Modicon TSX Premium PLCs

Processors

Characteristics

References
pages 43511/6 and 43511/7

Modicon TSX Premium PLCs have been developed to conform to the principal national and international standards concerning electronic equipment for industrial automation systems : \bullet Requirements specific to programmable controllers : functional characteristics, immunity, ruggedness, safety, etc. EN 61131-2 (IEC 1131-2), CSA 22-2, UL 508, • Merchant navy requirements of the main European bodies : BV, DNV, GL, LROS, RINA, etc, © Compliance with European Directives (low voltage, electromagnetic compatibility), CE marking, • Electrical qualities and self-extinguishing capacity of insulating materials : UL 746C, UL 94, etc.

Environment (characteristics common to all Modicon TSX Premium components)

Type of processor				TSX P57 102M	TSX P57 202M
Temperature		Operation	${ }^{\circ} \mathrm{C}$	$0 \ldots+60(+5 \ldots+55$ according to IEC 1131-2)	
		Storage	${ }^{\circ} \mathrm{C}$	-25... 70 (acco	
Relative humidity		Operation		$30 \% \ldots . .95 \%$ without condensation	
		Storage		$5 \% . . .95 \%$ according to IEC 1131-2 without condensation	
Altitude			m	0... 2000	
Mechanical withstand	Immunity	to vibrations		Conforms to standard IEC 68-2-6, Fc test	
		to shocks		Conforms to standard IEC 68-2-27, Ea test	
Electrostatic discharge withstand	Immunity	to electrostatic discharges		Conforms to standard IEC 1000-4-2, level 3 (1)	
Resistance to HF interference	Immunity	to radiated electromagnetic fields		Conforms to standard IEC 1000-4-3, level 3 (1)	
		to fast transient bursts		Conforms to standard IEC 1000-4-4, level 3 (1)	
		to shock waves		Conforms to standard IEC 1000-4-5, level 3 (1)	
		to damped oscillatory waves		Conforms to standard IEC 1000-4-12, level 3 (1)	
Resistance to LF interference				Conforms to the specifications of standard IEC 1131-2	

Characteristics

Type of processor				TSX P57 102M	TSX P57 202M
Maximum configuration		No. of racks		2/4 (2) (3)	8/16 (2) (3)
		Maximum number of slots for modules		24/32 (2)	96/128 (2)
Functions	Maximum number	of discrete I/O channels		512 (4)	1024 (4)
		of analogue I/O channels		24 (4)	80 (4)
		of application-specific channels		8 (4)	24 (4)
	Maximum number of connections	Uni-Telway integrated (terminal port)		1	1
		Network (Ethway, Fipway, Modbus Plus)		1	1
		Fipio bus manager (integrated)		-	-
		Third-party fieldbus		-	1
		AS-i fieldbus		2	4
	Real-time clock			Yes	Yes
Memory	Maximum capacity	Protected internal RAM	Kwords	32	48
		PCMCIA memory card	Kwords	32/64	32/64/128
	Maximum size of zones (7)	Data (\%MWi)	Kwords	30.5	30.5
		Constants (\%KWi)	Kwords	32	32
Application structure		Master task		1	1
		Fast task		1	1
		Event processing		32 (of which 1 has priority)	64 (of which 1 has priority)
Execution time		One standard Boolean Instruction	$\mu \mathrm{s}$	0.58	0.25
		One standard numerical Instruction	$\mu \mathrm{s}$	0.87	0.37
		One instruction on floating points	$\mu \mathrm{s}$	88	64
Typical execution time of program code for 1 K instructions Internal RAM		100 \% Boolean	ms	0.72	0.31
		65 \% Boolean and 35 \% numerical	ms	1.39	0.78
	PCMCIA memory card	100 \% Boolean	ms	0.72	0.47
		65 \% Boolean and 35 \% numerical	ms	1.39	0.98
$\begin{array}{ll}\text { System overhead } \\ & \\ & \text { MAST task } \\ \text { FAST task }\end{array}$			ms	2.9	2.0 0.6

(1) Minimum level in test conditions defined by the standards.
(2) Second value, commercialisation expected $4^{\text {th }}$ quarter 1998.
(3) Maxiumum number of TSX RKY racks. Using the TSX RKY 12EX rack (12 slots) is the same as using 2 racks with

4,6 or 8 slots.
(4) The maximum number of discrete I/O, analogue I/O and application-specific channels are cumulative. The number of remote I/O is not counted.

TSX P57 252M	TSX P57 302M	TSX P57 352M	TSX P57 402M	TSX P57 452M
0... $+60(+5 \ldots+55$ according to IEC 1131-2)				
-25... 70 (according to IEC 1131-2)				
30%... 95% without condensation				
$5 \% \ldots 95 \%$ according to IEC 1131-2 without condensation				
0... 2000				
Conforms to standard IEC 68-2-6, Fc test				
Conforms to standard IEC 68-2-27, Ea test				
Conforms to standard IEC 1000-4-2, level 3 (1)				
Conforms to standard IEC 1000-4-3, level 3 (1)				
Conforms to standard IEC 1000-4-4, level 3 (1)				
Conforms to standard IEC 1000-4-5, level 3 (1)				
Conforms to standard IEC 1000-4-12, level 3 (1)				
Conforms to the	of standard IEC			

TSX P57 252M	TSX P57 302M	TSX P57 352M	TSX P57 402M	TSX P57 452M
$8 / 16$ (2) (3)	8/16 (2) (3)	8/16 (2) (3)	8/16 (2) (3)	8/16 (2) (3)
96/128 (2)	96/128 (2)	96/128 (2)	96/128 (2)	96/128 (2)
1024 (4)	1024 (4)	1024 (4)	2048 (4) (5)	2048 (5)
80 (4)	128 (4)	128 (4)	256 (4) (5)	256 (5)
24 (4)	32 (4)	32 (4)	48 (4) (5)	48 (5)
1	1	1	1	1
1	3	3	4	4
1	-	1	-	1
1	2	2	2 (5)	2 (5)
4	8	8	8 (5)	8 (5)
Yes	Yes	Yes	Yes	Yes
64 Kwords	64 Kwords	80 Kwords	96 Kwords	112 Kwords
32/64/128 Kwords	32/64/128/256 Kwords (6)	32/64/128/256 Kwords (6)	32/64/128/256 Kwords (6)	32/64/128/256 Kwords (6)
30.5	30.5	30.5	30.5	30.5
32	32	32	32	32
1	1	1	1	1
1	1	1	1	1
64 (of which 1 has priority)				
0.25	0.25	0.25	0.25	0.25
0.37	0.37	0.37	0.37	0.37
64	64	64	5	5
0.31	0.31	0.31	0.31	0.31
0.78	0.78	0.78	0.5	0.5
0.47	0.47	0.47	0.47	0.47
0.98	0.98	0.98	0.68	0.68
3.8 (8)	2.0	3.8 (8)	0.6	1.1
0.6	0.6	0.6	0.2	0.2

(5) Non cumulative maximum values. The following formula gives the various capacities: [$2 \times$ no. of discrete channels $+15 \times$ no. of analogue channels $+50 \times$ no. of application-specific channels $+150 \times$ no. of channels (AS-i bus + third-party bus + network)] <10000.
(6) The 256 Kword extension is managed on 1 page with 128 Kwords of executable code and 1 page with 128 Kwords of graphic data and comments.
(7) The total of the program, data and constants memory zones is limited by the total capacity of the memory.
(8) 3.8 ms if the Fipio integrated link is used, otherwise 2.0 ms .

Premium automation platform

Analogue I/O modules

Selection guide

Analogue inputs

Page

Low level isolated inputs,
 thermocouples, temperature

 probes| Multirange |
| :--- |
| $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0-10 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 1 \ldots 5 \mathrm{~V}$ |
| $4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}$, external shunt |
| supplied, B, E, J, K, L, N, R, S, T, U |
| thermocouples |
| Pt 100, Pt 1000 thermal probes, |
| Ni 10002 or 4 -wire |

Modularity

Type of module

4 channels

Between channels : ~ 2830 V rms. Between bus and channels :
~ 1780 V rms.
Between channels and earth :
$\sim 1780 \mathrm{~V}$ rms.

550 ms

User-definable filtering 0 to 68.5 s

16 bits

20-way screw terminal :

TSX BLY 01

TSX AEY 414

Thermocouple inputs

Multirange
$-80 \ldots+80 \mathrm{mV}$
Thermocouples
B, E, J, K, L, N, R, S, T, U

16 channels

Between channels : \pm _-- 100 V Between bus and channels ~ 1000 V rms.
Between channels and earth :
~ 1000 V rms.

16 bits

Two 25-way SUB-D connectors
or 2 Telefast 2 sub-bases
(ABE-7CPA12)

High level inputs with common point

Voltage/current
$\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 1 \ldots 5 \mathrm{~V}$
0-20 mA,
4-20 mA

8 channels

Between channels : common point Between bus and channels :
~ 1000 V rms.
Between channels and earth :
1000 V rms.

27 ms (normal scan)
$3 \mathrm{~ms} /$ channel used (fast scan)

User-definable filtering 0 to 3.44 s

12 bits

25-way SUB-D connector
or 1 Telefast 2 sub-base (ABE-7CPA02/03)

TSX AEY 800

Analogue outputs

High level isolated inputs between channels

High level input with common point
16 channels

Between channels: common point
Between bus and channels :
~ 1000 V rms
Between channels and earth :
$\sim 1000 \mathrm{~V}$ rms.

51 ms (normal scan)
$3 \mathrm{~ms} /$ channel used
(fast scan)
User-definable filtering
0 to 6.50 s

12 bits

Two 25-way SUB-D
connectors
or via 2 Telefast 2 sub-bases
(ABE-7CPA02/03)

TSX AEY 1600

8 channels

Between channels: $\pm=-200 \mathrm{~V}$
Between bus and channels :
~ 1000 V rms.
Between channels and earth :
$\sim 1000 \mathrm{Vrms}$.
126.4 ms (normal scan)
$3.3 \mathrm{~ms} /$ channel used (fast scan)

User-definable filtering 0 to 3.82 s

16 bits

> | 25-way SUB-D connector |
| :--- |
| or 1 Telefast 2 sub-base |
| (ABE-7CPA02/31) |

TSX AEY 810

4 channels

Between channels : common point
Between bus and channels : ~ 1000 V rms.
Between channels and earth :
$\sim 1000 \mathrm{~V}$ rms.
$\frac{1 \mathrm{~ms}}{-}$

25-way SUB-D connector
or 1 Telefast 2 sub-base
(ABE-7CPA03/21)

TSX AEY 420

Between channels:~1500
V rms.
Between bus and channels : ~ 1500 V rms
Between channels and earth :
$\sim 1000 \mathrm{~V}$ rms.
$\frac{-}{2.5 \mathrm{~ms}}$

11 bits + sign

20-way screw terminal : TSX BLY 01

TSX ASY 410

8 channels

Between channels : com mon point
Between bus and channels ~ 1000 V rms
Between channels and earth : ~ 1000 V rms.
$\frac{-}{5 \mathrm{~ms}}$

13 bits + sign for voltage 13 bits for current

25-way SUB-D connector or 1 Telefast 2 sub-base (ABE-7CPA02)

TSX ASY 800

Analogue I/O modules

Presentation, description

Characteristics
pages 43530/4 and 43530/5
References : pages 43530/6 and 43530/7

Presentation

Analogue I/O modules for Premium PLCs are equipped with :

- Either one 25-way SUB-D connector (TSX AEY 420/800/810 and TSX ASY 800)
- Or two 25-way SUB-D connectors (TSX AEY 1600/1614)
- Or a screw terminal block (TSX AEY 414, TSX ASY 410)

They can be installed in any position in TSX RKY $\bullet \bullet$ racks except for the positions reserved for power supply modules. Analogue I/O modules can be removed while the PLC is powered up.

The maximum number of analogue channels in a Premium configuration depends on the processor used, see pages 43511/8, 43513/5 and 43620/9.

Description

The front panels of TSX AEY/ASY analogue I/O modules comprise :

1 A display and module diagnostics block
2 A connector for receiving the screw terminal block
3 A rotating support containing the module locating device
4 A removable screw terminal for direct connection of the I/O to the sensors and preactuators TSX BLY 01 (to be ordered separately)

5 A pivoting cover for accessing the terminal block screws and holding the identification label

6 A screw terminal block encoder
7 A 25-way SUB-D connector for connecting the sensors

Connection using screw terminal block

Connection using SUB-D connector

Connection principle for TSX AEY/ASY modules with SUB-D connector

The Telefast 2 pre-wired system simplifies the installation of modules by providing access to the inputs (or outputs) at the screw terminals.
Connection is via a TSX CAP 0303 metre shielded cable equipped with SUB-D connectors at either end.

- The Telefast ABE-7CPA02 sub-base enables 8 channels to be connected
- The Telefast ABE-7CPA03/31 sub-base enables the connection of 8 channels and :
- provides channel by channel supply for 2 and 4 -wire sensors with --- 24 V (for sub-base ABE-7CPA03)
- channel by channel isolated supply for 2 and 4 -wire 24 V sensors (for sub-base ABE-7CPA31)
- ensures continuity of current loops when the SUB-D connector is removed
- protects the current shunt within the modules against overvoltages
- The Telefast ABE-7CPA12 sub-base enables 16 thermocouples to be connected. The terminal block is fitted with a temperature probe for cold junction compensation.

Premium automation platform

Analogue I/O modules

Functions

Characteristics :
pages 43530/4 and 43530/5
References:
pages 43530/6 and 43530/7

TSX AEY 420, TSX AEY 800/810, TSX AEY 1600 analogue input modules

TSX AEY $\bullet \bullet 0$ modules are high level analog input modules with 4 inputs for the TSX AEY 420 module, 8 inputs for TSX AEY 800/810 modules and 16 inputs for the TSX AEY 1600 module.
Used with sensors or transmitters, they perform monitoring, measurement and process control functions for continuous processes.
Depending on the choice made during configuration, TSX AEY 420/800/810/1600 modules offer the following ranges for each of their inputs $\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 1 \ldots 5 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$.

Functions

- Scanning of input channels, protection against overvoltages, adaptation of signals by analogue filtering, scanning by solid state multiplexing.
- Adaptation to input signals : gain selection, drift compensation.
- Digitisation of signals : 12-bit analogue/digital conversion for TSX AEY 800/1600 and 16 bit analogue/digital conversion for TSX AEY 420/810.
- Converting input measurements to user format: recalibration coefficient, filtering, scaling.
- Module monitoring : conversion circuit test, range overshoot test, terminal block presence test, "watchdog" test.
- Isolation of input channels on TSX AEY 810.
- Fast processing of inputs (1 ms) on TSX AEY 420.

TSX AEY 414, TSX AEY 1614 analogue input modules

The TSX AEY 414 module is a multirange input module with 4 channels isolated from each other.
Depending on the choice made during configuration, the following ranges are available for each of its inputs :

- thermocouples B, E, J, K, N, R, S, T, U or - 13...+ 63 mV electrical range.
- 2 or 4 -wire Pt 100, Pt 1000, Ni 1000 temperature probe, or ohmic range: $0 \ldots 400$ ohms, $0 \ldots 3850$ ohms.
- High level $\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}$ ($0 \ldots 20 \mathrm{~mA}$ with external shunt) or $1 \ldots 5 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}(4 \ldots 20 \mathrm{~mA}$ with external shunt).
The TSX AEY 1614 module is an analogue input module with 16 thermocouple inputs. Depending on the selections made during configuration, the following range is available for each of the input channels (supporting a common mode between them of --- 250 V or $\sim 280 \mathrm{~V}$):
- Thermocouples B, E, J, K, L, N, R, S, T or U, or electrical range $-80 \mathrm{mV} \ldots+80 \mathrm{mV}$.

Functions

- Scanning of input channels, gain selection according to input signals, multiplexing.
- Digitisation of input signals.
- Converting input measurements to user format: recalibration coefficient, linearisation, cold junction compensation, filtering, scaling.
- Module monitoring : conversion circuit test, range overshoot test, terminal block presence test, sensor link test, "watchdog" test.

TSX ASY 410, TSX ASY 800 analogue output modules

The TSX ASY 410 module has 4 analogue outputs isolated from each other, and the TSX ASY 800 module has 8 outputs with common point.
Depending on the choice made during configuration, the modules offer the following range for each of its inputs : $\pm 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ without external supply.

Functions

- Protection of the module against overvoltages.
- Adaptation to the different actuators: voltage or current output.
- Conversion of digital signals to analogue signals (11 bits + sign for TSX ASY 410 and 13 bits + sign for TSX ASY 800).
- Transforming application data into data which can be used by the digital/analogue converter.
- Module monitoring and fault indication to the application: converter test, range overshoot test, terminal block presence test, "watchdog" test.

PL7 Junior software performs configuration and debugging functions :

- Choice of modules used.
- Configuration of channels according to the type of module: scanning (normal or fast), cold junction compensation (internal or external), range, filtering, display format, task (MAST or FAST), detection of terminal block presence, wiring check.
- Debugging, access to certain parameter settings, module/channel diagnostics, forcing, calibration.

Premium automation platform

Analogue I/O modules

Characteristics

References pages 43530/6 and 43530/7

Characteristics of analogue input modules

Type of input module			TSX AEY 414	TSX AEY 1614
Number of channels			4	16
Input range			- B, E, J, K, L, N, R, S, T, U thermocouples or electrical range : $-13 \ldots+63 \mathrm{mV}$ - Pt 100, Pt 1000, Ni 10002 or 4 -wire temperature probes, or ohmic range : $0 . . .400 \Omega, 0 . . .3850 \Omega$ $\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}$ ($0 \ldots . .20 \mathrm{~mA}$ with external shunt) or $1 \ldots 5 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$ (4... 20 mA with external shunt)	B, E, J, K, L, N, R, S, T, U thermocouples or electrical range : - $80 \ldots+80 \mathrm{mV}$
Analogue/digital conversion			16 bits	16 bits
Read time	Normal scan	ms	550	$70 \mathrm{~ms} /$ channel
	Fast scan	ms	-	-
Max. error	at $25^{\circ} \mathrm{C}$	\%FS	See page 43530/5	See page 43530/5
	$0 \ldots 60^{\circ} \mathrm{C}$	\%FS	See page 43530/5	See page 43530/5
Isolation	Betw. ch. and bus	V rms	1780	1000
	Betw. ch. and earth	V rms	1780	1000
	Betw. channels	V rms	2830	-
Common mode		V	~ 240 or $=100$ between channels and earth ~ 415 or - - 200 between channels	--- 250 betw. channels and earth $=250$ betw. channels or ~ 280
Max. overvoltage/overcurrent on the inputs			$\pm 30 \mathrm{~V}$ powered up without 250Ω external resistance $\pm 15 \mathrm{~V}$ powered down without 250Ω external resistance $\pm 25 \mathrm{~mA}$ powered up/down with 250Ω external shunt	$= \pm 30 \mathrm{~V}$ in differential mode
Standards			Sensor : IEC 584, IEC 751, DIN 43760, DIN 43710, NFC 42-330 PLC : IEC 1131	
Consumption		mA	See page 43605/2	

Premium automation platform

Analogue I/O modules

Characteristics (continued)

References:
pages 43530/6 and 43530/7

Input range for TSX AEY 414

Voltage/current range Max. error at $25^{\circ} \mathrm{C}$			$\pm 10 \mathrm{~V}$	0... 10 V	$\pm 5 \mathrm{~V}$	0... 5 V	$1 . .5 \mathrm{~V}$	0... 20 mA	4... 20 mA	$13 . .63 \mathrm{mV}$	0... 4	$0 \ldots 3850 \Omega$	
		\%FS (1)	0.27	0.16	0.27	0.22	0.27	0.36	0.45	0.19	0.13	0.22	
Max. error at $0 \ldots . .60^{\circ} \mathrm{C}$		\%FS (1)	0.50	0.39	0.50	0.45	0.56	0.69	0.86	0.44	0.27	0.48	
Temperature probe range Max. error at $25^{\circ} \mathrm{C}$		${ }^{\circ} \mathrm{C}$	Pt 100		Pt 1000		Ni 1000						
		1.2		2.5		1							
Max. error at $0 \ldots . .60^{\circ} \mathrm{C}$			${ }^{\circ} \mathrm{C}$	2.4		5		2					
Thermocouple range Max. error at $25^{\circ} \mathrm{C}$			B	E	J	K	L	N	R	S	T	U	
	IC (2)	${ }^{\circ} \mathrm{C}$	3.5	6.1	7.3	7.8	7.5	6	6	6.6	6.6	5.4	
	EC (3)	${ }^{\circ} \mathrm{C}$	1.5	1.5	1.8	2.3	2	2	3.2	3.4	1.5	1.5	
Max. error at $0 . . .60^{\circ} \mathrm{C}$	IC (2)	${ }^{\circ} \mathrm{C}$	8.1	8.1	9.5	10.5	9.8	8.7	11	12	8.8	7.3	
	EC (3)	${ }^{\circ} \mathrm{C}$	3.5	3.2	3.8	4.7	4.1	4.3	7.7	8.5	3.2	3.1	

Input range for TSX AEY 1614

Thermocouple range

Max. error at $25^{\circ} \mathrm{C}$
(4)

Max. error at $0 \ldots . .60^{\circ} \mathrm{C}$ (4)

${ }^{\circ} \mathrm{C}$	B	E	J	K	L	N
	2.5	0.8	0.9	1	0.9	1.1
${ }^{\circ} \mathrm{C}$	4	1.2	1.4	1.6	1.4	1.7

R	S	T	U
2.1	2.2	1	1
2.4	3.7	1.3	1.3

Characteristics of analogue output modules

Type of output module		TSX ASY 410	TSX ASY 800
Number of channels		4	8
Output range		$\pm 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$, outputs supplied by PLC (or 24 V SELV external on TSX ASY 800, see page 43560/3)	
Analogue/digital conversion		11 bits + sign	13 bits + sign (voltage), 13 bits current
Conversion time ms		2.5	5
Maximum resolution		Voltage output 5.12 mV (5), current output $10.25 \mu \mathrm{~A}(6)$	Voltage output 1.28 mV , current output $2.56 \mu \mathrm{~A}$
Output load		Voltage output, impedance $>1 \mathrm{k} \Omega$, load $<0.1 \mu \mathrm{~F}$, current output, impedance $<600 \Omega$ load $<300 \mu \mathrm{H}$	
Measurement error as a \% of FS Voltage output, FS $=10 \mathrm{~V}$	\%FS	0.45 to $25^{\circ} \mathrm{C}, 0.75$ from 0 to $60^{\circ} \mathrm{C}$	± 0.14 to $25^{\circ} \mathrm{C}, \pm 0.28$ from 0 to $60^{\circ} \mathrm{C}$
Current output, FS $=20 \mathrm{~mA}$	\%FS	0.52 to $25^{\circ} \mathrm{C}, 0.98$ from 0 to $60^{\circ} \mathrm{C}$	± 0.21 to $25^{\circ} \mathrm{C}, \pm 0.52$ from 0 to $60^{\circ} \mathrm{C}$
Isolation between channels and bus	V rms	1500	1000
Isolation between channels and earth		--500 V	1000 V rms
Isolation between channels	V rms	1500	Common point
Type of protection		Short-circuits and overload	
Max. voltage without damage	V	± 30	
Standards		IEC 1131	
Consumption	mA	See page 43605/2	

(1) \%FS : error as a \% of full scale.
(2) IC : with internal cold junction compensation.
(3) EC : with external cold junction compensation (with class A Pt 100 probe on channel 0)
(4) Max. errors, regardless of type of internal or external cold junction compensation (via Telefast sub-base or with class A Pt 100 probe).
(5) Value given for TSX ASY 410 (software version : II > 10), for TSX ASY 410 (software version : II ≤ 10). This value is 4.88 mV .
(6) Value given for TSX ASY 410 (software version : II > 10), for TSX ASY 410 (software version: II ≤ 10). This value is $9.77 \mu \mathrm{~A}$.

Premium automation platform

Analogue I/O modules

References

Characteristics pages 43530/4 and 43530/5

TSX AEY 800/420

TSX AEY 1600/1614

TSX ASY 410/AEY 414

TSX ASY 800

Analogue input modules

Type of inputs	Input signal range	Resolution	Connection	No. of channels	Reference (1)	Weight kg
Analogue, high level with common point	$\begin{aligned} & \pm 10 \mathrm{~V}, \\ & 0 \ldots 10 \mathrm{~V}, \\ & 0 \ldots 5 \mathrm{~V}, \\ & 1 \ldots 5 \mathrm{~V}, \\ & 0 \ldots 20 \mathrm{~mA}, \\ & 4 \ldots 20 \mathrm{~mA} \end{aligned}$	16 bits	$1 \times 25 \text {-way }$ SUB-D connector	4 fast channels	TSX AEY 420	0.330
Analogue, low level isolated	$\begin{aligned} & \pm 10 \mathrm{~V}, 0 \ldots 10 \\ & 0 \ldots . . .5 \mathrm{~V}, 1 \ldots 5 \\ & \pm 5 \mathrm{~V}, 0 \ldots 20 \end{aligned}$ 4... 20 mA , $-13 \ldots+63 \mathrm{mV}$ $0 . . .400 \Omega$, $0 . . .3850 \Omega$, temperature thermocoupl	16 bits	Screw terminal block (2)	4 channels	TSX AEY 414	0.320
Analogue, high level with common point	$\begin{aligned} & \pm 10 \mathrm{~V}, \\ & 0 \ldots 10 \mathrm{~V}, \\ & 0 . \ldots 5 \mathrm{~V}, \\ & 1 . .5 \mathrm{~V}, \\ & 0 \ldots 20 \mathrm{~mA}, \\ & 4 \ldots 20 \mathrm{~mA} \end{aligned}$	12 bits	1×25-way SUB-D connector	8 channels	TSX AEY 800	0.310
			$2 \times 25 \text {-way }$ SUB-D connectors	16 channels	TSX AEY 1600	0.340
Analogue, high level isolated	$\begin{aligned} & \pm 10 \mathrm{~V}, \\ & 0 \ldots . .10 \mathrm{~V}, \\ & 0 \ldots 5 \mathrm{~V}, \\ & 1 \ldots 5 \mathrm{~V} \\ & 0 \ldots .20 \mathrm{~mA} \\ & 4 \ldots . .20 \mathrm{~mA} \end{aligned}$	16 bits	$1 \times 25 \text {-way }$ SUB-D connector	8 channels	TSX AEY 810	0.330
Thermocouple	$\begin{aligned} & \pm 63 \mathrm{mV} \\ & (\mathrm{~B}, \mathrm{E}, \mathrm{~J}, \mathrm{~K}, \mathrm{~L} \\ & \mathrm{N}, \mathrm{R}, \mathrm{~S}, \mathrm{~T}, \mathrm{U} \end{aligned}$	16 bits	$2 \times 25 \text {-way }$ SUB-D connectors	16 channels	TSX AEY 1614	0.350

Analogue output modules

Type of outputs	Output signal range	Resolution	Connection	No. of channels	Reference (1)
Analogue, isolated	$\pm 10 \mathrm{~V}$, $0 \ldots 20 \mathrm{~mA}$, $4 \ldots 20 \mathrm{~mA}$	11 bits + sign	Screw terminal block (2)	4 channels	$\underline{\text { TSX ASY 410 }}$

[^0](2) TSX BLY 01 screw terminal block not supplied. To be ordered separately.
(3) The number of TSX ASY 800 modules is limited to 2 per rack with double format power supply (when this supplies the --- 24 V voltage required by outputs). See power supply modules selection page 43605/3.

Premium automation platform

Analogue I/O modules

References (continued)

Characteristics :
pages 43530/4 and 43530/5

Premium automation platform

Process control

References:
pages 43511/8 and 43513/5
Characteristics
page 43620/9

The process control range integrated as standard in Premium platforms enables the setup and debugging of process control loops specifically designed for machine control

User-definable process control functions

TSX P57 2•3/3•3/453M processors and T PCX 57 203/353M coprocessors can be used, depending on the model, to manage 10 to 20 control channels (of 3 loops each). These channels can be configured in order to execute algorithms used in industrial processes :

- Cascaded loop
- Process loop
- Autoselective loop
- Setpoint programmer
- Controller with three simple loops

2 I/O

Control loops

The software setup of control loops is performed by entering parameters (Plug and Play technology) when configuring the TSX P57/T PCX 57 processor or coprocessor.
The user completes predefined loop diagrams which also integrate management of the operating mode and the link with the I/O.

XBT-F and T XBT-F operator dialogue terminals have preconfigured screens dedicated to process control which simplify loop operation and control. These screens show the controller front panels as well as trending views and monitoring views.

Premium automation platform

Process control

References :
pages 43511/8 and 43513/5
Characteristics
page 43620/9

Presentation, functions

Presentation

TSX P57 2•3/3 $3 / 453 \mathrm{M}$ processors and T PCX $57 \bullet \bullet 3 \mathrm{M}$ coprocessors can be used to configure 10, 15 or 20 continuous or semi-continuous process control channels.

The control functions of these processors are particularly suitable for :

- Sequential processing requiring auxiliary control functions such as packaging machines, surface treatment machines, presses, etc.
- Simple processes such as metal processing furnaces, ceramic furnaces, refrigeration units, etc.
- Feedback or mechanical control where sampling time is critical, eg torque control, speed control, etc.

Premium processors have, amongst others, the following characteristics:

- Each configurable control channel can be used to manage 1 to 3 loops depending on the type of loop chosen.
- Process control processors can be inserted in the overall architecture of a site as the PLC can be integrated in various communication networks.
- Calculations related to process control are performed in floating point mode, expressed as physical units.

Description : TSX P57 ••3M processors, see page 43511/3; TPCX $57 \bullet \bullet 3 M$ coprocessors, see page 43513/3.
Characteristics and performance, see page 43620/9.

Functions

Control loops

Premium processors can be used to set up 10 to 20 control channels, each one adopting one of the following 5 loop profiles:

- Process loop : loop with a single controller
- Controller with 3 simple loops : controller which can increase the capacity of the number of loops
- Autoselective loop also known as secondary : comprises 2 loops in parallel with an output selection algorithm
- Cascaded loop : comprises 2 dependent loops (the master loop output is the slave loop setpoint)
- Setpoint programmer : comprises a maximum of 6 compound profiles with a total of 48 segments

Since the channels are independent, configuration of 10 channels can be used to obtain

- 30 simple loops
- 5 setpoint programmers, each one associated with 5 control loops
- 2 setpoint programmers and 8 process loops

The various loops are characterised by :

- Their different algorithms
- 5 processing branches (process value, setpoint, Feed Forward, loop controller and output processing)
- Calculation functions (gain, filtering, square root, etc) defined using parameters

Types of control loop

Predefined algorithms, whose parameters can be defined by the user, are shown below :

Process loop

Simple loop

Cascaded loop

Autoselective loop

Premium automation platform

Process control

Functions (continued)

References :
pages 43511/8 and 43513/5
Characteristics : page 43620/9

Processing branches

Parameter definition (choice of functions to be used) of control loop profiles enables the algorithm to be adapted to the process to be controlled.

Process value processing

Process value processing can be performed either in standard fashion or externally.

- Standard processing, the user has the following functions at his disposal : filtering, process value between limits, function generator with scaling, alarm management on threshold overrun, totalizer and simulation of the measured value.
- External processing is used to obtain, at the loop controller input, a process value, PV, which was processed outside the control loop. This solution is useful if measurement calculation of the process value requires specific or customised functions.

Setpoint processing

Depending on the type of loop chosen, it is possible to opt for one of the following 4 setpoints : ratio setpoint, selection setpoint, simple setpoint (remote with scaling) or setpoint programmer.
When using the controller with 3 single loops or the secondary loop (in an autoselective loop), only the simple setpoint and the setpoint programmer can be used.

Feed Forward processing

Feed Forward processing corrects a measurable disturbance as soon as it appears. This open loop processing anticipates the effect of the disturbance. It has the Leading function (phase lead/lag).

Loop controller and command processing

There are 6 different types of loop controller to choose from : autotuning PID, controller in discrete mode with 2 or 3 states, hot/cool controller (PID or autotuning model) or Split Range controller (PID or autotuning model).

Output processing

There are 3 types of output processing : analogue output, servomotor output or PWM output. Whatever the type of output, the control calculated by the controller crosses a ramp limiter and a limiter where the lower and higher limits can be used to define the output variation range.

Setpoint programmer

The setpoint programmer offers a maximum of 6 profiles with a total of 48 segments. It is therefore possible to create a 48 -segment programmer, six 8 -segment programmers or one 24 -segment programmer with one 16 -segment programmer and one 8 -segment programmer, etc

Each segment is configured as a ramp or dwell time. It is characterised by :

- The setpoint to be reached
- Duration of the segment or gradient of the segment (if a ramp)

A profile can be executed once, a certain number of times or continually looped back. Moreover, due to the concept of guaranteed dwell time, the time will only need to be downcounted if the process value is actually in the specified range.

Premium automation platform

Process control

Functions (continued)

References :
pages 43511/8 and 43513/5
Characteristics :
page 43620/9

Configuration of control channels

Special screens, accessible using PL7 Junior/Pro software, enable the configuration of control loops.

Configuration of control channels

By simply selecting from the menus, the "Loops" interface on PMX process control processors enables the following to be configured :

- The type of loop (out of the 5 existing ones)
- The choice of functions used in the 5 processing branches
- Parameters linked to each function
- Assignment of PLC variables to different loop branches (memory words, input words or output words depending on the processing branch)
- Automatic presymbolization of variables used in the loops

Configuration of process, single, autoselective and cascaded loops proposes parameter entry by default. The various functions integrated in the algorithms (square root, function generator, etc) and the initial value of each parameter are predefined.

Example : configuration of a process loop

Once the type of loop has been chosen, parameter entry is performed by selecting or deselecting options in the processing branches. No programming is therefore necessary, loop diagrams are enhanced or simplified as parameters are validated.
The screen opposite shows how selecting the PID controller can display the various parameters valid for this type of controller (KP, TI, TD, etc).

For the setpoint programmer, configuration of the various profiles (6 maximum) is done using a table defining each segment.

Once the type of segment has been chosen (ramp or dwell time), configuration consists of defining the setpoint to be reached (for the ramp) and duration (for the ramp or dwell time).

While making selections, the lower part of the screen shows the profile display with the setpoint limit values.

This screen also allows the cycles of this profile to be defined : execution once, a certain number of times or continually looped back (32,767 times maximum).

Execution of control channels

The loop sampling period is predefined at 300 ms . This defines the loop controller processing period in automatic mode. It is possible to modify this period in the loop configuration screen.
The user can access all the I/O and parameters for the various configured control channels via the program or by using the various PL7 Junior/Pro software tools (in particular language editors and animation tables).

Premium automation platform

Process control

Functions (continued)

References:
pages 43511/8 and 43513/5
Characteristics :
page 43620/9

Debug functions

Adjustment and debugging of control loops is performed in a simple and user-friendly way using the loop configuration application-specific screen which, when online, can access the following functions:

- Display and animation of the loop algorithm diagram
- Display of alarms linked to the process and channel faults
- Simulation of input interface values : for example when they are not connected (process value, Feed Forward)
- Addition, removal or replacement of calculation functions in online mode
- Modification of adjustment parameters for each function
- Modification of loop controller operating modes and manual control

With the controllers integrated in control loops, it is possible to use the autotuning function which calculates a set of adjustment parameters (Kp, Ti, Td or Ks, T1, T-delay) upon request.
Once the loop has been debugged, it is possible to save the current test values as the initial loop parameter values. Hence, on restarting the loop, it will contain the correct values.

Loop debugging

The debugging screen :

- Displays the values of variables linked to the loop dynamically
- Shows the parameters chosen (or can even modify them)
- Displays alarms

The menus enable manual control of the loop, autotuning, parameter backup, etc

Setpoint programmer debugging

Setpoint programmer channels have their own debugging screen which displays:

- The number of the current segment and the iteration number
- Execution time of the current segment
- Overall execution time

Runtime screens

The runtime screen tool available in PL7 Pro/Pro-Dyn software integrates front panel views and trending views in its object library which can be used to adjust and operate control loops.

Front panel views and trending views

Predefined controller front panel views provide the user with the traditional appearance of controller front panels. The user only enters the variables used by the loop being dealt with in the various fields in this view.
Similarly, trending views display changes in loop parameters in graph form as well as useful operating information : operating mode, alarms, etc.

Premium automation platform

Process control

Functions (continued)

References :
pages 43511/8 and 43513/5
Characteristics : page 43620/9

Control and operation

Tools integrated in PL7 software (loop debugging screens, runtime screens, etc) which are associated with XBT-F and TXBT-F Magelis graphic screen terminals offer screens dedicated to the control and operation of control loops.

Setup

These predefined screens offer runtime and control views whose characteristics depend on the type of terminal used :

- XBT-F : Magelis graphic screen terminals
- TXBT-F02 : Magelis graphic stations under Windows operating system

As standard, PL7 Junior/Pro software contains the application developed with XBT-L1003/L1004 development software, which comprises predefined runtime and control views. When using this dialogue application, animation of runtime and control views is automatic.

Presentation of views

Each control loop is associated with a certain number of views depending on the size of the Magelis terminal screen.

- With 5 " screen terminals, the user has 7 views at his disposal :
- monitoring view
- front panel (bar chart)
- supervisory control view (trending)
- adjustment view
- autotuning view
- setpoint programmer view
- alarm view

With this type of terminal, it is possible to operate 8 loops.

- With 10 " screen terminals, the user has 5 views at his disposal :
- monitoring view
- front panel view integrating the display of the front panel, loop adjustment and autotuning
- supervisory control view
- setpoint programmer view
- alarm view

With this type of terminal, it is possible to operate 16 loops.
All runtime pages are based on the same presentation module :

- An alarm zone is positioned at the bottom of the screen. It shows the last active alarm
- Dynamic function keys execute one and only one function (access to the adjustment page, starting autotuning, navigation between the various pages, selecting a loop, etc.)

It is of course possible for the user to customise the screens to suit his requirements.

Premium automation platform

Process control

Function (continued)

References :
pages 43511/8 and 43513/5
Characteristics :
page 43620/9

Monitoring view

This view is the control application entry point. It gives an overall view of all loops being operated on a single screen. For each loop, this view displays the loop name, measurement/setpoint deviation, operating mode, alarms and the execution of autotuning if applicable.
The user can select a loop and access the front panel for example.

Front panel view

The front panel view uses the traditional format of controller front panels with the process value, the setpoint and the deviation between the 2 . This view also integrates the operating mode as well as any alarms on the loop.

Function keys allow navigation between pages as well as control of loop operating modes.

Supervisory control view

This view displays the same information as the front panel view and also shows the 3 trends which are characteristic of the loop. The most recent trend history is recorded.

Function keys allow navigation between pages as well as control of the loop operating modes.

Setpoint programmer adjustment view

Two views specific to setpoint programmers are supplied. One is used to display the various profile names and to select one of them, the other is used to follow a given profile.

The second view is used to :

- Display the setpoint profile
- Modify the segments, ramps and dwell time
- Access the given profile
- Track the process value
- Control the profile

Premium automation platform

Process control

Characteristics

References
pages 43511/8 and 43513/5

Characteristics

The table below summarises the main characteristics of Premium processors and coprocessors presented in pages 43511/6, 43511/7 and 43513/4.

Type of processor		TSX P57 2e3M/T PCX 57 203M	TSX P57 3^3M/T PCX 57 353M	TSX P57 453M
Number of racks		16 (1)	16 (1)	16 (1)
Number of discrete I/O (2)		1024	1024	2048
Number of analogue channels (2)		80	128	256
Number of app.-specific channels (2)		24	32	64
Number of control channels		10	15	20
Process control functions		Process loop 3 simple loops Cascaded loop Autoselective loop Setpoint programmer		
Network connections		1	3	4
Fipio bus manager connection		1 (integrated with model TSX P57 253M)	1 (integrated with model TSX/T PCX 57 353M)	1 (integrated)
Third-party bus connections		1	2	2
AS-i bus connections		4	8	8
Memory Internal RAM	Kwords	48/64 depending on model	64/80 or 80/96 depending on model (3)	96/176 (3)
Capacity on PCMCIA card	Kwords	160	384	512
Memory occupation	Kwords	5 per type of loop + 0.5 per control channel	5 per type of loop + 0.5 per control channel	5 per type of loop + 0.5 per control channel

(1) Maximum number of TSX RKY racks. Using the TSX RKY 12EX rack (12 slots) is the same as using 2 racks with 4, 6 or 8 slots.
(2) The maximum numbers of discrete I/O, analogue I/O and application-specific channels are cumulative. The number of remote I/O is not counted.
(3) The second value corresponds to the capacity of the integrated memory when the processor is fitted with a PCMCIA memory card.

Premium automation platform

Discrete I/O modules
Discrete input and I/O selection guide

Connecting inputs to screw terminal blocks for bare wires or wires fitted with either cable ends or open/closed cable tags (minimum cross-section $0.28 \mathrm{~mm}^{2}$, maximum $1.5 \mathrm{~mm}^{2}$)

Type

Voltage

Modularity

(number of channels)

Connection

Compatibility with
Telefast 2-sub-bases

Connection

sub-bases
Input adaptor sub-bases

Isolated inputs
IEC 1131-2
conformity
Logic
Proximity sensor
compatibility acc.

Isolated outputs

IEC 1131-2 conformity Protection
Logic

Type of discrete input and I / O modules

8 isolated chan.
16 isolated channels

Via 20-way screw terminals : TSX BLY 01

Type 2

Positive
2-wire $=-/ \sim, 3$-wire PNP $=-$ any type
Negative
Negative
3-wire NPN any type

TSX DEY

 08D2TSX DEY 16D2
TSX DEY 16D3
TSX DEY
16A2
TSX DEY
16A3
TSX DEY

16A4

200... 240 V	24 V			48 V	24 V	
					16 isolated inputs and 12 isolated outputs 0.5 A Event-triggered Programmable reflex	
	16 fast isolated channels	32 isolated chan.	64 isolated chan.	32 isolated chan.	Event-triggered fast inputs	Programmable reflex inputs and outputs
	Via 20-way HE 10 connectors					
	8 or 16 channels, with or without LED, with common or 2 terminals per channel					
	16 channels =-- 5 V TTL, $-\mathrm{-} 24 \mathrm{~V},-\mathrm{-} 48 \mathrm{~V}$, $\sim 115 \mathrm{~V}$ or 230 V , 2 terminals per channel					
	Yes (see pages 15003/2 and 15012/2)					
	Type 1				Type 1	
	Positive					
	2-wire =-/ \sim, 3-wire PNP =-- any type					
					Outputfallback may be configured, with continuous monitoring of output control and output reset in case of internal fault	
$\begin{aligned} & \text { TSX DEY } \\ & 16 A 5 \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 16FK } \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 32D2K } \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 64D2K } \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 32D3K } \end{aligned}$	$\begin{aligned} & \text { TSX DMY } \\ & \text { 28FK } \end{aligned}$	$\begin{aligned} & \text { TSX DMY } \\ & 28 R F K \end{aligned}$
43520/9					43520/10	

Premium automation platform

Discrete I/O modules
Discrete output selection guide

Connecting outputs to screw terminal blocks for bare wires or wires fitted with either cable ends or open/closed cable tags

Via 20-way screw terminals : TSX BLY 01

TSX DSY 08T2

43520/9
(minimum cross-section $0.28 \mathrm{~mm}^{2}$, maximum $1.5 \mathrm{~mm}^{2}$)

Via 20-way HE 10 connectors

8 or 16 channels, with or without LED, with common or 2 terminals per channel

8 or 16 relay channels with 1 " N / O ", 1 or 2 " C / O " or transistor, $=-5 \ldots 48 \mathrm{~V}$, =. 24 V , $\sim 24 \ldots 240 \mathrm{~V}, 1$ or 2 terminals per channel

Yes (see pages 15003/2 and 15012/2)

Output fallback may be configured, with continuous monitoring of output control and output reset in case of internal fault
Yes
Protected
Positive

| TSX DSY |
| :--- | :--- | :--- | :--- | :--- |
| 08R5A | 08R4D | $08 S 5$ | $16 S 5$ | $16 S 4$ |

TSX DSY
64T2K

Premium automation platform

Discrete I/O modules

Characteristics
pages 43520/5 to 43520/8
References
pages 43520/9 and 43520/10
Connections
pages 43520/11 to 43520/13

Connection principle

Connecting modules with screw terminal blocks

Discrete I/O module terminal blocks have a device for automatically transferring the coding when first used. This prevents manipulation errors when a module is replaced. This coding ensures electrical compatibility for the type of module. Each terminal can accept bare wires or wire with cable ends with open tags.
The capacity of each terminal is :

- Minimum : $1 \times 0.2 \mathrm{~mm}^{2}$ wire (AWG 24) without cable end
- Maximum : $1 \times 2 \mathrm{~mm}^{2}$ wire (AWG 14) without cable end or $1 \times 1.5 \mathrm{~mm}^{2}$ wire (AWG 15) with cable end

Screw connection terminal blocks are equipped with captive screws.
The maximum terminal block capacity is $16 \times 1 \mathrm{~mm}^{2}$ (AWG 17) wires $+4 \times 1.5 \mathrm{~mm}^{2}$ (AWG 15) wires.
Connecting modules with HE 10 connectors

Preformed cable with 20 wires, 22-gauge ($0.324 \mathrm{~mm}^{2}$)
Used for simple and direct wire to wire connection of the I/O of the module with connectors 1 to the sensors, preactuators or terminals.
This preformed cable 3 comprises :

- An insulated HE10 2 connector at one of the ends, with $20 \times 0.34 \mathrm{~mm}^{2}$ cross-section sheathed wires.
- At the other end 4 , flying leads differentiated by a colour code conforming to standard DIN 47100.

TSX CDP 301 : 3 metres long
TSX CDP 501: 5 metres long
TSX CDP 1001: 10 metres long
Rolled ribbon cable with sheath, 28 -gauge ($0.08 \mathrm{~mm}^{2}$)
Used for connecting I/O of modules with HE 10 connectors 1 to Telefast 2 fast wiring 2 connection and adaptation interfaces. This cable 3 has 2 HE 10 connectors 4 and a rolled ribbon cable with sheath with $0.08 \mathrm{~mm}^{2}$ crosssection wires.
Given the small cross-section of the wires, it is recommended for use with low current I/O only (100 mA maximum per input or output).

TSX CDP 102: 1 metre long TSX CDP 202 : 2 metres long TSX CDP 302 : 3 metres long

Connection cable, 22-gauge

($0.324 \mathrm{~mm}^{2}$)

Used for connecting the I/O of modules with HE 10 connectors 1 to Telefast 2 fast wiring 2 connection and adaptation interfaces. This cable 5 has 2 insulated HE 10 connectors 6 and a cable for carrying higher currents (500 mA maximum).

TSX CDP 053 : 0.5 metres long
TSX CDP 103: 1 metre long
TSX CDP 203 : 2 metres long TSX CDP 303:3 metres long TSX CDP 503 : 5 metres long

Premium automation platform

Discrete I/O modules

Characteristics
pages 43520/5 to 43520/8
References
pages 43520/9 and 43520/10
Connections
pages 43520/11 to 43520/13

Connection principle (continued), description

Connection to Tego Dial and Tego Power systems

TSX DEY 16FK/32D2K/64D2K input modules and TSX DSY 32T2K/64T2K output modules 1 are specially designed for use in conjunction with Tego Dial and Tego Power systems (1).
The modules are easily connected using a TSX CDP ••3 connecting cable 2 to the Dialbase sub-base APE-1B24M 3 installed on the Dialpack terminal 4 equipped with a panel 5 which enables operator dialogue.
(1) See pages $15000 / 2$ to $15012 / 3$.

Description

Discrete I/O modules are standard format (1 slot). They have a plastic case which ensures IP 20 protection of the electronics.

Discrete I/O modules with screw terminal connection

1 A display block for channels and module diagnostics
2 A removable screw terminal for direct connection of the I/O to the sensors and preactuators, TSX BLY 01 (connectors to be ordered separately)

3 A pivoting cover for accessing the terminal block screws and holding the identification label

4 A rotating support containing the module locating device

Discrete I/O modules with connection via HE 10 connector

1 A display block for channels and module diagnostics
2 HE 10 connectors, protected by a cover. They are used to connect the I/O to sensors and preactuators either directly, or via Telefast 2 connection sub-bases.

Premium automation platform

Discrete I/O modules

Characteristics
pages 43520/5 to 43520/8
References:
pages 43520/9 and 43520/10
Connections
pages 43520/11 to 43520/13

Functions

Functions

- I/O assignment : each module is functionally organised into groups of 8 channels. Each group of channels can be assigned a specific application task.
- Reactivation of outputs : if a fault has caused an output to trip, the output can be reactivated if no other terminal fault is present. The reactivation command, defined during configuration, can be automatic (reactivation every 10 seconds) or controlled via the program. Reactivation is carried out in groups of 8 channels. This function can be accessed on modules with solid state d.c. outputs. For relay and triac output modules protected by fuse, the same type of reactivation (automatic or via program) is necessary after replacement of one or more fuses.
- RUN/STOP command : an input can be configured to control the RUN/STOP mode for the PLC

The command is accepted on a rising edge. A STOP command via an input takes priority over a change to RUN via the terminal or via a network command.

- Output fallback : when an application is placed in STOP mode, outputs can be set to a state which is not harmful to the application. This state, known as the fallback position, is defined for each module when its outputs are configured. This configuration enables the choice between :
- fallback : channels are set to state 0 or 1 depending on the fallback value entered
- maintain : outputs retain the state they were in before the PLC stopped
- Diagnostic functions :
- module diagnostics : any exchange fault preventing normal operation of an output module or fast input module is signalled. Similarly, any internal module fault is signalled.
- process diagnostics : sensor/preactuator voltage check, terminal block presence check, short-circuit and overload check, sensor voltage check, preactuator voltage check.
- Specific functions of the TSX DEY 16FK and TSX DMY 28 FK module inputs :
- latching : accepts particularly short pulses with a duration of less than the PLC scan time
- event input : enables events to be accepted and ensures their immediate processing (processing on interrupt). These inputs are associated with event processing (EVTi) and defined in configuration mode where :
$\mathrm{i}=0$ to 31 for TSX P57 1•3M processors, $\mathrm{i}=0$ to 63 for TSX P57 2•3M/3•3M/453M and T PCX 57 203M/353M processors.
Event processing can be triggered on a rising edge $(0 \rightarrow 1)$ or falling edge $(1 \rightarrow 0)$ of the associated input. A Masking/ Unmasking function for TSX DEY 16FK/DMY 28FK inputs is available in online mode.
- programmable input filtering : inputs are equipped with filtering which can be configured for each channel. Inputs are filtered by a fixed analogue filter which ensures a maximum immunity of 0.1 ms for filtering line interference and by a digital filter which can be configured from 0.1 to 7.5 ms in increments of 0.5 ms .
- Reflex and timer functions for the TSX DMY 28RFK module : can be used to create applications which require a faster response time than the FAST task or event processing ($<500 \mu \mathrm{~s}$). These control system functions are executed in the module and are independent of the PLC task. They are programmed using PL7 Junior/Pro software in configuration mode.
- Removal when powered up : due to their integrated devices, I/O modules (including application-specific modules) can be removed and connected while powered up.

2/3 wire compatibility					
Type of input	$--{ }^{--2} \text { V }$ type 1 positive logic	$\begin{aligned} & \hline-24 / 48 \mathrm{~V} \\ & \text { type } 2 \\ & \text { positive } \\ & \text { logic } \\ & \hline \end{aligned}$	$-\overline{--} 24 \mathrm{~V}$ negative logic	$\begin{aligned} & \sim 24 / 48 \mathrm{~V} \\ & \sim 100 \ldots . .120 \mathrm{~V} \\ & \text { type } 2 \end{aligned}$	$\sim 200 . . .240 \mathrm{~V}$ type 2
Type of sensor					
All 3 wire =-- sensors, PNP					
All 3 wire $=-$ sensors, NPN					
Telemecanique 2-wire =- sensor or others with the following characteristics: - residual voltage, closed $\leq 7 \mathrm{~V}$ - minimum switching current $\leq 2.5 \mathrm{~mA}$ - residual current, open $\leq 1.5 \mathrm{~mA}$					
2-wire $=-/ \sim$ sensor					(1)
2-wire \sim sensor					(1)

(1) In nominal voltage range $\sim 220 . .240 \mathrm{~V}$.

Compatible

Premium automation platform

Discrete I/O modules

Characteristics

References
pages 43520/9 and 43520/10
Connections
pages 43520/11 to 43520/13

Environment

Conformity to standards
NFC 63-850, IEC 664, IEC 1131-2, UL 508, UL7 46C, CSA 22-2 No. 142
Temperature derating
Characteristics at $60^{\circ} \mathrm{C}$ are ensured for 60% of inputs and 60% of outputs at state 1
Characteristics of input modules =-- 24/48 V

Type of module		TSX DEY 08D2/16D2	$\begin{aligned} & \text { TSX DEY } \\ & \text { 16D3 } \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 16A2 } \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 16FK } \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 32D2K } \end{aligned}$	$\begin{aligned} & \text { TSX DEY } \\ & \text { 64D2K } \end{aligned}$	$\begin{array}{\|l} \text { TSX DEY } \\ \text { 32D3K } \\ \hline \end{array}$
Number of inputs		8/16	16	16	16	32	64	32
Connections		Screw termina	Screw terminal	Screw terminal	HE 10 connector	HE 10 connector	HE 10 connector	HE 10 connector
input values	V	$\begin{aligned} & =-24 \\ & (\text { pos. logic) } \end{aligned}$	$\begin{aligned} & =-48 \\ & \text { (pos. logic) } \end{aligned}$	$\begin{aligned} & =-24 \\ & \text { (neg. logic) } \end{aligned}$	$\begin{aligned} & -=24 \\ & \text { (pos. logic) } \\ & \text { Fast inputs } \end{aligned}$	$\begin{aligned} & =-24 \\ & (\text { pos. logic) } \end{aligned}$	$\begin{aligned} & =-24 \\ & \text { (pos. logic) } \end{aligned}$	$\begin{aligned} & =-=48 \\ & \text { (pos. logic) } \end{aligned}$
Current	mA	7	7	16	3.5	3.5	3.5	7
Sensor supply (ripple included)	V	19... 30	38... 60	19... 30	19... 30	19... 30	19... 30	38... 60
Input limit values At state 1 Voltage Current	V	≥ 11	≥ 30	\leq Ual-14 V	≥ 11	≥ 11	≥ 11	≥ 30
	mA	≥ 6.5	≥ 6.5	≥ 6.5	≥ 3	≥ 3	≥ 3	$\begin{aligned} & \geq 6.5 \text { (for } \\ & \mathrm{V}=30 \mathrm{~V} \text {) } \end{aligned}$
At state $0 \quad$ Voltage	V	≤ 5	≤ 10	\geq Ual-5	≤ 5	≤ 5	≤ 5	≤ 10
Current	mA	≤ 2	≤ 2	≤ 2	≤ 1.5	≤ 1.5	≤ 1.5	≤ 2
Input impedance at state 1	$\mathrm{K} \Omega$	4	7	1.6	6.3	6.3	6.3	4
Response Typical	ms	4	4	10	Configurable	4	4	4
time Maximum	ms	7	7	20	from 0.1 to 7.5	7	7	7
IEC 1131-2 conformity		Type 2	Type 2	Type 2	Type 1	Type 1	Type 1	Type 2
Compatibility 2-wire/3-wire prox. sensor		IEC 947-5-2	IEC 947-5-2	IEC 947-5-2	See table on p	age 43520/4		IEC 947-5-2
Isolation resistance	M Ω	>10 at -s 500						
Dielectric strength		$1500 \mathrm{Vrms}-5$	0/60 Hz for 1 m	inute				
Type of input		Current sink		Resistive	Current sink			
Consumption		See page 436	5/2					
Dissipated power No. = No. of channels	W	$1+0.15 \mathrm{Nb}$	$1+0.3 \mathrm{Nb}$	$1+0.4 \mathrm{Nb}$	$1.2+0.1 \mathrm{Nb}$	$1+0.1 \mathrm{Nb}$	$1.5+0.1 \mathrm{Nb}$	$2+0.1 \mathrm{Nb}$

Characteristics of a.c. input modules

Type of module		TSX DEY 16A2	TSX DEY 16A3	TSX DEY 16A4	TSX DEY 16A5
Number of inputs		16	16	16	16
Nominal input values Voltage	V	~ 24	~ 48	~ 110	~ 220
Current	mA	15	16	12	15
Frequency	Hz	47... 63	47... 63	47... 63	47... 63
Sensor supply	V	20... 26	40... 52	85... 132	170... 264
Input limit values At state $1 \quad$ Voltage	V	10	29	74	159
Current	mA	6	6	6	6
At state $0 \quad$ Voltage	V	5	10	20	40
Current	mA	4	4	4	4
Input impedance at state 1 for 24 V	K Ω	1.6	3.2	9.2	20
Response Typical	ms	15	10	10	10
time Maximum	ms	20	20	20	20
IEC 1131-2 conformity		Type 2	Type 2	Type 2	Type 2
Compatibility 2-wire/3-wire prox. sensor		IEC 947-5-2			
Isolation resistance	M Ω	>10 at $-\mathrm{-} 500 \mathrm{~V}$			
Dielectric strength		$1500 \mathrm{~V} \mathrm{rms} \mathrm{-} 50 / 60 \mathrm{~Hz}$ for 1 minute			
Type of input		Resistive ${ }^{\text {a }}$ (Capacitive			
Consumption		See page 43600/2			
Dissipated power	W	0.89	0.86	0.83	0.9

Premium automation platform

Discrete I/O modules

Characteristics (continued)

References
pages 43520/9 and 43520/10
Connections
pages 43520/11 to 43520/13

Characteristics of solid state modules with terminal block

Type of module		TSX DSY 08T2/16T2	TSX DSY 08T22	TSX DSY 08T31	TSX DSY 16T3
Output nominal values Voltage	V	-24	- 24	- 48	- 48
Current	A	0.5	2	1	0.250
Output limit values Voltage	V	19... 30	19... 30	38... 60	38... 60
Current/channel	A	0.625	2.5	1.25	0.31
Current/module	A	4/7	14	7	4
Leakage current At state 0	mA	< 0.5	<1	<1	
Residual voltage	V	< 1.2	<0.5	<1	<0.5
Min. load impedance	Ω	48	12	48	192
Response time		1.2 ms	$200 \mu \mathrm{~s}$	200 ss	1.2 ms
Switching frequency on inductive load	Hz	0.5/LI ${ }^{2}$			
Built-in protection Against overvoltages		Yes, by Transil diode			
Against inversions		Yes, by reverse mounted diode, use a fuse on the +24 V or +48 V of the preactuators			
Against short-circuits and overloads		Electronic tripping on reactivation (automatic or via program)			
Preactuator voltage detection threshold	V	16		34	
Isolation resistance	M Ω	>10 at -s 500 V			
Dielectric strength		$1500 \mathrm{~V} \mathrm{rms} \mathrm{-} 50 / 60 \mathrm{~Hz}$ for 1 minute			
Consumption		See page 43605/2			
Nominal power Dissipated	W	1/1.1	1.3	2.2	2.4
Per output x module current		+ (0.75 W)	+ (0.2 W)	+ (0.55 W)	+ (0.85 W)

Characteristics of 50 VA relay output modules

(1) For 0.1×10^{6} operating cycles.
(2) For 0.15×10^{6} operating cycles
(3) For 0.3×10^{6} operating cycles.
(4) For 0.5×10^{6} operating cycles.
(5) For 0.7×10^{6} operating cycles
(6) For 1×10^{6} operating cycles.
(7) For 1.5×10^{6} operating cycles.
(8) For 2×10^{6} operating cycles
(9) For 3×10^{6} operating cycles.
(10) For 5×10^{6} operating cycles.
(11) For 10×10^{6} operating cycles.

Premium automation platform

Discrete I/O modules

Characteristics (continued)

References :
pages 43520/9 and 43520/10
Connections
pages 43520/11 to 43520/13

Characteristics of 100 VA relay output modules

Characteristics of triac output modules

Type of module		TSX DSY 08S5	TSX DSY 16S5	TSX DSY 16S4
Operating voltage a.c. Nominal	V	$\sim 48 . . .240$		$\sim 24 . . .120$
Limit	V	$\sim 41 . . .264$		$\sim 20 . .132$
Permissible current	A	2 A/channel-12 A/module	$1 \mathrm{~A} /$ channel- $12 \mathrm{~A} /$ module	$1 \mathrm{~A} /$ channel- $12 \mathrm{~A} /$ module
Response time Activation	ms	≤ 10		
Deactivation	ms	≤ 10		
Built-in protection Against overvoltages		Ge-Mov		
Against overloads and short-circuits		$\begin{aligned} & \text { Fast blow fuse per common } \\ & \leq 5 \mathrm{~A} \end{aligned}$		Non interchangeable fireproof protection per common, 10 A
Isolation resistance	M Ω	>10 at -500 V		
Dielectric strength		2000 V rms - $50 / 60 \mathrm{~Hz}$		
Consumption		See page 43605/2		See page 43605/2
Dissipated power		0.5 W + 1 W/A per output	0.85 W + 1 W/A per output	$0.85 \mathrm{~W}+1$ W/A per output

(1) For 0.1×10^{6} operating cycles.
(2) For 0.15×10^{6} operating cycles.
(3) For 0.3×10^{6} operating cycles.
(4) For 0.5×10^{6} operating cycles.
(5) For 0.7×10^{6} operating cycles.
(6) For 1×10^{6} operating cycles.
(7) For 1.5×10^{6} operating cycles.
(8) For 2×10^{6} operating cycles.
(9) For 3×10^{6} operating cycles.
(10) For 5×10^{6} operating cycles.
(11) For 10×10^{6} operating cycles.

Premium automation platform

Discrete I/O modules

Characteristics (continued)
References
pages 43520/9 and 43520/10
Connections
pages 43520/11 to 43520/13
Characteristics of solid state output modules with connector

Type of module				TSX DSY 32T2K	TSX DSY 64T2K
Logic				Positive	
Operating voltage (ripple included)	Direct current	Nominal	V	--- 24	
		Limit	V	--- 19...30, possible up to 34 V , limited to 1 hr per 24 hr period	
Permissible current			A	0.1 A/channel, - 3.2 A/module	0.1 A/channel, - 5 A/module
Filament lamp max power			W	1.2	
Residual voltage			V	<1.5 for $\mathrm{l}=0.1 \mathrm{~A}$	
Response time			ms	1.2	
Paralleling of outputs				Yes : 3 max	
Leakage current			mA	<0.1 for $\mathrm{U}=30 \mathrm{~V}$	
Compatibility with d.c. inputs				IEC 1 and 2	
Built-in protection	Against	rvoltages		Yes, transil diode	
	Against and sh	roads rcuits		Automatic trip after 15 ms	
	Against inversio			Reverse diode (place a 3 A fuse on the 24 V)	
Load impedance	At state		Ω	>220	
Isolation resistance			M Ω	>10 at $=-500 \mathrm{~V}$	
Dielectric strength				1500 V rms - 50/60 Hz for 1 minute	
Consumption				See page 43605/2	
Dissipated power			W	1.6 W + 0.1 W/output	2.4 W + 0.1 W/output

Characteristics of I/O mixed modules with connector

Type of module			TSX DMY 28FK/TSX DMY 28RFK	
			Fast inputs --- 24 V	Solid state outputs --- 24 V
Nominal values	Voltage	V	---24	--2 24
	Current	mA	3.5	500
Filament lamp max power		W	-	6
Input limit values	At state $1 \quad \begin{aligned} & \text { Voltage } \\ & \text { Current }\end{aligned}$	V	≥ 11	-
		mA	≥ 3	-
	At state $0 \quad \begin{aligned} & \text { Voltage } \\ & \text { Current }\end{aligned}$	V	≤ 5	-
		mA	≤ 1.5	-
	Sensor power supply (ripple included)	V	19... 30 (possible up to 30 V , limited to 1 in every 24 hours)	-
Output limit values	Voltage	V	-	19... 30 (1)
	Current/channel		A	- 0.5
	Current/module	A	-	4
Leakage current	At state 0	mA	-	< 1
Residual voltage	At state 1	V	-	< 1.2
Minimum load impedance		Ω	-	48
Filter time	Default	ms	4	-
	Configurable	ms	0.1...7.5 (at intervals of 0.5)	-
Response time (2)		ms	-	0.6
Type of input			Current sink	-
Paralleling of inputs (3)			Yes	-
Switching frequency on inductive load		Hz	-	0.5/LF
IEC 1131-2 conformity			Yes type 1	-
Built-in protection	Against overvoltages		-	Yes, by transil diode
	Against inversions		-	Yes, by inverted diode. Fuse required on +24 V of preactuators
	Against short-circuits and overloads	ms	-	15
Compatibility	2-wire proximity sensor		Yes (Telemecanique sensor and < 1.5 mA leakage current)	-
	3-wire proximity sensor		Yes	-
Preactuator voltage detection threshold		V	-	16
Isolation resistance		M Ω	>10 at.--500 V	
Dielectric strength			1500 V rms - $50 / 60 \mathrm{~Hz}$ for 1 minute	
Consumption 5 V			See page 43605/2	
Consumption 24 V	Sensor Typical	mA	20	-
	Maximum	mA	30	-
	Preactuators	mA	-	See page 43605/2
Dissipated power		W	$1.2+0.1 \times$ no. of inputs at 1	-
Nominal power	Dissipated	W	-	1
	Per output x module current	W	-	+ (0.75)
Temperature derating	Characteristics at $60{ }^{\circ} \mathrm{C}$		Ensured for 60 \% of inputs at state 1	Ensured for 60% of the maximum current of the module
(1) 34 V possible for 1 hour in every 24 (2) All outputs are equipped with an ele (3) This characteristic enables several in	hour period tro-magnet rapid demagnetisa puts to be wired in parallel on	the s	uit. Discharge time for electro-magnets module, or on different modules for	< L/R put redundancy

Premium automation platform

Discrete I/O modules

Characteristics
pages 43520/5 to 43520/8
Connections pages 43520/11 to 43520/13

References

Discrete input modules (screw terminal block not supplied)

TSX DEY 08D2

TSX DEY 16FK

TSX DEY 32D3K

TSX DSY 16T2

TSX DSY 64T2K

Type of current	Input voltage	Connection (1)	IEC 1131-2 conformity	Modularity (no. of channels)	Reference (2)	Weight kg
=-	24 V	Screw terminal	Type 2	8 isolated inputs	TSX DEY 08D2	0.300
	(pos. log.)	block		16 isolated inputs	TSX DEY 16D2	0.300
	$\begin{aligned} & 48 \mathrm{~V} \\ & \text { (pos. log.) } \end{aligned}$	Screw terminal block	Type 2	16 isolated inputs	TSX DEY 16D3	0.300
	$\begin{aligned} & 24 \mathrm{~V} \\ & \text { (pos. log.) } \end{aligned}$	HE 10 connector	Type 1	16 isolated fast inputs (3)	TSX DEY 16FK	0.300
				32 isolated inputs	TSX DEY 32D2K	0.300
				64 isolated inputs	TSX DEY 64D2K	0.370
	$\begin{aligned} & 24 \mathrm{~V} \\ & \text { (neg. log.) } \end{aligned}$	Screw terminal block	Type 2	16 isolated inputs	TSX DEY 16A2	0.310
	$\begin{aligned} & 48 \mathrm{~V} \\ & \text { (pos. log.) } \end{aligned}$	HE 10 connector	Type 2	32 isolated inputs	TSX DEY 32D3K	0.310
$50 / 60 \mathrm{~Hz}$	24 V	Screw terminal block	Type 2	16 isolated inputs	TSX DEY 16A2	0.310
	48 V	Screw terminal block	Type 2	16 isolated inputs	TSX DEY 16A3	0.320
	100...120 V	Screw terminal block	Type 2	16 isolated inputs	TSX DEY 16A4	0.320
	200... 240 V	Screw terminal block	Type 2	16 isolated inputs	TSX DEY 16A5	0.360

Discrete output modules (screw terminal block not supplied)

Type of current	Output voltage	Connection (1)	IEC 1131-2 conformity	Modularity (no. of channels)	Reference (2)	Weight kg
solid state	24 V/0.5 A (pos. log.)	Screw terminal block	Yes	8 protected outputs	TSX DSY 08T2	0.320
	$\begin{aligned} & 24 \mathrm{~V} / 2 \mathrm{~A} \\ & \text { (pos. log.) } \end{aligned}$	Screw terminal block	Yes	8 protected outputs	TSX DSY 08T22	0.410
	$\begin{aligned} & 24 \mathrm{~V} / 0.5 \mathrm{~A} \\ & \text { (pos. log.) } \end{aligned}$	Screw terminal block	Yes	16 protected outputs	TSX DSY 16T2	0.340
	$\begin{aligned} & 48 \mathrm{~V} / 1 \mathrm{~A} \\ & \text { (pos. log.) } \end{aligned}$	Screw terminal block	Yes	8 protected outputs	TSX DSY 08T31	0.320
	$\begin{aligned} & 48 \mathrm{~V} / 0.25 \mathrm{~A} \\ & \text { (pos. log.) } \end{aligned}$	Screw terminal block	Yes	16 protected outputs	TSX DSY 16T3	0.340
	$\begin{aligned} & 24 \mathrm{~V} \\ & 0.1 \mathrm{~A} / \text { chan. } \end{aligned}$	HE 10 connector	Yes	32 protected outputs	TSX DSY 32T2K	0.300
	(pos. log.)			64 protected outputs	TSX DSY 64T2K	0.360
$\begin{aligned} & =-=\text { or } \sim \\ & \text { relay } \end{aligned}$	$\begin{aligned} & =-24 \mathrm{~V} \\ & 3 \mathrm{~A} . \end{aligned}$	Screw terminal block	Yes	8 outputs, not protected	TSX DSY 08R5	0.330
	$\begin{aligned} & \sim 24 \text { to } \\ & \underline{240 \mathrm{~V} / 3 \mathrm{~A}} \\ & \hline \end{aligned}$			16 outputs, not protected	TSX DSY 16R5	0.380
	$\begin{aligned} & =24 \text { to } \\ & 48 \mathrm{~V} / 5 \mathrm{~A} \\ & 24 \text { to } \\ & 240 \mathrm{~V} / 5 \mathrm{~A} \end{aligned}$	Screw terminal block	Yes	8 protected outputs	TSX DSY 08R5A	0.420
=relay	$\begin{aligned} & 24 \ldots . .120 \mathrm{~V} \\ & 5 \mathrm{~A} \\ & \hline \end{aligned}$	Screw terminal block	Yes	8 protected outputs	TSX DSY 08R4D	0.370
triac	$\begin{aligned} & 24 \ldots 120 \mathrm{~V} \\ & 1 \mathrm{~A} / \text { channel } \end{aligned}$	Screw terminal block	Yes	16 outputs, not protected	TSX DSY 16S4	0.380
	$\begin{aligned} & 48 . . .240 \mathrm{~V} \\ & 1 \text { A/channel } \end{aligned}$	Screw terminal block	Yes	16 protected outputs	TSX DSY 16S5	0.310
	$\begin{aligned} & 48 \ldots 240 \mathrm{~V} \\ & 2 \mathrm{~A} / \text { channel } \end{aligned}$	Screw terminal block	Yes	8 protected outputs	TSX DSY 08S5	0.340

[^1] (2) Multilingual Discrete I/O Quick Reference Guide included with each TSX P57 ©0M processor. TSX DM 57e installation manual to be ordered separately (see page 43900/2).
(3) Module with isolated fast inputs (filtering from 0.1 to 7.5 ms) which can activate the event task.

Premium automation platform

Discrete I/O modules

Characteristics
pages 43520/5 to 43520/8
Connections pages 43520/11 to 43520/13

TSX DMY 28FK/28RFK

TSX BLY 01

ABE-7TES160

TSX CDP •01

TSX CDP •03

Discrete I/O modules

Number of I/O	Connection (1)	No. and type of inputs	No. and type of outputs	IEC 1131-2 conformity	Reference (2)	Weight kg
28	HE 10 connector	$\begin{aligned} & 16 \text { fast } \\ & =-24 \mathrm{~V} \\ & \text { (pos.log.) } \\ & \text { (3) } \end{aligned}$	12, solid state =- $24 \mathrm{~V} / 0.5 \mathrm{~A}$ protected	Input, type 1 Output, yes	TSX DMY 28FK	0.320
			12 reflex or time-delayed =- $24 \mathrm{~V} / 0.5 \mathrm{~A}$ protected	Input, type 1	TSX DMY 28RFK	0.350

Connection terminal block

Description	Use	Reference	Weight kg
Screw connection terminal block	To be ordered separately with each I/O module with screw terminal block connection	TSX BLY 01	

Simulator sub-base

Description	Use	Reference	Weight kg
16-channel Telefast 2 simulator sub-base for discrete I/O	Comprises 2 HE 10 connectors which allow it to be inserted between the PLC I/O module and the Telefast I/O sub-base $A B E-7 H / P / R / S$. Enables display, forcing, inhibiting or continuity of discrete I/O	ABE-7TES160	0.350

Connecting cables for I/O modules fitted with HE 10 connectors

Description	Constitution Use	Length	Section	Reference	Weight kg
20-wire preformed cable	1 HE 10 connector with colour coded flying leads	3 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 301	0.400
		5 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 501	0.660
		10 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 1001	1.210
Rolled ribbon connecting cable	2 HE 10 connectors for Telefast 2 system	1 m	$0.08 \mathrm{~mm}^{2}$	TSX CDP 102	0.090
		2 m	$0.08 \mathrm{~mm}^{2}$	TSX CDP 202	0.170
		3 m	$0.08 \mathrm{~mm}^{2}$	TSX CDP 302	0.250
Connecting cables	2 HE 10 connectors for Telefast 2 system	0.5 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 053	0.085
		1 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 103	0.150
		2 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 203	0.280
		3 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 303	0.410
		5 m	$0.324 \mathrm{~mm}^{2}$	TSX CDP 503	0.670

(1) By connector: module supplied with cover.
(2) Multilingual discrete I/O Quick Reference Guide included with each Premium processor. TSX DM $572 \bullet$ installation manual to be ordered separately (see page 43900/2).
(3) Module with isolated fast inputs (filtering from 0.1 to 7.5 ms) which can activate the event task.

Premium automation platform

Discrete I/O modules

Connections

Characteristics
pages 43520/5 to 43520/8
References
pages 43520/9 and 43520/10

TSX DEY 08D2

FU1: 0.5 A fast-blow fuse

TSX DEY 32D2K/64D2K/32D3K

TSX DEY 16D3

FU1: 0.5 A fast-blow fuse

TSX DEY 16A2 (negative logic)

FU1: 0.5 A fast-blow fuse

TSX DEY 16FK

FU1: 0.5 A fast-blow fuse

TSX DEY 16A2/16A3/16A4/16A5

UV : ~ 24 V for TSX DEY 16A2
~ 48 V for TSX DEY 16A3
~ 110 V for TSX DEY 16A4
~ 220 V for TSX DEY 16A5
FU1: 0.5 A fast-blow fuse

FU1: 0.5 A fast-blow fuse

	UV	A	B	C	D
TSX DEY 32D2K	--24 V	$100 \rightarrow 15$	$116 \rightarrow 31$	-	-
TSX DEY 32D3K	--48 V	$100 \rightarrow 15$	-	$\mid 32 \rightarrow 47$	-
TSX DEY 64D2K	--24 V	$100 \rightarrow 15$	$116 \rightarrow 31$	$132 \rightarrow 47$	$148 \rightarrow 63$

Premium automation platform

Discrete I/O modules

Connections (continued)

Characteristics
pages 43520/5 to 43520/8
References
pages 43520/9 and 43520/10

FU2 : 6.3 A fast-blow fuse

TSX DSY 32T2/64T2K

FU2 : 2 A fast-blow fuse

TSX DSY 08T22

FU2 : 16 A fast-blow fuse

	A	B	C	D
TSX DSY 32T2K	$\mathrm{Q} 00 \rightarrow 15$	$\mathrm{Q} 16 \rightarrow 31$	-	-
TSX DSY 64T2K	$\mathrm{Q} 00 \rightarrow 15$	$\mathrm{Q} 16 \rightarrow 31$	$\mathrm{Q} 32 \rightarrow 47$	$\mathrm{Q} 48 \rightarrow 63$

TSX DSY 16T2/16T3

UV : =- 24 V for TSX DSY 16T2
=- 48 V for TSX DSY 16 T 3
FU2 : fast-blow fuse
6.3 A for TSX DSY $16 T 2$

10 A for TSX DSY 16T3

TSX DSY 08R5/16T5

Δ
~ $19 \ldots 240 \mathrm{~V}$
FU : fuse to be rated according to load For protection of integrated outputs, see page 43520/5

TSX DSY 08T31

FU2 : 10 A fast-blow fuse

TSX DSY 08R5/08R4D

UV : ~ 19... 240 V or =- 19... 60 V for TSX DSY 08R5A
=- 24... 130 V for TSX DSY 08R4D
FU : 6.3 A fast-blow fuse
(1) Connection must be made for
--- 24 V or $\sim 24 \mathrm{~V}$ power supply

Premium automation platform

Discrete I/O modules

Connections (continued)
Characteristics
pages 43520/5 to 43520/8
References
pages 43520/9 and 43520/10

TSX DSY 16S4

FU : 6.3 A fast-blow fuse

TSX DSY 16S5

FU : interchangeable 5A fast-blow fuse

TSX DSY 08S5

FU : interchangeable 5A fast-blow fuse

TSX DMY 28FK/28RFK

FU2 : 2A fast-blow fuse

FU1: 0.5A fast-blow fuse

[^0]: 1) Product supplied with a bilingual Quick Reference Guide : English and French.
[^1]: (1) By connector : module supplied with cover. By screw terminal block : module supplied without connection block.

