the trellis coder's error propagation was only

marginally longer than the memory hangover effect'

The important issue of codebook/trellis training is also covered in some detail in Chap-

ter 6. Due to the nature of the regular pulse excitation chosen in the implementation,

standard optimization techniques [44] [45] were not suitable. This led to stochastic

(probabilistic) optimization techniques such as simulated annealing which has been

investigated by various authors t46] [47] [48]. simulated annealing was investigated for

3A trellis with 128 states describes the states and transitions of a finite state machine with a 7 bit

memoly
aTypically the length of excitation vectors in CELP are of the order of 40 samples
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training the codebooks developed in the thesis, but the training time was far too great

and a new rand.om search algorithm was d.eveloped. The algorithm as developed here

will not work well in low dimensions in unmodifi.ed form, however it had distinct rate of

convergence advantages in higher dimensions. It was found that the codebook/trellis

entries had a considerable effect on the subjective quality of the reproduced speech'

The implementation d,etails of a CELP coder that used the (M,L) algorithm [49] for

trellis encoding of the source is covered in some detail in the latter part of the chapter'

Chapter 7 models the error processes involved in receiving erloneous bits for the en-

coded excitation stream and discusses the parameters involved in selecting a suitable

trellis. Limitations of the trellis encoded excitation were also determined, in particular'

the regular pulse excitation model. It was found that the trellis encoded excitation' as

implemented, had a lower bit rate limit of ll4bit per speech sample.

speech coder design for noisy channels is then discussed in the frnal chapter with

recommendations and indication of areas where future work would be of interest'

Two publications [51] [50] have come out of this work to date, where the co-authored

work [51] addressed packet substitution schemes suitable for CELP coders and the sole

authored [50] covered preliminary results of the super resolution pitch estimator'



Chapter 2

Linear Predictive Coders

Background

2.! Introduction

when coding the waveform of speech two basic strategies are available: frequency

domain representation and time domain coding. The experimental work in this thesis

is based on time domain coding. In particular the work in the thesis is based on

the highly successful Linear Prediction coding which is described in some detail by

Makhoul in a tutorial PaPer [52]'

The purpose of this chapter is to give the reader background theory and establish the

nomenclature that is used in the following chapters.

Time domain waveform coding is based on a series of equally spaced, time samples

of speech. Linear prediction attempts to estimate the next speech sample based on a

weighted sum of previous speech samples. The prediction uses an all pole model of the

speech process and is designed to be optimal in the least squared error sense' By using

an all pole model, computationally efficient solutions for the coefficients can be utilized;

solutions for the model's coefficients, given the speech time series, are described below'

9
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Figure 2.1: Differential Pulse Code Modulator'

2.2 Linear Predictive Models

The simplest form of prediction is that used, by Differential Pulse code Modulation

(DPCM). This coder uses a predictor which is fixed and employs n previous speech

samples to predict the next. The difference between the in-coming speech sample

and the predicted sample is quantised and transmitted. Figure 2'1 illustrates a block

diagram of the sYstem.

consider a predictor that operates on regularly sampled. speech, with sampling period

[. Typically these simple predictors use one, two or three previous samples' For illus-

trative purposes, a model using the two most recent speech samples will be developed'

The predicted speech sample s(nr") at time r¿4 which tries to estimate the true speech

sample s(nT") is given bY,

3(n?") : As((n- 1)?") * Bs((rz - 2)T") (2'1)

where A and B are the predictor coefficients to be d'etermined' The error between the

predicted value and the true sample value may be written as;

e(nT") : s(nT")-|(nT")

: s(rz?") - As((n- 1)?") - Bs((n - 2)7") (2'2)

(2.3)

The mean squaïe error (mse) is to be minimized. Mean square elror can be written in

terms of the mathematical expectation E['] as'

nlse = Olez@f")l

10
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By finding where \msef ðA arrd \msef 0B arc equal to 0, the optimal values for A and

B canbe found. The differentiation of the mean square error with respect to A arrd B

is equivalent to using the principal that for minimum prediction error the expectation

of the data used for prediction and the error must be orthogonal, which allows us to

write;

El(s(nT") - As((n- 1)"") - Bs((n- z)2")X"((" - 1)7"))l : 0

E[(s(n",) - As((n- 1)",) - Bs((n-z)A)X"((" -2)?.'))] : 0 (2'5)

The expectation E[s(nf")s((n - 1)?.,)] can be estimated using the auto-correlation

function. Ideally the auto-correlation function should be evaluated over an extremely

long segment of speech as it should represent the correlation value for all speech for

the true expectation. That is,

N

Els(nT")s((n - 1)?")l nc Ä(?") : t s(nT")s((rz - 1)?.') (2'6)
n=l

where l[ takes on a very large number in order to represent speech in general. In prin-

ciple the two coefficients of Equation 2.1 should model the correlations of all possible

speech. This requires the calculation of the autocorrelation function for all possible

speech. In practice a replesentative large number of samples are used to estimate the

true correlations.

Using the approximate evaluation of expectations the Equations 2.5 can be rewritten;

,3(?'")-AË(0) -BR(T") : 0

R(2T")-AR(T,)-,Bft(o) : o (2.7)

Some algebraic manipulation solves A and B in terms of the auto-correlation functions;

A: ,B(7") R(zr,) - ft(?")n(o)
Rr(T") - Ar(o)

B: Rr( r") - fi(o)ft(2"") (2.8)
Rr(T") - Ar(o)

As the prediction coefficients A and B arc not updated but calculated once they must

be representative for all speech. It is found that as the delay increases the speech

waveform decorrelates quickly which limits the use of higher order fixed predictors'

If a higher prediction order is now employed for a fixed block size of /ú samples of

speech the prediction may be written,

s(n) ta1s(n-1) + a2s(n- 2)+ass(n-3)+, "',*aos(n-p) (2'9)

11



The notation has been altered to be less clumsy as'a constant sampling period ?" may

be assumed. The constant weighting coefficients a¿ in the above expression are called

the linear prediction coefficients. The prediction ,ô(n) depends on p past values of the

time series s(n).

.ô(n) : o1s(n - 1) + a2s(n - 2) +a3s(n - 3)+, "',*ars(n - p) (2'10)

The error between the prediction and the next sample can then be written;

en : s(n) -3(n)
p

: 
"(") -!a¿s(n-i)

i=l
(2.11)

If a¿ is redefined as -a4 the prediction error becomes,

"n 
: Dl=oa¿s(n - i) úo : I (2.t2)

The o¿ are determined using the mean square error criterion,
p

nl"'"1: ø[(D a¿s(n - i))'] (2.13)
i=O

The optimum value of the estimate .ô(n) is found when El"'"1is minimized, which can

be found by setting to 0 each component of the partial differential of mean square error

with respect' to a¿;

a4le2.l:e i_- !,2r1r...,p Q.l4)
ða;

A block of speech can be windowed by weighting each sample in the range 0 1n 1W

and setting sample values identically to 0 outside of this window. Expectation can be

estimated using the auto-correlation function,
W*p-r

R(i-k): t "(r¿-i)s(n-k) (2'15)
n=O

If. m: n - i this may be rewritten as,

w-r-(¿-k)
R(i - k) : t s(zn)s(rn +ò - k)

m=O

w-r-j
t s(n)s(n + j)

w-r
! s(rz)s(n - j)
n=J

(2.16)

n=O

We also note that;

R(j)

t2

(2.r7)



A set of p dimensional frrst order equations result from Equation 2.14 which can be

expressed as,

,f(0) R(2)

ß(1)

,B(1)

n(0)

A(p - t)
R(p - z)

,3(1)

R(2).,r(1)

d(1,3)

ó(2,3)

(2.18)

(2.20)

d.1

d2

ap nþ)

A solution can be found for this set of equations i{ the matrix is positive definite, which

is guaranteed if windowing is used for the block of data'

Another method which can be used for determining the a¿, is known as the covariance

method [53]. Consider a block of data of size 'L, then;

ó(i,k) : >!"=â "(n - i')s(n - k) i :1,2,''',P 
(2.19)

lc:IrZr...rp

The set of simultaneous equations that give the c¿ can be written as,

d(1,1)

ó(2,r)
ó(r,2)
ö(2,2)

ó(L,p)

ó(2,p)

d(1,0)

ö(2,0)

4.1

d2

Q,P ó(p,o)

The matrix is symmetric as Ó(i',k): Ó(k,i)'

The two methods give very similar results and as the auto-correlation method always

produces stable filters it was chosen for this work'

Given the prediction error en, the exact time serieó s(n) can be reconstructed'

When a windowed discrete Fourier transform is performed on a block of 2 200 speech

samples the power spectrum shows peaks d.uring voicing. voicing is a term used when

vowels and vowel type sounds are uttered. Unvoiced speech refers to sounds like t's" and

,,f,,. The peaks found in the power spectra of voiced speech are known as formant peaks

and the apex of the peak occurs at the formant frequency' The frequencies that are 3 dB

down on the formant peaks can be used to measure the formant bandwidth. The linear

predictive filter attempts to model the envelope of the powel spectrum' Linggard [54]

discusses spectrograms and formants with respect to utterances of different sounds'
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e(n) y(n)

y(n)

a5

Find,ing the roots o1 A(z) determines the poles of H(z)'

A(z) : I + aú-t + azz-z + "' + dpz-P

p

Figure 2.2: ÃlIPole Auto-Recursive Prediction Filter.

The pred,iction filter illustrated in Figure 2.2 shows the digital filter implementation'

The transfer function of the filter may be expressed as,

HØ:ù Q'zt)

The roots oL A(z) are the same âs the roots of the equation'

zp I atzq 1 * a2sn-z + ... + ap : 0 (2.23)

This equation normally has pf 2 complex conjugate pair solutions' If the solutions are

written as,

-x T¿¿JW;

(2.24)_ JUi

(2.22)

then the formant frequency is given by,

zi : Tie

u); 1

fn: #: 
^r:"arg(z¿)
t4

(2.25)



and the formant bandwidth óur¿ will be given by,

bw¿:;fulloS rrl Hz (2.26)

If the order of the analysis p is smaller than the trqe order of the system some formant

peaks close to each other will converge into one formant peak. If the model order

matches the true order of the system the formant peaks match the peaks in the short

term Fourier spectrum. When the model order is greater than the true order some of

the formant peaks will not be true formants of the speech. For more details see Saito

and Nakata Chapter 4 [53].

2.3 Autocorrelation of SPeech

Central to predictive models of speech is the concept of the autocorrelation of speech

which is covered in some detail in this Section. Autocorrelations are determined over a

window of size w ol speech samples s(rz). weighting of the speech samples within the

window is ignored at this stage. Letting ß(j) denote the autocorrelation for a sample

delay j; 
w_r

R(i): ! s(n)s(n- j) (2'27)
n=J

Two speech waveforms of the words fi,ne atd juice arc shown in Figure 2.3. For illus-

trative purposes the autocorrelation functions for the vowel 'i' in fine and fricative 's'

sound in juice are shown in Figure 2.4. The data was obtained using sampling at 8

kHz and quantizing to 16 bits.

The quasi-periodic nature of the vowel sound in f,ne is quite evident in the speech

waveform near the beginning of the utterance. The periodic structure towards the end

of the utterance is the nasal 'n'. The periodic nature of the vowel 'i' is quite evident in

the corresponding autocorrelation. The fricative's' soundin juice is found at the end

of the utterance. Fricatives are characterised by lower power than voiced sounds, like

vowels and nasals, and display almost random like amplitude. The corresponding au-

tocorrelation indicates correlations but at high frequencies' represented by correlations

occurring within a few samples. Some fricatives exhibit a random autocorrelation'

15
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2.4 Generic code Bxcited Linear Prediction

In the class of linear predictive coders, Code Excited Linear Predictive (CELP) coders

t1] t3] t4] t29] [84] [117] give the best subjective perfolmance at lower bit rates; less

than 8 Kbit/sec. A block diagram of the CtrLP coder is illustrated in Figure 2'5' The

linear prediction coefficients ø¿'s, the adaptive gain and the stochastic gain are scalar

quantised and transmitted as integers. The adaptive index and the stochastic index

are also transmitted as integers' Channel errors may corlupt any of these parameters

and mechanisms must be implemented to red.uce the effect of these errors' speciflcally

the thesis addresses the protection of the ø¿'s and the indices by using different coding

techniques.

The CELP coder is based on analysing a frame of speech and extracting the linear

predictive coefficients (LPC's) for the frame. A speech frame is typically 16 to 25

milliseconds in length and sampled at 8 kilo-samples per second' once the linear pre-

d,ictive coefficients have been extracted, the original waveform can be reconstructed

exactly by the all pole synthesis filter provided the exact residual, obtained from fil-

tering the speech using the LPC coefficients in the (finite impulse response) analysis

filter, is known. The residual is the error between tþe predicted speech sample and the

actual speech sample. Encoding of the residual is difficult as it must be done using

the minimum number of bits whilst maintaining the ability to reproduce a faithful

copy of the original waveform. The encoded residual may also be called the innovation

sequence for the sYnthesis filter'

An analysis by synthesis approach is performed to encode the excitation that emulates

the true residual. Fundamentally the approach attempts to reconstruct the original

waveform given the LPC filter coefficients, gains (for amplitude matching) and a code-

book of trial excitation vectors. The synthesised waveform that best matches the

original waveform is chosen and the index for the chosen codebook entry transmitted

as the encoded residual. A further refinement is incorporated by using a past inno-

vation sequence to predict the current innovation sequence' It is well known that a

previous pitch period is a good estimate of the present pitch period, particularly when

a vowel is uttered., and as such a previous innovation sequence should provide informa-

tion about the present pitch period. similarity between pitch periods for voiced speech

is well illustrated using the autocorrelation function for blocks of speech of 200 to 400

samples. The autocorrelation function shows distinct maxima when shifted bv a pitch

period. Many pitch estimation algorithms exploit the similarity from one pitch period

17
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Figure 2.5: Block Diagram of Basic CELP Structure

to the next in the time domain for their operation. Rabiner and Schafer discuss the

time domain pitch structure of speech in their book [55]'

There are two main philosophies used with this adaptiue codebook' In the first method

the codebook contains a frnite length of previous innovation and a pitch filter with a

small number of taps is used to extract a weighted average innovation which is then

added to the innovation from the stochastic codebook. The combined innovation is then

appended to the adaptive codebook and the oldest section of innovation discarded. The

secon¿ approach is to maintain the adaptive codebook as mentioned above but allow

the contribution to the next block of innovation to come from any location within

the codebook. The contribution however must be a vector of contiguous samples.

Inclusion of an adaptive codebook requires an additional, separate' search for the best

innovation: firstly the best adaptive codebook innovation must be found using analysis

by synthesis, then second,ly the best innovation from the stochastic codebook needs

to be found.. It is the combined innovation that is used in the synthesis process and

subsequently matched, to the original waveform. Transmitted parameters thus include

quantised LPC coefficients, indices for the adaptive and stochastic codebooks and the

gains associated with the adaptive and stochastic codebooks.
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Figure 2.b shows the block diagram for the generic CELP coder. The selected optimum

vectors from the adaptive and stochastic codebooks are scaled and summed to produce

an innovation sequence or residual. The resulting residual is then passed through the

synthesis filter, to reproduce an estimate of the original speech' It was shown [29] that

the auditory system can tolerate higher levels of noise in regions of higher amplitude

(generally the formant regions) than regions of low amplitude in the frequency domain,

which led to the d,evelopment of a weighting filter. Atal and Schroeder [29] described

an efficient realisation of the weighting filter by minimizing the subjective loudness of

the quantisation noise. A frequency weighted error may be written as;

,: lo' ls(/) - s(¡)lwila¡ (2.28)

where s(/) and s1¡; "." 
the Fourier transforms of the original and synthetic speech sig-

nal and /" is the sampling frequency. The weighting function is chosen to de-emphasise

the high energy formant regions in the spectrum'

A suitable weighting is produced by a filter that has the form;

w' ' A(') 
e.zs)\z):4;ñ

where A(z) : I - P(z) anð, P(z) is the predictor polynomial determined from the

linear predictor coefficients.

p

P(z) : Dorr-r (2.30)

The number of poles for the model is given by p, and aq aÎe the predictor coefficients'

.¡ is chosen by the degree to which the formant regions should be de-emphasised in the

error spectrum. Decreasing ,y increases the bandwidth of the poles and the increase c¿

is given by;

- r" t"(t) (2.31)

where /" is the sampling frequency'

When 1 : 0, W(r) : A(z) and the output noise has the same envelope as the original

k:r

1f
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Spectlum while when .| : |, W(,) : 1 which is equivalent to no weighting at all.

The idea is to force the quantisation noise into regions of relatively high concentration

of speech energy (formant regions) as the auditory system will tolerate larger e rors

there than in lhe ualleys between formant regions. The incoming speech is weighted

with filter w(") and then compared with the weighted synthetic speech' Generally, 7

in Equations 2.32 2.29 takes on values between 0.7 and 0.9. The synthetic weighted

speech is generated using a filter of the form,

H-( z\: -1 . Q.32)\þ)- AQll)

The mean square error between the synthesised weighted speech and weighted original

speech is used. as the performance measule in the minimization algorithm to select the

most appropriate indices from the codebooks'

A further difficulty arises in the coder because of the memory of the synthesis filter,

refer to Figure 2.2. 
^f 

the receiver terminal, the speech synthesis procedure still has

values in the fllter memory at the end of a block of speech. when running in continuous

mode, the memory will still have samples from the previous block which are retained on

the start of synthesis of the following block. This aids in the smoothing between blocks'

This architecture implies that the impulse response of the weighting frlter H-(z) must

be removed from the new incoming block of weighted speech prior to comparison with

the weighted synthesised speech. In doing this, memory hangover effects are eliminated

in the receiver's synthesis procedure, that is, the samples in the receiver synthesis filter

are acconnted for.

All of the parameters in the ctrLP model are quantised' The LP coefficients need to

be quantised to limit the number of bits transmitted. Non-linear quantisers Lloyd [56],

Max [57] are known to produce lower mean square error in quantisation, and algorithms

have been developed to give the quantisation levels for a particular soulce' Non-

linear quantisers are generally chosen to represent the quantisation levels for the CELP

parameters. Decisions need to be made as to the number of bits required to encode

each of the parameters while maintaining acceptable reproduction performance' The

number of bits chosen for the various parameters is known as bit allocation'

As the basic structure of the CELP coder has now been briefly outlined, typical bit

allocations f'or transmission over the channel will be illustrated. Cox [20] describes bit

allocations for an 8 kbps CELP coder shown in Table 2.1.
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Parameter Framesize Bits

LPC Predictor (10th order)

Codebook (sign,index,gain)

Pitch Predictor (gain,index)

Unused Bits

18 ms

4.5 ms

4.5 ms

18 ms

36

1+10+5

3+7

4

Table 2.1: Bit Allocation for Cox's CELP coder

The bit allocations for the various parameters are fairly typical for a CELP coder of

this bit rate. It should be noted that the speech frame/block was broken into four sub-

frames and that the codebook and pitch predictor information was determined four

times for the frame'

Another bit allocation scheme is discussed in Perkis [21] for a CELP coder operating

at 5 kbps. Bit ailocation is indicated in Table 2'2'

Parameter Framesize Bits

LPC Predictor (10th order)

Codebook (index,gain)

Adaptive c-b (gain,index)

30 ms

5ms

5ms

32

5+5

3+7

Table 2.2: Bit Allocation for Perkis' CtrLP coder

Note that Table 2.2 implies that the speech frame size was 240 samples for a sampling

rate of 8 kilo-samples per second. This frame size approaches the upper limit of the

frame sizes used by CELP cod.ers, as for larger frame sizes the assumption in the LPC

analysis of statistical stationarity begins to become invalid. Also the breaking up of the

frame into 6 sub-frames is unusual in that the norm is to use 4 sub-frames' For each

subframe a new index into each codebook is required. This implies that the stochastic

codebook must be small to keep the bit rate low. The short sub-frames assist in coping

with the nonstationarY sPectrum.

There is a great degree of flexibility in bit allocation for the model parameters' However,

care should be taken when allocating bits as the number of bits assigned to a parameter

has a direct bearing on the quantisation resolution. If too few bits are assigned to a

parameter, significant distortions in the synthesised speech may result' However' the

finer the quantisation the greater the number of bits to be transmitted' This in turn

means that the bit rate increases and a greater channel bandwidth is required for
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transmission. A delicate trade-off is called for with respect to bit rate and auditory

performance of the reproduced, synthetic speech'

To determine the trade-ofis, listening tests must be performed on the speech coder in

order to obtain subjective performance. Objective measures are generally unreliable'

however for some parameters objective functions do exhibit a reasonable correlation

with subjective evaluations. An example of this is where LPC's encoding and perfor-

mance can be checked using the spectral distortion objective measure [36]' spectral

distortion is covered, in more detail in chapter 4, section 4.4.
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Chapter 3

Pitch Estimation Based on chaos

Theory

3.1 Introduction

pitch estimation is a parameter of considerable importance in the processing of speech'

pitch is defined for the thesis as the distance between glottal pulses in the production

of voiced sounds, for example vowei like sounds'

A speech coder usually operates on blocks of information also called frames. Another

term used in the literature, because of the blocked nature, is "packet". The block

or frame terminology will be primarily used when discussing the processing at the

transmit end and the term packet will be principally used when discussing the the

received frame. A frame of data is generally ol x20 ms duration which gives, for a

sampling rate of 8 kHz, 160 samples. A frame may be broken down into smaller equal

sized. units of contiguous samples, called subframes, for processing.

Pitch is of interest in three primary areas in the thesis:

1. frame (packet) substitution for severely corrupted received packets,

2. long term prediction in CELP coders'

3. post processing of the synthesised speech'

These three items will be discussed in turn
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CELP coders process a block of speech at a time, obtaining parameters to describe it

and then transmitting a block or packet of parameters. In blocked voice communica-

tions there is always the possibility that gloss errors, such as the loss of a complete

parameter block, may occur. Generally this kind of problem has been studied in the

context of a missing packet in packet voice communications' For example see Good-

man [58]. At the receive end when a packet is lost, it is necessary for the receiver

to present something to the listener to give the perception of smooth uninterrupted

speech. The missing packet or block must be determined from past speech, or, past and

future packets if buffering and extra time delay is acceptable. The missing block is esti-

mated from the data available and a substitution of the estimated block for the missing

block is performed. Block substitution is useful if blocks are lost at a rate greater than

about one in a hundred. If block losses are very rare events, the substitution of silence

or pink noisel is accePtable [58].

The principle behind block substitutions is the exploitation of the natural redundancy

that occurs in speech. In particular use is made of the facts that one pitch period

appears very similar to the next during voiced speech and during unvoiced speech the

waveform is very noise like and uncorrelated. These features were illustrated in the

previous chapter. substitution mechanisms fall into two broad categories:

l. Pattern Matching - This method looks at M samples prior to the missing block

as a template and then looks back in history to find a good match for the template

and collects L samples following (where L is the length of the block). The L

samples are then substituted for the missing block'

2. Pitch Detection - If P is the length of a pitch period in samples prior to block

loss, the P samples may be repeated till the missing block is filled. If no pitch

can be found, the speech is considered. unvoiced and the previous block is used

to substitute for the missing block'

The work in this chapter is based on the second method of substitution. The second

method was chosen in order to eliminate any further encoding and decoding delay in

the speech codec. Pattern matching generally requires sufficient buffering into the past

to find a good match or extra buffering to receive the following packet to perform an

interpolation between the two packets'

Long term prediction for the CELP coder may use an adaptive codebook or a pitch

lNoise with a power spectrum proportional to lf frequencg is known as pink noise

24



predictor; this was explained in more detail in Chapter 2. It has been found [2] that

pitch estimators that can estimate to within a fraction of a sample and then perform

interpolation, yield a better perceptual quality than estimators that yield pitch values

to integral samples.

Post processing of the received speech is generally performed using frequency domain

analysis based on the pitch period. Transcoso [2?] describe such a technique where the

spectrum of the reconstructed speech is analysed in terms of harmonics of the pitch

period. Energies found at non-harmonic frequencies are attenuated and the speech

is then converted back to the time domain. This process is claimed to improve the

perceived quality. A time d.omain post processing technique was investigated and is

presented at the end of ChaPter 6.

The application of the pitch estimator to the substitution problem is covered in the

latter sections of this chaPter.

3.1.1 A Novel Approach to Pitch Estimation

Obtaining pitch estimators that are inherently stable and accurate has been a problem

for many years and as yet remains an unsolved problem' This Chapter discusses an

approach to pitch estimation that uses ideas from chaos and modern dynamical systems

theory and the experimental methods used in analysing these systems.

A new reliable and robust super resolution pitch estimator, which has promising per-

formance and yields an accuracy to 1/10 of a sample will be discussed. As the multidi-

mensional phase space representation (explained below) is obtained by simple delays,

the computational load is not great although greater reductions in processing may be

possible using decimation of the low pass filtered input signal.

Extra information about the speech waveform makes the pitch estimation and pitch

tracking, the process of obtaining a smooth pitch contour, an easier task' Estimation

of whether speech is voiced or unvoiced is also useful, as unvoiced (noise-like) speech

does not display a Pitch Period'

Two new speech waveform classification methods based on zero crossings were pre-

sented. These methods based on the zero set, the spacing between successive zero

crossings of the speech waveform, and the Devil's staircase yield useful classification

data. They however have a disadvantage in that it must be ensured that the speech
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does not have a dc bias. The zero set method was less sensitive as small amplitude

signals can be ignored.

New voicing indicators were d.evised which were based on: direction of travel in the

two dimensional phase plane orbit, the autocorrelation function's decorrelation shift,

the zero set and the traditional root mean square signal power. Determination of

the decorrelation time, the frrst time that the autocorrelation function of the time

d.omain waveform for the frame goes through zero, was necessary for the phase space

construction so this parameter was obtained for "fçee" '

A sliding window approach was taken to obtain a continuous pitch contour. when no

pitch was found 10 new samples were added to the buffer and then pitch processing

was performed. During voiced sound.s where a pitch period was apparent, one third of

the estimated pitch period in new samples were added to the buffer. All correlations

were performed only on samples already in the buffer. This method ensured minimum

buffering delays.

3.2 The Non-Linear Dynamical Model

It has been shown by various authors, for example Tishby[25], that speech shows the

properties of a non-linear dynamical system. In this section the concepts of non-linear

dynamical systems will be reviewed; for more detail see: Percival and Richards [59],

Drazin [23] Chapters 1 and 2, and Wiggins [24] Chapter 1'

Let a dynamical system be represented by the general equation;

ù:f@,u(t)) r€ffi" z€ftP ¿€m
t . 

-d"nWneTe I: n

where:

o ffi" is the n-dimensional Euclidean space'

o f : u --+ ffi' where U is an open set, described below, on ffi',

. r are the dependent variables and the space that they form is known as phase

space,

o z(ú) is a possible p dimensional control space'

(3. 1)
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An open sphere S,("0) with center tr¡ and radius r is the subset of a W" defined by,

S,("0) : {r : d(r,ns) < r} (3.2)

where d(x,rs) is the Euclidean distance between the points r and rs.

A subset G of. a Euclidean space is an open setif., given any point n in G there exists a

positive real number r such that S,(z) is contained in or equals the set G; S,(r) Ç G'

This implies that an open subset G of f is logically equivalent to a union of open

spheres.

Note that /(.) ir a vector function. The trajectory or orbit, traced by the point r(t),

moves through phase space; this is described in a little more detail below. A limit cycle

occurs if a stable periodic solution exists to which all starting points in the phase space

move towards in the limit Í -) oo. u(f) is the driving force of the system. As z(t)

varies, an established limit cycle may change its shape and/or period' It was assumed

that the glottal pulse shape remained reasonably constant, only the period between

pulses changed, and the vocal tract changed slowly during voicing' Real speech exhibits

only slow variations d.uring voicing, making one pitch period very similar to the next.

The assumption implies that the time domain waveform of voiced speech can be used

to construct an almost periodic trajectory in phase space. It was the period of the

limit-like cycles that was estimated in this work. Natural speech has the difficulty that

z(ú) varies as well as the r, due to changes in driving force and vocal tract parameters.

A trajectory O : O(f) is a curve in S' which is a solution of the above system of

equations. It is a vector function which maps an interval of time to ffi'. That is,

iÞ : 1--+ ffi" (3.3)

and satisfies

o(¿) :
o(¿o) :
,it (¿o )

/(o(t), u(t))

fs

(3.4)

f (rs,u(ts))

The set of points O(t) is the solution curve to the above set of equations. The goal

is to understand the overall geometry of all solution curves. As z(t) is altered the

solution curves will differ. A trajectory or orbit is the locus of the point iÞ(f). There is

in general a family of trajectories which satisfy the system of equations. Members of

the family of trajectories after a period of time appear to follow an asymptotic regime'
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This regime, neglecting the transient behaviour, will be called an attractor. The limit

cycle described above is one possible form of attractor'

It is the limit like cycles that are of most interest as it will be seen that these attractors

are associated with voiced sounds. True chaotic behaviour indicates a transition to a

fricative which is unvoiced and as such not of great interest to us. The actual details

of individual trajectories may be quite different. Despite this, the vector field is fixed

and it is this freld which can be used to describe attracting sets for the trajectories.

Eckmann [68] defines an attractor in terms of a phase flow (the set of all possible

motions in the vector field). For more details on (phase) flows see for example, Percival

& Richards [59] ChaPter 3.

Eckmann defines an attractor as follows, [68]'

Def,nition: Ln attractor for the flow ?ú is a compact set x satisfying;

1. X is invariant under Tt : TtX : X

2. X has a shrinking neighbourhood, i.e. there is an open neighbourhood u of X,

U ) X suchthat TtU c[J lor f >0 and X:nt>oTtu

3. The flow T¿ on X is recurrent and' inilecomposable' Recurrent means ?Ú is nowhere

transient on X: If u is an open set in v and il u ìv + a then there are arbitrarily

large values for t such lhat Ttr € X n [/ when r € X À U' In-decomposable

means x cannot be split into two nontrivial closed invariant pieces.

For more details see Eckmann's [68] paper. The issue of interest to us is the attractor's

limiting set. By observing selected phase space points on the trajectories and noting

the time of the next closest pass to the selected points as the trajectory moves through

phase space an estimate of the period of the trajectory can be made. Extra information

was also available about the nature of the trajectory. The phase volume of a dissipative

system decreases and the volume d.ecreases to 0 as f --+ oo implying that in the limit r

is inside the set X.

The dynamical system may be discretized by describing it via a map,

ût+r:F(t¡,u¡) wheret€Z (3'5)
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The iterated map F(.) takes a vector of dependent variables r¿ which is a point in the

Euclidean space W- and an independent variable f € Z (Z is the set of integers) to yield

the next point. The next point r¿..,.1 is also a point in ffi-. This implies that time is

discretized in the map and made to take on integer values. The function F(.) describes

the path of the trajectory in discrete steps. If the starting point øo is known application

of ¡'(rs) gives 11. Iteration of the procedure plots the entire trajectory. A problem

arises in experimental systems in how to determine the phase space. Fortunately the

application of theorems by Whitney[69] and Takens [70] make it possible to construct

a phase space portrait by taking a single sampied time series of a variable S(t). Phase

space may be constructed using tuples [^9(¿),S(f + r),S(tl2r),"'] where r is an

arbitrary delay; this will discussed in more detail below'

A primary issue is determining the dimension or number of dependent variables ø

required to describe the system. The term dimension in this context denotes the

dimension of phase space.

Using an argument from Takens[70], a vector field can be characterized by the tra-

jectories within the field. In particular by observing dynamical symmetries of the

trajectories it is possible to reduce the dimensionality ffi" of the embedding space to

ft- where m 1 n of the trajectory space. The kinds of symmetries that may be used

for example are translations in time of one trajectory to another possible trajectory.

The dimension of the trajectory provides a lower bound to the number of variables

required to model the system. Many methods have been presented to determine the

number of dimensions but the most popuiar is the method presented by Grassberger

and Procaccia[63].

The number of dimensions used in the following work was guided by Tishby's [25] work.

Work also by Condie [64] [65] suggests that the required number of independent vari-

ables for speech is around four. A range of dimensions from lD to 6D were considered

to determine the most accurate and efficient dimensionality for the task at hand.

3.3 Determining the DelaY

In a noise free system the delays (r¿) used to construct the multidimensional phase

space from the single time series may be totally arbitrary. The only proviso is that

the delays for the second, third, fourth, etc, dimension are monotonically increasing'
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This implies rs ( 71 ( rz I ... 1 rn-7 are the arbitrary delays used with the time

series .9(ú) to construct the n-dimensional tuple space [,9(¿)'.9(¿ + r¡), S(ú * t), '9(¿ +

rz),,...,,9(, * r,-r)]. Generally a delay r is chosen in terms of integral number of

samples and each r¿ is made an integral multiple of r. Experiments show that changes

to the delay alter the appearance of the attractor which is easily witnessed in a two

dimensional representation. Varying the delay tends to rotate the attractor [71].

Ideally the delay should decorrelate the different dimensions in phase space, this was

addressed by Fraser and Swinney in their work [71]. They used the concept of mutual

information from information theory.

Information theory defines entropy in terms of probabilities of messages. Frazer and

Swinney considered the messages as the values that measurements of the attractor took'

It is known that strange attractors are ergodicz 172] and have a well defined asymptotic

probability distribution. They define the entire set of messages {"t,"r,83,...,s,,} as

^9, 
and the associated probabilities as {P,(s1),P"("r),...,P"(s")}, where P"(rt) is the

probability density at s1. The entropy can then be defined by,

n

f1(^9) : -DP"("¿)logP"(s¿) (3.6)
i=l

For a time series z(t), the minimum dependence of'r(t{ r) on z(ú) is of interest as the

appropriately chosen r will rotate the attractor to give a broad profile. They assigned,

[",q] : l"(t),"(t+ r)] to describe a coupled system (s,8).Mutual information may

be described as the measure of uncertainty in measuring q given the message s was si.

The mutual information 1(Q, ^9) is given by,

r(Q,s): f/(s) + H(8) - H(Q,s) (3.7)

where H(S,Q) is given by,

n

H(S,Q): - t P"o("¿,q¡)log P"o("¿,q¡)
i'1j=l

(3.8)

Frazer and Swinney then went on to describe a recursive algorithm to estimate the

probabilities. However to be accurate enough a great number of points are necessary

to get a good estimate of r and with a low number of points, the estimate of I \ryas

very inaccurate.

They showed that the delay that gave the mutual information minimum produced in

general better estimates of decorrelation than finding the first point of decorrelation

2Ergodic: the time average tends to the ensemble average in the limit ? ---+ oo
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Figure 3.1: Decorrelation Lags in samples versus Pitch Estimate

(zero crossing) of the autocorrelation function. The first zero of the autocorrelation

function gives only linear independence of the phase space coordinates. Due to the

non-stationarity of speech, only a low number of sample points for an attractor could

be obtained; hence the autocorrelation decorrelation time 3 was used.

The resulting attractors for two dimensional phase space qualitatively looked very

similar to the phase plane constructed from the analytic signal4. The author undertook

experiments, to determine if the different delays altered the pitch estimate. It was

found that essentially the same pitch estimate was found for delays greater than the

decorrelation value. For delays less than the decorrelation value a wide variance in the

pitch estimates was found.

A follow on experiment was undertaken to determine if the decorrelation delay value r
had a relation to pitch, thus avoiding the calculation of the autocorrelation function.

The data was obtained for four separate utterances (two males and two females) each

uttering two phonetically balanced sentences described in the following section. The

pitch estimates were determined manually as described in Section 3.10.

sThe first time that the autocorrelation function of the speech segment goes through 0.

aThe analytic signal is constructed from couple [ø(1), ã(f)], where ã(f) is the Hilbert transform of

,(ú).
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As can be seen from Figure 3.1 there does not appear to be any simple relationship

between pitch and decorrelation time. However what did become clear was that the

decorrelation time was predominantly between 4to 6 samples. From visual inspection of

the speech waveform and correlating it with decorrelation times, when the decorrelation

time was less than 3 or greater than 7 the speech segment appeared to be predominantly

unvoiced or semi-voiced'

On the basis of these findings the decorrelation delay search was constrained to be less

than 10 samples, (for the sampling rate of 8 kHz), limiting the search space in the

implementation.

3.4 Speech Database

The pitch estimation experiments used a speech database of eight Harvard test sen-

tences [74] which were recorded in a low noise environment at Telecom Research Labo-

ratories, Clayton Victoria. The sampling rate was 8 kHz and 16 bit scalar quantisation

was used.

The sentences were

malel The Navy attacked the big task force. The hat brim was wide and too droopy.

femalel These days a chicken leg is a rare dish. The juice of lemons makes fine punch.

male2 The wagon moved on well oiled wheels. March the soldiers past the next hill.

female2 Kick the ball straight and follow through. Her purse was full of useless trash.

3.5 Initial Findings

The utterances detailed in the previous section were sampled at the constant rate of

8 kgz to obtain the tirne series, S(f), which was used in the experiments described in

this chapter. A phase space tuplet [^9(f ), S(¿ + "),q(ú .L2r),. . .] was created, where the

time delay r may be arbitrary for noiseless data but for noisy data it can be shown

[60], that a good choice is between one tenth and one half of the mean orbital period,

or, alternatively the mutual information decorrelation time described above could be

used. Experimentally however, the decorrelation procedure described in the Section
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Determining the Delay was found to be more useful as it gave consistent estimates of

the pitch and was easily estimated.

For an overview of the techniques and terminology used in the study of chaotic systems

see for example, May [67], Argoul [60], and Grebogi [66]. A dynamical system with 5

variables will have some orbit in five dimensional phase space. However the orbit may

tend toward an attractor that may be embedded in only 3 dimensions, thus reducing

the number of variables required to describe the system.

This work focussed on the periodic characteristic of the attractor rather than the

classification of the strange attractors in speech. This approach differs slightly from

the general work done previousiy on chaotic attractors. Another difference to previous

experimental work was the number of samples available for a particular attractor.

Sampling of the original speech was at 8 kHz and assuming a pitch of 80 Hz held for

five pitch periods it was found, only 500 sampies were available on a particular attractor

before the next sound was formed. Chen [61] commented on the amount of data that

should be available for numerical algorithms estimating an attractor's parameters, and

comments that for orbits with 10-100 samples per orbit, about 5-50 orbits are necessary

for a correlation dimension D of 2. Correlation dimension is a method of determining

the phase space dimension, see Grassberger & Procaccia [63]. This was of considerable

concern as large quantities of data are not available due to the time varying nature of

speech. It should be noted that Tishby [25] used 20 segments of voiced speech to obtain

an adequate number of samples for his experiment,s. His investigations indicated that

voiced speech over a range of speakers had an embedding dimension of 3 5' He also

noted that unvoiced speech had a higher embedding dimension but his figures may be

a little unreliable due to the limited number of samples used.

Despite the above problems, experiments were undertaken by the author to determine

if it was possible to determine the pitch period from phase space. Initial attempts at

finding the pitch utilized packets of 200 samples of speech. If 200 samples of voiced

speech are plotted in two dimensions (2D) the periodic nature of the attractor is ev-

ident. It was also noted that at the pitch period, the orbit tracks came within very

close proximity of each other. Automation of a scheme for finding the points closest to

each other in different orbits gave an estimate of pitch.

The main tool for obtaining the pitch estimate was the concept of a Poincaré map;

see for example Wiggins [24] Chapter 1. Application of the Poincaré map to pitch

estimation is novel and has not been found in the literature. The two principal forms
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Figure 3.2: A Poincaré Section and a Poincaré Map generated using a Stroboscope

of the map are discussed below and indications made why the second form gave better

results than the first. In what follows the term attractor is used to cover all forms of

attractors

3.5.1 Poincaré Sections

Figure 3.2 shows the conceptual construction mechanism of a Poincaré section. The

idea was to find clusters of points close to each other in the section and measure the

section piercing times to obtain pitch estimates. This basic concept worked provided

that the speech did not vary too much during the window of observation'

Three dimensions were assumed, initially, to be adequate for pitch estimation' This

choice was vindicated by later experiments. The three dimensions represented three

dimensions of phase space which were constructed using a 3-tuple according to the

method outlined above; {,9(¿), S(¿ + r), S(t + 2r)} where the delay between samples

was taken to be integer but otherwise allowed to vary. The 3-tuple is referred to as a

3D sample.

To simplify the discussion consider initially only one plane, taken to be the semi-inflnite

half plane X > 0. Each time a pair of 3D samples fell on either side of the plane, when

the orbit was going in an anti-clockwise direction, a linear interpolation was made to

determine the approximate piercing point of the phase space track. Figure 3.2 shows
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an example trajectory piercing a section in 3-space. The points determined by the

intersection of the orbit and the section (from a given direction) produces the map,

which is the object of interest. A collation was then made of the three pairs of closest

piercings, and the number of samples between piercings within a pair gave a pitch

estimate for that pair.

Naturally a simple technique such as this does not suffice in practice, as it is not

possible to determine the orientation in phase space of the attractor. To alleviate this

problem three half planes for the 3D data were used and the resulting data analysed,

rejecting cases where the orbit track was at too oblique an angle to the section. This

method gave good results for sounds like i in wide but became unreliable when the

voiced sound changed, producing a range of fractional pitch periods. The fractional

pitch periods were characterised by; Ll3, I12, 213,,3f 4, l, 413,312, 2. At times some

1/8 fractions appeared. Although this was interesting it was not followed up because a

method that could discriminate the true pitch period was required. The "true" pitch

period was determined by visual inspection in order to evaluate the performance of the

algorithm. The method by which pitch estimation is performed manually by visual

inspection is covered in Section 3.10.

3.6.2 Poincaré Section in Time

Another way of creating a Poincaré section is to try and freeze the position of a notional

point travelling along the orbit using a time section. This is akin to using a stroboscope

to freeze the position of an harmonic oscillator by adjusting the strobe time till it closely

approximates the period of the system. Figure 3.2 shows a trajectory with points

marked to indicate the points hozen by a hypothetical stroboscope. To determine how

closely the orbits match, a mean square error is calculated between points determined

in the present period and those of the previous period for an ensemble of sections

(atl with the same time lag). An ensemble was generated by using an ensemble of

stroboscopes all set to the same period but at fixed phase increments. The minimum

of the averages of mean square error (over the ensemble), occurred when the best match

between orbits was found. The best correlation occurred when the most accurate time

lapse was chosen and this gave the estimate of the pitch. The expression for this

process is given below. This method has similarities to that of Medan [76] although

there are significant differences. The main difference is that Medan et al's method

requires an accurate estimate of the window (of pitch length) while the present does

not, a reasonable estimate is sufficient.
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The expression for the pitch estimate is given by;

P"- - min"' uinlo<),<'utinh
(3.e)

where the value of À that minimizes the expression is the super resolution pitch estimate

P",. P."t is an integral pitch estimate, and winlo and winhi are the lower and upper

limits for the range of À. r is the delay associated with the construction of the x-tuples.

p is the array offset for the start of the search.

The technique described above constitutes a considerable computational burden and

as such, a method for reducing the burden was required. A traditional pitch estimator

is the Absolute Mean Difference Function (AMDF) which is described in many texts

on speech processing; see for example Deller [26]. Using the multi-dimensional phase

space notion, pitch estimates were obtained using a multidimensional AMDF. The

multi-dimensional AMDF is given by,

l"o(t)-"¿(t-i)l (3.10)

where M is the window length and I[ is the number of dimensions

The AMDF estimate, which gave a resolution to the nearest time sample in the series,

was used to obtain a window of search for the more computationally intensive section

search, P"r, indicated above.

To compare the AMDF function for one and three dimensions a series of experiments

were performed to determine their relative performances. For illustrative purposes a

voiced section of the word fine uttered by a high pitched female is used to visually

observe the qualitative differences. Figure 3.3 illustrates how the three dimensional

version often found the pitch period with the absolute minimum while the one dimen-

sional version found double the pitch period. On average the three dimensional version

found the period more reliabiy, however, both the one and three dimensional versions

did have the problem of not always finding the true pitch period. This problem can eas-

ily be visualized by noting the multiple minima in the functions and that the absolute

minimum may not correspond to the pitch estimate.

Experiments were also performed to determine if the three dimensional version of the

AMDF had greater noise immunity than the one dimensional AMDF. To this end

1 J1JLAMDF: M\L"- J:l x=l
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Figure 3.4: Reference 1 Dimensional and 3 Dimensional AMDF's for Noise Tests

a voiced section of fine was used and the noiseless reference AMDF's are shown in

Figure 3.4.

To test the performance of the AMDF's in noise, two types of noise were used. Firstly

Additive White Gaussian Noise was added to the entire utterance of the word fine,

uttered by the female speaker and the reference segment AMDF extracted and plotted.

The noise had a standard deviation of 1500 in the same units as the original speech

which had peak amplitude of approximately 8000 units over the extracted segment.

As can be seen from Figure 3.5 there is not a great advantage in using the three

dimensional version.

The second type of noise test was the case of a tone super-imposed on speech. This

is a common problem with speech recorded "in the field". The tone frequency was set

to 100 Hz with a peak amplitude of 2000 units. For tone noise the three dimensional

AMDF did perform better. For the test utterance the 2000 units level was just at the

37



áÍd

åI

Jl00

2300

2600

2400

2000

1300

5000

¿500

30

t0 60 30 100 150

Figure 3.5: Comparison of 1 Dimensional and 3 Dimensional AMDF's of Speech with

Additive White Gaussian Noise.

1000

2000

1500

I

5500

6000

5500

4500

3500

20

Figure 3.6: Comparison of 1 Dimensional and 3 Dimensional AMDF's with 100 Hz

Tone Noise.

threshold where the three dimensional AMDF began to fail; this past the threshold

where the one dimensional AMDF failed. The effect of tone noise is illustrated in

Figure 3.6.

It was found that for the 3D and higher dimensional AMDF a fairly stable estimate was

made. However the AMDF was found to give rise to rather characteristic errors such

as pitch halving or doubling and in those cases the pitch estimate had to be adjusted.

Most of the errors made by the AMDF functions can be classed as gross pitch errors

which can be corrected by using pitch tracking mechanisms, described in more detail

later. An another useful technique is to use local minima picking of the AMDF function.

To aid in determining the correct ualley of the AMDF function an array of significant

ualleys is determined. The position of aalleys are determined from the minimum of
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each individual valley that crosses the threshold (AMDFtn ."n) set by,

(3.11)

where AM DF^¿, is the global minimum of the AMDF and AM DFou" is the average

of the AMDF for the current speech segment.

The relationship between the ualleys is checked for harmonic relations and for finding

the aalley consistent wiih the previous estimate.

More details on the use of the array of minima is covered in Section 3.8 on "Pitch

Trackingtt.

To assist in the task of determining good pitch estimates it became necessary to classify

the speech into a limited number of classes with certain characteristics. Classification

of speech is covered below.

3.6 Speech Classification

Speech classification was considered important to assist in determining if the utterance

was voiced or unvoiced. It also assisted in identifying locations where pitch doubling

or halving was likely to occur, that is near transitions from voiced to semi-voiced or

unvoiced.

The objective was to construct a simple speech classification system that was pitch

and speaker independent. A simple technique that has been used in the past is zero

crossing. Zero crossing however did not give all the information that was required

and some ideas from fractal theory were investigated. Fractal theory gives ways of

classifying "rough" contours. In fractal theory, the set of zero crossings is called the

zero set. The zero set however gives no information about amplitude between zero

crossings, so another method was developed, the Deuil's Staircase. For details of the

more traditional Deuil's Staircase see Feder [62].

For use in actual applications zero crossing detectors are considered unreliable because

if a d,c drift occurs in the speech waveform low speech po$rer sounds like s may be

incorrectly classified. A traditional root mean square (rms) power measure of the speech

waveform can be valuable when used in conjunction with zero crossing information by

AMDFo,"- AMDF^¿nAMDFtn""n:AMDF^¿n*tr
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setting a dead band where any speech below a certain level does not have zero crossing

information evaluated. The rms power was available for free from the autocorrelation

function, which was evaluated for the first ten integral sample shifts as part of the

determination of the waveform's decorrelation phase shift, as described in Section 2'3.

Another useful parameter in classifying speech was the decorrelation time which was

determined to obtain the sample delays for the phase space representations. Principally,

if the decorrelation time was one sample, it was safe to classify the speech as unvoiced.

Detailed discussions follow describing: the Zero Seú which gives a parameter describing

fine structure of the speech waveform as it crosses the zero amplitude axis, Deail's

Staircasewhich gives information on zero crossing spacing, and Orbit Direction Change

Indicator.

The orbit direction change indicator returns a useful parameter which determines the

number of times the direction of rotation changed in travelling around the two dimen-

sional projection of the higher dimensional orbit (attractor) in a known time interval.

This parameter gave some interesting information about the speech but also displayed

classifi cation ambiguities.

3.6.1 The Zero Set

To obtain a classification for voiced and unvoiced speech it is quite evident that the

rate of zero crossings is important. Unvoiced speech is characterized by a very high

zero crossing rate. A very simple extension to the zero crossing concept was based

on the number of samples between consecutive crossings, to obtain two parameters:

fine structure and coarse structure. After experimentation it was determined that fine

structure be classed as that which has less than four samples between consecutive cross-

ings (sampling at 8 kHz) and if greater it would be classed as coarse. It was desirable

to have a continuous estimator that gave a real number to classify coarse and fine to

simplify the overall pitch estimation algorithm and avoid batch counting over a win-

dow of speech. The recursive form used to estimate the fi,ne parameter (ør), is given by,

tn*r:U-fa(r") (3.12)

40



n€ined¡dàt. 

-
trcoarseal,¿lÀtn ----

0
d

É
g

500 1000 150 0 3000 35002000 2500
5amp1 es

Figure 3.7: Structure Parameters lor wagon: fine patarneter solid line, and coo,rse

parameter broken line.

where,

1 if no. of samples between this crossing and last ( 4

0 if number of samples ) 4
(3.13)

Equation 3.12 is evaluated at every zero crossing n and u,"..1 is the value of the param-

eter at the (n*l)th zero crossing. The constant of 4 samples between zero crossings

was determined by trial and error and it was found that 3 also performs satisfactorily'

The multiplier o determinesthe memory of the parameter by regulating the decay' If

o was too great the response of the parameter to the actual conditions was too slow.

A value of 0.85 was found to be useful for the current application. This method gives

a geometric like series and the range of values taken on by r,, extends from 0 when

Un:0 Vn, to fr *h"tt Un: lVn.

The parameter for coe,rse was deflned analogously. Although the contour of the pa-

rameter was rough it proved valuable, see Figure 3.7. For a sibilant like s the fine

parameter takes on values around 9.

3.6.2 The Devil's Staircase

Trad.itionally the Devil's staircase was used to describe the weight to the left of a point

as it crosses the Cantor Set from left to right, see for example Schroeder [75]. In this

a
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thesis the Devil's staircase was used primarily by the author to summarize informa-

tion about local amplitude maxima, however extra information about spacing between

local maxima rvvas also given. The staircase constructed here was not the same as the

traditional staircase. It was constructed for this application using,

N
Mt:DO"

n,=7

mar{ls^l; z¡-t < lt"l 3 z¡} if a zero crossing occurred

0 otherwise

(3.14)

o", :

where to obtain the staircase, the maximum of the absolute value of the speech samples

s' between the zero crossings zj-r arrà z¡ is accumulated when a zelo crossing occurs

otherwise a 0 is added. The index n is used to index speech samples in the block of

size N.

It was found by the author that for different speakers recorded under similar conditions

the average slope of the staircase was similar and that the slope for voiced and unvoiced

speech was also similar as illustrated in Figure 3.8. Where there is no speech the slope

is almost zero and where voicing changes within a word such as around g in wagon, the

slope decreases in the region of change.

A disadvantage of this method was that it was very sensitive to zero (dc) offset of the

speech waveform.

3.6.3 Orbit Direction Change Indicator

The rationale behind determining the direction of rotation as the orbit is traced out in

phase space is that voiced sounds generally have fairly simple attractors while chaotic

attractors tend to display many loops. Unvoiced sounds like s and så should display

near random phase and hence many direction changes. The method of determining the

direction of rotation was effected by taking the previous 2D phase space point and the

current phase point and performing a vector cross product. To illustrate the concepts

involved, two dimensional phase plots, of the 'i' sound in fine and the 's' sound in juice

are given in Figure 3.9. The orbital structure of the 'i' sound is quite evident while the

tst sound shows a lack of structure.
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Let i be the unit vector in the rs direction and j be the unit vector in the 11 direction,

where i and j are orthogonal and let k be the unit vector orthogonal to both i and j.

Using n lor the time index, the direction of rotation of the phase trajectory can be

found from the sign (sgn) of;

dn

where x is the cross product. This expression was implemented as,

ssnf(irs(n) + i nr(n)) x (ixs(n- 1) + ix{n- 1))l

ssn(ky(n))

(3.15)

(3.16)

dn: sgn\e (3. 1 7)

Let I be an indicator function then the direction change parameter can be given by,

D Df;'1(dn, dn-t)
(3.18)

ro(n)

rs(n - l)
*t(n)

r{n - I)

^r
where Iú is the number of samples in the block and I is defined as;

n-

I(d,,, d,_1) : (3.1e)

The sign of ky(n) gave the direction of rotation relative to the previous sample. A plot

of changes in orbital direction over a window of 100 samples is shown in Figure 3.10.

The y-coordinate parameter D' was determined by counting each direction change and

then dividing by the size of the window. The sentence spoken by a female was:

These days a chicken leg i,s a rare dish

An interesting observation is that this parameter takes on large values for glottal stops

and dentals, generally showing them as distinct peaks. Unfortunately it also takes

on large values during other features including some types of voiced sounds making it

unsuitable for distinguishing voiced and unvoiced features without further information.

I iln # d"_,

0 d* : d'n-t

44



20000

r5000

10000

5000

-5000

-10000

-15000

-20000

07

Á

å

I
E

0,4

0.1

o.2

0.1

5000 15000 20000 15000 ,0000r0000

Figure 3.10: Speech Waveform and Normalized Direction Changes

This new and innovative indicator is useful in classifying speech and empirical evidence

over the utterances of two male and two female speakers indicate that values > 0.45

for the direction change parameter (D") Figure 3.10 is a reasonable threshold; giving

one parameter for an unvoiced speech hypothesis'

3.7 Voicing Estimator

One of the key features in a pitch estimator is to determine when speech is voiced

and when it is unvoiced. One of the classic voicing indicators is the rms power of the

speech within a window. Used on its own this parameter performs quite well, but it

does classify sounds such as så as voiced, or if the threshold is increased it fails to

indicate softly voiced speech.

It was discovered that the direction change parameter was useful in determining un-

voiced speech which is generally characterised by a high direction change parameter

and low rms po\lrer. However sounds such as sh were not classified correctly. The

decorrelation time of the autocorrelation was empirically determined to be an effective

parameter in labelling unvoiced speech however a slight modification was necessary. If

the speech was not decorrelated by nine integral sample shifts the decorrelation time

was taken to be one, that is unvoiced. The reason for this correction was that general

speech was found to almost always have shorter decorrelation times than nine samples,

however low frequerrcy hum sometimes found as low level background noise has a longer

decorrelation time.

rurrrcó.dhr 
-
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A first parse of a rule set for not aoiced may be: if the rms power was below 600 units,

and/or the decorrelation time was one sample then the speech was unvoiced. Units

were measured as 1 quantisation level when the recorded speech was quantised to 16

bits such that no overload distortion occurred.

A more sophisticated voicing decision was based on a rule set that was determined by

trial and error over a large number of trial runs oveï the speech data base. The rule set

was divided into two main parts: the first independent of previous voicing estimates

and the second depending on whether the previous estimate indicated voicing or non-

voiced. The rule set can be summarized as:

1. If the rms po\4¡er level was below 600 then classify as unvoiced,

2. If the frne structure variable was above 7.5 then classify as unvoiced,

3. If the fine structure variable was above 6.8 and the rms power less than 900 then

classify as unvoiced,

4. If the decorrelation time was one sample then classify as unvoiced,

5. If the previous voicing estimate was unuoiced,:

(a) If rms power was less than 2600 and the number of valleys found by the

AMDF was greater than or equal to 4, classify as unvoiced;

(b) If rms po\ryer was less than 2600 and the fine structure variable was greater

than 5, classify as unvoiced;

(c) If rms power was less than 3500 and the number of valleys found by the

AMDF was greater than 5, classify as unvoiced.

Rules using the slope of the Devil's Staircase were initially included to good effect, how-

ever the speech used for the work was recorded under excellent conditions and showed

no dc bias on the waveform. In the case of field recording this could not be guaran-

teed. so the Devil's Staircase construction could not be deemed to be accurate as it is

sensitive 1o zero crossings and dc bias. In the interest of making the voiced/unvoiced

indicator robust only the frne structure parameter was used as it was less sensitive to

dc bias, particularly when a dead zone o11000 (+500) quantisation units around zero

was incorporated.

All thresholds were determined empirically from utterances from two females and two

males as described earlier. Sixteen bit sampling was used to give an amplitude range of
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Figure 3.11: Speech Waveform and Voicing Indicator.

+32000 although the recorded amplitude rarely exceeded 20000. A high rms threshold

together with the autocorrelation decorrelation value of 1 indicated sounds like sl¿ as

unvoiced, whereas if the high threshold was solely used, low level voicing would be

indicated as unvoiced.

A typical voicing indication is shown in Figure 3.11, for the sentence, " These days a

chiclcen leg is o, rare dish.", uttered by a female'

3.8 Pitch Tlacking

Ideally for a perfectly periodic signal each pitch estimate will be correct and for the

AMDF each peak would be distinct and identical. However in practice because of the

time varying nature of speech the pitch estimate will not always be correct in that

rnultiples or fractions of the pitch period may be chosen. When the first formants in

the speech segment is large and close to the pitch period beat effects can occur' which

affect the pitch estimate.

Pitch tracking in the algorithm was done in conjunction with the coarse AMDF pitch

estimator prior to handing the estimate to the fine resolution estimator' The main

function of pitch tracking was to eliminate gross 'pitch errors such as pitch halving,

doubling or tripling. For continuous voicing a smooth pitch contour should result.

Tracking the pitch depended on the threshoid set for the AMDF (Equation 3.10) and

sThe spectral envelope of speech shows resonant frequencies, the nominal center frequencres

these resonant peaks are known as formant frequencies

5000 15000 20000
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also the pitch estimate from the median filter that tracked the last five nonzero esti-

mates. The median frlter used a moving window of the last five non-zero pitch estimates

which, if the pitch estimates were treated as noisy, returned an estimate that minimized

the absolute error of estimation.

If the absolute error is denoted A" then;

A"

where /(ø) is the probability density function of the pitch estimates r. Ãn estimate c

is to be made such that the absolute error is minimized;

aA"
A"

f(n) dr -

: Ellr - cll

: I'*þ - *)r@) a* + l.- @ - c)f (u) d'r

(3.20)

(3.21)

L
zF(c) - I
0

f(r) dr (3.22)

(3.23)

(3.24)

l"*

The median is thus the value where the cumulative distribution F(r) : 1/2. This is

implemented by ranking the values in magnitude and taking the middle element as the

estimate.

The first estimate of the pitch was given by the ordinate at the minimum of the AMDF.

The pitch estimate and the AMDF minimum value were checked against the estimate

from the median filter and the AMDF threshold. If the AMDF minimum value was

below the threshold and the pitch estimate is within 30% of the median, the estimate

was accepted. If it failed these conditions, an auxiliary estimate of the pitch was made.

Auxiliary estimates were determined by searching the AMDF for a local minimum

in a window of +30% of the previous pitch estimate. If the AMDF value at this

auxiliary ordinate was greater than twice the value obtained for the original estimate

the auxiliary estimate was immediately labelled as unlikely, although this was a rare

event. This scheme effectively eliminated almost all cases of pitch doubling, tripling

and frequency doubling and tripling.

In the rare event where no decision could be reached, the original and auxiliary esti-

mates \Mere compared to the median filter's estimate and the median filter's estimate
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slightly modifred by l0% up or down depending on the closer of auxiliary or original

estimates. The modified median filter's estimate was then taken as the coarse estimate.

The estimated pitch always had to lie within 30% of the last estimated pitch period

within the duration of a voiced segment. If the frne resolution pitch search could

not find the true minimum within 25% ol the last estimate an unvoiced decision was

returned.

3.9 The Pitch Estimation Algorithm

The pitch estimation algorithm consisted of the following units

Low Pass Filter The incoming speech was filtered with a low pass frlter with a cut-off

frequency of 800 Hz.

Parameters Calculate the autocorrelation function and find the decorrelation

time as described above. This also gave access to rms power. Cal-

culate the direction change parameter and the fine structure param-

eter.

Voicing If the section of speech was considered unvoiced, (see the voicing

Estimator section above), the voicing parameter was set to 0 and the

pitch estimate was returned as 0, else if uoiced the voicing parameter

was set to 1 and the pitch determined.

AMDF Search An AMDF search was undertaken in the number of dimensions cho-

sen (typically 3) and returned an integral sample estimate of the

pitch period. Often the estimate would be within a sample or two

of the final pitch estimate, but not always. The search window can

be reduced by making use of the fact that the pitch variation al-

most never exceeds 25%, 176] although this restriction was lifted if

the previous estimate was 0, ie. unvoiced.

The estimate from the AMDF search was used to give a window

to search for the non-integral pitch estimate. The window was 15%

above and below the AMDF estimate. A golden-mean section search

was used to find the estimate although a gradient technique could

Section Search
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Pitch Traclcing

have been used especially for higher dimensions. The well known La-

grange interpolation formula (second order) was used to interpolate

sample values. (See equation 3.28).

The pitch estimate, if the last section \ryas voiced, was fed into the

median filter to assist pitch tracking.

The overall algorithm is as follows

1. Input the data, if the last speech segment was unvoiced, input 10 new samples

else, one third of the previous pitch period in new samples. Low pass filter the

samples.

2. Calculate the frne structure parameter using the unfiltered samples and use the

filtered samples for all steps below.

3. Calculate the autocorrelation function for 10 delays to determine the decorrela-

tion delay and the rms polver.

4. Determine the orbit direction change parameter.

5. Evaluate the AMDF.

6. Perform the voicing evaluation using the rule base given in Section 3'7-

7. Perform peak picking on the AMDF; this consists of:

(a) If one peak with value less than 3000 accept the estimate.

(b) Check the absolute minimum and the number of detected valleys. If estimate

is within 25% of the previous estimate release estimate.

(c) If multiple valleys check for harmonic structure. If a structure consistent

with25% of previous estimate is found between any valleys, return the pitch

period that displays multiples.

(d) If no consistent structure can be found return an estimate of 0.

8. Pass estimate to the fine resolution section search. The returned value must be

within L5% of the value handed in and 25To of the previous estimate, if not,

another search is attempted using the running median from the median filter. If

still not within specification, class the segment as unvoiced.

g. Feed estimate into the median filter if the segment was voiced and return the

estimate to the user. If the segment was classed unvoiced return 0 to the user.
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10. Goto Step 1

3.10 Results from the Pitch Estimator

Testing a pitch estimator of this kind without using synthetic speech is difficult. Ut-

terances of different isolated words from four speakers, two male and two female, were

chosen to test the estimator. Manual measurements of the pitch (described below)

throughout each word were made as a guide to judge if the pitch estimator \ryas oper-

ating correctly.

A trial run of the estimator was performed using up to six phase space dimensions.

The experiment was run for four words, uttered by one of two females and two males,

showing definite voicing. The pitch estimator was configured to work with one through

to six phase space dimensions and the estimates were produced every 200 samples.

Mean estimates were determined from the six estimators for each 200 sample block

and then deviations were determined and averaged for each uttered word. The same

statistics were determined for three to six dimensions and the results compared with

the previous data. (See Table 3.1), Values in the tables are given in samples. The

results indicated that using more than three dimensions was not justified as similar

values were obtained for higher dimensions which required more processing.

The AMDF proved to be more robust with respect to noise and consistency of esti-

mates in three dimensions than lower dimensions but showed no further improvement

beyond three dimensions. The section search also showed little improvement above

three dimensions. It was found that an .L- norm performed slightly better than the

sum of magnitude referred to previously for the multidimensional AMDF. The ,L-

norm is given by,

myx(x¿-y;) fori:l,...,ff (3.25)

for two arbitrary N dimensional points.

Tests were performed for three dimensions with and without lowpass ûltered data files,

and the major difference found was the smoothness of the final pitch contour.

To further increase the robustness (to avoid IheT l8 pitch frequency sometimes present)

a variation was used in the calculation of the inter-pitch distance function. Four

different phases, relative to the pitch period, and lengths of speech segments were used
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word

standard dev. for

dimensions 1-6

standard dev. for

dimensions 3-6

wagon

purse

droopy

fine

6.23

0.42

0.54

0.2t

0.18

0.18

0.04

0.02

Table 3.1: Average Standard Deviations on Pitch Estimates for Different Dimension-

ality: for speech sampled at 8 kHz.

in calculating the distance. Each phase was started at a predetermined fixed point in

the pitch period and only every fourth multidimensional point taken in the distance

calculation. The four phases were staggered so that most of the multidimensional

points in a pitch period were accounted for. The four distances are then summed and

averaged. The true pitch was characterized by a high correlation for any segment within

consecutive pitch periods. This argument extends to different length segments, as a

sample segment a little longer than a pitch period should still find a strong correlation

to the previous pitch period.

A comparison of the performance of the multidimensional AMDF the super resolution

estimators were made against manually determined pitch estimates. Manual determi-

nation of pitch was made by measuring the distance between prominent features on

successive pitch periods. A minimum of three inter pitch measurements had to agree

before it was deemed that the correct pitch was determined. The resolution of mea-

surement was to I12 a millimeter when the speech waveform was displayed such that

lmm represented 1.2 samples. An example section of speech (the voiced part of the

word juice) is shown in Figure 3.12. The closeness of the estimator to the visually

determined pitch period (the points in the figure) is evident. The high resolution pitch

contour has a smoother pitch track than the AMDF.

Figure 3.13 shows the speech waveform for the word wagon spoken by a male speaker

together with the pitch contour. It should be noted that the pitch estimates were

formed only for the last pitch period in a 200 sample window, as that was the criterion

required for the packet reconstruction problem. Waveform reconstruction only requires

the last pitch period in the packet in order to generate the next packet of identical pitch

periods. Waveform reconstruction and substitution are covered in some detail in the

following sections. This gives the pitch contour a piecewise linear appearance.
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Various metrics for measuring waveform closeness were investigated for the fine resolu-

tion section search including; mean square error, mean absolute error and correlation.

All methods produced similar but not exactly the same results. The pitch estimate is a

statistical estimate between two consecutive pitch periods. In effect two slightly differ-

ent pitch periods are cross correlated and as such an accuracy of a tenth of a sampling

period, seemed reasonable. To obtain greater accuracy, interpolation (compression or

expansion) by a small amount of one of the pitch periods should be performed followed

by the cross correlation process. This would of necessity increase the computational

load.

Medan et al[76] imply that greater resolution is possible in their technique, however

the author has reservations as two pitch periods of possibly different periods are cross

correlated. It should be pointed out that the Medan method is very good and has less

computational load than the author's method. The final formulation is similar in many

respects to the Medan method.

For an accuracy of a tenth of a sampling period in the technique developed here an

average of approximately seven iterations for finding the fractional part of a sample

was required in the Poincaré section search.

Both the scheme presented and Medan's scheme for finding pitch periods have a ro-

bustness to noise as the entire pitch period is used in the estimation process. Both

methods give substantial improvement over integer pitch period estimation however

it would appear that Medan's scheme is superior when computational load is also

considered.

The speech waveform of the female utterance The juice of lemons rnl,lces fi,ne punch is

shown in Figure 3.14. This waveform was analysed using the authors algorithm and

pitch tracks plotted for the AMDF (Figure 3.15) and for the super resolution algorithm

(Figure 3.16). The discrete nature is quite evident in the pitch track of the AMDF as

it only made integer estimates. The smoother pitch track can be seen in Figure 3'16

although there are some locations where the pitch was not smooth. Visual observa-

tion of these locations (see for example samples around 17300 in Figure 3'16) show

a large change in the speech waveform shape and amplitude which corresponded to a

voiced/unvoiced transition. The pitch period by visual techniques indicate that approx-

imately 48 samples would be a better estimate. The amplitude variations were adjusted

so that the rms power of the segments being correlated matched. This was however not

adequate. A possible solution to this problem may be to correlate backwards and for-
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punch.

wards (the method used in this chapter only correlated with past samples). This would

allow a test for consistency with pitch periods either side of the one being tested. Not

withstanding the occasional error the super resolution technique gives a better pitch

track.

Figures 3.17 and 3.18 show pitch contours for larger segments of speech spoken by

a male and a female where the pitch estimate is the last pitch period estimate in the

next block of 200 samples. This information is required for frame substitution methods

which are discussed in the following section.

3.11 Waveform Substitution

Sometimes in the transmission of encoded speech a frame is received with too many

errors in order for the waveform to be constructed from the parameters within the

frame. In these cases a possible method of reconstruction for the frame is to use

information obtained from the last correctly received packet. An assumption was made

that the frame following the lost6 one was not available. If it was, an additional delay of

6A lostframe is one that could not, due to corrupted patameters, be reconstructed.
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another frame must reckoned into the system. However if the next frame was available,

an interpolation between the two frames bordering lhe lost could be made. Due to delay

constraints only the previous frame is available. The restriction required that a frame

was received as good or bad and substitution effected prior to the reception of the next

frame.

If the previous packet was unvoiced, no special relationship holds with regard to pitch

and thus phase of the waveform. A complete replication of the previous frame of speech

would appear to be reasonable.

If the previous frame was voiced, a possible method of substitution is to replicate the

last pitch period as it is the latest information available about the state of the speech.

The pitches are phase aligned at the boundary to ensure a smooth transition.

In both substitution cases the amplitude has to be interpolated to the following cor-

rectly received frame to avoid discontinuities in the amplitude envelope. For the voiced

speech substitution an additional smoothing of the pitch period into the following cor-

rectlv received frame is necessary. This is done using a sample interpolation method.

As indicated in an earlier section, the substitution scheme developed in this section

was based on pitch replication for voiced speech. A frame in this context was 25 ms of

speech or 200 samples. The pitch estimation mechanism used was the system described

above together with the auxiliary functions to determine voicing.

A discussion follows covering: the replication of the last correctly received pitch period

for voiced frame substitution, substitution for unvoiced frames and the interpolation

technique for splicing together a substituted voiced frame followed by another voiced

frame.

3.11.1 Replication of the Last Pitch Period

In principle replication of the last pitch period was quite straight forward. The pitch

estimate determined the number of samples N to be stepped back into the previous

frame. The N samples were then repeated until the frame was filled. Any extra samples

from the N samples in excess from filling the frame were retained. Within any frame

the rms power level can change substantially. To remedy this shortcoming, the rms

power level of the substituted frame was determined and the following received frame's

rms power level was also determined. The levels of the newly received frame were
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adjusted using a raised cosine function over the range .R of the first 120 samples of the

new frame.

w¡(i):44üP, for0(i<R (3.26)

where .¡(i) is the ith weighting factor and P, is a power ratio determined from the

difference in rms power levels between the substituted frame and the rms level of the

new frame.

This implied that the frame following the substitirted frame had its power level ad-

justed to ensure that there was no unusual jt-p in the speech envelope. If the frame

following the substituted frame was unvoiced or silent the pitch period was extended

and weighted by a decreasing exponential to almost silence before the following frame's

waveform was used. The weighting function used in this case was given by,

ur(i):yu#M"?ilaoo)po for0(i<R (3.27)

where P¿ is the difference in rms levels. This function gives a beginning and ending

ú¿il similar to the raised cosine but the transition in the middle is slower.

3.tl-.z LJnvoiced Substitution

Unvoiced substitution simply repeated the entire last frame. The possibilities for the

following frame are, silence, more unvoiced, or voiced. In the case of silence or more

unvoiced speech the rms po\¡/er measure of the frames were used to give the weighting

factor for an increasing or decreasing raised cosine function over 0.6 of a frame length

(for a 20ms frame) for a smoother amplitude transition. The more demanding situation

was when the good frame following a substitution frame was voiced. In this event the

difference in the power levels between the frames was generally considerable. A raised

cosine function was also used here to handle the transition. Fortunately the levels

of unvoiced speech tended to be considerably lower than voiced speech so the small

weighting factors at the start of the raised cosine compress the wave signifrcantly,

reducing the phase problem of beginning somewhere in the middle of a pitch period.
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3.11.3 Splicing

The term splicing is used to describe the process of joining the new frame to the

substituted frame so that there is no phase discrepancy at the joint with respect to the

pitch period.

If the substituted frame was unvoiced section and this was followed by a voiced frame

the joining of the frames only required amplitude adjustment, which was covered in

an earlier section. The event of a voiced speech substitution followed by an unvoiced

frame also presented little problem and was covered previously.

When a voiced frame was substituted and a voiced frame followed, the amplitude

envelope was adjusted using the raised cosine function, but the phase of the pitch period

may not have agreed. When a voiced substitution occurred a further 100 samples

of substitution was kept aside for processing of the next frame. On arrival of the

next good. frame the amplitude of the packet was normalized to that of the previous

substituted. frame and a correlation performed with the extra 100 samples kept aside.

The maximum of the cross correlation was noted and denoted the correlation-index.

If the correlation-index was less thar_ l12 of the current pitch estimate, samples were

dropped from the received frame and the packet waveform was interpolated to make

up the correct number of samples. The interpolation was performed using a second

order form of the well known Lagrangian interpolation formula.

a(")
(n - n2)(n- rr) ... (n- t r)

a(nt) +(rt-nz)(u-r")
(n-n1)(n-n")

(rt - try)
(r, - tr) a(n2) +(r, - nt)(nz- tr) . . . (rr- r")

+
(n - n1)(n - nr) . . . (n - t r)

v(nN) (3.28)
(rr - nt)(n¡v - rr)... (rr - r¿N-r )

If the correlation-index was greater than tlZ the estimated pitch period an extra frac-

tion of a pitch period was substituted and the waveform of the following frame was

compressed over 150 samples to ensure the correct number of samples by the completion

of the frame.

In practice it was found that the adjustment was rarely more than 5 samples and

very rarely more than 10 samples. The compression case occurred almost exclusively
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in the higher pitched speaker's case where the compression occurred over a few pitch

periods and caused little pitch distortion. The expansion of the pitch period in the

lower pitched speakers tended to be a small percentage change in the pitch.

3.LL.4 Memory Considerations for CELP Coders

The major problem with the packet substitution scheme in the CELP scenario was

the memory of the CtrLP coder structure. In experiments performed by the author

and others [51], it was found that a simple repetition of the previously received error

free parameter frame followed by the next good frame produced in most cases an

acceptable result. The memory of the CELP coder performed an interpolation from

one frame into the next with a satisfactory performance. The above technique though

more accurate was left with the problem of how to update the memory elements; but

more importantly, the computational overhead was not warranted. Perceptually CELP

parameter substitution caused minimal audible distortion.

For the general CELP case it is recommendedto repeat the previous frame's parameters

for the substitution process and then follow on with the next error free frame. This

does not however rule out the method developed above for methods that can afford

the extra processing or have little to no memory from one block to the next.

3.L2 Conclusion

A new reliable and robust super resolution pitch estimator, which has promising perfor-

mance and yields an accuracy to 1/10 of a sample was discussed. As the multidimen-

sional phase space representation was obtained by simple delays, the computational

load is not great although greater reductions in processing would be possible using

decimation of the low pass filtered speech waveform. It was interesting to note that

a large number of dimensions in representing the speech did not significantly improve

performance. One of the greatest gains found was the use of three dimensions of phase

space for the AMDF which improved its reliability and accuracy of its estimates.

Two new speech waveform classification methods based on zero crossings were pre-

sented. The Devil's staircase despite giving useful information was deemed not robust

enough for the general speech coder environment.
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The new voicing indicators based on direction of travel in the two dimensional phase

plane and orbit and the autocorrelation function's decorrelation shift were robust and

used for voicing indication. The decorrelation time (shift) was determined for estimat-

ing the time shift required for the multidimensional phase space representation of the

speech and as such it was not necessary to determine it separately. A short decorrela-

tion time indicated an essentially uncorrelated signal. The orbit direction parameter

was determined from a cross product of the vector from the origin to the current two

dimensional representation of the speech and the vector from the origin to the pre-

vious two dimensional speech sample. A large number of orbit direction parameters

of the same sign indicates a simple orbit, such as a limit cycle, generally associated

with voiced speech. This parameter proved valuable in classifying the speech wave-

form. Further investigation of this parameter for the analytic speech signal may prove

fruitful.

A frame substitution methodology was developed which provides a technique of error

recovery in the extreme event of catastrophicz loss of information within a frame.

It is important to note that if the frame substitution is to be used with CtrLP type

coders the memory effects of the long term predictor must be taken into account. If the

vocoder has no long term memory the scheme described above can be used, however

if the substitution occurs for more than one contiguous block it may be desirable to

substitute spectrally coloured noise or gradually add in noise to avoid an unnatural

sustained úone. This approach is also useful for the CELP vocoder structure where

successive substitutions can be made with successively fl,atter spectral envelopes.

7By catastrophic it is meant that there is not enough information left to reconstruct the

waveform
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Chapter 4

Vector Quantiser and the Missing

f)ata Problem

4.! Introduction

In many low rate speech coders use is made of the Line Spectral Pairs (LSP) represen-

tation of the poles in the all pole model of Linear Predictive Coding (LPC) of speech.

LSP's are a projection of the poles (ø¿'s) of the LPC model onto the unit circle, and

thus have units of radians. LSP's have the property that they uniquely, to within a gain

factor, specify the spectral shape of the speech waveform segment; and they are rnono-

tonically increasing. Soong and Juang [30] discuss the details of LSP's. If the LSP's

are quantised to the U.S Federal Standard 1016 for CtrLP speech coders [1] [3]' they

are arranged to be at least 15 Hz apart. This together with specific one dimensional

quantisers designed for each individual LSP component provides good performance in

encoding, in terms of distortion of the reproduced speech.

A problem arises when a block of encoded speech is transmitted and a channel error

causes an incorrect reconstruction of one of the LSP values. Let u: {uorLùt¡..'up-t}

represent the LSP components. Note that the quantisation range of. u¿-1 partially

overlaps the quantisation range of ur; so that an incorrectly received index may swap the

ordering of the reconstructed LSP values. If on reception the values of the reconstructed

LSP's are no longer in order it is deduced that a channel error/s have caused the non-

monotonic sequence. Traditionally the solution has been to repeat the spectral shape

from the last successfully received block or sort the LSP's into ascending order. This

issue will be covered in more detail later.
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It is proposed that this problem is similar to the classical missing data problem, see

for example Krzanowski [77]. From statistical analysis, if the LSP components were

completely uncorrelated it would be possible to maintain an average of each LSP com-

ponent and when a component was found missing, substitute the average. This may

not always result in a valid datum as the components must be monotonically increas-

itrg. A calculation of the covariance matrix (Equation 4.1) for the LSP components

treated as a vector, demonstrates that considerable cross correlation exists between

vector components; the off diagonal components are substantial. It should be noted

that this matrix is not a covariance matrix in the conventional sense but will be called

a couariance matrix for ease of discussion. This implies the use of conditional proba-

bilities, conditional distributions and/or regression analysis. Let

El(q - m1)21

El@r-mz)(ot--r)l
El@t-mr)(*z-^r)l

El(æ2 - m2)2)

El@t-mt)(nn-*t)l
El@r-mz)(al--r)l

C(r) =

El@n - my)(rt - -r)l El@* - ml)(xz - ^r)l El@¡o - **)'l
4.r)

where E[.] denotes mathematical expectatioî, TTL¡ denotes the mean of the ith vector

component and 1[ is the dimension of the vector.

Noting that the joint probability function is dependent, one may write

nlg@)lr : tl (4.2)

(4.3)

where f ,,o is the joint density function. Clearly the components of the vector that are in

the ascending monotonic sequence will assist in determining the erroneous components

analogous to the S(y) i" the above equation. If the term y was used for the missing

vector components instead "f 
g(') in the above expression, then

: l* s@)f,fuþ : t)dY

[î*s@)f ,o@,a)dv

[Î* f"oþ,v)dv

E lylr : tl (4.4)

is the center of mass for that part of the joint distribution that corresponds to z : ú;

this is the best mean square estimate given n : t.
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Calculation of these estimates imply that the joint distribution for the source is known.

In general this is not known and may indeed vary from speaker to speaker. The

problem then is to estimate the distribution on-line from the incoming frames, as the

transmission of statistical data is to be avoided.

It is well known that vector quantisation can be used to describe data sets in the sense of

classifrcation. Vector quantisation can utilize linear and non-linear correlations between

vector components in constructing the quantiser set.

4.2 Why I-Ise Vector Quantisation?

Shannon's work predicted that using a block quantiser it was possible to perform

source encoding approaching the rate-distortion bound and is certainly better than

scalar quantisation. The lack of good design techniques for vector quantisers until the

presentation of the now well known k-means [78] algorithm hindered use of vector quan-

tisers. The k-means algorithm is also now known as the generalised Lloyd algorithm.

The k-means algorithm also has problems in that complexity grows exponentially with

codebook size.

A vector quantiser must have a codebook associated with it that uniquely describes

nearest neighbour cells called Voronoi regions in D' space. The Voronoi regions are

defined by a nearest neighbour rule to a representatiue point in the Voronoi region

such that if any arbitrary point falling within the Voronoi region is represented by the

representatiue poinl a minimum amount of distortion results. The Voronoi regions fill

the space that they are embedded in. If the distortion measure is the mean square error

(the distortion measure used for this work), then the optimum representaúiue point is

the standard centroid found b¡

(4.5)

(4.6)

(4.7)

where the Voronoi region membership M is assumed for Voronoi region .R¡ and,

s¡('o) :

Denote the distortion measurc d(.,.), then r is in Voronoi region -R¡ when,

R¡ C {n : d(n,yj) < d(*,yn)V i + i}
bb

I ilx¿eR¡
0 otherwise



If A(.) represents the quantisation process then an arbitrary point is represented by y¿

by the rule,

Q@): v¡

d(r,a¡) < d(r,y)
itrr€R¡
forallilj

l e.
(4.8)

These relationships have consequences that have bearing on the following discussions,

they are:-

1. Each y¿ is uniquely associated with and defines a Voronoi region rÎ¿;

2. R¿O r?¡ :0 for all i + j., that is, none of the Voronoi regions intersect;

3. A codebook is an enumerated list of yis that represent the minimum distortion

quantisation for the range of x's in R¿;

4. Each Voronoi region is a convex polytope, due to the nearest neighbour rule;

5. If the random x vectors are assumed to be from Euclidean space fte, the faces of

the polytopes are k-1 dimensional hyperplanes.

Vector quantisers naturally exploit any linear correlation between vector components

without the necessity of scaling and rotation of coordinate axes if using scalar quantisa-

tion. They also exploit non-linear dependencies by only placing Voronoi regions where

they are required for the quantisation process. As the polytopes associated with the

Voronoi regions are space filling they naturally find an optimum packing in N-space.

These polytopes normally pack much more efficiently than corresponding N-cubes, re-

sulting from scalar quantisation, so that a quantisation gain is achieved. A vector

quantiser may also exploit the fact that the probability density function is not uniform

and tailor the number of cells it packs into a region to minimize encoding distortion.

For more details on vector quantisation see Gersho and Gray [33] Chapters 10 and 11.

4.2.t Generation of a Vector Quantiser Using a Tlaining Set

Ideally to design a vector quantiser the distribution should be known. In general this

is not the case and use must be made of a clustering algorithm. The most commonly

used algorithm is the one described by Linde, Buzo and Gray [78] which is a k-means

type of algorithm. A major issue in codebook design is the complexity of the design

and quantisation implementation forced on the user by the randomness of the design
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data. No natural structure arises in the output vectors y¿'s and so a complete codebook

search to find the minimum distortion output vector is necessary. Various schemes have

been found to improve the speed of operation of the encoding procedure but they are

all inferior to the full-search codebook. Gersho and Gray cover a range of techniques

in their book [33]. Makhoul, Roucos and Gish [79] also provide an overview of different

codebook design methods.

Following the argument of Gersho [80], some comments can be made about the struc-

ture of random codebooks generated by clustering algorithms such as the k-means

algorithm.

Let the training set ?,9 be given by,

TS : {r¿} 1 M (4.e)

(4.10)

for M rand.om vectors, and assume that M > l{, where N is the number of output

vectors in the codebook. The ciustering algorithm determines the N output vectors.

The quantiser Q is called optimal with respecú úo TS if the following two conditions

hold:

Condition 1

Condition 2

llQ@ù-"ollflly¡-"oll Vi +i i:1,2,..',M i :1,2,'..,N (4'11)

Condition 1 was mentioned earlier and implies that y¡ should be the centroid of all

training vectors ø¿ associated with the set .R¡ and condition 2 implies that all x¿ € R¡

define the Voronoi cell. Voronoi cells that frll the quantisation space are defined by the

output set Y: {UtrUzrUzr..",Yw}.

An algorithm that produces a locally optimal partition of ftfr space will generate a

random codebook Y given a random source. This will almost surely be the case if

speech source is used for the training set. Gersho states two conditions of disorder

(repeated here for convenience).

Weak Condition of Disorden Euery subset of n output poi,nts from Y with n 1k,

forms o,n n x lc matrir whi,ch i's of rank n with probability one.
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Strong Condition of Disorden Each subset of n 1 lc output points of Y is contin-

uously ilistributeil in nk d,imensions with probabili,ty one.

For a more detailed discussion see Gersho [80]

The consequence of interest to us from these conditions is that if a k-1 dimensional cut

is taken of k dimensional Euclidean space, no two centroids will lie on the cut.

4.2.2 Some Useful Optimal Vector Quantisation Results

Gersho [81] studied the case of asymptotically optimal vector quantisation. The asymp-

totic situation arises where N, the number of output vectots in the set Y, is very large.

The objective function in determining quantiser perfo mance, of interest to the present

argument, is the per letter distortion D :

n : !n¡* - eþ)ll' @.r2)

where ll . ll denotes the /2 norm, ø[.] is the mathematical expectation over the joint

distribution p(n), r denotes the rth power distortion and ,Elløll' is assumed finite.

Using various assumptions he was able to show that the minimum distortion for the

asymptotic case is given by,

,(¡ú) -- C(k,lv-aþ@)llvr*' (4.13)

where p(z) is the distribution density of r and the notation:

llp(")ll., :llfoølld*f' @.r4)

is introduced. Zadot also obtained the same result earlier. The coefÊcient C(',') is

known as the coefficient of quantisation. A remarkable result is that this coefficient is

independent of the joint probability distribution. Gersho also conjectured that;

c(k,r):,ltro-iffi (4.15)

where y is the centroid of the regular polytope fI¿ and V(Hn) is its volume. (r repre-

sents the rth power distortion.)

The distortion integral was minimized by optimizing the choice of the asymptotic

output point density function which was found to be proportional to ¡rtl(t+p). This

result implies that (using Gersho's words)
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. . . each region R¿ of the partition makes an equal contribution to the dis-

tortion for an optimal quantiser.

The argument may be extended to the more general case where the number of output

vectors N is not very large and the assumptions made in deriving the result above are

not valid. Intuitively it may be argued that the general polytope cells represented by

the output vectors y¿have a smaller volume if the joint probability density for that cell is

high. The reason that this conjecture is made is that practical quantisers tend to show

that the quantiser produces small cells in regions of higher probability density. Gersho

and Gray [33] pp.373 378 show an example quantiser of two independent identically

distributed Gaussian variables. They also note that the theoretical asymptotic high

resolution approximation is not far from the actual performance, especially at higher

dimensions.

Lookabaugh and Gray [82] looked into a quantitative approach of why a vector quan-

tiser performs better than repeated scalar quantisation for the same source. They

classify three advantages of vector quantisation over scalar quantisation following no-

tions presented by Makhoul et. aÌ [79]. The three advantages as presented by them

are:

I. Space-fi,Iling advantage. This corresponds to the increased packing densities avail-

able at higher dimensions and this also corresponds to Zador's coefficient of quan-

tisation and Gersho's conjecture that the polytope that produces minimum dis-

tortion in the dimension of interest is of primary importance in evaluating the

coefficient of quantisation. (Refer to Equation 4.13);

2. Shape advantage. The advantage here is that the polytopal Voronoi region is free

to take on any shape that best describes the joint probability density function. It

should be noted that repeated scalar quantisbtions force a rectangular structure

to the cells, where the dimensions of the sides of the rectangles will depend on

the variances of the marginal distributions;

3. Memory/Correlation advantage. Lookabaugh and Gray use the term memory'

but the term correlation will be used here to bring to attention that a correla-

tion exists between the components of the vectors that are under consideration.

Repeated scalar quantisation does not consider correlations between successive

samples. Thus it may be said that vector quantisation models the joint distribu-

tion density including correlational effects.
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It should be noted that the repeated scalar quantiser and the vector quantisers were

considered to have the same number of output points.

Recalling Gersho's conjecture Equation 4.15 and using Zador's result, Lookabaugh and

Gray presented expressions for the ratio of distortion due to repeated scalar quantisa-

tion to vector quantisation. The equations are repeated here for convenience.

Let A(k,r) be the advantage, in terms of distortion, of vector quantisation over repeated

scalar quantisation. k is the dimension of the vector and r is the rth power distortion.

a(k,r) - 9!1,r)llp(r)llr¡r+' (4.16)
C (k, r)lle(r)ll n ¡ 1*+,¡

under the assumption that the source is stationary and p(r) is the marginal density.

Also defin" 
o_,

p.(u) : lf n@ù Ø.t7)
à=O

the distribution that would result if the vector coordinates \ryere independent.

They then present the equation,

L'(k,r): F(le ,r)S(k,r)M(k,r) (4'18)

where F(k,r) is the space-fillinq advantage, S(k,r) is the shape advantage and M(k,r) is

the correlation advantage.

The space filling advantage is straight forward, but the shape and correlation advan-

tages are of special interest to the missing data problem.

The shape advantage given by:

,9(k, r) llp-(r)ll'¡t.+"1 (4.1e)
¡¡p-(ø) ll*¡1r,+,)

depends only on the marginal probability densities and can be shown to be ) 1 for

k>Landr)0.

The correlation advantage is given by:

M(k,") :l]#]þ@ @.zo)
llp\r )llk/(k+r)

which depends on the k dimensional joint distribution density function. Generally this

can be very difficult to calculate, but note that M(k,r) = I only when the components

are independent and identic lly distributed. Thus the vector quantiser takes the joint

distribution function into account in its structure.
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4.3 l{euristic Argument

A heuristic argument for a new approach to the missing data problem for incomplete

vectors of data follows in this section.

It is known that the optimum estimate for the missing data component from statistics

under a mean square error criterion, is the expectation with respect to the joint density

function given the other components. The question arises: what is the optimum choice

of output vector, with respect to overall reproduction distortion, given that a vector

quantiser codebook exists for the source?

Assume that only one vector element is missing. If a nearest neighbour search is

performed for all of the known components of the vector, a k-l dimensional cut is

performed through the Voronoi (polytopes) in k dimensional space. It is known that

the polytopes are convex and so a k-1 dimensional cut will still leave the polytope

convex, due to the definition of convexity,

a(r) -f (1 - a)(y) e ^9 V r,y e S (4.2t)

where0<a<1.

'We can not choose two points such that all points between them are not inside the

convex region, ^9. Consider the two cases where the original convex region and the

cutting hyperplane generate a new convex region containing y and ø (call this set C):

1. point n € C and point y on the cutting plane. Clearly all points between r and

y are in the new convex region;

2. point r € C and point y in the previous existing convex region, not on the cutting

plane. All points between ø and y must be in the ne$r convex region as all points

C are in the new convex region and the previous convex region. We make use of

the fact that the previous region was convex.

This implies that cutting one of the Voronoi regions does not result in strange be-

haviour such as generating unconnected regions, belonging to the one polytope, but

now isolated on the k-1 dimensional hyperplane. As the polytopes are space filling, the

k-1 dimensional cut will result in a covering of the cutting hyperplane, without regions

that did not cut through some polytope.
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From the conditions of disorder quoted above we can say that with probability 1 that a

k-1 dimensional cut will result in at most one centroid on the hyperplane and at most

one pair of centroids equidistant from the hyperplane. The distances of the centroids

from the hyperplane will have a random distribution, so choosing the correct Voronoi

region (output vector) will be probabilistic. If the assumption that the Voronoi region

size depends on the probability density is made, smaller regions on the hyperplane

correspond to regions of higher probability. Two things should be noted at this stage:

Firstly, for a random cut through a polytope a larger cross section is expected if the

polytope is large. If we couple this with the distance from the centroid of the polytope,

a reasonable estimator of the most likely representative Voronoi region is obtained. A

possible estimator is the volume of the approximate k dimensional simplex generated

by the vertices of the intersection of the polytope and the hyperplane and the centroid

of the polytope. By approximate it is meant that the vertices are chosen so that the

area of the intersection and the area of the simplex are equal. The volume is given by:

vot(P): fr a"t

1 uor

1un
L urt

uoz

ulz

uzz

uol"

ulh

uzk (4.22)

I un 'Dhz ukk

where u¿ : (u¡,,.--,u¿*) for 0 ( i < k are the vertices of the simplex [83]. This

volume relates to the distance from the centroid to the base and the size of the base,

that is, the k - 1 cross section of the polytope. Choosing the smallest volume thus

gives the highest probability of choosing the correct polytope centroid (output vector).

Unfortunately finding the vertices of the simplex other than the centroid, given by the

codebook entry, is difficult.

Secondly, the smaller the Voronoi region the greater the probability that the mrntmum

distance to a centroid d,^¡n belongs to one of the small cells. Let the polytope (Voronoi

region) be represented by a sphere that lies between the polytope's in-sphere (totally

enclosed by the polytope) and circum-sphere (totally encloses the polytope).

If this sphere is cut by a k - 1 dimensional plane there will be a point of minimum

distance between the center of the sphere and the plane. Denote this point r and the

center of the sphere c. We wish to determine the probability that this distance is less

than some distance d,^¿n oblained by some other polytope. This must be related to D

the diameter of the representative sphere. Using the notatio" P{.} for probability;

P{1"-rlld^¿^}
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P¿ (4.23)

Evaluating for a uniform distribution, as a cut through the polytope is uniform,

and assuming the sphere diameter D,

lf.|d*;n1t.
P¿ : ; J" dr+ o J"-o*,.d' (4'24)

2d^i^ 
(4.25)

D

For a given d^;n fo:ulird by a nearest neighbour search to the hyperplane the probability

is greater that the centroid in question belongs to a smaller polytope. Also if the

correlation between the vector components is large the marginal density function will

have a narrow peak. Consider two components r¿rn¡that are strongly correlated. The

joint distribution density function will be compressed toward lhe r¿ - o,ri line. The

greater the correlation the greater the compression of the distribution as the variance is

small. It can thus be expected that regions of small cells occur near likely combinations

of vector components.

Given the above arguments and that the area of the cuts of the polytopes are not

readily available; the best decision of a polytope most closely satisfying the missing

data problem defined by the hyperplane is the one that has its centroid closest to the

plane. It is noted that this results in a probabilistic assignment of output vector to

match the hyperplane and may not always correspond to the same output vector had

traditional statistics with a mean square error criterion been used'

4.4 Codebook Generation

The source speech coder generates the ten dimensional LSP vectors on-line and the

in-coming received vectors are to be compared with entries in a local vector quantiser

codebook. Firstly, it should be noted that only the vectors that are detected as being in

error need be compared to the codebook entries for the missing data estimation process.

Secondl¡ because no codebook index is transmitted across the channel the number of

entries in the codebook is not restricted to a power of two, the case for traditional

vector quantiser source coding, as the constraint of bit efficiency on transmission is

eliminated.

There are two possible strategies for the codebook generation:
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1. The codebook is fired. This requires a large source of mixed speakers so that the

codebook is representative of all the possibilities of the source. As the codebook

is fixed this mechanism provides the fastest alternative at the receiving end.

Although it operates outside of the training sequence it cannot be corrupted by

erroneolls received vectors that have not been detected by the error detection

strategy.

2. The codebook is adaptiue. This method requires that the codebook is on-line

and is continuously learning. An advantage óf this method is that it is adaptive

and hence will train itself to a speaker, making the output vectors more relevant

for that particular speaker. Disadvantages are that extra computations must be

performed for each received vector and that erroneous vectors received but not

detected go into the training set and thus corrupt the quantiser. Vectors where

errors are detected, are not used in training the codebook.

The source material used for this experiment consisted of thirteen speakers, of mixed

ages and sex. All of the sentences uttered were phonetically balanced sentences. Overall

approximately 150 seconds of digitized speech was used in the training and testing of

the codebooks.

4.4.t Fixed Codebook

The fixed codebook was constructed using the Linde, Buzo and Gray [78] version of

the k-means algorithm. The source material consisted of the material mentioned above

with the male and female voices interleaved. To obtain an in training set approximately

60 seconds of speech from two males and two females was used. For the out of training

seú, the rest of the above mentioned speech was used. Only codebooks of size up to

N:128 were considered as the condition M > 1ú is a requirement for good training of

the codebook: where M is the number of training vectors and in this case was about

2000 LSP vectors.

4.4.2 Adaptive Codebook

The description of the adaptive codebook given below references a new approach to

constructing adaptive vector codebooks.
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The adaptive codebook is primarily characterized by moving means (centroids) of the

Voronoi regions and consequently an altering partition of ftk space. If the variance

statistics are maintained for each quantiser cell it is possible to merge two cells when the

distortion (variance) drops below a threshold and simultaneously split the quantiser cell

with the greatest variance maintaining a constant codebook size. This method allows

rapid adaption to changing source data. Given the approximate distortion for each

quantiser cell, the updating of the variance (distortion) statistics requires investigation

for the case of merging and splitting. In order for analysis to proceed the asymptotic

vector quantiser argument is followed.

In the merger case, two small cells S¡ and S¿ are combined to create a new volume,

the sum of the two component parts. It should be noted that only adjacent cells are

allowed to merge. The expression for the new volume is given by:

v(st) + v(s j) : v(s") (4.26)

where the new quantiser cell is designated S," and I/(.) denotes volume. As the approx-

imate variance for each original cell is known it is hypothesised that the variance for

the new cell should be the sum of the original variances scaled by a factor 1/p. Using

the fact that in the asymptotic case (Gersho [81]) the distortion D lor .fú quantiser

cells is given by:

¡,/

D : c (k,,)l n@ )lv (S )lt+' t k (4.27)
i-r

where V(S,t) is the k dimensional volume of the quantiser cell for the r'th power dis-

tortion measure and p(y¿) is the probability density at the centroid of quantiser region

^9i. It was assumed that the probability density function was constant over the region.

When r :2 the distortion for the quantiser cell may be interpreted as a variance or sec-

ond moment. Recall that C(k,r) is a constant dependent only on the geometrical shape

of the quantiser cell. If the further assumption is made that the variance threshold is

chosen so that the merger process causes negligible distortion, then:

p@)v (si)þ# ¡ p@ ¡)v (s ¡)+ N pp(aòv (s^)# (4.28)

If the further assumption is made that p(r) is smoothly varying and that the merger

regions are small,
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p(v¿)=p(v¡)xp(a") (4.2s)

One further simplifying assumption is made by claiming that the two merging cells are

of similar volume so, I/(S¿) = V(S¡).

This allows the approximation of Equation 4.28 to be written as,

2vGòLP : plzv(s)l# (4.30)

Evaluating p gives the scalingfactor llp:0.871 for ale :10 dimensionalvector. The

scaling factor is close to 1 and taking into account all of the assumptions made on the

sum of the quantiser cells using 1 seems justified.

A similar argument can be performed for the splitting of the cell with the largest

distortion; however the assumptions on the probability density and the size of the two

resulting cells being equal becomes less tenuous. For this case the crude approximation

of halving the variance for the parent cell and allocating this value to each of the new

cells was made.

As the means move in the adaptive vector quantiser, the distortion/variance statistic

2, is best estimated by a recursive estimator;

g(m) : zlag(m-I)
: @-vn)'
: s(m)(L - a)

(4.31)

(4.32)

(4.33)v

where rn is an index for each new vector r that is quantised as a member of the cell

that is representedby Ao and o determines the memory of the estimator.

The merging may be viewed another way if the codebook is of a small to moderate

size and the centroids of the two cells to be merged, îx¿ and, r¡, and the cell distortions

may be considered relatively constant. Let the two cells to merge, ,9¿ and ^9¡, have a

membership of n¿ and n¡ and distortions D¿ and D¡. If the new cell is denoted S¿¡

then;

nij ni+nj
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rij
n¿r¿ ! n¡r¡

ni+nj

D l" - ¡o¡l'
c€.5¡¡

D l, - r¿¡l'+ D l* - *o¡l'
es¡ nesj

D (lrl' - 2 < r,r¿¡ ) +len¡\")
n€S;

n¿(D¿ + l*,1\ - 2n¿ 1 n¡,, n¿¡ > tn;ln¡1z

n¿D¿ ! n¿l
n¿r¿ * n Ii-niTi-n :L

n¿*nj

(4.35)

(4.36)

(4.37)

(4.38)

(4.3e)

(4.40)

(4.4r)

(4.44)

where,

which gives,

nijDij

I l" - *¿¡l'
r€.5;

Ð

t'

The first step was performed by summing over the membership n¿ of the cell and

noting the !,.5 r : niri and that the centroids are constants. The second step used

substitution lor r¿¡ and the last collected terms.

Using the above expression the distortion for the merged cell D¿¡ can be expressed as,

n¿D¿t øhrlno-*¡¡'

D¿j o*Il*n-*¡l'

n¿jD¿j

This method was frrst described by Equitz [aS] for use in his clustering algorithm.

To compare this with the asymptotic form we let n¿ - nj : n and D¿ : Dj : D.

Substituting,

n¿D¿ t n¡D¡ * Whrx¿ - rif . å#@¡ - *nl' @.42)

n¿D¿ * n¡D¡ * ffitø - r¡l' (4.43)

2nD¿¡ : nD I nD + frlo, - *¡l'

(4.45)

The main difference in the two distortions is the term relating the squared distance

between the two centroids. In this application, the centroids move so the derivations

above are approximate but useful guidelines. The implemented algorithm used the

simpler sum of individual distortions.

The threshold for merging and o were determined empirically for a good performance.

A value of 0.9 for o was found to be serviceable. The thresholds for merging were
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allowed to be dynamic depending on the maximum of the average distortions of all of

the cells. The distortion of merging the cell with the lowest distortion and its nearest

neighbour is determined. If the incoming vector is to be quantised by the cell that

displays the greatest distortion, the distortion in quantising the incoming vector is

found and retained. If this quantising distortion is greater than twice the distortion

caused by merging of the two candidate low distortion cells, perform the split/merge.

All of the available source material was used in the operation of the adaptive codebook.

The adaptive codebook was also generated on-line by a modified version of the k-means

algorithm using notions outlined above. The algorithm is described in the steps below:

1. Till N output vectors are defined, read the next incoming vector and if unique,

place in a new cell;

2. With the next vector find the output vector that most closely matches it (nearest

neighbour) in a mean square error sense and maintain the distortion value Disto"";

3. ffthe vector is to be quantised by the cell with greatest distortion (variance) úåez

check to see if the average distortion of the candidate cell to be merged will be

less than 2.0 * Dist,..;

4. If above true then: use the input vector as the new centroid for splitting the large

distortion cell and initialize the variance, running sum and variance for the two

new cells, and merge the cell with the lowest distortion and its closest neighbour,

reinitializing the running sums, population count, and variance for the new cell;

else add the input vector to the running sum for the cell, and increment the

population count;

5. Using the running sum and population count, recalculate the new centroid, and

if necessary update the variance;

6. Find the nearest neighbour of the quantiser cell with the smallest distortion;

7. Find cell with maximum distortion;

8. Goto step 2 and continue.

The algorithm as it stands clearly is adaptive as new populations of vectors can move

the centroids in such a way that they follow the new population statistics. The ad-

ditional feature of merging and splitting was added to ensure rapid innovation in the

codebook. The number of codebook entries was always constant and could be set by
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the user. By adding the new feature the adaptive nature was improved, but a disad-

vantage was that more detailed book-keeping and statistics on variances of populations

occupying cells had to be maintained.

4.5 Performance

In determining the performance of the vector quantiser as a useful device for the missing

data problem, the fixed codebook approach was compared to the techniques in common

usage in practical speech coders. The adaptive codebook and the fixed codebook were

then compared. The measure chosen to quantify distortion was the Spectral Distortion

Measure (SDM), as this method compares the spectral envelope between the linear

predictor coefficients (LPC's) of the original speech and the reconstructed LPC's. This

measure is often used in the literature [32] and has reasonable agreement with subjective

tests. For these tests all of the LPC source data were in an LSP format and the spectral

differences that channel errors caused were in the LSP representation. As a result of

using this distortion measure conversions between LPC and LSP representations of the

predictor coefficients were necessary for each vector.

The expression for the spectral distortion measure is given by:

/ rr"lz ,q.. \r/z
(¿ rotonofrdu) (4.46)

Where: a" : 2¡r l" and /" is the sampling frequency and, ,9, and S, are the spectral

power responses for the original LPC predictor filter and the LPC predictor filter under

test, respectively. It has been noted that a spect¡al distortion of less than 1 dB on

average results in transparent coding, that is, the difference between the two LPC

filters would be imperceptible to the ear [36].

For both the fixed codebook and the adaptive codebook, the missing data substitution

follows an identical procedure, noting that the vector components must form a strictly

monotonically increasing sequence:

1. The received vector u)t,LÐ2,. . .,(Ðto is tested for any components out of order;

2. All components out of order are marked as an erasure, that is, each un and curr.,-1

out of order; also the original received vector is saved'
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3. As erasures occur in pairs it can not be certain which of the two components out

of order are in error if not both. The correction procedure first assumes the first

component is in error and fixes the second at the received value, followed by the

second component assumed in error and the first held fixed at the received value;

4. The first erasure is replaced by the vector component ø,, from the best matching

vector obtained from a nearest neighbour search in the vector quantiser's code-

book. The minimum distance output vector is noted, as is the distance. If there

are other erasures in the received code vector, the vector elements associated with

the erasures are not used in determining the minimum distance to a codebook

entry;

5. The second erasure corresponding to cer,,41 is replaced by the corresponding com-

ponent in the best matched vector obtained from a nearest neighbour search of

the codebook. The minimum distance and the selected output vector is noted;

6. Of the two output vectors, the one which has the minimum distance to the

hyperplane (caused by removing the erasure component) is selected as the best

vector;

7. The most likely (best) codebook vector's component that corresponds to the

erasure position is used as the substituted value. Monotonicity is checked and

any anomalies resolved. Further erasures can be resolved by either sorting the

vector elements into increasing order or by using the entire most likely codebook

vector. There was little difference in performance.

The process can be illustrated by writing out the vectors;

u¿t Uiz uis Di+ Uis Uia uin

rn
(4.47)

T1T2Tg€rST6

The vector u¿ in (4.47) represents the vector that most closely matched the received

vector r which had the LSP's out of order in the 4th and 5th locations. e indicates the

trial erasure, that is, the co-ordinate that is not used in the vector match. The next

step trials the 5th location in the received vector as an erasure.

ujrujz
T1 T2

uj4uj5
T'4 €,

Uin

rn
(4.48)

ujz

T3

80

uj6

,6



Assume that the vector u¡ in (4.48) produced the best match in the sense it was closest

in a mean square error sense. The received vector would be corrected to 4.49 if criteria

of monotonicity and spacing between LSP components were met, else the entire vector

u¡ would be used.

I'y T2 T3 u j+ Ts T6 rn (4.4e)

The reason that the matching was only performed on the first erasures was to reduce

processing and that the first two formants for human speechl would be expected be-

tween uz - eq and the second formant between us - u7 184]. The most important

formant for human ear perception is the first formant. Only one value is substituted

rather than the whole vector because as Paliwal and Atal [36] elucidate the LSP rep-

resentation has the nice property of only affecting the spectrum locally. That is, an

incorrect LSP component will only affect the spectrum in the region associated with

its frequency. Replacing a single component will result in a better spectral distortion

measure than sorting, assuming a single corrupted LSP. If however no substitution

can be made that meets the criterion of monotonicity and perhaps LSP spacing, the

matched vector from the codebook is taken in its entirety to ensure a stable synthesis

filter.

4.5.L Common Current Techniques,

Two common techniques used in present speech coder implementations are considered

for comparison to the methods developed here. The first technique is to simply use, on

detected error, the last correctly received LSP vector. This method guarantees that a

valid vector is used and is extremely simple and exploits the fact that from frame to

frame the LSP vectors tend to be similar. However as far as error contribution goes,

the whole substituted vector was found to contribute significantly to the error unless

the vectors happened to be identical. There was a reasonable chance that the vector

would be quite similar particularly during voiced speech with a sustained vowel.

The second technique takes the received LSP vector in error and sorts the components

of the vector into monotonic increasing order. This again results in a valid vector and

guarantees a good match on the components of the vector that were not out of order.

The error contribution in this case would only be over the two vector components that

lThe first two formants are the most perceptible.

81



4

ÉE
d
o.¡
!
þ
!
ø

â

þ
J
U
o
q
b

3

2.5

1.5

2

I
2 3 45

Siqnal to Noise Ratio dB
6 7 I

Figure 4.1: Fixed Vector Codebook Performance in Missing Data Estimation: the plot

names indicate the size of the fixed codebook.

were out of order, assuming no other undetected errors. To ensure that no high level

resonances occur, the sorted LSP's are arranged to be at least 15 Hz apart.

4.6.2 Comparison of Methods

For all of the experiments the speech data-base was converted to an LSP representation

and then quantised using the US Federal Standard 1016 CELP quantisation tables. The

channel simulation transmitted the quantised LSP vector through an additive white

Gaussian noise (AWGN) channel where BPSK modulation and hard decision decoding

were assumed. To effectively obtain more source vectors the vector source file was

concatenated three times for the higher signal to noise ratios to obtain a significant

number of error events. Signal to noise ratios were'only simulated to 8 dB where there

were still a small but signifrcant number of errors (=80).

Figure 4.1 shows that a small increase in performance rras achieved by going to a larger

codebook. The mean square error was determined on a per LSP component basis (units

of radians squared) and the signal to noise ratio refers to the additive white Gaussian

noise channel that the quantised LSP indices were transmitted over. The spectral

distortion was an average spectral distortion that occurred in the process of estimating

ùflxed-vec-16n 

-
ufixed-vec-32n ----'rfixed-vec-64u -----

trf ixed-vec- 128n -.-..-...-
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Figure 4.2: A.dapIive Vector Codebook Performance in Missing Data Estimation: plot

name extensions indicate the size of the codebook.

the reconstruction vector. Distortions due to no errors and undetected errors were not

considered here. Most of the gain appears to be achieved with 64 vectors. The size of

the codebooks double in size as an artifact of using the Linde, Buzo, Gray version of

the k-means algorithm which performs a binary splitting at each level during codebook

creation. [78]

Figure 4.2 shows an improvement with increasing codebook size for the adaptive code-

book till it reaches approximately 100 vectors. A possible reason for the saturation was

that the clustering procedure was not optimum and the on-line training of the code-

book included received undetected erroneous vectors. Spectrally uncharacteristic cells

may have been created that were not adjusted by correct data, as correct data never

matched those cells. The uncharacteristic cells however were still available for match-

ing in the missing data estimation process. The spectral distortion only accounted for

the reconstruction process for vectors found in error.

From Figure 4.3 it is quite clear that the vector quantiser's performance rs supe-

rior to the traditional methods of correcting channel corruption of LSP parameters.

The distortion caused by undetected errors was dealt with separately and plotted as

undetected-errors; this distortion component was in addition to all of the schemes rep-

resented here and was due entirely to undetected error vectors getting through the error

rradapt-vec-16"
ùadapt-vec-32tr
Iailapt-vec - 64 "IadapL-vec-96tr

nadapL-vec- 128n
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Figure 4.3: Comparison of Methods in Missing Data Estimation: 128 entry fixed vec-

tor codebook, sorting of the LSP components, repetition of entire LSP vectors and

distortion due to undetected errors.

detection process. It should be noted, from the point of view of spectral representation

for the corrupted frame, sorting of the LSP parameters in a monotonically increasing

order and adjusting any pairs too close (avoid large resonances) performed better than

repeating a previous frames spectral information for the lower signal to noise ratios.

To obtain better performance it is clear that a better error detection scheme should

be employed. It should be considered that the undetected error distortion and recon-

struction distortion do not add directly but must be averaged over all vector error

events.

It can be seen from Figure 4.4 that the LSP monotonicity as an error detection mech-

anism only detects between approximately ll2 and 1/3 of erroneous vectors. More

erroneous vectors were detected at higher bit error rates (lower signal to noise ratios)

as any one vector of LSP parameters had a higher probability of having more than one

bit error. At the lower channel error rates single bit errors do not necessarily cause an

interchange in LSP ordering hence undetected errors occur. For better performance

a more sophisticated error correction scheme and/or error detection scheme would be

required. One possible method may be to encode the differences in angles of the LSP's

and encode the last LSPts difference from n. On reconstruction any error will cause

the sum of the differences to no longer equal n', within an allowed tolerance.

'rundetected-errorsn 
-

rrepeat-1sfsr -----
trsort-1sfsr -----

nfixed-vec- 128tr
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Figure 4.5 shows a comparison of the 96 entry adaptive codebook and the fixed vector

codebook of 128 entries. It should be noted that at high signal to noise ratios the two

schemes work similarly, however at lower signal to noise ratios the adaptive codebook

has 0.5 dB advantage for a given performance level. The ability to adapt to a given

speaker under the current conditions is a definite advantage for the adaptive codebook.

This process also allows adaption to background noise which may be of benefit in some

cases. The speakers in the speech file were chosen to interleave male and female speakers

so that the adaptive codebook had to adapt relatively rapidly.

If a very robust system with small computational effort is required, the fixed codebook

of 128 entries appears to be a good choice. However, caution must be taken in coming

to this conclusion as the training set for the 128 entry codebook did not come from

a large data base of different speakers and as such may not be as representative for a

larger variety of speakers. A fixed codebook scheme may require different codebooks

for different language speakers.

If flexibility in dealing with a wide range of speakers is required the adaptive codebook

is the better alternative due to its on-line learning ability at the expense of extra

computation.

4.6 Improving the Vector Quantiser Error Correc-

tor

From the discussions above it should be clear that to improve the performance of

the vector quantiser error corrector, particularly the adaptive version, a better error

detection mechanism is necessary. In general digital communications cyclic codes are

used extensively for error detection. From the experiments performed it is evident that

undetected errors limit the possible performance of the proposed schemes. Principally

the problem arises when an error causes an LSP value to change position but not

enough to cause an ordering violation or proximity violation (must be >15 Hz apart).

If a large burst of errors occnrs the probability that ordering or proximity violations

occur is much greater. A burst of errors is described by a starting error bit followed

by a stream of errored or non-errored bits to a final error bit after which the burst is

deemed finished before the next burst. This definition implies also an error-free guard

length to be able to separate bursts in long codewords.
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Many good references exist on error control coding, see for example [86] and [87]. An

(n,k) codeword has a total length of n bits, fr of which are information bits and n - le

of which are for parity. Codewords are generated by treating the information as a

polynomial, dividing this polynomial by the generator polynomial of the code, and

appending the remainder. On reception the complete codeword should be divisible by

the generator polynomial with 0 remainder.

Cyclic codes have the following properties;

1. an (n,k) cyclic code can detect any burst of length n - lc or less,

2. lhe fraction of undetectable bursts of length n - le * 1 is 2-@-k-t),

3. thefractionof undetectablebursts of length I>n- fr*1is 2-@-k)

Choosing the correct length code depends on the error detecting capability required

and also the maximum increase in transmitted bit rate that can be tolerated. If 5

parity bits were allowed, the bit rate would be increased by 200 bits per second in the

proposed design, (based on 40 frames per second.) It should be recalled that errors

in the linear predictor coefficients are a major source of distortion in reconstructed

speech.

If 5 parity bits were allowed the resultant code would be a (39,34) cyclic code. All
error bursts of 5 bits or less would be detected, 1/16 bursts of length 6 would go by

undetected and 7132 of bursts of length greater than 6 would remain undetected.

This is clearly a far superior performance to the plain monotonicity check. The adaptive

scheme could benefit greatly from the additional error detection as the number of

corrupt vectors that would be used in training the codebook would be reduced, and

hence the vectors in the codebook would remain more representative of the true on-line

speaker's voice spectrum.

This simple error detection scheme does however have a price, in that the detection

scheme does not yield any information about error location. Monotonicity, when vio-

lated, indicates an error and its approximate position. Cyclic code checks would only

indicate the presence of a detected error. Without information about the location of

the error it would be necessary to successiveiy mark each LSP coefficient as an erasure

and perform a pattern match to find the best match for that position. Of the ten

resulting decisions the best is chosen as the final vector to use in its entirety or to ex-

tract the appropriate coefficient. The situation becomes more complicated if multiple
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errors are to be corrected, and probably the best technique to use in this case would

be to substitute a complete vector or correct only the largest error in the lowest index

position.

A suggested scheme is to use LSP encoding of the linear predictor coefficients and to

couple this with an error detecting scheme. Gross errors would be detected by the

property of monotonicity of the LSP representation and smaller errors will be detected

and an assessment made of possible error by determining the nearest neighbour vector

from the codebook. The erroneous vector would not be used for updating the adaptive

codebook. This method would not be able to completely compensate for the previously

undetected errors due to the approximation process that occurs in nearest neighbour

matching.

4.7 Conclusions

A new method of error mitigation for Line Spectral Pairs encoding of the linear predic-

tion coefficients of a CtrLP coder \ryas presented in this chapter that resulted in lower

spectral distortion than traditional methods in use. From the experiments conducted

in this section together with the supportive introductory arguments, a vector quantiser

was useful in the process of missing data estimation for this application. Central to

the method was the concept of a hyperplane that cuts the multi-dimensional vector

space. The hyperplane was generated by allowing the suspected error component of

the vector to vary while holding the other components fixed.

Not only was the missing data estimated but the whole vector was approximated;

however only the missing element was used, provided monotonicity was not violated.

Monotonicity ensured that the LSP parameters would result in a minimum phase syn-

thesis filter for the reconstruction of speech.

A saturation effect appears to occur with larger numbers of vectors in the quantisers'

codebook. This may well be due to the effect of just taking the minimum distance

centroid from the hyperplane without regard to the size of cell that the centroid is

taken from. If the volume generated by the hyperplane cutting the Voronoi cell and

the centroid is considered a more accurate estimate could be made. Using the normal

distance of the centroid to the hyperplane, an on average good estimate resulted, but as

the number of cells cut by the hyperplane increases the estimate procedure may degrade

a little. The results indicated however that the method performed signiflcantly better

88



than the traditional sorting of LSP parameters.

A simple adaptive vector quantiser \ryas seen to be an effective step in further improve-

ment of the performance of the missing data estirnation technique.

It was observed that the 96 entry adaptive codebook had superior performance to

the 128 fixed vector codebook. The disadvantage in using the adaptive codebook was

the additional computational load required for adapting the codebook. It was also

observed that the 128 entry fixed codebook may not perform as well over a larger

variety of speakers as indicated by the above experiments due to the limited data-

base. A marginally larger codebook trained by a very large training set may provide

improved performance.

As the adaptive codebook trains on-line no assumption is made about the nature of

the speech transmitted across the channel and thus offers the greatest flexibility. If the

additional computational load could be tolerated it would be the method of choice in

LSP error reduction for the errored channel.
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Chapter 5

Vector Quantiser Design

Spectral Information.
for

5.1- Introduction

Itakura [31], Soong and Juang [30], and Kang and Fransen [88] showed that Line

Spectral Pairs (LSP) were the most efficient scalar quantisation technique for LPC

information. Recently much work has been done in developing scalar quantisers for

LSP information and the scalar technique was adapted for the US Federal Standard

1016 Code Excited Linear Predictive vocoder. Atal and coworkers [89] [36] use the

term transparent quantisation to represent the level of quantisation required such that

the quantisation process does not introduce any audible distortion in the coded speech.

The parameter values that they suggest must be met for transparent coding is < 1 dB

average spectral distortion with no more than 2% outlier frames having spectral distor-

tion greater than 2 dB. This implies that the scalar quantisation of LSP information

must use 32-40 bits [36].

To reduce the bit rate further a vector quantisation scheme is required. There are sev-

eral problems associated with a vector quantiser design. Assuming that approximately

25 bits are required to transparently encode the spectral information, the codebook

requires 225 entries. If fuaining uector to codeboolc uector ratios of 15 to 50 are used,

the training set will need to be of the order o123o vectors. Clearly this is an infeasible

path to take if a training method such as the Linde, Buzo and Gray (lbg) algorithm is

used which requires multiple iterations for convergence at each stage. Encoding source

data under ideal conditions utilizes a full search, however for random codebook of this

90



magnitude it is infeasible to achieve this in realtimel. Tree structured codebooks [33]

provide a solution to the encoding computational load problem at the expense of quan-

tisation performance. If the expense is of the order of 2 bits then the codebook expands

lo 227 entries and the training set expands to 232. If the codebook size is represented

bV llCll, tree search encoding reduces the effort to x log2llCll.

Another problem with vector quantisation in a noisy transmission scenario is the chan-

nel error problem. One bit in error in the transmitted index due to channel noise may

cause a severe error in the choice that the decoder makes. The LSP representation of

the LPC parameters has the property of monotonicity of the roots. This affords some

channel error detection and various error masking schemes may be employed as covered

in the previous chapter. Indices from vector quantiser codebooks do not naturally have

this property and measures must be taken to increase the robustness in noisy channels.

By taking the approach that the vector quantiser be designed in such a way as to cause

minimum distortion at reconstruction time should the transmitted codebook index be

corrupted, a degree of robustness can be obtained [39] l40l 1421. A nice property of

vector quantisation is that a stable synthesis filter configuration is always chosen albeit

the incorrect one if one or bits were in error in the index.

The work in this Chapter concentrated on designing a vector quantiser that required

only moderate computational effort for encoding and was robust to channel errors. Tree

structured vector quantisers were found to be useful in meeting the computational

criterion. Apart from the generalized Lloyd algorithm, optimised vector quantisers

have been designed using simulated annealing [90] in the past, especially if the vector

quantiser had to meet special constraints, however a genetic algorithm [91] will be

introduced to perform a similar function. The areas in which this work differs from

the work in the literature is that the large codebooks are tree structured within a

split vector quantiser and multistage vector quantiser to facilitate realtime coding and

minimize storage. Also errors in the received codebook index are also considered.

5.2 Tlee Structured Vector Quantiser Design

The frrst major decision was how best to represent the LPC information vector. For

scalar quantisation it has been shown in the literature that the LSP representation is the

most efficient. For the vector quantisation case it was not immediately obvious which

l Using current technology
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representation to use. For example transformed partial correlation coefficients [92] of

the linear predictor gives a representation that ensures filter stability; they also have

good interpolation properties. Reflection coefficients could also be used to construct the

vector. This had the advantage that no transformation process would be required after

finding the linear predictor coefficients using the Schur recursion. However there was

a disadvantage in that an error in any of the reflection coefficients had an effect on the

whole short term spectrum (spectral leakage)1361. The spectral leakage effect precluded

any weighted mean square error criterion for individual coefficients that may have

helped in the design of the vector quantiser. It has been found by various authors that

the LSP's have localized spectral sensitivity[36] [93]. This localization of the spectral

sensitivity allows a weighted mean square error criterion that can be loosely related to

the frequency spectrum and was instrumental in allowing split vector quantiser designs

covered later. It was also a useful property for the multistage vector quantiser design,

where the basic spectral envelope shape was found by the first quantiser and then

modified by the second.

A tree structured design was undertaken to reduce the computational load associated

with the full search strategy for large random codebooks. To obtain maximum perfor-

mance from the codebook a weighted mean square error criterion was used, as other

authors for example Paliwal and Atal [36], have indicated performance better than

the mean square error criterion. The weighting Paliwal and Atal suggested was of the

form, 
10

d,(r, h :Dl-¿uo - in)|', (5.1)
i=I

where d,(.r.) was the distance measure, fi and /n *"." the test and reference vectors

respectively, and ui was the weighting coefficient for the ith component. Paliwal and

Atal[36] define ui as;

w¿: lP(f¿)l' (5.2)

where PUn) is the LPC power spectrum magnitude associated with the test vector as

a function of frequency, and r was an empirical constant equal to 0.15.

This weighting function gave good results for the split vector quantiser design; it re-

duced the codebook index size by 2 bits, but came with the price of higher computa-

tional load. Another weighting function that could be used with the mean square e ror

was sought that allowed for fast computation. LSP spectral sensitivity was studied by

Sugamura and Farvardin [32] who came to the conclusion that the first two LSP com-

ponents were approximately 1.5 times more sensitive than the other eight components

for spoken English and Japanese (for a ten pole LPC model). In viewing short term
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spectra of speech it was noted that in general the power levels at higher frequency were

considerably reduced. It is well known that the human ear cannot resolve differences at

high frequencies as well as it can at low. Paliwal and Atal [36] multiply their weighting

function by an additional factor c¿:

1.0, for 1<i<8
0.8, for i :9
0.4 for i:10

(5.3)

Combining the weighting factors of Sugamura and Farvardin, and Paliwal and Atal, a

new very simple weighting function may be given by:

w;

1.5, forl<i<2
1.0, f or 3 < i < 8

0.8, fori:9
0.4 for i:10

(5.4)

It should be noted that this weighting function was fired for all frames to avoid a high

computational load.

The structure for the tree vector quantiser was chosen to be an unbalanced tree arising

from single node splitting during the design process. In this model a node (cell) in

the tree was split if it was the largest contributor to the overall average distortion

for that stage of the design. Splitting is generally performed [78] by perturbing each

component of the selected centroid by ó and -ô to obtain two new candidate centroids.

The generalized Lloyd algorithm [78] is then run for each of the new pair of centroids

till convergence is reached. This process was also used in this design which added one

new node to the tree for each iteration. The tree was searched again to determine the

largest contributor to the average overall distortion and the process of splitting and

optimization repeated.

Makhoul [79] argues that the most cost effective search technique for a vector quantiser

is the binary search with an unbalanced tree as its performance is close to full search.

The advantage of using the unbalanced tree is that clusters with low number of members

are not split unnecessarily, wasting bits, where the extra bits could be used on clusters

with large populations; hence reducing the overall average distortion.

The overall algorithm for the design of the tree may be stated as follows:-

1. Find the initial centroid of the whole data training set r.
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2. Find the greatest contributor to the average overall distortion and split the node

i. Run the generalized Lloyd algorithm to obtain two new centroids.

3. Partition the training set associated with node i into two reduced training sets

Tio,t Tit associated with each of the newly detèrmined centroids.

4. Associate the centroids and corresponding associated training sets with an index

and increment the number of nodes n.

5. Continue by returning to step 2 until the desired size n of the codebook is reached.

The splitting process may be described by taking a centroid of a cell r and a suitably

small scalar perturbation ó. The two new trial centroids rno, r¿1 were given by:

rl:
^tt¿

("ß + 6,19,, + 6,. . .,rn'" + t¡

(r,.b - 6,rh - ó,. .., ,i" - 6)

(5.5)

(5.6)

An analysis of the cells constructed by the tree structured vector quantiser, gain an

insight to the details of the design process and hence construct a more efficient quan-

tiser.

The first observation about the tree construction is that on each decision in the binary

tree the search space is broken into closed half spaces. The spaces will always be closed

as the vector components in the space ffi' are limited. This implies that each decision

is a refi,nement of a cell and once a vector is found to lie in a decision region no other

larger region is searched. This allows the process of, once the location of the half space

boundary has been determined, to divide the training data for the original cell into the

two new half spaces. It should be noted that once the training data has been associated

with a cell of the quantiser it no longer plays any part in training other cells except

further refinements of that cell.

A well known theorem of convexity theory [94] states

Theorern I If the set X is the non-aoid intersect of a finite number of closed half

spûces and is bound,ed, then X is a conuex polytope.

Further refinement of a quantiser cell generates a new convex polytope. To characterise

the quantiser cell use was made of the covariance matrix defined in Chapter 3;
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El(q - m1)21

El@r-mz)(rt - -r)l
El@t-mt)(xz-^r)l

El(c2 - m2)21

E[("r-mt)(sx -*v)]
E[(rr-mz)(uy--r)]

C(r) =

El@n - m¡,¡)(xt - ^r)l El@* - mu)(tz - ^r)l El@* - *^)21
(5.7)

The training process was used to estimate the expectations E[.] followed by a principal

component analysis. An approximate hyper-ellipsoid model of the quantiser cell was

used to describe its basic dimensional features and in particular the principal axis of

the cell. Many of the details of the analysis have been left out and only the salient

results are presented in what follows.

From the definition of eigenvectors,

\r: Ar (5.8)

Multiplying both sides by ør, rearranging and finding the maximum eigenvalue;

(5.e)

where the maximization is performed over the set of all possible eigenvectors. This

expression indicates that the direction of maximum variance is associated with the

principal eigenvector.

Gersho [80] has pointed out that the line joining the centroids of two adjacent cells is

normal to and bisected by the hyperplane boundary between the two cells. Given this

fact and that the cell was modelled by the hyper-ellipsoid a cut, in the direction of the

principal axis, resulting in a two dimensional section was used to analyse the effects of

quantisation distortion when centroid splitting occurred.

It was assumed that the data set fell within the ellipse and to reduce the quantisation

distortion further this cell was split to create two new cells. It was assumed that the

probability density was uniform across the ellipsoid.

The basic property of splitting to be determined was whether the splitting should

occur in the direction of the principal axis to ensure that the two quantiser cells would

quantise the data with minimum distortion.

Intuitively the boundary between the two new cells should run through the center of

the ellipse; this will initially be assumed and then proven.
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As the line between the centroids and the boundary between the cells are normal,

and using rotational symmetry of the ellipse, the intersection of the two lines must be

invariant to the rotation. The only point that satisfies this condition is the centre of

the ellipse.

The ellipse under study is oriented with the major axis coincident with x axis and the

minor axis with the y axis. The equation of the ellipse is given by,

T2__l_
a2 

l (5.10)

The boundary between the two cells, denoted the bisector, will be allowed to rotate

and it will be shown that the only orientations allowed that are consistent with all of

the criteria are the minor and major axes. The direction vector of the bisector s can

be described in terms of a point on the ellipse, for arbitrâ,r/ 21 as,

" 
: (r,, lfæ - "?ll (5.11)

The expression for the centroid c: (¡,y), found by integration for arbitrary ø1;

r

T

T

a

l^

l^

dA

dA

(5.12)

(5.13)

where A is the area of integration which applied to the ellipse gives,

+ -2øöarcsin( |lf!tt* - *?)"/' - o3 - {ø' - *?)'t'l) (5.14)

0-r2abarcsin(11) ffif*,r- + - '¡ø' - *?)"t'l) (5.15)v

The dot product of the direction of the centroid c and the bisector must be 0 for the

two to be orthogonal.

s.c:0 (5.16)

When this expression is written out explicitly a solution for the bisector in the vicinity

of the minor axis occurs when ït:0, that is the line between the centroids corresponds
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to the major axis. The solution for the tr component is obvious and for the y component

we note arcsin(0) :0.

Now for consistency of argument it is to be determined that a bisection of the ellipse

normal to the direction of the major axis will lead to minimum distortion coding

when the ellipse is equally bisected, assuming a uniform probability distribution. It is
assumed that the bisection occurs at a distance 6 from the origin of the ellipse. Due to

the 180 degree rotational symmetry of the ellipse it is only necessary for 6 to take on

positive values. To evaluate the distortion in coding for the mean square error criterion,

the equivalent problem of the second moment of area about the new centroid may be

determined.

This may be expressed in symbols as;

I,:

[a:

Iy
4b2

l^

l^

@ - T)' d,A

(r - ø)2 dA

(5. 1 7)

(5.18)

The primary interest is the second moment of area about an axis parallel to the y-axis

of the ellipse, 1,.2 The expression lor Io for arbitrary ô can be found to be;

9a2

(5.1e)

It can be shown that 1, has a minimum for ó : 0. This implies that the ellipse should

be cut exactly in half to minimize the distortion.

Returning to the original hyper-ellipsoid; any two'dimensional section of the original

volume that includes the major axis of the ellipsoid results in an ellipse of the form

discussed above. Due to symmetry considerations, the analysis for the two dimensional

case also covers the higher dimensional case and the same conclusions can be drawn.

The primary result of interest is finding the major axis and the splitting the centroid

along the direction of this axis.

The principal axis was found simply using an indirect method not dependent on find-

ing the eigenvalues. The principal eigenvector represents the direction of maximum

2The ellipse at this stage is assumed to be symmetrical about the x-axis
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variance. Use is made of an argument put forward by Householder [95] for the case

when,

lÀrl > llrl > ... (5.20)

where À,, are the eigenvalues. The principal eigenvector À1 can be found by continuing

the Krylov sequence,

r¿11: Aî¿ (5.2I)

starting with any convenient vector z¡. For computational convenience scale factors

were introduced to manage overflow problems. The expression now became

Pi+tr;+t - Ar¿ (5.22)

where ll"nll : 1 for some norm. The case where the principal eigenvalue was not unique

was indicated by the iteration above not converging. This possibility was checked in

practice by starting with two different ø¡'s and checking for convergence using a mean

square error threshold, e, for the two final vectors. If the two vectors did not converge

to the same value, within the selected e factor, the more traditional splitting technique

[78] was used. Splitting along the direction of the principal component was effected as

follows:-

Assume that the principal component vector is given by,

a: (ao,,dt,tctr2t...ran) (5,23)

and a suitably small perturbation factor á is chosen. The new trial centroids rl,r| arc

given by,

r1^ + 0a"¡rf (rß+ 6as,rl1*6at

("å- 6oo,rlr-6at, ,r|^ - 6o^)

(5.24)

(5.25)r|

It was found, referring to the following section, that slightly different codebooks were

constructed with slightly different performances. It was not surprising that the two

codebooks were similar as the generalized Lloyd algorithm moves the centroid to local

optimum for both cases of splitting which is more dependent on the training data than

the position of the initial centroids. Also note the characterization of the cell as a

hyper-ellipsoid for the analysis above is an approximation to the true situation.

6.2.t Initial Tbee-structured Vector Quantiser Design

Five vector quantiser design cases were investigated:
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1. Mean Square Error distance measure with traditional splitting of centroids,

2. AtaIlPaliwal Weighted Mean Square Error distance measure with traditional

splitting of centroids,

3. Simple Weighted Mean Square Error distancê measure with traditional splitting

of centroids,

4. Atal/Paliwal Weighted Mean Square Error distance measure with principal axis

splitting of centroids,

5. Simple Weighted Mean Square Error distance measure with principal axis split-

ting of centroids.

The simple weighting mentioned above was given by Equation 5.4. The original

database of Line Spectral Frequency (frequency version of LSP's) had to be expanded to

incorporate a greater variation of speakers to allow larger more meaningful codebooks

to be constructed. The initial database consisted of two females and two males each

uttering two Harvard test sentences resulting in approximately 40 seconds of speech.

The database was expanded to include

1. The original 4 speakers,

2. Two female and two male speakers uttering a single test sentence (approximately

10 seconds of speech),

3. Two male and two female speakers uttering 3 Harvard test sentences each (ap-

proximately 54 seconds of speech).

The final database consisted of just over 100 seconds of speech uttered by six different

females and six different males giving 3400 ten dimensional LSF vectors. Training

ratios (the number of training vectors to codebook vectors) used by various authors

vary from 50:1 to 15:1. Paliwal and Atal [36] for their work had access to a database

of 60000 LSF vectors and used a training ratio of approximately 15:1. The database

available for this work allowed a training ratio of approximately 14:1 for a 256 entry

codebook and approximately 7:1 for a 5I2 entry codebook. The 512 entry codebook

results consequently must be viewed with some suspicion. The results for the tree vector

quantiser design are shown in Table 5.2.1. The maximum depth (Max Depth) refers to

the maximum depth that the tree grew to, due to the unbalanced tree design employed,
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and gives an upper limit to the computational load required in the encoding process.

The size of the codebook (Size) was chosen to be a power of 2 to make optimum

use of the codebook index bits transmitted over the channel. Notations rnse,) w-o,p

and u-s were used to indicate: mean square error, weighted mean square error using

Atal/Paliwal weighting, and simple weighting respectively. The terminology p-axis and

norrn refer to the splitting algorithm used in the construction of the ftee. p-axis refers

to a principal axis analysis performed at the node to determine the direction of splitting

while norn't, refers to the normal or more generally used splitting method [78].

Also tabulated are the outliers associated with quantising using the tree quantiser. The

first percentage is for outliers lying between 2-4 dB spectral distortion and the second

foroutliers>4d8.

It can be seen that the principal axis analysis improves performance marginally in some

cases, and also it is dubious if the weighting assists. The principal axis analysis does

give some valuable information however and this will be discussed later.

Max Depth ,5 6 ù
I 9 11

Codebook Size 32 64 128 256 5r2

w-s p-axrs

Outliers

3.630

4e% 38%

3.323

54% 29%

2.996

57% te%

2.683

57% t2%

2.34r

53% 6%

w-ap p-axrs

Outliers

3.619

50% 38%

3.320

54% 28%

2.994

56% 20%

2.7033

58% L2%

2.364

52% 6%

mse norm

Outliers

3.605

4e% 38%

3.294

52% 2e%

3.003

58% re%

2.685

58% tr%

2.346

54% 5%

w-pa norm

Outliers

3.600

50% 37%

3.307

55% 28%

3.003

58% te%

2.692

57% 12%

2.367

53To 6%

w-s norm

Outliers

3.624

48% 38%

3.303

54% 28%

2.990

58% re%

2.693

59% rr%

2.343

53% 6%

Table 5.1: Spectral Distortion and Percent Outliers for the Tree Structured Quantiser.

These values should be compared to the full search codebook to compare the loss in

using a tree searched quantiser as against the full search technique. Table 5.2.1 gives

the results of the full searched codebook and Figure 5.1 shows a graph comparing the

average spectral distortions in dB for the two techniques.
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¡r

Codebook Size

Outliers

r28

6t% 14%

256

6r% 6%

5r2

4e% 2%

Table 5.2: Spectral Distortion and Percent Outliers for the Fully Searched Quantiser.
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Figure 5.1: Average Spectral Distortion versus Log2 Codebook Size for Tree and Full

Search Vector Quantisers: /s denotes full search and tree tree search.

A simple linear extrapolation on the weighted mean square error cases indicate that a

codebook size of approximately 32000 vectors would be required to obtain transparent

LSP encoding, that is, less than 1% average spectral distortion with less than 2To

outliers in2-4 dB range and none greater than 4db. It was noted that Atal and Paliwal

[36] use of the order of 25 bits for their vector quantiser. Firstly it should be considered

that the above estimates were optimistic due to the size of the training set, although

the performance was also tested on an out of training set of 3500 vectors. Paliwal's

database was also constructed using a stabilized covariance method to obtain the LPC

coefficients including a 0.996 (10 Hz) bandwidth broadening factor. The database for

these experiments was constructed using the windowed autocorrelation approach with

a (15 Hz) bandwidth broadening factor together with the further restriction that no

two Line Spectral Frequencies were allowed to be closer than l5 Hz. Spectral distortion

\¡¡as measured relative to the processed source data rather than the original unprocessed

source LSP's.

rrfs-perf.deL"
" tree -cs-perf, d¿Lrl
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It may be noted from Figure 5.1 that little performance was lost in using a tree search

strategy in terms of quantisation performance.

The general format of a tree structured vector quantiser is that the index that is

transmitted is built up sequentially from decisions made in going through the tree.

Consider a binary tree; if ilt upper branch was chosen the bit in the index is set to

a 0, else if the lower branch was chosen it is set to a 1. The next decision level

is concatenated to the string of previous decisions. At the last decision the string

representing the decision path is completed which is also the index to be transmitted

over the channel.

Using the single node splitting design the tree may be unbalanced (general case) and

as such the above technique would not work. Instead an index to be transmitted over

the channel was assigned when the leaf node was reached. Each leaf node was given a

unique index and at the receiver end the reproduction vector was determined from the

received index and a look up table which provided a pointer into the tree-structured

codebook. If the tree is drawn as a flat graph on paper the indexing could conceptually

be assigned as consecutive numbers in going from left to right past the leaf nodes on

the tree.

5.3 Vector Quantiser Design for Noisy Channels

Various authors have studied the problem of combined source/channel codebook design,

for exampleZeger [a2] and Farvardin [39] [40].

Consider a k-dimensional vector quantiser as a mappi"s q(.) that assigns a vector y to

a vector r, U : q(ø). The vector y, drawn from a finite alphabet codebook C, becomes

the reproduction vector for x. The codebook C : {cr, c2¡...,c¡a} is associated with

a partition P of the vector space. The partition is described lry P : {St,,Sr, ...,5u}
where ,5¿ are sets.

The mappi"s q(.) is described by,

q(r):c¿ if r€S¿ i:1,2,...,M (5.26)

Now it is necessary to define a distortion measure so that it is possible to measure the

distortion incurred by representing the vector x by y. Let the distortion measure be
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representedby d(r,y). The auerage distortion per vector is given by,

1M r
D"(q): ; Ð J, n@)d(*,c¿)dx (5.27)

where p(x) is the k-fold probability density function of the source. The rate ,B of the

source coder is given by

ft: f,log2M bits/sample. (5.28)

For a given source and rate .R a vector quantiser is optimal if there is no other mapping

q(.) that has a lower average distortion. The locally optimal lbg algorithm [78] gives

a good codebook. In a practical communications system the codewords c¿ are mapped

into binary words (generally of fixed length) to be transmitted over the channel. Let us

use the notation ó(c¿) for the assignment of an index to a codeword. Given this infor-

mation the average distortion can be determined. For a fixed codebook, the distortion

caused per reconstructed source sample due to channel errors on the transmitted index

may be given by,

D"(b): f r ( q ) ( ó (c¡)lb(c¿)) d(c¿., c ¡)
j:r

where P(.0) is the a priori probability that codeword c¿ is chosen.

The overall distortion caused by the vector quantiser and the channel is given b¡

MM

D
i=l

M

I
E

(5.2e)

(5.30)
j=l

which in general is not equal to the sum of the source encoder distortion D" and the

channel distortion D".

If the distortion criterion is the squared error criterion then it can be shown that [39]

1421,

D(q;b) : D"(q) + D.(b) (5'31)

which is an extension of the scalar case.

To use this property the assumptions that must be made are: a squared error distortion

measure and that the codevectors are given by the centroids of their respective regions

S¿.

Farvardin [39] [40] goes on to the more general case where the codebook and channel

conditions are jointly designed. Rewriting equation 5.30 by interchanging summations

D(q;b): !r1a1c,¡lb("n)) l, n@)a@,c¡)d'x
1

k

M

D
i:L
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and integrations,

du (5.32)

This expression can be seen to imply a vector quantiser design with a modified dis-

tortion criterion. Farvardin calls these vector quantisers channel optimized vector

quantisers (COVQ). Results also show that COVQ will out perform index optimized

vector quantisers [42].

In the present application there was a problem with COVQ in that the algorithm is

for an unstructured codebook and it was not straight forward how these principles

may be carried into the tree structured design. Recall the tree structured design was

deemed necessary to speed up the encoding of source vectors in large codebooks3.

Another problem arises in that the COVQ trades off overall channel performance for

less accurate quantisation at the source end. Farvardin and Vaishampayan [40] showed

that as the noise level increased (greater probability of channel error on a binary

symmetric channel) the number of non-empty encoding regions decreases.

Generally mobile communications channels have a non-constant signal to noise ratio

and have times when the error rate is very low. If the COVQ approach was used, the

less accurate quantisation may be signiflcant during periods of low noise. This implied

that to get transparent coding of LSP's at low error rates the codebook needed to

be substantially larger. Another approach suggested itself where the codebook was

designed using the lbg algorithm and a codeword/index assignment space larger than

the cardinality of the codebook was used. A codeword was chosen and the associated

index was transmitted. The corrupted index was mapped back to a codeword/vector

which was used as the reproduction vector.

Consider a concrete example. A codebook of I/ : 2" entries was constructed. An index

space o12N - 2+t was chosen. When a particular codeword cj was chosen a unique

index was assigned b(c¡) from the index space. Only N of the possible 2N indices were

required for this task. On transmission the index may have been corrupted into any

one of the 2N possible indices. At the receive end a 2:1 mapping occurs back to the

reproduction codebook of size N. In the noiseless channel case, the performance would

be equal to the noiseless codebook design. By using a counting argument there are

I/! ways of permuting the indices for the original book. For the new book there are

2N! ways of permuting the indices but as each vector was represented twice by two

3A large codebook is arbitrarily defined as 4096 entries or greater

D(q; b) : iÐ l, n@ {ä, rr",,)tb(c¿))d,(r, ",, }

104



different indices, the swapping of those indices produces the same result at the receiver.

Counting all interchanges of pairs one gets 2N interchanges. The total number of unique

permutations P, for the reception space thus becomes,

p _zNl'u- zN (5'33)

This is a large number for large codebook sizes and intuitively one may suspect an im-

proved performance. However simulations over noisy channels always indicated that a
permutation of the original codebook indices performed better than the expanded index

space method. If one or more index bits were error protected, coupled with permuta-

tion superior results were obtained. It appears the addition of the extra bit exposed to

channel errors never paid off. The results of transmission over noisy channels is covered

in more detail after the section on implementation details of index permutation.

5.4 Genetic Algorithms

Genetic Algorithms (GA's) [91] are a method of guided random search used for non-

linear function optimization. Another random search technique that is quite popular

is simulated annealing. The term random search does not imply that the search is a

directionless search, however it is not a gradient technique in the standard calculus

sense. Gradient techniques are good on a narrow class of problems and will in general

arrive at an answer faster than the random searches, but they also have a high chance

of falling into local minima. From experience it was found that genetic algorithms pro-

duced a good solution fairly quickly when compared to simulated annealing, although

an optimal solution may take just as long.

To describe Genetic Algorithms (GA's) emphasis is placed on how they differ from

traditional optimization methods.

1. Traditional methods work on the actual parameters in a parameter set, while

GA's work on a coding of the parameter set (usually a string of l's and 0's).

The length of the string depends on the number of parameters and the resolution

required.

2. GA's always work from a population of points (strings) rather than a single point.

The population size may vary from problem to problem.

3. GA's use a cost function that is evaluated for a complete string. The method is

blind in that only the cost function for the complete string is used without any
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extra knowledge of the function space in terms of derivatives or other auxiliary

information.

4. GA's use probabilistic transition rules to move from point (string) to point

(string). Note, simulated annealing also uses probabilistic transition rules rather

than deterministic rules.

GA's work with a coding of the parameter set (usually a binary coding) to produce a

string. Rather than use a single string a whole population of strings is used. Associated

with each string is a cost function value. The GA will try to optimize the cost function

over the entire (encoded) parameter set simultaneously. The value of any parameter

may be obtained at any time by going to the correct string position and decoding it. A
direct correspondence is made between a parameter and a string position. Any single

parameter may be encoded as any number of bits.

Having established that the GA works with a set of strings of encoded parameters it is
now necessary to discuss how transitions are made. A key concept in GA's is that they

move from one generation to the next, hopefully producing a new generation more fit

or having a better cost function value (on average) than the previous generation.

The standard simple GA has three basic probabilistic operators:

1. Reproduction,

2. Crossover,

3. Mutation.

Each of these operators will be described in turn

Reproductior¿ is based entirely on the fitness of the string. A sum of all the fitness values

for a generation is calculated giving a total fltness. Each individual's fitness is then

calculated as a percentage of the total fitness. A mechanism akin to a roulette wheel

with the slots proportional to each individual's fitness percentage is used for selection;

where the "ball" lands, that individual is reproduced for the next generation. The

roulette wheel is spun for each new member of the following generation. This method

ensures that the fittest strings survive to the next generation but also allows other

genetic material to survive and be passed on.

The next phase is crossouer. This mechanism is similar to the concept of breeding.

Strings are randomly selected according to some probability level and placed into a
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mating pool. Pairs of strings are mated at random. The mating process consists of

finding a random crossing site (cs) between the fist position on the string and the last;

cs € [1, . . . ,l - 1] for a string of length 1. The partial string after the crossing site is

then swapped between the two mating members. Consider an example;

51 : 010011110100

Sz: 101010111001 (5.34)

After crossover at the marked site;

St

oÐ2

010011111001

101010 
| 
10100 (5.35)

is obtained.

The operations of reproduction and crossover are very simple operations involving

nothing more than string copies and partial string swapping. These operations are

the primary GA operators. Mutation is a secondary operation which consists in the

simplest case of randomly swapping a 1 for a 0 or vice versa within a string. Mutation

operates with a very low probability of occurrence È 1 - 3% on all of the strings in the

new population. This operation ensures that genetic material is not lost forever within

the population and may introduce new genetic material.

The reasons why this scheme works is subtle and more information can be found in

Goldberg's book [91]. In summary the algorithm strives toward a more fit population as

poor performers (lethals) have a low probability of contributing to the next generation.

Higher performing string segments tend to propagate from one generation to the next.

5.5 Genetic Algorithms Applied to Vector Quan-
tiser Design

Having introduced the concept of Genetic Algorithms (GA's) the adaption to solve the

vector quantiser design for a noisy channel is now discussed.

The simplest problem to solve was how best to arrange the transmitted indices such

that, should a channel error occur, the distortion due to an incorrect codevector was

minimized. This problem was basically a permutation type problem. The encoding of

the strings for the GA will be discussed first followed by the development of the cost

function.
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The reproduction phase of the GA did not pose a problem as it only copied strings. One

of the major problems with GA's is the encoding of the parameter set. In the general

case following Goldberg's book [91] the indices for the vector quantiser codebook would

be represented as a binary code. However for this problem the value of the parameter

(codebook index) was not to be changed, only the order in which the parameters

appeared in the string positions. Uniqueness of each index must be assured and all

indices must be present in each string. A general argument in the genetic algorithm

literature is that the best encoding of the parameters is to use a binary string, but

in this permutation case it was of no advantage as only the ordering of the indices

was important. It was considered undesirable that crossovers between strings occurred

inside the representation of a codebook index. To reduce the computational load, the

string was constructed from an alphabet of the same cardinality as the index space

size. If there were to be 32 different indices on the channel each index from 1 Io 32

appeared once and only once in a random place in each string. Each genetic string had

to contain the complete set of codebook indices. The vectors in the codebook remained

stationary and did not alter their relative positions.

Crossover however did pose a problem because if partial strings were swapped without

attention to the problem of replication and deletion of indices from the genetic string an

invalid permutation resulted. This problem was addressed by various authors where

one of the most successful techniques was developed by Goldberg and Lingle [96].

The method they developed was called Partially Matched Crossover (PMX). Under

PMX two strings are aligned and two crossing sites are randomly determined. The

two crossing sites define a matching section that is used in a position by a position

exchange operation.

Another zeu, crossover technique was developed by the author that ensured that abso-

lute positions within the string were maintained with as much integrity as possible. The

scheme finds two crossing sites at random for two strings that are aligned, as indicated

in the binary example above. Crossover occurred just as in the simple genetic algorithm

except now three tasks had to be performed on the resulting string: the missing in-

dices in the string were determined, the duplication of indices were found, and for each

duplicate pair one was chosen randomly and replaced by one of the missing indices.

This scheme dubbed PMX2 was trialled with a simple sorting/permutation problem to

determine which produced the correct answer with fewest computations. The simple

sample problem was to sort 10 indices from an initial set of random permutations.

{1,2,3,. . . ,10}S 
"ort"il
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The cost function was a square error of index value from the correct position,

10

l:DU-pi)2

(5.37)

(5.38)

It was found on repeated trials that PMX2 performed better than PMX for each trial

Mutation was retained as a secondary operator in these experiments. It is not always

used in permutation type problems. The mutation operation was simply to swap

random pairs within a string. This scheme was simple to implement and maintained

population diversity towards the end of an optimization run.

Another major issue was to determine the cost function. The candidate cost function

was developed from Equation 5.29. For each vector in the codebook the corresponding

index was compared with the indices of every other codevector. A variable Hamming

distancea threshold was set to limit the number of errors that the system would be

trained for. If a distance less than or equal to the threshold was found, the associated

reproduction vector was extracted and subsequently the spectral distortion between

the reproduction vector and the transmitted (reference vector) calculated. (A Ham-

ming distance of two implies two errors, etc.) The spectral distortion for a particular

reference vector was weighted by the probability that the reference vector was chosen

from the book in the encoding process. It was also weighted by the binary symmetric

channel probability of error for the Hamming weight found between indices; which must

have been less than or equal to the threshold. This implied that the index assignment

was determined for a particular number of allowed errors and for a particular channel

error rate. As an example, a threshold may be set for up to three bit errors, on a

binary symmetric channel with bit error rate 0.1.

The raw fitness values were processed before reproduction in order to elimin ate lethals

(those individuals with a particularly poor frtness score). This idea follows a refer-

ence in Goldberg [97] to work done by Forrest. The mean and standard deviation

of the population fitness values were determined and a new fitnes. f fot each string

determined.

i:f-ff-"") (5.3e)

Where / is the fitness value, / is the mean fitness, a is the standard deviation and c

takes values between 1 and 3. In these experiments a value of 2 was chosen. Any fitness

aThat is the Hamming distance between the binary representations of the codebook indices.
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Figure 5.2: \Meighted Negative Spectral Distortion versus Generation Number: best

denotes the best of the population,, aue denotes the population average.

value that was negative was set to zero, thus eliminating it from the reproduction step.

This method had the effect of eliminating the worst individuals from the population.

For the case of designing a channel index assignment where the number of indices was

greater than the number of codevectors certain constraints were placed on the structure.

Each genetic string was twice the length required to represent the number of codewords.

A strict 2:1 mapping was ensured by mapping the position in the string modulo the

code-book-size to a codevector. For example if the codebook had 16 vectors the channel

index assignment was in the range 0-31. A genetic string consequently had 32 positions.

The 3rd position maps to the third codevector as did the 19th. The genetic algorithm

tried to arrange the indices such that channel errors giving a false index, (iniler-dash),

resulted in a mapping back to the codevector such that the distortion on reconstruction

of the coefficients was minimized.

Figure 5.2 shows the results of the genetic algorithm optimization problem described

above for a codebook of 16 entries. Note that the top of the graph represents better

performance. The plots are of the purely permuted case base and the extended index

space case ert. Also the current best solution (best in the population) and the popu-

lation average are shown for both cases. Table 5.3 illustrates the results of using the

designed codebooks of 64 and 128 entries over a simulated noisy channel for the binary

10

besL-15" -----
next-ave-16n ---

,,exL-best- 16n .........

\. ,/ \,; i- /
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Error Rate e:0.1 e : 0.05

Codebook Size 64 t28 64 r28

Ave. SD unperm 3.984 4.639 2.30r 2.6943

Ave. SD perm 3.229 3.995 r.784 2.294

Ave. SD ext 3.700 4.522 2.106 2.636

Table 5.3: Average Spectral Distortion (SD) in dB for the Specified Error Rates

symmetric channel error rates as specified

The Table 5.3 shows the results in terms of spectral distortion (SD) in decibels due to

reception of incorrect indices when transmitting vector indices over a binary symmetric

channel with bit error rate 0.1 and 0.05. trach codebook was specifically designed for

the given error rate. The term unperm, refers to the index assignment that resulted

from the original codebook design, perm to the "optimal" index assignment found for

the natural size of the codebook and ert to the case of the "optimal" extended index

space. The results from the permutation training in the genetic algorithm did not

reflect the actual performance on a noisy channel.

It should be noted that the counter-intuitive result of the larger codebook giving inferior

performance comes about due to the larger number of bits exposed to error as they

are transmitted across the channel. If the number of bits likely to be in error is

calculated for the 64 entry codebook with the 3400 test vectors and an error ratio of

0.1, approximately 2040 errors may be expected. For the 128 entry codebook indices

transmitted over the same channel 2380 errors may be expected. The ratio of the

spectral distortion for the 128 entry codebook to the spectral distortion for the 64

entry codebook is very close to the error ratio. The values obtained for the permuted

indices were not as close to this ratio and which may be put down to two factors: the

permuted indices were arranged under the assumption of a single error within an index,

and the permutation \4/as not globally optimal. At the higher error rates assumed here

there was a reasonable chance that more than one error was found per index.

The effect of using a redundant bit to allow the permutation of indices to be more

effective has been shown to be counter productive. In all cases studied the extended

codebook performed worse than using the original size codebook and permuting the

indices.

To improve the effectiveness of the permutation of the indices, an unequal error pro-
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tection scheme was also incorporated. Results for this scheme are covered in the next

section.

.6 Simulation Results of a Protected Vector Quan-
tiser on Noisy Channels

The permutation of the indices gave an improvement of approximately 0.5 dB over noisy

channels with respect to the original unpermuted indices. To gain more performance

it was necessary to provide error protection. Rather than protect the complete index

it was possible to protect a part of the index, and use permutation of the indices under

the assumption that some of the bits were protected.

On fading channels, the signal to noise ratio may fall to very low values. It was desirable

to use a block code in the investigated application due to the blocked nature of the

speech parameter extraction process and subsequent transmission thereof. This implied

that a block code which could be decoded using soft decisions in a straight forward

manner was desirable. Soft decision implies rather than using one threshold to select a

1 or a 0 on reception a set of thresholds are used. Theory says that if an infrnite number

of thresholds are used, performance should be 3 dB better than the single threshold

case. If three bits are used (7 thresholds) the performa,nce improvement is of the order

2.25 dB. This allows operation further into the noise.

The Golay code using the Chase algorithm (soft decision) was chosen as a candidate

block code, for the unequal error protection. Clark and Cain [98] provide a good chapter

(Chapt. 4), on soft decision decoding of block codes and also provide performance

curves for soft decision decoding of the Golay and other codes.

To test the idea of using unequal error protection and permutation of the indices certain

assumptions rvere made. The (24,72) Golay code was chosen for protecting some of

the index bits and the Chase algorithm for decoding the received codewords. If 150

bits are assumed in a block of coded voice parameters the addition of unequal error

protection of the type mentioned would increase the block size to 162 bits. This implies

a 0.33 dB shift to the left on the energy per bit to noise ratio axis of the performance

curves of the Chase algorithm (note this is the compensation factor for having to signal

marginally faster for the same information transmitted per unit time). Using the above

assumptions, if the channel bit error rate was 6 : 0.06 then the protected bits have a
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Codebook Size unperm perm ext perm

32

Outliers

0.980

0.t% 12%

0.622

4% 8%

t.205

3% tBTo

64

Outliers

1.409

0.4% t6%

1.022

3% 14%

L.872

3% 24%

t28

Outliers

1.988

0.7% 22%

1.587

3% 20%

2.48s

3% 2e%

256

Outliers

2.505

0.e% 27%

2.292

2% 26%

3.037

3% 33%

Table 5.4: Average Spectral Distortion in dB Due'to Channel Errors (e : 0.06) with

Three Index Bits Protected.

bit error rate é: 0.0034

Tables 5.4 and 5.5 show the performance of various size codebooks designed with the

assumption of a channel bit error rate of e : 0.06 with 3 bits error protected, except

in the case where an extended codebook was used where only two bits were protected.

This ensured that the same number of redundant bits were used in both scenarios.

Due to the inferior performance of the extended codebook, the extended codebook was

dropped from consideration for the lower bit error rate case. Note, Table 5.5 used

the same codebooks as those above, designed for the higher error rate channel, but

subjected it to the lower ertor rate of e : 0.03.

The average spectral distortion against code book size is shown in Figure 5.3. The

results in Tables 5.4 and 5.5 appear counter intuitive but it should be noted that no

normalisation was performed. The ratio of protected bits to unprotected bits drops as

the code book size increases and also the code book indices increase in size thus being

exposed to more errors. If these two ratios are accounted for, the performance of the

unpermuted index code book remains fairly constant whilst the permuted code book

performance decreases. It appeared the larger the code book, the more difficult it was

to find an optimal permutation.

There is a trade-off between error performance and the number of bits error protected.

Any extra performance gained by index permutation is obtained for free without an

increase in required channel bandwidth. An experiment was performed to determine

the performance of the 128 entry codebook with an increasing number of bits protected.
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Codebook Size unperm perm

32

Outliers

0.523

0.03% 7%

0.323

2% 4To

64

Outliers

0.740

0.3% 9%

0.537

t% 7%

L28

Outliers

1.018

0.3% IITy

0.798

2% l0To

256

Outliers

t.292

0.7% 14%

1.189

r% I4To

Table 5.5: Average Spectral Distortion in dB due to Channel Errors (e : 0.03) with

Three Index Bits Protected.
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No. Error

Protected Bits

Ave. Spectral

Distortion

Outliers

2-4 dB

Outliers

>4 dB

0 3.100 t% 34%

2 2.389 2% 25%

3 1.587 3% 20%

4 1.388 t% 17%

¡) t.022 't% t3%

Table 5.6: Average Spectral Distortion in dB due to Channel Errors (e : 0.06) with a

Variable Number of Index Bits Protected.

Table 5.6 shows the results.

The values in Table 5.6 are shown in the graph Figure 5.4. It should be noted that

the points form an upper bound on the actual performance which would above this

curve. The code book of 128 entries required 7 index bits to be transmitted and from

the graph approximately 4 bits protected appeared to be (the knee of the curve) a

reasonable trade-off between distortion performance and number of bits protected.

The overall conclusion is that for transmission over channels with low signal to noise

ratios it is desirable to protect most of the index bits, and allow permutation of index

bits to provide distortion minimization in the case of errors in the unprotected bits.

5.7 Sptit Vector Quantisers

The split vector quantiser is a compromise on the id'eal full search vector quantiser. The

computational load Õ and, memory requirement 
" 

Ií,1 fo, the full search vector quantiser

is of the order;

: NL

M : NL (5.40)

where N is the dimension of the vectors and L the number of entries in the codebook.

The binary tree structure search solves the search problem but slightly aggravates the

memory storage problem. The orders of magnitude (note for an unbalanced tree these

equations give approximate estimates) are given by

C : 2Nlog2L

C
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Figure 5.4: Average Spectral Distortion Versus th'e Number of Error Protected Bits.

rçr zN(L - 2) (5.41)

Clearly trees solve the search problem but do not aid the storage and attendant training

problems of a large codebook. Atal and Paliwal [36] note that for transparent coding of

LSP's 24-26 bits are required. Obviously the memory requirements for a tree structured

codebook of the type above was out of the question. Another method of constructing

the codebook had to be sought. The two most likely candidates were:

Cascade Codebooks. This technique is also called Multistage Quantisation. Mul-

tistage quantisation uses cascaded codebooks, as the name implies, where the

input vector is crudely quantised with the first codebook and then a residual

error vector is formed from the original input vector and the selected first stage

vector. The residual error vector is then quantised from the next codebook. The

channel information then comprises two indices which are used on reconstruction

to generate two codevectors which are component-wise summed to give the final

reconstructed vector.

Split Vector Codebooks. This method splits the vector to generate two or more

vectors of smaller dimension than the original vector. Each vector portion is

individually quantised and the indices from each codebook transmitted over the
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channel. For reconstruction the vector parts are recovered as codevectors and

concatenated to reproduce the estimate of the original input vector.

The two alternatives are discussed in more detail below to determine the best path for

future development.

The cascade arrangement used the generalized Lloyd (lbg) algorithm to design each

stage, where the original input vectors were used for the first stage and the resulting

residual vectors were pooled to form the training set for the second stage. The burden

for the cascade codebooks (assuming two stages) was

C:
M:

N(Lr, ¡ Lz)

N(L, * Lz)

: 2Nlog2Ll I2NlogzLz

: 2N(Lr + L2 - 4)

Where L: LtLz. This compares to NL1L2 for the full search case. If the tree search

strategy is used in conjunction with this structure the burdens become;

(5.42)

(5.43)

(5.44)

C

li,I

This on the surface appeared to be good, however there were some significant prob-

lems. The main problem was the performance degradation. This occurred because the

pooling of error residuals and construction of a subsequent codebook assumed that the

relative probability density function within all clusters (cells) was the same. If indeed

this was the case degradation would be small. Vector rotations may be used to remove

linear dependencies and thus make the probability density functions for each cluster

appear similar, but this implied a greater computational cost (proportional to Iú2) and

also memory storage for the rotation matrices of magnitude;

i[ : N'Lt

Once the quantised vector was found in the residual error codebook it had to be rotated

prior to its addition to the previous stage.

Work by Lee et. al [99] looked at making the multistage or cascade configuration more

efficient. They argued that rotations were not really required but only scaling. This

followed from a conjecture by Gersho [81] that the cells of the best quantisers are all

of approximately the same shape (the tessellating polytope with minimum normalized

moment of inertia). This also implies that they are close to spherical. Thus the only
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difference between the polytopes is that they vary in size and orientation. However the

near spherical shape should remove the need of rotation leaving only the scaling factor.

Gersho [100] noted that in the cascade arrangement the vector components of successive

stages tended to be less correlated and less statistically dependent than those of the

input vector. This implies in the limit that the error stage is asymptotically a uniform

vector quantiser such as a lattice. The analysis of Lee et al. [99] shows that this is the

case.

Whitening of the error vectors implies that the procedure for allocation of indices

to code vectors to combat channel noise will have reduced effectiveness because in a

uniform quantiser, in the white noise case, all cells are chosen with equal probability

and all adjacent cells have the same distortion metric between them.

Split vector quantisation was considered next. There are certain restrictions on where a

split vector quantiser can be used. It is desirable that the two (or more) vector compo-

nents can be quantised independently. For this to be true the distortion measure over

the entire vector must be separable. This is true for mean square error and derivatives

of it. Generally the codebooks cannot be designed independently unless the distortion

measure is separable and the component vectors are statistically independent. Even

if the distortion measure is separable a reduction in performance compared to the full

search codebook would have to be predicted because of statistical dependence between

vector components and also the reduction of dimensionality of the vector quantiser

space.

Paliwal and Atal [36] noted that the spectral sensitivities of line spectral frequencies

(LSF's) were localized which means there was little spectral leakage from one region

to another. This makes LSF's ideal candidates for a split vector quantiser. The local-

ized sensitivities also allows weighting of the LSF components allowing weighted mean

square error distortions. It should be noted that Log Area Ratio and ArcSine Reflec-

tion Coefficient representations [79] of the LPC coefficients do not have this property.

Paliwal and Atal's split vector quantiser was split into two parts, each with the same

number of bits, and the first part comprised LSF's 1-4 and the second LSF's 5-10.

This choice appeared to be an intuitive optimum configuration as the first 4 LSF's

are around the principal formant region of speech to which the ear is most sensitive.

However an experiment on the data set available was undertaken to verify if the results

obtained by Paliwal and Atal were valid for the tree designs of this work. Principally

the difference between this work and Paliwal and Atal's was the úree structure imposed
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Split

Low/High

Ave. Spectral

Distortion

Outliers

2-4 dB

Outliers

>4 dB

416 2.35 54% 6%

515 2.18 50To 3%

614 2.23 52% 3%

Table 5.7: Spectral Distortion and Percent Outliers for the Split Tree Structured Quan-

tiser.

on the codebooks

An approximate calculation of the burden for the split vector quantiser under the

assumption that the vector dimension is halved in each codebook and that the number

of entries in each codebook is the same gives;

¡'/ : ¡f1¡/,

L : LtLz

C : Nlog2L

tir : zN(\/L - z) (5.45)

A tree structure was assumed with independent quantisation for each stage. Note, the

split vector quantiser used less memory than the cascade configuration.

To maximize performance of a split vector quantiser, the number of component sub-

vectors should be minimized (because of inter-component dependencies) and the size

of each codebook maximised (as much memory as the system can afford).

Table 5.7 shows the results of splitting the vector quantiser with differing numbers of

components for each part and then determining the spectral distortion. Each part of

the codebook was trained for 128 entries and used the same training set as used in the

previous work.

In Table 5.7 the notation 416 lor the split refers to the first four LSF components of

the input vector were used for the first sub-vector (first codebook) and the following

six components were used in the construction of the second codebook. The results

obtained contrast with Paliwal and Atal's results for the full searched quantisers in

that the tree searched codebooks had best performance with a 5/5 split. It was also

noted that the split quantiser although it used 14 bits, it performed barely better than

the 512 entry codebook (9 bits). This technique had dubious value when coupled with
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tree structured quantiser

It was noted that during training of the tree structured codebook on the split vectors

that the lower vector portion, that is the lower LSF's, showed a distinct principle direc-

tion 80% of the time, while the upper vector portion only 20% of the time. This implied

that the upper sub-vector portions were more whites where tree splitting would be less

efiective. Comparing Paliwal and Atal's results with the result here demonstrated that

the tree structuring was more sensitive to the vector quantiser's cell shapes than a fully

searched code book. Another feature of the split vector quantiser should be consid-

ered, that is, the transmission of the indices over a noisy channel. Line spectral pairs

have the nice property that a distortion of any one component is relatively localized,

however an error in a codebook index no longer localizes the distortion. This implies

that both indices need to be protected; the index for the first codebook more heavily

than the second. The higher frequencies of the speech spectrum, as mentioned earlier,

have lower power and the ear resolves them to a lesser degree, so the level of protection

may be reduced on the second index.

5.8 Multistage Vector Quantisers for Noisy Chan-

nels

The design of the multi-stage vector quantiser for the noisy channel follows the same

structure and procedures as discussed for the single stage tree structured vector quan-

tiser except that the tree design proceeds for the vector residuals obtained from the

previous stage. In the case of two stages, two indicês are transmitted over the channel.

A tree structured vector quantiser was constructed for the first stage of the multistage

quantiser, but because the performance of the tree structured quantiser on white noise

vectors is inferior than more correlated vectors, the second error vector quantiser was

made a full search quantiser. To simplify the system, scaling of the second quantiser

was not performed as suggested by Lee et al. [99] but may be incorporated for better

performance at the cost of extra bits.

Figure 5.5 shows a block diagram of the two stage multi-stage vector quantiser used in

the design.

The performance of the multistage quantiser is better than the split vector quantiser.

5As the vectors were white noise like with equal probability, the VQ cells appeared almost spherical.
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Figure 5.5: Multi-Stage Vector Quantiser Using Two Stages.

This can be seen from Table 5.8 and Figure 5.6, where the split vector quantiser

performance is plotted as points for the 5/5 and 614Iowlhigh vector split cases. It
should be noted that a first stage quantiser of 5I2 entries followed lry a 32 entry error

quantiser (total 14 bits) performed slightly better than the first stage quantiser with

256 entries followed by another 256 entry error qna,Írtiser (total 16 bits). This implied

that the first codebook should be made as large as practical followed by a smalleÍ error

codebook. Computationally this approach is attractive as most of the quantisation

gain is made by the first (coarse) quantiser and the more computationally intensive

full search second stage is performed over the smaller codebook. The transmission of

the indices over the noisy channel using this quantiser also has advantages. A simple

error detection scheme on the second quantiser index can assist the decision to use the

finer quantisation or discard it. Assuming the first quantiser index is received correctly,

the distortion can be no greater than that caused by the encoding process using the

first (coarse) quantiser stage.

The actual quantising process performs a monotonicity check on the line spectral fre-

quencies, however monotonicity cannot be used reliably as an error detection mecha-

nism. An evaluation performed for the 512 entry coarse and 128 entry error quantiser

vectors indicated that g0% of all combinations of vectors from the first and second

codebooks gave valid encodings.

5.9 Conclusions

The novel idea of using principal component analysis for the splitting process in the

design of tree structured quantisers, although not producing substantially better code-

books, did give some objective measure of the performance of the tree structured

codebooks over full search codebooks. If most of the quantiser cells had a principal

direction of the covariance matrix for the cell then the tree quantiser tended to perform

+
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Book

Configuration

Ave. Spectral

Distortion

Outliers

2-4 dB

Outliers

>4 dB

5r2-32 1.90 38% r%

512-64 1.81 35% 0%

512-t28 r.73 3L% 0%

512-256 1.64 26% 0%

256-32 2.20 5t% 3To

256-64 2.r0 47% 2%

256-r28 2.0t 43y 2%

256-256 r.92 40% T%

Table 5.8: Spectral distortion and percent outliers for the multistage tree structured

quantiser. The two primary coa,rse quantisers have 512 and 256 entries; the error

quantisers were allowed to vary in size.
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well. This was best seen in constructingthe split vector quantiser where the codebook

for the upper sub-vector was white and only a small number of cells exhibited a strong

principal component. The performance of the tree structured codebook was poor in

this case. \Mhenever most cells in the vector quantiser showed a strong single principal

component, performance of the overall codebook was good. The most likely explana-

tion for this phenomenon is that the tree construction can only split a single cell into

two regions. The direction of maximum variance is the most likely direction to split

the cell such that encoding of the training set will have lower average distortion than

the current level.

A new fully integrated method of design of source and channel coding of speech spec-

trum parameters was then presented. Factors that were considered included:

1. minimum bit rate, implying vector quantisation and line spectral pair represen-

tations;

2. small computational burden in finding the vector codebook index;

3. combined source and channel coding for vector codebooks;

4. unequal error protection;

5. small storage requirements;

all relative to the subjectively significant spectral distortion measure.

For tree structured quantisers lhe multistage vector quantiser gave a better performance

than the split vector quantiser. Further improvement may be obtained by using a

scaling for the second quantiser, but at the expense of more bits. The tree structured

codebook also would appear to have a greater sensitivity to correlations between vector

components (biassing against the split vector design), however a very large data set

would be required to verify this.

If the multistage quantiser is chosen a cautious guess using extrapolation and adding in

allowances (for the small training set) a coarse quantiser of 14 bits (16000 entries) and

an error quantiser of 10 bits (1000) entries will in all likelihood meet the transparent

coding specification. (Paliwal and Atal suggest 24 bits for their quantiser.) If simple

error detection was used on the error quantiser index an additional 3 bits would be

added for cyclic redundancy6. The cyclic redundancy would use the generator poly-

6See Chapter 4 of Lin and Costello [86]
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nomial û3 + r + l. This code is capable of detecting any 2 random errors and any

burst of contiguous error bits up to 3. If the channel bit error rate was e : 0.01 the

probability of undetected error would be 2 x 10-4. Of the 14 bits in the coarse quan-

tiser index 9 or 10 would probably need to be protected. To protect these bits well it
would probably be necessary to use a rate If2 code with soft decision decoding, thus

an extra 9 or 10 redundant bits would be required. The number of bits to transmit

the line spectral pairs representation reliably over a noisy channel now totals 36 or 37

bits. It may be possible to ignore the error introduced by the error qll.arrtiser and only

check for monotonicity at the receiver, as the errors are only a fine adjustment. The

level of spectral distortion caused by an incorrect error quantiser index still needs to

be investigated using a much larger speech database and greater computational po$¡er

than was available for the work in this chapter.

An advantage of using vector quantised indices and forward error correction on the

most significant bits of the codebook index, is that some of the error correcting power

of the code can be used for error detection. In the mobile communications environment

deep fades and consequently large bursts of error are common place. The detection

of a burst would allow other higher level error correction capabilities such as packet

substitution as described in [51], [21]. The substitution of previously received clean

packets for burst error corrupted packets yields acceptable results.
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Chapter 6

Trellis Vector Excitation

6.1- Introduction

Various forms of code excited linear predictive (CELP) vocoders have been discussed

at length in the literature. There has been a growing interest in how these vocoders

perform on noisy channels, in particular the mobile communications channel. Handling

the corrupted CtrLP parameters has been discussed in the literature [20]. The previous

two chapters have been pre-occupied with the short term spectrum model parameters

and reducing the effects of channel errors on these parameters. All of the CELP

vocoders discussed in the literature use a vector codebook excitation. This implies

that if the vector index is corrupted in transmission over the channel an incorrect

excitation is fed into the linear predictive model.' Surprisingly this has remarkably

little perceptual effect until the error rates approach several percent. This work tries

to reduce the effect even further by using vector trellis encoding of the excitation with

the goal in mind to simultaneously increase the perceptual quality of the speech and to

make it more robust to channel errors, thereby eliminating the need for error correction

on the excitation stream.

It has been hypothesised [101] that trellis encoding of the excitation is more robust

to channel errors as a corrupt bit generates only a short range corruptive effect as it
travels through the shift register (state generator) used in reconstructing the excitation

sequence. This concept will be explored in more detail below.

Fehn and Noll [102] have performed limited studies of trellis encoding of the linear

prediction residual but not for a CELP type of vocoder configuration. Stewart, Gray

and Linde [44] gave a very brief account of a basic analysis by synthesis method which
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they called hybrid, tree cod,ers. The work here advances the model considerably.

The chapter starts with an overview of the salient points of the CELP model which

is then extended to the trellis excited case. An analysis of the trellis encoded case is

given with special emphasis on regular pulse excitation.

Steele [109] noted in his discussion of regular pulse excited CELP structures that the

use of a long term (pitch) predictor provides 2 dB improvement when the pulse spacing

is one in four but does not provide any improvement in performance when the pulse

space was one in two. The higher rate of pulse excitation modelled the true residual

well enough. This observation justified the major design effort for rate 1/2 systems

without pitch period excitation or self excitation. Only after implementation of the ll2
bit per speech sample coder was the extension of the design to lower rates considered.

Two distinct types of trellis codebook were investigated. One codebook used two

symbols per branch for a rate of Il2 bit per residual symbol. The other codebook

made use of the regular pulse concept where the single symbol on the trellis branch

was followed by a zero; which yields a coding rate of Llzbit per excitation symbol.

Subjective tests indicated that the regular pulse codebook performed as well as the two

symbols per branch codebook. The regular pulse excitation was the method of choice

as it halved the number of symbols that had to be optimized in training. Coding

was also attempted at the lower rate of I 14 bit per symbol, using the regular pulse

excitation.

A discussion is given of the (M,L) algorithm in Section 6.4 which was used to encode

the speech. Implementation details are also covered in this section.

Much effort went into the optimization of the trellis codebook to improve the perceived

quality of the encoded speech. Optimization of the codebook had an audible effect on

the reproduced speech making it more pleasant to listen to. A major problem in the

optimization process was that segments of speech had to be encoded and compared to

the weighted original thousands of times in order to optimize the trellis parameters.

This was necessary as optimization used the analysis by synthesis process. The chapter

describes the development of algorithms to overcome the computational load problem.

Performance issues are assessed to determine the best operational parameters for trellis

excited linear predictive coders.

The chapter concludes with a discussion on post processing of the synthetic speech.

Other authors [4] [103] have also considered post processing to improve the quality
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Figure 6.1: Simple Multi-Pulse Encoder.

of the received synthetic speech. The technique developed in this chapter however is

unique as it uses harmonic processing in the time domain using synthesis filter impulse

responses spaced at the pitch period. An audible subjective improvement in the speech

quality occurs with the post processing.

6.2 The code Excited Linear Prediction vocoder
Model

Many of the concepts of the modern CELP coder can find their roots from ideas

presented by Atal and Remde [12]. In their paper they described a multipulse excitation
mechanism for a linear predictive filter that used analysis by synthesis and auditory
weighting to obtain natural sounding speech with a much simplified residual. Analysis
by synthesis (refer to Figure 6.1) is effected by trial synthesis of each candidate vector
followed by comparison to the original speech. The trial synthesis that is closest,

usually in the mean square error sense, defines the residual encoding to be transmitted
to the receiver. Quantisation error can be further reduced using perceptual masking

by a perceptual weighting filter which is described in more detail below.

Linear predictive modelling of speech's short term spectral information is a fundamental
component of the CELP model. Short term spectral modelling is normally executed

using windowed, overlapped, speech segments of 20 ms to 30 ms duration. The overlap

may be of the order of 5 ms. Most CELP implementations use a sampling rate of 8
kHz; this implies approximately 200 samples per analysis segment.

The short term spectral information analysis typically incorporates a 10 pole filter and
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only in a few cases are higher order models used. The recently developed low delay

CELP uses a much larger order, however low delay CtrLP was not investigated in

this work. Given that a frIter llA(z) models the short term spectrum, the excitation

sequence must be estimated in order to reconstruct the speech. In standard CELP the

excitation sequence is d.etermined as a gain and a codebook entry, where the codebook

entry is a vector typically Il4 the length of the analysis segment. The excitation

sequence is determined using analysis by synthesis. Analysis by synthesis in CELP is

essentially the same process as was described for the earlier multi-pulse coders. The

closest match between a trial vector and the original speech is the selected vectot,

and subsequently the vector's codebook index and quantised gain are transmitted.

Observation of the residual of LPC filtered speech reveals a quasi-periodicity due to

the pitch period. CtrLP coders make use of this in various ways. One way is to utilize

a long delay (pitch) filter of the form;

1
(6.1)

P(r) - L -Ði=-sb¿z-@+;'¡

where D is the long term delay and typically three taps (q : r : 1) or one tap

(q: , = 0) is used'

Another method that is used is called the adaptive codebook method. In this method,

each time a sub-block of the speech segment has been analysed, the selected excitation

sequence (sum of the contribution from the long term adaptiue codebook and the

short term stochastic excitation) is appended to the adaptive codebook and the oldest

excitation sub-block of the same length is removed. The adaptive codebook thus holds

a fixed size history of past excitation sequences. Excitation vectors are obtained from

the adaptive codebook by performing a pattern match on n contiguous samples, where

r¿ is the length of the desired vector within the overlapped codebook. The position

in the codebook that produces the best match is the index that is transmitted. Any

vector, within an allowable range of the overlapped codebook, can be used as the

matching vector which avoids any constraints on the index being directly related to

the pitch period.

When the long term excitation information is included, the long term contribution to

the excitation sequence is determinedfirst, followed by the short term contribution from

the stochastic vector codebook. Although the best performance would result from a

combined search of both excitation sources, the calculations become prohibitively com-

plex for real time application. Most CELP coders follow the sub-optimum procedure

of determining the long term excitation component and its associated gain, followed by

selection of the best vector from the stochastic codebook and determining its optimum

1
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garn.

Selection of the best excitation sequences traditionally was done using a mean square

error technique, however better perceptual performance can be achieved by incorporat-

ing an auditory model into the mean square error criterion. An error weighting filter

is used to weight the error to allow greater error tolerance around spectral peaks and

less in spectral valleys. The weighting filter is given by;

w(,): ffi (6.2)

I - l!=1a¿z-à=ffi (6'3)

where p is the number of poles and 7 typically takes values between 0.7 and 0'95. A

value of approximately 0.9 is most common.

This form of weighting filter was discussed by Atal and Schroeder in [10a] at some

length. The parameter 7 is chosen by the degree by which the formant regions should

be de-emphasized in the error spectrum. Decreasing 7 increases the bandwidth ø of

the poles. The increase ø is given by,

- r'w-- l"(r) (6.4)

where /" is the sampling frequency. When 7 : 0 the output noise from the weighting

frIter W(z) has the same spectral envelope as the original speech and when 7 : 1 no

weighting occurs.

The CELP model may now be represented as shown in Figure 6.2 where the input

speech is weighted by passing it through a perceptual weighting filter of the form;

Y(z\: !(",), (6.5)\-) - Aþlì

The trial excitation is passed through a perceptually weighted synthesis filter of the

form
(6.6)

Referring to Figure 6.2, the transmitted parameters are: the index for the adaptive

codebook, the gain for the adaptive codebook vector, the index for the stochastic

codebook and its associated gain, and the a¿'s (LSP representation).

A CELP coder compares the perceptually weighted synthetic signal with the perceptu-

ally weighted input speech. A mean square error minimization process is used to select

H(z):¿li
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Figure 6.2: Block Diagram of a Generic Code Excited Linear Predictor Coder.

the optimum excitation vectors. Gain is determined inside the minimization loop for

both the long term predictor and the short term predictor.

6.3 Analysis of the Trellis Encoding Process

Figure 6.3 illustrates the basic blocks of the trellis excitation process. The adaptive

codebook of Figure 6.2 has been removed and the trellis generates symbols in place

of the stochastic codebook. The trellis codebook generates symbols that feed into

the linear predictor from which a codetree is generated. The method chosen to track

through the tree is to implement (in effect) a bank of predictors that attempt to choose

the best set of paths through the tree.

A processing step for a vector of n samples, consists of:

1. Input n samples to be coded,

2. For each filter 'i' of the M prediction filters;

Spæch

Weighting

Filter

LPC Weighted

Syntheris

Filter-T' rtt

Bnor Minimiztion
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(a) Check the state of the ith best path,

(b) Load the prediction filter memory from the path storage,

(c) Use the state from step (a) and the trellis to generate n symbols from the

upper transition and feed into the i'th predictor to obtain n synthetic speech

symbols,

(d) Find the mean square error between the synthetic speech symbols and the

input perceptually weighted speech, and add to the accumulated error for

the path so far;

(e) Store the new filter memory, the accumulated error, the new trellis state

and a 0;

(f) Load the prediction filter memory from the path storage,

(g) Use the trellis to generate n symbols from the lower transition and feed into

the i'th predictor to obtain n synthetic speech symbols,

(h) Find the mean square error between the synthetic speech symbols and the

input perceptually weighted speech, and add to the accumulated error for

the path so far;

(i) Store the new filter memory, the accumulated error, the new trellis state

and a 1;

(j) Goto step a) till the best M paths have been processed.

3. Sort through the paths in the path storage and find the set of M paths which

have the lowest accumulated error;

4. Repeat the above step steps (1 to 3) till the entire block has been processed;

5. Trace back through the tree on the best overall path and obtain the series of 1's

and 0's which describes the best path,

6. Retain only the last path memory entry of the best path as the root of the code

tree for the next block.

The gain analysis is performed open loop and the gain is used for the entire block of

200 samples. The series of l's and 0's, which are transmitted to the receiver, trace a

unique path through the code tree.

Analysis of the predictive trellis encoding procedure and in particular regular pulse

trellis encoding in not covered in the literature. The approach and notation used in

this work follows Steele's [109] arguments.
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Let an excitation frame of length .lú contain M pulses with amplitudes B¿ at positions

m¿. The excitation sequence is expressed as,

u(n) :t{Ãt þ16(" - *r) n : 0,,1,...,¡f - 1 (6.7)

where ó(.) is the Kronecker delta function. The residual prediction error is given by,

r(n): "(") - la¡s(n - k)
p

Ie=l

p

lc=L

(6.8)

where for notational convenience the prediction coefficients are redefined as dk: -ak
in Equation 6.8. The perceptually weighted speech (refer back to Chapter 1) can be

expressed in terms of the residual and past weighted speech samples;

s-(n) : r(n)+ t a¡1k s.(n - k) (6.e)

(6.10)

I1 h.(n) denotes the impulse response of the weighted speech synthesis filter, the

weighted speech can be given by,

s*(n) I r(i)h-(" - i)
n

x=-æ
m

Dr(i)h-(n-i)+"0(r)
i=O

The first term in Equation 6.10 is called the memoryless convolution of the residual

and the filter å.-(n).

Equation 6.10 can be expanded to yield a series of terms for Equation 6.9. A sketch of

the procedure yields;

s,(r¿) = r(o)h(n) + r(l)ä(n - 1) + r(2)h(n - 2) +... + r(n)h(O)

agr s,(n - r) = astr(O)h(n- 1) + a1yrr(I)h(n - 2) + agrr(2)h(n- 3) + "'
t aslr(n - 1)/¡(0)

a212 s*(n - 2) = a272r(0)h(n - 2) + a272r(I)h(n- 3) + a212r(2)h(n- 4) + ...

! a212r(n - 2)l¿(0)

aryps-(" - p) = aofr(0)h(n- p) + aolpr(L)h(n -p- l)+ aoypr(2)h(" -p -2)+.-.
t aoTP r(n - p),r(()) (6.11)
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Substituting back into Equation 6.9, h-(r) can be deduced,

h*("): á(n) *Ðï,=ra,flkh-(n - lc) n:0,1,..',N-1
h(n) :0 for n < 0

and the zero input response for the filter as,

(6.12)

(6.13)
p

ss(n): Dorlrto("-k)
k=1

which depends on the contents of the frlter memory. This implies that the memory

of the predictor from the last block/sub-block must be preserved for coding the next

block/sub-block.

The weighted synthesised speech may be written in terms of the memoryless convolu-

tion,

3-(n): u(n) * h-(n) *.60(n)

Note the similarity between Equation 6.14 which uses the excitation and Equation 6.10

which uses the residual.

Now substituting the proposed excitation sequence u(n) from Equation 6.7 into the

previous equation,

(6.14)

3-(") : t( D þn6(" - m¡)h-(n- i)) + .îo(rz)
n M-7

i-O k=O

M-l

È=O
Ð Polr-(" - *o) + 3o(") (6.15)

The error between the weighted input speech and the synthetic speech then becomes,

M-t
e-(n) : s-(n) - .ôo(r) - t þnh*(, - *r)

È-o

The mean square weighted error for the block is given by,

N-1

D "iØ)

(6.16)

M-l

D['-(") -.ôo(") - D þxh(n-*o)1'

n=O

N-1

E-

n=O
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Figure 6.4: Convolutional Source Code Branch Symbol-Vector Generation.

If regular pulse excitation is used with one pulse É¡ followed by D - 1 zeroes, the m¡

pulse positions may be written as,

*[i) : i +;n j : 0,1,..., D -I
i:0,1,...,M-l (6.18)

such that MD: L

The phase of the pulse within the D samples is given by j, but this feature was not

used in this work.

If the pulse amplitudes can be individually chosen, use is made of the set of M simul-

taneous equations arising from,

W:0 le:0,1,...,M-l (6.1e)

For trellis coding the þt are selected from a trellis structure such that the estimates

B¡ produce minimum distortion d7y(.) on reconstruction of the speech. The distortion

can be written,
1

N-1
(6.20)d¡¡(s-,.î-) ! d(s-(rz),3-(rr))¡r n=O

where d¡¡(.) could simply be the mean square error given by 6.17.

Referring to Figure 6.4, a set of 1l branch choices ø¿ € {0,1} is used to generate the

excitation sequence u(rz) which is the input to the predictor. Each branch u¿ may be a

sub-vector of excitation values,

u¿ : (uO¿+o,¡ u Di+t¡ . . ., uO¿+n-t)

D DD D

Delayless Transformation
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For the regular pulse excitation considered here, using j : 0 in 6.18, u¿ becomes,

,¡:(þo¿,0,...,0) (6.22)

Trellis encoding assumes independent sub-sequences/branches so that a distortion can

be calculated for each branch, which can then be accumulated for the entire path. The

structure of the trellis and examples are given in the following section; see Figure 6.5.

The encoding procedure attempts to find a path through the trellis, defined by the

branch choices r,by trying to match lhe B¡ indirectly with a set þ¡. The indirection

comes about because the weighted synthetic speech and the weighted input speech are

used for the path selection process. For regular excitation from Equation 6.17,

N-l M-r
dN("-,3-) :-i"I("-(n) - D BPn@- Dk)-30("))' (6.23)

J n=O fr:O

where the minimization occurs over all possible paths j that have the PU) as branch

labels.

The Viterbi algorithm is not optimal due to the prediction having a significant effect

beyond the current branch. If a sub-sequence is considered starting at time ít - Dle

the synthesised weighted speech for the branch is given, from (6.15), by

i*(ír) : þf)n*ç" - Dk) + 3o(ri) (6.24)

where .ôs(?á) is the predictor zero input response at time D/c. The weighted speech for

each branch depends on the path history.

At each decision stage of the Viterbi algorithm, or other breadth first trellis search

algorithm, an entire path history is eliminated and it is possible that had the path

been retained, it may have attained a lower overall distortion by the end of the block.

If the paths are not discarded, a tree structure reBults where an exhaustive search is

the only optimal approach.

Two strategies for encoding could be used: assume the simplifled trellis structure and

use the Viterbi algorithm [106], or an algorithm like the (M,L) algorithm [49] or the

Simmons algorithm [107]; or use a metric first sequential encoding algorithm such as

the stack algorithm or a modified Fano algorithm. Sequential encoding algorithms are

described in Viterbi and Omura [105]. The approach used in the thesis used the (M'L)

algorithm.

136



6.4 TYetlis Encoding of the Excitation Residual

Trellis coding of the residual faces many practical problems. A major problem asso-

ciated with the technique is determining the gain for the excitation vector as scaling

of the input speech had to be performed prior to encoding. The Viterbi algorithm

generally performs better than the (M,L) algorithm, however for large trellises it be-

comes impractical. There is the additional problem in the predictive coder case, that

although the trellis format describes states of the encoder associated with the inno-

vation sequence, additional states of the system due to the predictor memory must

also be considered. This can easily be seen by observing that the output of the pre-

dictor depends on memory greater than the state memory. The impulse length of the

synthesis filter, which is discussed at some length in the following chapter, is of the

order of 100 samples for voiced speech which is much greater than the memory used

in describing the states of the trellis codebook. So strictly speaking, the code formed

by the predictor system described is a tree code.

For the source encoding problem, although an optimal encoding is desirable' a very

good encoding should be quite acceptable. The (M,L) algorithm was chosen for encod-

ing in this work as the encoding effort is constant across different sized trellises, and

thus a realistic option for a real-time implementation.

The issue of whether it was better, performance-wise, to use a large trellis and the

(M,L) algorithm or a smaller trellis and the Viterbi algorithm was also investigated

and results are given below.

A node in the trellis is also known as a state and arcs connecting nodes are commonly

called branches. A path from a node to another node is said to start at the parent node

and end on the child node. Let Iú denote the number of states in the trellis. An example

trellis of four states is illustrated in Figure 6.5. States are indicated by numbers in the

illustration and branch symbols by alphabetic letters. Branch symbols may be scalar

or vector quantities. Encoding of the source data is the process of obtaining the best

match, according to some metric, between the predicted speech using the symbols on

the branches and the source data. Generally the measure of choice is squared error

distortion, but others were also investigated. The encoding procedure used metrics

from two sources: the metric due to mean square error between the predicted samples

and the input perceptually weighted speech samples, and the metric which consisted

of accumulated branch metrics which was associated with the parent node. Each child

node had a new accumulated metric associated with it, which was the sum of the two
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Figure 6.5: Example 4 State Trellis

metrics outlined above

The (M,L) algorithm:

1. Start at the root node and extend paths out on all branches from that node,

determine the branch metrics and accumulate with the metric associated with

the parent root node, and associate the new metrics with the child nodes;

2. Keep on extending active nodes until 2 M child nodes exist, updating the accu-

mulated metric for each new child;

3. (There are ) M nodes active at this stage) Sort the accumulated metrics of the

new child nodes in ascending order (the smallest metric is known as the best

metric) ;

4. Check to see if there is more than one path ending on the same child node and

if so, choose the path with the lower accumulated metric and discard (label path

as inactive) the path with the higher accumulated metric;

5. If the path depth (length in branches) is greater than L trace back the path with

the lowest accumulated metric and release the symbol/s associated with the last

(oldest) branch and mark the child node for that branch as the new root node,

remove any surviving paths that do not terminate on the new root node;

6. If the size of the list of candidate paths is greater than M keep the M best paths

and discard the rest;

0

2 2

E

3
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State Branch 1

Symbols

Branch 1

Next State

Branch 2

Symbols

Branch 2

Next State

0

1

2

3

1.87 0.33

0.05 -0.23

-1.03 -0.55

-0.03 2.13

0

0

1

1

0.03 -2.13

1.03 0.55

-0.05 -0,23

-1.87 -0.33

2

2

3

3

Table 6.1: Look up table representation for a trellis

7. Extend branches forward on the active paths;

8. If not at end of source data, Goto step 3

The process of extension in the (M,L) algorithm is the process of associating the source

data with the predicted speech waveform generated by the symbol/s labelling the

branch. A metric was determined for each branch and became the branch metric.

An accumulated metric was obtained by adding the branch metric to the previously

accumulated metric associated with the parent node that the branch emanated from,

and the new accumuiated metric was associated with the new node that the branch

terminated on.

On traceback to the terminal node the released symbol was a bit code for the se-

lected branch. As transitions between states in the trellis were restricted to be via the

branches, a continuous stream of bit symbols conveying branch selection information

at the transmitting end allows path reconstruction at the receiver. Furthermore, the

branches on the path have associated with them symbol/s for encoding the source data.

The reconstructed predictor innovation stream consisted of the concatenation of the

symbols labelling each branch traversed in the code tree.

An efficient method for representing a trellis is via a look-up table giving branch sym-

bols and the next state. A sample look-up table for a trellis is shown in Table 6.1.

This table is for a I12bit per sample code, where the branch symbols are fed into the

prediction filter to give two predicted speech samples. Each branch is represented by

one bit, and each branch produces two predicted speech samples. Each branch is asso-

ciated with a state transition where the new state is given by the Nert State columns

in the table.

The encoding of the excitation for the adaptive linear predictive filter was of the class of
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Gain/Shape vector quantisers which required that the gain for a segment of excitation

be determined followed by normalisation of the input speech. The normalized speech

was then predictive trellis vector quantised. This strategy gave a very large effective

codebook as the basic shape of a vector could be used with a variety of gain values. If
the DoD US Standard 1016 (CELP coder) [3] is referenced it may be noted that the

Gain/Shape vector quantisation philosophy is used for the stochastic codebook and

also the adaptive codebook.

As the gain could not be determined accurately till after vector/path selection was

made, an estimate had to be determined prior to encoding. The standard CELP

allows the synthesised speech to be matched to the weighted original speech and con-

sequently an optimal gain for that segment of synthesised speech can be determined.

The (M,L) algorithm like the Viterbi algorithm [106] matches the synthesised speech to

the weighted original on a symbol by symbol basis. For this process to work properl¡

the weighted input speech must be scaled prior to the matching minimization process.

A gain estimate may be determined using two different methods. Makhoul [52] sug-

gested using the filter gain as determined from the synthesis filter analysis phase. The

gain is found from the minimum value of the prediction erfor Eo given by;

Ee (6.25)

where crk are the linear prediction coefficients . Rn are the correlation coefficients for

the analysis block defined by;

R¿ (6.26)

where the input speech is given by r,,. Gain for the synthesis filter is found from the

relation;

(6.27)

Vocoders such as the U.S. standard LPC-10 [108] use the r.m.s. value of the input

speech as the gain term.

A relatively large codebook was used in the present implementation to try and lessen
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some of the difficulties associated with an open loop gain determination. By having a

large number of entries in the codebook not only was the shape catered for but also

a small range of gains. The large or gross variance of gain was substantially covered

by the open loop gain determination. A scaled ve¡sion of the gain as described by

Equation 6.27 was found to have the best subjective performance; further details of

gain determination are covered in the following section.

6.4.L Implementation Details of the'Tbellis Vector Excited LP

Coder

Figure 6.3 shows the basic block structure of the trellis vector excited linear prediction

coder. A block (200 samples, 25 ms) of speech was analysed to determine the 10 linear

predictor coefficients (ø¿'s) and then divided into 4 sub-blocks1. Prior to encoding

the perceptually weighted speech, the speech samples were scaled by a gain factor

to normalize the input amplitude by determining the r.m.s. value for each subblock.

Equivalently the symbols on the trellis branches may be scaled as shown in Figure 6.3.

The r.m.s. value was used to scale the speech so that the new nominal r.m.s. input

range was 4 instead of unity2. To further improve the performance, the codebook was

re-optimized with normalized r.m.s. input range set to 4.

Informal listening tests compared the r.m.s. power as a gain factor to the gain factor

obtained by Equation6.27. It was found that the latter gain gave better subjective

performance, hence it was chosen. This method eliminated some computation as the

filter gain was a by-product of the filter analysis phase, and the one gain was used

for the whole block. Any variation in gain over the block was handled by the trellis

codebook. The codebook was then re-optimized for the new gain criterion.

The (M,L) algorithm, with different number of paths M, was used for investigating

predictive trellis encoding of blocks of 200 speech samples. The length of the traceback

.L was chosen to be basically ignored as a complete block was processed prior to making

decisions. This simplification reduced the computation required per encoded symbol

as the traceback mechanism was invoked only once for the entire block. To ensure

that the branch decisions for the last symbols in the block were at a reasonable level

of confidence, further samples beyond the block were processed. The traceback was

llt wa. found after much testing that it was not necessaty to break the input block into sub-blocks
2lnformal tests indicated that the trellis coding performed far better when the range of the scaled

input speech was greater than 1.
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then effected and branch decision bits collected. The decision bits associated with

the excess speech samples beyond the block boundary were discarded as they were

processed again in the next block which had a new set of linear predictor coefficients.

Investigations indicated that there was little advantage to process more than a few

extra speech samples past the end of the block. The block to block matching process

appeared to be quite satisfactory with essentially imperceptible audible evidence of

block joining.

The (M,L) algorithm worked with a trellis which had 1ú states and 1l branches from

each state. In the example trellìs, Figure 6.5 JV : 4 and I{ :2.

The synthesis process for the encoding mechanism was involved and justified using as

few paths M in the (M,L) algorithm as possible, although generally a larger number

of paths subjectively improved the synthetic speech a little. Each path in the encoder

had associated with it:

1. the current trellis state for the path,

2. the accumulated metric for the path to that point,

3. the synthesis filter (updated each block) which consisted of

(a) the linear predictor coefficients,

(b) and the filter memory.

Each synthesis filter maintained a history of chosen branch symbols in its memory and

because the symbols were retained it was not necessary to remove t'he memory efr.ect

from each new section to be encoded. The memory was maintained for all states on

all paths on the tree code, which required careful record management. As it was not

known before hand which paths would be chosen by the (M,L) algorithm the fllter

memory contents had to be kept fot all candidate paths even those that would be

discarded at the next step.

To keep track of all of the information required at a node on the path, a record consisting

1. the current accumulated metric,

2. Ihe current trellis state that the node is on,

of
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3. the synthesis filter memory to this point on the path and,

4. forward and backward pointers for reconstruction of the best path,

had to be maintained for all states on the paths of the code tree.

At the end of coding a nominal block (the block plus extra speech samples) the best

(lowest) metric was chosen as the best model of the speech residual. A trace-back was

then efiected along the best path to the beginning of the block. Each branch choice,

upper or lower, was recorded for transmission over the channel. The stream of 1's and

Qts received at the receiver end allowed reconstruction of the path through the trellis

and hence the associated branch values.

The actual implementation used a doubly linked list tree structure where each node

maintained the information enumerated above. The tree only grew from the nodes

that were determined by the (M,L) algorithm to be the best suruiuors. An array of

pointers was maintained which pointed to the end leaf nodes, that is the suruiaor

candidate paths. The array also allowed efficient sorting of the accumulated metrics

for each path to determine which paths to retain. It was found that this structure was

quite efficient when compared to several other implementations such as using tables of

pointers. Figure 6.6 illustrates the notional structure of the implementation.

When coding of a new block began, the contents of the synthesis filter had to be

consistent with the contents of the best path through the code tree from the previous

block. To ensure this, a simple mechanism was chosen where the optimum path from

the previous block was given an accumulated metric value of 0 and this node then

became the root node for the encoding of the next block. Associated with the root

node was the memory contents of the synthesis frlter so that the smooth transition

into the next block of speech to be encoded \ryas ensured. It should be noted that the

node chosen as the terminating node for the previous speech block coincided with the

block boundary and not the last node on the best path as it included the extra speech

samples.

It was found that encoding several symbols past the end of a block made little to no

improvement in the overall quality of the speech. The reason for this was probably

two-fold. Firstly the speech samples past the end of the block were encoded by one

synthesis filter and then by the synthesis filter for the following block, so the path

choice near the boundary would have been at best a compromise. Secondly at low bit

rates the quantisation process was noisy, resulting in most of the best paths having a
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very similar metric. Hence there was no great advantage in selecting, within the set of

probable good paths, one path over the other. Noting these observations it was decided

to reduce the overlap processing to reduce the computational effort; informal listening

test confirmed minimal loss of performance.

As pointed out above, the encoded speech excitation was a stream of 1's and 0's that

the receiver received over the channel. It may be considered that the receiver tracks

states on the trellis by moving a window of size log, N over the received bit stream,

where 1ú is the number of states in the trellis. The bit pattern in the window defines

the current state at the receiver and transitions from one state to another define which

branch was taken.

Should a bit be received in error, the erroneous bit will propagate through the window

as it moves along the bit stream and the maximum number of incorrect branch choices

it can cause is log2N * 1. This efiect causes a trade-off between having a large number

of states to allow an accurate encoding and minimizing the effect of an error. There is

another effect that must be considered when studying the error propagation, which is

the memory effect of the speech synthesis filter due to its recursive nature.

An analysis of channel errors and the resulting waveform is covered in some detail in

Chapter 6.

6.5 Code Book Optimization

The optimization of the trellis codebook is a very difficult problem. Stewart's [44]

approach was considered too restrictive as it does not allow extension to the case of

the regular pulse excitation [4] version of the codebook. There is also no guarantee

that Stewart's approach will be near the global minimum. Two distinct types of trellis

codebook were investigated. One codebook used two symbols per branch for a rate of

l12bíI per residual symbol while the other codebook made use of the regular pulse

concept.

A simplification was used in the design of the trellis codebooks by noting that speech

waveforms tended to be quite symmetrical in the sense of the distribution of sample

magnitudes about zero axis. To incorporate the symmetry, the trellis was constructed

such that all branches had a complementary branch value in complementary positions

on the trellis. This meant that the branch associated with "0" for the zero state had a
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complement in the branch associated with "1" for the "N-l'th state. The complement

branch values were found by simply negating the branch values from the upper half of

the trellis. This simplification had the advantage of cutting the number of free variables

to be optimised by half.

Various techniques have been studied for the optimization of vector quantisation code-

books and trellis quantisation codebooks. Freeman [45] viewed the codebook opti-

mization as a function space optimization problem. A Viterbi algorithm encoding

procedure was assumed which resulted in the codebook function space to be essentially

a convex surface. A convex surface can easily be optimized using gradient descent

methods, although he argued that only those algorithms using first derivative infor-

mation were viable, which converge relatively rapidly. It was pointed out by Freeman

that the Viterbi algorithm assumption was critical to his argument and that the (M,L)

algorithm would not produce the same convex surface.

The (M,L) algorithm was used for this work because it was considered that it could

handle a large trellis in real-time. The parameter M sets the computational load for the

encoding process independent of the number of states whereas the Viterbi algorithm's

computational load grows exponentially3 with the number of states.

To confirm Freeman's conjecture that the function profiles (sections or cuts) of the

function surface would be far from convex, a set of experiments were performed. A

segment of speech consisting of two phonetically balanced sentences, one spoken by a

male speaker and the other by a female speaker, were used for determining the profiles.

The segment, which consisted of 60,000 speech samples, was encoded for each trial

trellis configuration and the overall average squared error determined. The function

profiles are shown in Figure 6.7 for the direct codebook and Figure 6.8 for the regular

pulse excitation codebook. The plotted variable is a particular random symbol value

on a selected branch, while all other branch symbols in the trellis were held fixed.

The vertical axis displays the average of the mean square error attained by the speech

synthesis process.

Symbols in the four basic branch positions for the rate Lf2 coding were chosen for a

section: upper branch first branch symbol, upper branch second branch symbol, lower

branch first symbol and lower branch second symbol. There did not appear to be any

relationship with the variable parameter's position in terms of upper or lower branch,

or being the first or second symbol on a branch and the function profile. Clearly the

sComputational load is order O(2^), where rn is the number of bits required to represent all statee.
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Figure 6.7: Four Profrles of the Trellis Evaluation Function; the function value was the

average mean square error on encoding the source speech using the M,L algorithm for

four randomly selected branches.

surface of this function is non-convex and displays ualleys and creases.

Figure 6.8 also shows the roughnature of the surface of the function when regular pulse

excitation was used. As the (M,L) algorithm performs a random walk over the trellis

symbols many cliffs arc possible where the chosen path set may change dramatically

as the varying parameter is altered past a threshold. This property implied that the

function was non-differentiable, therefore a gradient technique can not be used for

optimization. Freeman used a conjugate gradient technique for the design of his trellis

source coders, and assumed the use of the Viterbi algorithm for encoding which resulted

in functions which were at least crudely convex. A predictor in this design invalidated

Freeman's choice and conclusions about the Viterbi algorithm as the trellis structure

was no longer valid and approximate convexity could no longer be assured.

6.5.1 Optimization for Rough Non-convex Functions

Two well known candidates for optimization of functions that are non-convex are sim-

ulated annealing [90] and genetic algorithms [91].
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Figure 6.8: Four Profiles of the Trellis Evaluation Using Regular Pulse Excitation;

evaluated for four randomly selected branches.

Simulated annealing is an analogue of physical annealing processes where systems which

are heated. and allowed to cool slowly produce a crystal structure in a low ground

state energy. Statistical mechanics describes the ayerage and fluctuations of energy of

an ensemble of identical systems about a thermal equilibrium point for a particular

temperature. The Gibbs function of energy is given by;

p"n: 
"-E({s;})/k6T 

(6.28)

where P" is the probability of the system with energy and configuration E({s¿}), T is

the current temperature and k6 is Boltzman's constant'

Five basic components are required to use a simulated annealing approach to solving

functions (obtaining near global minima):

1. Configuration space. The configuration space must represent the space in

which the solution is to be found. For the trellis optimization problem the mul-

tidimensional space is simply 8N where N is 1/2 the number of branch symbols.

(Recall the trellis was assumed to be symmetrical')

2. Reconfiguration strategy. A set of rules must exist to move into another

allowable configuration. For the trellis optimization a random perturbation was

"funcrpe.va11" 
-"funcrpe.val2rr ----

"funcrpe.val3rr - --

"funcrpe.val4rr ''
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applied to a randomly selected branch symbol. The perturbation was allowed

to be positive or negative. As a large random perturbation \¡/as unlikely to be

useful towards the end of the annealing process the perturbation was taken from

a population of reducing variance and zero mean.

3. Cost function. The cost function is the function that the simulated annealing

algorithm uses as lhe Energy term and as such must be well defined. The trellis

optimization uses the average mean square error of the weighted synthesised

speech compared to the original speech over a number of blocks of sample speech.

The synthesis process uses previously deter'mined branch parameters and the

current trellis' selected branch symbols (current configuration).

4. Cooling schedule. The temperature at the start of the annealing should be high

enough so that the parameters in configuration space can easily move between

configurations. Cooling of the system should occur at a slow enough rate to

ensure that the system is not frozen into a local minimum too early. Another

aspect of cooling is to determine when the system has complelely frozen. For

the trellis problem many trial runs were required to determine a suitable starting

temperature and cooling profile. The chosen profile was Tn"- : o¿Totd with a :

0.99.

5. Metropolis algorithm. This part of the simulated annealing algorithm de-

termines the probabilistic acceptance of the current trial configuration. The

Metropolis algorithm is explained in more detail below.

The Metropolis algorithm may be described as follows: firstly evaluate the cost function

to determine the new Energy, frnd the difference between the trial energy and the old

eneïgy (AE) and accept the new confrguration according to the rules;

if LE ( 0 accept new configuration,

else accept with probability PM : e-^E11:

The standard Unix operating system randomj function was used in the else case

to select a random number (between 0 and 1) which if less than the probability Plv

confirmed acceptance, else the new configuration was rejected.

Within the genetic algorithm optimization, a genetic string consisted of I/ substrings

each representing a branch symbol. A complete genetic string consisting of the collec-

tion of substrings represented a complete trellis. A substring's position in the overall

t49



genetic string governed its position within the trellis. The genetic algorithm was de-

scribed in some detail in Chapter 4. Each sub-string was a branch value bit encoded to

some level of quantisation; the greater the resolution of the branch symbol, the greater

the length of the substring.

Simulated annealing and a genetic algorithm were both applied to the optimization

of the trellis branch values. In both cases the cost function that was evaluated was

the average accumulated squared error of the synthesised waveform. The trellis used

in the simulated trial encoding process \ryas defined by, the last accepted configuration

modified by the current test symbol.

There was no real difference in the overall function optimization for the two techniques

as both appeared to fall into local minima. The genetic algorithm should be more ro-

bust to such problems, in particular speciation (niche erploitatior) [91] could be used.

In using speciation a number of gene population members would be required to search

each crease an{ thus clusters of population members search the various creases. Cover-

ing the search space adequately, would imply a larpie gene population for this problem.

A trial attempt at optimization gave very similar results to the simulated annealing

algorithm probably because a smaller population (= 30) without speciation was used.

Due to the larger over-heads associated with the genetic algorithm, particularly if shar-

ing functions (for speciation) were to be incorporated, simulated annealing was chosen

for optimi zation. However an attempt was made to improve the performance of the

simulated annealing algorithm to decrease the computational effort'

Rutenbar [111] claims that some functions with:

"a mostly flat landscape with numelous' densely packed gopher holes, each

of widely varying depth . . . "

may be impossible to anneal. From the profiles shown above this is not exactly the

situation here but there appear to be many creases of varying depth and scale. To

improve the performance a tactic of restarting the simulated annealing algorithm was

chosen. Figure 6.g shows the results: standard simulated annealing (which gave similar

results to the standard genetic algorithm) is denoted as con.únn ttace, simulated an-

nealing with a restart after 20 step failures as con2.ann, ar'd simulated annealing with

a restart after 10 step failures as conT.¿nn. Restarts were determined by the rules:

f . if after N temperature adjustments no better solution was found since the last

best configuration, restart with the best configuration found so far;
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with restarts: con? and con9.

Z. if. abetter configuration is found than the current best, update the current best

and reset the failure to improue counter.

Figure 6.g was generated for the synthesis of 3 blocks (600 samples) of voiced speech

data. This kept the computation time down to realistic values for the process of algo-

rithm tuning. It was quite ciear that the restart strategy improved the performance

of simulated, annealing for this problem. The number of function evaluations for each

temperature step was lower bounded by 30 as the minimum number of evaluations and

b12 as the upper limit. Each temperature step had to achieve 30 accepted reconfig-

urations or reach the limit ol 5I2 evaluations before the next temperature step was

taken. The strategy of a restart after 10 temperature trials with a failure to improae

gave good results for this problem, however the computation time was still too great.

For the traces in Figure 6.9 each trace required 10 hours CPU time on a SUN SPARC-

station 2. The goal was to optimize the trellis for 6 seconds of speech, uttered by a

male and a female speaker. This duration of speech totals 300 blocks of speech; clearly

even the optimized simulated annealing algorithm would take too long to produce a

good result on other than a super computer'

A different optimization technique was sought, suitable for standard architecture com-

puters, which could cope with the target 6 seconds of speech.

rcon.anntr 

-
rcon2,annr -- --
ncon3.annr - --

151



Conjugate Stochastic Optimization

The target function which was to be minimized had a surface that may be viewed

as being rough, which implied no gradient information could be utilized to find the

minimum. An analysis of the obtained function profiles was undertaken to determine

if there was any exploitable structure.

Rough non-differentiable surfaces are common place in nature and have recently been

characterized using the concept of fractals [112]. If the function surface is viewed in

terms of fractals it should have a random nature and show statistical self affinity. Self

similarity is easier to explain so it will be explained first. Consider a curve X(f) with

independent variable f. Then

Prob. of X(t) - X(¿o) : Prob. of fr(X(rf) - X(f)) ts 1t r ) 0 (6'29)

where r is the scaling ratio.

The statistics of the curve are identical for the index f with respect to amplitude

difierences and the corrected amplitudes relative to the index rÍ. The power H governs

the roughness and lor H:ll2 the curve becomes that of Brownian motion'

Self affinity goes a step further and allows the different axes to have different scaling

factors r¿.

The statistical nature of the function surface may be easily argued from the nature of

the encoding algorithm where limited set of paths in the (M,L) algorithm move down

the trellis. When a branch symbol's value reaches a particular threshold value it may

no longer be a member of the path set at ú,o although it was below (or above) the

threshold. There is a high probability the branch symbol will stitt be used but it would

now be used in a difierent context, with difierent symbols preceding and succeeding

it. This threshold phenomenon causes a random j"-p to some other value of the

evaluation function (mean square error value). T" support the self affinity argument,

the data that was available as the function cross-sections (Figure 6.8) was analysed to

create a log-log plot of variance against step size, Figure 6.10' A linear plot is required

to satisfy the properties of a self-affine surface. More formally the relation;

EILV(rt)l o r'H n¡nVçt¡1 (6.30)

should be satisfied where ,ø[.] is the expectation operation, t is the change in variable
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Figure 6.10: plot to determine if the scale relationship required for self-affine curves

was met by the mean square encoding error for regular pulse excitation'

parameter (Af) and V(.) is the function value. H is the exponent that is of interest in

characterising the fractal dimension

The graph of hand determined values obtained from Figure 6.8 is shown in Figure 6.10.

Rough calculations from the limited data available indicate H is close to If 2 (above

and below) for the range of scales and show an approximate linear relation.

Generally to perform an accurate determination of fractal dimension the scaling relation

should hold over a large range of scales and various probability moments should give

consistent data [112].

The purpose of the elementary fractal analysis was simply to verify that the function

surface did appear tobe rougl¿ in the fractal sense in that the step variations occurred at

a wide range of scales. This ruled out the possibility of using any derivative methods

in find.ing an optimum. As the surface showed these characteristics, the aim of the

optimization strategy was to develop an algorithm that could handle rough surfaces.

Some of the desirable features that the optimization algorithm had to incorporate were:

1. that it would not get stuclc in a local minimum within its range of search,
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2. that it did not require any gradient information,

3. that it would search the function surface efficiently,

4. that it would not be greedy and try to go to a minimum directly (thereby in-

creasing the probability of getting stuck),

5. that it would cater for various scales of function variation.

Although powell's (1964) [113] method does not riecessarily use gradient information

the surface to be optimized was too rough and the algorithm would in all probability

go to a local minima all too readily.

It was considered important that the algorithm was not greedy so that it would not

lock into a local minimum and search a limited region of the overall parameter space- A

Brent's [1la] type algorithm was avoided as there was a possibility that several minima

could exist within the bracketing values'

The optimization procedure is summarized below where each variable parameter is

considered varying along a coordinate axis in ft' :

1. Select a rand.om coordinate axis and direction parallel to which the line of search

occurs;

2. Choose a random starting point relative to the current position and generate a

further M random steps from a distribution with avariance o21

3. Evaluate the function at each of lhe M steps and if the value at the minimum is

less than the current best, accept the value for the current configuration space.

If the minimum value is greater than the best so far by some small percentage,

accept it with a variable probability starting at 0.5 and decreasing ;

4. When the number of searches made at a particular scale reaches a set limit T,

set a2 - o2 x 0.5;

5. If the number of iterations has reached the iteration limit or function improvement

has reached the desired resolution limit, exit; else Goto Step 1.

The configuration space was defined so that there were boundaries (limits) for the

values that any particular variable parameter may take. Steps giving values at which

the function was evaluated, were generated from a uniform distribution which had
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Figure 6.11: Evaluation Profrle of Conjugate Stochastic Optimization Algorithm

an adjustable range which was directly related to o2. Adjusting the range scaled the

average step size that the algorithm took in a direction. Steps for a line search were in a

fixed direction which required the implementation to randomly choose an axis direction

and keep stepping using a random step size. On average the step size expectation

Elstepsizelwas ll2 the range (fi) set for the uniform distribution (0 < steps'ize < ß).

To cater for the boundaries a simple approach was used that allowed the step to bounce

off the boundary with the commensurate change in stepping direction.

The random selection of axis ensured a conjugate search direction which, together with

the rule of not attempting to find an absolute minimum along the line of search, helped

the algorithm avoid entrapment in local minima.

Use of random starting points along the line of search in the function space provided

additional protection against getting stuck at a local minimum.

In implementing the algorithm the initial step size range was set to ll2 the distance

between the two boundaries and 7 search values were used along a line (axis) search.

An average of B searches per axis was chosen before the average step size was again

reduced by a factor ol lf 2.

Figure 6.11 clearly shows the dramatic improvement of the conjugate stochastic (CS)

algorithm compared to simulated annealing even with restarts (Figure 6.9) for the
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same problem. It should be noted that each step in the CS algorithm was 7 computa-

tions whilst in the simulated annealing algorithm each step comprised between 30-512

computations with an average of approximately 90 computations.

The range scaling was altered to ll3 instead of the initial If 2,however no improvement

or substantial detriment was found, except that slightly fewer evaluations \ryere required

to flnd a good minimum. Fine tuning of the parameters \¡r'as not attempted as a

significant improvement (overall reduction of approximately two orders of magnitude

in the number of function evaluations) was made over the other algorithms tried and

it was considered unlikely another order of magnitude improvement could be achieved.

6.6 Coding Performance

Overall encoding performance is difficult to measure and is best done using listening

tests. At a residual encoding rate of. Il2 bit per residual symbol, a hoarseness was

evident in the reconstructed speech. A spectrogram of the reconstructed speech showed

the typical banding due to the pitch, although with less defrnition than the original' A

region of noise was evident between 1.5 and 2 kilohertz. The encoder implementation

was checked for faults but none were found and it was concluded the noise was a

phenomenon of the encoding mechanism.

The metric measure generally used in conjunction with the (M,L) algorithm was the

mean square e ror. An attempt was made at finding a metric that gave superior

subjective performance to mean square error. Each metric evaluation for the short

vector \ryas accumulated to obtain the accumulated metric for each path. A range

of metrics were tried to determine if any improvements could be made on the mean

square error measure. Letting the term rel denote the source or reference vector and

the term syn denote the synthesised vector or trial vector, the variations attempted

may be summarized as:

c lref - sUnl,

o lref - sUnl3,

It was found that no other method substantially improved the quality of the speech

and in most cases degraded it. Due to the simplicity of the mean square error measure
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Number

Paths

32 States

Ave. Best Ave.

Metric Spread

64 States

Ave. Best Ave.

Metric Spread

128 States

Ave. Best Ave,

Metric Spread

8

16

32

64

r28

75,393

72,347

7r,727

4,,458

3,380

3,008

81,063

73,574

69,975

68,944

4,758

3,301

2,687

2,34I

97,738

77,016

72,3r0

69,940

69,551

4,353

2,955

2,458

2,113

2,051

Table 6.2: Comparative Best Metric Performance of Trellises and Number of Paths:

the spread indicated is between the best metric and ranked 16th path metric.

it was retained. It should be noted that the speech and the synthesised speech were

perceptually weighted for the tests.

Optimized trellises of different numbers of states were used to encode a source file of

five different speakers of different ages and sexes and then compared in terms of the

best average error metric. The number of paths used in the (M,L) algorithm was also

allowed to vary. Results are presented in Table 6.2 ror the rate ll2 bit per speech

sample.

Care must be taken in interpreting these results as a lower metric between trellises did

not necessarily imply a better performance, for example, the difference in performance

between 8 paths and 16 paths for the 128 state trellis was barely audible. It should

also be noted that this average metric was taken over voiced and also unvoiced speech

where comparison of the trellis matching may not be particularly meaningful.

Informal subjective tests using quantised ø¿'s were undertaken to attempt to evaluate

the results found in the table. Listening to speech encoded with 16 paths for each of

the trellises listed showed little difierence between them except the 32 state trellis did

produce slightly rougher speech. There \Mas an improvement when 64 paths were used'

The 64 state trellis with 64 paths and the 128 statB trellis with 64 paths showed little

difierence between them and each produced less noisy speech when compared to their

16 path counter parts. For the trellises and path combinations listed above a slight

preference was given to the 64 state 64 patha configuration.

Tests were also taken to confirm that one gain term based on prediction error for the

4This is equivalent to the Viterbi algorithm for 64 states
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whole block performed as well as 4 terms based on r.m.s. input level for each of the

sub-blocks. It was found that there was no audible difference when only one gain term

was used., which implied that the lower transmission bit rate for transmitting only one

gain term could be used without producing any noticeable degradation.

It can be seen that all of the trellises show a knee in the average best metric charac-

teristic when the number of paths equals I12 the number of states. This implied on

face value that little is gained by going to full Viterbi encoding. However the sorting

process in the (M,L) algorithm has a computational order o1 MlogM while the add

compare select mechanism, although slightly more complex, is of the order 2N. (Where

N is the number of states). Hence if Nlz paths or more are planned to be used in the

trellis encoding full Viterbi encoding is attractive'

Figure 6.12 show the speech waveform o1, "The hat brim was wide and too ìlroopy.",

uttered by a male speaker. The coded waveform using a trellis that employed a rate of

I12 a bit per speech sample is shown in Figure 6.13. The trellis was optimized using

the algorithm described in the chapter. It is clear that the coder tracks the waveform,

although listening tests were necessary to evaluate the perceived accuracy. A magnified

detail of the original and synthetic waveforms is shown in Figure 6.14 where it can be

seen that the zero crossings were preserved quite well and the amplitude matching was

reasonable. Some of the finer details of the original waveform however were not well

reproduced.

Figure 6.15 shows the result of coding using the untrained trellis at a rate of l12bit

per speech sample. The untrained trellis used regular pulse excitation where the pulses

came from a Gaussian sample population. The mean for the Gaussian population was

set to zero and the maximum values of the trained trellis were taken as approximately

three standard. d,eviations for this population. The resultant standard deviation was

3000 quantisation units. It is quite clear from the waveform that the training produced

superior results. Subjective tests clearly demonstrated that the training process was

important in improving the quality of the reproduced speech.

When the code rate was lowered to I l4 bit per speech sample the reproduced waveform

showed gross distortions. Subjective tests verifred that the encoding algorithm became

unstable at these rates. Large sections of speech encoded at this rate proved to be

totally unintelligible. Figure 6.16 shows the distortions quite evident in the waveform

envelope.

Informal listening tests were performed to determine the effect of varying 7 in the

158



0

0õ
IJ
J

Þ,

20000

15000

10000

5000

- 5000

- 10000

150 00

-20000

20000

15000

10000

50 00

50 00

10000

- 15000

20000

0 50 00

50 00

10000
samplea

15000

15000

20000

20000

Figure 6.12: Original Waveform Uttered by a Male Speaker

o
d
Js

o¡
E4

0 10000
samples

Figure 6.13: coded waveform for Ptale lf 2 Bit per sample Trellis.

rrhtsl-2.aacrr-

"slmtheEic. daLrr 
-

159



o
J
!.a

s

20000

15000

10000

50 00

50 00

- 10000

- 15000

-20000

0

Figure 6.14: Detail Showing Comparison of Original and Synthetic Waveform.

1900 195 0 2000 2050
Samples

21 00 2].50 2200

20000

o
É
!

o
É
É

20000

150 00

10000

s0 00

50 00

10000

- 15000

-20000
0 50 00 10000

samples
15000

Figure 6.15: Coded Waveform for Rate If 2 Bit per Sample Untrained Trellis

rhtsl-2slmr 
-nhtsl-2.ascn - ---

"s)mLheLic' dat. 
-

160



50 00

2 0000

150 00

10000

50 00

- 10000

- 1s000

20000

o
d
á
!

a

0 5000 10000
Samples

1s000 20000
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perceptual weighting filter. The normal range used in CELP coders is from 0.75 to 0'9.

Listening tests indicated, that the larger values were preferable which prompted trials

for values above the normal limit. A final range of 0.95 to 0.97 was chosen as yielding

the most pleasant listening values. These values were significantly larger than those

used with standard CtrLP or multipulse vocoders'

Comparing the coder developed here to the earlier designs showed that the trellis

encoded residual encoder performed well. Speaker intelligibility was very good and

recognizability was good although it displayed a slight hoarseness. A segmental signal

to noise ratio objective evaluation indicated the developed coder had a performance of

5.g dB at 5.b kbps while the coder by Araseki et. al. had a performance of 5 dB at 6'5

kbps. The original regular pulse excitation coder as described by Kroon [16] operated

at the significantly higher bit rate of 9.6 kbps and achieved a commensurately higher

segmental to noise ratio of 13 dB.

The final bit rate for the fully quantised coder, excluding forward error correction bits,

was determined to be approximately 5.5 kbps as follows:

1. synthesis filter poles information - 32 bits;

2. scaling gain term - 5 bits;
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-

161



3. speech residual information - 100 bits;

4. giving a Total - 5,480 bits per second.

Speech frames consisted of 200 samples at a sampling rate of 8 kilo-samples per second.

This implied a frame duration of 25 ms. The gain term for the residual did not require

a sign as the trellis encoding accounts for the sign.

6.7 Post Processing of the synthetic speech using

Pitch Information

In coding the residual there were some sounds such as eye that the coder did not

handle well at low bit rates; the sound was reproduced with a gravelly quality. In

particular the pulses defining the start of period were not always reproduced well. It

was noted that the coder did encode the start of the quasi-period but not with as large

a pulse as was desirable. A post processing technique was considered which used pitch

information transmitted by the encoder expressly for the purpose of post processing

the speech. This overhead implies an extra 280 bits per second (1125 ms x 7 bits)

additional to the base transmission rate.

Use was made of the idea put forward by Granzow et. al. [110] that a single main pulse

dominates the start of a quasi-period of the residuaf. The residual encoding mechanism

attempts to replicate this situation with a varying degree of success. During unvoiced

speech there \l¡as no real problem in replicating noisy speech as the ear has difficulty in

establishing difierences in the noisy part of speech. However waveform coders generally

have trouble with voiced speech as they have difficulty in making the 'pitch' periods

similar enough.

The post processing technique uses the idea of using single synthesis frlter impulse

responses spaced at linear interpolate d pitch peri,ods to simulate voiced speech; much

like the LPC-10 vocoder. The trellis encoded speech data however has much more

information encoded into it than the LPC-10 implementation. Using a maximum

correlation approach the start of voicing could be found from the synthetic waveform

and it's position marked'

Processing continued using the marker concept where the search for the next marker is

always relative to the last marker. Interpolated pitch information was only used as a
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Figure 6.17: Original waveform of ,Uide spoken by a Male speaker.

guide or estimate of where the next marker should be. A region of a few samples before

and after the estimated marker location was searched for a large cross-correlation with

the impulse response of the synthesis filter. The location of the greatest correlation,

positive or negative, located the next marker. This mechanism allowed for slight vari-

ations in the quasi-period and tracked the start of the periods quite well. The marking

process continued to the end of all speech blocks considered to be voiced. The marking

mechanism was automatically reset at the completion of a voiced sound, after which a

start of voicing search based primarily on gain valges was required.

A buffer of synthetic speech consisting of impulse responses from the synthesis filter was

constructed using the now known period markers. The amplitude of the impulses was

determined by multiplying the scaled gain parameters transmitted with the encoded

speech by two.

Enhancement of the speech was efiected by constructing a weighted sum of the im-

pulse responses with the synthetic speech. This technique avoided the problem of the

synthetic voice sounding synthetic as is the case with the LPC-10 vocoders. It should

be noted that the addition process was synchronous with the synthetic speech which

avoided difficulties due to phase misalignments between the two waveforms.

It can be seen from Figures 6.17 and 6.18 that the encoder had difficulty in replicating
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Figure 6.18: Reconstructed Coded Waveform of wid,e.

the waveform. (The capabilities of the encoder are discussed in more detail in chapter

6.) In particular the start of the periods was not always clearly reproduced. The

suggested post processing was used to specifically try and enhance the start of the

periods.

The enhanced speech shown in Figure 6.19 was constructed using a 30% magnitude

weighting of the original speech and 70% weighting of the impulse response buffer. It

was found that from informal listen tests that the weighting ratio 70% original to 30%

impulse response buffer produced pleasant speech which was more meloilic than the

original synthesised speech without sounding too artifrcial'

Synthetic speech from the coder sounded hoarse while the speech from the impulse

buffer sounded buzzy with no trace of hoarseness. Mixing the two sounds called for

a trade off between the hoarseness but more natural sound and the btzzy synthetic

sound. Listening tests were conducted for the original synthesised speech to pitch

synthetic speech ratios ranging from 80%:20% to 50%:50% which was considered to

be the acceptable performance region. The 70%:30% io 60%:40% mixture reduced the

hoarseness without introducing too much buzziness improving the synthetic speech in

terms of making it more pleasant to listen to. When the ratio reached 50%:50% the

speech started to sound artificial with mild buzzy and bubbly artifacts.
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The post processing of the synthetic speech did make the speech more pleasant to listen

to as the hoarseness of the synthetic speech did become tiring. The modest overhead of

the extra 280 bits per second was deemed worthwhile to improve the perceived speech

quality.
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Chapter 7

Analysis of Trellis Coding

7.1 Introduction

This chapter deals with characterization of errors in the synthetic speech waveform

due to trellis encoding of the residual. Two types of errors are addressed. Firstly the

errors caused by channel errors and secondly errors due to the encoding process.

Marcellin and Fischer [101] comment that for their trellis source coding scheme, a

received error only affects logr l/ f 1 output symbols where N is the number of states

in the trellis. This comment is no longer valid if a predictor, such as a speech synthesis

filter, is driven by the trellis output symbols. In fact the impulse response of the

synthesis filter dominates the length of the error event. What must also be considered

is the different paths, and hence output symbols, generated by an error event. A

sequence of incorrect states is generated by a bit error till the erroneous bit no longer

has an efiect on the state selection. These factors are discussed in more detail below.

The term tree will be used in this chapter as a trellis of excitation values is used in

conjunction with a predictor generates a code tree.

It was found in listening tests and observation of the synthetic speech waveform that

the encoding process causes a very rapid degradation of the reproduced signal as the

tree encoding of the residual was lowered from I lzbit per sample t'o I l4 bit per sample.

Listening tests of the reproduced speech revealed gross distortion, to the extent that the

output was just recognisable as speech. In order to try and determine the mechanism

causing the rapid degeneration of performance, a model was constructed that attempted

to capture the fundamental dynamics of the encoding system.
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The techniques developed here reference a new approach to the analysis of error events

in tree source coding problems. The problems referenced here are not well covered in

the literature.

7.2 Channel Error Analysis

The trellis encoded excitation is received as a stream of bits that determine the se-

quence of states as the trellis or tree is traversed. The traversal of the tree allows the

receiver to generate a set of (branch) symbols which are fed into a synthesis filter which

reconstructs the synthetic speech waveform'

State determination from the bit stream can be likened to moving a window of size

logr.ðú bits over the bit stream, where N is the number of states in the residual trellis.

The bits in the window are viewed as a binary encoding of the current state. As a

new bit enters the window the old state number is doubled and the new bit added;

the resulting number is then taken modulo N. Clearly this constitutes a feed forward

mechanism where bit errors in the received stream are not propagated indefinitely. The

synthesis filter that the branch symbols (synthetic residuals) are fed into is however

an infinite impulse response system. An error event thus in theory has an infinite

memory. However in practice this is not the case as the synthesis filter memory is

effectively flushed out during unvoiced speech and during silent periods. However an

error event during voiced speech does have a significant effect as the speech power at

that time is high.

To study the memory effect of the speech synthesis filter the decay rate of the impulse

response was determined. Initial attempts of using bounding arguments (e.g theorem

due to Gershgorin [115]) on the magnitude of the poles had to be abandoned as the

bounds were not tight enough. A more direct approach was taken to determine the

decay rate, where the impulse response \4/as generated using the speech predictor filter

and measured directly. The procedure used was to find the initial maximum of the

response, followed by a skip of 100 samples, and then finding a series of consecutive

local maxima.

The decay rate was defined in this context as the time taken for the impulse response to

decay to lll0 the initial maximum. It was deemed that the impulse would contribute

little to waveform distortion once it had fallen to this level. The skip of 100 samples

was found from empirical evidence to save computation time and used the observation
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that only the poles closest to the unit circle have an effect of long duration- A series

of local maxima was found on the decay curve, to allow for the effect of beats' If more

than one pole pair was located at the approximately the same distance from the unit

circle, in a beat in the waveform results. The outcomes from the four primary test flles

of two males and two females each uttering 2 phonetically balanced sentences are given

in Table 7.1.

File

Name

Ave. Decay Rate

(samples)

Ave. Pitch

(samples)

htsl

hts2

hts3

hts4

101

98

80

73

85

44

g7

44

Table 7.1: Average Decay Rates and Pitch Periods in samples (8 kHz sampling): four

speech frles of male and female speakers were used'

In determining the values for the table, only voiced frames were considered as spurious

pulses in speech residual for unvoiced speech had little to no audible effect. The regions

of speech where the speech power was appreciable were generally voiced sections. using

this assumption only the voiced segments were considered' During voicing the poles

of the synthesis frlter tended to be closer to the unit circle and the impulse response

had a longer duration. From the table it may be noticed that the female and male

speakers, decay rates are similar. An erroneous pulse in synthesis of speech during a

voiced, section of speech had a similar effect whether the speaker was male or female'

It should also be noted that the decay rate was much greater than the memory length

(log, ¡ú) for the candidate trellises. This implied the number of states (1ú) in the

encoding trellis did not have a great bearing on the size of an error event when viewed

with respect to the resulting synthetic speech waveform. Another effect present, which

was harder to quantify, was the effect of scaled, phase-shifted and summed impulse

responses representing a voiced pitch period. For voiced speech however, a reasonable

assumption [110] is that the waveform quasi-period is dominated by a primary pulse'

Employing the idea that the output of the synthesis filter was the linear super-position

of time shifted impulse responses, any major errors in the output waveform would be

due to a large pulse contribution from a trellis branch. A large incorrect pulse may

have been due to a large difference between the desired correct pulse and the incorrect

pulse. The difference may come about as a difierence between pulses of the same sign
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or between pulses of opposite signs.

An error event consists of a sequence of incorrect branch symbols before going on

the correct track again. In order to estimate average error events all combinations

of error and non-error paths must be compared. To simplify the analysis only the

greatest difierence between the error and non-error path's pulses were considered to

be significant. This was a simplifrcation but using linear super-position the largest

difierence will contribute the largest error to the final waveform. The decay rate on

average, on a voiced section of speech, was much longer than a single bit error event

so the exact position of the greatest difierence could be ignored.

Statistics that characterise an error event were determined directly from the trellises

and. consequent tree codes. The optimized trellises of 32, 64 and 128 states were

investigated. For each starting state an arbitrary ellor event may terminate in any

other state. The maximum path differences were determined by pair wise comparison

of all possible paths through the trellis on an error event. An algorithm to achieve all

path pairs through the trellis may be described by:

1. for each possible starting state;

2. for each possible finish state;

3. \Mith an input bit 0 and current start state, follow with a string of bits to assure

termination in the current finish state, collect the sequence of branch symbols

and mark this sequence-0;

4. With an input bit 1 and current start state, follow with the same string of bits

as the step above to terminate in the current finish state, collect the sequence of

branch symbols and mark this sequence-l;

5. Find the largest magnitude difierence between sequence-O and sequence-l;

6. Increment the count for each threshold bin for which the difference is greater

than the threshold level;

7. End for looPs.

This process resulted in the sum of single elror events, determined from the compar-

ison of all possible correct and error path pairs for the investigated trellis, where the
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maximum difference was greater than a given threshold' Before going further the cir-

cumstances of error events should. be analysed. to indicate why certain decisions were

made in the characterization of the pulse errors'

Let the probability of decoding which results in an erroneous pulse ¡ Ïitmo'¡ of magnitude

greater than threshold T¡¡,."¿ be expressed as;

Pø(*o*o,2-Ttnr."n): Ë Pø(*a^o, )-T¡¡""¡ln-erroreuent)P(n-errore'Ùenú) (7'1)

n=O

where td.motis the maximummagnitude difference between any pulse pair on comparlng

the correct Path and error Path'

An n - erroreuen¿ is deflned as an error burst of length n followed by a guard length of

K - logrl{ non-errored bits, where N is the number of states in the trellis' An error

burst is characterized by a start error bit followed' by n-2 bits which may or mav not be

in error, followed by a terminating error bit' To qualify as a single burst' (n -2) < I{ '

The guard. length is necessary for the decoder to clear any erroneous bit out of the

decoder memory. If a binary symmetric channel is assumed, P6 is given by;

Pn(r¿*"o ) Ttnr."n)
n-2

D p"@o^o* ) Ttk,",hl(k + 2) - error euent) x
,t=0

P: Pf ci-'zP! r7-z-x (7.2)

where P" is the probability of receiving a bit in error, P¡ is the probability that the bit

is error free,, anð, ci denotes the combinatorial function' If the probability of channel

bit error P" Kl only single error events need to be considered, that is, an error event

has 1 bit in error followed by 1l error free bits'

It was desirable to describe the maximum error pulse information as an overall prob-

ability given that a single bit error event had occurred' To do this, the probability of

being in any particular state needed to be determined' If the probability of being in

a state at time ú is denoted P(si) and the probability of a transition from state 
^9¿ 

to

state ^9¡ 
over a path of I{ +I bits as P(S¿¡), the probability of the maximum error

pulse being greater than the threshold Tthr"rt,¡ given that there was an error event can

be lower bounded bY Pt where;

N

P"(*o^o,2 Ttn,*n) - t PÉ(*o*o' )- T¿¡'"'¡IS)P(S¿¡) (7'3)

i,i=l
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Figure 7.1: Cumulative Probability Distribution for Maximum Error Events Greater

than a given Threshold: cumul128, cumul6/¡, cumulLT refer to 128 state,64 state and

32 state trellises resPectivelY.

The probability of being in a state is source dependent so a relatively long speech

segment, of five people of mixed sexes and ages each uttering a single sentence, was

encoded. The resulting state sequence was used to obtain relative probabilities of

each state at an arbitrary time. An assumption was made that the finishing state on

a transition was independent of the starting state. This assumption was reasonable

provided the encoding rate was low (a relatively large number of input samples lay

between the start state and the finish state of the encoding trellis). It was found in

practice that at low rates the quantisation process was quite noisy, resulting in very

similar accumulated metrics for the different candidate paths.

N

P É(, o*o, 2 Ttn,." t ) t ! P É(* o*oo )- Ttn,."nl S ¿i ) P ( S, ) P ( Si )
i,i=t

The algorithm described above was run again with the accumulation process weighted

by the probability of starting in a particular state 
^9¿ 

and the probability of ending

in a particular finishing state S¡. Figure 7.1 shows the experimentally determined

lower bound for the cumulative probability distribution of errors greater than a given

threshold for pulse magnitude error for the source data investigated.

The average pulse magnitude from all branches in the trellis were also tabulated for

(7.4)

"cumu1128. diffsrr 
-"cumu164.diffs" -----

ucumu132. diffsu --'--
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comparative purposes in Table 7.2

Number of states

in Trellis

Average Pulse

Magnitude

128

64

32

4.105

4.47L

5.55

Table 7.2: Average Magnitude of Branch Values

From the graphs in Figure 7.1 it may be noted that for an error pulse of magnitude

greater than T and less than 17, the 128 state trellis performs best. This is in the sense

that for an error event pulse of magnitude 15 for example, the 128 state trellis presents

an erroneous pulse of this magnitude or greater with a probability of approximately

0.26. The 64 state trellis yields a pulse on an errol event of the same magnitude with

probability approximately 0.46 and the 32 state trellis with approximate probability

0.63.

As an error event has a relatively long duration compared to the bit error determining

the state, the larger code books have an advantage in the presence of channel errors.

This is because the values on the branches of the trellis cover the range of values less

coarsely than those of the smaller trellises. The average magnitude of the branch entries

also supports this property of the quantisation process'

Table 7.2 shows that the average pulse magnitude was greater for the smaller code-

books, which corresponded to a coarser quantisation procedure.

7.2.L Informal Listening Tests

Informal listening tests confirmed that the larger trellises did perform better than the

smaller ones over a noisy channel. when the noise level produced an approximate I0%

error rate, the voice decoder system was essentially noise driven with no one trellis

showing any advantage over the other; however the speech was still intelligible. The

U.S. Federal Standard 1016 CELP coder was also very distorted under these conditions

and gave different distortion characteristics. Although the errors were only allowed to

affect the codebook indices, fluctuations in the noise level were quite audible. The

Federal CELp's output also had a bursty quality to it which the coder in the thesis did
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not exhibit. The bursty noise most tikety came about because the long term predictor

used incorrect indices in the reconstruction of voiced speech.

At an error rate of 5% it was clearer that the larger trellises performed better but not

in the way expected. The quality of the noise was different rather than the perceived

noise level as may have been predicted. The iarger 128 state trellis had a more mellow

sound under these conditions than the smaller 32 state trellis' The 32 state trellis in

these conditions had a rather brittle sound quality'

7.3 Regular Pulse Excitation Prediction Error

The aim in this section is to quantify the absolute minimum error level achievable

using regular pulse excitation. The actual coding case has greater elrol as the encoding

process is non-ideal.

For an autoregressive model with predictor coefficients ¿¿ the next sample in the time

serles ls;

(7.5)

where .[ is the order of the model and the first term on the RHS predicts the new

value. The difference between the actual value n¿ and the predicted value is tl¿ the

ideal innovation. If the time series is estimated ô the above equation can be rewritten

AS; 
L

ûo:Da¡û¿-¡!d,¡ (7'6)
j=7

where d¿ is the innovation estimate usually selected from a frnite alphabet'

Let us assume that up to time i - 1 perfect prediction has occurred. The squared error

at time i is,

e : (*n-ã¿)'

: (ro - d¡)' (7.7)

If regular pulse excitation with one pulse every D samples is assumed the next D - I

estimates are 0,s. Only the case of D :2 is considered. For the i * lth time step the

L

Dj=l
Ii ¡*tu;"ti

a,
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ideal and estimated signals are given by;

L

ri+r afi¿ *Dot*o*t-¡ I u;¡t
j=2
L

ã¿+t atã¡ l\a¡û;¡1-¡ l0
j=2

ei,i+\ :

(7.8)

The squared. error between the i + 1th sample and estimate is now found to be;

(*o+, - îo+r)' : (or*¿ + ui+t - orî;)'

: (or(.n - do) + w¿+t)2 (7.10)

where a substitution was made for r; - â¿. The squared error for the predictor using

regular pulse excitation over D : 2 symbols is denoted by €¿,¿a1 and is given by;

eô,i+7 : (*n - ãr)' * (*o+, - ão+t)'

: (L + ú?)(uo - do)' ! 2a1w¿¡1(w¿ - d¿) * w?+t (i'11)

Now the best possible estimate of the innovation d¿ minimizes the €rror €¿,¿-.,u1. This is

found by differentiating with respect to d;;

++:-2(r+al)(w¿-d;)- 2a1w¿-,1 Q'rz)
ôd¿ \

and setting this to 0. Solving now lor d,¿ gives,

d,¿: wi +y+ (2.18)
L+o,i

This value of d¿ is then substituted back to evaluate e¿,¿..,r-1 to give;

u7+t

l+a,?

Equation 7.14 represents the absolute minimum error possible when using regular pulse

excitation with pulses of the optimum size every second pulse.

It is quite evident that using innovation estimates from a finite alphabet can only result

in even greater noise in the encoding process'

7.4 Model of the Coding Mechanism

In the process of attempting to lower the bit rate of the residual encoding procedure

it was discovered that at ratelf2 the results were acceptable, however at rate Il4 (ot

(7.e)

(7.r4)
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I la of a bit per residual sample) the encoding mechanism appeared to go unstable.

The instability was quite severe to the point where the reproduced speech was barely

inteltigible. An attempt was made to model the encoding process to determine the

mechanism causing the instability.

Several simplifying assumptions had to be made to extract a simple model, however

the dynamics of the process still had to be maintained. The assumptions made were:

o the pattern matching (minimummean square error) of a set of candidate synthetic

waveforms, generated from a set of possible branch symbols, to the incoming

speech waveform was considered important;

o encoding at low bit rates generated a high degree of quantisation noise and for a

limited number of encoding paths in the (M,L) algorithm, the retained paths had

very similar accumulated metrics (ailowing removal of memory from the model);

¡ actual symbols on the branches of the trellis that were fed into the synthesis fllter

were from a random population of bounded magnitude bi-polar values;

o encoding was from a selection of 32 levels;

o the synthesis fiiter was low pass and crudely matched the shape of some voiced

vowels in speech.

The frrst assumption pertains to the encoding mechanism where the minimum mean

square error was used to make a decision on the quantisation level chosen for a partic-

ular encoding of the original waveform. The general form of the encoder used in the

work operated at one bit per two residual samples which resulted in a small range be-

tween accumulated metrics for candidate paths. A small range of accumulated metrics

indicated that no one path had a large advantage over any other; which implied that

the encoding mechanism was noisY.

Taking the noisiness to the extreme, the paths could be considered of identical merit

and that the encoding depended only on the mean square error of the currenú pattern

match. If the waveform match only depended on the current input symbols and not past

symbols, an independent selection for the current estimate could be made. Selection of

the current estimate was made from a fixed size alphabet that was generated for each

time step. The selected estimate of the residual was immediately fed back into the

system by the estimate entering the synthesis filter from where it was used in encoding

future waveform symbols. Recall that a regular pulse excitation was used where, for
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example, an encoding rate of 1 bit per thlee residual samples implied, the branch

symbol (residual estimate) entered the synthesis filter followed by two zeroes' Past

decisions, as governed by the contents of the synthesis filter, controlled the selection

of the next branch symbol or in the model's case the next quantisation level from the

random alphabet'

A full complement of 32 quantisation levels was allowed in the model as the typical

encoding work of the thesis used 16 paths, which allowed 32 decisions for each pulse'

The 32 decisions in the actual (M,L) algorithm may not be as generous as the model's

32 random levels between the positive and negative set limits, however the (M,L)

algorithm makes use of many past decisions via the accumulated metric' An open

selection from 82 levels was deemed to be a good compromise, to having to model the

codebook state memorY'

It was found that instabilities in the encoding mechanism were most audible during

voiced sections of speech. During voicing the power level of speech is higher than during

unvoiced speech, and difierences in noise-like sounds are more difficult for the ear to

distinguish than voiced sounds. Consequently the voiced case was of more interest to

research than the unvoiced.

The synthesis frlter of the model was made uoiceil-lilcein shape by using three pole filters

with appropriately placed poles. The primary difference between the two synthesis

filters used was the tail of the frequency response of the synthesis fllter, where the one

filter,s Figure 7.2 fe:f-ofi more rapidly with increasing frequency than the second frlter,

Figure 7.9.

A chirp signal was chosen as input to the encoding model so that the response of the

encoding could be observed for a range of frequencies. The input waveform is illustrated

in Figure 7.3.

The progression of Figures 7 .4_7 .7 illustrate the way the encoding of the system became

noisier as the rate was lowered. to the point where four residual samples were encoded

using one branch sample; at which point instability was evident' This type of response

was in agreement with the listening tests performed on the actual encoder'

other factors found that afiected the instability were: reduction of the number of

quantisation levels with which the encodin8 was performed, and the degree of mis-

match between the set limits of the r.ange of the quantisation levels and the dynamic

range of the input signal. The set limits on the allowable lange of quantisation governed
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that maximum possible pulse amplitude that could be fed into the synthesis filter'

Figures 7.4,7.5,7.6, 7.7 had the range of the random quantisation levels set from -8

to *8 and the input waveform had an Î.m.s. value of 4. Figure 7'8 illustrates the effect

of setting the quantisation lange from -12 to *12, causing a greater mismatch between

the source and codebook.

Figures 7.9 and 7.10 illustrate the efiect of the synthesis fllter frequency response having

a slower decay rate. Generally the encoding was better behaved but at the rate olLla

instability was again quite evident'

7.6 Conclusions

The four main factors that affected the output quality of encoding according to the

encoding simulation wete:

1 the actual encoding rate, (the number of branch symbols representing the number

of residual samPles);

the frlter shape, where the greater the fall off rate the greater the distortion;
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B. the number of quantisation levels, (corresponds roughly to the number of paths

in the (M,L) algorithm);

4. the range of the quantisation levels with respect to the residual levels of the input

waveform.

When the model \4/as compared with the actual encoder the following factors were

evident from informal listening tests:

1. as the rate for the encoder synthesis filter decreased, the reconstructed speech

quality monotonicallY decreased,

2. the filter shape had a signifrcant bearing on the output quality of the recon-

structed speech,

3. encoding with a smaller number of paths did rrot have a significant impact on en-

coding performance around rate I f 2 (the larger codebooks/trellises had a slightly

perceptible smoother sound),

4. mismatch in magnitude of the trellis entries relative to the input waveform resid-

uals had a significant effect.

Mismatch in input sample magnitude range and trellis excitation range had a very

pronounced effect. Trials were performed where the trellis codebook was trained for

the input waveform having an r.m.s. of 4, and the actual input waveform scaled to

different values. It was found that the best output was obtained when the input was

correctly scaled, exhibiting least amount of audible distortion.

Open loop d.etermination of the gains, made the gain estimation somewhat inaccurate.

Modest scaling of the input waveform to r.m.s. values greater than nominal unity

enabled the trellis to have shape and limited gain information. This made the system

less sensitive to the open loop gain d.etermination due to the larger dynamic range that

the trellis excitation could encode.
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Chapter I

Conclusions

This thesis has dealt with making CELP type coders more robust with respect to chan-

nel errors. Experiments have shown that for CELP coders, the spectral information

is most sensitive to channel errors followed by the gain for the stochastic code book

followed by the other parameters. In particular trellis encoding of the excitation was

undertaken in some detail.

A significant amount of efiort was expended on finding a good pitch estimation algo-

rithm as it was deemed important in the development of the coder' The post processing

of speech discussed in the thesis used the pitch estimator but the coding algorithm did

not due the instabilities of the encoding mechanism at low bit rates'

8.L Pitch Estimation

Pitch synchronization can be very useful in a range of error recovery situations of

encoded speech. Natural speech has a high redundancy and as pitch is one aspect'

it is important that it is well understood. Pitch was taken to be the time' in sam-

ples, between glottal pulses. This corresponded to the quasi-periodicity of the speech

waveform.

completely robust and accurate pitch estimation is still an unsolved problem' The

thesis presented a new method of obtaining pitch using a model based on dynamical

systems theory. The methods used were based on a multidimensional phase space model

which are usually used for determining the characteristics of chaotic systems' These

methods however allowed determination of the pitch to super-resolution' some concern
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must be expressed about the concept of super-resolution pitch estimation' Medan [76]

claims super-resolution to arbitrary degree, however it should be noted that the number

of samples within a quasi-period in the speech waveform, may change from one period to

the next. This means that two pitch waveforms of different lengths are cross correlated'

There are also situations where the pitch waveform change substantially from one pitch

to the next. These observations of real speech call into question the accuracy of the

claim of arbitrarily high resolution'

The final version of the pitch estimator developed in the thesis used a cross colrelation

matching technique not that different from the one developed by Medan, albeit the one

described in the thesis used matching in three dimensions. There did not appear to

be any great ad.vantage of the multidimensional version and the computational effort

was greater than Medan's. One advantage was that the search region for the pitch was

reduced by employing the multidimensional AMDF in the flrst stage'

The model in the thesis used a simple rule base and a median filter to track the pitch

and produce pitch contours. Tracking of the pitch at the receiving end was considered

to be a possible useful method of error control for the pitch predictor parameters of

the final coder. Papers in the literature [2] [103] have indicated that a pitch predictor

structure in the OELP coder had to be based on fractional sample pitch estimates or

multiple tap filters in order for the performance to match self excited codebooks' This

was in line with the goal of obtaining a good fractional sample pitch estimate'

packet waveform substitution was investigated for the memoryless coder case but not

pursued with the CELP cod.er, as a previous frame's parameter substitution performed

quite well; the subsequent correctly received frames interpolated well with the sub-

stituted frames. The extra processing required for waveform substitution instead of

parametersubstitutionwasnotwarrantedfortheCtrLPcoder.

pitch information was used in Chapter 6 to investigate post processing of the recon-

structed speech waveform using pitch synchronicily' Pitch synchronicity meant that

pitch events were tracked in the reconstructed speech so that the post processing of

the speech was pitch synchronous and phase aligned with respect to the reconstructed

speech waveform. It was discovered that some of the hoarseness of the speech could

be traded ofi for a melodic although slightly synthetic sound' There was an overall

improvement in the auditory quality in the sense that the speech was mole pleasant to

listen to.
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8.2 Protection of the Short Term Spectral Informa-

Experiments [20] [51] have indicated that the spectral envelope information is very

sensitive to channel errors and as such must be protected, or some other mechanism

utilised to ensure that no gross spectral distortion occurred as a result of the channel

errors. Bad errors are heard as bangs, pops and cliclcs which are very distracting and

annoying to listeners.

Chapters 4 and 5 discussed in some detail the advantages of representing the the linear

predictor coefficients in terms of Line Spectral Pairs (LSP's). Various useful properties

of LsP,s were discussed which made it clear why they are in common use in the low

rate speech cod,ing community. The properties of LsP's that are exploited in common

CELP coders are:

1. they are the most efficient representation for quantisation (least number of bits

required for quantisation),

2. the LSP values ale monotonic, so out of order values indicate an error'

Error recovery techniques implicitly use the property that the effect of a perturbation

of an LSp value is localised to a small range of frequencies in the reconstructed speech'

This means that a small variation of an LSP value will only distort the spectral en-

velope in a small region associated with that particular LSP. Perturbation of the LP

coefficients or reflection coefficients show distortion over the entire spectral envelope'

The two most commonly used error recovery strategies used in ctrLP coders at this

time are:

1. repeat the spectral information from the last correctly received encoded speech

frame,

2. sort the decoded LSP values so that they form a monotonic sequence'

Investigations undertaken in the thesis indicated that using the monotonicity criterion

only captures a modest portion of errors (only those that cause an out of order sequence'

approximately Il3 to l12 of errors) and to improve performance beyond the base-line

missed error d,istortion, additional measures need to be taken, such as extta errot

ollIt
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detection. This aspect of the performance of LSP monotonicity as an error detection

mechanism is not well documented in the literature'

Two methods of error protection were investigated which had minimal impact on the

bit rate for the speech frame. The goal was to produce a mechanism that was more

robust to channel errors than the existing schemes, in use.

8.2.1. vector Quantiser as an Error correction Mechanism

Error correction should always be taken in the context that it operates in. In speech

coding spectral information is quantised and encoded from real values, and error cor-

rection in this case should be in the context of attempting to recover the spectral

envelope with minimal error.

Generally vector quantisers are used to encoile data for transmission over a channel' A

novel proposal introduced in this work was to use a vector quantiser at the receiving

end, where the vector codebook was either developed online or previously calculated'

The monotonicity of the LSP coefficients were checked for errors and approximate error

positions located. A pattern matching plocess was used to estimate the hypothesised

erroneous data. 'Ihe best match over the whole vector' excluding the hypothesised

error, was selected as the most likety candidate vector and the component at the

hypothesised error location then substituted. Generally two error location hypotheses

and thus two rounds of matching were used'

From the experiments conducted in Chapter 4 a vector quantiser can be successfully

applied in the process of missing data estimation. It was noted that not only the

missing data was estimated but the whole vector was approximated; although only the

missing element was used, provided monotonicity was not violated' Maintaining mono-

tonicity ensured that the LsP parameters would result in a minimum phase synthesis

filter for the reconstruction of speech with minimal spectral distortion' If no useful

substitution could be made for the missing data, the closest matched vector from the

vector codebook was used. in unmodified form to ensure a stable teconstruction filter'

It was quite clear that a saturation effect in the performance gains occurred with larger

numbers of vectors in the quantiser codebook. This may well have been due to the

efiect of just taking the minimum distance centroid from the hyperplane without regard

to the size of cell that the centroid was taken from' If the volume (generated by the

hyperplane cutting the voronoi cell and the cell's centroid) was taken into account' a
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more accurate estimate could have been made. Taking only the normal distance from

the cutting hyperplane to the centroid, resulted on average with a good estimate, but

as the number of ceils cut by the hyperplane increased the estimate procedure may

have degraded a littte. The results however showed the method performed significantly

better than sorting the LSP parameters.

A simple adaptive vector quantiser was seen to be an effective step in optimizing the

performance of the technique. The training of the adaptive codebook added only a

little extra computation, namely storage of a running sum of vector components, a

running estimate of encoding d,istortions' a population count for each cell, and the

recalculation of the resulting centroid. The major part of the computation was in per-

forming mean square error matching of the received vector and the codebook vectors'

Training for the online codebook was suboptimal, and further investigations yielded a

better on-line training mechanism. The improved method tried optimizing training of

the codebook by taking into account the statistics of the vectors represented by a cell'

If two cells moved too closely together during operation, they were amalgamated and a

new cell became free for training. This improvement helped in speeding up the adap-

tion process. Some of the vector quantisers currently being constructed by the neural

network community show useful characteristics. See for example reference [116].

It was observed that the 96 entry adaptive codebook performed slightly better than

the 128 entry fixed codebook for the test data-base. Generally the 128 entry fixed

codebook may not perform as well as indicated over a larger variety of speakers, while

the adaptive codebook has an ad,vantage in that it always trains to the particular

speaker. It should also be noted that if a more sophisticated error detection scheme

was used the adaptive method should improve as the number of undetected erroneous

vectors used in training would decrease.

A brief quantitative discussion on using cyclic codes indicated that using only 5 parity

bits would catch most error bursts, and allow better performance and training of the

adaptive codebook. The cost of using only error detection without obtaining informa-

tion about error location is more rounds of matching in the vector quantiser to estimate

the error
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g.2.2 Protection of vector Quantised Parameters

Quantisation at the source must always be undertaken relative to some performance

criterion. Encoding of the spectral information can usefully employ the concept of just

noticeable distortions as a measure of performance. If the spectral distortion between

the encoded version of the spectral envelope and the original envelope is less than 1%

the term transparent coding is used. Vector quantisation could achieve this level of

performance with approximately 24 bits, however the memory usage of the codebook

and the computational load for encoding the vectors would be enormous. To counter

these two problems different architectures for vector quantisers were investigated: for

the former problem split vector quantisers and multistage quantisation, and tree struc-

tures for the latter Problem.

Tree structured vector quantisers dramatically reduce the computational burden of en-

coding. Implementation of a training algorithm which constructed a tree structure that

gave minimal distortion compared to random full searched codebooks was addressed

first. Experimental results indicated that an unbalanced tree gave good performance'

It was also found. that the tree structure sped up the training procedure relative to the

full search codebook design. This occurred because once a decision region was chosen

the training vectors were also partitioned and could no longer influence training of vec-

tors outside of their partition. once the tree encoding procedures were developed, the

tree structure was imposed on the higher level architectural configurations of, split vec-

tor quantisation and multistage vector quantisation. Tree structured vector quantisers

address the problem of the computational burden while the higher level architectural

designs, split vector and multistage quantisation, address computational effort and the

codebook size problem. Tree structures applied to the higher level structures is rarely

done and has not been reported in the literature with respect to coding speech line

spectral pairs.

Tree structures are well known in the literature where the general training procedure

uses the generalised Lloyd algorithm and a splitting technique which involves perturb-

ing the centroid of a cell by tá to produce two new candidate centroids' To speed up

the convergence of the generalised Lloyd algorithm within the tree structured quan-

tiser, a principal component analysis of the mean square error variance data for the

quantisation cells was undertaken'

The idea of using principal component analysis for the splitting process in the design of

tree structured quantisers, although not producing substantially better codebooks' did
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give some objective measure of the performance of the tree structured codebooks over

full search codebooks. If most of the quantiser cells had a unique principal eigenvector-

vector for the cell's covariance matrix, the tree quantiser tended to perform well' This

was best seen in constructing the split veclor quantiser where the codebook for the

upper sub-vector tended to be white and only a small number of cells exhibited a

strong principal component. The performance of the tree structured codebook for the

upper sub-vectors proved to be poor. whenever most cells in the vector quantiser

showed a strong single principal component, average performance of the codebook was

good. The most likely explanation for this phenornenon is that the tree construction

can only split a single cell into two sections. The direction of maximum variance is

the most likely direction to split the cell such that encoding of the training set results

in less average distortion than that obtained prior to splitting. If the underlying data

vectors are white noise-like, no preferred direction for splitting is evident as there are

no strong correlations in any one particular direction. As the vector quantiser in this

case cannot make use of under-lying data correlations, its performance is degraded

compared to data that is correlated'

A comparison of tree struct ï|Jed. multistage vector quantisers and tree structured spliú

vector quantisers indicated that the multistage option had a performance advantage of

up to 5 dB. This was verifred for the codebook sizes possible for the available speech

database of 3400 ten dimensional LSF vectors. Further improvement may be obtained

by using a scaling for the second quantiser in the multi'stage quantiser at the expense of

more bits used in encoding the source. The tree structured codebook also appeared to

have a greater sensitivity to relatìon-ships between vector components (biassing against

the split vector design) than full searched codebooks, however a very large data set

would be required to verifY this'

The overall cost of transmitting the line spectral pairs as indices of a codebook over a

noisy (error) channel was considered. If the multistage quantiset was chosen a conserva-

tive estimate using extrapolation and adding in allowances (for the small training set)

a coarsequantiser of 14 bits (el 16000 entries) and an error qnarltiser of 10 bits (= 1000

entries) would in all likelihood meet the transparent coding specification' (Paliwal and

Atal suggest 24 bits for their quantiser.) If simple error detection was used on t'he effor

quantiser index an additional 3 bits would be added for cyclic redundancy' The cyclic

redundancy code would use the generator polynomial 13 + r * 1' This code is capable

of detecting any 2 random erlors and any burst of contiguous error bits up to 3' If

the channel bit error rate \ryas € : 0.01 the probability of undetected error would be

2 x II-a. Of the 14 bits in the coarse quantiser index, 9 or 10 would probably need to
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be protected. To protect these bits well it would probably be necessary to use a rate

If 2 code with soft decision decoding, thus an extra 9 or 10 redundant bits would be

required. The number of bits to transmit the line spectral pairs representation reliably

over a noisy channel now totals 36 or 37 bits. It may be possible to ignore the error

introduced by the error qttartiser and only check for monotonicity at the receiver, as

the errors are only a flne ad.justment. The level of spectral distortion caused by an

incorrect error quantiser index needs to be investigated.

An advantage of using vector quantised indices and forward error correction on the most

significant bits of the codebook index, is that some of the error correcting power of

the code could be used for error detection. In the mobile communications environment

d.eep fades, consequently large error bursts are common place. The detection of a

burst allows other higher level error correction capabilities such as packet substitution

as described in [51], [21] to be applied. The substitution of previously clean packets

for packets that have been destroyed by an error burst yields acceptable results'

8.2.3 ComParison of Techniques

To get transparent codingl scalar quantisation of line spectral pairs requires of the order

of 32 to 34 bits. Any competing technique to the current well established procedures

must provide a performance advantage with regard to channel errors, preferably with

less bits.

The frrst scheme discussed had the advantage that it could be used with existing

coders for improved performance. To signifrcantly improve performance beyond this'

more errors need to be detected which could be done by adding extra parity bits. This

feature could be added to existing coders by extending the data frame' Most of the

processing is performed. at the receiving end at the cost of extra processing there'

The second scheme required more plocessing at the transmitting end in performing

the encoding. lt was shown that permuting of indices relative to the vectors that they

represent had some performance gain that diminished as the codebook became larger'

If permutation of indices was used. in conjunction with error protection of some of the

index bits better performance was achieved. If the multistage encoding technique was

used in conjunction wìth the above techniques a viable alternative to scalar encoding

is possible

lTTansparent coding requires the spectral distortion to be less than 1
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Both of the suggested techniques used 37-39 bits for encoding to produce a performance

superior to current spectral encoding methods. The overall bit rate increase in bit rate

would be of the order 120-200 bits per second, assuming 25 ms speech frames.

8.3 Trellis Encoding of the Residual

Trellis encoding of the speech residual was undertaken in an attempt to encode speech

at low bit rates. The (M,L) algorithm was singled out as a possible candidate for real

time implementation of trellis coding as the encoding effort is dependent on the chosen

number of paths and not the number of states in the trellis.

The implementation of the treilis encoding mechanism was non-trivial and posed more

implementation and analytical problems than the relatively straight forward block

mechanism. Each node on a path in the trellis encoding had to record the latest

synthesis filter memory at that node. This process also allowed a smooth transition

between blocks as the contents of the synthesis filter memory was correctly modelled

(for the decoder) at all stages of encoding.

Informal listening tests indicated that a regular pulse excitation mechanism (at rute I f 2

this consisted of a random amplitude pulse followed by a 0) from the trellis performed

similarly to fully populated vectors (for rate I l2 this consisted of two random amplitude

pulses) for each branch label. This reduced the storage for the regular pulse excitation

trellis to ll2 that of the equivalent fully populated rate If 2 trellis.

In comparing the curves of residual encoding error for different numbers of paths M

in the (M,L) algorithm, a substantial knee was found at M : Nl2, (where N is the

number of states in the trellis). This implied that setting the number of paths to l12

the number of states would result in the best effort versus performance trade-off. In

practice informal listening tests indicated that it was not necessary to use this number

of paths as the auditory performance improvement was slower than the excitation error

curve.

8.3.1 TYaining of the Tlellis

Training of the trellis presented a substantial challenge. If the (M,L) algorithm was

used for encoding, the growth of the accumulated metrics was a non-linear function
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of branch values (where branch values are the control variables). Furthermore, if the

branch values \ryere associated with a regular pulse excitation mechanism, methods such

as trellis training using the LBG [44] algorithm was impractical. The major difficulty

was that a synthesi.sed waveform had to be compared to the reference training waveform.

The residual waveform could not be used to train a regular pulse excitation codebook

as it could for full vector branch entries'

Due to the non-linearity of the (M,L) algorithm a gradient descent method of training

for the codebook was unsuitable. The function profile did not show even approximate

convexity. These characteristics suggested the use of random search based optimiza-

tion functions such as simulated annealing and genetic algorithms. Although these

algorithms did optimi ze the codebooks they did so,extremely slowly even for the regu-

lar pulse excitation which halved the number of parameters compared to the tate lf 2

full excitation trellis. A further assumption of trellis symmetry was made to reduce

the computational burden (number of independent variables) by a further factor of 2

and also aid the rate of convergence (suggested by Freeman [a5])' This was based on

the observation that the speech samples tended to be fairly symmetrically distributed

about the zero amPlitude axis.

Even with the reduction of the problem size, the simulated annealing and genetic

algorithms proved to be too slow to be useful. A further reduction of effort by reducing

the (M,L) algorithm's number of paths, M,io 8 to speed up encoding made the methods

suitable only for small trellises.

The development of an optimization procedure based on conjugate direction random

line optimizat\orf proved to provide results as good as the above two optimization

methods in two orders of magnitude less time'

The new algorithm allowed training of trellises of 128 states in approximately 140 hours

of CpU time on a SUN Sparc Station 2. It should be noted that the algorithm allows

an efficient implementation on a multi-processor computer of the multiple instruction,

multiple data Path tYPe.

2Described in detail in ChaPter 6
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8.3.2 Tbellis Encoding Performance

General results showed that the greater the number of paths the better the resulting

synthetic speech. Also the greater the number of states of the encoding trellis the better

the reconstructed speech quality; the 64 state trellis and 128 state trellis encodings were

noticeably better than encodings from the 32 state trellis for fixed number of paths'

Training of the trellises gave substantial improvement in the perceived quality of the

speech. Tests also indicated that the iowest bit rate feasible for this type of encoder

was lf 2 bit per sample. Lower bit rates produced very distorted speech'

9.4 Error Modetling of Trellis Encoded Residual

A new method of modelling of the elror processes that occur in trellis encoding of the

excitation proved a useful tool in determining the importance of different parameters'

Modelling of the effects of channel errors on the decoder gave a feel for the types of

distortion and the extent of the distortions caused by bit errors' The sample speech

frles used in the thesis consisted of approximately 45% voiced speech' If the 128 state

trellis was used for encoding of the speech with a pulse magnitude threshold setting of

about 15 (considered. a distracting level of error) the probability of error is read off the

cumulative erfor curves as approximateiy 0.26. The product of the two probabilities

gives approximately a probability of 12% thal an eIIoI on the channel will cause a

signiflcant disturbance in the synthetic speech'

Listening tests conflrmed that the larger codebooks produced better speech quality in

the presence of noise but more in the quality of the noise rather than the perceived

level. The larger codebooks gave a more mellow noise than the smaller codebooks for

the same channel error rate'

Determining the dynamics of encoding from the simplifred encoder model gave an

insight as to the parameters that are important in ensuring that the encoder remains

stable in service. The main factors found important were:

o the code rate,

o the synthesis frlters frequency response'

o gain mismatch between input waveform and quantisation range'
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o and the number of quantisation levels

It is recommended that the trellis encoding mechanism should not be used below rate

If 2 as the quantisation becomes coarse and noisy causing instability. Filter frequency

response is out of the designer's hands as the input speech waveform determines this.

Gain matching is important but the deleterious effects of a bad mismatch may be

somewhat overcome by training the trellis entries tò encode over a larger gain variation

than the traditional CELP. It should be noted that the traditional CELP algorithms

adjust the codebook gains as part of the matching process and as such the input speech

does not have to be scaled prior to encoding. trmpirically it was found that for the

trellis coder the reconstructed speech quality was best when the trellis incorporated an

r.m.s gain range of 4 as well as the shape information'

8.5 Trellis Coder Overview

Some useful methods for improving the robustness of the spectral information over

noisy channels were developed with the choice of extra processing at the receive end or

at the transmit end using essentially the same bit rates. These techniques are suitable

for any vocod.er that encodes the short term spectral information in terms of linear

predictor coefficients or an equivalent representation of them.

post processing of the received speech to reduce the hoarseness, due to the distortion

caused by encoding at low rates, was successful in the sense of making it more pleasant

to listen to. Transmission of the extra pitch parameters, an extra 280 bits per second,

may be questioned. However in the authors opinion the improvement was worth the

cost of the bits.

The resultant speech encod.er (using trellis residual encoding) developed in this thesis is

best compared with the original multipulse coder designs which were the fore-runners

to the modern CELP designs. These earlier versions did not have a long term predictor

and tried, as does the present design, to emulate the true residual with a few pulses

using analysis by synthesis techniques. Araseki [13] described a multipulse coder sim-

ilar to the coder developed in this thesis, the simplified version of which is shown in

Figure 8.1.

Comparison of the coder developed here to the earlier designs indicated that the trellis

encoded residual encoder performed well. Speaker intelligibility was very good and rec-
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Figure 8.1: simplifred Block Diagram of Proposed speech Encoder.

ognizability was good although it displayed a slight hoarseness. A segmental signal to

noise ratio objective evaluation indicated that the developed coder had a performance

of b.B dB at 5.b kbps while the coder described by Araseki had a performance of 5

dB at 6.5 kbps. The original regular pulse excitation coder as described by Kroon [16]

operated. at the significantly higher bit rate of 9.6 kbps and achieved a commensurately

higher segmental to noise ratio of 13 dB'

The final bit rate and bit allocation for the fully quantised coder, excluding forward

error correction bits, was determined to be approximately 5.5 kbps as follows:

1. synthesis frlter poles information - 32 bits;

2. scaling gain term - 5 bits;

3. speech residual information - 100 bits;

4. giving a Total - 5,480 bits per second'

speech frames consisted of 200 samples at a sampling rate of 8 kilo-samples per second'

This implied a frame duration of 25 ms. The gain term for the residual did not require

a sign as the trellis encoding accounts for the sign'

It was found that the trellis excitation encoding method cannot be used for lower bit

rates than those indicated above, although slightly lower rates may be possible if a
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long term predictor is included. This is a conjecture, bearing in mind that a long term

predictor would make the input to the trellis coder'(residual with periodic correlations

substantially removed) more Gaussian like distribution with less amplitude fluctuation.

This would assist indirectly in the gain matching problem'

A difierent tree source encoding procedure that used a combination of breadth flrst and

metric first decoding could be useful in the predictive encoding environment where the

assumption of being able to accurately make a branch selection on the basis of current

values an¿ past performance is invalid. In a predictive environment selection of an

innovation pulse at time ú may still have significant effect at time , + 50 in the future.

If the rate of source coding for the predictive coder is high enough the innovation can

effectively compensate for past incorrect choices and avoid instabilities.

Inclusion of a long term predictor would necessarily imply that the resulting residual

must be encoded at rates lower lhan I I 4 bit per sample for similar or lower bit rates.

Salami [117] has developed a block excitation coding method that displays good ro-

bustness over noisy channels. Investigations in this direction could prove more fruitful

for lower bit rates.
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