

Ceredo Title V Renewal

Moats, Nikki B <nikki.b.moats@wv.gov>

**David Keatley** <david\_keatley@tcenergy.com> To: "nikki.b.moats@wv.gov" <nikki.b.moats@wv.gov> Cc: Trevor Galley <trevor\_galley@tcenergy.com> Wed, Jan 19, 2022 at 11:56 AM

Mr. Moats,

Attached are our comments for R30-09900013-2022. Engine G3 has a bhp of 812 and we plan to update this in a R13 application.

David J. Keatley, PE

**Environmental Analyst** 

**USNG Environmental Compliance** 

Email: david\_keatley@tcenergy.com

Desk: (304) 357-2443 or extension 2443

Mobile: (304) 993-4427

1700 Maccorkle Ave SE

4<sup>th</sup> Floor Charleston, WV

25314



TCEnergy.com

We respect your right to choose which electronic messages you receive. To stop receiving this and similar communications from TC Energy please Click here to unsubscribe.

If you are unable to click the request link, please reply to this email and change subject line to "UNSUBSCRIBE".

This electronic message and any attached documents are intended only for the named addressee(s). This communication from TC Energy may contain information that is privileged, confidential or otherwise protected from disclosure and it must not be disclosed, copied, forwarded or distributed without authorization. If you have received this message in error, please notify the sender immediately and delete the original message.

Thank you

#### 2 attachments

DPPermit R30-09900013-2022-ERM Comments.docx 312K

DPFactSheet R30-09900013-2022\_ERM Comments.doc 114K

West Virginia Department of Environmental Protection Division of Air Quality

> Harold D. Ward Cabinet Secretary

# Permit to Operate



Pursuant to **Title V** of the Clean Air Act

Issued to:

Columbia Gas Transmission, LLC Ceredo Compressor Station R30-09900013-2022

Laura M. Crowder Director, Division of Air Quality

Issued: Draft/Proposed • Effective: Draft/Proposed Expiration: Draft/Proposed • Renewal Application Due: Draft/Proposed

# Permit Number: **R30-09900013-2022** Permittee: **Columbia Gas Transmission, LLC** Facility Name: **Ceredo Compressor Station** Permittee Mailing Address: **1700 MacCorkle Avenue, SE, Charleston, WV 25314**

This permit is issued in accordance with the West Virginia Air Pollution Control Act (West Virginia Code §§ 22-5-1 et seq.) and 45CSR30 — Requirements for Operating Permits. The permittee identified at the above-referenced facility is authorized to operate the stationary sources of air pollutants identified herein in accordance with all terms and conditions of this permit.

| Facility Location:        | Ceredo, Wayne County, West Virginia             |  |  |
|---------------------------|-------------------------------------------------|--|--|
| Facility Mailing Address: | 1664 Walkers Branch Road, Huntington, WV 25704  |  |  |
| Telephone Number:         | (304) 453-7502                                  |  |  |
| Type of Business Entity:  | LLC                                             |  |  |
| Facility Description:     | Natural Gas Compressor Station                  |  |  |
| SIC Codes:                | 4922                                            |  |  |
| UTM Coordinates:          | 366.1 km Easting • 4247.7 km Northing • Zone 17 |  |  |
|                           |                                                 |  |  |

Permit Writer: Nikki Moats

Any person whose interest may be affected, including, but not necessarily limited to, the applicant and any person who participated in the public comment process, by a permit issued, modified or denied by the Secretary may appeal such action of the Secretary to the Air Quality Board pursuant to article one [§§ 22B-1-1 et seq.], Chapter 22B of the Code of West Virginia. West Virginia Code §22-5-14.

Issuance of this Title V Operating Permit does not supersede or invalidate any existing permits under 45CSR13, 14 or 19, although all applicable requirements from such permits governing the facility's operation and compliance have been incorporated into the Title V Operating Permit.

# **Table of Contents**

| 1.0 | Emission Units and Active R13, R14, and R19 Permits                                            |
|-----|------------------------------------------------------------------------------------------------|
| 2.0 | General Conditions4                                                                            |
| 3.0 | Facility-Wide Requirements13                                                                   |
| 4.0 | Source Specific Requirements [emission point ID(s): BL3, H1, H3]                               |
| 5.0 | Source Specific Requirements [emission point ID(s): E01, E02, E03, E04, E05, E06, E07, G3, G4] |
| 6.0 | Source Specific Requirements [emission point ID(s): E10]                                       |

#### 1.0 Emission Units and Active R13, R14, and R19 Permits

#### **Emission Units** 1.1.

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description                                                                | Year<br>Installed | Design<br>Capacity | Control<br>Device   |
|---------------------|----------------------|------------------------------------------------------------------------------------------|-------------------|--------------------|---------------------|
| 00501               | E01                  | Reciprocating Engine/Integral Compressor; Cooper-<br>Bessemer GMWH-8; 2-cycle, lean burn | 1954              | 2,800 HP           | N/A                 |
| 00502               | E02                  | Reciprocating Engine/Integral Compressor; Cooper-<br>Bessemer GMWH-8; 2-cycle, lean burn | 1954              | 2,800 HP           | N/A                 |
| 00503               | E03                  | Reciprocating Engine/Integral Compressor; Cooper-<br>Bessemer GMWH-8; 2-cycle, lean burn | 1954              | 2,800 HP           | N/A                 |
| 00504               | E04                  | Reciprocating Engine/Integral Compressor; Cooper-<br>Bessemer GMWH-8; 2-cycle, lean burn | 1957              | 2,800 HP           | N/A                 |
| 00505               | E05                  | Reciprocating Engine/Integral Compressor; Cooper-<br>Bessemer GMWH-8; 2-cycle, lean burn | 1958              | 2,800 HP           | N/A                 |
| 00506               | E06                  | Reciprocating Engine/Integral Compressor; Cooper-<br>Bessemer GMWH-8; 2-cycle, lean burn | 1960              | 2,800 HP           | N/A                 |
| 00507               | E07                  | Reciprocating Engine/Integral Compressor; Cooper-<br>Bessemer 8V-250; 2-cycle, lean burn | 1965              | 2,700 HP           | N/A                 |
| 00510               | E10                  | Solar Titan 250 Combustion Turbine                                                       | 2018              | 30,399 HP          | SoloNO <sub>x</sub> |
| 005G3               | G3                   | Reciprocating Engine/Generator; Waukesha F3521GL;<br>4-cycle, lean burn; emergency       | 1996              | 812 HP             | N/A                 |
| 005G4               | G4                   | Waukesha VGF-P48GL Emergency Generator                                                   | 2017              | 1,175 HP           | N/A                 |
| BLR3                | BL3                  | BL3 Hurst S-4-G-150-15 Boiler                                                            |                   | 6.276 MMBtu/hr     | N/A                 |
| HTR1                | H1                   | Fuel Gas Heater                                                                          | 1998              | 0.375 MMBtu/hr     | N/A                 |
| HTR3                | Н3                   | Heater                                                                                   | 2017              | 0.60 MMBtu/hr      | NA                  |
| n/a                 | n/a                  | Oil-Water Storage Tank                                                                   | 2017              | 900 Gallons        | None                |
| n/a                 | n/a                  | Waste Water Storage Tank                                                                 | 2017              | 5,000 Gallons      | None                |
| n/a                 | n/a                  | Condensate Storage Tank                                                                  | 2017              | 5,000 Gallons      | None                |

#### 1.2. Active R13, R14, and R19 Permits

The underlying authority for any conditions from R13, R14, and/or R19 permits contained in this operating permit is cited using the original permit number (e.g. R13-1234). The current applicable version of such permit(s) is listed below.

| Permit Number | Date of Issuance  |
|---------------|-------------------|
| R13-1856C     | December 18, 2017 |

West Virginia Department of Environmental Protection • Division of Air Quality Approved: Draft/Proposed • Modified: N/A

## 2.0 General Conditions

#### 2.1. Definitions

- 2.1.1. All references to the "West Virginia Air Pollution Control Act" or the "Air Pollution Control Act" mean those provisions contained in W.Va. Code §§ 22-5-1 to 22-5-18.
- 2.1.2. The "Clean Air Act" means those provisions contained in 42 U.S.C. §§ 7401 to 7671q, and regulations promulgated thereunder.
- 2.1.3. "Secretary" means the Secretary of the Department of Environmental Protection or such other person to whom the Secretary has delegated authority or duties pursuant to W.Va. Code §§ 22-1-6 or 22-1-8 (45CSR§30-2.12.). The Director of the Division of Air Quality is the Secretary's designated representative for the purposes of this permit.
- 2.1.4. Unless otherwise specified in a permit condition or underlying rule or regulation, all references to a "rolling yearly total" shall mean the sum of the monthly data, values or parameters being measured, monitored, or recorded, at any given time for the previous twelve (12) consecutive calendar months.

## 2.2. Acronyms

| CAAA                   | Clean Air Act Amendments                 | NSPS      | New Source Performance          |
|------------------------|------------------------------------------|-----------|---------------------------------|
| CBI                    | <b>Confidential Business Information</b> |           | Standards                       |
| CEM                    | Continuous Emission Monitor              | PM        | Particulate Matter              |
| CES                    | Certified Emission Statement             | $PM_{10}$ | Particulate Matter less than    |
| C.F.R. or CFR          | Code of Federal Regulations              |           | 10µm in diameter                |
| CO                     | Carbon Monoxide                          | pph       | Pounds per Hour                 |
| C.S.R. or CSR          | Codes of State Rules                     | ppm       | Parts per Million               |
| DAQ                    | Division of Air Quality                  | PSD       | Prevention of Significant       |
| DEP                    | Department of Environmental              |           | Deterioration                   |
|                        | Protection                               | psi       | Pounds per Square Inch          |
| FOIA                   | Freedom of Information Act               | ŜIC       | Standard Industrial             |
| HAP                    | Hazardous Air Pollutant                  |           | Classification                  |
| HON                    | Hazardous Organic NESHAP                 | SIP       | State Implementation Plan       |
| HP                     | Horsepower                               | $SO_2$    | Sulfur Dioxide                  |
| lbs/hr <i>or</i> lb/hr | Pounds per Hour                          | ТАР       | Toxic Air Pollutant             |
| LDAR                   | Leak Detection and Repair                | TPY       | Tons per Year                   |
| m                      | Thousand                                 | TRS       | Total Reduced Sulfur            |
| MACT                   | Maximum Achievable Control               | TSP       | Total Suspended Particulate     |
|                        | Technology                               | USEPA     | United States                   |
| mm                     | Million                                  |           | <b>Environmental Protection</b> |
| mmBtu/hr               | Million British Thermal Units per        |           | Agency                          |
|                        | Hour                                     | UTM       | Universal Transverse            |
| mmft³/hr <i>or</i>     | Million Cubic Feet Burned per            |           | Mercator                        |
| mmcf/hr                | Hour                                     | VEE       | Visual Emissions                |
| NA or N/A              | Not Applicable                           |           | Evaluation                      |
| NAAQS                  | National Ambient Air Quality             | VOC       | Volatile Organic                |
|                        | Standards                                |           | Compounds                       |
| NESHAPS                | National Emissions Standards for         |           | *                               |
|                        | Hazardous Air Pollutants                 |           |                                 |
| NO <sub>x</sub>        | Nitrogen Oxides                          |           |                                 |

# 2.3. Permit Expiration and Renewal

- 2.3.1. Permit duration. This permit is issued for a fixed term of five (5) years and shall expire on the date specified on the cover of this permit, except as provided in 45CSR§30-6.3.b. and 45CSR§30-6.3.c.
   [45CSR§30-5.1.b.]
- 2.3.2. A permit renewal application is timely if it is submitted at least six (6) months prior to the date of permit expiration.
   [45CSR§30-4.1.a.3.]
- 2.3.3. Permit expiration terminates the source's right to operate unless a timely and complete renewal application has been submitted consistent with 45CSR§30-6.2. and 45CSR§30-4.1.a.3.
   [45CSR§30-6.3.b.]
- 2.3.4. If the Secretary fails to take final action to deny or approve a timely and complete permit application before the end of the term of the previous permit, the permit shall not expire until the renewal permit has been issued or denied, and any permit shield granted for the permit shall continue in effect during that time. [45CSR§30-6.3.c.]

# 2.4. Permit Actions

2.4.1. This permit may be modified, revoked, reopened and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition.
 [45CSR§30-5.1.f.3.]

# 2.5. Reopening for Cause

- 2.5.1. This permit shall be reopened and revised under any of the following circumstances:
  - a. Additional applicable requirements under the Clean Air Act or the Secretary's legislative rules become applicable to a major source with a remaining permit term of three (3) or more years. Such a reopening shall be completed not later than eighteen (18) months after promulgation of the applicable requirement. No such reopening is required if the effective date of the requirement is later than the date on which the permit is due to expire, unless the original permit or any of its terms and conditions has been extended pursuant to 45CSR§§30-6.6.a.1.A. or B.
  - b. Additional requirements (including excess emissions requirements) become applicable to an affected source under Title IV of the Clean Air Act (Acid Deposition Control) or other legislative rules of the Secretary. Upon approval by U.S. EPA, excess emissions offset plans shall be incorporated into the permit.
  - c. The Secretary or U.S. EPA determines that the permit contains a material mistake or that inaccurate statements were made in establishing the emissions standards or other terms or conditions of the permit.
  - d. The Secretary or U.S. EPA determines that the permit must be revised or revoked and reissued to assure compliance with the applicable requirements.

[45CSR§30-6.6.a.]

# 2.6. Administrative Permit Amendments

2.6.1. The permittee may request an administrative permit amendment as defined in and according to the procedures specified in 45CSR§30-6.4.
 [45CSR§30-6.4.]

# 2.7. Minor Permit Modifications

2.7.1. The permittee may request a minor permit modification as defined in and according to the procedures specified in 45CSR§30-6.5.a.
 [45CSR§30-6.5.a.]

# 2.8. Significant Permit Modification

2.8.1. The permittee may request a significant permit modification, in accordance with 45CSR§30-6.5.b., for permit modifications that do not qualify for minor permit modifications or as administrative amendments.
 [45CSR§30-6.5.b.]

# 2.9. Emissions Trading

2.9.1. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading, and other similar programs or processes for changes that are provided for in the permit and that are in accordance with all applicable requirements.
 [45CSR\$30-5.1.h.]

# 2.10. Off-Permit Changes

- 2.10.1. Except as provided below, a facility may make any change in its operations or emissions that is not addressed nor prohibited in its permit and which is not considered to be construction nor modification under any rule promulgated by the Secretary without obtaining an amendment or modification of its permit. Such changes shall be subject to the following requirements and restrictions:
  - a. The change must meet all applicable requirements and may not violate any existing permit term or condition.
  - b. The permittee must provide a written notice of the change to the Secretary and to U.S. EPA within two (2) business days following the date of the change. Such written notice shall describe each such change, including the date, any change in emissions, pollutants emitted, and any applicable requirement that would apply as a result of the change.
  - c. The change shall not qualify for the permit shield.
  - d. The permittee shall keep records describing all changes made at the source that result in emissions of regulated air pollutants, but not otherwise regulated under the permit, and the emissions resulting from those changes.
  - e. No permittee may make any change subject to any requirement under Title IV of the Clean Air Act (Acid Deposition Control) pursuant to the provisions of 45CSR§30-5.9.

f. No permittee may make any changes which would require preconstruction review under any provision of Title I of the Clean Air Act (including 45CSR14 and 45CSR19) pursuant to the provisions of 45CSR§30-5.9.

#### [45CSR§30-5.9.]

#### 2.11. Operational Flexibility

- 2.11.1. The permittee may make changes within the facility as provided by § 502(b)(10) of the Clean Air Act. Such operational flexibility shall be provided in the permit in conformance with the permit application and applicable requirements. No such changes shall be a modification under any rule or any provision of Title I of the Clean Air Act (including 45CSR14 and 45CSR19) promulgated by the Secretary in accordance with Title I of the Clean Air Act and the change shall not result in a level of emissions exceeding the emissions allowable under the permit.
  [45CSR§30-5.8]
- 2.11.2. Before making a change under 45CSR§30-5.8., the permittee shall provide advance written notice to the Secretary and to U.S. EPA, describing the change to be made, the date on which the change will occur, any changes in emissions, and any permit terms and conditions that are affected. The permittee shall thereafter maintain a copy of the notice with the permit, and the Secretary shall place a copy with the permit in the public file. The written notice shall be provided to the Secretary and U.S. EPA at least seven (7) days prior to the date that the change is to be made, except that this period may be shortened or eliminated as necessary for a change that must be implemented more quickly to address unanticipated conditions posing a significant health, safety, or environmental hazard. If less than seven (7) days notice is provide because of a need to respond more quickly to such unanticipated conditions, the permittee shall provide notice to the Secretary and U.S. EPA as soon as possible after learning of the need to make the change. [45CSR§30-5.8.a.]
- 2.11.3. The permit shield shall not apply to changes made under 45CSR§30-5.8., except those provided for in 45CSR§30-5.8.d. However, the protection of the permit shield will continue to apply to operations and emissions that are not affected by the change, provided that the permittee complies with the terms and conditions of the permit applicable to such operations and emissions. The permit shield may be reinstated for emissions and operations affected by the change:
  - a. If subsequent changes cause the facility's operations and emissions to revert to those authorized in the permit and the permittee resumes compliance with the terms and conditions of the permit, or
  - b. If the permittee obtains final approval of a significant modification to the permit to incorporate the change in the permit.

#### [45CSR§30-5.8.c.]

2.11.4. "Section 502(b)(10) changes" are changes that contravene an express permit term. Such changes do not include changes that would violate applicable requirements or contravene enforceable permit terms and conditions that are monitoring (including test methods), recordkeeping, reporting, or compliance certification requirements.
 [45CSR§30-2.39]

# 2.12. Reasonably Anticipated Operating Scenarios

- 2.12.1. The following are terms and conditions for reasonably anticipated operating scenarios identified in this permit.
  - a. Contemporaneously with making a change from one operating scenario to another, the permittee shall record in a log at the permitted facility a record of the scenario under which it is operating and to document the change in reports submitted pursuant to the terms of this permit and 45CSR30.
  - b. The permit shield shall extend to all terms and conditions under each such operating scenario; and
  - c. The terms and conditions of each such alternative scenario shall meet all applicable requirements and the requirements of 45CSR30.

## [45CSR§30-5.1.i.]

# 2.13. Duty to Comply

2.13.1. The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the West Virginia Code and the Clean Air Act and is grounds for enforcement action by the Secretary or USEPA; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application. [45CSR§30-5.1.f.1.]

#### 2.14. Inspection and Entry

- 2.14.1. The permittee shall allow any authorized representative of the Secretary, upon the presentation of credentials and other documents as may be required by law, to perform the following:
  - a. At all reasonable times (including all times in which the facility is in operation) enter upon the permittee's premises where a source is located or emissions related activity is conducted, or where records must be kept under the conditions of this permit;
  - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
  - c. Inspect at reasonable times (including all times in which the facility is in operation) any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under the permit;
  - d. Sample or monitor at reasonable times substances or parameters to determine compliance with the permit or applicable requirements or ascertain the amounts and types of air pollutants discharged.

#### [45CSR§30-5.3.b.]

# 2.15. Schedule of Compliance

- 2.15.1. For sources subject to a compliance schedule, certified progress reports shall be submitted consistent with the applicable schedule of compliance set forth in this permit and 45CSR§30-4.3.h., but at least every six (6) months, and no greater than once a month, and shall include the following:
  - a. Dates for achieving the activities, milestones, or compliance required in the schedule of compliance, and dates when such activities, milestones or compliance were achieved; and
  - b. An explanation of why any dates in the schedule of compliance were not or will not be met, and any preventative or corrective measure adopted.
     [45CSR§30-5.3.d.]

# 2.16. Need to Halt or Reduce Activity not a Defense

2.16.1. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. However, nothing in this paragraph shall be construed as precluding consideration of a need to halt or reduce activity as a mitigating factor in determining penalties for noncompliance if the health, safety, or environmental impacts of halting or reducing operations would be more serious than the impacts of continued operations. [45CSR§30-5.1.f.2.]

## 2.17. Emergency

- 2.17.1. An "emergency" means any situation arising from sudden and reasonably unforeseeable events beyond the control of the source, including acts of God, which situation requires immediate corrective action to restore normal operation, and that causes the source to exceed a technology-based emission limitation under the permit, due to unavoidable increases in emissions attributable to the emergency. An emergency shall not include noncompliance to the extent caused by improperly designed equipment, lack of preventative maintenance, careless or improper operation, or operator error. [45CSR§30-5.7.a.]
- 2.17.2. Effect of any emergency. An emergency constitutes an affirmative defense to an action brought for noncompliance with such technology-based emission limitations if the conditions of 45CSR§30-5.7.c. are met.
   [45CSR§30-5.7.b.]
- 2.17.3. The affirmative defense of emergency shall be demonstrated through properly signed, contemporaneous operating logs, or other relevant evidence that:
  - a. An emergency occurred and that the permittee can identify the cause(s) of the emergency;
  - b. The permitted facility was at the time being properly operated;
  - c. During the period of the emergency the permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards, or other requirements in the permit; and
  - d. Subject to the requirements of 45CSR§30-5.1.c.3.C.1, the permittee submitted notice of the emergency to the Secretary within one (1) working day of the time when emission limitations were exceeded due to

the emergency and made a request for variance, and as applicable rules provide. This notice, report, and variance request fulfills the requirement of 45CSR§30-5.1.c.3.B. This notice must contain a detailed description of the emergency, any steps taken to mitigate emissions, and corrective actions taken.

## [45CSR§30-5.7.c.]

- 2.17.4. In any enforcement proceeding, the permittee seeking to establish the occurrence of an emergency has the burden of proof.
   [45CSR§30-5.7.d.]
- 2.17.5. This provision is in addition to any emergency or upset provision contained in any applicable requirement. [45CSR\$30-5.7.e.]

## 2.18. Federally-Enforceable Requirements

- 2.18.1. All terms and conditions in this permit, including any provisions designed to limit a source's potential to emit and excepting those provisions that are specifically designated in the permit as "State-enforceable only", are enforceable by the Secretary, USEPA, and citizens under the Clean Air Act. [45CSR§30-5.2.a.]
- 2.18.2. Those provisions specifically designated in the permit as "State-enforceable only" shall become "Federallyenforceable" requirements upon SIP approval by the USEPA.

## 2.19. Duty to Provide Information

2.19.1. The permittee shall furnish to the Secretary within a reasonable time any information the Secretary may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee shall also furnish to the Secretary copies of records required to be kept by the permittee. For information claimed to be confidential, the permittee shall furnish such records to the Secretary along with a claim of confidentiality in accordance with 45CSR31. If confidential information is to be sent to USEPA, the permittee shall directly provide such information to USEPA along with a claim of confidentiality in accordance with 40 C.F.R. Part 2. [45CSR§30-5.1.f.5.]

# 2.20. Duty to Supplement and Correct Information

2.20.1. Upon becoming aware of a failure to submit any relevant facts or a submittal of incorrect information in any permit application, the permittee shall promptly submit to the Secretary such supplemental facts or corrected information.
 [45CSR§30-4.2.]

#### 2.21. Permit Shield

2.21.1. Compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance provided that such applicable requirements are included and are specifically identified in this permit or the Secretary has determined that other requirements specifically identified are not applicable to the source and this permit includes such a determination or a concise summary thereof. [45CSR§30-5.6.a.]

- 2.21.2. Nothing in this permit shall alter or affect the following:
  - a. The liability of an owner or operator of a source for any violation of applicable requirements prior to or at the time of permit issuance; or
  - b. The applicable requirements of the Code of West Virginia and Title IV of the Clean Air Act (Acid Deposition Control), consistent with § 408 (a) of the Clean Air Act.
  - c. The authority of the Administrator of U.S. EPA to require information under § 114 of the Clean Air Act or to issue emergency orders under § 303 of the Clean Air Act.

#### [45CSR§30-5.6.c.]

#### 2.22. Credible Evidence

2.22.1. Nothing in this permit shall alter or affect the ability of any person to establish compliance with, or a violation of, any applicable requirement through the use of credible evidence to the extent authorized by law. Nothing in this permit shall be construed to waive any defenses otherwise available to the permittee including but not limited to any challenge to the credible evidence rule in the context of any future proceeding. [45CSR\$30-5.3.e.3.B. and 45CSR38]

#### 2.23. Severability

2.23.1. The provisions of this permit are severable. If any provision of this permit, or the application of any provision of this permit to any circumstance is held invalid by a court of competent jurisdiction, the remaining permit terms and conditions or their application to other circumstances shall remain in full force and effect. [45CSR§30-5.1.e.]

#### 2.24. Property Rights

2.24.1. This permit does not convey any property rights of any sort or any exclusive privilege. [45CSR\$30-5.1.f.4]

## 2.25. Acid Deposition Control

- 2.25.1. Emissions shall not exceed any allowances that the source lawfully holds under Title IV of the Clean Air Act (Acid Deposition Control) or rules of the Secretary promulgated thereunder.
  - a. No permit revision shall be required for increases in emissions that are authorized by allowances acquired pursuant to the acid deposition control program, provided that such increases do not require a permit revision under any other applicable requirement.
  - b. No limit shall be placed on the number of allowances held by the source. The source may not, however, use allowances as a defense to noncompliance with any other applicable requirement.
  - c. Any such allowance shall be accounted for according to the procedures established in rules promulgated under Title IV of the Clean Air Act.

[45CSR§30-5.1.d.]

2.25.2. Where applicable requirements of the Clean Air Act are more stringent than any applicable requirement of regulations promulgated under Title IV of the Clean Air Act (Acid Deposition Control), both provisions shall be incorporated into the permit and shall be enforceable by the Secretary and U. S. EPA. [45CSR\$30-5.1.a.2.]

## 3.0 Facility-Wide Requirements

#### **3.1.** Limitations and Standards

- 3.1.1. **Open burning.** The open burning of refuse by any person is prohibited except as noted in 45CSR§6-3.1. [45CSR§6-3.1.]
- 3.1.2. Open burning exemptions. The exemptions listed in 45CSR§6-3.1 are subject to the following stipulation: Upon notification by the Secretary, no person shall cause or allow any form of open burning during existing or predicted periods of atmospheric stagnation. Notification shall be made by such means as the Secretary may deem necessary and feasible. [45CSR§6-3.2.]
- 3.1.3. Asbestos. The permittee is responsible for thoroughly inspecting the facility, or part of the facility, prior to commencement of demolition or renovation for the presence of asbestos and complying with 40 C.F.R. § 61.145, 40 C.F.R. § 61.148, and 40 C.F.R. § 61.150. The permittee, owner, or operator must notify the Secretary at least ten (10) working days prior to the commencement of any asbestos removal on the forms prescribed by the Secretary if the permittee is subject to the notification requirements of 40 C.F.R. § 61.145(b)(3)(i). The USEPA, the Division of Waste Management and the Bureau for Public Health Environmental Health require a copy of this notice to be sent to them.
  [40 C.F.R. §61.145(b) and 45CSR34]
- 3.1.4. Odor. No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.
   [45CSR§4-3.1 State-Enforceable only.]
- 3.1.5. Standby plan for reducing emissions. When requested by the Secretary, the permittee shall prepare standby plans for reducing the emissions of air pollutants in accordance with the objectives set forth in Tables I, II, and III of 45CSR11.
  [45CSR\$11-5.2]
- 3.1.6. Emission inventory. The permittee is responsible for submitting, on an annual basis, an emission inventory in accordance with the submittal requirements of the Division of Air Quality.
   [W.Va. Code § 22-5-4(a)(14)]
- 3.1.7. Ozone-depleting substances. For those facilities performing maintenance, service, repair or disposal of appliances, the permittee shall comply with the standards for recycling and emissions reduction pursuant to 40 C.F.R. Part 82, Subpart F, except as provided for Motor Vehicle Air Conditioners (MVACs) in Subpart B:
  - a. Persons opening appliances for maintenance, service, repair, or disposal must comply with the prohibitions and required practices pursuant to 40 C.F.R. §§ 82.154 and 82.156.
  - b. Equipment used during the maintenance, service, repair, or disposal of appliances must comply with the standards for recycling and recovery equipment pursuant to 40 C.F.R. § 82.158.

Page 13 of 49

c. Persons performing maintenance, service, repair, or disposal of appliances must be certified by an approved technician certification program pursuant to 40 C.F.R. § 82.161.

#### [40 C.F.R. 82, Subpart F]

- 3.1.8. Risk Management Plan. Should this stationary source, as defined in 40 C.F.R. § 68.3, become subject to Part 68, then the owner or operator shall submit a risk management plan (RMP) by the date specified in 40 C.F.R. § 68.10 and shall certify compliance with the requirements of Part 68 as part of the annual compliance certification as required by 40 C.F.R. Part 70 or 71.
   [40 C.F.R. 68]
- 3.1.9. Only those emission units/sources as identified in Table 1.1, with the exception of any *de minimis* sources as identified under Table 45-13B of 45CSR13, are authorized at the permitted facility by this permit. In accordance with the information filed in Permit application-R13-1856A, the emission units/sources identified under Table 1.1 of this permit shall be installed, maintained, and operated so as to minimize any fugitive escape of pollutants, shall not exceed the listed maximum design capacities, shall use the specified control devices, and comply with any other information provided under Table 1.1.
  [45CSR13, R13-1856, Condition 4.1.1]
- 3.1.10. Facilities using Mercaptan Tanks shall use proper odor control methods to comply with 45CSR4. [45CSR\$30-12.7 State-Enforceable only.]
- 3.1.11. Emergency Operating Condition/Unit Replacement:

For emergency situations which interrupt the critical supply of natural gas to the public, and which pose a life threatening circumstance to the customer, the permittee is allowed to temporarily replace failed engine(s) as long as all of the following conditions are met:

- a. The replacement engine(s) is only allowed to operate until repair of the failed engine(s) is complete, but under no circumstance may the replacement engine(s) operate in excess of sixty (60) days;
- b. Both the replacement engine(s) and the repaired failed engine(s) shall not operate at the same time with the exception of any necessary testing of the repaired engine(s) and this testing may not exceed five (5) hours;
- c. Potential hourly emissions from the replacement engine(s) are less than or equal to the potential hourly emissions from the engine(s) being replaced;
- d. Credible performance emission test data verifying the emission rates associated with the operation of the substitute engine shall be submitted to the Director within five (5) business days;
- e. The permittee must provide written notification to the Director within five (5) business days of the replacement. This notification must contain:
  - i. Information to support the claim of life threatening circumstances to justify applicability of this emergency provision;
  - ii. Identification of the engine(s) being temporarily replaced;

- iii. The design parameters of the replacement engine(s) including, but not limited to, the design horsepower and emission factors;
- iv. Projected duration of the replacement engine(s); and

v. The appropriate certification by a responsible official. **[45CSR§30-12.7]** 

#### 3.1.12. 40 C.F.R. 60, Subpart OOOOa

For each affected facility under §60.5365a(j), you must reduce VOC emissions by complying with the requirements of paragraphs (a) through (j) of §60.5397a. The requirements in this section are independent of the closed vent system and cover requirements in §60.5411a.

- a. You must monitor all fugitive emission components, as defined in §60.5430a, in accordance with 40 C.F.R. §§60.5397a(b) through (g). You must repair all sources of fugitive emissions in accordance with 40 C.F.R. §60.5397a(h). You must keep records in accordance with 40 C.F.R. §60.5397a(i) and report in accordance with 40 C.F.R. §60.5397a(j). For purposes of this section, fugitive emissions are defined as any visible emission from a fugitive emissions component observed using optical gas imaging or an instrument reading of 500 parts per million (ppm) or greater using Method 21 of appendix A-7 of 40 CFR part 60.
- b. You must develop an emissions monitoring plan that covers the collection of fugitive emissions components at well sites and compressor stations within each company-defined area in accordance with 40 C.F.R. §§60.5397a(c) and (d).
- c. Fugitive emissions monitoring plans must include the elements specified in 40 C.F.R. §§60.5397a(c)(1) through (8), at a minimum.
  - 1. Frequency for conducting surveys. Surveys must be conducted at least as frequently as required by 40 C.F.R. §§60.5397a(f) and (g).
  - 2. Technique for determining fugitive emissions (i.e., Method 21 at 40 CFR part 60, appendix A-7, or optical gas imaging meeting the requirements in 40 CFR §60.5397a paragraphs (c)(7)(i) through (vii)).
  - 3. Manufacturer and model number of fugitive emissions detection equipment to be used.
  - 4. Procedures and timeframes for identifying and repairing fugitive emissions components from which fugitive emissions are detected, including timeframes for fugitive emission components that are unsafe to repair. Your repair schedule must meet the requirements of 40 C.F.R. §60.5397a(h) at a minimum.
  - 5. Procedures and timeframes for verifying fugitive emission component repairs.
  - 6. Records that will be kept and the length of time records will be kept.
  - 7. If you are using optical gas imaging, your plan must also include the elements specified in 40 C.F.R. §§60.5397a(c)(7)(i) through (vii).

- i. Verification that your optical gas imaging equipment meets the specifications of 40 C.F.R. §§60.5397a(c)(7)(i)(A) and (B). This verification is an initial verification and may either be performed by the facility, by the manufacturer, or by a third party. For the purposes of complying with the fugitive emissions monitoring program with optical gas imaging, a fugitive emission is defined as any visible emissions observed using optical gas imaging.
  - A. Your optical gas imaging equipment must be capable of imaging gases in the spectral range for the compound of highest concentration in the potential fugitive emissions.
  - B. Your optical gas imaging equipment must be capable of imaging a gas that is half methane, half propane at a concentration of 10,000 ppm at a flow rate of  $\leq 60$  g/hr from a quarter inch diameter orifice.
- ii. Procedure for a daily verification check.
- iii. Procedure for determining the operator's maximum viewing distance from the equipment and how the operator will ensure that this distance is maintained.
- iv. Procedure for determining maximum wind speed during which monitoring can be performed and how the operator will ensure monitoring occurs only at wind speeds below this threshold.
- v. Procedures for conducting surveys, including the items specified in 40 C.F.R. \$\$60.5397a(c)(7)(v)(A) through (C).
  - A. How the operator will ensure an adequate thermal background is present in order to view potential fugitive emissions.
  - B. How the operator will deal with adverse monitoring conditions, such as wind.
  - C. How the operator will deal with interferences (e.g., steam).
- vi. Training and experience needed prior to performing surveys.
- vii. Procedures for calibration and maintenance. At a minimum, procedures must comply with those recommended by the manufacturer.
- 8. If you are using Method 21 of appendix A-7 of this part, your plan must also include the elements specified in 40 C.F.R. §§60.5397a(c)(8)(i) through (iii). For the purposes of complying with the fugitive emissions monitoring program using Method 21 of appendix A-7 of 40 CFR part 60 a fugitive emission is defined as an instrument reading of 500 ppm or greater.
  - i. Verification that your monitoring equipment meets the requirements specified in Section 6.0 of Method 21 at 40 CFR part 60, appendix A-7. For purposes of instrument capability, the fugitive emissions definition shall be 500 ppm or greater methane using a FID-based instrument. If you wish to use an analyzer other than a FID-based instrument, you must develop a site-specific fugitive emission definition that would be equivalent to 500 ppm methane using a FID-based instrument (e.g., 10.6 eV PID with a specified isobutylene concentration as the fugitive emission definition would provide equivalent response to your compound of interest).

- ii. Procedures for conducting surveys. At a minimum, the procedures shall ensure that the surveys comply with the relevant sections of Method 21 at 40 CFR part 60, appendix A-7, including Section 8.3.1.
- iii. Procedures for calibration. The instrument must be calibrated before use each day of its use by the procedures specified in Method 21 of appendix A-7 of this part. At a minimum, you must also conduct precision tests at the interval specified in Method 21 of appendix A-7 of this part, Section 8.1.2, and a calibration drift assessment at the end of each monitoring day. The calibration drift assessment must be conducted as specified in paragraph (c)(8)(iii)(A) of 40 C.F.R. §60.5397a. Corrective action for drift assessments is specified in paragraphs (c)(8)(iii)(B) and (C) of 40 C.F.R. §60.5397.
  - a. Check the instrument using the same calibration gas that was used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of 40 CFR part 60, Section 10.1, except do not adjust the meter readout to correspond to the calibration gas value. If multiple scales are used, record the instrument reading for each scale used. Divide the arithmetic difference of the initial and post-test calibration response by the corresponding calibration gas value for each scale and multiply by 100 to express the calibration drift as a percentage.
  - b. If a calibration drift assessment shows a negative drift of more than 10 percent, then all equipment with instrument readings between the fugitive emission definition multiplied by (100 minus the percent of negative drift/divided by 100) and the fugitive emission definition that was monitored since the last calibration must be re-monitored.
  - c. If any calibration drift assessment shows a positive drift of more than 10 percent from the initial calibration value, then, at the owner/operator's discretion, all equipment with instrument readings above the fugitive emission definition and below the fugitive emission definition multiplied by (100 plus the percent of positive drift/divided by 100) monitored since the last calibration may be re-monitored.
- d. Each fugitive emissions monitoring plan must include the elements specified in 40 C.F.R. §§60.5397a(d)(1) through (3), at a minimum, as applicable.
  - 1. If you are using optical gas imaging, your plan must include procedures to ensure that all fugitive emissions components are monitored during each survey. Example procedures include, but are not limited to, a sitemap with an observation path, a written narrative of where the fugitive emissions components are located and how they will be monitored, or an inventory of fugitive emissions components.
  - 2. If you are using Method 21 of appendix A-7 of 40 CFR part 60, your plan must include a list of fugitive emissions components to be monitored and method for determining the location of fugitive emissions components to be monitored in the field (e.g., tagging, identification on a process and instrumentation diagram, etc.).
  - 3. Your fugitive emissions monitoring plan must include the written plan developed for all of the fugitive emissions components designated as difficult-to-monitor in accordance with 40 C.F.R. §60.5397a(g)(3), and the written plan for fugitive emissions components designated as unsafe-to-monitor in accordance with 40 C.F.R. §60.5397a(g).

- e. Each monitoring survey shall observe each fugitive emissions component, as defined in §60.5430a, for fugitive emissions.
- f. 1. You must conduct an initial monitoring survey within 90 days of the startup of production, as defined in §60.5430a, for each collection of fugitive emissions components at a new well site or by June 3, 2017, whichever is later. For a modified collection of fugitive emissions components at a well site, the initial monitoring survey must be conducted within 90 days of the startup of production for each collection of fugitive emission components after the modification or by June 3, 2017, whichever is latest.
  - 2. You must conduct an initial monitoring survey within 90 days of the startup of a new compressor station for each collection of fugitive emissions components at the new compressor station or by June 3, 2017, whichever is later. For a modified collection of fugitive emissions components at a compressor station, the initial monitoring survey must be conducted within 90 days of the modification or by June 3, 2017, whichever is later.
- g. A monitoring survey of each collection of fugitive emissions components at a well site or at a compressor station must be performed at the frequencies specified in 40 C.F.R. §§60.5397a(g)(1) and (2), with the exceptions noted in 40 C.F.R. §§60.5397a(g)(3) through (5).
  - 1. A monitoring survey of each collection of fugitive emissions components at a well site within a company-defined area must be conducted at least semiannually after the initial survey. Consecutive semiannual monitoring surveys must be conducted at least 4 months apart and no more than 7 months apart.
  - 2. A monitoring survey of the collection of fugitive emissions components at a compressor station must be conducted at least semiannually after the initial survey. Consecutive semiannual monitoring surveys must be conducted at least 4 months apart and no more than 7 months apart.
  - 3. Fugitive emissions components that cannot be monitored without elevating the monitoring personnel more than 2 meters above the surface may be designated as difficult-to-monitor. Fugitive emissions components that are designated difficult-to-monitor must meet the specifications of 40 C.F.R. §§60.5397a(g)(3)(i) through (iv).
    - i. A written plan must be developed for all of the fugitive emissions components designated difficult-to-monitor. This written plan must be incorporated into the fugitive emissions monitoring plan required by 40 C.F.R. §§60.5397a(b), (c), and (d).
    - ii. The plan must include the identification and location of each fugitive emissions component designated as difficult-to-monitor.
    - iii. The plan must include an explanation of why each fugitive emissions component designated as difficult-to-monitor is difficult-to-monitor.
    - iv. The plan must include a schedule for monitoring the difficult-to-monitor fugitive emissions components at least once per calendar year.
  - 4. Fugitive emissions components that cannot be monitored because monitoring personnel would be exposed to immediate danger while conducting a monitoring survey may be designated as unsafe-

to-monitor. Fugitive emissions components that are designated unsafe-to-monitor must meet the specifications of 40 C.F.R. \$60.5397a(g)(4)(i) through (iv).

- i. A written plan must be developed for all of the fugitive emissions components designated unsafe-to-monitor. This written plan must be incorporated into the fugitive emissions monitoring plan required by 40 C.F.R. §§60.5397a(b), (c), and (d).
- ii. The plan must include the identification and location of each fugitive emissions component designated as unsafe-to-monitor.
- iii. The plan must include an explanation of why each fugitive emissions component designated as unsafe-to-monitor is unsafe-to-monitor.
- iv. The plan must include a schedule for monitoring the fugitive emissions components designated as unsafe-to-monitor.
- 5. You are no longer required to comply with the requirements of 40 C.F.R. §60.5397a(g)(1) when the owner or operator removes all major production and processing equipment, as defined in § 60.5430a, such that the well site becomes a wellhead only well site. If any major production and processing equipment is subsequently added to the well site, then the owner or operator must comply with the requirements in paragraphs (f)(1) and (g)(1) of 40 C.F.R. §60.5397a.
- h. Each identified source of fugitive emissions shall be repaired, as defined in 40 C.F.R. §60.5430a, in accordance with 40 C.F.R. §§60.5397a(h)(1) and (2).
  - 1. A first attempt at repair shall be made no later than 30 calendar days after the detection of the fugitive emissions.
  - 2. Repair shall be completed as soon as practicable, but no later than 30 calendar days after the first attempt at repair as required in 40 C.F.R. §60.5397a(h)(1).
  - 3. If the repair is technically infeasible, would require a vent blowdown, a compressor station shutdown, a well shutdown or well shut-in, or would be unsafe to repair during operation of the unit, the repair must be completed during the next compressor station shut down for maintenance, scheduled well shutdown, scheduled well shut-in, after a scheduled vent blowdown or within 2 years, whichever is earliest. For purposes of this condition, a vent blowdown is the opening of one or more blowdown valves to depressurize major production and processing equipment, other than a storage vessel.
  - 4. Each identified source of fugitive emissions must be resurveyed to complete repair according to 40 C.F.R. §60.5397a(h)(i) through (iv) to ensure that there are no fugitive emissions.
    - i. The operator may resurvey the fugitive emissions components to verify repair using either Method 21 of appendix A-7 of 40 CFR part 60 or optical gas imaging.
    - ii. For each repair that cannot be made during the monitoring survey when the fugitive emissions are initially found, a digital photograph must be taken of that component or the component must be tagged during the monitoring survey when the fugitives were initially found for identification purposes and subsequent repair. The digital photograph must include the date that the photograph was taken and must clearly identify the component by location within the site (e.g.,

Page 20 of 49

the latitude and longitude of the component or by other descriptive landmarks visible in the picture).

- iii. Operators that use Method 21 of appendix A-7 of 40 CFR part 60 to resurvey the repaired fugitive emissions components are subject to the resurvey provisions specified in 40 C.F.R. §§60.5397a(h)(4)(iii)(A) and (B).
  - A. A fugitive emissions component is repaired when the Method 21 instrument indicates a concentration of less than 500 ppm above background or when no soap bubbles are observed when the alternative screening procedures specified in section 8.3.3 of Method 21 of appendix A-7 of 40 CFR part 60 are used.
  - B. Operators must use the Method 21 monitoring requirements specified in 40 C.F.R. §60.5397a(c)(8)(ii) or the alternative screening procedures specified in section 8.3.3 of Method 21 of appendix A-7 of 40 CFR part 60.
- iv. Operators that use optical gas imaging to resurvey the repaired fugitive emissions components, are subject to the resurvey provisions specified in 40 C.F.R. §§60.5397a(h)(4)(iv)(A) and (B).
  - A. A fugitive emissions component is repaired when the optical gas imaging instrument shows no indication of visible emissions.
  - B. Operators must use the optical gas imaging monitoring requirements specified in 40 C.F.R. §60.5397a(c)(7).
- i. Records for each monitoring survey shall be maintained as specified §60.5420a(c)(15).
- j. Annual reports shall be submitted for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station that include the information specified in §60.5420a(b)(7). Multiple collection of fugitive emissions components at a well site or at a compressor station may be included in a single annual report.

# [45CSR13, R13-1856, Condition 4.1.5; 45CSR16; 40 C.F.R. §60.5397a]

3.1.13. No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

When a person is found in violation of this rule, the Director may require the person to utilize a system to minimize fugitive particulate matter. This system to minimize fugitive particulate matter may include, but is not limited to, the following:

- a. Use, where practicable, of water or chemicals for control of particulate matter in demolition of existing buildings or structures, construction operations, grading of roads or the clearing of land;
- b. Application of asphalt, water or suitable chemicals on unpaved roads, material stockpiles and other surfaces which can create airborne particulate matter;
- c. Covering of material transport vehicles, or treatment of cargo, to prevent contents from dripping, sifting, leaking or otherwise escaping and becoming airborne, and prompt removal of tracked material from roads or streets; or

d. Installation and use of hoods, fans and fabric filters to enclose and vent the handling of materials, including adequate containment methods during sandblasting, abrasive cleaning or other similar operations.

[45CSR§17-3. State-Enforceable only.]

# **3.2.** Monitoring Requirements

3.2.1. Emission Limit Averaging Time. Unless otherwise specified, compliance with all annual limits shall be based on a rolling twelve month total. A rolling twelve month total shall be the sum of the measured parameter of the previous twelve calendar months.
 [45CSR13, R13-1856, Condition 3.2.1]

# **3.3.** Testing Requirements

- 3.3.1. **Stack testing.** As per provisions set forth in this permit or as otherwise required by the Secretary, in accordance with the West Virginia Code, underlying regulations, permits and orders, the permittee shall conduct test(s) to determine compliance with the emission limitations set forth in this permit and/or established or set forth in underlying documents. The Secretary, or his duly authorized representative, may at his option witness or conduct such test(s). Should the Secretary exercise his option to conduct such test(s), the operator shall provide all necessary sampling connections and sampling ports to be located in such manner as the Secretary may require, power for test equipment and the required safety equipment, such as scaffolding, railings and ladders, to comply with generally accepted good safety practices. Such tests shall be conducted in accordance with the methods and procedures set forth in this permit or as otherwise approved or specified by the Secretary in accordance with the following:
  - a. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with 40 C.F.R. Parts 60, 61, and 63, if applicable, in accordance with the Secretary's delegated authority and any established equivalency determination methods which are applicable.
  - b. The Secretary may on a source-specific basis approve or specify additional testing or alternative testing to the test methods specified in the permit for demonstrating compliance with applicable requirements which do not involve federal delegation. In specifying or approving such alternative testing to the test methods, the Secretary, to the extent possible, shall utilize the same equivalency criteria as would be used in approving such changes under Section 3.3.1.a. of this permit.
  - c. All periodic tests to determine mass emission limits from or air pollutant concentrations in discharge stacks and such other tests as specified in this permit shall be conducted in accordance with an approved test protocol. Unless previously approved, such protocols shall be submitted to the Secretary in writing at least thirty (30) days prior to any testing and shall contain the information set forth by the Secretary. In addition, the permittee shall notify the Secretary at least fifteen (15) days prior to any testing so the Secretary may have the opportunity to observe such tests. This notification shall include the actual date and time during which the test will be conducted and, if appropriate, verification that the tests will fully conform to a referenced protocol previously approved by the Secretary.
  - d. The permittee shall submit a report of the results of the stack test within 60 days of completion of the test. The test report shall provide the information necessary to document the objectives of the test and to determine whether proper procedures were used to accomplish these objectives. The report shall

include the following: the certification described in paragraph 3.5.1; a statement of compliance status, also signed by a responsible official; and, a summary of conditions which form the basis for the compliance status evaluation. The summary of conditions shall include the following:

- 1. The permit or rule evaluated, with the citation number and language.
- 2. The result of the test for each permit or rule condition.
- 3. A statement of compliance or non-compliance with each permit or rule condition.

## [WV Code §§ 22-5-4(a)(14-15) and 45CSR13]

## **3.4.** Recordkeeping Requirements

- 3.4.1. **Monitoring information.** The permittee shall keep records of monitoring information that include the following:
  - a. The date, place as defined in this permit and time of sampling or measurements;
  - b. The date(s) analyses were performed;
  - c. The company or entity that performed the analyses;
  - d. The analytical techniques or methods used;
  - e. The results of the analyses; and
  - f. The operating conditions existing at the time of sampling or measurement.

#### [45CSR13, R13-1856 Condition 4.4.1; 45CSR§30-5.1.c.2.A.]

- 3.4.2. Retention of records. The permittee shall retain records of all required monitoring data and support information for a period of at least five (5) years from the date of monitoring sample, measurement, report, application, or record creation date. Support information includes all calibration and maintenance records and all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by the permit. Where appropriate, records may be maintained in computerized form in lieu of the above records.
  [45CSR§30-5.1.c.2.B.]
- 3.4.3. Odors. For the purposes of 45CSR4, the permittee shall maintain a record of all odor complaints received, any investigation performed in response to such a complaint, and any responsive action(s) taken. [45CSR\$30-5.1.c. State-Enforceable only.]

# **3.5.** Reporting Requirements

3.5.1. Responsible official. Any application form, report, or compliance certification required by this permit to be submitted to the DAQ and/or USEPA shall contain a certification by the responsible official that states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate and complete. [45CSR§§30-4.4. and 5.1.c.3.D.]

- 3.5.2. A permittee may request confidential treatment for the submission of reporting required under 45CSR§30-5.1.c.3. pursuant to the limitations and procedures of W.Va. Code § 22-5-10 and 45CSR31.
   [45CSR§30-5.1.c.3.E.]
- 3.5.3. Except for the electronic submittal of the annual compliance certification and semi-annual monitoring reports to the DAQ and USEPA as required in 3.5.5 and 3.5.6 below, all notices, requests, demands, submissions and other communications required or permitted to be made to the Secretary of DEP and/or USEPA shall be made in writing and shall be deemed to have been duly given when delivered by hand, mailed first class or by private carrier with postage prepaid to the address(es), or submitted in electronic format by e-mail as set forth below or to such other person or address as the Secretary of the Department of Environmental Protection may designate:

## DAQ:

## US EPA:

| Director                       | Section Chief                          |  |  |
|--------------------------------|----------------------------------------|--|--|
| WVDEP                          | U.S. Environmental Protection Agency,  |  |  |
| Division of Air Quality        | Region III Enforcement and Compliance  |  |  |
| 601 57 <sup>th</sup> Street SE | Assurance Division Air Section (3ED21) |  |  |
| Charleston, WV 25304           | 1650 Arch Street                       |  |  |
|                                | Philadelphia, PA 19103-2029            |  |  |

#### DAQ Compliance and Enforcement<sup>1</sup>:

DEPAirQualityReports@wv.gov

<sup>1</sup>For all self-monitoring reports (MACT, GACT, NSPS, etc.), stack tests and protocols, Notice of Compliance Status reports, Initial Notifications, etc.

- 3.5.4. Certified emissions statement. The permittee shall submit a certified emissions statement and pay fees on an annual basis in accordance with the submittal requirements of the Division of Air Quality. [45CSR\$30-8.]
- 3.5.5. **Compliance certification.** The permittee shall certify compliance with the conditions of this permit on the forms provided by the DAQ. In addition to the annual compliance certification, the permittee may be required to submit certifications more frequently under an applicable requirement of this permit. The annual certification shall be submitted to the DAQ and USEPA on or before March 15 of each year and shall certify compliance for the period ending December 31. The permittee shall maintain a copy of the certification on site for five (5) years from submittal of the certification. The annual certification shall be submitted in electronic format by e-mail to the following addresses:

#### DAQ:

DEPAirQualityReports@wv.gov

US EPA:

orts@wv.gov

R3\_APD\_Permits@epa.gov

[45CSR§30-5.3.e.]

3.5.6. **Semi-annual monitoring reports.** The permittee shall submit reports of any required monitoring on or before September 15 for the reporting period January 1 to June 30 and on or before March 15 for the reporting period July 1 to December 31. All instances of deviation from permit requirements must be clearly identified in such reports. All required reports must be certified by a responsible official consistent with 45CSR§30-4.4. The semi-annual monitoring reports shall be submitted in electronic format by e-mail to the following address:

#### DAQ:

DEPAirQualityReports@wv.gov

## [45CSR§30-5.1.c.3.A.]

3.5.7. Emergencies. For reporting emergency situations, refer to Section 2.17 of this permit.

#### 3.5.8. **Deviations.**

- a. In addition to monitoring reports required by this permit, the permittee shall promptly submit supplemental reports and notices in accordance with the following:
  - 1. Any deviation resulting from an emergency or upset condition, as defined in 45CSR§30-5.7., shall be reported by telephone or telefax within one (1) working day of the date on which the permittee becomes aware of the deviation, if the permittee desires to assert the affirmative defense in accordance with 45CSR§30-5.7. A written report of such deviation, which shall include the probable cause of such deviations, and any corrective actions or preventative measures taken, shall be submitted and certified by a responsible official within ten (10) days of the deviation.
  - 2. Any deviation that poses an imminent and substantial danger to public health, safety, or the environment shall be reported to the Secretary immediately by telephone or telefax. A written report of such deviation, which shall include the probable cause of such deviation, and any corrective actions or preventative measures taken, shall be submitted by the responsible official within ten (10) days of the deviation.
  - 3. Deviations for which more frequent reporting is required under this permit shall be reported on the more frequent basis.
  - All reports of deviations shall identify the probable cause of the deviation and any corrective actions or preventative measures taken.
     [45CSR§30-5.1.c.3.C.]
- b. The permittee shall, in the reporting of deviations from permit requirements, including those attributable to upset conditions as defined in this permit, report the probable cause of such deviations and any corrective actions or preventive measures taken in accordance with any rules of the Secretary. [45CSR\$30-5.1.c.3.B.]

- 3.5.9. New applicable requirements. If any applicable requirement is promulgated during the term of this permit, the permittee will meet such requirements on a timely basis, or in accordance with a more detailed schedule if required by the applicable requirement.
   [45CSR§30-4.3.h.1.B.]
- 3.5.10. During compliance certification, the facility shall certify that the facility burns natural gas in all stationary equipment regulated under this permit except, when applicable, for emergency equipment (i.e. diesel generators).
   [45CSR§30-5.1.c.]

## 3.6. Compliance Plan

3.6.1. None.

## 3.7. Permit Shield

- 3.7.1. The permittee is hereby granted a permit shield in accordance with 45CSR§30-5.6. The permit shield applies provided the permittee operates in accordance with the information contained within this permit.
- 3.7.2. The following requirements specifically identified are not applicable to the source based on the determinations set forth below. The permit shield shall apply to the following requirements provided the conditions of the determinations are met.
  - a. According to 45CSR§2-11.1 the boiler and heaters are exempt from the weight emission standards and MRR (monitoring, recordkeeping and reporting) because they are less than 10 mmBtu/hr.
  - b. 45CSR10; To Prevent and Control Air Pollution from the Emission of Sulfur Oxides: 45CSR10 is not applicable to the facility boiler and heaters because they are less than 10 mmBtu/hr.
  - c. 45CSR21; To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds: All storage tanks at Ceredo station are below 40,000 gallons in capacity, hence 45CSR§21-28 is not applicable. Ceredo station is not engaged in the extraction or fractionation of natural gas, hence, 45CSR§21-29 is not applicable.
  - d. 45CSR27; To Prevent and Control the Emissions of Toxic Air Pollutants: Natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."
  - e. 40 C.F.R. 60 Subpart Dc; Standards of Performance for Steam Generating Units: The boiler and heaters at this facility are less than 10 mmBtu/hr; hence, Subpart Dc is not applicable.
  - f. 40 C.F.R. 60 Subparts K, Ka; Standards of Performance for Storage Vessels for Petroleum Liquids: All tanks at Ceredo station are below 40,000 gallons in capacity.
  - g. 40 C.F.R. 60 Subpart Kb; Standards of Performance for Volatile Organic Liquid Storage Vessels: All tanks at Ceredo station are below 75m<sup>3</sup> in capacity.

- h. 40 C.F.R. 60 Subpart KKK; Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plant: Ceredo station is not engaged in the extraction or fractionation of natural gas liquids from field gas, the fractionation of mixed natural gas liquids to natural gas products, or both.
- i. 40 C.F.R. 60 Subpart IIII; Standards of Performance for Stationary Compression Ignition Internal Combustion Engines: There are no compression ignition engines at this facility.
- j. 40 C.F.R 60 Subpart OOOO; Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution: Storage vessel requirements do not apply since all tanks commenced construction prior to August 23, 2011.
- k. 40 C.F.R. 63 Subpart HHH; National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities: The facility does not have a glycol dehydration unit and is therefore not subject to the requirements of this subpart.
- 1. 40 C.F.R. 63 Subpart YYYY; Turbine MACT: The Solar Titan 250 (E10) is subject to 40 C.F.R. 63 Subpart YYYY. Per 40 C.F.R. §63.6095(d), there is a stay of standards for lean premix stationary combustion turbines until EPA takes final action to require compliance with this subpart. The only requirement for the unit is the initial notification requirement of 40 C.F.R. §63.6145, which was satisfied by the preconstruction permit application.
- m. 40 C.F.R. 64 None of the emission units have any add-on controls; therefore, in accordance with 40 C.F.R § 64.2(a), CAM is not applicable to this facility.

# 4.1. Limitations and Standards

- 4.1.1. No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.
   [45CSR§2-3.1.]
- 4.1.2. Compliance with the visible emission requirements of 45CSR§2-3.1 (Section 4.1.1 of this permit) shall be determined in accordance with 40 C.F.R. Part 60, Appendix A, Method 9 or by using measurements from continuous opacity monitoring systems approved by the Director. The Director may require the installation, calibration, maintenance and operation of continuous opacity monitoring systems and may establish policies for the evaluation of continuous opacity monitoring results and the determination of compliance with the visible emission requirements of 45CSR§2-3.1 (Section 4.1.1 of this permit). Continuous opacity monitors shall not be required on fuel burning units which employ wet scrubbing systems for emission control. [45CSR§2-3.2.]
- 4.1.3. You must meet the work practice standard in 40 C.F.R 63 Subpart DDDDD Table 3 that applies to your boiler or process heater, for each boiler or process heater at your source, except as provided under 40 C.F.R. §63.7522.

| If your unit is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | You must meet the following                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 1. A new or existing boiler or<br>process heater with a continuous<br>oxygen trim system that maintains<br>an optimum air to fuel ratio, or a<br>heat input capacity of less than or<br>equal to 5 million Btu per hour in<br>any of the following subcategories:<br>unit designed to burn gas 1; unit<br>designed to burn gas 2 (other); or<br>unit designed to burn light liquid, or<br>a limited use boiler or process<br>heater <b>(H1, H3)</b>                                                                                                                                                                 | Conduct a tune-up of the boiler or process heater every 5 years as specified in §63.7540. |
| 2. A new or existing boiler or<br>process heater without a continuous<br>oxygen trim system and with heat<br>input capacity of less than 10 million<br>Btu per hour in the unit designed to<br>burn heavy liquid or unit designed to<br>burn solid fuel subcategories; or a<br>new or existing boiler or process<br>heater with heat input capacity of<br>less than 10 million Btu per hour,<br>but greater than 5 million Btu per<br>hour, in any of the following<br>subcategories: unit designed to burn<br>gas 1; unit designed to burn gas 2<br>(other); or unit designed to burn light<br>liquid <b>(BL3)</b> | Conduct a tune-up of the boiler or process heater biennially as specified in §63.7540.    |

| If your unit is                                                                                                            | You must meet the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4. An existing boiler or process<br>heater located at a major source<br>facility, not including limited use<br>units. (H1) | Must have a one-time energy assessment performed by a qualified energy assessor. An energy assessment completed on or after January 1, 2008, that meets or is amended to meet the energy assessment requirements in this table, satisfies the energy assessment requirement. A facility that operated under an energy management program developed according to the ENERGY STAR guidelines for energy management or compatible with ISO 50001 for at least one year between January 1, 2008 and the compliance date specified in §63.7495 that includes the affected units also satisfies the energy assessment requirement. The energy assessment must include the following with extent of the evaluation for items a. to e. appropriate for the on-site technical hours listed in §63.7575: |  |
|                                                                                                                            | a. A visual inspection of the boiler or process heater system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                            | b. An evaluation of operating characteristics of the boiler or<br>process heater systems, specifications of energy using<br>systems, operating and maintenance procedures, and unusual<br>operating constraints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                            | c. An inventory of major energy use systems consuming<br>energy from affected boilers and process heaters and which<br>are under the control of the boiler/process heater<br>owner/operator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                            | d. A review of available architectural and engineering plans,<br>facility operation and maintenance procedures and logs, and<br>fuel usage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                            | e. A review of the facility's energy management program and provide recommendations for improvements consistent with the definition of energy management program, if identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                            | f. A list of cost-effective energy conservation measures that are within the facility's control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                            | g. A list of the energy savings potential of the energy conservation measures identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                            | h. A comprehensive report detailing the ways to improve efficiency, the cost of specific improvements, benefits, and the time frame for recouping those investments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

# [45CSR34; 40 C.F.R. §63.7500(a)(1), 40 C.F.R. 63 Subpart DDDDD Table 3]

4.1.4. At all times, you must operate and maintain any affected source (as defined in 40 C.F.R. §63.7490), including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator that may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.
[45CSR34; 40 C.F.R. §63.7500(a)(3)]

- 4.1.5. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity of less than or equal to 5 million Btu per hour must complete a tune-up every 5 years as specified in 40 C.F.R. §63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity greater than 5 million Btu per hour and less than 10 million Btu per hour must complete a tune-up every 2 years as specified in 40 C.F.R. §63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory are not subject to the emission limits in Tables 1 and 2 or 11 through 13 of 40 C.F.R. 63 subpart DDDDD, or the operating limits in Table 4 of 40 C.F.R. 63 subpart DDDDD. [45CSR34; 40 C.F.R. §63.7500(e)]
- 4.1.6. For existing affected sources (as defined in 40 C.F.R. §63.7490), you must complete the initial compliance demonstrations, as specified in 40 C.F.R. §63.7510(a) through (d), no later than 180 days after the compliance date that is specified for your source in 40 C.F.R. §63.7495 and according to the applicable provisions in 40 C.F.R. §63.7(a)(2) as cited in 40 C.F.R. 63 Subpart DDDDD Table 10, except as specified in 40 C.F.R. §63.7510(j). You must complete an initial tune-up by following the procedures described in 40 C.F.R. §63.7540(a)(10)(i) through (vi) no later than the compliance date specified in 40 C.F.R. §63.7495, except as specified in 40 C.F.R. §63.7510(j). You must complete the one-time energy assessment specified in Table 3 to this subpart no later than the compliance date specified in 40 C.F.R. §63.7495.
  [45CSR34; 40 C.F.R. §63.7510(e)](H1)
- 4.1.7. For new or reconstructed affected sources (as defined in 40 C.F.R. §63.7490), you must demonstrate initial compliance with the applicable work practice standards in 40 C.F.R. 63 Subpart DDDDD Table 3 within the applicable annual, biennial, or 5-year schedule as specified in 40 C.F.R. §63.7515(d) following the initial compliance date specified in 40 C.F.R. §63.7495(a). Thereafter, you are required to complete the applicable annual, biennial, or 5-year tune-up as specified in 40 C.F.R. §63.7515(d).
  [45CSR34; 40 C.F.R. §63.7510(g)](H3 and BL3)
- 4.1.8. If you are required to meet an applicable tune-up work practice standard, you must conduct an annual, biennial, or 5-year performance tune-up according to 40 C.F.R. §63.7540(a)(10), (11), or (12), respectively. Each annual tune-up specified in 40 C.F.R. §63.7540(a)(10) must be no more than 13 months after the previous tune-up. Each biennial tune-up specified in 40 C.F.R. §63.7540(a)(11) must be conducted no more than 25 months after the previous tune-up. Each 5-year tune-up specified in 40 C.F.R. §63.7540(a)(12) must be conducted no more than 61 months after the previous tune-up. For a new or reconstructed affected source (as defined in 40 C.F.R. §63.7490), the first annual, biennial, or 5-year tune-up must be no later than 13 months, 25 months, or 61 months, respectively, after April 1, 2013 or the initial startup of the new or reconstructed affected source, whichever is later. [45CSR34; 40 C.F.R. §63.7515(d)]
- 4.1.9. If your boiler or process heater has a heat input capacity of less than 10 million Btu per hour (except as specified in 40 C.F.R. §63.7540(a)(12)), you must conduct a biennial tune-up of the boiler or process heater as specified in 40 C.F.R §63.7540(a)(10)(i) through (vi) to demonstrate continuous compliance. [45CSR34; 40 C.F.R. §63.7540(a)(11)](BL3)
- 4.1.10. If your boiler or process heater has a continuous oxygen trim system that maintains an optimum air to fuel ratio or a heat input capacity of less than or equal to 5 million Btu per hour and the unit is in the units designed to burn gas 1; you must conduct a tune-up of the boiler or process heater every 5 years as specified in paragraphs 40 C.F.R. §63.7540(a)(10)(i) through (vi) to demonstrate continuous compliance. You may delay the burner inspection specified in paragraph 40 C.F.R. §63.7540(a)(10)(i) until the next scheduled or unscheduled unit shutdown, but you must inspect each burner at least once every 72 months. If an oxygen

trim system is utilized on a unit without emission standards to reduce the tune-up frequency to once every 5 years, set the oxygen level no lower than the oxygen concentration measured during the most recent tune-up. These tune-ups shall consist of the following:

- a. As applicable, inspect the burner, and clean or replace any components of the burner as necessary (you may perform the burner inspection any time prior to the tune-up or delay the burner inspection until the next scheduled unit shutdown). Units that produce electricity for sale may delay the burner inspection until the first outage, not to exceed 36 months from the previous inspection. At units where entry into a piece of process equipment or into a storage vessel is required to complete the tune-up inspections, inspections are required only during planned entries into the storage vessel or process equipment;
- b. Inspect the flame pattern, as applicable, and adjust the burner as necessary to optimize the flame pattern. The adjustment should be consistent with the manufacturer's specifications, if available;
- c. Inspect the system controlling the air-to-fuel ratio, as applicable, and ensure that it is correctly calibrated and functioning properly (you may delay the inspection until the next scheduled unit shutdown). Units that produce electricity for sale may delay the inspection until the first outage, not to exceed 36 months from the previous inspection;
- d. Optimize total emissions of CO. This optimization should be consistent with the manufacturer's specifications, if available, and with any NO<sub>X</sub> requirement to which the unit is subject;
- e. Measure the concentrations in the effluent stream of CO in parts per million, by volume, and oxygen in volume percent, before and after the adjustments are made (measurements may be either on a dry or wet basis, as long as it is the same basis before and after the adjustments are made). Measurements may be taken using a portable CO analyzer; and
- f. Maintain on-site and submit, if requested by the Administrator, a report containing the following information:
  - i. The concentrations of CO in the effluent stream in parts per million by volume, and oxygen in volume percent, measured at high fire or typical operating load, before and after the tune-up of the boiler or process heater;
  - ii. A description of any corrective actions taken as a part of the tune-up; and
  - iii. The type and amount of fuel used over the 12 months prior to the tune-up, but only if the unit was physically and legally capable of using more than one type of fuel during that period. Units sharing a fuel meter may estimate the fuel used by each unit.

#### [45CSR34; 40 C.F.R. §§63.7540(a)(10) & (a)(12)]

- 4.1.11. The Heater, identified as H3, shall operate according to the following requirements:
  - a. The MDHI shall not exceed 0.6 mmBtu/hr and the unit shall only be fired by natural gas;
  - b. As the annual emission limits given in table 4.1.11(c) are based on operating 8,760 hours/year, there is no limit on the annual hours of operation or fuel usage of the Heater.

c. The maximum combustion exhaust emissions from the Heater shall not exceed the limits given in the following table;

| Table 4.1.11.c: | Heater | Emission | Limits |
|-----------------|--------|----------|--------|
|-----------------|--------|----------|--------|

| Pollutant       | PPH  | TPY  |
|-----------------|------|------|
| CO              | 0.05 | 0.22 |
| NO <sub>x</sub> | 0.06 | 0.26 |

# d. 45CSR2

No person shall cause, suffer, allow or permit emission of smoke and/or particulate matter into the open air from any fuel burning unit which is greater than ten (10) percent opacity based on a six minute block average.

[45CSR§2-3.1.]

## e. 40 C.F.R. 63 Subpart DDDDD

Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity of less than or equal to 5 million Btu per hour must complete a tune-up every 5 years as specified in §63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory with a heat input capacity greater than 5 million Btu per hour and less than 10 million Btu per hour must complete a tune-up every 2 years as specified in §63.7540. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory are not subject to the emission limits in Tables 1 and 2 or 11 through 13 to this subpart, or the operating limits in Table 4 to this subpart. **[45CSR34, 40 C.F.R. §63.7500(e)]** 

#### [45CSR13, R13-1856, Condition 4.1.4](H3)

# 4.2. Monitoring Requirements

4.2.1. At such reasonable times as the Secretary may designate, the permittee shall conduct visible emissions observations using Method 22 for the purpose of demonstrating compliance with Section 4.1.1. If visible emissions are observed, the permittee shall conduct a Method 9 reading unless the cause for visible emissions is corrected within 24 hours. Records of observation will be kept for at least 5 years from the date of observation.

[45CSR§30-5.1.c.]

# 4.3. Testing Requirements

4.3.1. At such reasonable times(s) as the Secretary may designate, in accordance with the provisions of 3.3.1 of this permit, the permittee shall conduct of have conducted test(s) to determine compliance with the emission limitations established in this permit and/or applicable regulations.
 [45CSR13, R13-1856, Condition 4.3.1](H3)

# 4.4. Recordkeeping Requirements

4.4.1. You must keep records of each notification and report that you submitted to comply with 40 C.F.R. 63 Subpart DDDDD, including all documentation supporting any Initial Notification or Notification of Compliance Status or semiannual compliance report that you submitted, according to the requirements in 40 C.F.R. §63.10(b)(2)(xiv).

#### [45CSR34; 40 C.F.R. §63.7555(a)(1)]

- 4.4.2. In what form and how long must I keep my records?
  - a. Your records must be in a form suitable and readily available for expeditious review, according to 40 C.F.R. §63.10(b)(1).
  - b. As specified in 40 C.F.R.§63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.
  - c. You must keep each record on site, or they must be accessible from on site (for example, through a computer network), for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to 40 C.F.R. §63.10(b)(1). You can keep the records off site for the remaining 3 years.

#### [45CSR34; 40 C.F.R. §63.7560]

## 4.5. **Reporting Requirements**

- 4.5.1. You must include with the Notification of Compliance Status a signed certification that either the energy assessment was completed according to 40 C.F.R. 63 Subpart DDDDD Table 3, and that the assessment is an accurate depiction of your facility at the time of the assessment, or that the maximum number of on-site technical hours specified in the definition of energy assessment applicable to the facility has been expended. [45CSR34; 40 C.F.R. §63.7530(e)](H1)
- 4.5.2. You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in40 C.F.R. §63.7545(e).
   [45CSR34; 40 C.F.R. §63.7530(f)]
- 4.5.3. If you are not required to conduct an initial compliance demonstration as specified in 40 C.F.R. §63.7530(a), the Notification of Compliance Status must only contain the information specified in 40 C.F.R. §§63.7545(e)(1) and (8) and must be submitted within 60 days of the compliance date specified at 40 C.F.R. §63.7495(b).
  - a. A description of the affected unit(s) including identification of which subcategories the unit is in, the design heat input capacity of the unit, a description of the add-on controls used on the unit to comply with this subpart, description of the fuel(s) burned, including whether the fuel(s) were a secondary material determined by you or the EPA through a petition process to be a non-waste under \$241.3 of this chapter, whether the fuel(s) were a secondary material processed from discarded non-hazardous secondary materials within the meaning of \$241.3 of this chapter, and justification for the selection of fuel(s) burned during the compliance demonstration.
  - b. In addition to the information required in 40 C.F.R. §63.9(h)(2), your notification of compliance status must include the following certification(s) of compliance, as applicable, and signed by a responsible official:
    - i. "This facility completed the required initial tune-up for all of the boilers and process heaters covered by 40 CFR part 63 subpart DDDDD at this site according to the procedures in 40 C.F.R. §63.7540(a)(10)(i) through (vi)."

- ii. "This facility has had an energy assessment performed according to §63.7530(e)."
- iii. Except for units that burn only natural gas, refinery gas, or other gas 1 fuel, or units that qualify for a statutory exemption as provided in section 129(g)(1) of the Clean Air Act, include the following: "No secondary materials that are solid waste were combusted in any affected unit."

#### [45CSR34; 40 C.F.R. §63.7545(e)(1) and (8)]

- 4.5.4. Unless the EPA Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report, according to paragraph 40 C.F.R. §63.7550(h), by the date in 40 C.F.R. 63 Subpart DDDDD Table 9 and according to the requirements in 40 C.F.R. §§63.7550(b)(1) through (4). For units that are subject only to a requirement to conduct subsequent annual, biennial, or 5-year tune-up according to §63.7540(a)(10), (11), or (12), respectively, and not subject to emission limits or Table 4 operating limits, you may submit only an annual, biennial, or 5-year compliance report, as applicable, as specified in 40 C.F.R. §§63.7550(b)(1) through (4), instead of a semi-annual compliance report. [45CSR34; 40 C.F.R. §63.7550(b)]
- 4.5.5. For each affected source that is subject to permitting regulations pursuant to part 70 or part 71 of this chapter, and if the permitting authority has established dates for submitting semiannual reports pursuant to 70.6(a)(3)(iii)(A) or 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established in the permit instead of according to the dates in 40 C.F.R. §§63.7550(b)(1) through (4).
  [45CSR34; 40 C.F.R. §63.7550(b)(5)]
- 4.5.6. A compliance report must contain the following information depending on how the facility chooses to comply with the limits set in this rule.
  - a. Company and Facility name and address.
  - b. Process unit information, emissions limitations, and operating parameter limitations.
  - c. Date of report and beginning and ending dates of the reporting period.
  - d. Include the date of the most recent tune-up for each unit subject to only the requirement to conduct an annual, biennial, or 5-year tune-up according to 40 C.F.R. §63.7540(a)(10), (11), or (12) respectively. Include the date of the most recent burner inspection if it was not done annually, biennially, or on a 5-year period and was delayed until the next scheduled or unscheduled unit shutdown.
  - e. Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.

#### [45CSR34; 40 C.F.R. §§63.7550(c), (c)(1), (c)(5)(i)-(iii), (c)(5)(xiv), and (c)(5)(xvii)]

#### 4.6. Compliance Plan

4.6.1. None.
#### 5.0 Source Specific Requirements [emission point ID(s): E01, E02, E03, E04, E05, E06, E07, G3, G4]

#### 5.1. Limitations and Standards

- 5.1.1. The following stationary RICE do not have to meet the requirements of 40 C.F.R. 63 subpart ZZZZ and of subpart A, including initial notification requirements:
  - a. Existing spark ignition 2 stroke lean burn (2SLB) stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions.

#### [45CSR34, 40 C.F.R. §63.6590(b)(3)(i)](E01, E02, E03, E04, E05, E06, E07)

- 5.1.2. If you own or operate any of the following stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the emission limitations in Tables 1a, 2a, 2c, and 2d to 40 C.F.R. 63 subpart ZZZZ or operating limitations in Tables 1b and 2b to 40 C.F.R. 63 subpart ZZZZ: an existing 2SLB stationary RICE; an existing 4SLB stationary RICE; a stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis; an emergency stationary RICE; or a limited use stationary RICE.
  [45CSR34, 40 C.F.R. §63.6600(c)](E01, E02, E03, E04, E05, E06, E07, G3, G4)
- 5.1.3. If you own or operate an emergency stationary RICE, you must operate the emergency stationary RICE according to the requirements in 40 C.F.R. §§63.6640(f)(1) through (3). In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in 40 C.F.R. §§63.6640(f)(1) through (3), is prohibited. If you do not operate the engine according to the requirements in paragraphs 40 C.F.R. §§63.6640(f)(1) through (3), the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.
  - a. There is no time limit on the use of emergency stationary RICE in emergency situations.
  - b. You may operate your emergency stationary RICE for any combination of the purposes specified in 40 C.F.R. §63.6640(f)(2)(i) for a maximum of 100 hours per calendar year. Any operation for nonemergency situations as allowed by paragraphs 40 C.F.R. §63.6640(f)(3) counts as part of the 100 hours per calendar year allowed by this 40 C.F.R. §63.6640(f)(2).
    - i. Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.
  - c. Emergency stationary RICE located at major sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in 40 C.F.R. §63.6640(f)(2). The 50 hours per year for non-emergency situations

cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

#### [45CSR34; 40 C.F.R. §§63.6640(f)(1) through (3)](G3 and G4)

- 5.1.4. The Emergency Generators (EGs), Identified as 005G3 and 005G4, shall meet the following requirements:
  - a. The authorized EGs shall each be the make, model, and size as specified under Table 1.1, shall only be fired by pipeline-quality natural gas, and each shall not operate in excess of 500 hours per year (during periods of non-emergencies);
  - b. The maximum emissions from the Waukesha F3521GL Emergency Generator, identified as 005G3, shall not exceed the limits given in the following table:

| Pollutant       | PPH  | TPY  |
|-----------------|------|------|
| СО              | 4.31 | 1.08 |
| NO <sub>X</sub> | 2.44 | 0.61 |
| VOC             | 1.63 | 0.41 |
| Formaldehyde    | 0.34 | 0.09 |

c. The maximum emissions from the Waukesha VGF-P48GL Emergency Generator, identified as 005G4, shall not exceed the limits given in the following table:

| Pollutant       | PPH   | TPY  |
|-----------------|-------|------|
| СО              | 10.36 | 2.59 |
| NO <sub>X</sub> | 5.18  | 1.30 |
| VOC             | 2.59  | 0.65 |
| Formaldehyde    | 0.49  | 0.12 |

#### d. 40 C.F.R 60, Subpart JJJJ

The Waukesha VGF-P48GL identified as 005G4 shall meet all applicable requirements under 40 C.F.R. 60, Subpart JJJJ including the following:

(1) Owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards in 40 C.F.R. 60, Subpart JJJJ Table 1 for their stationary ICE

| Engine    | Maximum | Manufaatuma |                 | F      | Emission S         | tandard         | s <sup>(a)</sup> |                    |
|-----------|---------|-------------|-----------------|--------|--------------------|-----------------|------------------|--------------------|
| type and  | Engine  | Date        |                 | g/HP-ł | ır                 | ppm             | vd at 1          | 5% O <sub>2</sub>  |
| fuel      | Power   |             | NO <sub>x</sub> | CO     | VOC <sup>(d)</sup> | NO <sub>x</sub> | CO               | VOC <sup>(d)</sup> |
| Emergency | HP≥130  | 1/1/2009    | 2.0             | 4.0    | 1.0                | 160             | 540              | 86                 |

 $^{(a)}$  Owners and operators of stationary non-certified SI engines may choose to comply with the emission standards in units of either g/HP-hr or ppmvd at 15% O<sub>2</sub>.

<sup>(b)</sup> For Purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

[45CSR16, 40 C.F.R. §60.4233(e), 40 C.F.R. 60 subpart JJJJ Table 1]

- (2) The emergency generator shall meet the definition of "Emergency Stationary Internal Combustion Engine" as given under 40 C.F.R. §60.4248.
   [45CSR16, 40 C.F.R. §60.4248]
   [45CSR13, R13-1856, Condition 4.1.3.]
- 5.1.5. Owners and operators of stationary SI ICE must operate and maintain stationary SI ICE that achieve the emission standards as required in §60.4233 over the entire life of the engine.
   [45CSR16, 40 C.F.R. §60.4234](G4)
- 5.1.6. Starting on July 1, 2010, if the emergency stationary SI internal combustion engine that is greater than or equal to 500 HP that was built on or after July 1, 2010, does not meet the standards applicable to non-emergency engines, the owner or operator must install a non-resettable hour meter.
   [45CSR16, 40 C.F.R. §60.4237(a)](G4)
- 5.1.7. If you are an owner or operator of a stationary SI internal combustion engine and must comply with the emission standards specified in §60.4233(d) or (e), you must demonstrate compliance according to one of the methods specified in 40 C.F.R. §60.4243(b)(1) and (2).
  - a. Purchasing a non-certified engine and demonstrating compliance with the emission standards specified in §60.4233(d) or (e) and according to the requirements specified in §60.4244, as applicable, and according to 40 C.F.R. §60.4243(b)(2)(ii).
    - i. If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

#### [45CSR16, 40 C.F.R. §§60.4243(b), (b)(2), & (b)(2)(ii)](G4)

- 5.1.8. If you own or operate an emergency stationary ICE, you must operate the emergency stationary ICE according to the requirements in 40 C.F.R. §§60.4243(d)(1) through (3). In order for the engine to be considered an emergency stationary ICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as described in 40 C.F.R. §§60.4243(d)(1) through (3), is prohibited. If you do not operate the engine according to the requirements in 40 C.F.R. §§60.4243(d)(1) through (3), the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.
  - a. There is no time limit on the use of emergency stationary ICE in emergency situations.
  - b. You may operate your emergency stationary ICE for any combination of the purposes specified in in 40 C.F.R. §60.4243(d)(2)(i) for a maximum of 100 hours per calendar year. Any operation for nonemergency situations as allowed by in 40 C.F.R. §60.4243(d)(3) counts as part of the 100 hours per calendar year allowed by this in 40 C.F.R. §60.4243(d)(2).
    - i. Emergency stationary ICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor,

the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency ICE beyond 100 hours per calendar year.

- c. Emergency stationary ICE may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response provided in 40 C.F.R. §60.4243(d)(2). Except as provided in 40 C.F.R. §60.4243(d)(3)(i), the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.
  - i. The engine is dispatched by the local balancing authority or local transmission and distribution system operator;
  - ii. The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.
  - iii. The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.
  - iv. The power is provided only to the facility itself or to support the local transmission and distribution system.
  - v. The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

#### [45CSR16, 40 C.F.R. §60.4243(d)](G4)

#### 5.2. Monitoring Requirements

5.2.1. For the purposes of demonstrating compliance with the maximum hours of operation limits set forth in 5.1.4.a, the permittee shall maintain monthly and rolling twelve month records of the hours of operation of the emergency generators.
 [45CSR13, R13-1856, Condition 4.2.2.]

#### **5.3.** Testing Requirements

5.3.1. For the purposes of demonstrating compliance with the emissions standards of 5.1.4.c and 40 C.F.R. §60.4233(e), the permittee shall conduct an initial performance test within one year after initial startup. After the initial test, subsequent testing shall be conducted every 8,760 hours of operation or 3 years, whichever comes first. If the engine is not operational, the permittee must conduct the performance test immediately upon startup of the engine. These tests must be conducted within 10 percent of the 100 percent peak (or highest achievable) load and according to the requirements of §60.8, under the specific conditions that are specified by Table 2 of Subpart JJJJ of Part 60 – Requirements for Performance test, and in accordance with Condition 3.3.1. of this permit. Records of such testing shall be maintained in accordance with Condition 3.4.1 of this permit.

[45CSR13, R13-1856, Condition 4.3.2.b](G4)

- 5.3.2. Owners and operators of stationary SI ICE who conduct performance tests must follow the procedures in 40 C.F.R. §§60.4244(a) through (f).
  - a. Each performance test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and according to the requirements in §60.8 and under the specific conditions that are specified by Table 2 to this subpart.
  - b. You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in §60.8(c). If your stationary SI internal combustion engine is non-operational, you do not need to startup the engine solely to conduct a performance test; however, you must conduct the performance test immediately upon startup of the engine.
  - c. You must conduct three separate test runs for each performance test required in this section, as specified in §60.8(f). Each test run must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and last at least 1 hour.
  - d. To determine compliance with the  $NO_X$  mass per unit output emission limitation, convert the concentration of  $NO_X$  in the engine exhaust using Equation 1 of this section:

$$ER = \frac{C_d \times 1.912 \times 10^{-3} \times Q \times T}{HP - hr}$$
(Eq. 1)

Where:

 $ER = Emission rate of NO_X in g/HP-hr.$ 

 $C_d$  = Measured NO<sub>X</sub> concentration in parts per million by volume (ppmv).

 $1.912 \times 10^{-3}$  = Conversion constant for ppm NO<sub>X</sub> to grams per standard cubic meter at 20 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meter per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, horsepower-hour (HP-hr).

e. To determine compliance with the CO mass per unit output emission limitation, convert the concentration of CO in the engine exhaust using Equation 2 of this section:

$$ER = \frac{C_d \times 1.164 \times 10^{-3} \times Q \times T}{HP - hr}$$
(Eq. 2)

Where:

ER = Emission rate of CO in g/HP-hr.

 $C_d$  = Measured CO concentration in ppmv.

 $1.164 \times 10^{-3}$  = Conversion constant for ppm CO to grams per standard cubic meter at 20 degrees Celsius. Q = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, in HP-hr.

f. For purposes of this subpart, when calculating emissions of VOC, emissions of formaldehyde should not be included. To determine compliance with the VOC mass per unit output emission limitation, convert the concentration of VOC in the engine exhaust using Equation 3 of this section:

$$ER = \frac{C_d \times 1.833 \times 10^{-3} \times Q \times T}{HP - hr}$$
(Eq. 3)

Where:

ER = Emission rate of VOC in g/HP-hr.

 $C_d = VOC$  concentration measured as propane in ppmv.

- $1.833 \times 10^{-3}$  = Conversion constant for ppm VOC measured as propane, to grams per standard cubic meter at 20 degrees Celsius.
- Q = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, in HP-hr.

g. If the owner/operator chooses to measure VOC emissions using either Method 18 of 40 CFR part 60, appendix A, or Method 320 of 40 CFR part 63, appendix A, then it has the option of correcting the measured VOC emissions to account for the potential differences in measured values between these methods and Method 25A. The results from Method 18 and Method 320 can be corrected for response factor differences using Equations 4 and 5 of this section. The corrected VOC concentration can then be placed on a propane basis using Equation 6 of this section.

$$RF_i = \frac{C_{Mi}}{C_{Ai}}$$
(Eq. 4)

Where:

 $RF_i$  = Response factor of compound i when measured with EPA Method 25A.

 $C_{Mi}$  = Measured concentration of compound i in ppmv as carbon.

 $C_{Ai}$  = True concentration of compound i in ppmv as carbon.

$$C_{icorr} = RF_i \times C_{imeas}$$
 (Eq. 5)

Where:

 $C_{icorr}$  = Concentration of compound i corrected to the value that would have been measured by EPA Method 25A, ppmv as carbon.

C<sub>imeas</sub> = Concentration of compound i measured by EPA Method 320, ppmv as carbon.

$$C_{Peq} = 0.6098 \times C_{icorr} \tag{Eq. 6}$$

Where:

CPeq = Concentration of compound i in mg of propane equivalent per DSCM.

#### [45CSR16, 40 C.F.R. §60.4244](G4)

#### 5.4. Recordkeeping Requirements

- 5.4.1. Owners and operators of all stationary SI ICE must keep records of the following information:
  - a. All notifications submitted to comply with 40 C.F.R. 60 subpart JJJJ and all documentation supporting any notification.
  - b. Maintenance conducted on the engine.
  - c. If the stationary SI internal combustion engine is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards and information as required in 40 CFR parts 90, 1048, 1054, and 1060, as applicable.
  - d. If the stationary SI internal combustion engine is not a certified engine or is a certified engine operating in a non-certified manner and subject to 60.4243(a)(2), documentation that the engine meets the emission standards.

#### [45CSR16, 40 C.F.R. §60.4245(a)](G4)

5.4.2. For all stationary SI emergency ICE greater than or equal to 500 HP manufactured on or after July 1, 2010, that do not meet the standards applicable to non-emergency engines, the owner or operator of must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. [45CSR16, 40 C.F.R. §60.4245(b)](G4)

#### 5.5. Reporting Requirements

- 5.5.1. If you are required to submit an Initial Notification but are otherwise not affected by the requirements of this subpart, in accordance with §63.6590(b), your notification should include the information in §63.9(b)(2)(i) through (v), and a statement that your stationary RICE has no additional requirements and explain the basis of the exclusion (for example, that it operates exclusively as an emergency stationary RICE if it has a site rating of more than 500 brake HP located at a major source of HAP emissions).
  [45CSR34, 40 C.F.R. §63.6645(f)](G4)
- 5.5.2. If you own or operate an emergency stationary RICE with a site rating of more than 100 brake HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in § 63.6640(f)(4)(ii), you must submit an annual report according to the requirements in paragraphs (1) through (3) of this section.
  - 1. The report must contain the following information:
    - a. Company name and address where the engine is located.

- b. Date of report and beginning and ending dates of the reporting period.
- c. Engine site rating and model year.
- d. Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
- e. Hours operated for the purposes specified in § 63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
- f. Number of hours the engine is contractually obligated to be available for the purposes specified in § 63.6640(f)(2)(ii) and (iii).
- g. Hours spent for operation for the purpose specified in § 63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in § 63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.
- h. If there were no deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.
- i. If there were deviations from the fuel requirements in § 63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.
- 2. The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.
- 3. The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 63.13.

#### [45CSR34; 40 C.F.R. §63.6650 (h)] (G3 and G4)

- 5.5.3. Owners and operators of stationary SI ICE that are subject to performance testing must submit a copy of each performance test as conducted in §60.4244 within 60 days after the test has been completed. Performance test reports using EPA Method 18, EPA Method 320, or ASTM D6348-03 (incorporated by reference see 40 CFR 60.17) to measure VOC require reporting of all QA/QC data. For Method 18, report results from sections 8.4 and 11.1.1.4; for Method 320, report results from sections 8.6.2, 9.0, and 13.0; and for ASTM D6348-03 report results of all QA/QC procedures in Annexes 1-7. [45CSR16; 40 C.F.R. §60.4245(d)] (G4)
- 5.5.4. If you own or operate an emergency stationary SI ICE with a maximum engine power more than 100 HP that operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in § 60.4243(d)(2)(ii) and (iii) or that operates for the purposes specified in § 60.4243(d)(3)(i), you must submit an annual report according to the requirements in conditions (1) through (3) of this section.
  - 1. The report must contain the following information:
    - a. Company name and address where the engine is located.

- b. Date of the report and beginning and ending dates of the reporting period.
- c. Engine site rating and model year.
- d. Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
- e. Hours operated for the purposes specified in § 60.4243(d)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in § 60.4243(d)(2)(ii) and (iii).
- f. Number of hours the engine is contractually obligated to be available for the purposes specified in § 60.4243(d)(2)(ii) and (iii).
- g. Hours spent for operation for the purposes specified in § 60.4243(d)(3)(i), including the date, start time, and end time for engine operation for the purposes specified in § 60.4243(d)(3)(i). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.
- 2. The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.
- 3. The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in § 60.4.

[45CSR16; 40 C.F.R. §60.4245(e)] (G4)

#### 5.6. Compliance Plan

5.6.1. None.

#### 6.0 Source Specific Requirements [emission point ID(s): E10]

#### 6.1. Limitations and Standards

- 6.1.1. The Solar Titan 250 combustion turbine (CT), identified as 00510, shall meet the following requirements:
  - a. The authorized CT shall be the make, model, and size as specified under Table 1.1 and shall only be fired by pipeline-quality natural gas;
  - b. With the exception of operation during "low-temperature mode" and low-load mode" as defined under 6.2.1(a), at all times the CT is in operation, the unit shall utilize SoLoNO<sub>x</sub> dry low-NO<sub>x</sub> combustor technology;
  - c. The CT shall be fired using good combustion practices;
  - d. The maximum emissions from the CT shall not exceed the limits (during specific operational scenarios) as given in the following table:

| Dollutont                               | PI                    | TDV      |       |
|-----------------------------------------|-----------------------|----------|-------|
| Ponutant                                | Normal <sup>(1)</sup> | Low-Load |       |
| СО                                      | 12.06                 | 7.25     | 54.65 |
| NO <sub>x</sub>                         | 7.93                  | 23.84    | 35.67 |
| PM <sub>2.5</sub> /PM <sub>10</sub> /PM | 1.47                  | n/a      | 6.44  |
| $SO_2$                                  | 12.71                 | n/a      | 0.70  |
| VOC                                     | 1.38                  | 0.66     | 6.03  |
| Formaldehyde                            | 0.16                  | n/a      | 0.69  |

<sup>(1)</sup> Emission limit valid for temperatures  $\geq 32^{\circ}F$ 

- e. The CT shall meet all applicable requirements under 40 C.F.R. 60 Subpart KKKK including the following:
  - (i) You must meet the emission limits for  $NO_x$  specified in Table 1 to this subpart.

## Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

| Combustion turbine type        | Combustion turbine heat input<br>at peak load (HHV) | NO <sub>x</sub> emission standard                                                    |
|--------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|
| New turbine firing natural gas | >50 MMBtu/h and ≤850<br>MMBtu/h                     | 25 ppm at 15 percent O <sub>2</sub> or<br>150 ng/J of useful output (1.2<br>lb/MWh). |

#### [45CSR16, 40 C.F.R. §60.4320(a), 40 C.F.R. 60, Subpart KKKK Table 1]

- (ii) If your turbine is located in a continental area, you must comply with either paragraph 40 C.F.R. §§60.4330(a)(1), (a)(2), or (a)(3). [45CSR16, 40 C.F.R §60.4330(a)]
  - (1) You must not cause to be discharged into the atmosphere from the subject stationary combustion turbine any gases which contain SO<sub>2</sub> in excess of 110 nanograms per Joule (ng/J)

(0.90 pounds per megawatt-hour (lb/MWh)) gross output; [45CSR16, 40 C.F.R §60.4330(a)(1)]

(2) You must not burn in the subject stationary combustion turbine any fuel which contains total potential sulfur emissions in excess of 26 ng SO<sub>2</sub>/J (0.060 lb SO<sub>2</sub>/MMBtu) heat input. If your turbine simultaneously fires multiple fuels, each fuel must meet this requirement. [45CSR16, 40 C.F.R §60.4330(a)(2)]

#### [45CSR13, R13-1856, Condition 4.1.2]

- 6.1.2. Operation and Maintenance or Air Pollution Control Equipment. The permittee shall, to the extent practicable, install, maintain, and operate all air pollution control equipment listed in Section 1.1 and associated monitoring equipment in a manner consistent with safety and good air pollution control practices for minimizing emissions, or comply with any more stringent limits set forth in this permit or as set forth by any State rule, Federal regulation, or alternative control plan approved by the Secretary. [45CSR13, R13-1856, Condition 4.1.6]
- 6.1.3. The permittee must operate and maintain the stationary combustion turbine, air pollution control equipment, and monitoring equipment in a manner consistent with good air pollution control practices for minimizing emissions at all times including during startup, shutdown, and malfunction.
   [45CSR16, 40 C.F.R §60.4333(a); 45CSR13, R13-1856, Condition 4.1.2.f]
- 6.1.4. If you are not using water or steam injection to control  $NO_X$  emissions, you must perform annual performance tests in accordance with 40 C.F.R. §60.4400 to demonstrate continuous compliance. If the  $NO_X$  emission result from the performance test is less than or equal to 75 percent of the  $NO_X$  emission limit for the turbine, you may reduce the frequency of subsequent performance tests to once every 2 years (no more than 26 calendar months following the previous performance test). If the results of any subsequent performance test

## exceed 75 percent of the NO<sub>X</sub> emission limit for the turbine, you must resume annual performance tests. [45CSR16, 40 C.F.R §60.4340(a)]

#### 6.2. Monitoring Requirements

- 6.2.1. The Solar Titan 250 CT shall meet the following Monitoring, Compliance Demonstration, Recording and Reporting Requirements:
  - a. The permittee shall monitor and record the monthly amount of hours the CT operates in the following modes:
    - (i) Normal Mode = Load  $\ge$  40%, Temperature > -20°F: SoLoNO<sub>x</sub> operating;
    - (ii) Low-Temperature Mode = Temperature  $\leq -20^{\circ}$ F: non-SoLoNO<sub>x</sub> mode; and
    - (iii) Low-Load Mode = Load  $\leq 40\%$  (includes startup/shutdown events): non-SoLoNO<sub>x</sub> mode.
  - b. To determine compliance with the CT annual emission limits given in 6.1.1.d, the permittee shall calculate the monthly and twelve month rolling average of actual emissions (in tons) that the CT emitted. The calculation of actual monthly and annual emissions shall be in accordance with the following:
    - (i) The permittee shall, by the 15<sup>th</sup> of each calendar month, calculate the actual monthly and rolling twelve month total of emissions of the CT using the data recorded under 6.2.1.a and the best available emission factors in accordance with the following requirements:

- (1) Emission factors may be used that were measured during the most recent performance test approved by the Secretary (and that were used to determine compliance with the hourly limits given in 6.1.1.d);
- (2) When emission factors as described under 6.2.1.b.(i)(1) are not available, the permittee shall use the emission factors used to calculate the potential-to-emit of the CT as given in Permit Application R13-1856A.

#### c. 40 C.F.R. 60, Subpart KKKK

You may elect not to monitor the total sulfur content of the fuel combusted in the turbine, if the fuel is demonstrated not to exceed potential sulfur emissions of 26 ng SO<sub>2</sub>/J (0.060 lb/MMBtu) heat input for units located in continental areas and 180 ng SO<sub>2</sub>/J (0.42 lb/MMBtu) heat input for units located in noncontinental areas or a continental area that the Administrator determines does not have access to natural gas and that the removal of sulfur compounds would cause more environmental harm than benefit. You must use one of the following sources of information to make the required demonstration:

- (i) The fuel quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the fuel, specifying that the maximum total sulfur content for oil use in continental areas is 0.05 weight percent (500 ppmw) or less and 0.04 weight percent (4,000 ppmw) or less for noncontinental areas, the total sulfur content for natural gas use in continental areas is 20 grains of sulfur or less per 100 standard cubic feet and 140 grains of sulfur or less per 100 standard cubic feet for noncontinental areas, has potential sulfur emissions of less than 26 ng SO<sub>2</sub>/J (0.060 lb SO<sub>2</sub>/MMBtu) heat input for continental areas and has potential sulfur emissions of less than 180 ng SO<sub>2</sub>/J (0.42 lb SO<sub>2</sub>/MMBtu) heat input for noncontinental areas; or
- (ii) Representative fuel sampling data which show that the sulfur content of the fuel does not exceed 26 ng SO<sub>2</sub>/J (0.060 lb SO<sub>2</sub>/MMBtu) heat input for continental areas or 180 ng SO<sub>2</sub>/J (0.42 lb SO<sub>2</sub>/MMBtu) heat input for noncontinental areas. At a minimum, the amount of fuel sampling data specified in section 2.3.1.4 or 2.3.2.4 of appendix D to part 75 of this chapter is required.
   [45CSR16, 40 CFR §60.4365]

#### [45CSR13, R13-1856, Condition 4.2.1]

6.2.2. If you elect not to demonstrate sulfur content using options in 40 C.F.R. §60.4365, and the fuel is supplied without intermediate bulk storage, the sulfur content value of the gaseous fuel must be determined and recorded once per unit operating day.
 [45CSR16, 40 CFR§ 60.4370(b)]

#### 6.3. Testing Requirements

- 6.3.1. The permittee shall meet the following testing requirement with respect to the Solar Titan 250 CT:
  - a. For the purposes of demonstrating compliance with the NO<sub>x</sub> emission standard in condition 6.1.1.e and 40 C.F.R. §60.4320(a) the permittee shall conduct an initial performance test within 60 days after achieving maximum output of each turbine, but no later than 180 days after initial startup. After the initial test, subsequent performance testing shall be conducted annually (no more than 14 months following the previous test) unless the previous results demonstrate that the affected units achieved compliance of less than or equal to 75 percent of the NO<sub>x</sub> emission limit, then the permittee may reduce

the frequency of subsequent tests to once every two years (no more than 26 calendar months following the previous test) as allowed under 40 C.F.R. 60.4320(a). If the results of any subsequent performance test exceed 75 percent of the NO<sub>x</sub> emission limit, then the permittee must resume annual performance tests. Such testing shall be conducted in accordance with Condition 3.3.1. and 40 C.F.R. 60.4400. Records of such testing shall be maintained in accordance with Condition 3.4.2.

#### [45CSR13, R13-1856, Condition 4.3.2.a]

- 6.3.2. You must conduct an initial performance test, as required in §60.8. Subsequent NO<sub>X</sub> performance tests shall be conducted on an annual basis (no more than 14 calendar months following the previous performance test).
  - a. There are two general methodologies that you may use to conduct the performance tests. For each test run:
    - i. Measure the NO<sub>X</sub> concentration (in parts per million (ppm)), using EPA Method 7E or EPA Method 20 in appendix A of this part. For units complying with the output based standard, concurrently measure the stack gas flow rate, using EPA Methods 1 and 2 in appendix A of this part, and measure and record the electrical and thermal output from the unit. Then, use the following equation to calculate the NO<sub>X</sub> emission rate:

$$E = \frac{(1.194 \times 10^{-7}) \times (NO_X)_C \times Q_{std}}{P}$$

Where:

 $E = NO_X$  emission rate, in lb/MWh

 $1.194 \times 10^{-7}$  = conversion constant, in lb/dscf-ppm

 $(NO_X)_c$  = average NO<sub>X</sub> concentration for the run, in ppm

 $Q_{std} = stack$  gas volumetric flow rate, in dscf/hr

- P = gross electrical and mechanical energy output of the combustion turbine, in MW (for simplecycle operation), for combined-cycle operation, the sum of all electrical and mechanical output from the combustion and steam turbines, or, for combined heat and power operation, the sum of all electrical and mechanical output from the combustion and steam turbines plus all useful recovered thermal output not used for additional electric or mechanical generation, in MW, calculated according to 60.4350(f)(2); or
- ii. Measure the NO<sub>X</sub> and diluent gas concentrations, using either EPA Methods 7E and 3A, or EPA Method 20 in appendix A of this part. Concurrently measure the heat input to the unit, using a fuel flowmeter (or flowmeters), and measure the electrical and thermal output of the unit. Use EPA Method 19 in appendix A of this part to calculate the NO<sub>X</sub> emission rate in lb/MMBtu. Then, use Equations 1 and, if necessary, 2 and 3 in §60.4350(f) to calculate the NO<sub>X</sub> emission rate in lb/MWh.
- b. Sampling traverse points for  $NO_X$  and (if applicable) diluent gas are to be selected following EPA Method 20 or EPA Method 1 (non-particulate procedures), and sampled for equal time intervals. The sampling must be performed with a traversing single-hole probe, or, if feasible, with a stationary multi-hole probe that samples each of the points sequentially. Alternatively, a multi-hole probe designed and documented to sample equal volumes from each hole may be used to sample simultaneously at the required points.
- c. Notwithstanding 40 C.F.R. §60.4400(a)(2), you may test at fewer points than are specified in EPA Method 1 or EPA Method 20 in appendix A of this part if the following conditions are met

- i. You may perform a stratification test for NOX and diluent pursuant to the procedures specified in section 6.5.6.1(a) through (e) of appendix A of part 75 of this chapter.
- ii. Once the stratification sampling is completed, you may use the following alternative sample point selection criteria for the performance test:
  - A. If each of the individual traverse point NO<sub>X</sub> concentrations is within  $\pm 10$  percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than  $\pm 5$ ppm or  $\pm 0.5$  percent CO<sub>2</sub> (or O<sub>2</sub>) from the mean for all traverse points, then you may use three points (located either 16.7, 50.0 and 83.3 percent of the way across the stack or duct, or, for circular stacks or ducts greater than 2.4 meters (7.8 feet) in diameter, at 0.4, 1.2, and 2.0 meters from the wall). The three points must be located along the measurement line that exhibited the highest average NO<sub>X</sub> concentration during the stratification test; or
  - B. For turbines with a NO<sub>X</sub> standard greater than 15 ppm @ 15% O<sub>2</sub>, you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NO<sub>X</sub> concentrations is within ±5 percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than ±3ppm or ±0.3 percent CO<sub>2</sub> (or O<sub>2</sub>) from the mean for all traverse points; or
  - C. For turbines with a NO<sub>X</sub> standard less than or equal to 15 ppm @ 15% O<sub>2</sub>, you may sample at a single point, located at least 1 meter from the stack wall or at the stack centroid if each of the individual traverse point NO<sub>X</sub> concentrations is within  $\pm 2.5$  percent of the mean concentration for all traverse points, or the individual traverse point diluent concentrations differs by no more than  $\pm 1$ ppm or  $\pm 0.15$  percent CO<sub>2</sub> (or O<sub>2</sub>) from the mean for all traverse points.

#### [45CSR16, 40 C.F.R. §60.4400(a)]

- 6.3.3. The performance test must be done at any load condition within plus or minus 25 percent of 100 percent of peak load. You may perform testing at the highest achievable load point, if at least 75 percent of peak load cannot be achieved in practice. You must conduct three separate test runs for each performance test. The minimum time per run is 20 minutes.
  - a. If the stationary combustion turbine combusts both oil and gas as primary or backup fuels, separate performance testing is required for each fuel.
  - b. For a combined cycle and CHP turbine systems with supplemental heat (duct burner), you must measure the total NO<sub>X</sub> emissions after the duct burner rather than directly after the turbine. The duct burner must be in operation during the performance test.
  - c. If water or steam injection is used to control NO<sub>X</sub> with no additional post-combustion NO<sub>X</sub> control and you choose to monitor the steam or water to fuel ratio in accordance with §60.4335, then that monitoring system must be operated concurrently with each EPA Method 20 or EPA Method 7E run and must be used to determine the fuel consumption and the steam or water to fuel ratio necessary to comply with the applicable §60.4320 NO<sub>X</sub> emission limit.

- d. Compliance with the applicable emission limit in §60.4320 must be demonstrated at each tested load level. Compliance is achieved if the three-run arithmetic average NO<sub>X</sub> emission rate at each tested level meets the applicable emission limit in §60.4320.
- e. If you elect to install a CEMS, the performance evaluation of the CEMS may either be conducted separately or (as described in §60.4405) as part of the initial performance test of the affected unit.
- f. The ambient temperature must be greater than 0 °F during the performance test.

#### [45CSR16, 40 C.F.R. §60.4400(b)]

#### 6.4. Recordkeeping Requirements

- 6.4.1. Record of Maintenance of Air Pollution Control Equipment. For all pollution control equipment listed in section 1.1, the permittee shall maintain accurate records of all required pollution control equipment inspection and/or preventative maintenance procedures.
   [45CSR13, R13-1856, Condition 4.4.2]
- 6.4.2. **Record of Malfunctions of Air Pollution Control Equipment.** For all air pollution control equipment listed in section 1.1, the permittee shall maintain records of the occurrence and duration of any malfunction or operational shutdown of the air pollution control equipment during which excess emissions occur. For each such case, the following information shall be recorded:
  - a. The equipment involved.
  - b. Steps taken to minimize emissions during the event.
  - c. The duration of the event.
  - d. The estimated increase in emissions during the event.

For each such case associated with an equipment malfunction, the additional information shall also be recorded:

- e. The cause of the malfunction.
- f. Steps taken to correct the malfunction.
- g. Any changes or modifications to equipment or procedures that would help prevent future reoccurrences of the malfunction.

#### [45CSR13, R13-1856, Condition 4.4.3]

#### 6.5. **Reporting Requirements**

6.5.1. For each affected unit required to continuously monitor parameters or emissions, or to periodically determine the fuel sulfur content under this subpart, you must submit reports of excess emissions and monitor downtime, in accordance with §60.7(c). Excess emissions must be reported for all periods of unit operation, including start-up, shutdown, and malfunction.

#### [45CSR16, 40 C.F.R §60.4375(a)]

6.5.2. For each affected unit that performs annual performance tests in accordance with §60.4340(a), you must submit a written report of the results of each performance test before the close of business on the 60th day following the completion of the performance test.
 [45CSR16, 40 C.F.R §60.4375(b)]

#### 6.6. Compliance Plan

6.6.1. None.

West Virginia Department of Environmental Protection Division of Air Quality





## For Draft/Proposed Renewal Permitting Action Under 45CSR30 and Title V of the Clean Air Act

Permit Number: **R30-09900013-2022** Application Received: **May 26, 2022** Plant Identification Number: **099-00013** Permittee: **Columbia Gas Transmission, LLC** Facility Name: **Ceredo Compressor Station** Mailing Address: **1700 MacCorkle Avenue, SE, Charleston, WV 25314** 

Revised: N/A

Physical Location: UTM Coordinates: Directions: Walkers Branch Road, Wayne County, West Virginia
366.1 km Easting • 4247.7 km Northing • Zone 17
Traveling I-64 West from Charleston, take the Kenova-Ceredo exit.
Turn left onto Route 52. Make a left onto Airport Road. Turn right onto
Walkers Branch Road at the Pilgrim Glass Plant, travel 2 miles, the
station is on the left.

#### **Facility Description**

The Ceredo Station is a natural gas transmission facility covered by Standard Industrial Code (SIC) 4922. The station has the potential to operate seven (7) days per week, twenty-four (24) hours per day. The station consists of six (6) 2800-hp and one (1) 2700-hp natural gas fired reciprocating compressor engines, one (1) 30,399-hp compressor turbine, and numerous storage tanks of various sizes. On-site support equipment includes one (1) 812 hp and one (1) 1,175 hp emergency generators, one (1) 6.276 MMBtu/hr boiler, and one (1) 0.375 MMBtu/hr and one (1) 0.60 MMBtu/hr line heaters.

#### **Emissions Summary**

| Plantwide Emissions Summary [Tons per Year] |                     |                       |  |  |
|---------------------------------------------|---------------------|-----------------------|--|--|
| <b>Regulated Pollutants</b>                 | Potential Emissions | 2020 Actual Emissions |  |  |
| Carbon Monoxide (CO)                        | 310.41              | 40.86                 |  |  |
| Nitrogen Oxides (NO <sub>X</sub> )          | 3,582.71            | 403.14                |  |  |
| Particulate Matter (PM <sub>2.5</sub> )     | 41.03               | 5.06                  |  |  |
| Particulate Matter (PM <sub>10</sub> )      | 41.03               | 5.06                  |  |  |
| Total Particulate Matter (TSP)              | 41.03               | 5.06                  |  |  |
| Sulfur Dioxide (SO <sub>2</sub> )           | 1.23                | 0.19                  |  |  |
| Volatile Organic Compounds (VOC)            | 107.30              | 15.87                 |  |  |

#### $PM_{10}$ is a component of TSP.

| Hazardous Air Pollutants | Potential Emissions | 2020 Actual Emissions |
|--------------------------|---------------------|-----------------------|
| Benzene                  | 1.39                | NA                    |
| Toluene                  | 0.81                | NA                    |
| Ethylbenzene             | 0.11                | NA                    |
| Xylene                   | 0.19                | NA                    |
| n-Hexane                 | 0.38                | NA                    |
| Formaldehyde             | 40.11               | 4.45                  |
| Acetaldehyde             | 5.58                | NA                    |
| Other HAPs               | 9.43                | NA                    |
| Total HAPs               | 58.00               | NA                    |

Some of the above HAPs may be counted as PM or VOCs.

#### **Title V Program Applicability Basis**

This facility has the potential to emit 310.41 tons per year of Carbon Monoxide (CO), 3,582.71 tons per year of Nitrogen Oxides (NOx), 107.30 tons per year of Volatile Organic Compounds (VOC), 40.11 tons per year of Formaldehyde, and 58.00 tons per year of total HAPs. Due to this facility's potential to emit over 100 tons per year of criteria pollutant, over 10 tons per year of a single HAP, and over 25 tons per year of aggregate HAPs, Columbia Gas Transmission, LLC is required to have an operating permit pursuant to Title V of the Federal Clean Air Act as amended and 45CSR30.

#### Legal and Factual Basis for Permit Conditions

The State and Federally-enforceable conditions of the Title V Operating Permits are based upon the requirements of the State of West Virginia Operating Permit Rule 45CSR30 for the purposes of Title V of the Federal Clean Air Act and the underlying applicable requirements in other state and federal rules.

This facility has been found to be subject to the following applicable rules:

| Federal and State: | 45CSR2                       | PM limits for Indirect Heat Exchangers        |
|--------------------|------------------------------|-----------------------------------------------|
|                    | 45CSR6                       | Open burning prohibited.                      |
|                    | 45CSR11                      | Standby plans for emergency episodes.         |
|                    | 45CSR13                      | Construction permits                          |
|                    | 45CSR16                      | Standards of Performance for New              |
|                    |                              | Stationary Sources.                           |
|                    | WV Code § 22-5-4 (a) (14)    | The Secretary can request any pertinent       |
|                    |                              | information such as annual emission           |
|                    |                              | inventory reporting.                          |
|                    | 45CSR30                      | Operating permit requirement.                 |
|                    | 45CSR34                      | Emission Standards for HAPs                   |
|                    | 40 C.F.R. 60, Subpart JJJJ   | Standards of Performance for Stationary       |
|                    |                              | Spark Ignition Internal Combustion Engines    |
|                    | 40 C.F.R. 60, Subpart KKKK   | Standards of Performance for Stationary       |
|                    |                              | Combustion Turbines                           |
|                    | 40 C.F.R. Part 61            | Asbestos inspection and removal               |
|                    | 40 C.F.R. 63, Subpart ZZZZ   | National Emissions Standards for Hazardous    |
|                    |                              | Air Pollutants for Stationary Reciprocating   |
|                    |                              | Internal Combustion Engines                   |
|                    | 40 C.F.R. 63, Subpart DDDDD  | National Emission Standards for Hazardous     |
|                    |                              | Air Pollutants for Major Sources: Industrial, |
|                    |                              | Commercial, and Institutional Boilers and     |
|                    |                              | Process Heaters                               |
|                    | 40 C.F.R. Part 82, Subpart F | Ozone depleting substances                    |
| State Only:        | 45CSR4                       | No objectionable odors.                       |
| ·                  | 45CSR17                      | Prevent And Control Particulate Matter Air    |
|                    |                              | Pollution From Materials Handling,            |
|                    |                              | Preparation, Storage And Other Sources Of     |
|                    |                              | Fugitive Particulate Matter                   |

Each State and Federally-enforceable condition of the Title V Operating Permit references the specific relevant requirements of 45CSR30 or the applicable requirement upon which it is based. Any condition of the Title V permit that is enforceable by the State but is not Federally-enforceable is identified in the Title V permit as such.

The Secretary's authority to require standards under 40 C.F.R. Part 60 (NSPS), 40 C.F.R. Part 61 (NESHAPs), and 40 C.F.R. Part 63 (NESHAPs MACT) is provided in West Virginia Code §§ 22-5-1 *et seq.*, 45CSR16, 45CSR34 and 45CSR30.

#### **Active Permits/Consent Orders**

| Permit or            | Date of           | Permit Determinations or Amendments That |
|----------------------|-------------------|------------------------------------------|
| Consent Order Number | Issuance          | Affect the Permit ( <i>if any</i> )      |
| R13-1856C            | December 18, 2017 |                                          |

Conditions from this facility's Rule 13 permit(s) governing construction-related specifications and timing requirements will not be included in the Title V Operating Permit but will remain independently enforceable under the applicable Rule 13 permit(s). All other conditions from this facility's Rule 13 permit(s) governing the source's operation and compliance have been incorporated into this Title V permit in accordance with the "General Requirement Comparison Table," which may be downloaded from DAQ's website.

#### **Determinations and Justifications**

R30-09900013-2016 (SM01) was issued on August 28, 2017 to incorporate the changes approved under R13-1856B issued on July 13, 2017. On December 18, 2017, Class I administrative update R13-1856C was issued to reduce the maximum design heat input of HTR 3 from 1.0 to 0.6 MMBtu/hr and to add three (3) de minimis storage tanks. Since the permittee did not submit a modification to the Title V permit for the changes approved under R13-1856C, they will be incorporated into this Title V renewal.

The following changes and updates have been made to the Title V permit during this renewal:

#### Section 1.0

- The Emission Units Table was updated to reflect the changes in R13-1856C. The design capacity of HTR3 was changed from 1.0 to 0.60 MMBtu/hr, the 900 gallon oil-water storage tank was added, the 5,000 gallon waste water storage tank was added, and the 5,000 gallon condensate storage tank was added.
- Table 1.2 was updated since R13-1856C supersedes and replaces R13-1856B.

#### Section 3.0

- Permit condition 3.1.12 was updated to match the latest version of 40 C.F.R. §60.5397a.
- Permit condition 3.5.3 was updated to match the most recent boilerplate.
- Deleted the last paragraph in condition 3.1.9 since this language is not in R13-1856C.
- Moved condition 3.4.4 to the Limits and Standards section as condition 3.1.13 since it is not a recordkeeping requirement.

#### Section 4.0

• Permit condition 4.1.11 was updated to reflect the changes in R13-1856C. Specifically, the MDHI in condition 4.1.11.a was changed from 1.00 to 0.60 MMBtu/hr and the emission limits in Table 4.1.1.c were updated to reflect the new limits in R13-1856C.

#### Section 5.0

- Deleted vacated sections 40 C.F.R. §§63.6640(f)(2)(ii) and (iii) from condition 5.1.3 and deleted vacated sections 40 C.F.R. §§60.4243(d)(2)(ii) and (iii) from condition 5.1.8
- Added reporting requirements for G3 and G4 from 40 CFR §60.6650(h) as condition 5.5.2
- Added reporting requirements for G4 from 40 CFR §§60.4245(d) and (e) as conditions 5.5.3 and 5.5.4

#### **Non-Applicability Determinations**

The following requirements have been determined not to be applicable to the subject facility due to the following:

According to 45CSR§2-11.1 the boiler and heaters are exempt from the weight emission standards and MRR (monitoring, recordkeeping and reporting) because they are less than 10 mmBtu/hr.

45CSR10; *To Prevent and Control Air Pollution from The Emission of Sulfur Oxides*: 45CSR10 is not applicable to the facility boiler and heaters because they are less than 10 mmBtu/hr.

45CSR21; *To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds:* All storage tanks at Ceredo station are below 40,000 gallons in capacity, hence 45CSR§21-28 is not applicable. Ceredo station is not engaged in the extraction or fractionation of natural gas, hence, 45CSR§21-29 is not applicable.

45CSR27; *To Prevent and Control the Emissions of Toxic Air Pollutants:* Natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

40 C.F.R. 60 Subpart Dc; *Standards of Performance for Steam Generating Units:* The boiler and heaters at this facility are less than 10 mmBtu/hr; hence, Subpart Dc is not applicable.

40 C.F.R. 60 Subparts K,Ka; *Standards of Performance for Storage Vessels for Petroleum Liquids:* All tanks at Ceredo station are below 40,000 gallons in capacity.

40 C.F.R. 60 Subpart Kb; *Standards of Performance for Volatile Organic Liquid Storage Vessels:* All tanks at Ceredo station are below 75m<sup>3</sup> in capacity.

40 C.F.R. 60 Subpart KKK; *Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plant:* Ceredo station is not engaged in the extraction or fractionation of natural gas liquids from field gas, the fractionation of mixed natural gas liquids to natural gas products, or both.

40 C.F.R. 60 Subpart IIII; *Standards of Performance for Stationary Compression Ignition Internal Combustion Engines*: There are no compression ignition engines at this facility.

40 C.F.R 60 Subpart OOOO; Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution: Storage vessel requirements do not apply since all tanks commenced construction prior to August 23, 2011.

40 C.F.R. 63 Subpart HHH; *National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities*: The facility does not have a glycol dehydration unit and is therefore not subject to the requirements of this subpart.

40 C.F.R. 63 Subpart YYYY; Turbine *MACT:* The Solar Titan 250 (E10) is subject to 40 C.F.R. 63 Subpart YYYY. Per 40 C.F.R. §63.6095(d), there is a stay of standards for lean premix stationary combustion turbines until EPA takes final action to require compliance with this subpart. The only requirement for the unit is the initial notification requirement of 40 C.F.R. §63.6145, which was satisfied by the preconstruction permit application.

40 C.F.R. 64 - None of the emission units have any add-on controls; therefore, in accordance with 40 C.F.R § 64.2(a), CAM is not applicable to this facility.

#### **Request for Variances or Alternatives**

None.

#### **Insignificant Activities**

Insignificant emission unit(s) and activities are identified in the Title V application.

#### **Comment Period**

Beginning Date: Ending Date:

#### **Point of Contact**

All written comments should be addressed to the following individual and office:

Nikki Moats West Virginia Department of Environmental Protection Division of Air Quality 601 57<sup>th</sup> Street SE Charleston, WV 25304 Phone: 304/926-0499 ext. 41282 Nikki.B.Moats@wv.gov

#### **Procedure for Requesting Public Hearing**

During the public comment period, any interested person may submit written comments on the draft permit and may request a public hearing, if no public hearing has already been scheduled. A request for public hearing shall be in writing and shall state the nature of the issues proposed to be raised in the hearing. The Secretary shall grant such a request for a hearing if he/she concludes that a public hearing is appropriate. Any public hearing shall be held in the general area in which the facility is located.

#### **Response to Comments (Statement of Basis)**

### **Division of Air Quality Permit Application Submittal**

Please find attached a permit application for : Columbia Gas Transmission, LLC, Ceredo Compressor Station [Company Name: Facility Location] DAQ Facility ID (for existing facilities only): 099-00013 • Current 45CSR13 and 45CSR30 (Title V) permits associated with this process (for existing facilities only): R30-09900013-2016 (SM01) and R13-1856C Type of NSR Application (check all that apply): Type of 45CSR30 (TITLE V) Application: □ Construction □ Title V Initial ☐ Modification ☑ Title V Renewal **Class I Administrative Update** □ Administrative Amendment\*\* Class II Administrative Update □ Minor Modification\*\* **☐** Relocation □ Significant Modification\*\* **Temporary** □ Off Permit Change \*\* If the box above is checked, include the Title V **Permit Determination** revision information as ATTACHMENT S to the combined NSR/Title V application. **Payment Type:** • □ Credit Card (Instructions to pay by credit card will be sent in the Application Status email.) □ Check (Make checks payable to: WVDEP – Division of Air Quality) **Please wait until DAQ** Mail checks to: emails you the Facility WVDEP - DAQ - Permitting **D** Number and Permit **Attn: NSR Permitting Secretary** Application Number. 601 57th Street, SE **Please add these** Charleston. WV 25304 identifiers to your check or cover letter with your check. If the permit writer has any questions, please contact (all that apply): • **Responsible Official/Authorized Representative** • Name: [ Email: [ • • **Phone Number:** Company Contact Name: Trevor Galley • Email: trevor\_galley@tcenergy.com • • Phone Number: 304-357-2076 □ Consultant • Name: Email: | ۲ Phone Number: •



# **Columbia Gas Transmission, LLC**

# Air Permit Application for Renewal Ceredo Natural Gas Compressor Station

Ceredo, West Virginia



ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

May 2021

Columbia Gas Transmission, LLC 1700 MacCorkle Avenue SE Charleston, WV 25314



May 26, 2021

Director WV Department of Environmental Protection (WVDEP) Division of Air Quality (DAQ) 601 57<sup>th</sup> Street SE Charleston, WV 25304

Re: Columbia Gas Transmission, LLC (Columbia) Ceredo Compressor Station (Facility ID: 099-00013) Title V Operating Permit Renewal Application

Dear Director,

In accordance WV 45CSR30, please find the attached Title V permit renewal application for Columbia's Ceredo Compressor Station, which is located in Wayne County, West Virginia. Ceredo Compressor Station currently operates under Permit No. R30-09900013-2016 under 45CSR30. The current Title V Permit to Operate expires on December 27, 2021.

This package contains the general application forms along with the required attachments for a Title V renewal permit application. Ceredo Compressor Station's Potential to Emit (PTE) exceeds 100 tons per year for Nitrogen Oxides (NO<sub>x</sub>) and Carbon Monoxide (CO) and Volatile Organic Compounds (VOCs). The Ceredo Compressor Station also qualifies as a major source of Hazardous Air Pollutants (HAPs), since the PTE exceeds major source thresholds for formaldehyde and aggregate HAPs. For these reasons, Ceredo in considered a Title V source for permitting purposes.

Should you have any questions regarding the application or if additional information is required, please contact me by email at <u>trevor\_galley@tcenergy.com</u>.

Sincerely,

Trevor Galley Environmental Analyst TC Energy

| OF WEST VIA  | WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL<br>PROTECTION |
|--------------|---------------------------------------------------------|
|              | <b>DIVISION OF AIR QUALITY</b>                          |
|              | 601 57 <sup>th</sup> Street SE                          |
| SEMPER LIGHT | Charleston, WV 25304                                    |
|              | Phone: (304) 926-0475                                   |
|              | www.dep.wv.gov/daq                                      |
| INITIAL/RENE | WAL TITLE V PERMIT APPLICATION - GENERAL FORMS          |

#### Section 1: General Information

| 1. Name of Applicant (As registered with the WV<br>Secretary of State's Office):                                                                                                                                                                                                                              | 2. Facility Name or Location:                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Columbia Gas Transmission, LLC                                                                                                                                                                                                                                                                                | Ceredo Compressor Station                                      |  |
| 3. DAQ Plant ID No.:                                                                                                                                                                                                                                                                                          | 4. Federal Employer ID No. (FEIN):                             |  |
| 099-00013                                                                                                                                                                                                                                                                                                     | 310802435                                                      |  |
| 5. Permit Application Type:                                                                                                                                                                                                                                                                                   |                                                                |  |
| <ul> <li>☐ Initial Permit</li> <li>When did op</li> <li>✓ Permit Renewal</li> <li>What is the op</li> <li>☐ Update to Initial/Renewal Permit Application</li> </ul>                                                                                                                                           | perations commence?<br>expiration date of the existing permit? |  |
| 6. Type of Business Entity:                                                                                                                                                                                                                                                                                   | 7. Is the Applicant the:                                       |  |
| □ Corporation       □ Governmental Agency       ☑ LLC         □ Partnership       □ Limited Partnership                                                                                                                                                                                                       | Owner Operator Both                                            |  |
| 8. Number of onsite employees:<br>Less than ten (10) employees                                                                                                                                                                                                                                                | please provide the name and address of the other party.        |  |
| 9. Governmental Code:                                                                                                                                                                                                                                                                                         |                                                                |  |
| <ul> <li>Privately owned and operated; 0</li> <li>County government owned and operated; 3</li> <li>Federally owned and operated; 1</li> <li>Municipality government owned and operated; 4</li> <li>District government owned and operated; 5</li> </ul>                                                       |                                                                |  |
| 10. Business Confidentiality Claims                                                                                                                                                                                                                                                                           |                                                                |  |
| Does this application include confidential information (per 45CSR31)?  Yes  No                                                                                                                                                                                                                                |                                                                |  |
| If yes, identify each segment of information on each page that is submitted as confidential, and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's " <i>PRECAUTIONARY NOTICE-CLAIMS OF CONFIDENTIALITY</i> " guidance. |                                                                |  |

| 11. Mailing Address                                                     |  |  |  |  |  |  |
|-------------------------------------------------------------------------|--|--|--|--|--|--|
| Street or P.O. Box: 1700 MacCorkle Avenue, SE                           |  |  |  |  |  |  |
| City: Charleston State: WV Zip: 25314                                   |  |  |  |  |  |  |
| Telephone Number: (304) 357 - 2047         Fax Number: (304) 357 - 2770 |  |  |  |  |  |  |

| 12. Facility Location                          |                                                |                                          |
|------------------------------------------------|------------------------------------------------|------------------------------------------|
| Street: 1664 Walkers Branch Road               | City: Huntington                               | County: Wayne                            |
|                                                |                                                |                                          |
| UTM Easting: 366.115 km                        | UTM Northing: 4247.720 km                      | <b>Zone: Z</b> 17 or <b>1</b> 8          |
| Directions: Traveling I-64 West fro            | om Charleston, take the Kenova-Ce              | redo exit. Turn left onto Route 52.      |
| Make a left onto Airport Road. Turn r          | ight onto Walker's Branch Road at the F        | Pilgrim Glass Plant, and travel 2 miles; |
| the station is on the left.                    |                                                |                                          |
|                                                |                                                |                                          |
| Portable Source?  Yes                          | No                                             |                                          |
|                                                |                                                |                                          |
| Is facility located within a nonattain         | nment area? 🗌 Yes 🗹 No                         | If yes, for what air pollutants?         |
|                                                |                                                |                                          |
| Is facility located within 50 miles of         | another state? 🗹 Yes 🗌 No                      | If yes, name the affected state(s).      |
|                                                |                                                | Kentucky                                 |
|                                                |                                                | Ohio                                     |
| Is facility located within 100 km of           | a Class I Area <sup>1</sup> ? 🗌 Yes 📝 No       | If yes, name the area(s).                |
| If no, do emissions impact a Class I           | Areal? Ves V No                                |                                          |
| in no, ao emissions impact a Class I           |                                                |                                          |
| 1<br>Class Lareas include Dolly Sods and Ottor | Creek Wilderness Areas in West Virginia and Sl | henandoah National Park and James Piver  |
| Face Wilderness Area in Virginia.              |                                                |                                          |

| 13. Contact Information                                             |                      |                              |  |
|---------------------------------------------------------------------|----------------------|------------------------------|--|
| Responsible Official: Richard Smith                                 |                      | Title: Operations Manager    |  |
| Street or P.O. Box: 1700 MacCorkle Avenue, SE                       |                      |                              |  |
| City: Charleston                                                    | State: WV            | Zip: 25314                   |  |
| Telephone Number: 304-984-4603                                      | Fax Number: ( ) -    |                              |  |
| E-mail address: richard_smith@tcenerg                               | ly.com               |                              |  |
| Environmental Contact: Trevor Galley Title: Environmental           |                      | Title: Environmental Analyst |  |
| Street or P.O. Box: 1700 MacCorkle Avenue, SE                       |                      |                              |  |
| City: Charleston                                                    | State: WV            | Zip: 25314                   |  |
| Telephone Number: (304) 357 - 2076         Fax Number: ()         - |                      |                              |  |
| E-mail address: trevor_galley@tcenergy.com                          |                      |                              |  |
| Application Preparer: Grant Morgan                                  |                      | Title: Principal Consultant  |  |
| Company: ERM (Environmental Resources Managment)                    |                      |                              |  |
| Street or P.O. Box: 204 Chase Drive                                 |                      |                              |  |
| City: Hurricane                                                     | State: WV Zip: 25526 |                              |  |
| Telephone Number: (304) 590 - 6160                                  | Fax Number: ( ) -    |                              |  |
| E-mail address: Grant.Morgan@erm.co                                 | om                   |                              |  |

#### 14. Facility Description

List all processes, products, NAICS and SIC codes for normal operation, in order of priority. Also list any process, products, NAICS and SIC codes associated with any alternative operating scenarios if different from those listed for normal operation.

| Process                  | Products    | NAICS  | SIC  |
|--------------------------|-------------|--------|------|
| Natural Gas Transmission | Natural Gas | 486210 | 4922 |
|                          |             |        |      |
|                          |             |        |      |
|                          |             |        |      |
|                          |             |        |      |
|                          |             |        |      |
|                          |             |        |      |
|                          |             |        |      |
|                          |             |        |      |

Provide a general description of operations.

The Ceredo Compressor Station is a natural gas transmission facility covered by Standard Industrial Classification (SIC) Code 4922. The station includes seven (7) gas-drive reciprocating compressors, four (4) electric-drive turbines, one (1) gas-drive turbine, two (2) emergency generators, one (1) boiler, two (2) process heaters, and various tanks.

15. Provide an Area Map showing plant location as ATTACHMENT A.

16. Provide a **Plot Plan(s)**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is located as **ATTACHMENT B**.

For instructions, refer to "Plot Plan - Guidelines."

 Provide a detailed Process Flow Diagram(s) showing each process or emissions unit as ATTACHMENT C. Process Flow Diagrams should show all emission units, control equipment, emission points, and their relationships.

| 18. Applicable Requirements Summary                          |                                                             |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| Instructions: Mark all applicable requirements.              |                                                             |  |  |  |
| SIP                                                          | □ FIP                                                       |  |  |  |
| Minor source NSR (45CSR13)                                   | □ PSD (45CSR14)                                             |  |  |  |
| ✓ NESHAP (45CSR34)                                           | □ Nonattainment NSR (45CSR19)                               |  |  |  |
| Section 111 NSPS                                             | Section 112(d) MACT standards                               |  |  |  |
| Section 112(g) Case-by-case MACT                             | □ 112(r) RMP                                                |  |  |  |
| Section 112(i) Early reduction of HAP                        | Consumer/commercial prod. reqts., section 183(e)            |  |  |  |
| Section 129 Standards/Reqts.                                 | Stratospheric ozone (Title VI)                              |  |  |  |
| Tank vessel reqt., section 183(f)                            | Emissions cap 45CSR§30-2.6.1                                |  |  |  |
| □ NAAQS, increments or visibility (temp. sources)            | ☐ 45CSR27 State enforceable only rule                       |  |  |  |
| ✓ 45CSR4 State enforceable only rule                         | Acid Rain (Title IV, 45CSR33)                               |  |  |  |
| Emissions Trading and Banking (45CSR28)                      | Compliance Assurance Monitoring (40CFR64)                   |  |  |  |
| $\Box$ CAIR NO <sub>x</sub> Annual Trading Program (45CSR39) | CAIR NO <sub>x</sub> Ozone Season Trading Program (45CSR40) |  |  |  |
| $\Box$ CAIR SO <sub>2</sub> Trading Program (45CSR41)        |                                                             |  |  |  |

#### 19. Non Applicability Determinations

List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies.

45CSR4 – To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors: According to 45CSR§4-7.1, this rule shall not apply to the following sources of objectionable odor until such time as feasible control methods are developed: Internal Combustion Engines

45CSR10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides: 45CSR10 is not applicable to the facility's heater because its maximum design heat input (DHI) is less than 10 MMBtu/hr

45CSR21 – To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds: All storage tanks at the station, which are listed as insignificant sources, are below 40,000 gallons in capacity which exempts the facility from 45CSR§21-28.

The compressor station is not engaged in the extraction or fractionation of natural gas which exempts the facility from 45CSR§21-29 45CSR27 – ToPrevent and Control the Emissions of Toxic Air Pollutants: Natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."

Permit Shield

 $\checkmark$ 

| 19. No | on Applicability | Determinations | (Continued | ) - Attach | additional | pages | as necessary |
|--------|------------------|----------------|------------|------------|------------|-------|--------------|
|--------|------------------|----------------|------------|------------|------------|-------|--------------|

## List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies.

 $40 \text{ CFR } 60 \text{ Subpart } \text{GG} - \text{Standards of Performance for Stationary Gas Turbines: The two turbines on site were installed in 1967 and 1971 which predates this NSPS's applicability trigger date of October 3, 1977 as defined in §60.330(b).$ 

40 CFR 60 Subparts K,Ka – Standards of Performance for Storage Vessels for Petroleum Liquids: All tanks at the facility are below 40,000 gallons in capacity as specified in 60.110a(a).

40 CFR 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels: All tanks at the facility are below 75m3 (19,813 gallons) in capacity as specified in 60.110b(a).

40 CFR 60 Subpart KKK – Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plant: This compressor station is not engaged in the extraction or fractionation of natural gas liquids from field gas, the fractionation of mixed natural gas liquids to natural gas products, or both.

40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines: There are no compression ignition engines at this facility.

40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines: All engines at the facility were constructed, reconstructed, or modified prior to the June 12, 2006 applicability date listed in 60.4230(a)(4).

40 CFR 60 Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution: The Storage Vessel requirements defined for transmission sources is not applicable to this site because all vessels were constructed, commenced construction, prior to August 23, 2011 as stated in accordance with [40CFR§60.5365(e)].

40 CFR 63 Subpart HHH – National Emission Standards for Hazardous Air Pollutants from Natural gas Transmission and Storage Facilities: This facility does not have a glycol dehydration unit and is therefore not subject to the requirements of this subpart.

40 CFR 64 - Compliance Assurance Monitoring (CAM): There are no add-on controls at this facility; therefore, in accordance with 40 CFR (64.2(b)(1), CAM is not applicable to this facility.

Permit Shield

20. Facility-Wide Applicable Requirements

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*).

T5-3.1.1-45 CSR 6-3.1 - Open burning prohibited T5-3.1.2-45 CSR 6-3.2 - Open burning exemption stipulations T5-3.1.3-40 CFR Part 61 and 45 CSR 34 - Asbestos inspection and removal T5-3.1.4-45 CSR 4 - No objectionable odors T5-3.1.5-45 CSR 11-5.2-Standby plans for emergency episodes T5-3.1.6-WV Code 22-5-4 (a) (14) - Annual emission inventory reporting  $T5-3.1.7-40\ CFR\ Part\ 82\ Subpart\ F-Ozone\ depleting\ substances\ T5-3.1.8-40\ CFR\ Part\ 68-Risk\ Management\ Plances\ Plan$ T5-3.1.10-45 CSR 30-12.7 - Odor Control for Mercaptan T5-3.1.10-45 CSR 30-12.7 - Emergency Operating Conditions / unit replacement T5 - 3.1.12 - 45 CFR Subpart OOOOa - Reduce GHG(in the form of a limitation of Methane) and VOC emissions T5-3.3.1-45 CSR 22-5-4(a)(14-15) & 45CSR13 - Stack Testing - Conduct stack testing as required T5-3.4.1-45 CSR 30-5.1 - Monitoring information - general monitoring requirements T5 - 3.4.2 - 45 CSR 30-5.1 - Retention of records - Maintain records for a period of 5 years T5-3.4.3-45 CSR 30-5.1 - Odors - Maintain records of odor complaints and corrective actions T5-3.4.4-45 CSR 17.3-Fugitive PM shall not cause statutory Air Pollution T5-3.5.1-45 CSR 30-4.4. and 5.1.c.3.D - All documents required by permit shall be certified by a Responsible Official T5-3.5.2-45 CSR 30-5.1.c.3.E. - A permittee may request confidential treatment T5-3.5.3-45 CSR 30-5 - Communication required or permitted to be made to the DEP and/or USEPA T5 - 3.5.4 - 45 CSR 30-8 - Certified emissions statement - Operator will Submit a certified emissions statement and pay fees on an annual basis T5 - 3.5.5 - 45 CSR 30-5.3.e. - Compliance certification. The permittee shall certify compliance with the conditions of this permit on the forms provided by the DAQ T5 - 3.5.6 - 45 SR§30-5.1.c.3.A - Semi-annual monitoring reports. T5 - 3.5.7 - 45 CSR 30-5.7.a through e. - Emergencies T5-3.5.8-45 CSR 30-5.1.c.3.B. and C. - Deviations T5-3.5.9-45 CSR 30-4.3.h.1.B. New applicable requirements. If any requirement is promulgated, the permittee will meet such requirements on a timely basis

T5-3.5.10-45 CSR 30-5.1.c.3.C. Natural Gas Use certification during Compliance Certification

Permit Shield

For all facility-wide applicable requirements listed above, provide monitoring/testing / recordkeeping / reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

T5-3.1.3-40 CFR Part 61 and 45 CSR 34-Prior to demolition/construction buildings will be inspected for asbestos and documented accordingly

T5-3.1.4-45 CSR 4-Permittee shall maintain records of all odor complaints received

T5 - 3.1.5 - 45 CSR 11 – Upon request by the Secretary, the permittee shall prepare a standby plan

T5 – 3.1.6 – WV 22-5-4 – The permittee shall submit annual emission inventory reports

T5 - 3.1.7 - 40 CFR Part 82 Subpart F - The permittee will prohibit maintenance, service, or repair of appliances containing ozone depleting substances without persons certified pursuant to 40 CFR 82.161

T5 – 3.1.8 – 40 CFR Part 68 – Should the permittee become subject to 40 CFR Part 68, a RMP shall be submitted

T5 - 3.1.10 - 45CSR§30-12.7 For emergency situations which interrupt the critical supply of natural gas to the public, and which pose a life threatening circumstance to the customer, the permittee is allowed to temporarily replace failed engine(s). Proper notice will be provided to the WVDAQ T5 - 3.3.1 - 45 CSR 22-5-4 Stack Testing – All protocols and reports will be submitted to the WVDAQ

T5 - 3.1.12 - These requirements are independent of the closed vent system and cover requirements in §60.5411a.

- T5 3.4.1 & 3.4.2 45 CSR 30-5.1 Retention of Records Maintain records of all information required by permit for 5 yrs.
- T5-3.4.3-45 CSR 30-5.1 Odors Maintain records of all odor complaints and responses.

T5 - 3.5.1 - 45 CSR 30-4.4 and 5.1 Responsible Official - Reports, certifications, etc. shall contain a certification by the responsible official.

- T5-3.5.4-45 CSR 30-8 Certified emissions statement Operator will Submit a certified emissions statement and pay fees on an annual basis
- T5-3.5.5-45 SR§30-5.3.e Compliance Certification Prepare and submit an emission inventory as requested
- T5-3.5.6-45 CSR§30-5.1.c.3.A. Semi-annual monitoring reports.

T5 - 3.5.7 - 45 CSR30-5.7.a through e. - For reporting emergency situations, refer to Section 2.17 of this permit

T5 - 3.5.8 - 45 CSR 30-5.1.c.3.B. and C. – Deviations, In addition to required monitoring reports, the permittee shall promptly submit supplemental reports and notices of deviations / include upset conditions, cause of deviation(s) and corrective actions.

T5 - 3.5.9 - 45 CSR 30-4.3.h.1.B. New applicable requirements. If any requirement is promulgated, the permittee will meet such requirements on a timely basis

T5 - 3.5.10 - 45 CSR 30-5.1.c.3.C. During compliance certification, the facility shall certify that the facility burns natural gas in all stationary equipment except, when applicable, for emergency equipment.

Are you in compliance with all facility-wide applicable requirements? 🔽 Yes 🗌 No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

| 21. Active Permits/Consent Orders |                                |                                                                          |  |
|-----------------------------------|--------------------------------|--------------------------------------------------------------------------|--|
| Permit or Consent Order Number    | Date of Issuance<br>MM/DD/YYYY | List any Permit Determinations<br>that Affect the Permit <i>(if any)</i> |  |
| R30-09900013-2016 (SM01)          | 12/27/2016                     |                                                                          |  |
| R13-1856C                         | 12/18/2017                     |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |
|                                   |                                |                                                                          |  |

| 22. Inactive Permits/Obsolete Permit Conditions |                  |                         |  |  |
|-------------------------------------------------|------------------|-------------------------|--|--|
| Permit Number                                   | Date of Issuance | Permit Condition Number |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |
|                                                 |                  |                         |  |  |

#### Section 3: Facility-Wide Emissions

| 23. Facility-Wide Emissions Summary [Tons per Year]  |                     |  |
|------------------------------------------------------|---------------------|--|
| Criteria Pollutants                                  | Potential Emissions |  |
| Carbon Monoxide (CO)                                 | 310.41              |  |
| Nitrogen Oxides (NO <sub>X</sub> )                   | 3,582.71            |  |
| Lead (Pb)                                            | -                   |  |
| Particulate Matter (PM <sub>2.5</sub> ) <sup>1</sup> | 41.03               |  |
| Particulate Matter (PM <sub>10</sub> ) <sup>1</sup>  | 41.03               |  |
| Total Particulate Matter (TSP)                       | -                   |  |
| Sulfur Dioxide (SO <sub>2</sub> )                    | 1.23                |  |
| Volatile Organic Compounds (VOC)                     | 107.30              |  |
| Hazardous Air Pollutants <sup>2</sup>                | Potential Emissions |  |
| Benzene                                              | 1.39                |  |
| Toluene                                              | 0.81                |  |
| Ethylbenzene                                         | 0.11                |  |
| Xylene                                               | 0.19                |  |
| Formaldehyde                                         | 40.11               |  |
| N-hexane                                             | 0.38                |  |
| Acetaldehyde                                         | 5.58                |  |
| Total HAPs                                           | 58.00               |  |
| Regulated Pollutants other than Criteria and HAP     | Potential Emissions |  |
| CO2e                                                 | 223,126.75          |  |
| $^{1}PM_{25}$ and $PM_{10}$ are components of TSP.   |                     |  |

<sup>1</sup>*PM*<sub>2.5</sub> and *PM*<sub>10</sub> are components of 1SP. <sup>2</sup>*For HAPs that are also considered PM or VOCs, emissions should be included in both the HAPs section and the Criteria Pollutants section.* 

Section 4: Insignificant Activities

| 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Insign | ificant Activities (Check all that apply)                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.     | Air compressors and pneumatically operated equipment, including hand tools.                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.     | Air contaminant detectors or recorders, combustion controllers or shutoffs.                                                                                                                                                                                                                                                                                    |
| Image: A state of the state          | 3.     | Any consumer product used in the same manner as in normal consumer use, provided the use results in a duration and frequency of exposure which are not greater than those experienced by consumer, and which may include, but not be limited to, personal use items; janitorial cleaning supplies, office supplies and supplies to maintain copying equipment. |
| <ul> <li>Image: A start of the start of</li></ul> | 4.     | Bathroom/toilet vent emissions.                                                                                                                                                                                                                                                                                                                                |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.     | Batteries and battery charging stations, except at battery manufacturing plants.                                                                                                                                                                                                                                                                               |
| <ul> <li>Image: A start of the start of</li></ul> | 6.     | Bench-scale laboratory equipment used for physical or chemical analysis, but not lab fume hoods or vents. Many lab fume hoods or vents might qualify for treatment as insignificant (depending on the applicable SIP) or be grouped together for purposes of description.                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.     | Blacksmith forges.                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.     | Boiler water treatment operations, not including cooling towers.                                                                                                                                                                                                                                                                                               |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.     | Brazing, soldering or welding equipment used as an auxiliary to the principal equipment at the source.                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.    | CO <sub>2</sub> lasers, used only on metals and other materials which do not emit HAP in the process.                                                                                                                                                                                                                                                          |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.    | Combustion emissions from propulsion of mobile sources, except for vessel emissions from Outer Continental Shelf sources.                                                                                                                                                                                                                                      |
| <ul> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.    | Combustion units designed and used exclusively for comfort heating that use liquid petroleum gas or natural gas as fuel.                                                                                                                                                                                                                                       |
| <ul> <li>Image: A start of the start of</li></ul> | 13.    | Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.    | Demineralized water tanks and demineralizer vents.                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.    | Drop hammers or hydraulic presses for forging or metalworking.                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.    | Electric or steam-heated drying ovens and autoclaves, but not the emissions from the articles or substances being processed in the ovens or autoclaves or the boilers delivering the steam.                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.    | Emergency (backup) electrical generators at residential locations.                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.    | Emergency road flares.                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Image: A start of the start of</li></ul> | 19.    | Emission units which do not have any applicable requirements and which emit criteria pollutants (CO, $NO_x$ , SO <sub>2</sub> , VOC and PM) into the atmosphere at a rate of less than 1 pound per hour and less than 10,000 pounds per year aggregate total for each criteria pollutant from all emission units.                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Please specify all emission units for which this exemption applies along with the quantity of criteria pollutants emitted on an hourly and annual basis:                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | SEE APPENDIX A                                                                                                                                                                                                                                                                                                                                                 |
| 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Insign | ificant Activities (Check all that apply)                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Image: A start of the start of</li></ul> | 20.    | Emission units which do not have any applicable requirements and which emit hazardous air pollutants into the atmosphere at a rate of less than 0.1 pounds per hour and less than 1,000 pounds per year aggregate total for all HAPs from all emission sources. This limitation cannot be used for any source which emits dioxin/furans nor for toxic air pollutants as per 45CSR27. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Please specify all emission units for which this exemption applies along with the quantity of hazardous air pollutants emitted on an hourly and annual basis:                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | SEE APPENDIX A                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.    | Environmental chambers not using hazardous air pollutant (HAP) gases.                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.    | Equipment on the premises of industrial and manufacturing operations used solely for the purpose of preparing food for human consumption.                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.    | Equipment used exclusively to slaughter animals, but not including other equipment at slaughterhouses, such as rendering cookers, boilers, heating plants, incinerators, and electrical power generating equipment.                                                                                                                                                                  |
| <ul> <li>Image: A start of the start of</li></ul> | 24.    | Equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis.                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.    | Equipment used for surface coating, painting, dipping or spray operations, except those that will emit VOC or HAP.                                                                                                                                                                                                                                                                   |
| <ul> <li>Image: A start of the start of</li></ul> | 26.    | Fire suppression systems.                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Image: A start of the start of</li></ul> | 27.    | Firefighting equipment and the equipment used to train firefighters.                                                                                                                                                                                                                                                                                                                 |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.    | Flares used solely to indicate danger to the public.                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Image: A start of the start of</li></ul> | 29.    | Fugitive emission related to movement of passenger vehicle provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.    | Hand-held applicator equipment for hot melt adhesives with no VOC in the adhesive formulation.                                                                                                                                                                                                                                                                                       |
| <ul> <li>Image: A start of the start of</li></ul> | 31.    | Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.    | Humidity chambers.                                                                                                                                                                                                                                                                                                                                                                   |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33.    | Hydraulic and hydrostatic testing equipment.                                                                                                                                                                                                                                                                                                                                         |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34.    | Indoor or outdoor kerosene heaters.                                                                                                                                                                                                                                                                                                                                                  |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.    | Internal combustion engines used for landscaping purposes.                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.    | Laser trimmers using dust collection to prevent fugitive emissions.                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.    | Laundry activities, except for dry-cleaning and steam boilers.                                                                                                                                                                                                                                                                                                                       |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.    | Natural gas pressure regulator vents, excluding venting at oil and gas production facilities.                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.    | Oxygen scavenging (de-aeration) of water.                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.    | Ozone generators.                                                                                                                                                                                                                                                                                                                                                                    |

| 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Insign | ificant Activities (Check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.    | Plant maintenance and upkeep activities (e.g., grounds-keeping, general repairs, cleaning, painting, welding, plumbing, re-tarring roofs, installing insulation, and paving parking lots) provided these activities are not conducted as part of a manufacturing process, are not related to the source's primary business activity, and not otherwise triggering a permit modification. (Cleaning and painting activities qualify if they are not subject to VOC or HAP control requirements. Asphalt batch plant owners/operators must still get a permit if otherwise requested.) |
| <ul> <li>Image: A start of the start of</li></ul> | 42.    | Portable electrical generators that can be moved by hand from one location to another. "Moved by Hand" means that it can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device.                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43.    | Process water filtration systems and demineralizers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Image: A start of the start          | 44.    | Repair or maintenance shop activities not related to the source's primary business activity, not including emissions from surface coating or de-greasing (solvent metal cleaning) activities, and not otherwise triggering a permit modification.                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.    | Repairs or maintenance where no structural repairs are made and where no new air pollutant emitting facilities are installed or modified.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.    | Routing calibration and maintenance of laboratory equipment or other analytical instruments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47.    | Salt baths using nonvolatile salts that do not result in emissions of any regulated air pollutants. Shock chambers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48.    | Shock chambers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.    | Solar simulators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.    | Space heaters operating by direct heat transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51.    | Steam cleaning operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52.    | Steam leaks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.    | Steam sterilizers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Image: A start of the start of</li></ul> | 54.    | Steam vents and safety relief valves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.    | Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.    | Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any VOC or HAP. Exemptions for storage tanks containing petroleum liquids or other volatile organic liquids should be based on size limits such as storage tank capacity and vapor pressure of liquids stored and are not appropriate for this list.                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57.    | Such other sources or activities as the Director may determine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Image: A start of the start of</li></ul> | 58.    | Tobacco smoking rooms and areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Image: A start of the start of</li></ul> | 59.    | Vents from continuous emissions monitors and other analyzers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### 25. Equipment Table

Fill out the Title V Equipment Table and provide it as ATTACHMENT D.

#### 26. Emission Units

For each emission unit listed in the **Title V Equipment Table**, fill out and provide an **Emission Unit Form** as **ATTACHMENT E**.

For each emission unit not in compliance with an applicable requirement, fill out a **Schedule of Compliance Form** as **ATTACHMENT F**.

27. Control Devices

For each control device listed in the **Title V Equipment Table**, fill out and provide an **Air Pollution Control Device Form** as **ATTACHMENT G**.

For any control device that is required on an emission unit in order to meet a standard or limitation for which the potential pre-control device emissions of an applicable regulated air pollutant is greater than or equal to the Title V Major Source Threshold Level, refer to the **Compliance Assurance Monitoring (CAM) Form(s)** for CAM applicability. Fill out and provide these forms, if applicable, for each Pollutant Specific Emission Unit (PSEU) as **ATTACHMENT H**.

## 28. Certification of Truth, Accuracy and Completeness and Certification of Compliance

*Note:* This Certification must be signed by a responsible official. The original, signed in blue ink, must be submitted with the application. Applications without an original signed certification will be considered as incomplete.

## a. Certification of Truth, Accuracy and Completeness

I certify that I am a responsible official (as defined at 45CSR§30-2.38) and am accordingly authorized to make this submission on behalf of the owners or operators of the source described in this document and its attachments. I certify under penalty of law that I have personally examined and am familiar with the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine and/or imprisonment.

## b. Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

Responsible official (type or print)

Name: Richard Smith

Title: Operations Manager

Responsible official's signature:

Signature: Richard 2. An

(Must be signed and dated in blue ink)

| Not          | Note: Please check all applicable attachments included with this permit application: |  |  |
|--------------|--------------------------------------------------------------------------------------|--|--|
| $\checkmark$ | ATTACHMENT A: Area Map                                                               |  |  |
| $\checkmark$ | ATTACHMENT B: Plot Plan(s)                                                           |  |  |
| $\checkmark$ | ATTACHMENT C: Process Flow Diagram(s)                                                |  |  |
| $\checkmark$ | ATTACHMENT D: Equipment Table                                                        |  |  |
| 1            | ATTACHMENT E: Emission Unit Form(s)                                                  |  |  |
|              | ATTACHMENT F: Schedule of Compliance Form(s)                                         |  |  |
|              | ATTACHMENT G: Air Pollution Control Device Form(s)                                   |  |  |
|              | ATTACHMENT H: Compliance Assurance Monitoring (CAM) Form(s)                          |  |  |

All of the required forms and additional information can be found and downloaded from, the DEP website at <u>www.dep.wv.gov/daq</u>, requested by phone (304) 926-0475, and/or obtained through the mail.

General Application Forms (general\_forms.wpd) Page 16 of 16 Revised - 10/1/2014 Attachment A



**Attachment B** 



Attachment C

# Attachment C Ceredo Compressor Station Process Flow Diagram



Attachment D

|                                   |                                | AT<br>(includes a<br>insignific  | <b>TACHMENT D - Title V Equipment Tab</b><br>all emission units at the facility except those design<br>ant activities in Section 4, Item 24 of the General I | e<br>aated as<br>Forms) |                             |
|-----------------------------------|--------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|
| Emission<br>Point ID <sup>1</sup> | Control<br>Device <sup>1</sup> | Emission<br>Unit ID <sup>1</sup> | Emission Unit Description                                                                                                                                    | Design Capacity         | Year Installed/<br>Modified |
| E01                               | N/A                            | 00501*                           | Reciprocating Engine/Integral Compressor; Cooper-Bessemer                                                                                                    | 2,800 hp                | 1954                        |
| E02                               | N/A                            | 00502*                           | Reciprocating Engine/Integral Compressor; Cooper-Bessemer                                                                                                    | 2,800 hp                | 1954                        |
| E03                               | N/A                            | 00503*                           | Reciprocating Engine/Integral Compressor; Cooper-Bessemer                                                                                                    | 2,800 hp                | 1954                        |
| E04                               | N/A                            | 00504*                           | Reciprocating Engine/Integral Compressor; Cooper-Bessemer                                                                                                    | 2,800 hp                | 1957                        |
| E05                               | N/A                            | 00505*                           | Reciprocating Engine/Integral Compressor; Cooper-Bessemer                                                                                                    | 2,800 hp                | 1958                        |
| E06                               | N/A                            | 00506*                           | Reciprocating Engine/Integral Compressor; Cooper-Bessemer                                                                                                    | 2,800 hp                | 1960                        |
| E07                               | N/A                            | 00507*                           | Reciprocating Engine/Integral Compressor; Cooper-Bessemer                                                                                                    | 2,700 hp                | 1965                        |
| E10                               | N/A                            | 00510*                           | Solar Titan 250 Turbine                                                                                                                                      | 30,399 hp               | 2018                        |
| G3                                | N/A                            | 005G3*                           | Reciprocating Engine/Generator; Waukesha 3521GL                                                                                                              | 812 hp                  | 1996                        |
| H1                                | N/A                            | HTR1*                            | Fuel Gas Heater; FLAMECO; Model # FAH14                                                                                                                      | 0.375 MMBtu/hr          | 1998                        |
| BL3                               | N/A                            | BLR3*                            | Heating System Boiler; Hurst;                                                                                                                                | 6.276 MMBtu/hr          | 2012                        |
| G4                                | N/A                            | 005G4*                           | Reciprocating Engine/Generator, Waukesha VGF-P48GL                                                                                                           | 1,175 hp                | 2018                        |
| H3                                | N/A                            | HTR3*                            | PROCESS HEATER                                                                                                                                               | 0.6 MMBtu/hr            | 2018                        |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |
|                                   |                                |                                  |                                                                                                                                                              |                         |                             |

<sup>1</sup>For 45CSR13 permitted sources, the numbering system used for the emission points, control devices, and emission units should be consistent with the numbering system used in the 45CSR13 permit. For grandfathered sources, the numbering system should be consistent with registrations or emissions inventory previously submitted to DAQ. For emission points, control devices, and emissions units which have not been previously labeled, use the following 45CSR13 numbering system: 1S, 2S, 3S,... or other appropriate description for emission units; 1C, 2C, 3C,... or other appropriate designation for control devices; 1E, 2E, 3E, ... or other appropriate designation for emission points.

Page \_\_\_\_\_ of \_\_\_\_\_

Attachment E

| АТТ                                                                                                                                                                                                                      | TACHMENT E - Emission Un                                     | it Form                                                               |                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|------------------|--|--|
| Emission Unit Description                                                                                                                                                                                                |                                                              |                                                                       |                  |  |  |
| <b>Emission unit ID number:</b><br>005G3                                                                                                                                                                                 | <b>Emission unit name:</b><br>Reciprocating Engine/Generator | List any control devices associated<br>with this emission unit:<br>NA |                  |  |  |
| <b>Provide a description of the emissio</b><br>4-cycle, lean burn                                                                                                                                                        | on unit (type, method of operation, d                        | lesign parameters, etc                                                | .):              |  |  |
| <b>Manufacturer:</b><br>Waukesha                                                                                                                                                                                         | Model number:<br>3521GL                                      | Serial number:<br>NA                                                  |                  |  |  |
| <b>Construction date:</b><br>NA                                                                                                                                                                                          | Installation date:<br>1996                                   | Modification date(s                                                   | ):               |  |  |
| Design Capacity (examples: furnac                                                                                                                                                                                        | es - tons/hr, tanks - gallons): 812 hp                       | ,                                                                     |                  |  |  |
| Maximum Hourly Throughput:<br>NAMaximum Annual Throughput:<br>NAMaximum Operating Schedule<br>8,760                                                                                                                      |                                                              |                                                                       | ng Schedule:     |  |  |
| <i>Fuel Usage Data</i> (fill out all applica                                                                                                                                                                             | ble fields)                                                  |                                                                       |                  |  |  |
| Does this emission unit combust fue                                                                                                                                                                                      | el? <u>X</u> Yes No                                          | If yes, is it?                                                        |                  |  |  |
|                                                                                                                                                                                                                          |                                                              | Indirect Fired                                                        | X_Direct Fired   |  |  |
| Maximum design heat input and/or                                                                                                                                                                                         | maximum horsepower rating:                                   | Type and Btu/hr ra                                                    | ting of burners: |  |  |
| 812 hp                                                                                                                                                                                                                   |                                                              | 8,000 Btu/hp-hr                                                       |                  |  |  |
| List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide<br>the maximum hourly and annual fuel usage for each.<br>Natural Gas<br>6,369 scf/hr / 55,792,440 scf/yr |                                                              |                                                                       |                  |  |  |
| Describe each fuel expected to be u                                                                                                                                                                                      | sed during the term of the permit.                           |                                                                       |                  |  |  |
| Fuel Type                                                                                                                                                                                                                | Max. Sulfur Content                                          | Max. Ash Content                                                      | BTU Value        |  |  |
| Natural Gas                                                                                                                                                                                                              | Pipeline Quality                                             |                                                                       | 1,020 Btu/scf    |  |  |
|                                                                                                                                                                                                                          |                                                              |                                                                       |                  |  |  |
|                                                                                                                                                                                                                          |                                                              |                                                                       |                  |  |  |
|                                                                                                                                                                                                                          |                                                              |                                                                       |                  |  |  |

| Emissions Data                                                                            |                            |                            |               |
|-------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------------|
| Criteria Pollutants                                                                       | Potential Emissions        |                            |               |
|                                                                                           | РРН                        |                            | ТРҮ           |
| Carbon Monoxide (CO)                                                                      |                            | See Appendix A             |               |
| Nitrogen Oxides (NO <sub>X</sub> )                                                        |                            |                            |               |
| Lead (Pb)                                                                                 |                            |                            |               |
| Particulate Matter (PM <sub>2.5</sub> )                                                   |                            |                            |               |
| Particulate Matter (PM <sub>10</sub> )                                                    |                            |                            |               |
| Total Particulate Matter (TSP)                                                            |                            |                            |               |
| Sulfur Dioxide (SO <sub>2</sub> )                                                         |                            |                            |               |
| Volatile Organic Compounds (VOC)                                                          |                            |                            |               |
| Hazardous Air Pollutants                                                                  | I                          | Potential Emissions        |               |
|                                                                                           | РРН                        |                            | ТРҮ           |
|                                                                                           | See Appendix A             |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
| Regulated Pollutants other than                                                           | Potential Emissions        |                            |               |
| Criteria and HAP                                                                          | PPH                        |                            | ТРҮ           |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
| L' ( () - mother d( -) mode to colonize the m                                             | te tiel erriggiong (in alu | J. Jatan of any stack tool |               |
| List the method(s) used to calculate the po<br>versions of software used, source and date | es of emission factors, et | de dates of any stack test | is conducted, |
| See Annendix A                                                                            |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |
|                                                                                           |                            |                            |               |

| Applicable Requiremen | ts |
|-----------------------|----|
|-----------------------|----|

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

40 C.F.R. § 63.6603(a) and Table 2d (Line 10) – Maintenance Requirements
40 C.F.R. § 63.6605 – Operating Requirements
40 C.F.R. § 63.6625(e)(5), (h), and (j) – Monitoring Requirements
40 C.F.R. § 63.6640(a) and Table 6 (Line 9) – Continuous Compliance Requirements
40 C.F.R. § 63.6660 – Recordkeeping Requirements
40 C.F.R. § 63.6665 – General Requirements/Provisions
40 C.F.R. § 60 Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (SI ICE)

#### ✓ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. § 63.6603 (a) and Table 2d (Line 10) – Change oil and oil filter, and inspect spark plugs, hoses, and belts every 1,440 hours of operation, or annually, whichever occurs first, and replace as necessary

40 C.F.R. § 63.6605 - Must comply with all emission, operating, and work practice standards at all times.

40 C.F.R. § 63.6625(e)(5), 63.6640 and Table 6 (Line 9) - Work or Management Practices: Operate and Maintain the RICE

according to the manufacturer's instructions OR develop and follow your own maintenance plan

40 C.F.R. § 63.6625 (h) - Minimize Idle Time during Startup to not exceed 30 Minutes

40 C.F.R. § 63.6625 (j) – Oil Analysis Program in lieu of Oil change requirement in Table 2d (Line 10)

40 C.F.R. § 63.6655 (d), and (e)(3) - Keep records of maintenance conducted and operating schedule on the RICE

40 C.F.R. § 63.6660 - Records retained for five (5) years and readily available for expeditious review

40 C.F.R. § 60 Subpart JJJJ establishes emission standards for applicable SI ICE. The emergency generator (G3) is subject to the emission limits for emergency engines greater than 130 hp as required under 40CFR60 Table 1.

The emission limits are 2.0 g/hp-hr for NOx, 4.0 g/hp-hr for CO, and 1.0 g/hp-hr. The emergency generator meets these emission limits.

The engine is not certified by the manufacturer to meet the emission standards listed in 40CFR60 Subpart JJJJ. Therefore, CGT will be required to conduct performance testing.

Are you in compliance with all applicable requirements for this emission unit? ✓ Yes

\_\_\_No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

Page \_\_\_\_\_ of \_\_\_\_\_

| <b>ATTACHMENT E - Emission Unit Form</b>                                                                                     |                                                                                                                                                               |                                  |                           |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--|
| Emission Unit Description                                                                                                    |                                                                                                                                                               |                                  |                           |  |
| <b>Emission unit ID number:</b> 00501                                                                                        | ission unit ID number:<br>01Emission unit name:<br>Reciprocating Engine/Integral<br>CompressorList any control devices asso<br>with this emission unit:<br>NA |                                  | vices associated<br>init: |  |
| <b>Provide a description of the emissi</b> 2-cycle, lean burn                                                                | on unit (type, method of operation, d                                                                                                                         | lesign parameters, etc           | .):                       |  |
| Manufacturer:<br>Cooper-Bessemer                                                                                             | <b>Model number:</b><br>GMWH-8                                                                                                                                | Serial number:<br>NA             |                           |  |
| <b>Construction date:</b><br>NA                                                                                              | Installation date:<br>1954                                                                                                                                    | <b>Modification date(s</b><br>NA | 5):                       |  |
| Design Capacity (examples: furna                                                                                             | ces - tons/hr, tanks - gallons): 2,800 l                                                                                                                      | hp                               |                           |  |
| <b>Maximum Hourly Throughput:</b><br>NA                                                                                      | <b>Maximum Annual Throughput:</b><br>NA                                                                                                                       | Maximum Operation 8,760          | ng Schedule:              |  |
| Fuel Usage Data (fill out all applic                                                                                         | able fields)                                                                                                                                                  |                                  |                           |  |
| Does this emission unit combust fu                                                                                           | <b>lel?</b> <u>X</u> Yes No                                                                                                                                   | If yes, is it?                   |                           |  |
|                                                                                                                              |                                                                                                                                                               | Indirect Fired                   | X_Direct Fired            |  |
| Maximum design heat input and/o                                                                                              | r maximum horsepower rating:                                                                                                                                  | Type and Btu/hr ra               | ting of burners:          |  |
| 2,800 hp                                                                                                                     |                                                                                                                                                               | 8,400 Btu/hp-hr                  |                           |  |
| List the primary fuel type(s) and it<br>the maximum hourly and annual f<br>Natural Gas<br>23,060 scf/hr / 202,005,600 scf/yr | f applicable, the secondary fuel type(<br>Tuel usage for each.                                                                                                | s). For each fuel type           | listed, provide           |  |
| Describe each fuel expected to be                                                                                            | used during the term of the permit.                                                                                                                           |                                  |                           |  |
| Fuel Type                                                                                                                    | Max. Sulfur Content                                                                                                                                           | Max. Ash Content                 | BTU Value                 |  |
| Natural Gas                                                                                                                  | Pipeline Quality                                                                                                                                              |                                  | 1,020 Btu/scf             |  |
|                                                                                                                              |                                                                                                                                                               |                                  |                           |  |
|                                                                                                                              |                                                                                                                                                               |                                  |                           |  |
|                                                                                                                              |                                                                                                                                                               |                                  |                           |  |

| Emissions Data                                                                        |                            |                           |                |  |  |
|---------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------|--|--|
| Criteria Pollutants                                                                   | Potential Emissions        |                           |                |  |  |
|                                                                                       | РРН                        |                           | TPY            |  |  |
| Carbon Monoxide (CO)                                                                  |                            | See Appendix A            |                |  |  |
| Nitrogen Oxides (NO <sub>X</sub> )                                                    |                            |                           |                |  |  |
| Lead (Pb)                                                                             |                            |                           |                |  |  |
| Particulate Matter (PM <sub>2.5</sub> )                                               |                            |                           |                |  |  |
| Particulate Matter (PM <sub>10</sub> )                                                |                            |                           |                |  |  |
| Total Particulate Matter (TSP)                                                        |                            |                           |                |  |  |
| Sulfur Dioxide (SO <sub>2</sub> )                                                     |                            |                           |                |  |  |
| Volatile Organic Compounds (VOC)                                                      |                            |                           |                |  |  |
| Hazardous Air Pollutants                                                              | ]                          | Potential Emissions       |                |  |  |
|                                                                                       | РРН                        |                           | TPY            |  |  |
|                                                                                       |                            | See Appendix A            |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
| Regulated Pollutants other than                                                       | Potential Emissions        |                           |                |  |  |
| Criteria and HAP                                                                      | PPH                        |                           | ТРҮ            |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            | d. datas of any stack to  | da a a da adad |  |  |
| List the method(s) used to calculate the poversions of software used, source and date | es of emission factors, et | de dates of any stack les | ts conductea,  |  |  |
| See Annendix A                                                                        |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

According to 40 CFR 63.6590(b)(3)(i) and 40 CFR 63.6600(c), this existing, non-emergency, SI 2SLB engine > 500 hp located at a major source of HAPs does not have any requirements under 40 CFR Part 63 Subpart ZZZZ because it was constructed prior to December 12, 2002.

Therefore, there are no specific applicable requirements for this emission unit other than those to submit a certified emission statement in accordance with Title V permit condition 3.5.4 and an annual emission inventory according to Title V permit condition 3.1.6.

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

The emission unit shall track fuel usage and hours of operation in order to quantify annual emissions from this unit.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

| <b>ATTACHMENT E - Emission Unit Form</b>                                                                                                                                                                                   |                                                                                                                        |                                  |                  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|--|--|--|
| Emission Unit Description                                                                                                                                                                                                  |                                                                                                                        |                                  |                  |  |  |  |
| Emission unit ID number:<br>00502Emission unit name:<br>Reciprocating Engine/Integral<br>CompressorList any control devices a<br>with this emission unit:<br>NA                                                            |                                                                                                                        | vices associated<br>init:        |                  |  |  |  |
| <b>Provide a description of the emission</b><br>2-cycle, lean burn                                                                                                                                                         | Provide a description of the emission unit (type, method of operation, design parameters, etc.):<br>2-cycle, lean burn |                                  |                  |  |  |  |
| Manufacturer:<br>Cooper-Bessemer                                                                                                                                                                                           | <b>Model number:</b><br>GMWH-8                                                                                         | Serial number:<br>NA             |                  |  |  |  |
| <b>Construction date:</b><br>NA                                                                                                                                                                                            | <b>Installation date:</b><br>1954                                                                                      | <b>Modification date(s</b><br>NA | 3):              |  |  |  |
| Design Capacity (examples: furnad                                                                                                                                                                                          | ces - tons/hr, tanks - gallons): 2,800 h                                                                               | ıp                               |                  |  |  |  |
| Maximum Hourly Throughput:<br>NAMaximum Annual Throughput:<br>NAMaximum Operating Sch<br>8,760                                                                                                                             |                                                                                                                        | ng Schedule:                     |                  |  |  |  |
| Fuel Usage Data (fill out all applica                                                                                                                                                                                      | able fields)                                                                                                           |                                  |                  |  |  |  |
| Does this emission unit combust fu                                                                                                                                                                                         | el? <u>X</u> Yes No                                                                                                    | If yes, is it?                   |                  |  |  |  |
|                                                                                                                                                                                                                            |                                                                                                                        | Indirect Fired                   | X_Direct Fired   |  |  |  |
| Maximum design heat input and/o                                                                                                                                                                                            | r maximum horsepower rating:                                                                                           | Type and Btu/hr ra               | ting of burners: |  |  |  |
| 2,800 hp                                                                                                                                                                                                                   |                                                                                                                        | 8,400 Btu/hp-hr                  |                  |  |  |  |
| List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide<br>the maximum hourly and annual fuel usage for each.<br>Natural Gas<br>23,060 scf/hr / 202,005,600 scf/yr |                                                                                                                        |                                  |                  |  |  |  |
| Describe each fuel expected to be u                                                                                                                                                                                        | sed during the term of the permit.                                                                                     |                                  |                  |  |  |  |
| Fuel Type                                                                                                                                                                                                                  | Max. Sulfur Content                                                                                                    | Max. Ash Content                 | BTU Value        |  |  |  |
| Natural Gas                                                                                                                                                                                                                | Pipeline Quality                                                                                                       |                                  | 1,020 Btu/scf    |  |  |  |
|                                                                                                                                                                                                                            |                                                                                                                        |                                  |                  |  |  |  |
|                                                                                                                                                                                                                            |                                                                                                                        |                                  |                  |  |  |  |
|                                                                                                                                                                                                                            |                                                                                                                        | 1                                |                  |  |  |  |

| Emissions Data                                                                        |                            |                           |                |  |  |
|---------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------|--|--|
| Criteria Pollutants                                                                   | Potential Emissions        |                           |                |  |  |
|                                                                                       | РРН                        |                           | TPY            |  |  |
| Carbon Monoxide (CO)                                                                  |                            | See Appendix A            |                |  |  |
| Nitrogen Oxides (NO <sub>X</sub> )                                                    |                            |                           |                |  |  |
| Lead (Pb)                                                                             |                            |                           |                |  |  |
| Particulate Matter (PM <sub>2.5</sub> )                                               |                            |                           |                |  |  |
| Particulate Matter (PM <sub>10</sub> )                                                |                            |                           |                |  |  |
| Total Particulate Matter (TSP)                                                        |                            |                           |                |  |  |
| Sulfur Dioxide (SO <sub>2</sub> )                                                     |                            |                           |                |  |  |
| Volatile Organic Compounds (VOC)                                                      |                            |                           |                |  |  |
| Hazardous Air Pollutants                                                              | ]                          | Potential Emissions       |                |  |  |
|                                                                                       | РРН                        |                           | TPY            |  |  |
|                                                                                       |                            | See Appendix A            |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
| Regulated Pollutants other than                                                       | Potential Emissions        |                           |                |  |  |
| Criteria and HAP                                                                      | PPH                        |                           | ТРҮ            |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            | d. datas of any stack to  | da a a da adad |  |  |
| List the method(s) used to calculate the poversions of software used, source and date | es of emission factors, et | de dates of any stack les | ts conductea,  |  |  |
| See Annendix A                                                                        |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |
|                                                                                       |                            |                           |                |  |  |

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

According to 40 CFR 63.6590(b)(3)(i) and 40 CFR 63.6600(c), this existing, non-emergency, SI 2SLB engine > 500 hp located at a major source of HAPs does not have any requirements under 40 CFR Part 63 Subpart ZZZZ because it was constructed prior to December 12, 2002.

Therefore, there are no specific applicable requirements for this emission unit other than those to submit a certified emission statement in accordance with Title V permit condition 3.5.4 and an annual emission inventory according to Title V permit condition 3.1.6.

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

The emission unit shall track fuel usage and hours of operation in order to quantify annual emissions from this unit.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

| <b>ATTACHMENT E - Emission Unit Form</b>                                                                                                                                                                                   |                                                                                                                                             |                      |                           |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|--|--|--|
| Emission Unit Description                                                                                                                                                                                                  |                                                                                                                                             |                      |                           |  |  |  |
| <b>Emission unit ID number:</b> 00503                                                                                                                                                                                      | nber:Emission unit name:<br>Reciprocating Engine/Integral<br>CompressorList any control devices associate<br>with this emission unit:<br>NA |                      | vices associated<br>init: |  |  |  |
| <b>Provide a description of the emissio</b> 2-cycle, lean burn                                                                                                                                                             | Provide a description of the emission unit (type, method of operation, design parameters, etc.):<br>2-cycle, lean burn                      |                      |                           |  |  |  |
| Manufacturer:<br>Cooper-Bessemer                                                                                                                                                                                           | <b>Model number:</b><br>GMWH-8                                                                                                              | Serial number:<br>NA |                           |  |  |  |
| <b>Construction date:</b><br>NA                                                                                                                                                                                            | <b>Installation date:</b><br>1954                                                                                                           | Modification date(s  | ):                        |  |  |  |
| Design Capacity (examples: furnac                                                                                                                                                                                          | es - tons/hr, tanks - gallons): 2,800 h                                                                                                     | np                   |                           |  |  |  |
| <b>Maximum Hourly Throughput:</b><br>NA                                                                                                                                                                                    | Maximum Hourly Throughput:<br>NAMaximum Annual Throughput:<br>NAMaximum Operating Sched<br>8,760                                            |                      | ng Schedule:              |  |  |  |
| Fuel Usage Data (fill out all applica                                                                                                                                                                                      | ble fields)                                                                                                                                 |                      |                           |  |  |  |
| Does this emission unit combust fue                                                                                                                                                                                        | el? <u>X</u> Yes No                                                                                                                         | If yes, is it?       | X_Direct Fired            |  |  |  |
| Maximum design heat input and/or                                                                                                                                                                                           | maximum horsepower rating:                                                                                                                  | Type and Btu/hr ra   | ting of burners:          |  |  |  |
| 2,800 hp                                                                                                                                                                                                                   |                                                                                                                                             | 8,400 Btu/hp-hr      |                           |  |  |  |
| List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide<br>the maximum hourly and annual fuel usage for each.<br>Natural Gas<br>23,060 scf/hr / 202,005,600 scf/yr |                                                                                                                                             |                      |                           |  |  |  |
| Describe each fuel expected to be us                                                                                                                                                                                       | sed during the term of the permit.                                                                                                          |                      |                           |  |  |  |
| Fuel Type                                                                                                                                                                                                                  | Max. Sulfur Content                                                                                                                         | Max. Ash Content     | BTU Value                 |  |  |  |
| Natural Gas                                                                                                                                                                                                                | Pipeline Quality                                                                                                                            |                      | 1,020 Btu/scf             |  |  |  |
|                                                                                                                                                                                                                            |                                                                                                                                             |                      |                           |  |  |  |
|                                                                                                                                                                                                                            |                                                                                                                                             |                      |                           |  |  |  |

| Emissions Data                                                                        |                            |                                         |
|---------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|
| Criteria Pollutants                                                                   | Potential Emissions        |                                         |
|                                                                                       | PPH                        | ТРҮ                                     |
| Carbon Monoxide (CO)                                                                  |                            | See Appendix A                          |
| Nitrogen Oxides (NO <sub>X</sub> )                                                    |                            |                                         |
| Lead (Pb)                                                                             |                            |                                         |
| Particulate Matter (PM <sub>2.5</sub> )                                               |                            |                                         |
| Particulate Matter (PM <sub>10</sub> )                                                |                            |                                         |
| Total Particulate Matter (TSP)                                                        |                            |                                         |
| Sulfur Dioxide (SO <sub>2</sub> )                                                     |                            |                                         |
| Volatile Organic Compounds (VOC)                                                      |                            |                                         |
| Hazardous Air Pollutants                                                              | Ι                          | Potential Emissions                     |
|                                                                                       | РРН                        | ТРҮ                                     |
|                                                                                       | See Appendix A             |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
| Regulated Pollutants other than                                                       | J                          | Potential Emissions                     |
| Criteria and HAP                                                                      | РРН                        | ТРҮ                                     |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            | le la tar eferre eterle torte conducted |
| List the method(s) used to calculate the poversions of software used, source and date | es of emission factors, et | ide dates of any stack tests conducted, |
| See Annendix A                                                                        |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |
|                                                                                       |                            |                                         |

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

According to 40 CFR 63.6590(b)(3)(i) and 40 CFR 63.6600(c), this existing, non-emergency, SI 2SLB engine > 500 hp located at a major source of HAPs does not have any requirements under 40 CFR Part 63 Subpart ZZZZ because it was constructed prior to December 12, 2002.

Therefore, there are no specific applicable requirements for this emission unit other than those to submit a certified emission statement in accordance with Title V permit condition 3.5.4 and an annual emission inventory according to Title V permit condition 3.1.6.

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

The emission unit shall track fuel usage and hours of operation in order to quantify annual emissions from this unit.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

| AT                                                                                                                            | FACHMENT E - Emission Uni                                                 | it Form                                            |                           |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|---------------------------|
| Emission Unit Description                                                                                                     |                                                                           |                                                    |                           |
| <b>Emission unit ID number:</b><br>00504                                                                                      | <b>Emission unit name:</b><br>Reciprocating Engine/Integral<br>Compressor | List any control dev<br>with this emission u<br>NA | vices associated<br>init: |
| <b>Provide a description of the emissio</b><br>2-cycle, lean burn                                                             | on unit (type, method of operation, d                                     | esign parameters, etc                              | .):                       |
| Manufacturer:<br>Cooper-Bessemer                                                                                              | <b>Model number:</b><br>GMWH-8                                            | Serial number:<br>NA                               |                           |
| <b>Construction date:</b><br>NA                                                                                               | <b>Installation date:</b><br>1957                                         | Modification date(s                                | ):                        |
| Design Capacity (examples: furnac                                                                                             | es - tons/hr, tanks - gallons): 2,800 h                                   | ıp                                                 |                           |
| <b>Maximum Hourly Throughput:</b><br>NA                                                                                       | <b>Maximum Annual Throughput:</b><br>NA                                   | Maximum Operation 8,760                            | ng Schedule:              |
| Fuel Usage Data (fill out all applica                                                                                         | ble fields)                                                               |                                                    |                           |
| Does this emission unit combust fu                                                                                            | el? <u>X</u> Yes No                                                       | If yes, is it?                                     |                           |
|                                                                                                                               |                                                                           | Indirect Fired <u>X</u> Direct Fired               |                           |
| Maximum design heat input and/or maximum horsepower rating:                                                                   |                                                                           | Type and Btu/hr rating of burners:                 |                           |
| 2,800 hp                                                                                                                      |                                                                           | 8,400 Btu/hp-hr                                    |                           |
| List the primary fuel type(s) and if<br>the maximum hourly and annual fu<br>Natural Gas<br>23,060 scf/hr / 202,005,600 scf/yr | applicable, the secondary fuel type(suel usage for each.                  | s). For each fuel type                             | listed, provide           |
| Describe each fuel expected to be u                                                                                           | sed during the term of the permit.                                        | 1                                                  |                           |
| Fuel Type                                                                                                                     | Max. Sulfur Content                                                       | Max. Ash Content                                   | BTU Value                 |
| Natural Gas                                                                                                                   | Pipeline Quality                                                          |                                                    | 1,020 Btu/scf             |
|                                                                                                                               |                                                                           |                                                    |                           |
|                                                                                                                               |                                                                           |                                                    |                           |

| Emissions Data                              |                             |                                        |
|---------------------------------------------|-----------------------------|----------------------------------------|
| Criteria Pollutants                         | Potential Emissions         |                                        |
|                                             | РРН                         | ТРҮ                                    |
| Carbon Monoxide (CO)                        |                             | See Appendix A                         |
| Nitrogen Oxides (NO <sub>X</sub> )          |                             |                                        |
| Lead (Pb)                                   |                             |                                        |
| Particulate Matter (PM <sub>2.5</sub> )     |                             |                                        |
| Particulate Matter (PM <sub>10</sub> )      |                             |                                        |
| Total Particulate Matter (TSP)              |                             |                                        |
| Sulfur Dioxide (SO <sub>2</sub> )           |                             |                                        |
| Volatile Organic Compounds (VOC)            |                             |                                        |
| Hazardous Air Pollutants                    | P                           | otential Emissions                     |
|                                             | РРН                         | ТРҮ                                    |
|                                             |                             | See Appendix A                         |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| Regulated Pollutants other than             | P                           | otential Emissions                     |
| Criteria and HAP                            | PPH                         | ТРҮ                                    |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| List the method(s) used to calculate the po | otential emissions (incluc  | de dates of any stack tests conducted, |
| versions of software used, source and date  | es of emission factors, etc | с.).                                   |
| See Appendix A                              |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

According to 40 CFR 63.6590(b)(3)(i) and 40 CFR 63.6600(c), this existing, non-emergency, SI 2SLB engine > 500 hp located at a major source of HAPs does not have any requirements under 40 CFR Part 63 Subpart ZZZZ because it was constructed prior to December 12, 2002.

Therefore, there are no specific applicable requirements for this emission unit other than those to submit a certified emission statement in accordance with Title V permit condition 3.5.4 and an annual emission inventory according to Title V permit condition 3.1.6.

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

The emission unit shall track fuel usage and hours of operation in order to quantify annual emissions from this unit.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

| ATT                                                                                                                                                                                                                        | FACHMENT E - Emission Uni                                          | it Form                                            |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|---------------------------|
| Emission Unit Description                                                                                                                                                                                                  |                                                                    |                                                    |                           |
| <b>Emission unit ID number:</b><br>00505                                                                                                                                                                                   | Emission unit name:<br>Reciprocating Engine/Integral<br>Compressor | List any control dev<br>with this emission u<br>NA | vices associated<br>init: |
| <b>Provide a description of the emission</b> 2-cycle, lean burn                                                                                                                                                            | on unit (type, method of operation, d                              | esign parameters, etc                              | .):                       |
| Manufacturer:<br>Cooper-Bessemer                                                                                                                                                                                           | <b>Model number:</b><br>GMWH-8                                     | Serial number:<br>NA                               |                           |
| <b>Construction date:</b><br>NA                                                                                                                                                                                            | Installation date:<br>1958                                         | <b>Modification date(s</b><br>NA                   | ):                        |
| Design Capacity (examples: furnac                                                                                                                                                                                          | es - tons/hr, tanks - gallons): 2,800 h                            | ıp                                                 |                           |
| <b>Maximum Hourly Throughput:</b><br>NA                                                                                                                                                                                    | <b>Maximum Annual Throughput:</b><br>NA                            | Maximum Operation 8,760                            | ng Schedule:              |
| Fuel Usage Data (fill out all applica                                                                                                                                                                                      | ble fields)                                                        |                                                    |                           |
| Does this emission unit combust fu                                                                                                                                                                                         | el? <u>X</u> Yes No                                                | If yes, is it?                                     |                           |
|                                                                                                                                                                                                                            |                                                                    | Indirect Fired X_Direct Fired                      |                           |
| Maximum design heat input and/or maximum horsepower rating:                                                                                                                                                                |                                                                    | Type and Btu/hr rating of burners:                 |                           |
| 2,800 hp                                                                                                                                                                                                                   |                                                                    | 8,400 Btu/hp-hr                                    |                           |
| List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide<br>the maximum hourly and annual fuel usage for each.<br>Natural Gas<br>23,060 scf/hr / 202,005,600 scf/yr |                                                                    |                                                    |                           |
| Describe each fuel expected to be u                                                                                                                                                                                        | sed during the term of the permit.                                 |                                                    |                           |
| Fuel Type                                                                                                                                                                                                                  | Max. Sulfur Content                                                | Max. Ash Content                                   | BTU Value                 |
| Natural Gas                                                                                                                                                                                                                | Pipeline Quality                                                   |                                                    | 1,020 Btu/scf             |
|                                                                                                                                                                                                                            |                                                                    |                                                    |                           |
|                                                                                                                                                                                                                            |                                                                    |                                                    |                           |

| Emissions Data                              |                             |                                        |
|---------------------------------------------|-----------------------------|----------------------------------------|
| Criteria Pollutants                         | Potential Emissions         |                                        |
|                                             | РРН                         | ТРҮ                                    |
| Carbon Monoxide (CO)                        |                             | See Appendix A                         |
| Nitrogen Oxides (NO <sub>X</sub> )          |                             |                                        |
| Lead (Pb)                                   |                             |                                        |
| Particulate Matter (PM <sub>2.5</sub> )     |                             |                                        |
| Particulate Matter (PM <sub>10</sub> )      |                             |                                        |
| Total Particulate Matter (TSP)              |                             |                                        |
| Sulfur Dioxide (SO <sub>2</sub> )           |                             |                                        |
| Volatile Organic Compounds (VOC)            |                             |                                        |
| Hazardous Air Pollutants                    | P                           | otential Emissions                     |
|                                             | РРН                         | ТРҮ                                    |
|                                             |                             | See Appendix A                         |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| Regulated Pollutants other than             | P                           | otential Emissions                     |
| Criteria and HAP                            | PPH                         | ТРҮ                                    |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| List the method(s) used to calculate the po | otential emissions (incluc  | de dates of any stack tests conducted, |
| versions of software used, source and date  | es of emission factors, etc | с.).                                   |
| See Appendix A                              |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

According to 40 CFR 63.6590(b)(3)(i) and 40 CFR 63.6600(c), this existing, non-emergency, SI 2SLB engine > 500 hp located at a major source of HAPs does not have any requirements under 40 CFR Part 63 Subpart ZZZZ because it was constructed prior to December 12, 2002.

Therefore, there are no specific applicable requirements for this emission unit other than those to submit a certified emission statement in accordance with Title V permit condition 3.5.4 and an annual emission inventory according to Title V permit condition 3.1.6.

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

The emission unit shall track fuel usage and hours of operation in order to quantify annual emissions from this unit.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

| AT                                                                                                                                                                                                                         | FACHMENT E - Emission Uni                                                 | it Form                                            |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|---------------------------|
| Emission Unit Description                                                                                                                                                                                                  |                                                                           |                                                    |                           |
| <b>Emission unit ID number:</b><br>00506                                                                                                                                                                                   | <b>Emission unit name:</b><br>Reciprocating Engine/Integral<br>Compressor | List any control dev<br>with this emission u<br>NA | vices associated<br>init: |
| <b>Provide a description of the emission</b> 2-cycle, lean burn                                                                                                                                                            | on unit (type, method of operation, d                                     | esign parameters, etc                              | .):                       |
| Manufacturer:<br>Cooper-Bessemer                                                                                                                                                                                           | <b>Model number:</b><br>GMWH-8                                            | Serial number:<br>NA                               |                           |
| <b>Construction date:</b><br>NA                                                                                                                                                                                            | Installation date:<br>1960                                                | <b>Modification date(s</b><br>NA                   | ):                        |
| Design Capacity (examples: furnac                                                                                                                                                                                          | es - tons/hr, tanks - gallons): 2,800 h                                   | ıp                                                 |                           |
| <b>Maximum Hourly Throughput:</b><br>NA                                                                                                                                                                                    | <b>Maximum Annual Throughput:</b><br>NA                                   | Maximum Operation 8,760                            | ng Schedule:              |
| Fuel Usage Data (fill out all applica                                                                                                                                                                                      | ble fields)                                                               |                                                    |                           |
| Does this emission unit combust fu                                                                                                                                                                                         | el? <u>X</u> Yes No                                                       | If yes, is it?                                     |                           |
|                                                                                                                                                                                                                            |                                                                           | Indirect Fired X_Direct Fired                      |                           |
| Maximum design heat input and/or maximum horsepower rating:                                                                                                                                                                |                                                                           | Type and Btu/hr rating of burners:                 |                           |
| 2,800 hp                                                                                                                                                                                                                   |                                                                           | 8,400 Btu/hp-hr                                    |                           |
| List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide<br>the maximum hourly and annual fuel usage for each.<br>Natural Gas<br>23,060 scf/hr / 202,005,600 scf/yr |                                                                           |                                                    |                           |
| Describe each fuel expected to be u                                                                                                                                                                                        | sed during the term of the permit.                                        |                                                    |                           |
| Fuel Type                                                                                                                                                                                                                  | Max. Sulfur Content                                                       | Max. Ash Content                                   | BTU Value                 |
| Natural Gas                                                                                                                                                                                                                | Pipeline Quality                                                          |                                                    | 1,020 Btu/scf             |
|                                                                                                                                                                                                                            |                                                                           |                                                    |                           |
|                                                                                                                                                                                                                            |                                                                           |                                                    |                           |

| Emissions Data                              |                             |                                        |
|---------------------------------------------|-----------------------------|----------------------------------------|
| Criteria Pollutants                         | Potential Emissions         |                                        |
|                                             | РРН                         | ТРҮ                                    |
| Carbon Monoxide (CO)                        |                             | See Appendix A                         |
| Nitrogen Oxides (NO <sub>X</sub> )          |                             |                                        |
| Lead (Pb)                                   |                             |                                        |
| Particulate Matter (PM <sub>2.5</sub> )     |                             |                                        |
| Particulate Matter (PM <sub>10</sub> )      |                             |                                        |
| Total Particulate Matter (TSP)              |                             |                                        |
| Sulfur Dioxide (SO <sub>2</sub> )           |                             |                                        |
| Volatile Organic Compounds (VOC)            |                             |                                        |
| Hazardous Air Pollutants                    | P                           | otential Emissions                     |
|                                             | РРН                         | ТРҮ                                    |
|                                             |                             | See Appendix A                         |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| Regulated Pollutants other than             | P                           | otential Emissions                     |
| Criteria and HAP                            | PPH                         | ТРҮ                                    |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| List the method(s) used to calculate the po | otential emissions (incluc  | de dates of any stack tests conducted, |
| versions of software used, source and date  | es of emission factors, etc | с.).                                   |
| See Appendix A                              |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

According to 40 CFR 63.6590(b)(3)(i) and 40 CFR 63.6600(c), this existing, non-emergency, SI 2SLB engine > 500 hp located at a major source of HAPs does not have any requirements under 40 CFR Part 63 Subpart ZZZZ because it was constructed prior to December 12, 2002.

Therefore, there are no specific applicable requirements for this emission unit other than those to submit a certified emission statement in accordance with Title V permit condition 3.5.4 and an annual emission inventory according to Title V permit condition 3.1.6.

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

The emission unit shall track fuel usage and hours of operation in order to quantify annual emissions from this unit.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

| AT                                                                                                                                         | FACHMENT E - Emission Uni                                          | it Form                                            |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|--------------------------|
| Emission Unit Description                                                                                                                  |                                                                    |                                                    |                          |
| <b>Emission unit ID number:</b><br>00507                                                                                                   | Emission unit name:<br>Reciprocating Engine/Integral<br>Compressor | List any control dev<br>with this emission u<br>NA | vices associated<br>mit: |
| <b>Provide a description of the emission</b><br>2-cycle, lean burn                                                                         | on unit (type, method of operation, d                              | esign parameters, etc.                             | .):                      |
| Manufacturer:<br>Cooper-Bessemer                                                                                                           | Model number:<br>8V-250                                            | Serial number:<br>NA                               |                          |
| <b>Construction date:</b><br>NA                                                                                                            | <b>Installation date:</b><br>1965                                  | Modification date(s                                | ):                       |
| Design Capacity (examples: furnac                                                                                                          | es - tons/hr, tanks - gallons): 2,700 h                            | ıp                                                 |                          |
| <b>Maximum Hourly Throughput:</b><br>NA                                                                                                    | <b>Maximum Annual Throughput:</b><br>NA                            | Maximum Operatin<br>8,760                          | ng Schedule:             |
| Fuel Usage Data (fill out all applica                                                                                                      | ble fields)                                                        | 1                                                  |                          |
| Does this emission unit combust fu                                                                                                         | el? <u>X</u> Yes No                                                | If yes, is it?                                     |                          |
| Maximum design heat input and/or                                                                                                           | r maximum horsepower rating:                                       | Type and Btu/hr rating of burners:                 |                          |
| 2,700 hp                                                                                                                                   |                                                                    | 7,800 Btu/hp-hr                                    |                          |
| <b>List the primary fuel type(s) and if</b><br><b>the maximum hourly and annual f</b><br>Natural Gas<br>20,647 scf/hr / 180,867,720 scf/yr | applicable, the secondary fuel type(s<br>iel usage for each.       | s). For each fuel type                             | listed, provide          |
| Describe each fuel expected to be u                                                                                                        | sed during the term of the permit.                                 |                                                    |                          |
| Fuel Type                                                                                                                                  | Max. Sulfur Content                                                | Max. Ash Content                                   | BTU Value                |
| Natural Gas                                                                                                                                | Pipeline Quality                                                   |                                                    | 1,020 Btu/scf            |
|                                                                                                                                            |                                                                    |                                                    |                          |
|                                                                                                                                            |                                                                    |                                                    |                          |

| Emissions Data                              |                            |                     |
|---------------------------------------------|----------------------------|---------------------|
| Criteria Pollutants                         | Potential Emissions        |                     |
|                                             | PPH                        | TPY                 |
| Carbon Monoxide (CO)                        |                            | See Appendix A      |
| Nitrogen Oxides (NO <sub>X</sub> )          |                            |                     |
| Lead (Pb)                                   |                            |                     |
| Particulate Matter (PM <sub>2.5</sub> )     |                            |                     |
| Particulate Matter (PM <sub>10</sub> )      |                            |                     |
| Total Particulate Matter (TSP)              |                            |                     |
| Sulfur Dioxide (SO <sub>2</sub> )           |                            |                     |
| Volatile Organic Compounds (VOC)            |                            |                     |
| Hazardous Air Pollutants                    | I                          | Potential Emissions |
|                                             | РРН                        | TPY                 |
|                                             |                            | See Appendix A      |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
| Regulated Pollutants other than             | I                          | Potential Emissions |
| Criteria and HAP                            | РРН                        | TPY                 |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
| List the method(s) used to colculate the pu |                            |                     |
| versions of software used, source and date  | es of emission factors, et | tc.).               |
| See Annendix A                              |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
|                                             |                            |                     |
Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

According to 40 CFR 63.6590(b)(3)(i) and 40 CFR 63.6600(c), this existing, non-emergency, SI 2SLB engine > 500 hp located at a major source of HAPs does not have any requirements under 40 CFR Part 63 Subpart ZZZZ because it was constructed prior to December 12, 2002.

Therefore, there are no specific applicable requirements for this emission unit other than those to submit a certified emission statement in accordance with Title V permit condition 3.5.4 and an annual emission inventory according to Title V permit condition 3.1.6.

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

The emission unit shall track fuel usage and hours of operation in order to quantify annual emissions from this unit.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

| ATTACHMENT E - Emission Unit Form                                            |                                                              |                                                                       |                  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|------------------|--|
| Emission Unit Description                                                    |                                                              |                                                                       |                  |  |
| Emission unit ID number:<br>00510                                            | Emission unit name:<br>Solar Titan 250 Turbine               | List any control devices associated<br>with this emission unit:<br>NA |                  |  |
| Provide a description of the emissio                                         | n unit (type, method of operation, de                        | esign parameters, etc                                                 | e.):             |  |
| TURB ENG/CENT COM #0051                                                      | 0                                                            |                                                                       |                  |  |
| Manufacturer:<br>SOLAR                                                       | Model number:<br>MARS 100                                    | Serial number:                                                        |                  |  |
| Construction date: (MM/DD/YYYY)                                              | Installation date: (MM/DD/YYYY)                              | Modification date(s                                                   | 5): (MM/DD/YYYY) |  |
| / /                                                                          | 10/1/2018                                                    | / / ;                                                                 |                  |  |
| Design Capacity (examples: furnaces - tons/hr, tanks - gallons):<br>30399 hp |                                                              |                                                                       |                  |  |
| Maximum Hourly Throughput:                                                   | Maximum Annual Throughput:                                   | Maximum Operating Schedule:                                           |                  |  |
| NA                                                                           | NA                                                           | 8760                                                                  |                  |  |
| Fuel Usage Data (fill out all applical                                       | ble fields)                                                  | l                                                                     |                  |  |
| Does this emission unit combust fue                                          | <b>!?</b> <u>√</u> Yes No                                    | If yes, is it?                                                        |                  |  |
|                                                                              |                                                              | Indirect Fired Direct Fired                                           |                  |  |
| Maximum design heat input and/or maximum horsepower rating:                  |                                                              | Type and Btu/hr rating of burners:                                    |                  |  |
| 30399 hp                                                                     |                                                              |                                                                       |                  |  |
| List the primary fuel type(s) and if a the maximum hourly and annual fu      | applicable, the secondary fuel type(s)<br>el usage for each. | . For each fuel type                                                  | listed, provide  |  |
| Natural gas                                                                  |                                                              |                                                                       |                  |  |
| Describe each fuel expected to be used during the term of the permit.        |                                                              |                                                                       |                  |  |
| Fuel Type                                                                    | Max. Sulfur Content                                          | Max. Ash Content                                                      | BTU Value        |  |
| Natural Gas                                                                  | Pipeline Quality                                             |                                                                       | 1,020 Btu/scf    |  |
|                                                                              |                                                              |                                                                       |                  |  |
|                                                                              |                                                              |                                                                       |                  |  |
|                                                                              |                                                              |                                                                       |                  |  |

| Emissions Data                                                                                 |                                                                      |                                                |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|--|
| Criteria Pollutants                                                                            | Potential Emissions                                                  |                                                |  |
|                                                                                                | РРН                                                                  | ТРҮ                                            |  |
| Carbon Monoxide (CO)                                                                           | See Appendix A                                                       | See Appendix A                                 |  |
| Nitrogen Oxides (NO <sub>X</sub> )                                                             |                                                                      |                                                |  |
| Lead (Pb)                                                                                      |                                                                      |                                                |  |
| Particulate Matter (PM <sub>2.5</sub> )                                                        |                                                                      |                                                |  |
| Particulate Matter (PM <sub>10</sub> )                                                         |                                                                      |                                                |  |
| Total Particulate Matter (TSP)                                                                 |                                                                      |                                                |  |
| Sulfur Dioxide (SO <sub>2</sub> )                                                              |                                                                      |                                                |  |
| Volatile Organic Compounds (VOC)                                                               |                                                                      |                                                |  |
| Hazardous Air Pollutants                                                                       | Р                                                                    | otential Emissions                             |  |
|                                                                                                | РРН                                                                  | ТРҮ                                            |  |
|                                                                                                |                                                                      |                                                |  |
|                                                                                                |                                                                      |                                                |  |
|                                                                                                |                                                                      |                                                |  |
|                                                                                                |                                                                      |                                                |  |
| Regulated Pollutants other than                                                                | Р                                                                    | otential Emissions                             |  |
| Criteria and HAP                                                                               | РРН                                                                  | ТРҮ                                            |  |
|                                                                                                |                                                                      |                                                |  |
|                                                                                                |                                                                      |                                                |  |
|                                                                                                |                                                                      |                                                |  |
| List the method(s) used to calculate<br>versions of software used, source an<br>See Appendix A | the potential emissions (includ<br>nd dates of emission factors, etc | le dates of any stack tests conducted,<br>c.). |  |
|                                                                                                |                                                                      |                                                |  |

| Applicable Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. ( <i>Note: Title V permit condition numbers alone are not the underlying applicable requirements</i> ). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40 C.F.R. § 63.6603(a) and Table 2d (Line 10) – Maintenance Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40 C.F.R. § $63.6625(e)(5)$ , (h), and (j) – Monitoring Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40 C.F.R. § 63.6640(a) and Table 6 (Line 9) – Continuous Compliance Requirements<br>40 C.F.R. § 63.6660 – Recordkeeping Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40 C.F.R. § 63.6665 – General Requirements/Provisions<br>40 C.F.R § 60 Subpart KKKK Standards of Performance for Stationary Combustion Turbines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Permit Shield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number<br>or citation. (Note: Each requirement listed above must have an associated method of demonstrating<br>compliance. If there is not already a required method in place, then a method must be proposed.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40 C.F.R § 60 Subpart KKKK - CT shall meet NOx emission limits of 25 ppm at 15 percent O2 or 150 ng/J of useful output (1.2 lb ( $MW_{\rm b}$ ) CT must also some burght with either new energies of 0.2 ( $M_{\rm c}$ ) |
| $\{60.4330(a)\}$ (a)(2), or (a)(5). [45CSR16, 40 C.F.R. $\{60.4330(a)(1), (a)(2), or (a)(5).$ [45CSR16, 40 C.F.R. $\{60.4330(a)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Are you in compliance with all applicable requirements for this emission unit? <u>Ves</u> No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| If no, complete the <b>Schedule of Compliance Form</b> as <b>ATTACHMENT F</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| ATTACHMENT E - Emi in Unit Form                                                                                                           |                                                              |                                                                       |                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|--|
| Emission Unit Description                                                                                                                 |                                                              |                                                                       |                 |  |
| <b>Emission unit ID number:</b><br>BLR3                                                                                                   | Emission unit name:<br>Heating System Boiler                 | List any control devices associated<br>with this emission unit:<br>NA |                 |  |
| <b>Provide a description of the emission</b><br>Heating boiler                                                                            | on unit (type, method of operation, d                        | esign parameters, etc                                                 | .):             |  |
| <b>Manufacturer:</b><br>Hurst                                                                                                             | <b>Model number:</b><br>NA                                   | Serial number:<br>NA                                                  |                 |  |
| <b>Construction date:</b><br>NA                                                                                                           | <b>Installation date:</b><br>2012                            | <b>Modification date(s):</b><br>NA                                    |                 |  |
| Design Capacity (examples: furnac                                                                                                         | es - tons/hr, tanks - gallons): 6.276 m                      | nmBtu/hr                                                              |                 |  |
| <b>Maximum Hourly Throughput:</b><br>NA                                                                                                   | <b>Maximum Annual Throughput:</b><br>NA                      | Maximum Operating Schedule:<br>8,760                                  |                 |  |
| Fuel Usage Data (fill out all applicable fields)                                                                                          |                                                              |                                                                       |                 |  |
| Does this emission unit combust fu                                                                                                        | el? <u>X</u> Yes No                                          | If yes, is it?                                                        |                 |  |
|                                                                                                                                           |                                                              | <u>X</u> Indirect Fired                                               | Direct Fired    |  |
| Maximum design heat input and/or                                                                                                          | r maximum horsepower rating:                                 | Type and Btu/hr rating of burners:                                    |                 |  |
| 6.276 mmBtu/hr                                                                                                                            |                                                              | 6.276 mmBtu/hr                                                        |                 |  |
| <b>List the primary fuel type(s) and if</b><br><b>the maximum hourly and annual fu</b><br>Natural Gas<br>6,153 scf/hr / 53,900,000 scf/yr | applicable, the secondary fuel type(s<br>iel usage for each. | ). For each fuel type                                                 | listed, provide |  |
| Describe each fuel expected to be u                                                                                                       | sed during the term of the permit.                           |                                                                       |                 |  |
| Fuel Type                                                                                                                                 | Max. Sulfur Content                                          | Max. Ash Content                                                      | BTU Value       |  |
| Natural Gas                                                                                                                               | Pipeline Quality                                             |                                                                       | 1,020 Btu/scf   |  |
|                                                                                                                                           |                                                              |                                                                       |                 |  |
|                                                                                                                                           |                                                              |                                                                       |                 |  |
|                                                                                                                                           |                                                              |                                                                       |                 |  |

| Emissions Data                              |                             |                                        |
|---------------------------------------------|-----------------------------|----------------------------------------|
| Criteria Pollutants                         | Potential Emissions         |                                        |
|                                             | РРН                         | ТРҮ                                    |
| Carbon Monoxide (CO)                        | See Appendix A              |                                        |
| Nitrogen Oxides (NO <sub>X</sub> )          |                             |                                        |
| Lead (Pb)                                   |                             |                                        |
| Particulate Matter (PM <sub>2.5</sub> )     |                             |                                        |
| Particulate Matter (PM <sub>10</sub> )      |                             |                                        |
| Total Particulate Matter (TSP)              |                             |                                        |
| Sulfur Dioxide (SO <sub>2</sub> )           |                             |                                        |
| Volatile Organic Compounds (VOC)            |                             |                                        |
| Hazardous Air Pollutants                    | Р                           | Potential Emissions                    |
|                                             | РРН                         | ТРҮ                                    |
|                                             |                             | See Appendix A                         |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| Regulated Pollutants other than             | P                           | Potential Emissions                    |
| Criteria and HAP                            | PPH                         | ТРҮ                                    |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
| List the method(s) used to calculate the pe | otential emissions (inclue  | de dates of any stack tests conducted, |
| versions of software used, source and date  | es of emission factors, etc | c.).                                   |
| See Appendix A                              |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |
|                                             |                             |                                        |

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

45CSR34, 40 C.F.R. 63.7500(a)(1)&(3) and Table 3, Item 1 – Tune Up Requirement Work Practice 40 C.F.R. 63.7510(g) Initial Compliance Demonstration Date for New Sources. 40 C.F.R. 63.7540(a)(10) & (a)(12) Tune up Requirements and Schedule

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. 63.7515(d) Tune up Test Frequency
40 C.F.R. 63.7555(a)(1) Record of Each Notification & Report
40 C.F.R. 63.7560 Requirement for Maintaining Records
40 C.F.R. 63.7545(e)(1)&(e)(8) Notification of Compliance Status Reporting Requirements.
40 C.F.R. 63.7550(b) & (b)(5) Report Submission – Semi Annual for Title V sources
40 C.F.R. 63.7550(c)(1), (c)(5)(i)-(iii), (c)(xiv), and (c)(xvii) Content of compliance reports.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

| <b>ATTACHMENT E - Emission Unit Form</b>                                                                                   |                                               |                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|--|--|
| Emission Unit Description                                                                                                  |                                               |                                                                       |  |  |
| <b>Emission unit ID number:</b><br>HTR1                                                                                    | <b>Emission unit name:</b><br>Fuel Gas Heater | List any control devices associated<br>with this emission unit:<br>NA |  |  |
| <b>Provide a description of the emission unit (type, method of operation, design parameters, etc.):</b><br>Fuel Gas Heater |                                               |                                                                       |  |  |
| Manufacturer:<br>FLAMECO                                                                                                   | <b>Model number:</b><br>FAH14                 | Serial number:<br>NA                                                  |  |  |
| <b>Construction date:</b><br>NA                                                                                            | Installation date:<br>1998                    | <b>Modification date(s):</b><br>NA                                    |  |  |
| Design Capacity (examples: furnaces - tons/hr, tanks - gallons): 0.375 mmBtu/hr                                            |                                               |                                                                       |  |  |

| <b>Maximum Hourly Throughput:</b><br>NA                                                                                                                                                                                 | <b>Maximum Annual Throughput:</b><br>NA | <b>Maximum Operatin</b><br>8,760 | ng Schedule:     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|------------------|--|
| <i>Fuel Usage Data</i> (fill out all applical                                                                                                                                                                           | ble fields)                             |                                  |                  |  |
| Does this emission unit combust fue                                                                                                                                                                                     | <b>I</b> ? <u>X</u> Yes No              | If yes, is it?                   |                  |  |
|                                                                                                                                                                                                                         |                                         | X Indirect Fired                 | Direct Fired     |  |
| Maximum design heat input and/or maximum horsepower rating:         Type and                                                                                                                                            |                                         | Type and Btu/hr ra               | ting of burners: |  |
| 0.375 mmBtu/hr                                                                                                                                                                                                          |                                         | 0.375 mmBtu/hr                   |                  |  |
| List the primary fuel type(s) and if applicable, the secondary fuel type(s). For each fuel type listed, provide<br>the maximum hourly and annual fuel usage for each.<br>Natural Gas<br>343.6 scf/hr / 3,010,000 scf/yr |                                         |                                  |                  |  |
| Fuel Type                                                                                                                                                                                                               | Max. Sulfur Content                     | Max. Ash Content                 | BTU Value        |  |
| Natural Gas                                                                                                                                                                                                             | Pipeline Quality                        |                                  | 1,020 Btu/scf    |  |
| Emissions Data                                                                                                                                                                                                          |                                         |                                  |                  |  |
| Criteria Pollutants                                                                                                                                                                                                     | Potential Emissions                     |                                  |                  |  |
|                                                                                                                                                                                                                         | РРН                                     | TP                               | Y                |  |
| Carbon Monoxide (CO)                                                                                                                                                                                                    | See A                                   | ppendix A                        |                  |  |
| Nitrogen Oxides $(NO_X)$                                                                                                                                                                                                | _                                       |                                  |                  |  |
| Lead (Pb)                                                                                                                                                                                                               | -                                       |                                  |                  |  |
| Particulate Matter ( $PM_{2.5}$ )                                                                                                                                                                                       |                                         |                                  |                  |  |
| Total Particulate Matter (TSP)                                                                                                                                                                                          |                                         |                                  |                  |  |
| Sulfur Dioxide (SO <sub>2</sub> )                                                                                                                                                                                       |                                         |                                  |                  |  |
| Volatile Organic Compounds (VOC)                                                                                                                                                                                        |                                         |                                  |                  |  |
| Hazardous Air Pollutants                                                                                                                                                                                                | Potentia                                | al Emissions                     |                  |  |
|                                                                                                                                                                                                                         | РРН                                     | TP                               | Y                |  |
|                                                                                                                                                                                                                         | See A                                   | ppendix A                        |                  |  |

| Regulated Pollutants other than | Potentia | ll Emissions |
|---------------------------------|----------|--------------|
| Criteria and HAP                | РРН      | TPY          |
|                                 |          |              |
|                                 |          |              |
|                                 |          |              |

List the method(s) used to calculate the potential emissions (include dates of any stack tests conducted, versions of software used, source and dates of emission factors, etc.).

See Appendix A

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

45CSR34, 40 C.F.R. 63.7500(a)(1)&(3) and Table 3, Item 1 – Tune Up Requirement Work Practice 40 C.F.R. 63.7510(e) Initial Compliance Date for Existing Sources 40 C.F.R. 63.7540(a)(10) & (a)(12) Tune up Requirements and Schedule

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. 63.7515(d) Tune up Test Frequency
40 C.F.R. 63.7555(a)(1) Record of Each Notification & Report
40 C.F.R. 63.7560 Requirement for Maintaining Records
40 C.F.R. 63.7530 (e) & (f) Initial Compliance for Existing Source Energy Assessment Requirements
40 C.F.R. 63.7545(e)(1)&(e)(8) Notification of Compliance Status Reporting Requirements.
40 C.F.R. 63.7550(b) & (b)(5) Report Submission – Semi Annual for Title V sources
40 C.F.R. 63.7550(c)(1), (c)(5)(i)-(iii), (c)(xiv), and (c)(xvii) Content of compliance reports.

Are you in compliance with all applicable requirements for this emission unit? X Yes \_\_\_\_\_No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

| ATTACHMENT E - Emission Unit Form                                                                                   |                                                              |                                                                       |                  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|------------------|--|
| Emission Unit Description                                                                                           |                                                              |                                                                       |                  |  |
| Emission unit ID number:<br>HTR3                                                                                    | Emission unit name:<br>PROCESS HEATER                        | List any control devices associated<br>with this emission unit:<br>NA |                  |  |
| Provide a description of the emission unit (type, method of operation, design parameters, etc.):<br>Fuel Gas Heater |                                                              |                                                                       |                  |  |
| Manufacturer:                                                                                                       | Model number:                                                | Serial number:                                                        |                  |  |
| Construction date: (MM/DD/YYYY) / /                                                                                 | <b>Installation date:</b> (MM/DD/YYYY)<br>1 / 1 / 2018       | Modification date(s): (MM/DD/YYYY) / / ; / / / ; / /                  |                  |  |
| Design Capacity (examples: furnace<br>0.6 MMBtu/hr                                                                  | es - tons/hr, tanks - gallons):                              |                                                                       |                  |  |
| Maximum Hourly Throughput:<br>NA                                                                                    | Maximum Annual Throughput:<br>NA                             | Maximum Operating Schedule:<br>8760                                   |                  |  |
| Fuel Usage Data (fill out all applical                                                                              | ble fields)                                                  |                                                                       |                  |  |
| Does this emission unit combust fue                                                                                 | I? ✓Yes No                                                   | If yes, is it?                                                        | ✓ Direct Fired   |  |
| Maximum design heat input and/or maximum horsepower rating:<br>0.6 MMBtu/hr                                         |                                                              | Type and Btu/hr ra                                                    | ting of burners: |  |
| List the primary fuel type(s) and if a<br>the maximum hourly and annual fu                                          | applicable, the secondary fuel type(s)<br>el usage for each. | ). For each fuel type                                                 | listed, provide  |  |
| Natural gas                                                                                                         |                                                              |                                                                       |                  |  |
| Describe each fuel expected to be us                                                                                | ed during the term of the permit.                            |                                                                       |                  |  |
| Fuel Type                                                                                                           | Max. Sulfur Content                                          | Max. Ash Content                                                      | BTU Value        |  |
| Natural Gas                                                                                                         | Pipeline Quality                                             |                                                                       | 1,020 Btu/scf    |  |
|                                                                                                                     |                                                              |                                                                       |                  |  |
|                                                                                                                     |                                                              |                                                                       |                  |  |

| 1                                                                    |                                                |  |
|----------------------------------------------------------------------|------------------------------------------------|--|
| Potential Emissions                                                  |                                                |  |
| РРН                                                                  | ТРҮ                                            |  |
| See Appendix A                                                       | See Appendix A                                 |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
| Р                                                                    | Potential Emissions                            |  |
| РРН                                                                  | TPY                                            |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
| Potential Emissions                                                  |                                                |  |
| РРН                                                                  | ТРҮ                                            |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
|                                                                      |                                                |  |
| the potential emissions (includ<br>nd dates of emission factors, etc | de dates of any stack tests conducted,<br>c.). |  |
|                                                                      | PPH<br>See Appendix A                          |  |

| Applicable Requirements                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List all applicable requi<br>underlying rule/regulati<br><i>permit condition number</i><br>calculated based on the<br>this information should                                                                                                                                                                                       | rements for this emission unit. For each applicable requirement, include the on citation and/or construction permit with the condition number. ( <i>Note: Title V</i> is alone are not the underlying applicable requirements). If an emission limit is type of source and design capacity or if a standard is based on a design parameter, also be included.                                                                                                                                                                                                                                                                                                                                                   |
| 45CSR34, 40 C.F.R. 63.7<br>40 C.F.R. 63.7510(e) Initi<br>40 C.F.R. 63.7540(a)(10)                                                                                                                                                                                                                                                   | i00(a)(1)&(3) and Table 3, Item 1 – Tune Up Requirement Work Practice<br>al Compliance Date for Existing Sources<br>& (a)(12) Tune up Requirements and Schedule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| For all applicable requir<br>be used to demonstrate<br>or citation. (Note: Eacl<br>compliance. If there is r                                                                                                                                                                                                                        | rements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>compliance. If the method is based on a permit or rule, include the condition number<br>requirement listed above must have an associated method of demonstrating<br>ot already a required method in place, then a method must be proposed.)                                                                                                                                                                                                                                                                                                                                                                             |
| For all applicable require<br>be used to demonstrate<br>or citation. (Note: Eacl<br>compliance. If there is n<br>40 C.F.R. 63.7515(d) Tune<br>40 C.F.R. 63.7555(a)(1) Re<br>40 C.F.R. 63.7560 Requirer                                                                                                                              | rements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>compliance. If the method is based on a permit or rule, include the condition number<br>requirement listed above must have an associated method of demonstrating<br>not already a required method in place, then a method must be proposed.)<br>up Test Frequency<br>cord of Each Notification & Report<br>nent for Maintaining Records                                                                                                                                                                                                                                                                                 |
| For all applicable require<br>be used to demonstrate<br>or citation. (Note: Eacl<br>compliance. If there is a<br>40 C.F.R. 63.7515(d) Tune<br>40 C.F.R. 63.7555(a)(1) Re<br>40 C.F.R. 63.7560 Requirer<br>40 C.F.R. 63.7545(e)(1)&(c)<br>40 C.F.R. 63.7550(b) & (b)<br>40 C.F.R. 63.7550(c)(1), (c)                                 | rements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>compliance. If the method is based on a permit or rule, include the condition number<br>requirement listed above must have an associated method of demonstrating<br>not already a required method in place, then a method must be proposed.)<br>up Test Frequency<br>cord of Each Notification & Report<br>nent for Maintaining Records<br>(initial Compliance for Existing Source Energy Assessment Requirements<br>)(8) Notification of Compliance Status Reporting Requirements.<br>5) Report Submission – Semi Annual for Title V sources<br>(5)(i)-(iii), (c)(xiv), and (c)(xvii) Content of compliance reports.   |
| For all applicable requires<br>be used to demonstrate for citation. (Note: Eacl<br>compliance. If there is a<br>40 C.F.R. 63.7515(d) Tune<br>40 C.F.R. 63.7555(a)(1) Re<br>40 C.F.R. 63.7550 Requires<br>40 C.F.R. 63.7530 (e) & (f)<br>40 C.F.R. 63.7545(e)(1)&(c)<br>40 C.F.R. 63.7550(b) & (b)<br>40 C.F.R. 63.7550(c)(1), (c)   | rements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>compliance. If the method is based on a permit or rule, include the condition number<br>a requirement listed above must have an associated method of demonstrating<br>not already a required method in place, then a method must be proposed.)<br>up Test Frequency<br>cord of Each Notification & Report<br>nent for Maintaining Records<br>(initial Compliance for Existing Source Energy Assessment Requirements<br>)(8) Notification of Compliance Status Reporting Requirements.<br>5) Report Submission – Semi Annual for Title V sources<br>(5)(i)-(iii), (c)(xiv), and (c)(xvii) Content of compliance reports. |
| For all applicable require<br>be used to demonstrate<br>or citation. (Note: Eacl<br>compliance. If there is 1<br>40 C.F.R. 63.7515(d) Tune<br>40 C.F.R. 63.7555(a)(1) Re<br>40 C.F.R. 63.7550 Requirer<br>40 C.F.R. 63.7530 (e) & (f)<br>40 C.F.R. 63.7545(e)(1)&(c<br>40 C.F.R. 63.7550(b) & (b)<br>40 C.F.R. 63.7550(c)(1), (c    | rements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>compliance. If the method is based on a permit or rule, include the condition number<br>requirement listed above must have an associated method of demonstrating<br>out already a required method in place, then a method must be proposed.)<br>up Test Frequency<br>cord of Each Notification & Report<br>nent for Maintaining Records<br>initial Compliance for Existing Source Energy Assessment Requirements<br>)(8) Notification of Compliance Status Reporting Requirements.<br>5) Report Submission – Semi Annual for Title V sources<br>(5)(i)-(iii), (c)(xiv), and (c)(xvii) Content of compliance reports.    |
| For all applicable requires<br>be used to demonstrate<br>or citation. (Note: Eacl<br>compliance. If there is a<br>40 C.F.R. 63.7515(d) Tune<br>40 C.F.R. 63.7555(a)(1) Re<br>40 C.F.R. 63.7550 Requires<br>40 C.F.R. 63.7530 (e) & (f)<br>40 C.F.R. 63.7545(e)(1)&(c)<br>40 C.F.R. 63.7550(b) & (b)<br>40 C.F.R. 63.7550(c)(1), (c) | rements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>compliance. If the method is based on a permit or rule, include the condition number<br>requirement listed above must have an associated method of demonstrating<br>tot already a required method in place, then a method must be proposed.)<br>up Test Frequency<br>cord of Each Notification & Report<br>nent for Maintaining Records<br>initial Compliance for Existing Source Energy Assessment Requirements<br>)(8) Notification of Compliance Status Reporting Requirements.<br>5) Report Submission – Semi Annual for Title V sources<br>(5)(i)-(iii), (c)(xiv), and (c)(xvii) Content of compliance reports.    |
| For all applicable requir<br>be used to demonstrate<br>or citation. (Note: Eacl<br>compliance. If there is 1<br>40 C.F.R. 63.7515(d) Tune<br>40 C.F.R. 63.7555(a)(1) Re<br>40 C.F.R. 63.7550 Requirer<br>40 C.F.R. 63.7530 (e) & (f)<br>40 C.F.R. 63.7545(e)(1)&(c<br>40 C.F.R. 63.7550(b) & (b)<br>40 C.F.R. 63.7550(c)(1), (c     | rements listed above, provide monitoring/testing/recordkeeping/reporting which shall<br>compliance. If the method is based on a permit or rule, include the condition number<br>requirement listed above must have an associated method of demonstrating<br>ot already a required method in place, then a method must be proposed.)<br>up Test Frequency<br>cord of Each Notification & Report<br>nent for Maintaining Records<br>initial Compliance for Existing Source Energy Assessment Requirements<br>)(8) Notification of Compliance Status Reporting Requirements.<br>5) Report Submission – Semi Annual for Title V sources<br>(5)(i)-(iii), (c)(xiv), and (c)(xvii) Content of compliance reports.     |
| For all applicable requir<br>be used to demonstrate<br>or citation. (Note: Eacl<br>compliance. If there is 1<br>40 C.F.R. 63.7515(d) Tune<br>40 C.F.R. 63.7555(a)(1) Re<br>40 C.F.R. 63.7550 Requirer<br>40 C.F.R. 63.7545(e)(1)&(c<br>40 C.F.R. 63.7545(e)(1)&(c<br>40 C.F.R. 63.7550(c)(1), (c                                    | rith all applicable requirements for this emission unit? ✓ YesNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <b>ATTACHMENT E - Emission Unit Form</b>                                     |                                                              |                                                                       |                 |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|--|
| Emission Unit Description                                                    |                                                              |                                                                       |                 |  |
| Emission unit ID number:<br>005G4                                            | Emission unit name:<br>RECIP ENG/GEN #005G4                  | List any control devices associated<br>with this emission unit:<br>NA |                 |  |
| Provide a description of the emission                                        | n unit (type, method of operation, de                        | esign parameters, etc                                                 | .):             |  |
| 4-cycle, lean burn Eme                                                       | rgency Generator                                             |                                                                       |                 |  |
| Manufacturer:<br>WAUKESHA                                                    | Model number:<br>VGF-P48GL                                   | Serial number:                                                        |                 |  |
| Construction date: (MM/DD/YYYY) / /                                          | <b>Installation date:</b> (MM/DD/YYYY)<br>1 / 1 / 2018       | Modification date(s): (MM/DD/YYYY)                                    |                 |  |
| Design Capacity (examples: furnaces - tons/hr, tanks - gallons):<br>1,175 hp |                                                              |                                                                       |                 |  |
| Maximum Hourly Throughput:<br>NA                                             | Maximum Annual Throughput:<br>NA                             | Maximum Operating Schedule:<br>8760                                   |                 |  |
| <i>Fuel Usage Data</i> (fill out all applicable fields)                      |                                                              |                                                                       |                 |  |
| Does this emission unit combust fue                                          | l? ✓Yes No                                                   | If yes, is it?                                                        |                 |  |
|                                                                              |                                                              | Indirect Fired Direct Fired                                           |                 |  |
| Maximum design heat input and/or                                             | maximum horsepower rating:                                   | Type and Btu/hr rating of burners:                                    |                 |  |
| 1,175 hp                                                                     |                                                              |                                                                       |                 |  |
| List the primary fuel type(s) and if a the maximum hourly and annual fu      | applicable, the secondary fuel type(s)<br>el usage for each. | ). For each fuel type                                                 | listed, provide |  |
| Natural gas                                                                  |                                                              |                                                                       |                 |  |
| Describe each fuel expected to be used during the term of the permit.        |                                                              |                                                                       |                 |  |
| Fuel Type                                                                    | Max. Sulfur Content                                          | Max. Ash Content                                                      | BTU Value       |  |
| Natural Gas                                                                  | Pipeline Quality                                             |                                                                       | 1,020 Btu/scf   |  |
|                                                                              |                                                              |                                                                       |                 |  |
|                                                                              |                                                              |                                                                       |                 |  |
|                                                                              |                                                              |                                                                       |                 |  |

| 1                                                                    |                                                |
|----------------------------------------------------------------------|------------------------------------------------|
| Р                                                                    | Potential Emissions                            |
| РРН                                                                  | ТРҮ                                            |
| See Appendix A                                                       | See Appendix A                                 |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
| Р                                                                    | Potential Emissions                            |
| РРН                                                                  | TPY                                            |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
| Р                                                                    | Potential Emissions                            |
| РРН                                                                  | ТРҮ                                            |
|                                                                      |                                                |
|                                                                      |                                                |
|                                                                      |                                                |
| the potential emissions (includ<br>nd dates of emission factors, etc | de dates of any stack tests conducted,<br>c.). |
|                                                                      | PPH<br>See Appendix A                          |

| Applicable Requiremen | ts |
|-----------------------|----|
|-----------------------|----|

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

40 C.F.R. § 63.6603(a) and Table 2d (Line 10) – Maintenance Requirements
40 C.F.R. § 63.6605 – Operating Requirements
40 C.F.R. § 63.6625(e)(5), (h), and (j) – Monitoring Requirements
40 C.F.R. § 63.6640(a) and Table 6 (Line 9) – Continuous Compliance Requirements
40 C.F.R. § 63.6660 – Recordkeeping Requirements
40 C.F.R. § 63.6665 – General Requirements/Provisions
40 C.F.R. § 60 Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (SI ICE)

## ✓ Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. § 63.6603 (a) and Table 2d (Line 10) – Change oil and oil filter, and inspect spark plugs, hoses, and belts every 1,440 hours of operation, or annually, whichever occurs first, and replace as necessary

40 C.F.R. § 63.6605 - Must comply with all emission, operating, and work practice standards at all times.

40 C.F.R. § 63.6625(e)(5), 63.6640 and Table 6 (Line 9) - Work or Management Practices: Operate and Maintain the RICE

according to the manufacturer's instructions OR develop and follow your own maintenance plan

40 C.F.R. § 63.6625 (h) - Minimize Idle Time during Startup to not exceed 30 Minutes

40 C.F.R. § 63.6625 (j) – Oil Analysis Program in lieu of Oil change requirement in Table 2d (Line 10)

40 C.F.R. § 63.6655 (d), and (e)(3) - Keep records of maintenance conducted and operating schedule on the RICE

40 C.F.R. § 63.6660 - Records retained for five (5) years and readily available for expeditious review

40 C.F.R. § 60 Subpart JJJJ establishes emission standards for applicable SI ICE. The emergency generator (G3) is subject to the emission limits for emergency engines greater than 130 hp as required under 40CFR60 Table 1.

The emission limits are 2.0 g/hp-hr for NOx, 4.0 g/hp-hr for CO, and 1.0 g/hp-hr. The emergency generator meets these emission limits.

The engine is not certified by the manufacturer to meet the emission standards listed in 40CFR60 Subpart JJJJ. Therefore, CGT will be required to conduct performance testing.

Are you in compliance with all applicable requirements for this emission unit? ✓ Yes

\_\_\_No

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

Appendix A

# Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Facility Total PTE

|                                                     |                   |          |                 |        |         |           |                      |          | Annı                                   | ual Emissions | s (tpy) |       |          |                   |          |          |          |
|-----------------------------------------------------|-------------------|----------|-----------------|--------|---------|-----------|----------------------|----------|----------------------------------------|---------------|---------|-------|----------|-------------------|----------|----------|----------|
| Source                                              | Capacity          | Ν        | IO <sub>x</sub> | C      | :0      | C         | CO <sub>2</sub> e PM |          | I <sub>10</sub> /PM <sub>2.5</sub> VOC |               | oc      |       | 02       | CH <sub>2</sub> O |          | Total    | HAP      |
|                                                     |                   | lb/hr    | tons/yr         | lb/hr  | tons/yr | lb/hr     | tons/yr              | lb/hr    | tons/yr                                | lb/hr         | tons/yr | lb/hr | tons/yr  | lb/hr             | tons/yr  | lb/hr    | tons/yr  |
| E01 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 247.02   | 491.79          | 17.65  | 35.08   | 3,030     | 12,063               | 1.25     | 4.98                                   | 3.10          | 12.36   | 1.48  | 0.07     | 1.43              | 5.69     | 2.06     | 8.19     |
| E02 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 247.02   | 491.79          | 17.65  | 35.08   | 3,030     | 12,063               | 1.25     | 4.98                                   | 3.10          | 12.36   | 1.48  | 0.07     | 1.43              | 5.69     | 2.06     | 8.19     |
| E03 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 247.02   | 491.79          | 17.65  | 35.08   | 3,030     | 12,063               | 1.25     | 4.98                                   | 3.10          | 12.36   | 1.48  | 0.07     | 1.43              | 5.69     | 2.06     | 8.19     |
| E04 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 247.02   | 491.79          | 17.65  | 35.08   | 3,030     | 12,063               | 1.25     | 4.98                                   | 3.10          | 12.36   | 1.48  | 0.07     | 1.43              | 5.69     | 2.06     | 8.19     |
| E05 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 247.02   | 491.79          | 17.65  | 35.08   | 3,030     | 12,063               | 1.25     | 4.98                                   | 3.10          | 12.36   | 1.48  | 0.07     | 1.43              | 5.69     | 2.06     | 8.19     |
| E06 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 247.02   | 491.79          | 17.65  | 35.08   | 3,030     | 12,063               | 1.25     | 4.98                                   | 3.10          | 12.36   | 1.48  | 0.07     | 1.43              | 5.69     | 2.06     | 8.19     |
| E07 - Cooper-Bessemer 8V-250 Engine                 | 2,700 hp          | 297.00   | 591.30          | 17.65  | 39.03   | 2,713     | 10,801               | 1.12     | 4.46                                   | 2.78          | 11.07   | 1.48  | 0.07     | 1.28              | 5.09     | 1.84     | 7.34     |
| G3 - Waukesha Emergency Generator                   | 812 hp            | 2.44     | 0.61            | 4.31   | 1.08    | 761       | 190                  | 0.06     | 0.02                                   | 1.63          | 0.41    | 0.37  | 1.16E-03 | 0.34              | 0.09     | 0.47     | 0.12     |
| H1 - Fuel Gas Heater                                | 0.375 MMBtu/hr    | 0.04     | 0.16            | 0.03   | 0.14    | 44        | 192                  | 2.79E-03 | 0.01                                   | 2.02E-03      | 0.01    | 0.02  | 1.17E-03 | 2.76E-05          | 1.21E-04 | 6.94E-04 | 3.04E-03 |
| BL3 - Heating System Boiler                         | 6.28 MMBtu/hr     | 0.62     | 2.69            | 0.52   | 2.26    | 735       | 3,219                | 0.05     | 0.20                                   | 0.03          | 0.15    | 0.36  | 0.02     | 0.000             | 0.002    | 0.01     | 0.05     |
| E10 - Solar Titan 250 Turbine                       | 30,399 hp (32 °F) | 23.84    | 35.67           | 12.06  | 54.65   | 26,074    | 114,203              | 1.47     | 6.44                                   | 1.38          | 6.03    | 12.71 | 0.70     | 0.16              | 0.69     | 0.23     | 1.00     |
| G4 - Waukesha Emergency Generator                   | 1,175 hp          | 5.18     | 1.30            | 10.36  | 2.59    | 1,064     | 266                  | 0.09     | 0.02                                   | 2.59          | 0.65    | 0.52  | 1.62E-03 | 0.49              | 0.12     | 0.67     | 0.17     |
| H3 - Process Heater                                 | 0.60 MMBtu/hr     | 0.06     | 0.26            | 0.05   | 0.22    | 70        | 308                  | 4.47E-03 | 0.02                                   | 3.24E-03      | 0.01    | 0.03  | 1.88E-03 | 4.41E-05          | 1.93E-04 | 1.11E-03 | 4.87E-03 |
| Equipment Leaks (fugitive emissions) <sup>1,2</sup> |                   |          |                 |        |         | 905.86    | 3,968                |          |                                        | 0.56          | 2.46    |       |          |                   |          | 0.01     | 0.03     |
| Liquid Storage Tanks                                |                   |          |                 |        |         | 1.38      | 6.04                 |          |                                        | 0.32          | 1.42    |       |          |                   |          | 4.50E-06 | 1.97E-05 |
| Pneumatic Emissions                                 |                   |          |                 |        |         | 69.19     | 303.05               |          |                                        | 0.04          | 0.19    |       |          |                   | -        | 5.74E-04 | 2.51E-03 |
| Blowdowns                                           |                   |          |                 |        |         |           | 21,265.28            |          |                                        |               | 13.19   |       |          |                   |          |          | 0.17     |
| Proposed PTE <sup>1</sup>                           |                   | 1,811.26 | 3,582.71        | 150.87 | 310.41  | 49,708.07 | 223,132.79           | 10.30    | 41.03                                  | 27.42         | 107.30  | 24.36 | 1.23     | 10.84             | 40.11    | 15.57    | 58.00    |

Notes: 1. Excludes fugitive emissions (compressor stations are not one of the named soure categories that include fugitive emissions).

#### Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Facility Total HAPs Emissions

| Source                                              | Capacity          | Total    | HAPs     | Met   | hanol    | Forma    | ldehyde  | He       | kane     | Ben      | zene     | Tol      | lene     | Ethylbe  | enzene   | Xy       | lene     | 2,2,4-Trime | thylpentane | Acetal | dehyde  |
|-----------------------------------------------------|-------------------|----------|----------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|--------|---------|
| 000106                                              | Capacity          | lb/hr    | tons/yr  | lb/hr | tons/yr  | lb/hr    | tons/yr  | lb/hr    | tons/yr  | lb/hr    | tons/yr  | lb/hr    | tons/yr  | lb/hr    | tons/yr  | lb/hr    | tons/yr  | lb/hr       | tons/yr     | lb/hr  | tons/yr |
| E01 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 2.06     | 8.19     | 0.26  | 1.53     | 1.43     | 5.69     | 0.01     | 0.05     | 0.05     | 0.20     | 0.02     | 0.10     | 2.79E-03 | 0.01     | 0.01     | 0.03     | 0.02        | 0.09        | 0.20   | 0.80    |
| E02 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 2.06     | 8.19     | 0.26  | 1.53     | 1.43     | 5.69     | 0.01     | 0.05     | 0.05     | 0.20     | 0.02     | 0.10     | 2.79E-03 | 0.01     | 0.01     | 0.03     | 0.02        | 0.09        | 0.20   | 0.80    |
| E03 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 2.06     | 8.19     | 0.26  | 1.53     | 1.43     | 5.69     | 0.01     | 0.05     | 0.05     | 0.20     | 0.02     | 0.10     | 2.79E-03 | 0.01     | 0.01     | 0.03     | 0.02        | 0.09        | 0.20   | 0.80    |
| E04 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 2.06     | 8.19     | 0.26  | 1.53     | 1.43     | 5.69     | 0.01     | 0.05     | 0.05     | 0.20     | 0.02     | 0.10     | 2.79E-03 | 0.01     | 0.01     | 0.03     | 0.02        | 0.09        | 0.20   | 0.80    |
| E05 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 2.06     | 8.19     | 0.26  | 1.53     | 1.43     | 5.69     | 0.01     | 0.05     | 0.05     | 0.20     | 0.02     | 0.10     | 2.79E-03 | 0.01     | 0.01     | 0.03     | 0.02        | 0.09        | 0.20   | 0.80    |
| E06 - Cooper-Bessemer GMWH-8 Engine                 | 2,800 hp          | 2.06     | 8.19     | 0.26  | 1.53     | 1.43     | 5.69     | 0.01     | 0.05     | 0.05     | 0.20     | 0.02     | 0.10     | 2.79E-03 | 0.01     | 0.01     | 0.03     | 0.02        | 0.09        | 0.20   | 0.80    |
| E07 - Cooper-Bessemer 8V-250 Engine                 | 2,700 hp          | 1.84     | 7.34     | 0.06  | 0.23     | 1.28     | 5.09     | 0.01     | 0.04     | 0.04     | 0.18     | 0.02     | 0.09     | 2.50E-03 | 0.01     | 0.01     | 0.02     | 0.02        | 0.08        | 0.18   | 0.72    |
| G3 - Waukesha Emergency Generator                   | 812 hp            | 0.47     | 0.12     | 0.02  | 4.06E-03 | 0.34     | 0.09     | 0.01     | 1.80E-03 | 2.86E-03 | 7.15E-04 | 2.65E-03 | 6.63E-04 | 2.58E-04 | 6.45E-05 | 1.20E-03 | 2.99E-04 | 1.62E-03    | 4.06E-04    | 0.05   | 0.01    |
| H1 - Fuel Gas Heater                                | 0.375 MMBtu/hr    | 6.94E-04 | 3.04E-03 |       |          | 2.76E-05 | 1.21E-04 | 6.62E-04 | 2.90E-03 | 7.72E-07 | 3.38E-06 | 1.25E-06 | 5.48E-06 |          |          |          |          |             |             |        | -       |
| BL3 - Heating System Boiler                         | 6.28 MMBtu/hr     | 0.01     | 0.05     |       |          | 4.61E-04 | 2.02E-03 | 0.01     | 0.05     | 1.29E-05 | 5.66E-05 | 2.09E-05 | 9.16E-05 |          |          |          |          |             | -           |        |         |
| E10 - Solar Titan 250 Turbine                       | 30,399 hp (32 °F) | 0.23     | 1.00     |       |          | 0.16     | 0.69     |          | -        | 2.67E-03 | 0.01     | 0.03     | 0.13     | 0.01     | 0.03     |          |          |             |             | 0.01   | 0.04    |
| G4 - Waukesha Emergency Generator                   | 1,175 hp          | 0.67     | 0.17     | 0.02  | 0.01     | 0.49     | 0.12     | 0.01     | 2.52E-03 | 4.00E-03 | 9.99E-04 | 3.71E-03 | 9.27E-04 | 3.61E-04 | 9.02E-05 | 1.67E-03 | 4.18E-04 | 2.27E-03    | 5.68E-04    | 0.08   | 0.02    |
| H3 - Process Heater                                 | 0.60 MMBtu/hr     | 1.11E-03 | 4.87E-03 |       |          | 4.41E-05 | 1.93E-04 | 1.06E-03 | 4.64E-03 | 1.24E-06 | 5.41E-06 | 2.00E-06 | 8.76E-06 |          |          |          |          |             |             |        | -       |
| Equipment Leaks (fugitive emissions) <sup>1,2</sup> |                   | 0.01     | 0.03     |       |          |          |          |          |          |          |          |          |          |          |          |          |          |             |             |        |         |
| Liquid Storage Tanks                                |                   | <0.01    | <0.01    |       |          |          |          |          |          |          |          |          |          |          |          |          |          |             |             |        |         |
| Pneumatic Emissions                                 |                   | 5.74E-04 | 2.51E-03 |       |          |          |          |          |          |          |          |          |          |          |          |          |          |             |             |        |         |
| Blowdowns                                           |                   | 0.04     | 0.17     |       |          |          |          |          |          |          |          |          |          |          |          |          |          |             |             |        |         |
| Proposed PTE <sup>1</sup>                           |                   | 15.61    | 58.00    | 1.63  | 9.44     | 10.84    | 40.11    | 0.11     | 0.38     | 0.36     | 1.39     | 0.21     | 0.81     | 0.03     | 0.11     | 0.05     | 0.19     | 0.15        | 0.60        | 1.52   | 5.58    |

Notes: 1. Excludes fugitive emissions (compressor stations are not one of the named soure categories that include fugitive emissions). Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Insignificant Sources Emissions

| Ceredo Compressor Station - Insignificant Sources |           |                |                |         |  |  |  |  |  |
|---------------------------------------------------|-----------|----------------|----------------|---------|--|--|--|--|--|
|                                                   | VOCs HAPs |                |                |         |  |  |  |  |  |
| Emission Sources                                  | lb/hr     | lb/year        | lb/hr          | lb/year |  |  |  |  |  |
| Pneumatic Emissions                               | 0.04      | 376.04         | <0.01          | 5.03    |  |  |  |  |  |
| Produced Liquids Tanks A18, A19, and A20          | 0.32      | 2841.12        | <0.01          | <0.01   |  |  |  |  |  |
| Wastewater Tank A21                               | <0.01     | #VALUE!        | #VALUE!        | <0.01   |  |  |  |  |  |
| Totals                                            | 0.37      | <b>#VALUE!</b> | <b>#VALUE!</b> | 5.03    |  |  |  |  |  |

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 2SLB Reciprocating Compressor Engines (E01 - E06)

| Horsepower                      | 2,800  | HP         |
|---------------------------------|--------|------------|
| Maximum Horsepower              | 3,080  | HP         |
| Brake Specific Fuel Consumption | 8,400  | Btu/Bhp-hr |
| Total Heat Input                | 23.52  | MMBtu/hr   |
| Max Heat Input                  | 25.87  | MMBtu/hr   |
| Operating Hours                 | 8,760  | hr/yr      |
| Natural Gas Heat Content        | 1,020  | Btu/scf    |
| Fuel Consumption                | 202.00 | MMscf/yr   |
|                                 | 25,365 | scf/hr     |
| Quantity                        | 6      |            |

| Dellutent                        | Emissio  | on Factor |        | Emission Rate       | Emission Easter Reference |                                 |  |
|----------------------------------|----------|-----------|--------|---------------------|---------------------------|---------------------------------|--|
| Pollutant                        | lb/MMBtu | lb/bhp-hr | lb/hr  | ton/yr (per engine) | ton/yr (6 engines)        | Emission Factor Reference       |  |
| NO <sub>x</sub> (Maximum Hourly) |          | 8.02E-02  | 247.02 |                     |                           | CGT Test                        |  |
| NO <sub>x</sub> (Average Annual) |          | 4.01E-02  |        | 491.79              | 2,951                     | CGT Test                        |  |
| CO (Maximum Hourly)              |          | 5.73E-03  | 17.65  |                     |                           | CGT Test                        |  |
| CO (Average Annual)              |          | 2.86E-03  |        | 35.08               | 210                       | CGT Test                        |  |
| CO <sub>2</sub> e                | 117.1    |           | 3,030  | 12,063              | 72,379                    | 40 CFR 98 Subpart C             |  |
| PM <sub>10</sub>                 | 0.048    |           | 1.25   | 4.98                | 29.86                     | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| PM <sub>2.5</sub>                | 0.048    |           | 1.25   | 4.98                | 29.86                     | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| VOC                              | 0.120    |           | 3.10   | 12.36               | 74.17                     | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| SO <sub>2</sub> (Maximum Hourly) | 0.0571   |           | 1.48   |                     |                           | 20 grains S / 100 scf           |  |
| SO <sub>2</sub> (Average Annual) | 0.000714 |           |        | 0.07                | 0.44                      | 0.25 grains S / 100 scf         |  |
| Methanol                         | 0.002480 |           | 0.06   | 0.26                | 1.53                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Hexane                           | 0.000445 |           | 0.01   | 0.05                | 0.28                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Benzene                          | 0.001940 |           | 0.05   | 0.20                | 1.20                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Toluene                          | 0.000963 |           | 0.02   | 0.10                | 0.60                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Ethylbenzene                     | 0.000108 |           | 0.00   | 0.01                | 0.07                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Acetaldehyde                     | 0.007760 |           | 0.20   | 0.80                | 4.80                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| 2,2,4-Trimethylpentane           | 0.000846 |           | 0.02   | 0.09                | 0.52                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Xylene                           | 0.000268 |           | 0.01   | 0.03                | 0.17                      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Formaldehyde                     | 0.05520  |           | 1.43   | 5.69                | 34.12                     | AP-42 Table 3.2-1 (7/00) - 2SLB |  |
| Total HAPs                       | 0.07954  |           | 2.06   | 8.19                | 49.16                     | AP-42 Table 3.2-1 (7/00) - 2SLB |  |

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 2SLB Reciprocating Compressor Engine (E07)

| Horsepower                      | 2,700  | HP         |
|---------------------------------|--------|------------|
| Maximum Horsepower              | 2,970  | HP         |
| Brake Specific Fuel Consumption | 7,800  | Btu/Bhp-hr |
| Total Heat Input                | 21.06  | MMBtu/hr   |
| Max Heat Input                  | 23.17  | MMBtu/hr   |
| Operating Hours                 | 8,760  | hr/yr      |
| Natural Gas Heat Content        | 1,020  | Btu/scf    |
| Fuel Consumption                | 180.87 | MMscf/yr   |
|                                 | 22,712 | scf/hr     |

| Dellutent                        | Emissio  | on Factor | Emiss  | sion Rate | Emission Easter Deference       |  |  |
|----------------------------------|----------|-----------|--------|-----------|---------------------------------|--|--|
| Pollutant                        | lb/MMBtu | lb/bhp-hr | lb/hr  | ton/yr    | Emission Factor Reference       |  |  |
| NO <sub>x</sub> (Maximum Hourly) |          | 1.00E-01  | 297.00 |           | CGT Test                        |  |  |
| NO <sub>x</sub> (Average Annual) |          | 5.00E-02  |        | 591.30    | CGT Test                        |  |  |
| CO (Maximum Hourly)              |          | 6.61E-03  | 19.63  |           | CGT Test                        |  |  |
| CO (Average Annual)              |          | 3.30E-03  |        | 39.03     | CGT Test                        |  |  |
| CO <sub>2</sub> e                | 117.1    |           | 2,713  | 10,801    | 40 CFR 98 Subpart C             |  |  |
| PM <sub>10</sub>                 | 0.048    |           | 1.12   | 4.46      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| PM <sub>2.5</sub>                | 0.048    |           | 1.12   | 4.46      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| VOC                              | 0.120    |           | 2.78   | 11.07     | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| SO <sub>2</sub> (Maximum Hourly) | 0.0571   |           | 1.32   |           | 20 grains S / 100 scf           |  |  |
| SO <sub>2</sub> (Average Annual) | 0.000714 |           |        | 0.07      | 0.25 grains S / 100 scf         |  |  |
| Methanol                         | 0.002480 |           | 0.06   | 0.23      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Hexane                           | 0.000445 |           | 0.01   | 0.04      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Benzene                          | 0.001940 |           | 0.04   | 0.18      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Toluene                          | 0.000963 |           | 0.02   | 0.09      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Ethylbenzene                     | 0.000108 |           | 0.00   | 0.01      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Acetaldehyde                     | 0.007760 |           | 0.18   | 0.72      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| 2,2,4-Trimethylpentane           | 0.000846 |           | 0.02   | 0.08      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Xylene                           | 0.000268 |           | 0.01   | 0.02      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Formaldehyde                     | 0.05520  |           | 1.28   | 5.09      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |
| Total HAPs                       | 0.07954  |           | 1.84   | 7.34      | AP-42 Table 3.2-1 (7/00) - 2SLB |  |  |

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Waukesha 4SLB Emergency Generator (G3)

| Horsepower                      | 812   | hp         |
|---------------------------------|-------|------------|
| Brake Specific Fuel Consumption | 8,000 | Btu/Bhp-hr |
| Total Heat Input                | 6.50  | MMBtu/hr   |
| Operating Hours                 | 500   | hr/yr      |
| Natural Gas Heat Content        | 1,020 | Btu/scf    |
| Fuel Consumption                | 3.18  | MMscf/yr   |
|                                 | 6,369 | scf/hr     |

| Pollutant                        | Emissio  | n Factor  | Emiss | ion Rate | Emission Eactor Potoronco       |  |  |
|----------------------------------|----------|-----------|-------|----------|---------------------------------|--|--|
| Fondant                          | lb/MMBtu | lb/bhp-hr | lb/hr | ton/yr   |                                 |  |  |
| NO <sub>x</sub>                  |          | 3.00E-03  | 2.44  | 0.61     | R13-1856 Permit Limit           |  |  |
| со                               |          | 5.31E-03  | 4.31  | 1.08     | R13-1856 Permit Limit           |  |  |
| CO <sub>2</sub> e                | 117.1    |           | 761   | 190      | 40 CFR 98 Subpart C             |  |  |
| PM <sub>10</sub>                 | 0.010    |           | 0.06  | 0.02     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| PM <sub>2.5</sub>                | 0.010    |           | 0.06  | 0.02     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| VOC                              |          | 2.01E-03  | 1.63  | 0.41     | R13-1856 Permit Limit           |  |  |
| SO <sub>2</sub> (Maximum Hourly) | 0.0571   |           | 0.37  |          | 20 grains S / 100 scf           |  |  |
| SO <sub>2</sub> (Average Annual) | 0.000714 |           |       | 1.16E-03 | 0.25 grains S / 100 scf         |  |  |
| Methanol                         | 0.002500 |           | 0.02  | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Hexane                           | 0.001110 |           | 0.01  | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Benzene                          | 0.000440 |           | 0.00  | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Toluene                          | 0.000408 |           | 0.00  | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Ethylbenzene                     | 0.000040 |           | 0.00  | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Acetaldehyde                     | 0.008360 |           | 0.05  | 0.01     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| 2,2,4-Trimethylpentane           | 0.000250 |           | 0.00  | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Xylene                           | 0.000184 |           | 0.00  | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Formaldehyde                     | 0.05280  |           | 0.34  | 0.09     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |
| Total HAPs                       | 0.07220  |           | 0.47  | 0.12     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |  |

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Fuel Gas Heater (H1)

| Heat Input               |  |
|--------------------------|--|
| Operating Hours          |  |
| Natural Gas Heat Content |  |
| Fuel Consumption         |  |
|                          |  |

0.375 MMBtu/hr 8760 hr/yr 1020 Btu/scf 3.22 MMscf/yr 367.6 scf/hr

| Dellutent                        | Emissio  | on Factor | Emissi   | on Rate  | Emission Easter Deference    |  |
|----------------------------------|----------|-----------|----------|----------|------------------------------|--|
| Pollutant                        | lb/MMscf | lb/MMBtu  | lb/hr    | ton/yr   | Emission Factor Reference    |  |
| NO <sub>x</sub>                  | 100      | 0.098     | 0.04     | 0.16     | AP-42 Table 1.4-1 (7/98)     |  |
| СО                               | 84       | 0.082     | 0.03     | 0.14     | AP-42 Table 1.4-1 (7/98)     |  |
| CO <sub>2</sub> e                |          | 117.1     | 44       | 192      | 40 CFR 98 Subpart C          |  |
| PM <sub>10</sub>                 | 7.6      | 0.007     | 2.79E-03 | 0.01     | AP-42 Table 1.4-2 (7/98)     |  |
| PM <sub>2.5</sub>                | 7.6      | 0.007     | 2.79E-03 | 0.01     | AP-42 Table 1.4-2 (7/98)     |  |
| VOC                              | 5.5      | 0.005     | 2.02E-03 | 0.01     | AP-42 Table 1.4-2 (7/98)     |  |
| SO <sub>2</sub> (Maximum Hourly) |          | 0.0571    | 0.02     |          | 20 grains S / 100 scf        |  |
| SO <sub>2</sub> (Average Annual) |          | 0.000714  |          | 1.17E-03 | 0.25 grains S / 100 scf      |  |
| Hexane                           | 1.800    | 0.001765  | 6.62E-04 | 2.90E-03 | AP-42 Table 1.4-3 (7/98)     |  |
| Benzene                          | 0.002100 | 0.000002  | 0.00     | 3.38E-06 | AP-42 Table 1.4-3 (7/98)     |  |
| Toluene                          | 0.003400 | 0.000003  | 0.00     | 5.48E-06 | AP-42 Table 1.4-3 (7/98)     |  |
| Formaldehyde                     | 0.075    | 0.00007   | 2.76E-05 | 1.21E-04 | AP-42 Table 1.4-3 (7/98)     |  |
| Total HAPs                       | 1.89     | 0.00185   | 6.94E-04 | 3.04E-03 | AP-42 Table 1.4-3 & 4 (7/98) |  |

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Heating System Boiler (BL3)

| Heat Input               |  |
|--------------------------|--|
| Operating Hours          |  |
| Natural Gas Heat Content |  |
| Fuel Consumption         |  |

6.276 MMBtu/hr 8760 hr/yr 1020 Btu/scf 53.90 MMscf/yr 6152.9 scf/hr

| Dellutent                        | Emissio  | on Factor | Emiss    | ion Rate |                              |  |
|----------------------------------|----------|-----------|----------|----------|------------------------------|--|
| Pollutant                        | lb/MMscf | lb/MMBtu  | lb/hr    | ton/yr   | Emission Factor Reference    |  |
| NO <sub>x</sub>                  | 100      | 0.098     | 0.62     | 2.69     | AP-42 Table 1.4-1 (7/98)     |  |
| СО                               | 84       | 0.082     | 0.52     | 2.26     | AP-42 Table 1.4-1 (7/98)     |  |
| CO <sub>2</sub> e                |          | 117.1     | 735      | 3,219    | 40 CFR 98 Subpart C          |  |
| PM <sub>10</sub>                 | 7.6      | 0.007     | 0.05     | 0.20     | AP-42 Table 1.4-2 (7/98)     |  |
| PM <sub>2.5</sub>                | 7.6      | 0.007     | 0.05     | 0.20     | AP-42 Table 1.4-2 (7/98)     |  |
| VOC                              | 5.5      | 0.005     | 0.03     | 0.15     | AP-42 Table 1.4-2 (7/98)     |  |
| SO <sub>2</sub> (Maximum Hourly) |          | 0.0571    | 0.36     |          | 20 grains S / 100 scf        |  |
| SO <sub>2</sub> (Average Annual) |          | 0.000714  |          | 0.02     | 0.25 grains S / 100 scf      |  |
| Hexane                           | 1.8      | 0.002     | 0.01     | 0.05     | AP-42 Table 1.4-3 (7/98)     |  |
| Benzene                          | 0.0021   | 2.06E-06  | 0.00     | 0.00     | AP-42 Table 1.4-3 (7/98)     |  |
| Toluene                          | 0.0034   | 3.33E-06  | 0.00     | 0.00     | AP-42 Table 1.4-3 (7/98)     |  |
| Formaldehyde                     | 0.075    | 7.35E-05  | 4.61E-04 | 2.02E-03 | AP-42 Table 1.4-3 (7/98)     |  |
| Total HAPs                       | 1.89     | 0.00185   | 0.01     | 0.05     | AP-42 Table 1.4-3 & 4 (7/98) |  |

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Solar Titan 250 Turbine (E10)

Horsepower Brake Specific Fuel Consumption Total Heat Input

Operating Hours Natural Gas Heat Content Fuel Consumption 30,399 hp (32 °F) 6,599 Btu/bhp-hr (LHV, 32 °F) 200.60 MMBtu/hr (LHV, 32 °F) 222.67 MMBtu/hr (HHV, 32 °F)<sup>3</sup> 8760 hr/yr 1020 Btu/scf 1,912.31 MMscf/yr 218,300.0 scf/hr (based on 32 °F)

| Dellutent                        | Emission Factor |          |     | Emissio            | on Rate             | Emission Easter Deference             |  |
|----------------------------------|-----------------|----------|-----|--------------------|---------------------|---------------------------------------|--|
| Pollutant                        | ppmvd@15%O2     | lb/MMBt  | tu  | lb/hr <sup>1</sup> | ton/yr <sup>2</sup> | Emission Factor Reference             |  |
| NO <sub>x</sub>                  | 10.00           | 0.039    | LHV | 7.93               | 35.67               | Vendor Data                           |  |
| со                               | 25.00           | 0.060    | LHV | 12.06              | 54.65               | Vendor Data                           |  |
| GHG (CO <sub>2</sub> e)          |                 | 117.1    | HHV | 26,074             | 114,203             | 40 CFR 98 Subpart C                   |  |
| PM <sub>10</sub>                 |                 | 0.0066   | HHV | 1.47               | 6.44                | AP-42 Table 3.1-2a (4/00)             |  |
| PM <sub>2.5</sub>                |                 | 0.0066   | HHV | 1.47               | 6.44                | AP-42 Table 3.1-2a (4/00)             |  |
| VOC                              | 5.00            | 0.007    | LHV | 1.38               | 6.03                | Vendor Data (20% of UHC) <sup>4</sup> |  |
| SO <sub>2</sub> (Maximum Hourly) |                 | 0.0571   | HHV | 12.71              |                     | 20 grains S / 100 scf                 |  |
| SO <sub>2</sub> (Average Annual) |                 | 0.000714 | HHV |                    | 0.70                | 0.25 grains S / 100 scf               |  |
| Benzene                          |                 | 0.000012 | HHV | 0.00               | 0.01                | AP-42 Table 3.1-3 (4/00)              |  |
| Toluene                          |                 | 0.000130 | HHV | 0.03               | 0.13                | AP-42 Table 3.1-3 (4/00)              |  |
| Ethylbenzene                     |                 | 0.000032 | HHV | 0.01               | 0.03                | AP-42 Table 3.1-3 (4/00)              |  |
| Acetaldehyde                     |                 | 0.000040 | HHV | 0.01               | 0.04                | AP-42 Table 3.1-3 (4/00)              |  |
| Formaldehyde                     |                 | 0.00071  | HHV | 0.16               | 0.69                | AP-42 Table 3.1-3 (4/00)              |  |
| Total HAPs                       |                 | 0.00102  | HHV | 0.23               | 1.00                | AP-42 Table 3.1-3 (4/00)              |  |

1. Maximum hourly emission rate based on normal operation at 32 °F. Heat input, fuel consumption, and emissions increase as temperature decreases, and for the purpose of this application, hourly emissions are characterized by Solar emissions data for 32 °F.

2. Annual emission rate based on maximum of: (1) normal operation or (2) normal operation plus non-SoLoNOx operation.

3. HHV heat input based on HHV=1.11\*LHV

4. VOC based on 20% of vendor data for unburned hydrocarbon.

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Solar Titan 250 (E10) - Normal and Non-SoLoNOx Emission Rates

Normal and Non-SoLoNOx Emission Rates

| Operating Mode                     | Units | NO <sub>x</sub> | CO    | VOC  |
|------------------------------------|-------|-----------------|-------|------|
| Normal Load @ 32 °F <sup>1</sup>   | lb/hr | 7.93            | 12.06 | 1.38 |
| Normal Load @ 32 °F <sup>2</sup>   | tpy   | 34.20           | 52.02 | 5.96 |
| Non-SoLoNOx Operation <sup>3</sup> | tpy   | 1.47            | 2.63  | 0.06 |
| Total Emissions per Turbine        | tpy   | 35.67           | 54.65 | 6.03 |

 Based on data from Solar Titan 250 Compressor Set data sheet and the following concentrations: 11 ppm NO<sub>x</sub>; 25 ppm CO; 5 ppm VOC

### 2. Based on 8760 hr/yr of normal operation.

3. Potential emissions in excess of 8760 hr/yr at normal operation that may occur when turbine operates in non-SoLoNOx mode such as during low ambient temperatures (<0 °F), low load (< 50%), and during startup and shutdown events. This annual total represents the difference between the aggregate total with non-SoLoNOx operation and 8760 hr/yr of normal operation.</p>

### Emission Rates During Normal Operation (g/hp-hr)<sup>1</sup>

| Emission Point ID / Model | NO <sub>x</sub> | CO   | VOC <sup>2</sup> | SO <sub>2</sub> <sup>3</sup> | PM <sub>10</sub> / PM <sub>2.5</sub> | CH <sub>2</sub> O |
|---------------------------|-----------------|------|------------------|------------------------------|--------------------------------------|-------------------|
| E10 / Solar Titan 250     | 0.12            | 0.18 | 0.02             | 0.19                         | 0.02                                 | 0.002             |

1. Based on vendor performance data; values in italics based on AP-42 emission factors.

2. VOC is based on 20 percent of unburned hydrocarbons per Solar Product Information Letter 168.

3. Conservatively based on 20 grains sulfur per 100 standard cubic feet of natural gas for maximum short-term emissions.

### Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Waukesha VGF-P48GL Emergency Generator (G4)

| Horsepower                      | 1,175 | hp         |
|---------------------------------|-------|------------|
| Brake Specific Fuel Consumption | 7,733 | Btu/Bhp-hr |
| Total Heat Input                | 9.09  | MMBtu/hr   |
| Operating Hours                 | 500   | hr/yr      |
| Natural Gas Heat Content        | 1,020 | Btu/scf    |
| Fuel Consumption                | 4.45  | MMscf/yr   |
|                                 | 8,908 | scf/hr     |

| Pollutant Emission Factor g/bhp-hr Ib/MMBtu |      | n Factor | Emissi         | on Rate  | Emission Eactor Poteronco       |  |
|---------------------------------------------|------|----------|----------------|----------|---------------------------------|--|
|                                             |      | lb/MMBtu | lb/hr          | ton/yr   |                                 |  |
| NO <sub>x</sub>                             | 2.00 |          | 5.18           | 1.30     | NSPS Subpart JJJJ Limitation    |  |
| со                                          | 4.00 |          | 10.36          | 2.59     | NSPS Subpart JJJJ Limitation    |  |
| CO <sub>2</sub> e                           |      | 117.1    | 1,064          | 266      | 40 CFR 98 Subpart C             |  |
| PM <sub>10</sub>                            |      | 0.010    | 0.09           | 0.02     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| PM <sub>2.5</sub>                           |      | 0.010    | 0.09           | 0.02     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| VOC                                         | 1.00 |          | 2.59           | 0.65     | NSPS Subpart JJJJ Limitation    |  |
| SO <sub>2</sub> (Maximum Hourly)            |      | 0.0571   | 0.52           |          | 20 grains S / 100 scf           |  |
| SO <sub>2</sub> (Average Annual)            |      | 0.000714 |                | 1.62E-03 | 0.25 grains S / 100 scf         |  |
| Methanol                                    |      | 0.002500 | 0.02           | 0.01     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| Hexane                                      |      | 0.001110 | 0.01           | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| Benzene                                     |      | 0.000440 | 0.00           | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| Toluene                                     |      | 0.000408 | 0.00           | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| Ethylbenzene                                |      | 0.000040 | 0.00           | 0.00     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| Acetaldehyde                                |      | 0.008360 | 0.08           | 0.02     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| 2,2,4-Trimethylpentane                      |      | 0.000250 | 0.00 0.00 AP-4 |          | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| Xylene                                      |      | 0.000184 | 0.00 0.00      |          | AP-42 Table 3.2-2 (7/00) - 4SLB |  |
| Formaldehyde                                | 0.19 |          | 0.49 0.12      |          | Vendor Data                     |  |
| Total HAPs                                  |      | 0.07356  | 0.67           | 0.17     | AP-42 Table 3.2-2 (7/00) - 4SLB |  |

Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Fuel Gas Heater (H3)

| Heat Input               |  |
|--------------------------|--|
| Operating Hours          |  |
| Natural Gas Heat Content |  |
| Fuel Consumption         |  |
|                          |  |

0.60 MMBtu/hr 8760 hr/yr 1020 Btu/scf 5.15 MMscf/yr 588.2 scf/hr

| Dollutont                        | Emissio  | on Factor | Emissi   | ion Rate | Emission Easter Deference    |  |
|----------------------------------|----------|-----------|----------|----------|------------------------------|--|
| Pollutant                        | lb/MMscf | lb/MMBtu  | lb/hr    | ton/yr   | Emission Factor Reference    |  |
| NO <sub>x</sub>                  | 100      | 0.098     | 0.06     | 0.26     | AP-42 Table 1.4-1 (7/98)     |  |
| СО                               | 84       | 0.082     | 0.05     | 0.22     | AP-42 Table 1.4-1 (7/98)     |  |
| CO <sub>2</sub> e                |          | 117.1     | 70       | 308      | 40 CFR 98 Subpart C          |  |
| PM <sub>10</sub>                 | 7.6      | 0.007     | 4.47E-03 | 0.02     | AP-42 Table 1.4-2 (7/98)     |  |
| PM <sub>2.5</sub>                | 7.6      | 0.007     | 4.47E-03 | 0.02     | AP-42 Table 1.4-2 (7/98)     |  |
| VOC                              | 5.5      | 0.005     | 3.24E-03 | 0.01     | AP-42 Table 1.4-2 (7/98)     |  |
| SO <sub>2</sub> (Maximum Hourly) |          | 0.0571    | 0.03     |          | 20 grains S / 100 scf        |  |
| SO <sub>2</sub> (Average Annual) |          | 0.000714  |          | 1.88E-03 | 0.25 grains S / 100 scf      |  |
| Hexane                           | 1.800    | 0.001765  | 1.06E-03 | 4.64E-03 | AP-42 Table 1.4-3 (7/98)     |  |
| Benzene                          | 0.0021   | 0.000002  | 1.24E-06 | 5.41E-06 | AP-42 Table 1.4-3 (7/98)     |  |
| Toluene                          | 0.0034   | 0.000003  | 2.00E-06 | 8.76E-06 | AP-42 Table 1.4-3 (7/98)     |  |
| Formaldehyde                     | 0.075    | 0.00007   | 4.41E-05 | 1.93E-04 | AP-42 Table 1.4-3 (7/98)     |  |
| Total HAPs                       | 1.89     | 0.00185   | 1.11E-03 | 4.87E-03 | AP-42 Table 1.4-3 & 4 (7/98) |  |

## Ceredo Compressor Station Title V Permit Application - May 2021 Fugitive Emissions from Leaks

|                        |                                   |                                 | Enviroien Easten <sup>3</sup> | Fugitive Emissions |                              |        |        |                  |                   |                  |                   |
|------------------------|-----------------------------------|---------------------------------|-------------------------------|--------------------|------------------------------|--------|--------|------------------|-------------------|------------------|-------------------|
| Component              | Number of Components <sup>1</sup> | Estimated Number of             | Emission Factor               | Total              | CH <sub>4</sub> <sup>4</sup> |        | CH₄⁵   | CO2 <sup>5</sup> | CO₂e <sup>6</sup> | VOC <sup>7</sup> | HAPs <sup>8</sup> |
| Component              | Number of components              | Leaking Components <sup>2</sup> | scf/hr / component            | scf/yr             | scf/yr                       | scf/yr | ton/yr | ton/yr           | ton/yr            | ton/yr           | ton/yr            |
| Compressor Service     |                                   |                                 |                               |                    |                              |        |        |                  |                   |                  |                   |
| Valve                  | 1027                              | 21                              | 14.84                         | 2,729,966          | 2,372,341                    | 11,619 | 50.21  | 0.67             | 1255.90           | 0.78             | 0.01              |
| Connector              | 2918                              | 59                              | 5.59                          | 2,889,136          | 2,510,659                    | 12,296 | 53.14  | 0.71             | 1329.12           | 0.82             | 0.01              |
| Open-Ended Line        | 12                                | 1                               | 17.27                         | 151,285            | 131,467                      | 644    | 2.78   | 0.04             | 69.60             | 0.04             | 0.00              |
| Pressure Relief Valve  | 13                                | 1                               | 39.66                         | 347,422            | 301,909                      | 1,479  | 6.39   | 0.09             | 159.83            | 0.10             | 0.00              |
| Meter                  | 1                                 | 1                               | 19.33                         | 169,331            | 147,148                      | 721    | 3.11   | 0.04             | 77.90             | 0.05             | 0.00              |
| Other                  | 5                                 | 1                               | 4.1                           | 35,916             | 31,211                       | 153    | 0.00   | 0.00             | 0.00              | 0.00             | 0.00              |
| Non-Compressor Service |                                   |                                 |                               |                    |                              |        |        |                  |                   |                  |                   |
| Valve                  | 704                               | 15                              | 6.42                          | 843,588            | 733,078                      | 3,590  | 15.52  | 0.21             | 388.09            | 0.24             | 0.00              |
| Connector              | 1437                              | 29                              | 5.71                          | 1,450,568          | 1,260,544                    | 6,174  | 26.68  | 0.36             | 667.32            | 0.41             | 0.01              |
| Open-Ended Line        | 0                                 | 0                               | 11.27                         | 0                  | 0                            | 0      | 0.00   | 0.00             | 0.00              | 0.00             | 0.00              |
| Pressure Relief Valve  | 15                                | 1                               | 2.01                          | 17,608             | 15,301                       | 75     | 0.32   | 0.00             | 8.10              | 0.01             | 0.00              |
| Meter                  | 2                                 | 1                               | 2.93                          | 25,667             | 22,304                       | 109    | 0.47   | 0.01             | 11.81             | 0.01             | 0.00              |
| Other                  | 3                                 | 1                               | 4.1                           | 35,916             | 31,211                       | 153    | 0.00   | 0.00             | 0.00              | 0.00             | 0.00              |
|                        |                                   |                                 |                               |                    |                              | Total: | 158.62 | 2.13             | 3967.67           | 2.46             | 0.03              |

## Notes:

1. Number of fugitive components per Columbia Gas Transmission facility inventory data.

Estimated number of leaking components at Ceredo utilizing a 2% component leak rate factor throughout the Columbia pipeline system obtained from fugitive leak survey results at Columbia facilities, and rounded up to the nearest integer.
 Emission factors from 40 CFR 98 Subpart W Table W-3

4. CH4 and CO2 emission rates based on 86.90 vol% CH4 and 0.43 vol% CO2 in Ceredo natural gas data

5. Conversion based on densities of GHG as provided in 40 CFR 98.233(v)

6. Based on 40 CFR 98 Subpart A Global Warming Potentials

7. Based on a 0.005084 mol ratio of VOC to methane as calculated from Ceredo gas composition data

8. Based on a 0.0000379 ratio of HAPs to methane as calculated from Ceredo gas composition data

Densities per 40 CFR 98.233(v):

| CH <sub>4</sub> | 0.0192 kg/scf |
|-----------------|---------------|
| CO <sub>2</sub> | 0.0526 kg/scf |

Weight Conversion Factor

2.20462 lb/kg

Global Warming Potential per 40 CFR 98 Subpart A: 25 lb  $CO_2e$ /lb  $CH_4$ 

Hours/year (leap year)

8760

#### Ceredo Compressor Station Title V Permit Application - May 2021 Emissions from Pneumatic Devices

| Type of Natural Gas Pneumatic Device | Count | EF scf/hr | Hours | CO2 Concentration | CH4 Concentration | SCF CO2  | SCF CH4    | CO2 lb/hr | CH4 lb/hr | VOC lb/hr | HAPS lb/hr | CO2e lb/hr | CO2 TPY | CH4 TPY2 | VOC TPYE | HAPS TPY | CO2e TPY |
|--------------------------------------|-------|-----------|-------|-------------------|-------------------|----------|------------|-----------|-----------|-----------|------------|------------|---------|----------|----------|----------|----------|
| High-Bleed Pneumatic Devices         | 0     | 18.2      | 8760  | 0.004             | 0.869             | 0.00     | 0.00       | <0.01     | < 0.01    | <0.01     | <0.01      | <0.01      | <0.01   | < 0.01   | <0.01    | < 0.01   | < 0.01   |
| Intermittent Bleed Pneumatic Devices | 32    | 2.35      | 8760  | 0.004             | 0.869             | 2,803.65 | 572,455.49 | 0.04      | 2.77      | 0.04      | <0.01      | 69.19      | 0.16    | 12.12    | 0.19     | < 0.01   | 303.054  |
| Low-Bleed Pneumatic Devices          | 0     | 1.37      | 8760  | 0.004             | 0.869             | 0.00     | 0.00       | <0.01     | <0.01     | <0.01     | <0.01      | <0.01      | <0.01   | <0.01    | <0.01    | < 0.01   | <0.01    |
|                                      |       |           |       |                   | Totals:           | 2,803.65 | 572,455.49 | 0.04      | 2.77      | 0.04      | <0.01      | 69.19      | 0.16    | 12.12    | 0.19     | < 0.01   | 303.054  |

| Densities per 40 CFR 98.233(v):                       |        |
|-------------------------------------------------------|--------|
| Density of $CO_2$ at standard conditions in $lb/ft^3$ | 0.1160 |
| Density of $CH_4$ at standard conditions in $lb/ft^3$ | 0.0423 |

- Emission factors from 40 CFR 98 Subpart W Table W-3

- CH4 and CO2 emission rates based on 86.90 vol% CH4 and 0.43 vol% CO2 in Ceredo natural gas data

- Conversion based on densities of GHG as provided in 40 CFR 98.233(v)

- Based on 40 CFR 98 Subpart A Global Warming Potentials

- Based on a 0.005084 mol ratio of VOC to methane as calculated from Ceredo gas composition data

- Based on a 0.0000379 ratio of HAPs to methane as calculated from Ceredo gas composition data

### Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Blowdown Emissions

| Component                  | Emission Rate (ton/yr) |                 |                   |                  |                   |  |  |  |
|----------------------------|------------------------|-----------------|-------------------|------------------|-------------------|--|--|--|
| Component                  | CH₄¹                   | CO <sub>2</sub> | CO <sub>2</sub> e | VOC <sup>2</sup> | HAPs <sup>3</sup> |  |  |  |
| Equipment Blowdowns        | 775.22                 | 10.40           | 19390.92          | 12.03            | 0.16              |  |  |  |
| Station Emergency Shutdown | 74.93                  | 1.01            | 1874.36           | 1.16             | 0.01              |  |  |  |
| Blowdown, Total            | 850.16                 | 11.41           | 21265.28          | 13.19            | 0.17              |  |  |  |

1. CH<sub>4</sub> emission rates based on 86.90 vol% CH<sub>4</sub> in annualized Ceredo natural gas data

2. Based on a 0.005084 mol ratio of VOC to methane as calculated from Ceredo gas composition data

3. Based on a 0.0000379 ratio of HAPs to methane as calculated from Ceredo gas composition data

Ceredo Facility Wide Emergency Shutdown (ESD) PTE Emission Calculations Blowdown Emissions per Event (mscf/event): 4,074.3 Blowdown Events per Year: 1

| Parameter     | Gas Loss from ESD<br>(mscf/yr) | CH₄ Gas Loss<br>(mscf/yr) | CO <sub>2</sub> Gas Loss<br>(mscf/yr) | CH₄ Emissions<br>(ton/yr) | CO <sub>2</sub><br>Emissions<br>(ton/yr) | CO <sub>2</sub> e<br>Emissions<br>(ton/yr) | VOC<br>Emissions<br>(ton/yr) | HAPs<br>Emissions<br>(ton/yr) |
|---------------|--------------------------------|---------------------------|---------------------------------------|---------------------------|------------------------------------------|--------------------------------------------|------------------------------|-------------------------------|
| ESD Emissions | 4,074.3                        | 3,540.59                  | 17.34                                 | 74.93                     | 1.01                                     | 1,874.36                                   | 1.16                         | 0.005                         |

Notes:

- Gas loss volume based on TC Energy Engineering Department calculations using estimated facility piping volume, the average suction pressure, and discharge at MAOP. This volume would also be used when reporting ESD gas loss events at Frametown to PHMSA.

#### Compressor Startup/Shutdown PTE Emission Calculations

| Unit                                    | Blowdown Count | Average Gas Loss per<br>Event for Unit | Annual Gas Loss<br>from Unit | CH₄ Gas Loss<br>(mscf/yr) | CO <sub>2</sub> Gas Loss<br>(mscf/yr) | CH₄ Emissions<br>(ton/yr) | CO <sub>2</sub><br>Emissions | CO <sub>2</sub> e<br>Emissions | VOC<br>Emissions | HAPs<br>Emissions |
|-----------------------------------------|----------------|----------------------------------------|------------------------------|---------------------------|---------------------------------------|---------------------------|------------------------------|--------------------------------|------------------|-------------------|
|                                         | 100            | (insci/event)                          |                              | 0.000                     | 44.70                                 | 50.55                     | (ton/yr)                     | (ton/yr)                       | (101/91)         |                   |
| EUT - Cooper-Bessemer Givivi H-8 Engine | 100            | 27.5                                   | 2,748                        | 2,388                     | 11.70                                 | 50.55                     | 0.68                         | 1264.33                        | 0.78             | 0.01              |
| E02 - Cooper-Bessemer GMWH-8 Engine     | 100            | 27.6                                   | 2,761                        | 2,399                     | 11.75                                 | 50.77                     | 0.68                         | 1270.04                        | 0.79             | 0.01              |
| E03 - Cooper-Bessemer GMWH-8 Engine     | 100            | 27.6                                   | 2,761                        | 2,399                     | 11.75                                 | 50.77                     | 0.68                         | 1270.04                        | 0.79             | 0.01              |
| E04 - Cooper-Bessemer GMWH-8 Engine     | 100            | 27.6                                   | 2,761                        | 2,399                     | 11.75                                 | 50.77                     | 0.68                         | 1270.04                        | 0.79             | 0.01              |
| E05 - Cooper-Bessemer GMWH-8 Engine     | 100            | 30.6                                   | 3,063                        | 2,661                     | 13.03                                 | 56.32                     | 0.76                         | 1408.88                        | 0.87             | 0.01              |
| E06 - Cooper-Bessemer GMWH-8 Engine     | 100            | 30.6                                   | 3,063                        | 2,661                     | 13.03                                 | 56.32                     | 0.76                         | 1408.88                        | 0.87             | 0.01              |
| E07 - Cooper-Bessemer 8V-250 Engine     | 100            | 30.6                                   | 3,063                        | 2,661                     | 13.03                                 | 56.32                     | 0.76                         | 1408.88                        | 0.87             | 0.01              |
| Electric Unit 10 - Siemens SH712        | 100            | 27.6                                   | 2,761                        | 2,399                     | 11.75                                 | 50.77                     | 0.68                         | 1270.04                        | 0.79             | 0.01              |
| Electric Unit 11 - Siemens SH712        | 100            | 28.2                                   | 2,819                        | 2,449                     | 12.00                                 | 51.84                     | 0.70                         | 1296.68                        | 0.80             | 0.01              |
| Electric Unit 12 - Siemens SH712        | 100            | 28.2                                   | 2,819                        | 2,449                     | 12.00                                 | 51.84                     | 0.70                         | 1296.68                        | 0.80             | 0.01              |
| Electric Unit 13 - Siemens SH712        | 100            | 30.6                                   | 3,063                        | 2,661                     | 13.03                                 | 56.32                     | 0.76                         | 1408.88                        | 0.87             | 0.01              |
| E10 - Solar Titan 250 Turbine (Unit 14) | 100            | 104.7                                  | 10,472                       | 9,100                     | 44.57                                 | 192.60                    | 2.58                         | 4817.56                        | 2.99             | 0.04              |
| Total                                   |                |                                        | 42,150                       | 36,629                    | 179.39                                | 775.22                    | 10.40                        | 19,390.92                      | 12.03            | 0.16              |

Notes:

| Densities per 40 CFR 98.233(v): |               |
|---------------------------------|---------------|
| CH <sub>4</sub>                 | 0.0192 kg/sct |
| CO <sub>2</sub>                 | 0.0526 kg/sct |

Weight Conversion Factor

2.20462 lb/kg

Global Warming Potential per 40 CFR 98 Subpart A:

25 lb CO2e/lb CH4

## Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Produced Liquids Tanks A18, A19, and A20 Insignificant Source

|                        | Emission | Rates  |
|------------------------|----------|--------|
| Air Contaminant        | Hourly   | Annual |
|                        | (lb/hr)  | (tpy)  |
| VOCs                   | 0.32     | 1.42   |
| Total HAPs             | <0.01    | <0.01  |
| Benzene                | <0.01    | <0.01  |
| Toluene                | <0.01    | <0.01  |
| Ethylbenzene           | <0.01    | <0.01  |
| m-Xylene               | <0.01    | <0.01  |
| n-Hexane               | <0.01    | <0.01  |
| 2,2,4-Trimethylpentane | <0.01    | <0.01  |
| CH <sub>4</sub>        | 0.06     | 0.24   |
| CO <sub>2</sub>        | <0.01    | <0.01  |
| CO <sub>2</sub> e      | 1.38     | 6.04   |

## Notes:

- Tank emission rates were calculated using Promax software. Promax output emissions are attached.

- Emission profiles shown above are for one (1) of the three (3) 6,000 gallon Produced Liquids Tanks. The total emissions from all 3 tanks are displayed in the emission summary tab.

## Columbia Gas Transmission, LLC Ceredo Compressor Station Title V Permit Application - May 2021 Wastewater Tank A21 Insignificant Source

|                 | Emission Rates    |                 |  |  |  |
|-----------------|-------------------|-----------------|--|--|--|
| Air Contaminant | Hourly<br>(lb/hr) | Annual<br>(tpy) |  |  |  |
| VOCs            | <0.01             | <0.01           |  |  |  |

## Notes:

- Tank emission rates were calculated using Promax software. Promax output emissions are attached.

### Columbia Gas Transmission, LLC Ceredo Compressor Station Natural Gas Composition

### Representative Composition of Natural Gas

| Natural Gas<br>Composition | Molar Fraction <sup>(1)</sup><br>(mole %) | Molecular Weight (lb/lb-<br>mole) | Weighted Sum<br>(Ib/Ib-mole) | Weight Fraction<br>(weight %) |
|----------------------------|-------------------------------------------|-----------------------------------|------------------------------|-------------------------------|
| Nitrogen                   | 0.51                                      | 28.01                             | 0.1435                       | 0.7969                        |
| Carbon Dioxide             | 0.43                                      | 44.01                             | 0.1873                       | 1.0400                        |
| Methane                    | 86.90                                     | 16.04                             | 13.9414                      | 77.4075                       |
| Ethane                     | 11.72                                     | 30.07                             | 3.5243                       | 19.5682                       |
| Propane                    | 0.36                                      | 44.10                             | 0.1567                       | 0.8699                        |
| i-Butane                   | 0.02                                      | 58.12                             | 0.0125                       | 0.0694                        |
| n-Butane                   | 0.03                                      | 58.12                             | 0.0194                       | 0.1078                        |
| i-Pentane                  | 0.01                                      | 72.15                             | 0.0071                       | 0.0393                        |
| n-Pentane                  | 0.01                                      | 72.15                             | 0.0051                       | 0.0284                        |
| C <sub>6+</sub> Components | 0.01                                      | 89.09                             | 0.0131                       | 0.0727                        |
| Total                      | 100.00                                    | -                                 | 18.01                        | 100.00                        |

| C <sub>6+</sub> HAP Composition <sup>(2)</sup> | Molar Fraction<br>(mole %) | Molecular Weight (lb/lb-<br>mole) | Weighted Sum<br>(Ib/Ib-mole) | Weight Fraction<br>(weight %) |
|------------------------------------------------|----------------------------|-----------------------------------|------------------------------|-------------------------------|
| 2,2,4-Trimethylpentane                         | 1.63E-04                   | 114.23                            | 1.86E-04                     | 1.03E-03                      |
| Benzene                                        | 1.78E-04                   | 78.11                             | 1.39E-04                     | 7.71E-04                      |
| Ethylbenzene                                   | 7.35E-06                   | 106.17                            | 7.80E-06                     | 4.33E-05                      |
| n-Hexane                                       | 2.77E-03                   | 86.18                             | 2.39E-03                     | 1.32E-02                      |
| Toluene                                        | 1.19E-04                   | 92.14                             | 1.10E-04                     | 6.09E-04                      |
| Xylenes                                        | 5.88E-05                   | 106.17                            | 6.24E-05                     | 3.47E-04                      |
| Total HAPs                                     | 3.29E-03                   | -                                 | 2.89E-03                     | 1.61E-02                      |

| Totals     | Mol %    | Weight % |
|------------|----------|----------|
| Total VOCs | 0.44     | 1.20     |
| Total HAPs | 3.29E-03 | 1.60E-02 |

| Ratios             | Mol      | Weight   |
|--------------------|----------|----------|
| VOC/Methane Ratio  | 5.08E-03 | 1.55E-02 |
| HAPs/Methane Ratio | 3.79E-05 | 2.07E-04 |

## Mass Fraction Conversion Data

| Compound                 | Mol Weight (g/mol) | Mass in Gas Sample (g) | Mass Fraction | Mass %  |
|--------------------------|--------------------|------------------------|---------------|---------|
| CO2                      | 44.01              | 18.73                  | 0.0104        | 1.0400  |
| N2                       | 28.02              | 14.35                  | 0.0080        | 0.7970  |
| Methane                  | 16.04              | 1393.88                | 0.7739        | 77.3936 |
| Ethane                   | 30.07              | 352.43                 | 0.1957        | 19.5683 |
| Propane                  | 44.09              | 15.67                  | 0.0087        | 0.8698  |
| I-Butane                 | 58.12              | 1.25                   | 0.0007        | 0.0694  |
| N-Butane                 | 58.12              | 1.94                   | 0.0011        | 0.1078  |
| I-Pentane                | 72.15              | 0.71                   | 0.0004        | 0.0393  |
| N-Pentane                | 72.15              | 0.51                   | 0.0003        | 0.0284  |
| Other hexanes            | 86.18              | 1.27                   | 0.0007        | 0.0703  |
| n-hexane                 | 86.18              | 0.24                   | 0.0001        | 0.0132  |
| 2,2,4 - Trimethylpentane | 114.23             | 0.02                   | 0.0000        | 0.0010  |
| Benzene                  | 78.11              | 0.01                   | 0.0000        | 0.0008  |
| Toluene                  | 92.14              | 0.01                   | 0.0000        | 0.0006  |
| Ethylbenzene             | 106.17             | 0.001                  | 0.0000        | 0.0000  |
| Xylenes 106.17           |                    | 0.01 0.0000            |               | 0.0003  |

Notes:

 $^{\left(1\right)}$  Natural gas analysis obtained from gas chromatograph readings from site data sheet.

(2) C6+ HAP composition molar fractions were derived from the GRI-GLYCALC v4.0 C6+ analysis multipliers for the Natural Gas Transmission Industry Segment.

|              |                     |                                                                               | Pipeline Liquids<br>Plant Schematic |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|--------------|---------------------|-------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Client Name: | TCEnergy            |                                                                               |                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Job: Pipeline L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iquidsA18-A20 |
| Location:    | Ceredo Compressor S | Station                                                                       |                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| Flowsheet:   | Pipeline Liquids    |                                                                               |                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|              |                     |                                                                               |                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|              |                     | Logit Elegan, Ave<br>2011 El Partin<br>Union<br>Cases 62 Dan<br>Banyas (2018) |                                     | TC Energy<br>Create Compression Bartin<br>Task AS – Add | Tan Hair' VOS + 0.0000 tory)         Tan Hair' VOS + 0.0000 tory)           "Wohlig Lasar' VOS + 0.0000 tory)         "Wohlig Lasar' VOS + 0.0000 tory)           Stading Lasar' VOS + 1.0000 tory)         "Wohlig Lasar' VOS + 0.0000 tory)           Tan Hair' VOS + 0.0000 tory)         "Wohlig Lasar' VOS + 0.0000 tory)           Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory)           "Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory)           "Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory)           "Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory)           "Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory)           "Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory)           "Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory)           "Tan Hair' VOS + 0.0000 tory)         "Tan Hair' VOS + 0.0000 tory) | 134 (b)<br>- 0.0009 (b)<br>- 0.000 |               |
A18-A20\_PipelineLiquids\_05172021.pmx

Page 1 of 6

|                              | Process Str<br>All S<br>Tabulated I | reams Report<br>treams<br>by Total Phase |                    |                   |                          |
|------------------------------|-------------------------------------|------------------------------------------|--------------------|-------------------|--------------------------|
| Client Name: TC Energy       |                                     |                                          | Job: Pipel         | ineLiquidsA18-A20 | )                        |
| Elousheet: Pipeline Liquids  |                                     |                                          |                    |                   |                          |
|                              |                                     |                                          |                    |                   |                          |
|                              | Conn                                | ections                                  |                    |                   |                          |
|                              | Breathing<br>Losses                 | Gas Sample                               | Liquids            | Liquids<br>Sample | Loading<br>Losses        |
| From Block                   |                                     |                                          | Separator          |                   |                          |
| To Block                     |                                     | MIX-100                                  | PL Liquid<br>Tanks | MIX-100           |                          |
|                              | Stream C                            | omposition                               |                    |                   |                          |
|                              | Breathing<br>Losses                 | Gas Sample                               | Liquids            | Liquids<br>Sample | Loading<br>Losses        |
| Mole Fraction                | %                                   | %                                        | %                  | %                 | %                        |
| Carbon Dioxide               | 0.207763 *                          | 0.4256 *                                 | 0.0105828          | 0 *               | 0.207763 *               |
| Nitrogen<br>Methane          | 0.0406653 *                         | U.5123 *<br>860 *                        | 0.012/38/          | 0 *               | U.U406653 *<br>18 1803 * |
| Ethane                       | 8.18678 *                           | 11.7203 *                                | 0.291433           | 0 *               | 8.18678 *                |
| Propane                      | 0.351024 *                          | 0.3553 *                                 | 0.00883477         | 0 *               | 0.351024 *               |
| i-Butane                     | 0.023232 *                          | 0.0215 *                                 | 0.000534612        | 0 *               | 0.023232 *               |
| n-Butane                     | 0.034668 *                          | 0.0334 *                                 | 0.000830513        | 0 *               | 0.034668 *               |
| n-Pentane                    | 0.00348395                          | 0.0098                                   | 0.000243683        | 0 *               | 0.00348395               |
| i-Hexane                     | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Heptane                      | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Octane                       | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Nonane                       | 0 ^                                 | 0 *                                      | 0                  | 0 ^               | 0 *                      |
| Toluene                      | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Ethylbenzene                 | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| m-Xylene                     | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| n-Hexane                     | 0.0014596 *                         | 0.0147 *                                 | 0.000365525        | 0 *               | 0.0014596 *              |
|                              | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| DecanesPlus                  | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Water                        | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Helium                       | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Hydrogen                     | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
|                              | 72.9688 *                           | 0 *                                      | 97 5134            | 100 *             | 72.9688 *                |
|                              |                                     |                                          |                    | · · ·             |                          |
|                              | Breathing<br>Losses                 | Gas Sample                               | Liquids            | Liquids<br>Sample | Loading                  |
| Molar Flow<br>Carbon Dioxide | 1bmol/h<br>6 99932E-06 *            | 1 7036E-05 *                             | 1 7036F-05         | Ibmol/h           | 1 25966E-07 *            |
| Nitrogen                     | 1.36997E-06 *                       | 2.05064E-05 *                            | 2.05064E-05        | 0 *               | 2.46552E-08 *            |
| Methane                      | 0.000612476 *                       | 0.00347845 *                             | 0.00347845         | 0 *               | 1.10226E-05 *            |
| Ethane                       | 0.000275804 *                       | 0.000469142 *                            | 0.000469142        | 0 *               | 4.96361E-06 *            |
| Propane                      | 1.18257E-05 *                       | 1.4222E-05 *                             | 1.4222E-05         | 0 *               | 2.12824E-07 *            |
| n-Butane                     | 1.16793F-06 *                       | 1.33694F-06 *                            | 1.33694F-06        | 0 *               | 2.1019F-08 *             |
| i-Pentane                    | 1.17371E-07 *                       | 3.92276E-07 *                            | 3.92276E-07        | 0 *               | 2.1123E-09 *             |
| n-Pentane                    | 6.21875E-08 *                       | 2.842E-07 *                              | 2.842E-07          | 0 *               | 1.11918E-09 *            |
| i-Hexane                     | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Heptane                      | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Nonane                       | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Benzene                      | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Toluene                      | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| Ethylbenzene                 | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| m-Aylene                     |                                     |                                          | 0                  | 0 *               |                          |
| 2 2 4-Trimethylpentane       | 4.91/24E-08 "                       | 0.00414E-U/ "                            | 0.00414E-U/        | 0 *               | 0.04940E-10 "<br>0 *     |
| Neopentane                   | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |
| DecanesPlus                  | 0 *                                 | 0 *                                      | 0                  | 0 *               | 0 *                      |

|                     |                  |            | Process Str<br>All S<br>Tabulated I | reams Report<br>treams<br>by Total Phase |                    |                              |                              |
|---------------------|------------------|------------|-------------------------------------|------------------------------------------|--------------------|------------------------------|------------------------------|
| Client Name:        | TCEnergy         |            |                                     |                                          | Job: Pipeli        | neLiquidsA18-A20             | )                            |
| Location:           | Ceredo Compres   | or Station |                                     |                                          |                    |                              |                              |
| Flowsheet:          | Pipeline Liquids |            |                                     |                                          |                    |                              |                              |
|                     |                  |            | <b>D</b> 41                         |                                          |                    |                              |                              |
| Molar Flow          |                  |            | Breathing<br>Losses<br>Ibmol/h      | Gas Sample<br>Ibmol/h                    | Liquids<br>Ibmol/h | Liquids<br>Sample<br>Ibmol/h | Loading<br>Losses<br>Ibmol/h |
| Water               |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| Helium              |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| Hydrogen            |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| Oxygen              |                  |            | 0 00245824 *                        | 0 *                                      | 0 156075           | 0 156075 *                   |                              |
| LiquiusSample       |                  |            | 0.00243824                          | 0                                        | 0.150975           | 0.150975                     | 4.424002-03                  |
|                     |                  |            | Breathing<br>Losses                 | Gas Sample                               | Liquids            | Liquids<br>Sample            | Loading<br>Losses            |
| Mass Fraction       |                  |            | %                                   | %                                        | %                  | %                            | %                            |
| Carbon Dioxide      |                  |            | 0.1118/8                            | 1.04004 *                                | 0.00456241         | 0 *                          | 0.111878                     |
| Methane             |                  |            | 3 56864                             | 0.190019<br>77 1003 *                    | 0.00349572         | 0 *                          | 3 56864                      |
| Ethane              |                  |            | 3.01206                             | 19.5686 *                                | 0.0858429          | 0 *                          | 3.01206                      |
| Propane             |                  |            | 0.189393                            | 0.869947 *                               | 0.00381625         | 0 *                          | 0.189393                     |
| i-Butane            |                  |            | 0.0165219                           | 0.0693877 *                              | 0.000304387        | 0 *                          | 0.0165219                    |
| n-Butane            |                  |            | 0.0246548                           | 0.107793 *                               | 0.000472862        | 0 *                          | 0.0246548                    |
| i-Pentane           |                  |            | 0.00307561                          | 0.0392606 *                              | 0.000172227        | 0 *                          | 0.00307561                   |
| n-Pentane           |                  |            | 0.00162958                          | 0.0284439 *                              | 0.000124777        | 0 *                          | 0.00162958                   |
| Hentane             |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Octane              |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Nonane              |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Benzene             |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Toluene             |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Ethylbenzene        |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| m-Xylene            |                  |            | 0.00152002                          |                                          | 0 000308565        | 0 *                          | 0 00153003                   |
| 2.2.4-Trimethylper  | ntane            |            | 0.00133303                          | 0.0703401                                | 0.000300303        | 0 *                          | 0.00133903                   |
| Neopentane          |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| DecanesPlus         |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Water               |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Helium              |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
| Hydrogen            |                  |            | 0                                   | 0 *                                      | 0                  | 0 *                          | 0                            |
|                     |                  |            | 93,0567                             | 0 *                                      | 99.5613            | 100 *                        | 93.0567                      |
|                     |                  |            |                                     | -                                        |                    |                              |                              |
|                     |                  |            | Breathing<br>Losses                 | Gas Sample                               | Liquids            | Liquids<br>Sample            | Loading<br>Losses            |
| Mass Flow           |                  |            | lb/h                                | lb/h                                     | lb/h               | lb/h                         | lb/h                         |
| Carbon Dioxide      |                  |            | 0.000308037 *                       | 0.000749746 *                            | 0.000749746        | 0 *                          | 5.54369E-06 *                |
| Nitrogen            |                  |            | 3.83776E-05 *                       | 0.000574455 *                            | 0.000574455        | 0 *                          | 6.90675E-07 *                |
| Methane<br>Ethano   |                  |            | 0.00982562 *                        | 0.0558029 *                              | 0.0558029          | 0 *                          | 0.00017683 *                 |
| Propane             |                  |            | 0.00052146 *                        | 0.000627129 *                            | 0.000627129        | 0 *                          | 9.38462F-06 *                |
| i-Butane            |                  |            | 4.54901E-05 *                       | 5.00203E-05 *                            | 5.00203E-05        | 0 *                          | 8.18677E-07 *                |
| n-Butane            |                  |            | 6.78826E-05 *                       | 7.7706E-05 *                             | 7.7706E-05         | 0 *                          | 1.22167E-06 *                |
| i-Pentane           |                  |            | 8.46814E-06 *                       | 2.83023E-05 *                            | 2.83023E-05        | 0 *                          | 1.524E-07 *                  |
| n-Pentane           |                  |            | 4.48675E-06 *                       | 2.05047E-05 *                            | 2.05047E-05        | 0 *                          | 8.07473E-08 *                |
| I-Hexane            |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
|                     |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| Nonane              |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| Benzene             |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| Toluene             |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| Ethylbenzene        |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| m-Xylene            |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
| n-Hexane            | tana             |            | 4.23745E-06 *                       | 5.07068E-05 *                            | 5.07068E-05        | 0 *                          | 7.62607E-08 *                |
| Z,Z,4-1 IImetnylper | ilaile           |            | 0 *                                 | U "<br>0 *                               | 0                  | 0 *                          | 0 *                          |
| DecanesPlus         |                  |            | 0 *                                 | 0 *                                      | 0                  | 0 *                          | 0 *                          |
|                     |                  |            | ·                                   | ~                                        |                    |                              |                              |

ProMax 5.0.19263.0 Copyright © 2002-2019 BRE Group, Ltd.

|                      |                |                 | Process Streams Report<br>All Streams<br>Tabulated by Total Phase |                    |          |             |                           |                           |  |  |
|----------------------|----------------|-----------------|-------------------------------------------------------------------|--------------------|----------|-------------|---------------------------|---------------------------|--|--|
| Client Name:         | TCEnergy       |                 |                                                                   |                    |          | Job: Pipel  | ineLiquidsA18-A2          | C                         |  |  |
| Location:            | Ceredo Comp    | oressor Station |                                                                   |                    |          |             |                           |                           |  |  |
| Flowsheet:           | Pipeline Liqui | ds              |                                                                   |                    |          |             |                           |                           |  |  |
|                      |                |                 |                                                                   |                    |          |             |                           |                           |  |  |
| Mass Flow            |                |                 | Breathing<br>Losses<br>Ib/h                                       | Gas Sample<br>Ib/h | Liq      | uids<br>p/h | Liquids<br>Sample<br>Ib/h | Loading<br>Losses<br>Ib/h |  |  |
| Water                |                |                 | 0 *                                                               | 0 *                |          | 0           | 0 *                       | 0 *                       |  |  |
| Helium               |                |                 | 0 *                                                               | 0 *                |          | 0           | 0 *                       | 0 *                       |  |  |
| Hydrogen             |                |                 | 0 *                                                               | 0 *                |          | 0           | 0 *                       | 0 *                       |  |  |
| Oxygen               |                |                 | 0 *                                                               | 0 *                |          | 0           | 0 *                       | 0 *                       |  |  |
| LiquidsSample        |                |                 | 0.256215 *                                                        | 0 *                |          | 16.361      | 16.361 *                  | 0.00461106 *              |  |  |
|                      |                |                 |                                                                   |                    |          |             |                           |                           |  |  |
|                      |                |                 | Stream                                                            | Properties         |          |             |                           |                           |  |  |
| Property             |                | Units           | Breathing<br>Losses                                               | Gas Sample         | Liq      | uids        | Liquids<br>Sample         | Loading<br>Losses         |  |  |
| Temperature          |                | °F              | 70.3693                                                           | 70 *               |          | 70          | 70 *                      | 70.3693                   |  |  |
| Pressure             |                | psia            | 0.804574                                                          | 564.696 *          |          | 564.696     | 564.696 *                 | 0.804574                  |  |  |
| Mole Fraction Vapo   | r              | %               | 100                                                               | 100                |          | 0           | 0                         | 100                       |  |  |
| Mole Fraction Light  | Liquid         | %               | 0                                                                 | 0                  |          | 100         | 100                       | 0                         |  |  |
| Mole Fraction Heav   | y Liqui d      | %               | 0                                                                 | 0                  |          | 0           | 0                         | 0                         |  |  |
| Molecular Weight     |                | lb/lbmol        | 81.7278                                                           | 18.0093            |          | 102.083     | 104.227                   | 81.7278                   |  |  |
| Mass Density         |                | lb/ft^3         | 0.0115924                                                         | 1.99518            |          | 44.8369     | 45.0023                   | 0.0115924                 |  |  |
| Molar Flow           |                | lbmol/h         | 0.0033689                                                         | 0.00400282         | 0.       | 160978      | 0.156975                  | 6.06295E-05               |  |  |
| Mass Flow            |                | lb/h            | 0.275332                                                          | 0.0720881          |          | 16.4331     | 16.361                    | 0.00495511                |  |  |
| Vapor Volumetric Fl  | OW             | ft^3/h          | 23.7511                                                           | 0.036131           | 0.       | .366509     | 0.36356                   | 0.427444                  |  |  |
| Liquid Volumetric Fl | OW             | gpm             | 2.96117                                                           | 0.00450465         | 0.0      | 0456946     | 0.045327                  | 0.0532918                 |  |  |
| Std Vapor Volumetr   | ic Flow        | MMSCFD          | 3.06826E-05                                                       | 3.64561E-05 *      | 0.00     | 0146612     | 0.00142967                | 5.5219E-07                |  |  |
| Std Liquid Volumetr  | ric Flow       | sgpm            | 0.000824908                                                       | 0.000457651        | 0.0      | 0457651     | 0.0453075 *               | 1.48457E-05               |  |  |
| Compressibility      |                |                 | 0.997218                                                          | 0.896727           | 0.       | 226185      | 0.230087                  | 0.997218                  |  |  |
| Specific Gravity     |                |                 | 2.82185                                                           | 0.621816           |          | 0.7189      | 0.721552                  | 2.82185                   |  |  |
| APIGravity           |                | <b>.</b>        |                                                                   |                    |          | 54.0413     | 63.3449                   |                           |  |  |
| Enthalpy             |                | Btu/h           | -206.035                                                          | -134.073           | -        | 13757.7     | -13615.7                  | -3.70798                  |  |  |
| Mass Enthalpy        |                | Btu/Ib          | -748.313                                                          | -1859.84           | -        | 337.194     | -832.201                  | -748.313                  |  |  |
| Mass Cp              |                | Btu/(Ib^°F)     | 0.375115                                                          | 0.576707           | 0.       | 475266      | 0.473754                  | 0.375115                  |  |  |
| Ideal GasCpCV Rat    | 10             | •D              | 1.06931                                                           | 1.28373            | - 0      | 1.05578     | 1.05466                   | 1.06931                   |  |  |
| Dynamic viscosity    |                | CP              | 0.00659615                                                        | 0.0116694          | 0.       | 468821      | 0.48919                   | 0.00659615                |  |  |
| Kinematic viscosity  | 4              |                 | 35.5218                                                           | 0.365127           | 0.       | 652755      | 0.678613                  | 35.5218                   |  |  |
|                      | ıy             |                 | 0.00847255                                                        | 0.0202153          | 0.0      | 1030002     | 0.0637301                 | 0.00847255                |  |  |
| Net Ideal Cas Hoot   | ng Value       | Btu/ftA2        | 1107 50                                                           | 001 160            | 0.00     | 5128 06     | 0.00148828                | 1107 50                   |  |  |
| Not Liquid Hosting   |                | Btu/It          | 4127.00                                                           | 20952 4            |          | 120.30      | 10000 7                   | 4127.00                   |  |  |
| Gross Ideal Coaller  | alue           |                 | 19011.0                                                           | 20000.1            | ļ        | 5500 00     | 10090.7<br>5610-10        | 13011.0                   |  |  |
| Gross Liquid Hootin  |                | Btu/It's        | 4400.00                                                           | 22087.0            |          | 20280 0     | 20277 6                   | 4430.30                   |  |  |
|                      | iy value       | Btu/ID          | 20441.1                                                           | 23001.9            | <u> </u> | 20203.3     | 20211.0                   | 20441.1                   |  |  |
| Remarks              |                |                 |                                                                   |                    |          |             |                           |                           |  |  |

emarks

|                     |                 |               | Process Str<br>All S<br>Tabulated I |                  |                  |                     |                  |
|---------------------|-----------------|---------------|-------------------------------------|------------------|------------------|---------------------|------------------|
| Client Name:        | TCEnergy        |               |                                     |                  | Job: Pipeli      | ine Liquids A18-A20 | )                |
| Location:           | Pipeline Liquid | essor Station |                                     |                  |                  |                     |                  |
| The Wallock.        |                 | 5             |                                     |                  |                  |                     |                  |
|                     |                 |               | Conn                                | ections          |                  |                     |                  |
|                     |                 |               | Salas Gas                           | Topk Flach       | Tank Liquida     | Working             | 2                |
|                     |                 |               | Sales Gas                           | Ialik Flash      |                  | Losses              | 5                |
| From Block          |                 |               | Separator                           | PL Liquid        | PL Liquid        |                     | MIX-100          |
|                     |                 |               |                                     | Tanks            | Tanks            |                     |                  |
| To Block            |                 |               |                                     |                  |                  |                     | Separator        |
|                     |                 |               |                                     |                  |                  |                     |                  |
|                     |                 |               | Stream C                            | omposition       |                  |                     |                  |
|                     |                 |               | Sales Gas                           | Tank Flash       | Tank Liquids     | Working             | 3                |
| Molo Fraction       |                 |               | 0/                                  | 0/               | 0/               | Losses              | 0/               |
| Carbon Dioxide      |                 |               | /0                                  | 0.304072         | 0.00470991       | 0.207763 *          | 0.0105828        |
| Nitrogen            |                 |               |                                     | 0.60247          | 0.000937755      | 0.0406653 *         | 0.0127387        |
| Methane             |                 |               |                                     | 89.3038          | 0.417038         | 18.1803 *           | 2.16083          |
| Ethane              |                 |               |                                     | 5.66871          | 0.18383          | 8.18678 *           | 0.291433         |
| Propane             |                 |               |                                     | 0.0615534        | 0.00777983       | 0.351024 *          | 0.00883477       |
| i-Butane            |                 |               |                                     | 0.00162898       | 0.000512713      | 0.023232 *          | 0.000534612      |
| i-Dulane            |                 |               |                                     | 0.00175166       | 0.000812076      | 0.034006            | 0.000830513      |
| n-Pentane           |                 |               |                                     | 9.65651E-05      | 0.000178147      | 0.00184593 *        | 0.000176546      |
| i-Hexane            |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Heptane             |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Octane              |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Nonane              |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Benzene             |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Ethylbenzene        |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| m-Xvlene            |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| n-Hexane            |                 |               |                                     | 7.82807E-05      | 0.000371273      | 0.0014596 *         | 0.000365525      |
| 2,2,4-Trimethylpent | ane             |               |                                     | 0                | 0                | 0 *                 | 0                |
| Neopentane          |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| DecanesPlus         |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Helium              |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Hydrogen            |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| Oxygen              |                 |               |                                     | 0                | 0                | 0 *                 | 0                |
| LiquidsSample       |                 |               |                                     | 4.0557           | 99.3836          | 72.9688 *           | 97.5134          |
|                     |                 |               |                                     |                  |                  |                     |                  |
|                     |                 |               | Sales Gas                           | Tank Flash       | Tank Liquids     | Working<br>Losses   | 3                |
| Molar Flow          |                 |               | lbmol/h                             | Ibmol/h          | lbmol/h          | Ibmol/h             | Ibmol/h          |
| Carbon Dioxide      |                 |               | 0                                   | 9.60283E-06      | 7.43317E-06      | 8.63421E-08 *       | 1.7036E-05       |
| Methane             |                 |               | 0                                   | 0.00282028       | 0.000658168      | 7.55537E-06 *       | 2.05064E-05      |
| Ethane              |                 |               | 0                                   | 0.000179022      | 0.00029012       | 3.40226E-06 *       | 0.000469142      |
| Propane             |                 |               | 0                                   | 1.9439E-06       | 1.22781E-05      | 1.45879E-07 *       | 1.4222E-05       |
| i-Butane            |                 |               | 0                                   | 5.14445E-08      | 8.09162E-07      | 9.65475E-09 *       | 8.60606E-07      |
| n-Butane            |                 |               | 0                                   | 5.53256E-08      | 1.28162E-06      | 1.44073E-08 *       | 1.33694E-06      |
| I-Pentane           |                 |               | 0                                   | 5.70164E-09      | 3.86575E-07      | 1.44786E-09 *       | 3.92276E-07      |
| n-Pentane           |                 |               | 0                                   | 3.0496E-09       | 2.81151E-07      | 1.0/131E-10 *       | 2.842E-07        |
| Heptane             |                 |               | 0                                   | 0                | 0                | 0<br>0 *            | 0                |
| Octane              |                 |               | 0                                   | 0                | 0                | 0 *                 | 0                |
| Nonane              |                 |               | 0                                   | 0                | 0                | 0 *                 | 0                |
| Benzene             |                 |               | 0                                   | 0                | 0                | 0 *                 | 0                |
| Toluene             |                 |               | 0                                   | 0                | 0                | 0 *                 | 0                |
| Ethylbenzene        |                 |               | 0                                   | 0                | 0                | 0 *                 | 0                |
| n-Hexane            |                 |               | 0                                   | U<br>2.47216F-09 | U<br>5.85942E-07 | 0 ^<br>6.0658E-10 * | U<br>5.88414F-07 |
| 2,2,4-Trimethylpent | ane             |               | 0                                   | 0                | 0                | 0 *                 | 0                |
| Neopentane          |                 |               | Ŭ Û                                 | Ŭ,               | ů<br>0           | 0 *                 | 0                |
| DecanesPlus         |                 |               | 0                                   | 0                | 0                | 0 *                 | 0                |
|                     |                 |               |                                     |                  |                  |                     |                  |

|                       |                           | Process Str<br>All S<br>Tabulated I | reams Report<br>treams<br>by Total Phase |              |                   |             |
|-----------------------|---------------------------|-------------------------------------|------------------------------------------|--------------|-------------------|-------------|
| Client Name:          | TCEnergy                  |                                     |                                          | Job: Pipeli  | ineLiquidsA18-A20 | )           |
| Location:             | Ceredo Compressor Station |                                     |                                          |              |                   |             |
| Flowsheet:            | Pipeline Liquids          |                                     |                                          |              |                   |             |
|                       |                           |                                     |                                          |              |                   |             |
|                       |                           | Sales Gas                           | Tank Flash                               | Tank Liquids | Working<br>Losses | 3           |
| Molar Flow            |                           | lbmol/h                             | lbmol/h                                  | lbmol/h      | lbmol/h           | lbmol/h     |
| Water                 |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Helium                |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Hydrogen              |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Oxygen                |                           | 0                                   | 0 000128082                              | 0 156947     |                   | 0 156075    |
| LiquiusSample         |                           | 0                                   | 0.000128082                              | 0.150647     | 3.03243E-05       | 0.156975    |
|                       |                           |                                     |                                          |              |                   |             |
|                       |                           | Sales Gas                           | Tank Flash                               | Tank Liquids | Working           | 3           |
| Mass Fraction         |                           | %                                   | %                                        | %            | Losses<br>%       | %           |
| Carbon Dioxide        |                           |                                     | 0.649925                                 | 0.00199858   | 0.111878          | 0.00456241  |
| Nitrogen              |                           |                                     | 0.819676                                 | 0.00025329   | 0.0139386         | 0.00349572  |
| Methane               |                           |                                     | 69.5795                                  | 0.0645074    | 3.56864           | 0.339576    |
| Ethane                |                           |                                     | 8.27836                                  | 0.0532966    | 3.01206           | 0.0858429   |
| Propane               |                           |                                     | 0.131822                                 | 0.00330772   | 0.189393          | 0.00381625  |
| i-Butane              |                           |                                     | 0.00459831                               | 0.000287329  | 0.0165219         | 0.000304387 |
| n-Butane              |                           |                                     | 0.00494523                               | 0.000455095  | 0.0246548         | 0.000472862 |
| i-Pentane             |                           |                                     | 0.000632626                              | 0.000170398  | 0.00307561        | 0.000172227 |
| n-Pentane             |                           |                                     | 0.000338368                              | 0.000123928  | 0.00162958        | 0.000124777 |
| i-Hexane              |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Heptane               |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Octane                |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Nonane                |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Benzene               |                           |                                     | 0                                        | 0            | 0                 | 0           |
| I oluene              |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Ethylbenzene          |                           |                                     | 0                                        | 0            | 0                 | 0           |
| n Hovene              |                           |                                     | 0 000227626                              | 0 000208480  | 0.00152002        | 0 000208565 |
| 2.2.4 Trimothylpopt   | 200                       |                                     | 0.000327626                              | 0.000308469  | 0.00155905        | 0.000308363 |
| 2,2,4-1 Intelligipent | lane                      |                                     | 0                                        | 0            | 0                 | 0           |
| DecanesPlus           |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Water                 |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Helium                |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Hydrogen              |                           |                                     | 0                                        | 0            | 0                 | 0           |
| Oxvgen                |                           |                                     | 0                                        | 0            | 0                 | 0           |
| LiquidsSample         |                           |                                     | 20.5299                                  | 99.8753      | 93.0567           | 99.5613     |
|                       |                           |                                     |                                          |              |                   |             |
|                       |                           | Sales Gas                           | Tank Flash                               | Tank Liquids | Working           | 3           |
| Mass Flow             |                           | lb/h                                | lb/h                                     | lb/h         | lb/h              | lb/h        |
| Carbon Dioxide        |                           | 0                                   | 0.000422616                              | 0.00032713   | 3.79987E-06 *     | 0.000749746 |
| Nitrogen              |                           | Ŭ Û                                 | 0.000532996                              | 4.14588E-05  | 4.73417E-07 *     | 0.000574455 |
| Methane               |                           | 0                                   | 0.0452442                                | 0.0105586    | 0.000121207 *     | 0.0558029   |
| Ethane                |                           | 0                                   | 0.00538303                               | 0.00872363   | 0.000102303 *     | 0.0141067   |
| Propane               |                           | 0                                   | 8.57177E-05                              | 0.000541411  | 6.43261E-06 *     | 0.000627129 |
| i-Butane              |                           | 0                                   | 2.99007E-06                              | 4.70302E-05  | 5.61155E-07 *     | 5.00203E-05 |
| n-Butane              |                           | 0                                   | 3.21565E-06                              | 7.44903E-05  | 8.37385E-07 *     | 7.7706E-05  |
| i-Pentane             |                           | 0                                   | 4.11366E-07                              | 2.78909E-05  | 1.04461E-07 *     | 2.83023E-05 |
| n-Pentane             |                           | 0                                   | 2.20025E-07                              | 2.02847E-05  | 5.53475E-08 *     | 2.05047E-05 |
| i-Hexane              |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Heptane               |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Octane                |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Nonane                |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Benzene               |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Ioluene               |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Ethylbenzene          |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| m-Xylene              |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| n-Hexane              |                           | 0                                   | 2.1304E-07                               | 5.04938E-05  | 5.22722E-08 *     | 5.07068E-05 |
| 2,2,4-1 rimethylpent  | ane                       | 0                                   | 0                                        | 0            | 0 *               | 0           |
| Neopentane            |                           | 0                                   | 0                                        | 0            | 0 *               | 0           |
| DecanesPius           |                           | U                                   | U                                        | U            | U *               | U           |

|                     |                |                 | Process Str<br>All St<br>Tabulated b | eams Report<br>Treams<br>by Total Phase |              |                     |              |
|---------------------|----------------|-----------------|--------------------------------------|-----------------------------------------|--------------|---------------------|--------------|
| Client Name:        | TCEnergy       |                 |                                      |                                         | Job: Pip     | belineLiquidsA18-A2 | 0            |
| Location:           | Ceredo Comp    | pressor Station |                                      |                                         |              |                     |              |
| Flowsheet:          | Pipeline Liqui | ids             |                                      |                                         |              |                     |              |
|                     |                |                 |                                      |                                         |              |                     |              |
|                     |                |                 | Sales Gas                            | Tank Flash                              | Tank Liquids | Working<br>Losses   | 3            |
| Mass Flow           |                |                 | lb/h                                 | lb/h                                    | lb/h         | lb/h                | lb/h         |
| Water               |                |                 | 0                                    | 0                                       | 0            | 0                   | " O          |
| Helium              |                |                 | 0                                    | 0                                       | 0            | 0                   | • O          |
| Hydrogen            |                |                 | 0                                    | 0                                       | 0            | 0                   | • O          |
| Oxygen              |                |                 | 0                                    | 0                                       | 0            | 0                   | " O          |
| LiquidsSample       |                |                 | 0                                    | 0.0133496                               | 16.3477      | 0.00316061          | 16.361       |
|                     |                |                 |                                      |                                         |              |                     |              |
|                     |                |                 | Stream                               | Properties                              |              |                     |              |
| Property            |                | Units           | Sales Gas                            | Tank Flash                              | Tank Liquids | Working<br>Losses   | 3            |
| Temperature         |                | °F              | 70 *                                 | 70 *                                    | 70           | 70.3693             | 71.0182      |
| Pressure            |                | psia            | 564.696 *                            | 14.6959 *                               | 14.6959      | 0.804574            | 564.696      |
| Mole Fraction Vapo  | or             | %               |                                      | 100                                     | 0            | 100                 | 0            |
| Mole Fraction Light | Liquid         | %               |                                      | 0                                       | 100          | 0                   | 100          |
| Mole Fraction Heav  | /y Liquid      | %               |                                      | 0                                       | 0            | 0                   | 0            |
| Molecular Weight    |                | lb/lbmol        |                                      | 20.5902                                 | 103.714      | 81.7278             | 102.083      |
| Mass Density        |                | lb/ft^3         |                                      | 0.053423                                | 44.6913      | 0.0115924           | 44.8068      |
| Molar Flow          |                | lbmol/h         | 0                                    | 0.00315808                              | 0.15782      | 4.1558E-05          | 0.160978     |
| Mass Flow           |                | lb/h            | 0                                    | 0.0650253                               | 16.3681      | 0.00339644          | 16.4331      |
| Vapor Volumetric F  | low            | ft/3/h          | 0                                    | 1.21/18                                 | 0.366248     | 0.292988            | 0.366755     |
| Liquid Volumetric F | IOW            | gpm             | 0                                    | 0.151752                                | 0.0456621    | 0.0365284           | 0.0457253    |
| Std Vapor Volumet   | ric Flow       | MMSCFD          | 0                                    | 2.87626E-05                             | 0.00143736   | 3.78494E-07         | 0.00146612   |
| Sta Liquid Volumeti | IC FIOW        | sgpm            | 0                                    | 0.000371517                             | 0.0453936    | 1.01759E-05         | 0.0457651    |
| Complessibility     |                |                 |                                      | 0.996461                                | 0.00599988   | 0.997218            | 0.225903     |
| A BL Crowity        |                |                 |                                      | 0.710924                                | 0.7 10000    | 2.02100             | 0.716417     |
| Entholov            |                | Rtu/b           | 0                                    | 107.054                                 | 12669.1      | 2.5416              | 127/0 7      |
| Mass Enthalov       |                | Btu/lb          | 0                                    | -1660.19                                | -13000.1     | -2.3410             | -836 700     |
| Mass Cn             |                | Btu/(lb*°E)     |                                      | 0 /83185                                | 0.47616      | 0 375115            | 0.475035     |
| Ideal GasCnCv Rat   | io             | Dtu/(ID T)      |                                      | 1 25049                                 | 1 05492      | 1 06931             | 1 05567      |
| Dynamic Viscosity   | 10             | сP              |                                      | 0.0105986                               | 0 458112     | 0.00659615          | 0 466059     |
| Kinematic Viscosity | ,              | cSt             |                                      | 12 3851                                 | 0.639924     | 35 5218             | 0.649346     |
| Thermal Conductivi  | tv             | Btu/(h*ft*°F)   |                                      | 0.0177798                               | 0.0637077    | 0.00847255          | 0.0636323    |
| Surface Tension     | -,             | lbf/ft          |                                      | 0.0.11100                               | 0.00147242   | ?                   | 0.00117197 ? |
| Net Ideal GasHeati  | ng Value       | Btu/ft^3        |                                      | 1117.74                                 | 5209.23      | 4127.53             | 5128.96      |
| Net Liquid Heating  | Value          | Btu/Ib          |                                      | 20554.3                                 | 18900.7      | 19011.6             | 18907.3      |
| Gross Ideal Gas He  | ating Value    | Btu/ft^3        |                                      | 1231.61                                 | 5586.32      | 4435.38             | 5500.89      |
| Gross Liquid Heatin | ngValue        | Btu/Ib          |                                      | 22653.2                                 | 20280.5      | 20441.1             | 20289.9      |
| 1                   | <u> </u>       |                 |                                      |                                         |              |                     |              |
| Remarks             |                |                 |                                      |                                         |              |                     |              |
|                     |                |                 |                                      |                                         |              |                     |              |

| Simulation Initiated on 5/1 | 7/2021 5:16:35 PM |                | A18-A20_PipelineLiquids_05172021.pmx | (             | Page 1 of 1     |
|-----------------------------|-------------------|----------------|--------------------------------------|---------------|-----------------|
|                             | rt                |                |                                      |               |                 |
| Client Name:                | TCEnergy          |                |                                      | Job: Pipeline | LiquidsA18-A20  |
| Location:                   | Ceredo Compre     | essor Station  |                                      |               |                 |
| Flowsheet:                  | Pipeline Liquid   | S              |                                      |               |                 |
|                             |                   |                |                                      |               |                 |
|                             |                   |                | Energy Streams                       |               |                 |
| Energy Stream               |                   | Energy Rate    | Power                                | From Block    | To Block        |
| Q-1                         |                   | -18.3342 Btu/h | -0.00720562 hp                       |               | PL Liquid Tanks |
| Q-2                         |                   | -7.95762 Btu/h | -0.00312746 hp                       |               | Separator       |
|                             |                   |                |                                      |               |                 |
| Remarks                     |                   |                |                                      |               |                 |

| Simulation Initiated on 5/17 | /2021 5:16:35 PM |             | A18-A20_Pipeline     | eLiquids_05172021.pmx            |               |              | Page 1 of 1 |  |  |  |
|------------------------------|------------------|-------------|----------------------|----------------------------------|---------------|--------------|-------------|--|--|--|
|                              |                  |             | BI<br>MI<br>Mixer/Si | locks<br>X-100<br>plitter Report |               |              |             |  |  |  |
| Client Name:                 | TCEnergy         |             |                      |                                  | Job: Pipeli   | neLiquidsA18 | 3-A20       |  |  |  |
| Location:                    | Ceredo Compres   | sor Station |                      | Modified: 1                      | 1:22 AM, 10/1 | 6/2020       |             |  |  |  |
| Flowsheet:                   | Pipeline Liquids |             |                      |                                  | Status: Sol   | ved 5:14 PM, | 5/17/2021   |  |  |  |
|                              |                  |             |                      |                                  |               |              |             |  |  |  |
|                              | Connections      |             |                      |                                  |               |              |             |  |  |  |
| Stream                       | Connectio        | on Type     | Other Block          | Stream                           | Connect       | ion Type     | Other Block |  |  |  |
| Gas Sample                   | Inle             | ŧ           |                      | LiquidsSample                    | In            | let          |             |  |  |  |
| 3                            | Outl             | et          | Separator            |                                  |               |              |             |  |  |  |
|                              |                  |             |                      |                                  |               |              |             |  |  |  |
|                              |                  |             | Block P              | arameters                        |               |              |             |  |  |  |
| Pressure Drop                |                  | (           | ) psi                | Fraction to Stream 3             |               |              | 100 %       |  |  |  |
| FlowMultiplier               |                  | 100         | ) %                  |                                  |               |              |             |  |  |  |
|                              |                  |             |                      |                                  |               |              |             |  |  |  |
| Remarks                      |                  |             |                      |                                  |               |              |             |  |  |  |

| Simulation Initiated on 5/17 | Simulation Initiated on 5/17/2021 5:16:35 PM A18-A20_Pipe |                         |                       |                                       |             |              | Page 1 of 1 |  |  |  |
|------------------------------|-----------------------------------------------------------|-------------------------|-----------------------|---------------------------------------|-------------|--------------|-------------|--|--|--|
|                              |                                                           | PL Li<br><sub>Sep</sub> | Bloc<br>qui<br>parato | cks<br>d Tanks<br><sup>r Report</sup> |             |              |             |  |  |  |
| Client Name:                 | TCEnergy                                                  |                         |                       |                                       | Job: Pipeli | neLiquidsA18 | 3-A20       |  |  |  |
| Location:                    | Ceredo Compressor Station                                 |                         |                       |                                       | Modified: 1 | 0:08 AM, 8/2 | 5/2020      |  |  |  |
| Flowsheet:                   | Pipeline Liquids                                          |                         |                       |                                       | Status: Sol | ved 5:14 PM, | 5/17/2021   |  |  |  |
|                              |                                                           |                         |                       |                                       |             |              |             |  |  |  |
| Connections                  |                                                           |                         |                       |                                       |             |              |             |  |  |  |
| Stream                       | Connection Type                                           | Other Block             |                       | Stream                                | Connect     | ion Type     | Other Block |  |  |  |
| Liquids                      | Inlet                                                     | Separator               |                       | TankFlash                             | Vapor       | Outlet       |             |  |  |  |
| TankLiquids                  | Light Liquid Outlet                                       |                         |                       | Q-1                                   | Ene         | ∍rgy         |             |  |  |  |
|                              |                                                           |                         |                       |                                       |             |              |             |  |  |  |
|                              |                                                           | Block                   | < Par                 | rameters                              |             |              |             |  |  |  |
| Pressure Drop                |                                                           | 550 psi                 |                       | Main Liquid Phase                     |             | Light L      | iquid       |  |  |  |
| Mole Fraction Va             | por 1.9                                                   | 6181 %                  |                       | Heat Duty                             |             | -18.3        | 3342 Btu/h  |  |  |  |
| Mole Fraction Lig            | ht Liquid 98.                                             | 0382 %                  |                       | Heat Release Curve T                  | уре         | Plug         | Flow        |  |  |  |
| Mole Fraction Hea            | avy Liquid                                                | 0 %                     |                       | Heat Release Curve<br>Increments      |             |              | 10          |  |  |  |
|                              |                                                           |                         |                       |                                       |             |              |             |  |  |  |
| Remarks                      |                                                           |                         |                       |                                       |             |              |             |  |  |  |

| Simulation Initiated on 5/1             | 7/2021 5:16:35 PM |            | A18-A20_PipelineLi | iquids_05172021.pmx              |                  |                        | Page 1 of 1 |  |  |  |  |
|-----------------------------------------|-------------------|------------|--------------------|----------------------------------|------------------|------------------------|-------------|--|--|--|--|
| Blocks<br>Separator<br>Separator Report |                   |            |                    |                                  |                  |                        |             |  |  |  |  |
| Client Name:                            | TCEnergy          |            |                    |                                  | Job: Pipeline    | PipelineLiquidsA18-A20 |             |  |  |  |  |
| Location:                               | Ceredo Compresso  | or Station |                    |                                  | Modified: 10     | :09AM, 8/25/202        | 20          |  |  |  |  |
| Flowsheet:                              | Pipeline Liquids  |            |                    | Status: Solve                    | ed 5:14 PM, 5/17 | /2021                  |             |  |  |  |  |
|                                         |                   |            |                    |                                  |                  |                        |             |  |  |  |  |
|                                         | Connections       |            |                    |                                  |                  |                        |             |  |  |  |  |
| Stream                                  | Connection        | Туре С     | Other Block        | Stream                           | Connectio        | on Type                | Other Block |  |  |  |  |
| 3                                       | Inlet             | ·          | MIX-100            | SalesGas                         | Vapor O          | Jutlet                 |             |  |  |  |  |
| Liquids                                 | Light Liquid      | Outlet PL  | Liquid Tanks       | Q-2                              | Ener             | ду                     |             |  |  |  |  |
|                                         |                   |            |                    |                                  |                  |                        |             |  |  |  |  |
|                                         |                   |            | Block Pa           | arameters                        |                  |                        |             |  |  |  |  |
| Pressure Drop                           |                   | 0          | psi                | Main Liquid Phase                |                  | Light Liquid           |             |  |  |  |  |
| Mole Fraction Va                        | apor              | 0          | %                  | Heat Duty                        |                  | -7.95762               | Btu/h       |  |  |  |  |
| Mole Fraction Lig                       | ght Liquid        | 100        | %                  | Heat Release Curve T             | уре              | Plug Flow              | 1           |  |  |  |  |
| Mole Fraction He                        | eavy Liquid       | 0          | %                  | Heat Release Curve<br>Increments |                  | 10                     |             |  |  |  |  |
|                                         |                   |            |                    |                                  |                  |                        |             |  |  |  |  |
| Remarks                                 |                   |            |                    |                                  |                  |                        |             |  |  |  |  |

|                       |                 | FI                       | owsheet<br>Enviro  | Environment<br>onment1 |             |                          |                    |
|-----------------------|-----------------|--------------------------|--------------------|------------------------|-------------|--------------------------|--------------------|
| Client Name:          | TCEnergy        | •                        |                    |                        | Job: Pipeli | neLiquidsA18-A20         |                    |
| Location:             | Ceredo Compr    | essor Station            |                    |                        |             |                          |                    |
| Flowsheet:            | Pipeline Liquid | S                        |                    |                        |             |                          |                    |
|                       |                 |                          |                    |                        |             |                          |                    |
|                       |                 | E                        | Invironm           | ent Settings           |             |                          |                    |
| Number of Poynti      | ngIntervals     | 0                        |                    | Phase Tolerance        |             | 1 %                      |                    |
| Gibbs Excess Mo       | del             | 77 °F                    |                    | Emulsion Enabled       |             | False                    |                    |
| Evaluation Tempe      | erature         |                          |                    |                        |             |                          |                    |
| Freeze Out Temp       | erature         | 10 °F                    |                    |                        |             |                          |                    |
| Threshold Differe     | nce             |                          |                    |                        |             |                          |                    |
|                       |                 |                          |                    |                        |             |                          |                    |
|                       |                 |                          | Comp               | onents                 |             |                          |                    |
| Component Name        |                 | Henry's Law<br>Component | Phase<br>Initiator | Component Name         |             | Henry's Law<br>Component | Phase<br>Initiator |
| Carbon Dioxide        |                 | False                    | False              | Benzene                |             | False                    | False              |
| Nitrogen              |                 | False                    | False              | Toluene                |             | False                    | False              |
| Methane               |                 | False                    | False              | Ethylbenzene           |             | False                    | False              |
| Ethane                |                 | False                    | False              | m-Xylene               |             | False                    | False              |
| Propane               |                 | False                    | False              | n-Hexane               |             | False                    | False              |
| i-Butane              |                 | False                    | False              | 2,2,4-Trimethylpentane |             | False                    | False              |
| n-Butane              |                 | False                    | False              | Neopentane             |             | False                    | False              |
| i-Pentane             |                 | False                    | False              | DecanesPlus            |             | False                    | False              |
| n-Pentane             |                 | False                    | False              | Water                  |             | False                    | True               |
| i-Hexane              |                 | False                    | False              | Helium                 |             | False                    | False              |
| Heptane               |                 | False                    | False              | Hydrogen               |             | False                    | False              |
| Octane                |                 | False                    | False              | Oxygen                 |             | False                    | False              |
| Nonane                |                 | False                    | False              | LiquidsSample          |             | False                    | False              |
|                       |                 |                          |                    |                        |             |                          |                    |
|                       |                 | Phys                     | ical Prop          | erty Method Sets       |             |                          |                    |
| Liquid Molar Volume   | e               | COSTALD                  |                    | Overall Package        |             | Peng-Robins              | on                 |
| Stability Calculation |                 | Peng-Robins              | on                 | VaporPackage           |             | Peng-Robins              | on                 |
| Light Liquid Packag   | e               | Peng-Robins              | on                 | Heavy Liquid Package   |             | Peng-Robins              | on                 |
|                       |                 |                          |                    |                        |             |                          |                    |
| Remarks               |                 |                          |                    |                        |             |                          |                    |

|                                      |                | Er            | nvironm   | ents Report            |             |                   |            |
|--------------------------------------|----------------|---------------|-----------|------------------------|-------------|-------------------|------------|
| Client Name:                         | TCEnergy       |               |           |                        | Job: Pipeli | ineLiquidsA18-A20 |            |
| Location:                            | Ceredo Compre  | essor Station |           |                        |             |                   |            |
|                                      |                |               |           |                        |             |                   |            |
|                                      |                |               |           |                        |             |                   |            |
|                                      |                | Р             | roject-Wi | de Constants           |             |                   |            |
| Atmospheric Pressu                   | re             | 14.6959       | osia      | Ideal GasReference Pre | ssure       | 14.6959           | psia       |
| Ideal Gas Reference                  | e Temperature  | 60            | °F        | Ideal GasReference Vo  | ume         | 379.484           | ft^3/lbmol |
| Liquid Reference Te                  | emperature     | 60            | Ϋ́F       |                        |             |                   |            |
|                                      |                |               |           |                        |             |                   |            |
|                                      |                | Envi          | ronment   | [Environment1]         |             |                   |            |
|                                      |                | E             | Environm  | ent Settings           |             |                   |            |
| Number of Poynti                     | ng Intervals   | 0             |           | Phase Tolerance        |             | 1 %               |            |
| Gibbs Excess Mo                      | del            | 77 °F         |           | Emulsion Enabled       |             | False             |            |
| Evaluation Tempe                     | erature        |               |           |                        |             |                   |            |
| Freeze Out Temp<br>Threshold Differe | erature<br>nce | 10 °F         |           |                        |             |                   |            |
|                                      |                |               |           |                        |             |                   |            |
|                                      |                |               | Com       | onents                 |             |                   |            |
| Component Name                       |                | Henry's Law   | Phase     | Component Name         |             | Henry's Law       | Phase      |
|                                      |                | Component     | Initiator |                        |             | Component         | Initiator  |
| Carbon Dioxide                       |                | False         | False     | Benzene                |             | False             | False      |
| Nitrogen                             |                | False         | False     | Toluene                |             | False             | False      |
| Methane                              |                | False         | False     | Ethylbenzene           |             | False             | False      |
| Ethane                               |                | False         | False     | m-Xylene               |             | False             | False      |
| Propane                              |                | False         | False     | n-Hexane               |             | False             | False      |
| i-Butane                             |                | False         | False     | 2,2,4-Trimethylpentane |             | False             | False      |
| n-Butane                             |                | False         | False     | Neopentane             |             | False             | False      |
| i-Pentane                            |                | False         | False     | DecanesPlus            |             | False             | False      |
| n-Pentane                            |                | False         | False     | Water                  |             | False             | True       |
| i-Hexane                             |                | False         | False     | Helium                 |             | False             | False      |
| Heptane                              |                | False         | False     | Hydrogen               |             | False             | False      |
| Octane                               |                | Faise         | False     | Oxygen                 |             | Faise             | Faise      |
| Nonane                               |                | Faise         | Faise     | LiquidsSample          |             | Faise             | Faise      |
|                                      |                |               |           |                        |             |                   |            |
|                                      |                | Phys          | ical Prop | erty Method Sets       |             |                   |            |
| Liquid Molar Volume                  | e              | COSTALD       |           | Overall Package        |             | Peng-Robin        | son        |
| Stability Calculation                |                | Peng-Robins   | son       | Vapor Package          |             | Peng-Robin        | son        |
| Light Liquid Packag                  | e              | Peng-Robins   | son       | Heavy Liquid Package   |             | Peng-Robin        | son        |
|                                      |                |               |           |                        |             |                   |            |
| Remarks                              |                |               |           |                        |             |                   |            |
|                                      |                |               |           |                        |             |                   |            |

|                                           |                                    |                                        | Single<br>Deca                | e Oil Report<br>anes Plus             |                        |                   |
|-------------------------------------------|------------------------------------|----------------------------------------|-------------------------------|---------------------------------------|------------------------|-------------------|
| Client Name:                              | TCEnergy                           |                                        |                               | Job: Pip                              | belineLiquidsA18-A20   |                   |
| Location:                                 | Ceredo Compre                      | essor Station                          |                               |                                       |                        |                   |
|                                           |                                    |                                        |                               |                                       |                        |                   |
|                                           |                                    |                                        |                               |                                       |                        |                   |
|                                           |                                    |                                        | Pro                           | operties                              |                        |                   |
| Volume Average I<br>Point                 | Boiling                            | 240.832                                | °F                            | Low Temperature Viscosity             | 0.441651               | cP                |
| * Molecular Weight                        |                                    | 108.848                                | lb/lbmol                      | Temperature of High T<br>Viscosity    | 210                    | °F                |
| * Specific Gravity                        |                                    | 0.7432                                 |                               | High Temperature Viscosity            | 0.256204               | сР                |
| API Gravity                               |                                    | 58.8929                                |                               | Watson K                              | 11.9499                |                   |
| Critical Temperate                        | ure                                | 563.715                                | °F                            | ASTM D86 10-90% Slope                 |                        | °F/%              |
| Critical Pressure                         |                                    | 421.397                                | psia                          | ASTM D93 Flash Point                  | 47.9739                | °F                |
| Critical Volume                           |                                    | 6.98262                                | ft^3/lbmol                    | ? Pour Point                          | -22.4869               | °F                |
| Acentric Factor                           |                                    | 0.350921                               |                               | Paraffinic Fraction                   | 56.3105                | %                 |
| Carbon to Hydrog                          | en Ratio                           | 5.84021                                |                               | Naphthenic Fraction                   | 29.8859                | %                 |
| Refractive Index                          |                                    | 1.41346                                |                               | Aromatic Fraction                     | 13.8037                | %                 |
| Temperature of Lo<br>Viscosity            | ow T                               | 100                                    | °F                            | Ideal GasHeat Capacity                | 38.2665                | Btu/(lbmol*°F)    |
|                                           |                                    |                                        |                               |                                       |                        |                   |
| Warnings<br>ProMax:ProMax!Pro<br>Warning: | iject!Oils!Decane<br>PourPointcalc | esPluslPropertieslPoulation: The value | our Point<br>of 240.832 °F fo | or Volume Average Boiling Point shoul | ld be between 340.33 ° | F and 1040.33 °F. |
|                                           |                                    |                                        |                               |                                       |                        |                   |

Remarks

|                                           |                                       |                                          | Single<br>Liquio               | e Oil Report<br>ds Sample        |               |                     |                   |  |  |
|-------------------------------------------|---------------------------------------|------------------------------------------|--------------------------------|----------------------------------|---------------|---------------------|-------------------|--|--|
| Client Name:                              | TCEnergy                              |                                          |                                |                                  | Job: Pipel    | lineLiquidsA18-A20  |                   |  |  |
| Location:                                 | Ceredo Compre                         | essor Station                            |                                |                                  |               |                     |                   |  |  |
|                                           |                                       |                                          |                                |                                  |               |                     |                   |  |  |
|                                           |                                       |                                          |                                |                                  |               |                     |                   |  |  |
|                                           | Properties                            |                                          |                                |                                  |               |                     |                   |  |  |
| Volume Average I<br>Point                 | Boiling                               | 221.237                                  | °F                             | Low Temperature Visc             | cosity        | 0.389635            | сР                |  |  |
| * Molecular Weight                        |                                       | 104.227                                  | lb/lbmol                       | Temperature of High<br>Viscosity | Γ             | 210                 | °F                |  |  |
| <ul> <li>Specific Gravity</li> </ul>      |                                       | 0.721862                                 |                                | High Temperature Vis             | cosity        | 0.231388            | сР                |  |  |
| API Gravity                               | API Gravity 64.5208 Watson K          |                                          |                                |                                  |               | 12.1873             |                   |  |  |
| Critical Temperate                        | ure                                   | 536.86                                   | °F                             | ASTM D86 10-90% S                | ope           | 0                   | °F/%              |  |  |
| Critical Pressure                         |                                       | 417.121                                  | psia                           | ASTM D93 Flash Poir              | nt            | 34.4537             | °F                |  |  |
| Critical Volume                           |                                       | 6.79544                                  | ft^3/lbmol                     | ? Pour Point                     |               | -14.04              | °F                |  |  |
| Acentric Factor                           |                                       | 0.339064                                 |                                | Paraffinic Fraction              |               | 64.4262             | %                 |  |  |
| Carbon to Hydrog                          | en Ratio                              | 5.57819                                  |                                | Naphthenic Fraction              |               | 26.0787             | %                 |  |  |
| Refractive Index                          |                                       | 1.40218                                  |                                | Aromatic Fraction                |               | 9.49512             | %                 |  |  |
| Temperature of Lo<br>Viscosity            | owT                                   | 100                                      | °F                             | Ideal GasHeat Capac              | ity           | 37.6486             | Btu/(lbmol*°F)    |  |  |
|                                           |                                       |                                          |                                |                                  |               |                     |                   |  |  |
| Warnings<br>ProMax:ProMax!Pro<br>Warning: | oject!Oils!Liquids<br>Pour Point calc | Sample!Properties!<br>ulation: The value | Pour Point<br>of 221.237 °F fo | or Volume Average Boiling Po     | oint should b | be between 340.33 ° | F and 1040.33 °F. |  |  |
|                                           |                                       |                                          |                                |                                  |               |                     |                   |  |  |

Remarks

ĥ

|                       |                    | Calcu                             | lator Re      | port             |              |               |                          |  |
|-----------------------|--------------------|-----------------------------------|---------------|------------------|--------------|---------------|--------------------------|--|
|                       |                    |                                   |               |                  |              |               |                          |  |
| Client Name:          | TCEnergy           |                                   |               |                  | Job: Pipeli  | neLiquidsA1   | 8-A20                    |  |
| Location:             | Ceredo Compre      | essor Station                     |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    | G                                 | ias Solver    |                  |              |               |                          |  |
|                       |                    | Sc                                | ource Cod     | е                |              |               |                          |  |
| Residual Error (for C | CV1) = LiquidsSa   | mple-99                           |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    | Calculat                          | ed Variab     | e [CV1]          |              |               |                          |  |
| Source Moniker        | ProMax:ProM        | ax!Project!Flowsheets!PipelineL   | iquids!PStrea | ms!GasSample!I   | Phases!Total | Properties!S  | td Vapor Volumetric Flow |  |
| Value                 | 3.64561E-05        |                                   |               |                  |              |               |                          |  |
| Unit                  |                    |                                   |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    | Measured Va                       | riable [Liq   | uidsSample]      |              |               |                          |  |
| Source Moniker        | ProMax:ProM        | ax!Project!Flowsheets!PipelineL   | iquids!PStrea | ms!Liquids!Phase | es!Total!Com | position!StdL | iquid Volumetric         |  |
|                       | Fraction!Liqui     | dsSample                          |               |                  |              |               |                          |  |
| value                 | 99                 |                                   |               |                  |              |               |                          |  |
| Unit                  |                    |                                   |               |                  |              |               |                          |  |
|                       |                    | 0-1-                              | or Dromer     | lee              |              | Statue: Se    | lyed                     |  |
| Error                 |                    | SOIV                              |               |                  |              | Status. SC    | 1                        |  |
|                       |                    | 0.00990E-00<br>3.64561E-05 MMSCED | Prio          | ynung<br>ritv    |              |               | 0                        |  |
| Lower Bound           |                    | MMSCED                            | Solv          | er State         |              |               | Active                   |  |
| Upper Bound           |                    | MMSCFD                            | Gro           |                  |              | ,             |                          |  |
| Step Size             |                    | MMSCFD                            | Skip          | Dependency Ch    | eck          |               | False                    |  |
| ls Minimizer          |                    | False                             | Bloc          | kDependencies    |              |               | 2                        |  |
| Algorithm             |                    | Default                           | Rec           | ycle Dependencie | es           |               | 0                        |  |
| Iterations            |                    | 3                                 | Solv          | er Dependencies  | 3            |               | 1                        |  |
| Maxiterations         |                    | 20                                |               |                  |              |               |                          |  |
| Demoriko              |                    |                                   |               |                  |              |               |                          |  |
| Remarks               |                    |                                   |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    | Lie                               | uid Solve     | <u>ار</u>        |              |               |                          |  |
|                       |                    |                                   |               | 0                |              |               |                          |  |
| Residual Error (for ( | (1) - 1 iquids - 2 | 4000                              |               | C                |              |               |                          |  |
|                       |                    | 1000                              |               |                  |              |               |                          |  |
|                       |                    | Calculat                          | ad Variab     | o [C)/4]         |              |               |                          |  |
| Source Moniker        | ProMax ProM        |                                   | eu val lab    | e [CVI]          |              |               | Std Liquid Volumetric    |  |
| Source Moniker        | Flow               |                                   |               | ins:Erquius Samp |              |               |                          |  |
| Value                 | 0.0453075          |                                   |               |                  |              |               |                          |  |
| Unit                  |                    |                                   |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    | Measureo                          | Variable      | [l iquids]       |              |               |                          |  |
| Source Moniker        | ProMax:ProM        | ax!Project!Flowsheets!PipelineL   | iquids!PStrea | ms!TankLiquids!  | Phases!Tota  | Properties!L  | auid Volumetric Flow     |  |
| Value                 | 24000              |                                   |               |                  |              |               | 1                        |  |
| Unit                  |                    |                                   |               |                  |              |               |                          |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
|                       |                    | Solv                              | er Proper     | ties             |              | Status: So    | lved                     |  |
| Error                 |                    | 0.000451137                       | Мах           | Iterations       |              |               | 20                       |  |
| Calculated Value      |                    | 0.0453075 sgpm                    | Wei           | ghting           |              |               | 1                        |  |
| Lower Bound           |                    | sgpm                              | * Solv        | er State         | l.           |               | Active                   |  |
| Upper Bound           |                    | sgpm                              | * Skip        | Dependency Ch    | eck          |               | Irue                     |  |
| Step Size             |                    | sgpm<br>False                     | BIOC          | k Dependencies   | 25           |               | 3                        |  |
| Algorithm             |                    | Default                           | Solv          | er Dependencies  | 55<br>5      |               | 0                        |  |
| Iterations            |                    | 2                                 | 001           | 2. 2020110000    | •            |               | v                        |  |
|                       |                    |                                   |               |                  |              |               |                          |  |
| Remarks               |                    |                                   |               |                  |              |               |                          |  |
| -                     |                    |                                   |               |                  |              |               |                          |  |

|              |               | Calculator Report |             |                  |
|--------------|---------------|-------------------|-------------|------------------|
| Client Name: | TCEnergy      |                   | Job: Pipeli | neLiquidsA18-A20 |
| Location:    | Ceredo Compre | ssor Station      |             |                  |
|              |               |                   |             |                  |
|              |               |                   |             |                  |
|              |               |                   |             |                  |

ĥ

|              |               |              | User Value        | e Sets Report    |             |                  |            |
|--------------|---------------|--------------|-------------------|------------------|-------------|------------------|------------|
| Client Name: | TCEnergy      |              |                   |                  | Job: Pipeli | neLiquidsA18-A20 | )          |
| Location:    | Ceredo Compre | ssor Station |                   |                  |             |                  |            |
|              |               |              |                   |                  |             |                  |            |
|              |               |              | T                 | ank-1            |             |                  |            |
|              |               |              | Liser Value       | [BlockReady]     |             |                  |            |
| * Parameter  |               | 1            |                   | Upper Bound      |             |                  |            |
| Lower Bound  |               |              |                   | * Enforce Bounds |             | False            |            |
|              |               |              |                   |                  |             |                  |            |
| * Denementen |               | 0.0          |                   | [ShellLength]    |             |                  |            |
| Parameter    |               | 23           | ft                | * Enforce Bounds |             | False            | π          |
| Lonor Bound  |               |              | i.                | Entorico Boundo  |             | 1 4100           |            |
|              |               |              | User Valu         | e [ShellDiam]    |             |                  |            |
| * Parameter  |               | 10           | ft                | Upper Bound      |             |                  | ft         |
| Lower Bound  |               |              | ft                | * Enforce Bounds |             | False            |            |
|              |               |              |                   |                  |             |                  |            |
| * Doromotor  |               | 0.03         | User Value        | e [BreatherVP]   |             |                  | ndia       |
| LowerBound   |               | 0.03         | psig              | * Enforce Bounds |             | False            | pag        |
|              |               |              | 1 0               |                  |             |                  |            |
|              |               |              | <b>User Value</b> | [BreatherVacP]   |             |                  |            |
| * Parameter  |               | -0.03        | psig              | Upper Bound      |             |                  | psig       |
| LowerBound   |               |              | psig              | * Enforce Bounds |             | False            |            |
|              |               |              |                   | [Dame Dadised]   |             |                  |            |
| Baramatar    |               |              |                   |                  |             |                  | <i>t</i> + |
| LowerBound   |               |              | ft                | * Enforce Bounds |             | False            | п          |
|              |               |              |                   |                  |             |                  |            |
|              |               |              | User Val          | ue [OpPress]     |             |                  |            |
| * Parameter  |               | 0            | psig              | Upper Bound      |             | _                | psig       |
| LowerBound   |               |              | psig              | * Enforce Bounds |             | False            |            |
|              |               |              |                   | AvaDaroontLial   |             |                  |            |
| * Parameter  |               | 50           | %                 | Upper Bound      |             |                  | %          |
| LowerBound   |               |              | %                 | * Enforce Bounds |             | False            |            |
|              |               |              |                   |                  |             |                  |            |
|              |               |              | User Value [      | MaxPercentLiq]   |             |                  |            |
| * Parameter  |               | 90           | %                 | Upper Bound      |             | Falsa            | %          |
| Lower Bound  |               |              | 70                | Enforce Bounds   |             | Faise            |            |
|              |               |              | Llear Value       | [MinPercentLig]  |             |                  |            |
| * Parameter  |               | 10           | %                 | Upper Bound      |             |                  | %          |
| Lower Bound  |               |              | %                 | * Enforce Bounds |             | False            |            |
|              |               |              |                   |                  |             |                  |            |
|              |               |              | User Valu         | e [AnnNetTP]     |             |                  |            |
| * Parameter  |               | 1.55684      | bbl/day           | Upper Bound      |             | Falsa            | bbl/day    |
| Lower Bound  |               |              | bbi/day           | Enforce Bounds   |             | 1 8130           |            |
|              |               |              | User Va           | lue [OREff]      |             |                  |            |
| * Parameter  |               | 0            | %                 | Upper Bound      |             |                  | %          |
| Lower Bound  |               |              | %                 | * Enforce Bounds |             | False            |            |
|              |               |              |                   |                  |             |                  |            |
| * Doromotor  |               |              |                   |                  |             |                  | °E         |
| LowerBound   |               | 05.4         | °F                | * Enforce Bounds |             | False            | ſ          |
| Letter Bound |               |              |                   |                  |             | 1 4130           |            |
|              |               |              | User Valu         | ue [MinAvaT]     |             |                  |            |
| * Parameter  |               | 45.5         | °F                | UpperBound       |             |                  | °F         |
| Lower Bound  |               |              | °É                | * Enforce Bounds |             | False            |            |

\* User Specified Values ? Extrapolated or Approximate Values

ProMax 5.0.19263.0 Copyright © 2002-2019 BRE Group, Ltd.

|               |               | User Value        | Sets Report                          |             |                    |
|---------------|---------------|-------------------|--------------------------------------|-------------|--------------------|
|               | TOF           |                   |                                      | lah Dinali  |                    |
| Location:     | Ceredo Compre | assor Station     |                                      | Job: Pipeli | ne Liquids A18-A20 |
| Loodiion.     | Coloue Compil |                   |                                      |             |                    |
|               |               |                   |                                      |             |                    |
|               |               | <u> </u>          |                                      |             |                    |
| * Doromotor   |               | User Value        |                                      |             | ٥٣                 |
| LowerBound    |               | 58.7899 °F        | * Enforce Bounds                     |             | False              |
| 201101 200110 |               |                   | 2                                    |             | . aree             |
|               |               | User Val          | ue [AvgP]                            |             |                    |
| * Parameter   |               | 14.16 psia        | Upper Bound                          |             | psia               |
| LowerBound    |               | psia              | * Enforce Bounds                     |             | False              |
|               |               |                   |                                      |             |                    |
| * Parameter   |               | 1237 Btu/ft^2/day | UpperBound                           |             | Btu/ft^2/day       |
| LowerBound    |               | Btu/ft^2/day      | * Enforce Bounds                     |             | False              |
|               |               | ·                 |                                      |             |                    |
|               |               | User Value [A     | vgWindSpeed]                         |             |                    |
| * Parameter   |               | 4 mi/h            | Upper Bound                          |             | mi/h               |
| LowerBound    |               | mi/n              | Enforce Bounds                       |             | Faise              |
|               |               | User Value (MaxH  | ourlyLoadingRate                     |             |                    |
| Parameter     |               | bbl/hr            | UpperBound                           |             | bbl/hr             |
| LowerBound    |               | bbl/hr            | * Enforce Bounds                     |             | False              |
|               |               |                   |                                      |             |                    |
|               |               | User Value [S     | umLiqLevelInc]                       |             |                    |
| Parameter     |               | ft/yr             | Upper Bound                          |             | ft/yr              |
| Lower Dound   |               | 10 yi             | Emolec Bounds                        |             | 1 0130             |
|               |               | User Value        | [FlashingT]                          |             |                    |
| * Parameter   |               | 70.3693 °F        | Upper Bound                          |             | °F                 |
| LowerBound    |               | °F                | <ul> <li>* Enforce Bounds</li> </ul> |             | False              |
|               |               |                   | trained Oil Free]                    |             |                    |
| * Parameter   |               |                   | UpperBound                           |             | %                  |
| LowerBound    |               | %                 | * Enforce Bounds                     |             | False              |
|               |               |                   |                                      |             |                    |
|               |               | User Value [7     | [urnoverRate]                        |             |                    |
| * Parameter   |               | 0.577925          | Upper Bound                          |             | Foloo              |
| Lower Bound   |               |                   | Enloice Bounds                       |             | False              |
|               |               | User Value []     | ossSatFactor]                        |             |                    |
| * Parameter   |               | 1.45              | UpperBound                           |             |                    |
| LowerBound    |               |                   | * Enforce Bounds                     |             | False              |
|               |               |                   |                                      |             |                    |
| * Dama a tam  |               | User Value [/     | AtmPressure]                         |             |                    |
| Parameter     |               | 14.16 psia        | * Enforce Bounds                     |             | psia<br>False      |
| Lower Bound   |               |                   |                                      |             |                    |
|               |               | User Val          | ue [TVP]                             |             |                    |
| * Parameter   |               | 13.5701 psia      | Upper Bound                          |             | psia               |
| LowerBound    |               | psia              | * Enforce Bounds                     |             | False              |
|               |               |                   |                                      |             |                    |
| * Parameter   |               | User Valu         |                                      |             | nga                |
| LowerBound    |               | psia              | * Enforce Bounds                     |             | False              |
|               |               | •                 |                                      |             |                    |
|               |               | User Valu         | ie [MinVP]                           |             |                    |
| * Parameter   |               | 12.9984 psia      | Upper Bound                          |             | psia               |

|                             |                              |               | User Value    | e Sets Report      |             |                  |         |  |  |  |
|-----------------------------|------------------------------|---------------|---------------|--------------------|-------------|------------------|---------|--|--|--|
| Client Name:                | TC Energy                    |               |               |                    | Job: Pipeli | neLiquidsA18-A20 |         |  |  |  |
| Location:                   | Ceredo Compre                | essor Station |               |                    |             |                  |         |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |
|                             |                              |               | User Va       | lue [MinVP]        |             |                  |         |  |  |  |
| Lower Bound                 |                              |               | psia          | * Enforce Bounds   |             | False            |         |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |
| * Paramotor                 |                              | 61 8044       | Jser Value [/ | AvgLiqSurfaceT]    |             |                  | ٥E      |  |  |  |
| LowerBound                  |                              | 01.0044       | °F            | * Enforce Bounds   |             | False            | F       |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |
| User Value [MaxLigSurfaceT] |                              |               |               |                    |             |                  |         |  |  |  |
| * Parameter                 |                              | 70.3693       | °F            | Upper Bound        |             |                  | °F      |  |  |  |
| LowerBound                  |                              |               | ۴             | * Enforce Bounds   |             | False            |         |  |  |  |
|                             |                              |               | Llear Value   |                    |             |                  |         |  |  |  |
| * Parameter                 |                              | 1,13896       | ton/vr        |                    |             |                  | ton/vr  |  |  |  |
| LowerBound                  |                              |               | ton/yr        | * Enforce Bounds   |             | False            | (01#)1  |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |
|                             |                              |               | User Value [  | WorkingLosses]     |             |                  |         |  |  |  |
| * Parameter                 |                              | 0.00462624    | ton/yr        | Upper Bound        |             | Falso            | ton/yr  |  |  |  |
| Lower Bound                 |                              |               | ton/yi        | Efficice Bounds    |             | r aise           |         |  |  |  |
|                             | Liser Value [StandingLosses] |               |               |                    |             |                  |         |  |  |  |
| * Parameter                 |                              | 0.375026      | ton/yr        | UpperBound         |             |                  | ton/yr  |  |  |  |
| Lower Bound                 |                              |               | ton/yr        | * Enforce Bounds   |             | False            |         |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |
| * Downwater                 |                              |               | User Value [  | RimSealLosses]     |             |                  | toolum  |  |  |  |
| LowerBound                  |                              | 0             | ton/yr        | * Enforce Bounds   |             | False            | ton/yi  |  |  |  |
| 201101 20 0110              |                              |               |               |                    |             |                  |         |  |  |  |
|                             |                              |               | User Value [  | WithdrawalLoss]    |             |                  |         |  |  |  |
| * Parameter                 |                              | 0             | ton/yr        | Upper Bound        |             |                  | ton/yr  |  |  |  |
| Lower Bound                 |                              |               | ton/yr        | * Enforce Bounds   |             | False            |         |  |  |  |
|                             |                              |               | llsor Value [ | l opdingl osses]   |             |                  |         |  |  |  |
| * Parameter                 |                              | 0.0202479     | ton/vr        | Upper Bound        |             |                  | ton/vr  |  |  |  |
| LowerBound                  |                              |               | ton/yr        | * Enforce Bounds   |             | False            |         |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |
|                             |                              | User          | Value [Max    | HourlyLoadingLoss] |             |                  |         |  |  |  |
| * Parameter                 |                              | 0             | lb/hr         | Upper Bound        |             | Falso            | lb/hr   |  |  |  |
| Lower Bound                 |                              |               | 10/111        | Enloice Bounds     |             | 1 4130           |         |  |  |  |
|                             |                              |               | User Va       | lue [PStar]        |             |                  |         |  |  |  |
| Parameter                   |                              |               |               | Upper Bound        |             |                  |         |  |  |  |
| Lower Bound                 |                              |               |               | * Enforce Bounds   |             | False            |         |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |
| * Parameter                 |                              | 1 22022       |               |                    |             |                  | ton/vr  |  |  |  |
| LowerBound                  |                              | 1.22003       | ton/yr        | * Enforce Bounds   |             | False            | .517.91 |  |  |  |
|                             |                              |               | ·             | ·                  |             |                  |         |  |  |  |
|                             |                              | Us            | er Value [Al  | ICLoadingLosses]   |             |                  |         |  |  |  |
| * Parameter                 |                              | 0.0217034     | ton/yr        | Upper Bound        |             | <b>F</b> _1      | ton/yr  |  |  |  |
| LowerBound                  |                              |               | ion/yr        | Enforce Bounds     |             | Faise            |         |  |  |  |
|                             |                              |               |               | MaxHI oadingl oes] |             |                  |         |  |  |  |
| * Parameter                 |                              | 0             | Ib/hr         | UpperBound         |             |                  | lb/hr   |  |  |  |
| Lower Bound                 |                              |               | lb/hr         | * Enforce Bounds   |             | False            |         |  |  |  |
|                             |                              |               |               |                    |             |                  |         |  |  |  |

|                    |                 | User                        | Value    | Sets Report                        |              |                  |         |
|--------------------|-----------------|-----------------------------|----------|------------------------------------|--------------|------------------|---------|
|                    |                 |                             |          |                                    |              |                  |         |
| Client Name:       | TC Energy       | ener Clating                |          |                                    | Job: Pipelir | neLiquidsA18-A20 | 1       |
| Location:          | Ceredo Compre   | essor Station               |          |                                    |              |                  |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 | User Val                    |          | Elashinglosses                     |              |                  |         |
| * Parameter        |                 | 0.291171 ton/yr             |          | UpperBound                         |              |                  | ton/yr  |
| Lower Bound        |                 | ton/yr                      |          | * Enforce Bounds                   |              | False            |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 | User Va                     | lue [De  | ckFittingLosses]                   |              |                  |         |
| * Parameter        |                 | 0 ton/yr                    |          | Upper Bound                        |              |                  | ton/yr  |
| Lower Bound        |                 | ton/yr                      |          | * Enforce Bounds                   |              | False            |         |
|                    |                 |                             |          |                                    |              |                  |         |
| * Domentar         |                 | User Va                     | lue [De  |                                    |              |                  | toolum  |
| Parameter          |                 |                             |          | VpperBound                         |              | Falco            | ton/yr  |
| Lower Bound        |                 | ton/yi                      |          | Enioice Bounds                     |              | l'aise           |         |
|                    |                 | Llear V                     |          | lashing osseel                     |              |                  |         |
| * Parameter        |                 | 0.0624978_top/yr            |          | UpperBound                         |              |                  | ton/vr  |
| Lower Bound        |                 | ton/vr                      |          | * Enforce Bounds                   |              | False            | toniyyi |
|                    |                 | ,                           |          |                                    |              |                  |         |
|                    |                 | User \                      | /alue [  | TotalResidual1                     |              |                  |         |
| * Parameter        |                 | 70.4651 ton/yr              |          | UpperBound                         |              |                  | ton/yr  |
| Lower Bound        |                 | ton/yr                      |          | * Enforce Bounds                   |              | False            |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 | User V                      | alue [G  | asMoleWeight]                      |              |                  |         |
| * Parameter        |                 | 0.0200458 kg/mol            | •        | UpperBound                         |              |                  | kg/mol  |
| Lower Bound        |                 | kg/mol                      |          | * Enforce Bounds                   |              | False            |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 | User Val                    | ue [Vap  | oReportableFrac]                   |              |                  |         |
| * Parameter        |                 | 93.2935 %                   |          | Upper Bound                        |              |                  | %       |
| Lower Bound        |                 | %                           |          | <ul> <li>Enforce Bounds</li> </ul> |              | False            |         |
|                    |                 |                             |          | <u> </u>                           |              |                  |         |
| * Domonotor        |                 |                             |          | [ReportableFrac]                   |              |                  | 0/      |
| Parameter          |                 | 99.8838 %                   |          | UpperBound                         |              | Falco            | %       |
| Lower Bound        |                 | 70                          |          | Enioice Bounds                     |              | 1 8130           |         |
|                    |                 | Llsor Valu                  | o [Elas  | hPaportableErac]                   |              |                  |         |
| * Parameter        |                 | 21 4643 %                   | ie [rias |                                    |              |                  | %       |
| Lower Bound        |                 | <u> </u>                    |          | * Enforce Bounds                   |              | False            | 70      |
|                    |                 |                             |          |                                    |              |                  |         |
| Remarks            |                 |                             |          |                                    |              |                  |         |
| This User Value Se | et wasprogramma | atically generated. GUID={C | D98EEA   | 3-8B3E-47D7-BCC0-B760              | 573420A8}    |                  |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 | Sum                         | `omnoi   | pont Flow/Frac                     |              |                  |         |
|                    |                 | Jaco                        | Value    |                                    |              |                  |         |
| * Parameter        |                 |                             | value    |                                    |              |                  | ton/vr  |
| LowerBound         |                 | ton/yr                      |          | * Enforce Bounds                   |              | False            | ton/yi  |
| Lower Bound        |                 | ton, yr                     |          | Emoloo Boundo                      |              | 1 4100           |         |
| Remarks            |                 |                             |          |                                    |              |                  |         |
| ThisUser Value Se  | et wasprogramma | tically generated. GUID={5  | CABC249  | 9-2E47-44D4-A833-4F3D1             | AF2547A}     |                  |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 |                             |          |                                    |              |                  |         |
|                    |                 | Sum Co                      | mpone    | nt Flow/Frac.177                   |              |                  |         |
|                    |                 | User                        | Value    | [CompSum]                          |              |                  |         |
| * Parameter        |                 | 0.0138787 ton/yr            |          | Upper Bound                        |              |                  | ton/yr  |
| Lower Bound        |                 | ton/yr                      |          | * Enforce Bounds                   |              | False            |         |
|                    |                 |                             |          |                                    |              |                  |         |

|                                                                                                          | -                                                                                                        | User Valu                        | le Sets Report            |                       |                   |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|-----------------------|-------------------|--|--|--|
| Client Name:                                                                                             | TCEnergy                                                                                                 |                                  |                           | Job: Pipeli           | ineLiquidsA18-A20 |  |  |  |
| Location:                                                                                                | Ceredo Compr                                                                                             | essor Station                    |                           |                       |                   |  |  |  |
|                                                                                                          |                                                                                                          |                                  |                           | 1                     |                   |  |  |  |
| <b>Remarks</b><br>ThisUser Value Set                                                                     | Remarks<br>ThisUser Value Set wasprogrammatically generated. GUID={0BEE6B58-A118-4655-88B1-C3178E914D1F} |                                  |                           |                       |                   |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compo                        | nent Flow/Frac.178        |                       |                   |  |  |  |
|                                                                                                          |                                                                                                          |                                  |                           |                       |                   |  |  |  |
| * Parameter                                                                                              |                                                                                                          | 1.12508 ton/yr                   | UpperBound                |                       | ton/yr            |  |  |  |
| Lower Bound                                                                                              |                                                                                                          | ton/yr                           | * Enforce Bounds          |                       | False             |  |  |  |
|                                                                                                          |                                                                                                          |                                  |                           |                       |                   |  |  |  |
| Remarks<br>ThisUser Value Set                                                                            | t wasprogramma                                                                                           | atically generated. GUID={1FCF7. | A22-53BB-4D85-B4D2-98034  | 1DCCEAC5}             |                   |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compo                        | onent Flow/Frac.179       |                       |                   |  |  |  |
|                                                                                                          |                                                                                                          | User Val                         | ue [CompSum]              |                       |                   |  |  |  |
| * Parameter                                                                                              |                                                                                                          | 0.0202479 ton/yr                 | UpperBound                |                       | ton/yr            |  |  |  |
| Lower Bound                                                                                              |                                                                                                          | ton/yr                           | * Enforce Bounds          |                       | False             |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compo                        | nent Flow/Frac.186        |                       |                   |  |  |  |
| * Deremeter                                                                                              |                                                                                                          | User Val                         | ue [CompSum]              |                       |                   |  |  |  |
| Parameter                                                                                                |                                                                                                          | 0.0134424 Ib/h                   | Upper Bound               |                       | ID/N<br>False     |  |  |  |
| Lower Bound                                                                                              |                                                                                                          | 10/11                            | Enforce Bounda            |                       | 1 0.50            |  |  |  |
| Remarks<br>ThisUser Value Set                                                                            | t wasprogramma                                                                                           | atically generated. GUID={16314  | 387-EB06-407D-A4B5-D174F  | <sup>-</sup> 0939D1D} |                   |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compo                        | Inelit Flow/Flat.10/      |                       |                   |  |  |  |
| * Parameter                                                                                              |                                                                                                          | 9.33114F-07 top/yr               |                           |                       | ton/vr            |  |  |  |
| LowerBound                                                                                               |                                                                                                          | ton/yr                           | * Enforce Bounds          |                       | False             |  |  |  |
|                                                                                                          |                                                                                                          |                                  |                           |                       |                   |  |  |  |
| <b>Remarks</b><br>ThisUser Value Set                                                                     | t wasprogramma                                                                                           | atically generated. GUID={9AFAA  | .5FF-7014-420C-88AF-1F950 | D754536}              |                   |  |  |  |
|                                                                                                          |                                                                                                          | 00                               |                           |                       |                   |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compo                        | onent Flow/Frac.188       |                       |                   |  |  |  |
| * Dava (                                                                                                 |                                                                                                          | User Val                         | ue [CompSum]              |                       |                   |  |  |  |
| ^ Parameter                                                                                              |                                                                                                          | 2.1304E-07 lb/h                  | Upper Bound               |                       | lb/h              |  |  |  |
| Lower Bouriu                                                                                             |                                                                                                          |                                  | Enloice Doulius           |                       |                   |  |  |  |
| Remarks<br>ThisUser Value Set wasprogrammatically generated. GUID={8AF72F6D-9B6B-4084-A5B9-70157C63A6B1} |                                                                                                          |                                  |                           |                       |                   |  |  |  |

|                                                                                                                                                                                                  |                                                                                                          | User Valu                                                                                                                                                                                                                                                                              | e Sets Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                            |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------|--|--|--|--|
| Client Name:                                                                                                                                                                                     | TC Energy                                                                                                | o mor Station                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Job: Pipeli | neLiquidsA18-A20                           |  |  |  |  |
| Location:                                                                                                                                                                                        | Ceredo Compre                                                                                            | essor Station                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
| Sum Component Flow/Frac 189                                                                                                                                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          | Liser Valu                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
| * Parameter                                                                                                                                                                                      |                                                                                                          | 0.00316866 lb/b                                                                                                                                                                                                                                                                        | UpperBound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | lb/b                                       |  |  |  |  |
| LowerBound                                                                                                                                                                                       |                                                                                                          | Ib/h                                                                                                                                                                                                                                                                                   | * Enforce Bounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | False                                      |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | Remarks<br>ThisUser Value Set wasprogrammatically generated. GUID={9CB8D542-8D75-4E89-8AB7-442949EE109B} |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          | Sum Compo                                                                                                                                                                                                                                                                              | ent Flow/Frac 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                            |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
| * Parameter                                                                                                                                                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                        | Lipper Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | lb/b                                       |  |  |  |  |
| LowerBound                                                                                                                                                                                       |                                                                                                          | Ib/h                                                                                                                                                                                                                                                                                   | * Enforce Bounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | False                                      |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | t wasprogramma                                                                                           | atically generated. GUID={23E8E7                                                                                                                                                                                                                                                       | AB-B99D-4098-A3AE-61C1I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D7D4BA2E}   |                                            |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                            |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          | Sum Compoi                                                                                                                                                                                                                                                                             | nent Flow/Frac.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                            |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          | User Valu                                                                                                                                                                                                                                                                              | ie [CompSum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                            |  |  |  |  |
| * Parameter                                                                                                                                                                                      |                                                                                                          | 1.856E-05 ton/yr                                                                                                                                                                                                                                                                       | Upper Bound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | ton/yr                                     |  |  |  |  |
| LowerBound                                                                                                                                                                                       |                                                                                                          | ton/yr                                                                                                                                                                                                                                                                                 | * Enforce Bounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | False                                      |  |  |  |  |
|                                                                                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                            |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | t wasprogramma                                                                                           | atically generated. GUID={638833                                                                                                                                                                                                                                                       | 34-AB8B-4092-A4D0-1E7AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D13AEE9}    |                                            |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | t wasprogramma                                                                                           | atically generated. GUID={638833                                                                                                                                                                                                                                                       | 34-AB8B-4092-A4D0-1E7AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D13AEE9}    |                                            |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | t wasprogramma                                                                                           | atically generated. GUID={638833<br>Sum Compo                                                                                                                                                                                                                                          | 34-AB8B-4092-A4D0-1E7AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D13AEE9}    |                                            |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | t wasprogramma                                                                                           | atically generated. GUID={638833<br>Sum Compor<br>User Valu                                                                                                                                                                                                                            | 34-AB8B-4092-A4D0-1E7AE<br>nent Flow/Frac.192<br>le [CompSum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D13AEE9}    |                                            |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | t wasprogramma                                                                                           | atically generated. GUID={638833<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h                                                                                                                                                                                                        | 34-AB8B-4092-A4D0-1E7AE<br>nent Flow/Frac.192<br>le [CompSum]<br>Upper Bound<br>* Enforce Bounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D13AEE9}    | Ib/h                                       |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                                                                                                                     | t wasprogramma                                                                                           | atically generated. GUID={638833<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h                                                                                                                                                                                                | AAB8B-4092-A4D0-1E7AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D13AEE9}    | Ib/h<br>False                              |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se                                                                                                         | t wasprogramma                                                                                           | atically generated. GUID={638833<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE                                                                                                                                                            | AAB8B-4092-A4D0-1E7AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D13AEE9}    | lb/h<br>False                              |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>* Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se                                                                                                       | t wasprogramma                                                                                           | atically generated. GUID={638833<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE                                                                                                                                                            | 34-AB8B-4092-A4D0-1E7AE<br>nent Flow/Frac.192<br>[e [CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D13AEE9}    | lb/h<br>False                              |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se                                                                                                         | t wasprogramma                                                                                           | atically generated. GUID={638833<br>Sum Compor<br>User Valu<br>4.23745E-06 lb/h<br>lb/h<br>atically generated. GUID={51B0EE<br>Sum Compor                                                                                                                                              | AAB8B-4092-A4D0-1E7AE<br>Thent Flow/Frac.192<br>The [CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>Dent Flow/Frac.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D13AEE9}    | Ib/h<br>False                              |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se                                                                                                         | t wasprogramma                                                                                           | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu                                                                                                                                | AAB8B-4092-A4D0-1E7AE<br>Pent Flow/Frac.192<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>Pent Flow/Frac.193<br>[CompSum]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D13AEE9}    | Ib/h<br>False                              |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>* Parameter                                                                                          | t wasprogramma                                                                                           | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr                                                                                                          | AAB8B-4092-A4D0-1E7AE<br>Pent Flow/Frac.192<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>[CompSum]<br>[Upper Bound<br>[Upper Bound]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D13AEE9}    | Ib/h<br>False<br>ton/yr                    |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>* Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>* Parameter<br>Lower Bound                                                                         | t wasprogramma                                                                                           | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr<br>ton/yr                                                                                                | AAB8B-4092-A4D0-1E7AE<br>Pent Flow/Frac.192<br>[CompSum]<br>UpperBound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>Pent Flow/Frac.193<br>[CompSum]<br>UpperBound<br>* Enforce Bounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D13AEE9}    | Ib/h<br>False<br>ton/yr<br>False           |  |  |  |  |
| Remarks<br>ThisUser Value Ser<br>* Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Ser<br>* Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Ser<br>ThisUser Value Ser                | t wasprogramma<br>t wasprogramma<br>t wasprogramma                                                       | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr<br>ton/yr<br>atically generated. GUID={55E106                                                            | AAB8B-4092-A4D0-1E7AE<br>Dent Flow/Frac.192<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[Co | D13AEE9}    | Ib/h<br>False                              |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se                                             | t wasprogramma<br>t wasprogramma<br>t wasprogramma                                                       | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr<br>ton/yr<br>atically generated. GUID={55E106                                                            | AAB8B-4092-A4D0-1E7AE<br>Dent Flow/Frac.192<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[CompSum]<br>[Co | D13AEE9}    | Ib/h<br>False<br>ton/yr<br>False           |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se                                             | t wasprogramma<br>t wasprogramma<br>t wasprogramma                                                       | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr<br>ton/yr<br>atically generated. GUID={55E106<br>Sum Compor                                              | 34-AB8B-4092-A4D0-1E7AE<br>Dent Flow/Frac.192<br>le [CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>Dent Flow/Frac.193<br>le [CompSum]<br>Upper Bound<br>* Enforce Bounds<br>91-B7DA-4FAA-9B9E-0B68E<br>Dent Flow/Frac.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D13AEE9}    | Ib/h<br>False<br>ton/yr<br>False           |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>Comparison                               | t wasprogramma<br>t wasprogramma<br>t wasprogramma<br>t wasprogramma                                     | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr<br>ton/yr<br>atically generated. GUID={55E106<br>Sum Compor<br>User Valu                                 | 34-AB8B-4092-A4D0-1E7AE<br>Dent Flow/Frac.192<br>[e [CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>[of compSum]<br>Upper Bound<br>* Enforce Bounds<br>91-B7DA-4FAA-9B9E-0B68E<br>[of compSum]<br>[of compSum]                                                                             | D13AEE9}    | Ib/h<br>False<br>ton/yr<br>False           |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Pound                 | t wasprogramma<br>t wasprogramma<br>t wasprogramma                                                       | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr<br>ton/yr<br>atically generated. GUID={55E106<br>Sum Compor<br>User Valu<br>3.34022E-07 ton/yr           | AAB8B-4092-A4D0-1E7AE<br>Pent Flow/Frac.192<br>[E [CompSum]<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>91-B7DA-4FAA-9B9E-0B68E<br>[CompSum]<br>Upper Bound<br>* Enforce Bounds<br>[E [CompSum]<br>Upper Bound<br>[E [CompSum]<br>Upper Bound<br>[E [CompSum]<br>Upper Bound<br>[E [CompSum]<br>[E [C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D13AEE9}    | Ib/h<br>False<br>ton/yr<br>False<br>ton/yr |  |  |  |  |
| Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se<br>Analysis<br>Remarks<br>ThisUser Value Se<br>Parameter<br>Lower Bound<br>Remarks<br>ThisUser Value Se | t wasprogramma<br>t wasprogramma<br>t wasprogramma<br>t wasprogramma                                     | atically generated. GUID={6388333<br>Sum Compor<br>User Valu<br>4.23745E-06 Ib/h<br>Ib/h<br>atically generated. GUID={51B0EE<br>Sum Compor<br>User Valu<br>2.28952E-07 ton/yr<br>ton/yr<br>atically generated. GUID={55E106<br>Sum Compor<br>User Valu<br>3.34022E-07 ton/yr<br>ton/yr | AAB8B-4092-A4D0-1E7AE<br>Pent Flow/Frac.192<br>Upper Bound<br>* Enforce Bounds<br>06-A063-4115-9274-E1D151<br>06-A063-4115-9274-E1D151<br>Upper Bound<br>* Enforce Bounds<br>91-B7DA-4FAA-9B9E-0B68E<br>Pent Flow/Frac.194<br>Upper Bound<br>* Enforce Bounds<br>Physical States of the second secon                                                                                                                                                                                                                                                                                                                                                 | D13AEE9}    | Ib/h<br>False<br>ton/yr<br>False           |  |  |  |  |

<sup>\*</sup> User Specified Values ? Extrapolated or Approximate Values

|                                      |                                                                                                            | User Valu                      | e Sets Report           |              |                    |  |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|--------------|--------------------|--|--|--|--|
| Client Name:                         | ICEnergy                                                                                                   | eeen Chatien                   |                         | Job: Pipelin | ne Liquids A18-A20 |  |  |  |  |
| Location:                            | Ceredo Compre                                                                                              | ssor Station                   |                         | -            |                    |  |  |  |  |
|                                      |                                                                                                            |                                |                         |              |                    |  |  |  |  |
| ThisUser Value Set                   | ThisUser Value Set wasprogrammatically generated. GUID={75C56AB5-55B0-40BE-BD77-0FEA32ACB487}              |                                |                         |              |                    |  |  |  |  |
|                                      |                                                                                                            | Sum Compo                      | nent Flow/Frac 195      |              |                    |  |  |  |  |
|                                      |                                                                                                            | User Vali                      | ue [CompSum]            |              |                    |  |  |  |  |
| * Parameter                          |                                                                                                            | 0.0046228 lb/h                 | UpperBound              |              | lb/h               |  |  |  |  |
| LowerBound                           |                                                                                                            | lb/h                           | * Enforce Bounds        |              | False              |  |  |  |  |
|                                      |                                                                                                            |                                |                         |              |                    |  |  |  |  |
|                                      |                                                                                                            |                                |                         |              |                    |  |  |  |  |
|                                      |                                                                                                            | Sum Compo                      | nent Flow/Frac.196      |              |                    |  |  |  |  |
|                                      |                                                                                                            | User Val                       | ue [CompSum]            |              |                    |  |  |  |  |
| * Parameter                          |                                                                                                            | 5.22722E-08 lb/h               | Upper Bound             |              | lb/h               |  |  |  |  |
| Lower Bound                          |                                                                                                            | lb/h                           | * Enforce Bounds        |              | False              |  |  |  |  |
| <b>Remarks</b><br>ThisUser Value Set | Remarks<br>This User Value Set was programmatically generated. GUID={CA38BC43-757A-43DF-B7AE-5B8482D705C9} |                                |                         |              |                    |  |  |  |  |
|                                      |                                                                                                            | Sum Compo                      | nent Flow/Frac.197      |              |                    |  |  |  |  |
|                                      |                                                                                                            | User Val                       | ue [CompSum]            |              |                    |  |  |  |  |
| * Parameter                          |                                                                                                            | 7.62607E-08 lb/h               | Upper Bound             |              | lb/h               |  |  |  |  |
| LowerBound                           |                                                                                                            | lb/h                           | * Enforce Bounds        |              | False              |  |  |  |  |
|                                      |                                                                                                            |                                |                         |              |                    |  |  |  |  |
| Remarks<br>ThisUser Value Set        | wasprogramma                                                                                               | tically generated. GUID={D1DB1 | 1B0-87F0-46EA-90A6-6AC7 | 3B0D6340}    |                    |  |  |  |  |

Page 1 of 7

|                         |        |             |                   | Recoveri     | es Report      |              |               |          |                |
|-------------------------|--------|-------------|-------------------|--------------|----------------|--------------|---------------|----------|----------------|
| Client Name:            | TCEner | gy<br>Gamma | eren Otetien      |              |                |              | Job: Pipeline | Liquids  | A18-A20        |
| Location:               | Ceredo | Compre      | essor Station     |              |                |              |               |          |                |
|                         |        |             |                   |              |                |              |               |          |                |
|                         | •      |             | Compo             | nont Pocov   | orios - Proio  | et Inlote    | <u> </u>      |          | Status: Solved |
|                         |        |             |                   |              |                |              | )<br>Duciest  |          |                |
|                         |        |             | Recovery Stre     | eam Data So  | Durce - All Ir | nets in F    | roject        |          |                |
| Flowsh                  | eet    |             | PStream           | n            | FI             | owsheet      |               |          | PStream        |
| Pipeline L              | iquias |             | Gas Sam           | pie          | Pipe           |              | 15            |          | LiquidsSample  |
|                         |        |             |                   |              |                |              |               |          |                |
| Composition Desi        | _      |             | Malar             | Parar        | neters         | Onter        |               | Ctre     |                |
| Composition Bas         | S      |             | worarriow         |              | Summation      | Option       |               | Strea    | amsand         |
| Calculate Ratios        |        |             | Falso             |              | Atomic Basi    | c            |               | Sui      | False          |
| Carculate Matios        |        |             | 1 4130            |              | Atomic Das     | 3            |               |          | 1 0130         |
|                         |        |             |                   | Tabula       | tod Data       |              |               |          |                |
|                         |        |             |                   |              |                | -            |               |          |                |
|                         |        | Рір         | eline Liquids:Gas | Pipeline Liq | uids:Liquids   | Sur          | nmary Table   |          |                |
| Index                   |        |             | Ibmol/h           | San          | ol/h           |              | lbmol/b       |          |                |
| Carbon Dioxid           | de     |             | 1.7036E-05        | 1.011        | 0              |              | 1.7036E-0     | )5       |                |
| Nitrogen                |        |             | 2.05064E-05       |              | 0              |              | 2.05064E-     | 05       |                |
| Methane                 |        |             | 0.00347845        |              | 0              |              | 0.0034784     | 45       |                |
| Ethane                  |        |             | 0.000469142       |              | 0              |              | 0.00046914    | 42       |                |
| Propane                 |        |             | 1.4222E-05        |              | 0              |              | 1.4222E-0     | )5       |                |
| i-Butane                |        |             | 8.60606E-07       |              | 0              |              | 8.60606E-0    | 07       |                |
| n-Butane                |        |             | 1.33694E-06       |              | 0              |              | 1.33694E-     | J6<br>17 |                |
| n-Pentane               |        |             | 2 842F-07         |              | 0              |              | 2 842F-0      | )7<br>)7 |                |
| i-Hexane                |        |             | 0                 |              | 0              |              | 2.0422        | 0        |                |
| Heptane                 |        |             | 0                 |              | 0              |              |               | 0        |                |
| Octane                  |        |             | 0                 |              | 0              |              |               | 0        |                |
| Nonane                  |        |             | 0                 |              | 0              |              |               | 0        |                |
| Benzene                 |        |             | 0                 |              | 0              |              |               | 0        |                |
| I oluene                | ^      |             | 0                 |              | 0              |              |               | 0        |                |
| Ethylbenzen<br>m-Xylene | e      |             | 0                 |              | 0              |              |               | 0        |                |
| n-Hexane                |        |             | 5.88414E-07       |              | 0              |              | 5.88414E-     | 07       |                |
| 2,2,4-Trimethylpe       | ntane  |             | 0                 |              | 0              |              |               | 0        |                |
| Neopentane              | ;      |             | 0                 |              | 0              |              |               | 0        |                |
| DecanesPlu              | S      |             | 0                 |              | 0              |              |               | 0        |                |
| Water                   |        |             | 0                 |              | 0              |              |               | 0        |                |
| Helium                  |        |             | 0                 |              | 0              |              |               | 0        |                |
|                         |        |             | 0                 |              | 0              |              |               | 0        |                |
|                         | le     |             | 0                 |              | 0 156975       |              | 0 15697       | 75       |                |
| Total                   | 10     |             | 0.00400282        |              | 0.156975       |              | 0.16097       | 78       |                |
|                         |        |             |                   |              |                |              |               |          |                |
| Remarks                 |        |             |                   |              |                |              |               |          |                |
|                         |        |             |                   |              |                |              |               |          |                |
|                         |        |             | Compon            | ent Recove   | ries - Projec  | t Outlet     | S             |          | Status: Solved |
|                         |        |             | Recovery Stre     | am Data So   |                | Itletsin     | Project       |          |                |
| Flowsh                  | eet    |             | PStream           | n            |                | owsheet      |               |          | PStream        |
| Pipeline L              | iquids |             | SalesG            | as           | Pipe           | eline Liquid | ls            |          | TankLiquids    |
| Pipeline L              | iquids |             | TankFla           | sh           |                | 1-1-0        |               |          | 11.1.1         |
| •                       | ·      |             |                   |              | •<br>          |              |               |          |                |
|                         |        |             |                   | Parar        | neters         |              |               |          |                |
| Composition Basi        | S      |             | MolarFlow         |              | Summation      | Option       |               | Strea    | amsand         |
|                         |        |             |                   |              |                |              |               | Sun      | nmation        |
| Calculate Ratios        |        |             | False             |              | Atomic Basi    | S            |               |          | False          |
|                         |        |             |                   |              |                |              |               |          |                |

|                  |          |                        | Recoveri           | es Report                 |                     |           |                |
|------------------|----------|------------------------|--------------------|---------------------------|---------------------|-----------|----------------|
|                  |          |                        |                    |                           |                     |           |                |
| Client Name:     | TCEnerg  | IY                     |                    |                           | Job: Pipeli         | ne Liquid | sA18-A20       |
| Location:        | Ceredo C | compressor Station     |                    |                           |                     |           |                |
|                  |          |                        |                    |                           |                     |           |                |
|                  |          |                        | Tabada             |                           |                     |           |                |
|                  |          | Disclined invide Octor | Tabula             |                           | Disatis di sui da 7 |           | 0              |
| Index            |          | Gas                    | Fipeline Li<br>Fla | quids:iank<br>ish<br>ol/b | Liquids             | anĸ       |                |
| Carbon Dioxi     | de       | IBIII0//II             |                    | 60283E-06                 | 7 43317             | E-06      | 1 7036E-05     |
| Nitrogen         |          |                        | 1                  | .90265E-05                | 1.47996             | E-06      | 2.05064E-05    |
| Methane          |          |                        |                    | 0.00282028                | 0.00065             | 8168      | 0.00347845     |
| Ethane           |          |                        | 0                  | .000179022                | 0.00029             | 9012      | 0.000469142    |
| Propane          |          |                        |                    | 1.9439E-06                | 1.22781             | E-05      | 1.4222E-05     |
| i-Butane         |          |                        | 5                  | .14445E-08                | 8.09162             | E-07      | 8.60606E-07    |
| n-Butane         |          |                        | 5                  | .53256E-08                | 1.28162             | E-06      | 1.33694E-06    |
| i-Pentane        |          |                        | 5                  | .70164E-09                | 3.86575             | E-07      | 3.92276E-07    |
| n-Pentane        | •        |                        |                    | 3.0496E-09                | 2.81151             | E-07      | 2.842E-07      |
| I-Hexane         |          |                        |                    | 0                         |                     | 0         | 0              |
|                  |          |                        |                    | 0                         |                     | 0         | 0              |
| Nonane           |          |                        | 1                  | <u>0</u>                  |                     | 0         | 0              |
| Benzene          |          |                        |                    | 0                         |                     | 0         | 0              |
| Toluene          |          |                        |                    | 0                         |                     | 0         | 0              |
| Ethylbenzer      | ne       |                        |                    | 0                         |                     | 0         | 0              |
| m-Xylene         |          |                        |                    | 0                         |                     | 0         | 0              |
| n-Hexane         |          |                        | 2                  | .47216E-09                | 5.85942             | E-07      | 5.88414E-07    |
| 2,2,4-Trimethylp | entane   |                        |                    | 0                         |                     | 0         | 0              |
| Neopentan        | е        |                        |                    | 0                         |                     | 0         | 0              |
| DecanesPlu       | us       |                        |                    | 0                         |                     | 0         | 0              |
| Water            |          |                        |                    | 0                         |                     | 0         | 0              |
| Hellum           |          |                        |                    | 0                         |                     | 0         | 0              |
| - Hydrogen       |          |                        |                    | 0                         |                     | 0         | 0              |
|                  | nle      |                        | 0                  | 000128082                 | 0 156               | 847       | 0 156975       |
| Total            | pic      |                        | 0                  | 00315808                  | 0.150               | 5782      | 0.160978       |
| - Otdi           |          |                        |                    | 0.00010000                | 0.10                | 102       | 0.100010       |
| Remarks          |          |                        |                    |                           |                     |           |                |
|                  | •        | Compoi                 | nent Recove        | ries - Projec             | ct Losses           |           | Status: Solved |
|                  |          | Reference Str          | eam Data So        | urce - All O              | utlets in Project   |           |                |
| Flowe            | heet     | PStraz                 | m                  |                           | lowsheet            |           | PStream        |
| Pipeline         | Liquids  | SalesC                 | ias                | Pipe                      | eline Liquids       |           | TankLiguids    |
| Pipeline         | Liquids  | TankFla                | ash                |                           |                     |           |                |
| •                | •        |                        |                    |                           |                     |           |                |
|                  |          | Recovery Str           | eam Data So        | purce - All II            | nlets in Project    | -         |                |
| Flows            | heet     | PStrea                 | m                  | FI                        | lowsheet            |           | PStream        |
| Pipeline         | Liquids  | GasSam                 | nple               | Pipe                      | eline Liquids       |           | LiquidsSample  |
|                  |          |                        |                    |                           |                     |           |                |
|                  |          |                        | Parar              | neters                    |                     |           |                |
| Composition Bas  | sis      | Molar Flow             |                    | Summation                 | Option              | Summa     | ation Only     |
| Calculate Ratios |          | False                  |                    | Atomic Bas                | is                  |           | False          |
|                  |          |                        |                    |                           |                     |           |                |
|                  |          |                        | Tabula             | ed Data                   |                     |           |                |
|                  |          | Summary Table          | lavala             |                           |                     |           |                |
| Index            |          | Ihmol/h                |                    |                           |                     |           |                |
| Carbon Dioxi     | de       | -3.3613F-21            |                    |                           |                     |           |                |
| Nitrogen         | -        | 0                      | 1                  |                           | 1                   |           |                |
| Methane          |          | 0                      |                    |                           |                     |           |                |
| Ethane           |          | -1.07562E-19           |                    |                           |                     |           |                |
| Propane          |          | -5.04195E-21           |                    |                           |                     |           |                |

Г

| Client Name:     TC Energy     Job: Pipeline Liquids A18-A       Location:     Ceredo Compressor Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Location: Ceredo Compressor Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -A20                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |
| Tabulated Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |
| Summary Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                |
| Index IDMOI/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |
| i-Pentane -1.05041E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                |
| n-Pentane -5.25203E-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                |
| i-Hexane 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                |
| Heptane 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |
| Octane 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                |
| Nonane 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                |
| Benzene 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |
| Toluene 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |
| Ethylbenzene 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |
| m-Xylene 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                |
| n-Hexane -2.10081E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |
| Z,Z,4-Inmenylpentane 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |
| Under Control |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |
| Hvdrogen 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                |
| Oxygen 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                |
| LiquidsSample -2.75358E-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                |
| Total -2.75358E-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                |
| Component Recoveries - Project Recoveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Status: Solved                                                                                                                                 |
| Reference Stream Data Source - All Inlets in Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |
| Flowsheet PStream Flowsheet PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PStream                                                                                                                                        |
| Flowsheet PStream Flowsheet PStream Flowsheet P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PStream                                                                                                                                        |
| Flow sheet         PStream         Flow sheet         P           Pipeline Liquids         Gas Sample         Pipeline Liquids         Liqui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PStream<br>uidsSample                                                                                                                          |
| Flowsheet         PStream         Flowsheet         P           Pipeline Liquids         Gas Sample         Pipeline Liquids         Liqui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PStream<br>uidsSample                                                                                                                          |
| Flowsheet         PStream         Flowsheet         P           Pipeline Liquids         Gas Sample         Pipeline Liquids         Liqui           Recovery Stream Data Source - All Outlets in Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PStream<br>uidsSample                                                                                                                          |
| Flowsheet         PStream         Flowsheet         P           Pipeline Liquids         Gas Sample         Pipeline Liquids         Liqui           Recovery Stream Data Source - All Outlets in Project         P           Flowsheet         PStream         Flowsheet         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PStream<br>uidsSample<br>PStream                                                                                                               |
| Flowsheet         PStream         Flowsheet         P           Pipeline Liquids         Gas Sample         Pipeline Liquids         Liqui           Recovery Stream Data Source - All Outlets in Project         P           Flowsheet         PStream         Flowsheet         P           Pipeline Liquids         Sales Gas         Pipeline Liquids         Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PStream<br>uidsSample<br>PStream<br>ankLiquids                                                                                                 |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTankPipeline LiquidsTank FlashFipeline LiquidsTank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PStream<br>uidsSample<br>PStream<br>ankLiquids                                                                                                 |
| Flow sheet     PStream     Flow sheet     P       Pipeline Liquids     Gas Sample     Pipeline Liquids     Liqui       Recovery Stream Data Source - All Outlets in Project       Flow sheet     PStream     Flow sheet     P       Pipeline Liquids     Sales Gas     Pipeline Liquids     Tank Flash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PStream<br>uidsSample<br>PStream<br>ankLiquids                                                                                                 |
| Flow sheet     PStream     Flow sheet     P       Pipeline Liquids     Gas Sample     Pipeline Liquids     Liqui       Recovery Stream Data Source - All Outlets in Project       Flow sheet     PStream     Flow sheet     P       Pipeline Liquids     Sales Gas     Pipeline Liquids     Tan       Pipeline Liquids     Tank Flash     P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PStream<br>uidsSample<br>PStream<br>ankLiquids                                                                                                 |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPParametersComposition BasisMolar FlowSummation OptionStreamsan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PStream<br>uids Sample<br>PStream<br>ank Liquids                                                                                               |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPParametersComposition BasisMolar FlowSummation OptionSummationSummationSummation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PStream<br>uids Sample<br>PStream<br>ankLiquids<br>and<br>tion                                                                                 |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPipeline LiquidsTanParametersComposition BasisMolar FlowSummation OptionStreams and SummationCalculate RatiosTrueAtomic BasisFal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PStream<br>uids Sample<br>PStream<br>ankLiquids<br>and<br>tion<br>alse                                                                         |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPipeline LiquidsTanComposition BasisMolar FlowSummation OptionStreams and SummationCalculate RatiosTrueAtomic BasisFal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PStream<br>uids Sample<br>PStream<br>ankLiquids<br>and<br>tion<br>alse                                                                         |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPipeline LiquidsTanComposition BasisMolar FlowSummation OptionStreams and<br>SummationCalculate RatiosTrueAtomic BasisFalTabulated Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PStream<br>uids Sample<br>PStream<br>ankLiquids<br>and<br>tion<br>alse                                                                         |
| Flow sheet     PStream     Flow sheet     P       Pipeline Liquids     Gas Sample     Pipeline Liquids     Liqui       Recovery Stream Data Source - All Outlets in Project       Flow sheet     PStream     Flow sheet     P       Pipeline Liquids     SalesGas     Pipeline Liquids     Tan       Pipeline Liquids     SalesGas     Pipeline Liquids     Tan       Pipeline Liquids     TankFlash     Parameters     Summation Option     Streamsan       Composition Basis     Molar Flow     Summation Option     Streamsan       Calculate Ratios     True     Atomic Basis     Fal       Tabulated Data       Pipeline Liquids:Sales     Pipeline Liquids:Tank     Pipeline Liquids:Tank     Sumation       V     %     %     %     %     %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table                                                       |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPipeline LiquidsTanComposition BasisMolar FlowSummation OptionStreams ar<br>SummaticCalculate RatiosTrueAtomic BasisFalTabulated DataPipeline Liquids:Sales<br>GasPipeline Liquids:Tank<br>FlashPipeline Liquids:Tank<br>LiquidsSIndex%%%%%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%                                                  |
| FlowsheetPStreamFlowsheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlowsheetPStreamFlowsheetPPipeline LiquidsSalesGasPipeline LiquidsTanPipeline LiquidsTankFlashPipeline LiquidsTanParametersComposition BasisMolar FlowSummation OptionStreams and Summation OptionSt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%<br>100<br>100                                    |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTankFlashParametersPComposition BasisMolar FlowSummation OptionStreams an<br>SummationCalculate RatiosTrueAtomic BasisFalTabulated DataPipeline Liquids:Sales<br>Gas<br>%Pipeline Liquids:Tank<br>Flash<br>%Pipeline Liquids:Tank<br>LiquidsPipeline Liquids:Tank<br>Sales<br>%Pipeline Liquids:Tank<br>LiquidsPipeline Liquids:Tank<br>LiquidsSIndex%%%%%SMethane92.78297.2170618.92131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%<br>100<br>100<br>100                             |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPipeline LiquidsTanOpposition BasisMolar FlowSummation OptionStreams and SummationCalculate RatiosTrueAtomic BasisFallTabulated DataPipeline Liquids:Sales<br>GasPipeline Liquids:Tank<br>FlashPipeline Liquids:Tank<br>LiquidsSIndex%%%92.78297.21706Methane92.78297.21706Methane81.078718.9213Ethane938.159561.840594.0594.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%<br>100<br>100<br>100<br>100                      |
| FlowsheetPStreamFlowsheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlowsheetPStreamFlowsheetPPipeline LiquidsSalesGasPipeline LiquidsTanPipeline LiquidsSalesGasPipeline LiquidsTanPipeline LiquidsTankFlashPComposition BasisMolar FlowSummation OptionStreams an<br>SummationCalculate RatiosTrueAtomic BasisFalTabulated DataPipeline Liquids:Sales<br>GasPipeline Liquids:Tank<br>FlashPipeline Liquids:Tank<br>LiquidsSIndex%%%%Carbon Dioxide56.367943.6321SNitrogen92.78297.21706MethaneMethane81.078718.9213EthanePropane13.668386.3317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%<br>100<br>100<br>100<br>100<br>100               |
| FlowsheetPStreamFlowsheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlowsheetPPipeline LiquidsSalesGasPipeline LiquidsTanPipeline LiquidsSalesGasPipeline LiquidsTanPipeline LiquidsTankFlashParametersComposition BasisMolar FlowSummation OptionStreamsanCalculate RatiosTrueAtomic BasisFalTabulated DataPipeline Liquids:Sales<br>GasPipeline Liquids:Tank<br>FlashPipeline Liquids:Tank<br>LiquidsSIndex%%%Carbon Dioxide56.367943.6321SNitrogen92.78297.21706Methane81.078718.9213Ethane38.159561.840586.33171.940223Propane13.668386.33175.977794.0223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%<br>100<br>100<br>100<br>100<br>100<br>100        |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsSales GasPipeline LiquidsTanPipeline LiquidsTank FlashPipeline LiquidsTanParametersComposition BasisMolar FlowSummation OptionStreamsauCalculate RatiosTrueAtomic BasisFalTabulated DataPipeline Liquids:Sales<br>GasPipeline Liquids:Tank<br>ShortPipeline Liquids:Tank<br>LiquidsSIndex%%%%Carbon Dioxide92.78297.21706SMethane81.078718.9213Ethane81.0787Ethane38.159561.8405SPropane13.668386.3317I-Butane5.977794.0223n-Butane4.1382295.8618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |
| Flow sheetPStreamFlow sheetPPipeline LiquidsGas SamplePipeline LiquidsLiquiRecovery Stream Data Source - All Outlets in ProjectFlow sheetPStreamFlow sheetPPipeline LiquidsSales GasPipeline LiquidsTarPipeline LiquidsSales GasPipeline LiquidsTarPipeline LiquidsTankFlashParametersSummation OptionStreams and SummationComposition BasisMolar FlowSummation OptionStreams and SummationSummationCalculate RatiosTrueAtomic BasisFalPipeline Liquids:Sales<br>GasPipeline Liquids:Tank<br>SummationSummationSIndex%%%%Carbon Dioxide56.367943.6321SNitrogen92.78297.21706Methane81.078718.9213Ethane38.159561.8405Propane13.668386.3317Propane4.1382295.86181.4534898.5465i-Pentane4.1382295.86181.4534898.5465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PStream<br>uids Sample<br>PStream<br>ank Liquids<br>and<br>tion<br>alse<br>Summary Table<br>%<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |

\* User Specified Values ? Extrapolated or Approximate Values ProMax 5.0.19263.0 Copyright © 2002-2019 BRE Group, Ltd.

|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  | Recoverie                                                                                 | es Report                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Client Name:                                                                                                                                                                                                                                                                                              | TCEnergy        | /                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                             | Job: Pipeli                                                                                                                                                                                                | ne Liqui                                                                                                                                                                               | dsA18-A20                                                                       |    |
| Location:                                                                                                                                                                                                                                                                                                 | Ceredo Co       | mpressor Station                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  | Tabulat                                                                                   | ed Data                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Index                                                                                                                                                                                                                                                                                                     |                 | Pipeline Liquids:Sales<br>Gas<br>%                                                                                                                                                                                                                                                               | Pipeline Lio<br>Fla<br>%                                                                  | quids:Tank<br>sh                                                                                                                                                                                                            | Pipeline Liquids:T<br>Liquids<br>%                                                                                                                                                                         | ank                                                                                                                                                                                    | Summary Table                                                                   |    |
| i-Hexane                                                                                                                                                                                                                                                                                                  |                 | 70                                                                                                                                                                                                                                                                                               |                                                                                           | ,                                                                                                                                                                                                                           | 70                                                                                                                                                                                                         |                                                                                                                                                                                        | 70                                                                              |    |
| Heptane                                                                                                                                                                                                                                                                                                   |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Octane                                                                                                                                                                                                                                                                                                    |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Nonane                                                                                                                                                                                                                                                                                                    |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Benzene                                                                                                                                                                                                                                                                                                   |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Toluene                                                                                                                                                                                                                                                                                                   |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Ethylbenzen                                                                                                                                                                                                                                                                                               | e               |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| m-Xylene                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            | 700                                                                                                                                                                                    |                                                                                 |    |
| n-Hexane                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           | 0.42014                                                                                                                                                                                                                     | 99.5                                                                                                                                                                                                       | 0799                                                                                                                                                                                   | 10                                                                              | 00 |
| 2,2,4-1 rimethylpe                                                                                                                                                                                                                                                                                        | entane          |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Neopentane<br>Decanes Plu                                                                                                                                                                                                                                                                                 | e<br>IS         |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Water                                                                                                                                                                                                                                                                                                     |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Helium                                                                                                                                                                                                                                                                                                    |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Hvdrogen                                                                                                                                                                                                                                                                                                  |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| Oxygen                                                                                                                                                                                                                                                                                                    |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
| LiquidsSamp                                                                                                                                                                                                                                                                                               | ble             |                                                                                                                                                                                                                                                                                                  |                                                                                           | 0.081594                                                                                                                                                                                                                    | 99.9                                                                                                                                                                                                       | 184                                                                                                                                                                                    | 1(                                                                              | 00 |
| Total                                                                                                                                                                                                                                                                                                     |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           | 1.96181                                                                                                                                                                                                                     | 98.0                                                                                                                                                                                                       | 382                                                                                                                                                                                    | 1(                                                                              | 00 |
|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                 |    |
|                                                                                                                                                                                                                                                                                                           |                 |                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                            | _                                                                                                                                                                                      |                                                                                 |    |
|                                                                                                                                                                                                                                                                                                           |                 | Component                                                                                                                                                                                                                                                                                        | Pacovarias                                                                                | - Pineline I                                                                                                                                                                                                                | iquids Inlats                                                                                                                                                                                              |                                                                                                                                                                                        | Status Solved                                                                   |    |
|                                                                                                                                                                                                                                                                                                           |                 | Component                                                                                                                                                                                                                                                                                        | Recoveries                                                                                | - Pipeline L                                                                                                                                                                                                                | iquids Inlets                                                                                                                                                                                              |                                                                                                                                                                                        | Status: Solved                                                                  | 1  |
|                                                                                                                                                                                                                                                                                                           |                 | Component<br>Recovery Strea                                                                                                                                                                                                                                                                      | Recoveries<br>m Data Sou                                                                  | - Pipeline L<br>rce - All Inle                                                                                                                                                                                              | iquids Inlets<br>ets in Flowsheet                                                                                                                                                                          |                                                                                                                                                                                        | Status: Solved                                                                  | 1  |
| Flowsh                                                                                                                                                                                                                                                                                                    | neet            | Component<br>Recovery Strea<br>PStrear                                                                                                                                                                                                                                                           | Recoveries<br>m Data Sou<br>n                                                             | - Pipeline L<br>rce - All Inle                                                                                                                                                                                              | iquids Inlets<br>ets in Flowsheet                                                                                                                                                                          |                                                                                                                                                                                        | Status: Solved                                                                  |    |
| Flowsh<br>Pipeline L                                                                                                                                                                                                                                                                                      | neet<br>Liquids | Component<br>Recovery Strea<br>PStream<br>Gas Sam                                                                                                                                                                                                                                                | Recoveries<br>m Data Sou<br>n<br><sup>n</sup>                                             | <mark>- Pipeline L</mark><br>rce - All Inle<br>Fle<br>Pipe                                                                                                                                                                  | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids                                                                                                                                               |                                                                                                                                                                                        | Status Solved<br>PStream<br>Liquids Sample                                      | 2  |
| Flowsh<br>Pipeline L                                                                                                                                                                                                                                                                                      | neet<br>Liquids | Component<br>Recovery Strea<br>PStream<br>Gas Sam                                                                                                                                                                                                                                                | Recoveries<br>m Data Sou<br>n<br><sup>n</sup>                                             | <mark>- Pipeline L</mark><br>rce - All Inle<br>Fle<br>Pipe                                                                                                                                                                  | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids                                                                                                                                               |                                                                                                                                                                                        | Status: Solved<br>PStream<br>LiquidsSample                                      |    |
| Flowsh<br>Pipeline L                                                                                                                                                                                                                                                                                      | neet<br>Liquids | Component<br>Recovery Strea<br>PStream<br>Gas Sam                                                                                                                                                                                                                                                | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran                                             | - Pipeline L<br>rce - All Inle<br>Fie<br>Pipe                                                                                                                                                                               | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids                                                                                                                                               |                                                                                                                                                                                        | Status: Solved<br>PStream<br>LiquidsSample                                      |    |
| Flowsh<br>Pipeline L<br>Composition Bas                                                                                                                                                                                                                                                                   | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Molar Flow                                                                                                                                                                                                                                  | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran                                             | - Pipeline L<br>rce - All Inle<br>Fie<br>Pipe<br>neters<br>Summation                                                                                                                                                        | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>eline Liquids<br>Option                                                                                                                                    | St                                                                                                                                                                                     | Status: Solved<br>PStream<br>LiquidsSample                                      |    |
| Flowsh<br>Pipeline L<br>Composition Bas                                                                                                                                                                                                                                                                   | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Molar Flow                                                                                                                                                                                                                                  | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran                                             | - Pipeline L<br>rce - All Inle<br>Fle<br>Pipe<br>neters<br>Summation                                                                                                                                                        | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>eline Liquids<br>Option                                                                                                                                    | St                                                                                                                                                                                     | Status: Solved<br>PStream<br>Liquids Sample<br>reamsand<br>Summation            |    |
| Flowsh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios                                                                                                                                                                                                                                               | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Molar Flow<br>False                                                                                                                                                                                                                         | Recoveries<br>m Data Sou<br>n<br>Dle<br>Paran                                             | - Pipeline L<br>rce - All Inle<br>Fle<br>Pipe<br>neters<br>Summation<br>Atomic Basi                                                                                                                                         | <mark>iquids Inlets sets in Flowsheet ow sheet seline Liquids Option s</mark>                                                                                                                              | Si                                                                                                                                                                                     | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flowsh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios                                                                                                                                                                                                                                               | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Molar Flow<br>False                                                                                                                                                                                                                         | Recoveries<br>m Data Sou<br>ole<br>Paran<br>Tabulat                                       | - Pipeline L<br>rce - All Inle<br>File<br>Pipe<br>Deters<br>Summation<br>Atomic Basi                                                                                                                                        | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>eline Liquids<br>Option<br>s                                                                                                                              | Si                                                                                                                                                                                     | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios                                                                                                                                                                                                                                              | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Molar Flow<br>False<br>Pipeline Liquids:Gas                                                                                                                                                                                                 | Recoveries<br>m Data Sou<br>ole<br>Paran<br>Tabulat<br>Pipeline Liau                      | - Pipeline L<br>rce - All Inle<br>Fle<br>Pipe<br>Deters<br>Summation<br>Atomic Basi<br>ed Data<br>uids:Liquids                                                                                                              | iquids Inlets<br>ets in Flowsheet<br>eline Liquids<br>Option<br>s                                                                                                                                          | Si                                                                                                                                                                                     | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flowsh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios                                                                                                                                                                                                                                               | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample                                                                                                                                                                                       | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam | - Pipeline L<br>rce - All Inle<br>Fle<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>ids:Liquids                                                                                                               | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>eline Liquids<br>Option<br>s<br>Summary Table                                                                                                             | St                                                                                                                                                                                     | Status: Solved<br>PStream<br>Liquids Sample<br>treams and<br>Summation<br>False |    |
| Flowsh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios                                                                                                                                                                                                                                               | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h                                                                                                                                                                            | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Paran<br>Fipeline Liqu<br>Sam            | - Pipeline L<br>rce - All Inle<br>File<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h                                                                                              | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>eline Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h                                                                                                  | St                                                                                                                                                                                     | Status: Solved<br>PStream<br>Liquids Sample<br>treams and<br>Summation<br>False |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios                                                                                                                                                                                                                                              | neet<br>Liquids | Component<br>Recovery Strea<br>PStrear<br>Gas Sam<br>Gas Sam<br>Holar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05                                                                                                                                                   | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Paran<br>Fipeline Liqu<br>Sam            | - Pipeline L<br>rce - All Inle<br>File<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h                                                                                              | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>eline Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036                                                                                         | St<br>S<br>E-05                                                                                                                                                                        | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios                                                                                                                                                                                                                                              | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05                                                                                                                                              | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Paran<br>Fipeline Liqu<br>Sam            | - Pipeline L<br>rce - All Inle<br>Fine<br>Pipe<br>Neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0                                                                                    | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064                                                                               | St<br>St<br>E-05<br>E-05                                                                                                                                                               | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios                                                                                                                                                                                                                          | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845                                                                                                                                | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Paran<br>Fipeline Liqu<br>Sam<br>Ibmo    | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>Neters<br>Summation<br>Atomic Bas<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0                                                                                      | iquids Inlets<br>ets in Flowsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347                                                                               | St<br>St<br>E-05<br>E-05<br>7845                                                                                                                                                       | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios                                                                                                                                                                                                                          | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142                                                                                                                 | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0                                                                                | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347<br>d. 4222                                                         | 51<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>7<br>8<br>45<br>5<br>7<br>8<br>45<br>5<br>7<br>8<br>45<br>5<br>7<br>8<br>45<br>5<br>7<br>8<br>45<br>5<br>7<br>8<br>5 | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios                                                                                                                                                                                                                          | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8 60665 0 7                                                                                    | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0                                                                           | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221                                             | 51<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                           | Status: Solved<br>PStream<br>Liquids Sample<br>reams and<br>Summation<br>False  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane                                                                                                                                                 | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-05                                                                     | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0                                                                      | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606                                             | 51<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                           | Status: Solved                                                                  |    |
| Flowsh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane                                                                                                                                      | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07                                                      | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                       | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276                      | 51<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                           | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Ethane<br>- Propane<br>i-Butane<br>n-Butane<br>n-Pentane<br>n-Pentane                                                                                               | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07                                         | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Basi<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                   | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.842             | 51<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                       | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>i-Pentane                                                                                             | de              | Component<br>Recovery Strea<br>PStrear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0                                    | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Bas<br>ed Data<br>nids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421             | 51<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                           | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Ethane<br>- Propane<br>- Butane<br>- Butane<br>- Pentane<br>- Pentane<br>- Pentane<br>- Pentane<br>- Pentane<br>- Pentane<br>- Pentane<br>- Pentane<br>- Pentane    | de              | Component<br>Recovery Strea<br>PStream<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0                               | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>Neters<br>Summation<br>Atomic Bas<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421             | E-05<br>E-05<br>E-05<br>7845<br>2142<br>E-05<br>E-07<br>E-06<br>E-07<br>E-07<br>0<br>0                                                                                                 | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Ethane<br>- Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane                                                             | de              | Component<br>Recovery Strea<br>9Strear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0                          | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Bas<br>ed Data<br>nids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>owsheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421  | E-05<br>E-05<br>E-05<br>7845<br>2142<br>E-05<br>E-07<br>E-06<br>E-07<br>E-07<br>0<br>0<br>0                                                                                            | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane                                                               | de              | Component<br>Recovery Strea<br>Oss Samp<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0                         | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Bas<br>ed Data<br>iids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421            | E-05<br>E-05<br>E-05<br>7845<br>2-05<br>E-07<br>E-06<br>E-07<br>E-07<br>E-07<br>0<br>0<br>0<br>0<br>0                                                                                  | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene                                        | de              | Component<br>Recovery Strea<br>9Strear<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0<br>0                     | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Bas<br>ed Data<br>nids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>line Liquids<br>Option<br>S<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421 | E-05<br>E-05<br>E-05<br>7845<br>2-05<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>0<br>0<br>0<br>0<br>0                                                                                  | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>Octane<br>Nonane<br>Benzene<br>Toluene                                                   | de              | Component<br>Recovery Strea<br>Oss Samp<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0<br>0<br>0<br>0          | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Bas<br>ed Data<br>nids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421 | E-05<br>E-05<br>E-05<br>7845<br>2-05<br>E-07<br>E-06<br>E-07<br>E-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen                        | de              | Component<br>Recovery Strea<br>Oss Samp<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0     | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Bas<br>ed Data<br>nids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>line Liquids<br>Option<br>S<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421 | E-05<br>E-05<br>E-05<br>7845<br>2-05<br>E-07<br>E-06<br>E-07<br>E-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                      | Status: Solved                                                                  |    |
| Flow sh<br>Pipeline L<br>Composition Bas<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene | de              | Component<br>Recovery Strea<br>9Stream<br>Gas Samp<br>Molar Flow<br>False<br>Pipeline Liquids:Gas<br>Sample<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Recoveries<br>m Data Sou<br>n<br>Die<br>Paran<br>Tabulat<br>Pipeline Liqu<br>Sam<br>Ibmo  | - Pipeline L<br>rce - All Inle<br>Fin<br>Pipe<br>neters<br>Summation<br>Atomic Bas<br>ed Data<br>nids:Liquids<br>ple<br>ol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | iquids Inlets<br>ets in Flowsheet<br>ow sheet<br>line Liquids<br>Option<br>s<br>Summary Table<br>Ibmol/h<br>1.7036<br>2.05064<br>0.00347<br>0.000463<br>1.42221<br>8.60606<br>1.33694<br>3.92276<br>2.8421 | E-05<br>E-05<br>E-05<br>7845<br>2-05<br>E-07<br>E-06<br>E-07<br>E-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                         | Status: Solved                                                                  |    |

|                                                                                                                                                                                                                                                                                              |            |                                | Recoverie                                                                                                                                                    | es Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Name:                                                                                                                                                                                                                                                                                 | TCEnergy   |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Job: Pipelir                                                                                                                                                | neliqu                                                                                                                                     | idsA18-A20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Location:                                                                                                                                                                                                                                                                                    | Ceredo Com | pressor Station                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            | ·                              |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            |                                | Tabulat                                                                                                                                                      | ed Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Index                                                                                                                                                                                                                                                                                        | F          | Pipeline Liquids:Gas<br>Sample | Pipeline Liqu<br>Sam                                                                                                                                         | uids:Liquids<br>ple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Summary Table                                                                                                                                               | 9                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.2.4-Trimethylpe                                                                                                                                                                                                                                                                            | entane     | n/iomai                        | mai                                                                                                                                                          | <b>01/n</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ibmoi/n                                                                                                                                                     | 0                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Neopentan                                                                                                                                                                                                                                                                                    | e          | 0                              |                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | Ő                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DecanesPlu                                                                                                                                                                                                                                                                                   | us         | 0                              |                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | 0                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water                                                                                                                                                                                                                                                                                        |            | 0                              |                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | 0                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hellum                                                                                                                                                                                                                                                                                       |            | 0                              |                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | 0                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oxygen                                                                                                                                                                                                                                                                                       |            | 0                              |                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | 0                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LiquidsSam                                                                                                                                                                                                                                                                                   | ple        | 0                              |                                                                                                                                                              | 0.156975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.156                                                                                                                                                       | 975                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total                                                                                                                                                                                                                                                                                        |            | 0.00400282                     |                                                                                                                                                              | 0.156975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.160                                                                                                                                                       | 978                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bomarka                                                                                                                                                                                                                                                                                      |            |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Remarks                                                                                                                                                                                                                                                                                      |            |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            | Otatus Oshusil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              |            | Component F                    | Recoveries -                                                                                                                                                 | Pipeline Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quids Outlets                                                                                                                                               |                                                                                                                                            | Status: Solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              |            | Recovery Stream                | n Data Sour                                                                                                                                                  | ce - All Outl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lets in Flowsheet                                                                                                                                           |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Flowsh                                                                                                                                                                                                                                                                                       | heet       | PStrear                        | n                                                                                                                                                            | Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | owsheet                                                                                                                                                     |                                                                                                                                            | PStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pipeline I<br>Dipeline                                                                                                                                                                                                                                                                       | Liquids    | SalesGa                        | as                                                                                                                                                           | Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eline Liquids                                                                                                                                               |                                                                                                                                            | TankLiquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pipeline                                                                                                                                                                                                                                                                                     | Liquids    | Тапкта                         | SI                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            |                                | Davar                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Composition Bas                                                                                                                                                                                                                                                                              | 216        | MolarElow                      | Paran                                                                                                                                                        | neters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ontion                                                                                                                                                      |                                                                                                                                            | treams and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Composition Bas                                                                                                                                                                                                                                                                              | 33         | Worarriow                      |                                                                                                                                                              | Summation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Option                                                                                                                                                      | <u>,</u>                                                                                                                                   | Summation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Calculate Ratios                                                                                                                                                                                                                                                                             |            | False                          |                                                                                                                                                              | Atomic Basi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                           |                                                                                                                                            | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                              |            |                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            |                                | Tabulat                                                                                                                                                      | od Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              | Р          | inalina Liquids Salas          |                                                                                                                                                              | Eu Dala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                              |            | ipenne Liquius.Sales           | Pipeline Lie                                                                                                                                                 | quids:Tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pipeline Liquids:T                                                                                                                                          | ank                                                                                                                                        | Summary Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Index                                                                                                                                                                                                                                                                                        |            | Gas                            | Pipeline Lie<br>Fla                                                                                                                                          | quids:Tank<br>sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pipeline Liquids:T<br>Liquids                                                                                                                               | ank                                                                                                                                        | Summary Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 3000010001                                                                                                                                                                                                                                                                                 | da         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm                                                                                                                                   | quids:Tank<br>sh<br>ol/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pipeline Liquids:T<br>Liquids<br>Ibmol/h                                                                                                                    | ank                                                                                                                                        | Summary Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nitrogen                                                                                                                                                                                                                                                                                     | de         | Gas<br>Ibmol/h                 | Pipeline Lic<br>Fla<br>Ibm<br>9                                                                                                                              | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>90265E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1 47998                                                                                              | ank<br>-06                                                                                                                                 | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nitrogen                                                                                                                                                                                                                                                                                     | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1                                                                                                                         | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>).00282028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658                                                                                  | ank<br>E-06<br>E-06                                                                                                                        | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nitrogen<br>Methane<br>Ethane                                                                                                                                                                                                                                                                | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>(                                                                                                                    | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029                                                                       | ank<br>E-06<br>E-06<br>3168<br>0012                                                                                                        | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nitrogen<br>Methane<br>Ethane<br>Propane                                                                                                                                                                                                                                                     | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>(<br>0.                                                                                                              | eu bata<br>quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>0.00282028<br>000179022<br>1.9439E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781                                                            | ank<br>-06<br>-06<br>3168<br>-012<br>-05                                                                                                   | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane                                                                                                                                                                                                                                         | de         | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>(<br>0<br>0                                                                                                          | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.52256.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162                                                 | ank<br>-06<br>-06<br>3168<br>-012<br>-05<br>-07                                                                                            | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>4.90204E.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane                                                                                                                                                                                                                             | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>0<br>0<br>0<br>0<br>5<br>5<br>5<br>5<br>5                                                                            | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.227811<br>8.09162<br>1.28162<br>3.86575                          | ank<br>-06<br>-06<br>3168<br>012<br>-05<br>-07<br>-06<br>-07                                                                               | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane                                                                                                                                                                                                                | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>1<br>0<br>0<br>0<br>5<br>5<br>5<br>5<br>5                                                                            | quids:Tank<br>sh<br>60/h<br>90265E-05<br>0.00282028<br>000179022<br>1.9439E-06<br>1.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>3168<br>012<br>-05<br>-07<br>-06<br>-07                                                                               | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane                                                                                                                                                                                       | de         | Gas<br>Ibmol/h                 | Pipeline Lid<br>Fla<br>Ibm<br>9<br>1<br>1<br>0<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                        | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.0.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.865751<br>2.81151               | ank<br>-06<br>-06<br>3168<br>012<br>-05<br>-07<br>-06<br>-07<br>-06<br>-07<br>-07<br>0                                                     | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane                                                                                                                                                                            | de         | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>0<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                          | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>-06<br>-07<br>-05<br>-07<br>-06<br>-07<br>-07<br>0<br>0<br>0                                                          | Summary Table Ibmol/h 1.7036E-05 2.05064E-05 0.00347845 0.000469142 1.4222E-05 8.60606E-07 1.33694E-06 3.92276E-07 2.842E-07 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane                                                                                                                                                                               | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>(<br>0<br>0<br>5<br>5<br>5<br>5<br>5                                                                                 | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.865751<br>2.81151               | ank<br>-06<br>-06<br>-06<br>-07<br>-05<br>-07<br>-06<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0                                         | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.00347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane                                                                                                                                                                     | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>(<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5                                                                            | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.865751<br>2.81151               | ank<br>-06<br>-06<br>-07<br>-05<br>-07<br>-05<br>-07<br>-06<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Summary Table<br>Ibmol/h<br>1.7036E-05<br>2.05064E-05<br>0.000347845<br>0.000469142<br>1.4222E-05<br>8.60606E-07<br>1.33694E-06<br>3.92276E-07<br>2.842E-07<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene                                                                                                                                  | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>(<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5                                                                            | quids:Tank<br>sh<br>60/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>-07<br>-05<br>-07<br>-05<br>-07<br>-06<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Summary Table Ibmol/h 1.7036E-05 2.05064E-05 0.00347845 0.000469142 1.4222E-05 8.60606E-07 1.33694E-06 3.92276E-07 2.842E-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer                                                                                                                   | ide        | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>(<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                  | eu Data<br>quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>-07<br>-05<br>-07<br>-07<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        | Summary Table Ibmol/h 1.7036E-05 2.05064E-05 0.00347845 0.000469142 1.4222E-05 8.60606E-07 1.33694E-06 3.92276E-07 2.842E-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene                                                                                                                   | de         | Gas<br>Ibmol/h                 | Pipeline Lie<br>Fla<br>Ibm<br>9<br>1<br>(<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                     | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.00025<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                            | ank<br>-06<br>-06<br>-07<br>-05<br>-07<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0               | Summary Table  Ibmol/h  1.7036E-05  2.05064E-05  0.00347845  0.000469142  1.4222E-05  8.60606E-07  1.33694E-06  3.92276E-07  2.842E-07  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene<br>n-Hexane                                                                                                       | de         | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>1<br>(0<br>0.<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>2<br>5<br>5<br>2<br>5<br>2<br>5         | quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>3168<br>012<br>-05<br>-07<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | Summary Table  Ibmol/h  1.7036E-05  2.05064E-05  0.00347845  0.000469142  1.4222E-05  8.60606E-07  1.33694E-06  3.92276E-07  2.842E-07  0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylp                                                                                  | ide        | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>1<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>2<br>5<br>2<br>5<br>2<br>5<br>2                | Europatia           quids:Tank           sh           ol/h           .60283E-06           .90265E-05           .00282028           000179022           1.9439E-06           .14445E-08           .53256E-08           .70164E-09           .00496E-09           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                               | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.227811<br>8.09162<br>1.28162<br>3.86575<br>2.811511              | ank<br>-06<br>-06<br>3168<br>012<br>-05<br>-07<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | Summary Table Ibmol/h 1.7036E-05 2.05064E-05 0.00347845 0.000469142 1.4222E-05 8.60606E-07 1.33694E-06 3.92276E-07 2.842E-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylp<br>Neopentan                                                          | ide        | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>1<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>2<br>2<br>2<br>2                               | Europatia           quids:Tank           sh           ol/h           .60283E-06           .90265E-05           .00282028           000179022           1.9439E-06           .14445E-08           .53256E-08           .70164E-09           .0496E-09           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                    | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>3168<br>012<br>-05<br>-07<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | Summary Table Ibmol/h 1.7036E-05 2.05064E-05 0.00347845 0.000469142 1.4222E-05 8.60606E-07 1.33694E-06 3.92276E-07 2.842E-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene<br>2,2,4-Trimethylpp<br>Neopentan<br>DecanesPlu                                                       | ide        | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>1<br>(0<br>0.<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>2<br>2<br>2<br>2    | Quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.479961<br>0.000653<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.811511<br>5.859421  | ank<br>-06<br>-06<br>3168<br>012<br>-07<br>-07<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | Summary Table Ibmol/h 1.7036E-05 2.05064E-05 0.00347845 0.000469142 1.4222E-05 8.60606E-07 1.33694E-06 3.92276E-07 2.842E-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylp<br>Neopentan<br>DecanesPlu<br>Water<br>Helium                                     | de         | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>1<br>(0<br>0.<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>2<br>2<br>2<br>2                        | Cu Data           quids:Tank           sh           ol/h           .60283E-06           .90265E-05           .00282028           000179022           1.9439E-06           .14445E-08           .53256E-08           .70164E-09           .0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0         | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.479961<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.865751<br>2.811511<br>5.859421 | ank<br>-06<br>-06<br>3168<br>0012<br>-07<br>-07<br>-07<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Summary Table           Ibmol/h           1.7036E-05           2.05064E-05           0.00347845           0.000469142           1.4222E-05           8.60606E-07           1.33694E-06           3.92276E-07           2.842E-07           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene<br>n-Hexane<br>2,2,4-1 rimethylp<br>Neopentan<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen                       | de         | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>2<br>5<br>5<br>2<br>2<br>2<br>2 | eu Data<br>quids:Tank<br>sh<br>ol/h<br>.60283E-06<br>.90265E-05<br>.00282028<br>000179022<br>1.9439E-06<br>.14445E-08<br>.53256E-08<br>.70164E-09<br>3.0496E-09<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>3168<br>0012<br>-07<br>-07<br>-06<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Summary Table           Ibmol/h           1.7036E-05           2.05064E-05           0.00347845           0.000469142           1.4222E-05           8.60606E-07           1.33694E-06           3.92276E-07           2.842E-07           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 |
| Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzer<br>m-Xylene<br>n-Hexane<br>2,2,4-1 rimethylp<br>Neopentan<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen<br>Oxygen | ide        | Gas<br>Ibmol/h                 | Pipeline Lio<br>Fla<br>Ibm<br>9<br>1<br>0<br>0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                          | Cu Data           quids:Tank           sh           ol/h           .60283E-06           .90265E-05           .00282028           000179022           1.9439E-06           .14445E-08           .53256E-08           .70164E-09           3.0496E-09           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Pipeline Liquids:T<br>Liquids<br>Ibmol/h<br>7.43317<br>1.47996<br>0.000658<br>0.00029<br>1.22781<br>8.09162<br>1.28162<br>3.86575<br>2.81151                | ank<br>-06<br>-06<br>3168<br>0012<br>-07<br>-07<br>-06<br>-07<br>-07<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Summary Table           Ibmol/h           1.7036E-05           2.05064E-05           0.00347845           0.000469142           1.4222E-05           8.60606E-07           1.33694E-06           3.92276E-07           2.842E-07           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 |

ProMax 5.0.19263.0 Copyright © 2002-2019 BRE Group, Ltd.

|                               |        |        |                              | Recoveri    | es Report       |              |               |       |                |
|-------------------------------|--------|--------|------------------------------|-------------|-----------------|--------------|---------------|-------|----------------|
| Client Name:                  | TCEner | gy     | mor Station                  |             |                 |              | Job: Pipelin  | eLiqu | idsA18-A20     |
| Location:                     | Celedo | Comple |                              |             |                 |              |               |       |                |
|                               |        |        |                              |             |                 |              |               |       |                |
|                               |        |        |                              | Tabulat     | ed Data         |              |               |       |                |
|                               | Í      | Pipe   | line Liquids:Sales           | Pipeline Li | guids:Tank      | Pipeli       | ne Liquids:Ta | ank   | Summary Table  |
|                               |        | •      | Gas                          | Fla         | sh              | •            | Liquids       |       | -              |
| Index                         |        |        | lbmol/h                      | lbm         | ol/h            |              | Ibmol/h       | 700   | Ibmol/h        |
| I otal                        |        |        |                              |             | 0.00315808      |              | 0.15          | 782   | 0.160978       |
| Remarks                       |        |        |                              |             |                 |              |               |       |                |
|                               | •      |        | Component                    | Pocovorios. | <b>Dipolino</b> | iquide L     | 0650.6        |       | Status: Solved |
|                               |        |        | Poforonce Street             | m Data Sau  |                 | Hote in C    | lowchoct      |       |                |
|                               |        |        | Reference Strea              | m Data Sou  | ce - All Out    |              | Towsneet      |       |                |
| Pineline I                    | iauids |        | Sales G                      | n<br>as     | FI<br>Pine      | eline Liquid | ds            |       | Tankliquids    |
| Pipeline L                    | iquids |        | TankFla                      | sh          | 1 100           |              |               |       | rankEigulas    |
| •                             | •      |        |                              |             |                 |              |               |       |                |
|                               |        |        | <b>Recovery Strea</b>        | im Data Sou | rce - All Inle  | ets in Fl    | owsheet       |       |                |
| Flowsh                        | eet    |        | PStream                      | n           | FI              | owsheet      |               |       | PStream        |
| Pipeline L                    | iquids |        | Gas Sam                      | ple         | Pipe            | eline Liquio | ds            |       | LiquidsSample  |
|                               |        |        |                              |             |                 |              |               |       |                |
|                               |        |        |                              | Parar       | neters          | 0 1          |               |       |                |
| Composition Basi              | S      |        | MolarFlow                    |             | Summation       | Option       |               | Sumn  | nation Only    |
| Calculate Ratios              |        |        | T alse                       |             | Atomic Bas      | 15           |               |       | False          |
|                               |        |        |                              | Tabulat     | ed Data         |              |               |       |                |
|                               |        |        | Summary Table                |             |                 |              |               |       |                |
| Index                         |        |        | lbmol/h                      |             |                 |              |               |       |                |
| Carbon Dioxic                 | le     |        | -3.3613E-21                  |             |                 |              |               |       |                |
| Nitrogen                      |        |        | 0                            |             |                 |              |               |       |                |
| Ethane                        |        |        | -1.07562E-19                 |             |                 |              |               |       |                |
| Propane                       |        |        | -5.04195E-21                 |             |                 |              |               |       |                |
| i-Butane                      |        |        | -1.05041E-22                 |             |                 |              |               |       |                |
| n-Butane                      |        |        | -2.10081E-22                 |             |                 |              |               |       |                |
| n-Pentane                     |        |        | -1.03041E-22<br>-5.25203E-23 | }           |                 |              |               |       |                |
| i-Hexane                      |        |        | 0                            |             |                 |              |               |       |                |
| Heptane                       |        |        | 0                            |             |                 |              |               |       |                |
| Octane                        |        |        | 0                            |             |                 |              |               |       |                |
| Benzene                       |        |        | 0                            | ł           |                 |              |               |       |                |
| Toluene                       |        |        | 0                            |             |                 |              |               |       |                |
| Ethylbenzen                   | e      |        | 0                            |             |                 |              |               |       |                |
| m-Xylene                      |        |        | 0                            |             |                 |              |               |       |                |
| n-Hexane<br>2 2 4-Trimethylpe | ntane  |        | -2.10081E-22                 |             |                 |              |               |       |                |
| Neopentane                    |        |        | 0                            | 1           |                 |              |               |       |                |
| DecanesPlu                    | S      |        | 0                            | <u> </u>    |                 |              |               |       |                |
| Water                         |        |        | 0                            |             |                 |              |               |       |                |
| Helium                        |        |        | 0                            |             |                 |              |               |       |                |
| Oxygen                        |        |        | 0                            | 1           |                 |              |               |       |                |
| LiquidsSamp                   | le     |        | -2.75358E-17                 | 1           |                 |              |               |       |                |
| Total                         |        |        | -2.75358E-17                 |             |                 |              |               |       |                |
| Remarks                       |        |        |                              |             |                 |              |               |       |                |

|                   |        |        |                             | Recoveri     |               |               |                  |             |      |
|-------------------|--------|--------|-----------------------------|--------------|---------------|---------------|------------------|-------------|------|
| Client Name:      | TCEner | gy     |                             |              |               | Job           | : Pipeline Liqui | dsA18-A20   |      |
| Location:         | Ceredo | Compre | essor Station               |              |               |               |                  |             |      |
|                   |        | _      |                             |              |               |               |                  |             |      |
|                   |        |        |                             |              |               |               |                  |             |      |
|                   |        |        |                             |              |               |               |                  |             |      |
|                   | •      |        | Component Bo                | anvarian D   | inalina Ligu  | uido Do oovo  | rico             | Status: So  | lved |
|                   |        |        | Component Re                | coveries - P |               | lius Recove   |                  | Olalus. Ol  | nveu |
|                   |        |        | Reference Strea             | m Data Sou   | rce - All Ini | ets in Flows  | sneet            |             |      |
| Flowsh            | eet    |        | PStrear                     | n            | FI            | owsheet       |                  | PStream     |      |
| Pipeline L        | iquids |        | Gas Sample Pipeline Liquids |              |               |               | LiquidsSample    |             |      |
|                   |        |        |                             |              |               |               | • · ·            |             |      |
|                   |        |        | Recovery Stream             | n Data Sour  | ce - All Out  | lets in Flow  | sheet            |             |      |
| Flowsh            | eet    |        | PStream                     | n            | FI            | owsheet       |                  | PStream     |      |
| Pipeline L        | iquids |        | SalesGa                     | IS           | Pipe          | eline Liquids |                  | TankLiquids |      |
| Pipeline L        | iquias |        | TankFla                     | sn           |               |               |                  |             |      |
|                   |        |        |                             |              |               |               |                  |             |      |
|                   |        |        |                             | Paran        | neters        |               |                  |             |      |
| Composition Basi  | S      |        | MolarFlow                   |              | Summation     | Option        | Si               | treamsand   |      |
| Calculate Ratios  |        |        |                             |              |               |               | 8                | False       |      |
| Calculate Ratios  |        |        | The                         |              | Atomic Das    | 5             |                  | raise       |      |
|                   |        |        |                             | Tabulat      | ad Data       |               |                  |             |      |
|                   |        |        |                             |              |               | <b>D:</b>     |                  |             |      |
|                   |        | Pipe   | line Liquids:Sales          | Pipeline Li  | quids:Tank    | Pipeline Li   | quids:Tank       | Summary Ta  | ble  |
| Index             |        |        | Gas<br>%                    | Fia<br>%     | sn            |               | ulas<br>6        | %           |      |
| Carbon Dioxic     | le     |        | 70                          | ,            | 56.3679       | ,             | 43.6321          | 70          | 100  |
| Nitrogen          |        |        |                             |              | 92.7829       |               | 7.21706          |             | 100  |
| Methane           |        |        |                             |              | 81.0787       |               | 18.9213          |             | 100  |
| Ethane            |        |        |                             |              | 38.1595       |               | 61.8405          |             | 100  |
| Propane           |        |        |                             |              | 13.6683       |               | 86.3317          |             | 100  |
| I-Butane          |        |        |                             |              | 5.9777        |               | 94.0223          |             | 100  |
| i-Pentane         |        |        |                             |              | 4.13022       |               | 98.5465          |             | 100  |
| n-Pentane         |        |        |                             |              | 1.07305       |               | 98.927           |             | 100  |
| i-Hexane          |        |        |                             |              |               |               |                  |             |      |
| Heptane           |        |        |                             |              |               |               |                  |             |      |
| Octane            |        |        |                             |              |               |               |                  |             |      |
| Nonane            |        |        |                             |              |               |               |                  |             |      |
| Benzene           |        |        |                             |              |               |               |                  |             |      |
| Fthylhenzen       | e.     |        |                             |              |               |               |                  |             |      |
| m-Xvlene          | 5      |        |                             |              |               |               |                  |             |      |
| n-Hexane          |        |        |                             |              | 0.42014       |               | 99.5799          |             | 100  |
| 2,2,4-Trimethylpe | ntane  |        |                             |              |               |               |                  |             |      |
| Neopentane        | •      |        |                             |              |               |               |                  |             |      |
| DecanesPlu        | S      |        |                             |              |               |               |                  |             |      |
| VVater<br>Helium  |        |        |                             |              |               |               |                  |             |      |
| Hvdrogen          |        |        |                             |              |               |               |                  |             |      |
| Oxvaen            |        |        |                             |              |               |               |                  |             |      |
| LiquidsSamp       | le     |        |                             |              | 0.081594      |               | 99.9184          |             | 100  |
| Total             |        |        |                             |              | 1.96181       |               | 98.0382          |             | 100  |
|                   |        |        |                             |              |               |               |                  |             |      |
| Remarks           |        |        |                             |              |               |               |                  |             |      |
|                   |        |        |                             |              |               |               |                  |             |      |
|                   |        |        |                             |              |               |               |                  |             |      |
|                   |        |        |                             |              |               |               |                  |             |      |

Page 1 of 2

|                                         |          | Er                   |                  |                    |              |                   |                |  |  |  |
|-----------------------------------------|----------|----------------------|------------------|--------------------|--------------|-------------------|----------------|--|--|--|
| Client Name:                            | TCEner   | ду                   |                  |                    | Jo           | ob: Pipeline Liqu | idsA18-A20     |  |  |  |
| Location:                               | Ceredo ( | Compressor Station   |                  |                    |              |                   |                |  |  |  |
|                                         | <u> </u> |                      |                  |                    |              |                   |                |  |  |  |
|                                         | •        | Power                | Budget - Pr      | niect Power        | Budget       |                   | Status: Solved |  |  |  |
|                                         | <u>.</u> | IOWEI                | Buuget - I It    | notors             | Duuget       |                   |                |  |  |  |
| Net Power                               |          | 0 hr                 |                  | Total Powe         | r Required   |                   | 0 hp           |  |  |  |
| Total Power Supp                        | blied    | 0 hp                 | )                | External En        | nergy Only   |                   | True           |  |  |  |
|                                         |          | ·                    |                  |                    | ,            |                   |                |  |  |  |
| Remarks                                 | Remarks  |                      |                  |                    |              |                   |                |  |  |  |
|                                         | •        | Heat                 | Budget - Pr      | niect Heat B       | Rudget       |                   | Status: Solved |  |  |  |
|                                         |          | Host Pudget D        | ata Source       |                    |              | roject            |                |  |  |  |
|                                         |          | neat Budget D        | ata Source       |                    | igers in Pr  | oject             |                |  |  |  |
| Pipeline                                | iquide   | Block<br>DL Liquid T | anks             | F                  | IOW Sheet    |                   | Block          |  |  |  |
| FipelineL                               | iquius   |                      |                  |                    |              |                   |                |  |  |  |
|                                         |          |                      | Parar            | notors             |              |                   |                |  |  |  |
| Net Duty                                |          | -26 2918 Bi          | raiai<br>u/h     | Total Duty I       | Required     |                   | 0 Btu/b        |  |  |  |
| Total Duty Suppli                       | ed       | 26.2918 Bt           | u/h              | External En        | nergy Only   |                   | True           |  |  |  |
| , , , , , , , , , , , , , , , , , , , , |          |                      |                  |                    | ,            |                   |                |  |  |  |
|                                         |          |                      | Tabulat          | ted Data           |              |                   |                |  |  |  |
|                                         |          | Block Duty           | Block H<br>Tempe | Highest<br>erature | Block Lowe   | est Temperature   |                |  |  |  |
| Index                                   |          | Btu/h                | 0                | F To               |              | °F                |                |  |  |  |
| Pipeline Liquids:Pl                     | LIQUID   | -18.3342             |                  | 70                 |              | 70                |                |  |  |  |
| Pipeline Liquids:Se                     | eparator | -7.95762             |                  | 71.0182            |              | 70                |                |  |  |  |
|                                         | <u> </u> |                      |                  |                    |              |                   |                |  |  |  |
| Remarks                                 |          |                      |                  |                    |              |                   |                |  |  |  |
|                                         | ·        | Power Budo           | net - Pipelin    | e Liquids Po       | ower Budo    | net               | Status: Solved |  |  |  |
|                                         |          | 1 01101 2000         | Darar            | notors             | one budg     | <b>J</b> CL       |                |  |  |  |
| Net Power                               |          | 0 hr                 | raiai            | Total Powe         | r Required   |                   | 0 hp           |  |  |  |
| Total Power Supp                        | olied    | 0 hp                 | )                | External En        | nergy Only   |                   | True           |  |  |  |
|                                         |          | ·                    |                  |                    |              |                   |                |  |  |  |
| Remarks                                 |          |                      |                  |                    |              |                   |                |  |  |  |
|                                         |          | Heat Budg            | get - Pipelin    | e Liquids H        | eat Budge    | t                 | Status: Solved |  |  |  |
|                                         |          | Heat Budget Da       | ta Source - A    | All Exchang        | gers in Flo  | wsheet            |                |  |  |  |
| Flowsh                                  | iquida   | Block                | onle             | F                  | low sheet    |                   | Block          |  |  |  |
| PipeineL                                | liquias  |                      | an 1KS           |                    | enne Liquias |                   | Separator      |  |  |  |
|                                         |          |                      |                  |                    |              |                   |                |  |  |  |
| Not Duty                                |          | 00 0040              | Parar            | Total Duty         | Poquired     |                   | 0 0+/h         |  |  |  |
| Total Duty Suppli                       | ed       | -26.2918 Bt          | u/n<br>u/h       | Fytemal En         |              |                   |                |  |  |  |
|                                         | u        | 20.2310 DI           |                  |                    |              |                   |                |  |  |  |
|                                         |          |                      | Tabula           | ted Data           |              |                   |                |  |  |  |
|                                         |          | Block Duty           | Black            | lighost            | Block Lewis  | st Tomporature    |                |  |  |  |
|                                         |          | DIOCK DULY           | Tempe            | erature            | BIOCK LOWE   | sciemperature     |                |  |  |  |
| Index                                   |          | Btu/h                | ° sente          | F                  |              | °F                |                |  |  |  |
| Pipeline Liquids: Pl                    | Liquid   | -18.3342             |                  | 70                 |              | 70                |                |  |  |  |

|                     |               | En            | ergy Budgets Rep                   | ort      |                  |         |           |
|---------------------|---------------|---------------|------------------------------------|----------|------------------|---------|-----------|
| Client Name:        | TCEnergy      |               |                                    |          | Job: Pipelin     | eLiquio | dsA18-A20 |
| Location:           | Ceredo Compre | essor Station |                                    |          |                  |         |           |
|                     |               |               |                                    |          |                  |         |           |
|                     |               |               |                                    |          |                  |         |           |
|                     |               |               | Tabulated Data                     |          |                  |         |           |
| Index               |               | Block Duty    | Block Highest<br>Temperature<br>°⊑ | Block Lo | westTempeı<br>∘⊏ | rature  |           |
| Tanks               |               | Dtu/II        |                                    |          |                  |         |           |
| Pipeline Liquids:Se | parator       | -7.95762      | 71.0182                            |          |                  | 70      |           |
|                     |               |               |                                    |          |                  |         |           |
| Remarks             |               |               |                                    |          |                  |         |           |



|                   |              |               | Process Str<br>All S<br>Tabulated | reams Report<br>treams<br>by Total Phase |                                       |                |                         |
|-------------------|--------------|---------------|-----------------------------------|------------------------------------------|---------------------------------------|----------------|-------------------------|
| Client Name:      | TCEnergy     | 1             |                                   |                                          | Job: Waste                            | water Tank A21 |                         |
| Location:         | Ceredo Compr | essor Station |                                   |                                          |                                       |                |                         |
| Flowsheet:        | Wastewater   |               |                                   |                                          |                                       |                |                         |
|                   |              |               |                                   |                                          |                                       |                |                         |
|                   |              |               | Conn                              | ections                                  |                                       |                |                         |
|                   |              |               | Broothing                         | Elech                                    | Flaching                              | Liquido        | Looding                 |
|                   |              |               | (Wastewater)                      | Flash                                    | (Wastewater)                          | Liquius        | (Wastewater)            |
| From Block        |              |               |                                   | Wastewater                               |                                       | Wastewater     |                         |
|                   |              |               |                                   | Tank                                     |                                       | Tank           |                         |
| To Block          |              |               |                                   |                                          |                                       |                |                         |
|                   |              |               |                                   |                                          |                                       |                | •                       |
|                   |              |               | Stream (                          | omposition                               |                                       |                |                         |
|                   |              |               | Broathing                         | Elash                                    | Flaching                              | Liquide        | Loading                 |
|                   |              |               | (Wastewater)                      | Flash                                    | (Wastewater)                          | Liquius        | (Wastewater)            |
| Mole Fraction     |              |               | %                                 | %                                        | %                                     | %              | %                       |
| Carbon Dioxide    |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Nitrogen          |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Methane           |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Ethane            |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Propane           |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| i-Butane          |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| n-Butane          |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| I-Pentane         |              |               | 0 ^                               |                                          |                                       | 0              | 0 ^                     |
| n-Pentane         |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Hentane           |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Octane            |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Nonane            |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Benzene           |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Toluene           |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Ethylbenzene      |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| m-Xylene          |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| n-Hexane          |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| 2,2,4-Trimethylpe | ntane        |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Neopentane        |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| DecanesPlus       |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
| Water             |              |               | 100 ^                             |                                          |                                       | 95             | 100 ^                   |
| Hellum            |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
|                   |              |               | 0 *                               |                                          |                                       | 0              | 0 *                     |
|                   |              |               | 3 82531E-09 *                     |                                          |                                       | 5              | 3 82531E-09 *           |
| Propylene Glycol  |              |               | 0.020012.00                       |                                          |                                       | 0              | 0.0200112.00            |
|                   |              |               | -                                 |                                          |                                       | -              | -                       |
|                   |              |               | Breathing<br>(Wastewater)         | Flash                                    | Flashing<br>(Wastewater)              | Liquids        | Loading<br>(Wastewater) |
| Molar Flow        |              |               | Ibmol/h                           | Ibmol/h                                  | Ibmol/h                               | Ibmol/h        | Ibmol/h                 |
| Carbon Dioxide    |              |               | 0 7                               | 0                                        | 0                                     | 0              | 0 ^                     |
| Methano           |              |               | 0 7                               | U                                        | 0                                     | 0              | U ^                     |
| Ethano            |              |               | 0,                                | 0                                        | 0                                     | 0              | 0                       |
| Propane           |              |               | 0,                                | 0                                        | 0                                     | 0              | 0 *                     |
| i-Butane          |              |               | 0,3                               | 0                                        | 0                                     | 0              | 0 *                     |
| n-Butane          |              |               | ,<br>0 ,                          | Ŭ Û                                      | 0                                     | Ū.             | 0 *                     |
| i-Pentane         |              |               | 0,                                | 0                                        | 0                                     | 0              | 0 *                     |
| n-Pentane         |              |               | 0 *                               | 0                                        | 0                                     | 0              | 0 *                     |
| i-Hexane          |              |               | 0 '                               | 0                                        | 0                                     | 0              | 0 *                     |
| Heptane           |              |               | 0 '                               | 0                                        | 0                                     | 0              | 0 *                     |
| Octane            |              |               | 0 '                               | 0                                        | 0                                     | 0              | 0 *                     |
| Nonane            |              |               | 0 '                               | 0                                        | 0                                     | 0              | 0 *                     |
| Benzene           |              |               | 0 '                               | 0                                        | 0                                     | 0              | 0 *                     |
| I OIUENE          |              |               | 0 '                               | 0                                        | 0                                     | 0              | 0 *                     |
|                   |              |               | 0 7                               | 0                                        | 0                                     | 0              | U ^                     |
| n-Hevana          |              |               |                                   | 0                                        | 0                                     | 0              | U "                     |
| 2 2 4-Trimethylpe | ntane        |               | 0                                 | 0                                        | 0                                     | 0              | 0                       |
| Neopentane        |              |               | 0,                                | 0                                        | 0                                     | 0              | 0 *                     |
|                   |              |               |                                   |                                          | · · · · · · · · · · · · · · · · · · · | ~              | v                       |

| Page | 2 | of | 6 |
|------|---|----|---|
|------|---|----|---|

| Client Name:        | TCEnergy      |               |                                      |                  | Job: Waste                          | water TankA21      |                                    |
|---------------------|---------------|---------------|--------------------------------------|------------------|-------------------------------------|--------------------|------------------------------------|
| Location:           | Ceredo Compre | essor Station |                                      |                  |                                     |                    |                                    |
| Flowsheet:          | Wastewater    |               |                                      |                  |                                     |                    |                                    |
|                     |               |               | 1                                    | -                | 1                                   |                    | 1                                  |
| Molar Flow          |               |               | Breathing<br>(Wastewater)<br>Ibmol/h | Flash<br>Ibmol/h | Flashing<br>(Wastewater)<br>Ibmol/h | Liquids<br>Ibmol/h | Loading<br>(Wastewater)<br>Ibmol/h |
| DecanesPlus         |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Water               |               |               | 9.42481E-06 *                        | 0                | 0                                   | 1.70304            | 7.37807E-05 *                      |
| Helium              |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Hydrogen            |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0*                                 |
|                     |               |               | 3.60528E-16 *                        | 0                | 0                                   | 0.0896339          | 2 82234E-15 *                      |
| Propylene Glycol    |               |               | 0.000202.10                          | 0                | 0                                   | 0                  | 0 *                                |
|                     |               |               | -                                    | -                | -                                   | -                  | -                                  |
|                     |               |               | Breathing<br>(Wastewater)            | Flash            | Flashing<br>(Wastewater)            | Liquids            | Loading<br>(Wastewater)            |
| Mass Fraction       |               |               | %                                    | %                | %                                   | %                  | %                                  |
| Carbon Dioxide      |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| NITTOGEN            |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Fthane              |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Propane             |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| i-Butane            |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| n-Butane            |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| i-Pentane           |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| n-Pentane           |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| i-Hexane            |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Heptane             |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Octane              |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Nonane              |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Benzene             |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Ethylbenzene        |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| m-Xylene            |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| n-Hexane            |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| 2,2,4-Trimethylpent | ane           |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Neopentane          |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| DecanesPlus         |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Water               |               |               | 100                                  |                  |                                     | 47.3896            | 100                                |
| Helium              |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Hydrogen            |               |               | 0                                    |                  |                                     | 0                  | 0                                  |
| Oxygen              |               |               |                                      |                  |                                     | 52 6104            |                                    |
| Propylene Glycol    |               |               | 0.00001E-00                          |                  |                                     | 52.0104            | 0.00001E-00                        |
|                     |               |               |                                      |                  |                                     | U                  |                                    |
| Mass Flow           |               |               | Breathing<br>(Wastewater)<br>Ib/h    | Flash<br>Ib/h    | Flashing<br>(Wastewater)<br>Ib/h    | Liquids<br>Ib/h    | Loading<br>(Wastewater)<br>Ib/h    |
| Carbon Dioxide      |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Nitrogen            |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Methane             |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| ⊨tnane<br>Bropono   |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| riopane<br>i-Butane |               |               | U ^                                  | 0                | U                                   | 0                  | U ^                                |
| n-Butane            |               |               | 0 *<br>0 *                           | 0                | 0                                   | 0                  | 0 *<br>0 *                         |
| i-Pentane           |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| n-Pentane           |               |               | 0 *                                  | 0                | Ŭ<br>Ŭ                              | 0                  | 0 *                                |
| i-Hexane            |               |               | 0 *                                  | 0                | Ŭ<br>Ŭ                              | 0                  | 0 *                                |
| Heptane             |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Octane              |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Nonane              |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Benzene             |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Toluene             |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| Ethylbenzene        |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
| m-Xylene            |               |               | 0 *                                  | 0                | 0                                   | 0                  | 0 *                                |
|                     |               |               | U "                                  | U                | U                                   | U                  | Crown Inc. and Affiliates          |

|                     |             |                     | Process Str<br>All St<br>Tabulated b | eams Report<br>reams<br>by Total Phase |                                  |                 |                                 |  |  |
|---------------------|-------------|---------------------|--------------------------------------|----------------------------------------|----------------------------------|-----------------|---------------------------------|--|--|
| Client Name:        | TCEnergy    |                     |                                      |                                        | Job: Waste                       | water Tank A21  |                                 |  |  |
| Location:           | Ceredo Comp | ressor Station      |                                      |                                        |                                  |                 |                                 |  |  |
| Flowsheet:          | Wastewater  |                     |                                      |                                        |                                  |                 |                                 |  |  |
|                     |             |                     |                                      |                                        |                                  |                 |                                 |  |  |
| Mass Flow           |             |                     | Breathing<br>(Wastewater)<br>Ib/h    | Flash<br>Ib/h                          | Flashing<br>(Wastewater)<br>Ib/h | Liquids<br>Ib/h | Loading<br>(Wastewater)<br>Ib/h |  |  |
| 2,2,4-Trimethylpent | ane         |                     | 0 *                                  | 0                                      | 0                                | 0               | 0 *                             |  |  |
| Neopentane          |             |                     | 0 *                                  | 0                                      | 0                                | 0               | 0 *                             |  |  |
| DecanesPlus         |             |                     | 0 *                                  | 0                                      | 0                                | 0               | 0 *                             |  |  |
| Water               |             |                     | 0.000169791 *                        | 0                                      | 0                                | 30.6808         | 0.00132918 *                    |  |  |
| Helium              |             |                     | 0 *                                  | 0                                      | 0                                | 0               | 0 *                             |  |  |
| Hydrogen            |             |                     | 0 *                                  | 0                                      | 0                                | 0               | 0 *                             |  |  |
| Oxygen              |             |                     | 0 *                                  | 0                                      | 0                                | 0               | 0 *                             |  |  |
| Lube Oil            |             |                     | 1.37001E-13 *                        | 0                                      | 0                                | 34.0609         | 1.07249E-12 *                   |  |  |
| Propylene Glycol    |             |                     | 0 *                                  | 0                                      | 0                                | 0               | 0 *                             |  |  |
|                     |             |                     |                                      |                                        |                                  |                 |                                 |  |  |
|                     |             |                     | Stream                               | Properties                             |                                  |                 |                                 |  |  |
| Property            |             | Units               | Breathing<br>(Wastewater)            | Flash                                  | Flashing<br>(Wastewater)         | Liquids         | Loading<br>(Wastewater)         |  |  |
| Temperature         |             | °F                  | 70.278                               | 60 *                                   | 70.278                           | 60              | 70.278                          |  |  |
| Pressure            |             | psia                | 0.366931                             | 14.6959 *                              |                                  | 14.6959         | 0.366931                        |  |  |
| Mole Fraction Vapo  | or          | %                   | 100                                  |                                        | 100                              | 0               | 100                             |  |  |
| Mole Fraction Light | Liquid      | %                   | 0                                    |                                        |                                  | 5.00236         | 0                               |  |  |
| Mole Fraction Heav  | /y Liquid   | %                   | 0                                    |                                        |                                  | 94.9976         | 0                               |  |  |
| Molecular Weight    |             | lb/lbmol            | 18.0153                              |                                        |                                  | 36.1145         | 18.0153                         |  |  |
| Mass Density        |             | lb/ft^3             | 0.00116278                           |                                        |                                  | 58.9286         | 0.00116278                      |  |  |
| Molar Flow          |             | lbmol/h             | 9.42481E-06                          | 0                                      | 0                                | 1.79268         | 7.37807E-05                     |  |  |
| Mass Flow           |             | lb/h                | 0.000169791                          | 0                                      | 0                                | 64.7417         | 0.00132918                      |  |  |
| Vapor Volumetric F  | low         | ft^3/h              | 0.146021                             | 0                                      | 0                                | 1.09865         | 1.1431                          |  |  |
| Liquid Volumetric F | low         | gpm                 | 0.0182052                            | 0                                      | 0                                | 0.136974        | 0.142517                        |  |  |
| Std Vapor Volumet   | ric Flow    | MMSCFD              | 8.58376E-08                          | 0                                      | 0                                | 0.016327        | 6.71966E-07                     |  |  |
| Std Liquid Volumet  | ric Flow    | sgpm                | 3.39424E-07                          | 0                                      | 0                                | 0.136986        | 2.65713E-06                     |  |  |
| Compressibility     |             |                     | 0.999608                             |                                        |                                  | 0.00161496      | 0.999608                        |  |  |
| Specific Gravity    |             |                     | 0.622021                             |                                        |                                  | 0.944842        | 0.622021                        |  |  |
| API Gravity         |             | <b>B</b> <i>i u</i> |                                      |                                        |                                  | 18.2605         |                                 |  |  |
| Enthalpy            |             | Btu/n               | -0.980386                            | 0                                      | 0                                | -236493         | -7.6748                         |  |  |
| Mass Enthalpy       |             | Btu/Ib              | -5774.09                             |                                        |                                  | -3652.87        | -5774.09                        |  |  |
| Mass Cp             | •           | Btu/(ID**F)         | 0.44869                              |                                        |                                  | 0.695212        | 0.44869                         |  |  |
| Dynamic Viscosity   | 10          | сP                  | 1.32583                              |                                        |                                  | 62 1742         | 1.32583                         |  |  |
| Kinomotio Viscosity | ,           |                     | 0.00962696                           |                                        |                                  | 66 0257         | 0.00962696                      |  |  |
| Thermal Conductiv   | +. /        |                     | 0.0116904                            |                                        |                                  | 00.9257         | 0.0116904                       |  |  |
| Surface Tension     | ity         |                     | 0.0110094                            |                                        |                                  | 0.190002        | 0.0110094                       |  |  |
| Net Ideal CasHoat   | ng Value    | Btu/ftA3            | 6 95865E-07                          |                                        |                                  | 900 552         | 6 95865E-07                     |  |  |
| Net Liquid Heating  | Value       | Btu/lb              | -1059.76                             |                                        |                                  | 8979.21         | -1059.76                        |  |  |
| Gross Ideal Gas He  | ating Value | Btu/ft^3            | 50 31                                |                                        |                                  | 1013 94         | 50 31                           |  |  |
| Gross Liquid Heatin | ngValue     | Btu/lb              | 1.54535E-05                          |                                        |                                  | 10076 1         | 1.54535E-05                     |  |  |
|                     |             |                     | 1.040002-00                          |                                        |                                  | 10070.1         | 1.040002-00                     |  |  |
| Remarks             |             |                     |                                      |                                        |                                  |                 |                                 |  |  |
|                     |               |               | Process Str<br>All Si<br>Tabulated b | eams Report<br>treams<br>by Total Phase |            |              |  |  |  |
|---------------------|---------------|---------------|--------------------------------------|-----------------------------------------|------------|--------------|--|--|--|
| Client Name:        | TCEnergy      |               |                                      |                                         | Job: Waste | waterTankA21 |  |  |  |
| Location:           | Ceredo Compre | essor Station |                                      |                                         |            |              |  |  |  |
| Flowsheet:          | Wastewater    |               |                                      |                                         |            |              |  |  |  |
|                     |               |               |                                      |                                         |            |              |  |  |  |
|                     |               |               | Conn                                 | ections                                 | . <u></u>  | <u>_</u>     |  |  |  |
|                     |               |               | Wastewater                           | Working<br>(Wastewater)                 |            |              |  |  |  |
| From Block          |               |               |                                      |                                         |            |              |  |  |  |
| To Block            |               |               | Wastewater                           |                                         |            |              |  |  |  |
|                     |               |               | тапк                                 |                                         |            |              |  |  |  |
| Stream Composition  |               |               |                                      |                                         |            |              |  |  |  |
|                     |               |               | Stream                               | omposition                              |            |              |  |  |  |
| Mole Fraction       |               |               | wastewater<br>%                      | (Wastewater)                            |            |              |  |  |  |
| Carbon Dioxide      |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Nitrogen            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Methane             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Ethane              |               |               | 0*                                   | 0*                                      |            |              |  |  |  |
| Propane             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| n-Butane            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| i-Pentane           |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| n-Pentane           |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| i-Hexane            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Heptane             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Nonane              |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Benzene             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Toluene             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Ethylbenzene        |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| m-Xylene            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| n-Hexane            | 200           |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Neopentane          |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| DecanesPlus         |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Water               |               |               | 95 *                                 | 100 *                                   |            |              |  |  |  |
| Helium              |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Hydrogen            |               |               | 0 ^                                  | 0 ^                                     |            |              |  |  |  |
|                     |               |               | 5 *                                  | 3 82531E-09 *                           |            |              |  |  |  |
| Propylene Glycol    |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
|                     |               |               |                                      |                                         |            |              |  |  |  |
| Molor Flow          |               |               | Wastewater                           | Working<br>(Wastewater)                 |            |              |  |  |  |
| Carbon Dioxide      |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Nitrogen            |               |               | 0 *                                  | <u> </u>                                |            |              |  |  |  |
| Methane             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Ethane              |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Propane             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| n-Butane            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| i-Pentane           |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| n-Pentane           |               |               | 0 *                                  | <u> </u>                                |            |              |  |  |  |
| i-Hexane            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Heptane             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Uctane              |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Renzene             |               |               | U ^                                  |                                         |            |              |  |  |  |
| Toluene             |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Ethylbenzene        |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| m-Xylene            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| n-Hexane            |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| 2,2,4-Trimethylpent | ane           |               | 0 *                                  | 0 *                                     |            |              |  |  |  |
| Neopentane          |               |               | 0 *                                  | 0 *                                     |            |              |  |  |  |

|                     |                           | Process Str<br>All S<br>Tabulated I | reams Report<br>treams<br>by Total Phase |            |              |  |
|---------------------|---------------------------|-------------------------------------|------------------------------------------|------------|--------------|--|
| Client Name:        | TCEnergy                  |                                     |                                          | Job: Waste | waterTankA21 |  |
| Location:           | Ceredo Compressor Station |                                     |                                          |            |              |  |
| Flowsheet:          | Wastewater                |                                     |                                          |            |              |  |
|                     |                           |                                     |                                          |            |              |  |
| Molar Flow          |                           | Wastewater<br>Ibmol/h               | Working<br>(Wastewater)<br>Ibmol/h       |            |              |  |
| DecanesPlus         |                           | 0 *                                 | 0 *                                      |            |              |  |
| Water               |                           | 1.70304 *                           | 3.062E-05 *                              |            |              |  |
| Helium              |                           | 0 *                                 | 0 *                                      |            |              |  |
| Hydrogen            |                           | 0 *                                 | 0 *                                      |            |              |  |
| Oxygen              |                           | 0.0806330 *                         |                                          |            |              |  |
| Lube Oli            |                           | 0.0896339                           | 1.17131E-15                              |            |              |  |
| Propylene Glycol    |                           | 0                                   | 0 "                                      |            |              |  |
| Mass Fraction       |                           | Wastewater<br>%                     | Working<br>(Wastewater)<br>%             |            |              |  |
| Carbon Dioxide      |                           | ,°<br>0 *                           | <i>,</i> ,,                              |            |              |  |
| Nitrogen            |                           | 0 *                                 | 0                                        |            |              |  |
| Methane             |                           | 0 *                                 | 0                                        |            |              |  |
| Ethane              |                           | 0 *                                 | 0                                        |            |              |  |
| Propane             |                           | 0 *                                 | 0                                        |            |              |  |
| i-Butane            |                           | 0 *                                 | 0                                        |            |              |  |
| n-Butane            |                           | 0 *                                 | 0                                        |            |              |  |
| i-Pentane           |                           | 0 *                                 | Ő                                        |            |              |  |
| n-Pentane           |                           | 0 *                                 | 0                                        |            |              |  |
| i-Hexane            |                           | 0 *                                 | 0                                        |            |              |  |
| Heptane             |                           | 0 *                                 | 0                                        |            |              |  |
| Octane              |                           | 0 *                                 | 0                                        |            |              |  |
| Nonane              |                           | 0 *                                 | 0                                        |            |              |  |
| Benzene             |                           | 0 *                                 | 0                                        |            |              |  |
| Toluene             |                           | 0 *                                 | 0                                        |            |              |  |
| Ethylbenzene        |                           | 0 *                                 | 0                                        |            |              |  |
| m-Xylene            |                           | 0 *                                 | 0                                        |            |              |  |
| n-Hexane            |                           | 0 *                                 | 0                                        |            |              |  |
| 2,2,4-Trimethylpent | ane                       | 0 *                                 | 0                                        |            |              |  |
| Neopentane          |                           | 0 *                                 | 0                                        |            |              |  |
| DecanesPlus         |                           | 0 *                                 | 0                                        |            |              |  |
| Water               |                           | 47.3896 *                           | 100                                      |            |              |  |
| Helium              |                           | 0 *                                 | 0                                        |            |              |  |
| Hydrogen            |                           | 0 *                                 | 0                                        |            |              |  |
| Oxygen              |                           | 0 *                                 | 0                                        |            |              |  |
| Lube Oil            |                           | 52.6104 *                           | 8.06881E-08                              |            |              |  |
| Propylene Glycol    |                           | 0 *                                 | 0                                        |            |              |  |
|                     |                           |                                     |                                          |            |              |  |
| Mass Flow           |                           | Wastewater<br>Ib/h                  | Working<br>(Wastewater)<br>Ib/h          |            |              |  |
| Carbon Dioxide      |                           | 0 *                                 | 0 *                                      |            |              |  |
| Nitrogen            |                           | 0 *                                 | 0 *                                      |            |              |  |
| Methane             |                           | 0 *                                 | 0 *                                      |            |              |  |
| Ethane              |                           | 0 *                                 | 0 *                                      |            |              |  |
| Propane             |                           | 0 *                                 | 0 *                                      |            |              |  |
| I-Butane            |                           | 0 *                                 | 0 *                                      |            |              |  |
| n-Butane            |                           | 0 1                                 | 0 ^                                      |            |              |  |
| n-Pentane           |                           | 0                                   | 0 ^                                      |            |              |  |
| n-Pentane           |                           | 0 *                                 | 0 *                                      |            |              |  |
| I-Hexane            |                           | 0 *                                 | U *                                      |            |              |  |
| neptane<br>Octano   |                           |                                     | U ^                                      |            |              |  |
| Nonane              |                           | 0 *                                 |                                          |            |              |  |
| Ronzono             |                           | 0 *                                 |                                          |            |              |  |
| Tolueno             |                           |                                     | 0 *                                      |            |              |  |
| Ethylhonzona        |                           | U "                                 | U "                                      |            |              |  |
|                     |                           | 0 *                                 | U "                                      |            |              |  |
| n-Hexano            |                           | 0 ^                                 | 0 ^                                      |            |              |  |
|                     |                           | U "                                 | U "                                      |            |              |  |

ProMax 5.0.19263.0 Copyright © 2002-2019 BRE Group, Ltd. Licensed to The ERM Group, Inc. and Affiliates

| Client Name: TC Energy     |                   |                  | Process Streams Report<br>All Streams<br>Tabulated by Total Phase |                                 |              |             |              |  |
|----------------------------|-------------------|------------------|-------------------------------------------------------------------|---------------------------------|--------------|-------------|--------------|--|
| Client Name:               | TCEnergy          |                  |                                                                   |                                 |              | Job: Waster | waterTankA21 |  |
| Location:                  | Ceredo Compr      | essor Station    |                                                                   |                                 |              |             |              |  |
| Flowsheet:                 | Wastewater        |                  |                                                                   |                                 |              |             |              |  |
|                            |                   |                  |                                                                   |                                 |              |             |              |  |
| Mass Flow                  |                   |                  | Wastewater<br>Ib/h                                                | Working<br>(Wastewater)<br>Ib/h |              |             |              |  |
| 2,2,4-Trimethylpent        | ane               |                  | 0 *                                                               | 0 *                             | 1            |             |              |  |
| Neopentane                 |                   |                  | 0 *                                                               | 0 *                             | <i>.</i>     |             |              |  |
| DecanesPlus                |                   |                  | 0 *                                                               | · 0 *                           | ·            |             |              |  |
| Water                      |                   |                  | 30.6808 *                                                         | 0.000551627 *                   |              |             |              |  |
| Helium                     |                   |                  | 0 '                                                               | 0 *                             | -            |             |              |  |
| Hydrogen                   |                   |                  | 0 *                                                               | 0 *                             | <i>.</i>     |             |              |  |
| Oxygen                     |                   |                  | 0 *                                                               | · 0 *                           | ·            |             |              |  |
| Lube Oil                   |                   |                  | 34.0609 *                                                         | 4.45097E-13 *                   |              |             |              |  |
| Propylene Glycol           |                   |                  | 0 *                                                               | 0 *                             | 7            |             |              |  |
|                            |                   |                  |                                                                   |                                 |              |             |              |  |
|                            |                   |                  | Stroom                                                            | Proportios                      |              |             |              |  |
| <b>-</b>                   |                   |                  | Sueam                                                             | Fioperties                      | -            |             |              |  |
| Property                   |                   | Units            | Wastewater                                                        | Working                         |              |             |              |  |
| Tana a satura              |                   | ٥ <b>٢</b>       | CO *                                                              | (wastewater)                    |              |             |              |  |
|                            |                   | F                | 60                                                                | 70.278                          |              |             |              |  |
| Pressure                   |                   | psia             | 14.6959                                                           | 0.366931                        |              |             |              |  |
| Mole Fraction Vapo         | r<br>Llandal      | %                | 0                                                                 | 100                             |              |             |              |  |
| Mole Fraction Light        |                   | %                | 5.00236                                                           | 0                               |              |             |              |  |
| Molecular Weight           | y Liquiu          | 70<br>lb/lbmol   | 94.9970                                                           | 10.0153                         |              |             |              |  |
| More Density               |                   |                  | 30.1143                                                           | 16.0153                         |              |             |              |  |
| Maler Flow                 |                   | ID/II/3          | 56.9260                                                           | 0.00116278                      |              |             |              |  |
| Mora Flow                  |                   |                  | 1.79200                                                           | 3.062E-05                       |              |             |              |  |
| Mass Flow                  | 0.17              | ID/N             | 64.7417                                                           | 0.000551627                     |              |             |              |  |
| Vapor Volumetric F         | 0W                | 10/3/11          | 1.09865                                                           | 0.474403                        |              |             |              |  |
| Liquid Volumetric Fi       | OW<br>in Flow     | gpm              | 0.136974                                                          | 0.0591463                       |              |             |              |  |
| Std vapor volumet          |                   | MINISCED         | 0.016327                                                          | 2.76675E-07                     |              |             |              |  |
| Sta Liquia Volumetr        | ICFIOW            | sgpm             | 0.136986 *                                                        | 1.10274E-06                     |              |             |              |  |
| Compressibility            |                   |                  | 0.00161496                                                        | 0.999608                        |              |             |              |  |
| A DL Crovity               |                   |                  | 0.944842                                                          | 0.622021                        |              |             |              |  |
| APIGIAVILY                 |                   | Ptu/b            | 16.2000                                                           | 2 1 9 5 1 4                     |              |             |              |  |
| Enularpy<br>Mass Entheliny |                   | Dlu/II<br>Dtu/Ib | -230493                                                           | -3.10314                        |              |             |              |  |
| Mass Enthalpy              |                   |                  | -3052.67                                                          | -5774.09                        |              |             |              |  |
| Mass Cp                    |                   | Blu/(ID F)       | 0.095212                                                          | 0.44609                         |              |             |              |  |
| Dynamic Viccosity          | 10                | сP               | 1.10064                                                           | 1.32363                         |              |             |              |  |
| Kinomotio Viscosity        |                   |                  | 66 0257                                                           | 0.00982898                      |              |             |              |  |
| Thormal Conductivi         | h.,               |                  | 00.9237                                                           | 0.0116904                       |              |             |              |  |
| Surface Tension            | ty                |                  | 0.195502                                                          | 0.0110094                       |              |             |              |  |
| Not Ideal Cas Heat         |                   |                  | 0.0030001                                                         | 6 058655 07                     |              |             |              |  |
| Net Liquid Heating         | ng value<br>Zaluo | Btu/Ith          | 909.003<br>8070 01                                                | 0.90000E-07                     | <del> </del> |             |              |  |
| Gross Ideal Coalles        | aiue              | Btu/ftA2         | 1012.04                                                           | -1009.70<br>E0.94               |              |             |              |  |
|                            |                   | Btu/It-3         | 1013.94                                                           | 00.31<br>1 54525E 05            |              |             |              |  |
|                            | y value           | Blu/ID           | 10070.1                                                           | 1.04030E-00                     | <u> </u>     |             |              |  |
|                            |                   |                  |                                                                   |                                 |              |             |              |  |
| Remarks                    |                   |                  |                                                                   |                                 |              |             |              |  |

| Simulation Initiated on 5/17 | Simulation Initiated on 5/17/2021 5:38:14 PM         A21_Wastewater_05172021.pmx         Page 1 |                         |                |            |                 |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|----------------|------------|-----------------|--|--|
| Energy Stream Report         |                                                                                                 |                         |                |            |                 |  |  |
| Client Name:                 | TCEnergy                                                                                        | Job: Wastewater TankA21 |                |            |                 |  |  |
| Location:                    | Ceredo Co                                                                                       | do Compressor Station   |                |            |                 |  |  |
| Flowsheet:                   | Wastewate                                                                                       | r                       |                |            |                 |  |  |
|                              |                                                                                                 |                         |                |            |                 |  |  |
|                              |                                                                                                 |                         | Energy Streams |            |                 |  |  |
| Energy Stream                |                                                                                                 | Energy Rate             | Power          | From Block | To Block        |  |  |
| Q-1                          |                                                                                                 | 0 Btu/h                 | 0 hp           |            | Wastewater Tank |  |  |
|                              |                                                                                                 |                         |                |            |                 |  |  |
| Remarks                      |                                                                                                 |                         |                |            |                 |  |  |

| Simulation Initiated on 5/17 | /2021 5:38:14 PM |            | A21_Wastewate                         | r_05172021.pmx                   |                     | Page 1 of 1     |  |  |
|------------------------------|------------------|------------|---------------------------------------|----------------------------------|---------------------|-----------------|--|--|
|                              |                  |            | Blo<br>Wastewa<br><sub>Separato</sub> | ncks<br>Iter Tank<br>or Report   |                     |                 |  |  |
| Client Name:                 | TCEnergy         |            |                                       | Job: Wastewater Ta               | ankA21              |                 |  |  |
| Location:                    | Ceredo Compress  | or Station |                                       |                                  | Modified: 3:18 PM,  | 10/16/2020      |  |  |
| Flowsheet:                   | Wastewater       |            |                                       |                                  | Status: Solved 5:36 | 5 PM, 5/17/2021 |  |  |
|                              |                  |            |                                       |                                  |                     |                 |  |  |
| Connections                  |                  |            |                                       |                                  |                     |                 |  |  |
| Stream                       | Connection       | n Type 💦 🤇 | Other Block                           | Stream                           | Connection Type     | e Other Block   |  |  |
| Wastewater                   | Inlet            |            |                                       | Flash                            | Vapor Outlet        |                 |  |  |
| Liquids                      | Light Liquid     | Outlet     |                                       | Q-1                              | Energy              |                 |  |  |
|                              |                  |            |                                       |                                  |                     |                 |  |  |
|                              |                  |            | Block Pa                              | rameters                         |                     |                 |  |  |
| Pressure Drop                |                  | 0          | psi                                   | Main Liquid Phase                | Li                  | ght Liquid      |  |  |
| Mole Fraction Va             | por              | 0          | %                                     | Heat Duty                        |                     | 0 Btu/h         |  |  |
| Mole Fraction Lig            | ht Liquid        | 5.00236    | %                                     | Heat Release Curve T             | уре                 | Plug Flow       |  |  |
| Mole Fraction He             | avy Liquid       | 94.9976    | %                                     | Heat Release Curve<br>Increments |                     | 10              |  |  |
|                              |                  |            |                                       |                                  |                     |                 |  |  |
| Remarks                      |                  |            |                                       |                                  |                     |                 |  |  |

|                       |              | F                        | owsheet<br>I       | Environment<br>PR      |            |                          |                    |  |
|-----------------------|--------------|--------------------------|--------------------|------------------------|------------|--------------------------|--------------------|--|
| Client Name:          | TCEnergy     | -                        |                    |                        | Job: Waste | waterTankA21             |                    |  |
| Location:             | Ceredo Compi | ressor Station           |                    |                        |            |                          |                    |  |
| Flowsheet:            | Wastewater   |                          |                    |                        |            |                          |                    |  |
|                       |              |                          |                    |                        |            |                          |                    |  |
| Environment Settings  |              |                          |                    |                        |            |                          |                    |  |
| Number of Poynti      | ngIntervals  | 0                        |                    | Phase Tolerance        |            | 1 %                      |                    |  |
| Gibbs Excess Mo       | del          | 77 °F                    |                    | Emulsion Enabled       |            | False                    |                    |  |
| Evaluation Tempe      | erature      |                          |                    |                        |            |                          |                    |  |
| Freeze Out Temp       | erature      | 10 °F                    |                    |                        |            |                          |                    |  |
| Threshold Differe     | nce          |                          |                    |                        |            |                          |                    |  |
|                       |              |                          |                    |                        |            |                          |                    |  |
|                       |              |                          | Comp               | ponents                |            |                          |                    |  |
| Component Name        |              | Henry's Law<br>Component | Phase<br>Initiator | Component Name         |            | Henry's Law<br>Component | Phase<br>Initiator |  |
| Carbon Dioxide        |              | False                    | False              | Toluene                |            | False                    | False              |  |
| Nitrogen              |              | False                    | False              | Ethylbenzene           |            | False                    | False              |  |
| Methane               |              | False                    | False              | m-Xylene               |            | False                    | False              |  |
| Ethane                |              | False                    | False              | n-Hexane               |            | False                    | False              |  |
| Propane               |              | False                    | False              | 2,2,4-Trimethylpentane |            | False                    | False              |  |
| i-Butane              |              | False                    | False              | Neopentane             |            | False                    | False              |  |
| n-Butane              |              | False                    | False              | DecanesPlus            |            | False                    | False              |  |
| I-Pentane             |              | False                    | False              | Vvater                 |            | False                    | Irue               |  |
| n-Pentane             |              | False                    | False              | Hellum                 |            | Faise                    | False              |  |
|                       |              | False                    | False              |                        |            | False                    | False              |  |
| Octane                |              | False                    | False              |                        |            | False                    | False              |  |
| Nonane                |              | False                    | Falsa              | Propylene Glycol       |            | False                    |                    |  |
| Renzene               |              | False                    | False              | Tiopytene Grycol       |            | 1 4130                   | Thức               |  |
| Benzene               |              | 1 4150                   | 1 0100             |                        |            |                          |                    |  |
|                       |              | Dhue                     |                    | arts Mathad Cata       |            |                          |                    |  |
| Liquid Molor Volum    | <u>^</u>     | COSTAL                   | ical Prop          | erty wiethod Sets      |            | Bong Bobing              | 20.0               |  |
| Stability Calculation | e            | COSTALL<br>Bong Pohing   | 200                | Vapor Package          |            | Peng-Robins              |                    |  |
| Light Liquid Packag   | 0            | Peng-Robins              | 2011               | Heavy Liquid Package   |            | Peng-Robins              | 200                |  |
| Eight Eight ackag     | 0            | T chy Robins             |                    | Theavy Elquid Tackage  |            | T city Robins            |                    |  |
| Remarks               |              |                          |                    |                        |            |                          |                    |  |

|                                                                                                                                                                                                                                          |                                 | Er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nvironm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ents Report                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Name:                                                                                                                                                                                                                             | TCEnergy                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 | Job: Waster | waterTankA21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |
| Location:                                                                                                                                                                                                                                | Ceredo Compre                   | essor Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|                                                                                                                                                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| -                                                                                                                                                                                                                                        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|                                                                                                                                                                                                                                          |                                 | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | roject-Wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | de Constants                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| Atmospheric Pressu                                                                                                                                                                                                                       | ire                             | 14.6959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ideal GasReference Pre                                                                                                                                                                                                                                          | essure      | 14.6959 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | osia                                                                                                                                            |
| Ideal Gas Reference                                                                                                                                                                                                                      | e Temperature                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ideal GasReference Vo                                                                                                                                                                                                                                           | lume        | 379.484 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t^3/lbmol                                                                                                                                       |
| Liquid Reference Te                                                                                                                                                                                                                      | emperature                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|                                                                                                                                                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|                                                                                                                                                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Environ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ment[PR]                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|                                                                                                                                                                                                                                          |                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Environm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ent Settings                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| Number of Poynting Intervals                                                                                                                                                                                                             |                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phase Tolerance                                                                                                                                                                                                                                                 |             | 1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 |
| Gibbs Excess Mo                                                                                                                                                                                                                          | del                             | 77 °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emulsion Enabled                                                                                                                                                                                                                                                |             | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |
| Evaluation Temperature                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| Threeze Out Temperature                                                                                                                                                                                                                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| Theatold Dhele                                                                                                                                                                                                                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|                                                                                                                                                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
|                                                                                                                                                                                                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onents                                                                                                                                                                                                                                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 |
| Component Name                                                                                                                                                                                                                           |                                 | Henry's Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Component Name                                                                                                                                                                                                                                                  |             | Henry's Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phase                                                                                                                                           |
|                                                                                                                                                                                                                                          |                                 | <b>C</b> + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |             | <b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Initiaton                                                                                                                                       |
| Carbon Dioxide                                                                                                                                                                                                                           |                                 | Component<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initiator<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Toluene                                                                                                                                                                                                                                                         |             | Component<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initiator<br>False                                                                                                                              |
| Carbon Dioxide<br>Nitrogen                                                                                                                                                                                                               |                                 | Component<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initiator<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Toluene<br>Ethylbenzene                                                                                                                                                                                                                                         |             | Component<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initiator<br>False<br>False                                                                                                                     |
| Carbon Dioxide<br>Nitrogen<br>Methane                                                                                                                                                                                                    |                                 | Component<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initiator<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene<br>Ethylbenzene<br>m-Xylene                                                                                                                                                                                                                             |             | Component<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initiator<br>False<br>False<br>False                                                                                                            |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane                                                                                                                                                                                          |                                 | Component<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initiator<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane                                                                                                                                                                                                                 |             | Component<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initiator<br>False<br>False<br>False<br>False                                                                                                   |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane                                                                                                                                                                               |                                 | Component<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Initiator<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane                                                                                                                                                                                       |             | Component<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Initiator<br>False<br>False<br>False<br>False<br>False                                                                                          |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane                                                                                                                                                                   |                                 | Component<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initiator<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane                                                                                                                                                                         |             | Component<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Initiator<br>False<br>False<br>False<br>False<br>False<br>False                                                                                 |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane                                                                                                                                                       |                                 | Component<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus                                                                                                                                                          |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                        |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane                                                                                                                                          |                                 | Component<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>Decanes Plus<br>Water                                                                                                                                                |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>True                                                                |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane                                                                                                                             |                                 | Component<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ<br>Falæ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium                                                                                                                                       |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>True<br>False                                                                |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Pentane<br>i-Hexane                                                                                                    |                                 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen                                                                                                                           |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>True<br>False<br>False<br>False                                              |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane<br>Optage                                                                                            |                                 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen                                                                                                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                    |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane                                                                                            |                                 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Bropylono Glucol                                                                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                           |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene                                                                       |                                 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initiator           False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol                                                                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>True |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene                                                                       |                                 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol                                                                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>True<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>True  |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene                                                                       |                                 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol                                                                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>True<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene                                                                       |                                 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol                                                                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>True<br>False<br>False<br>False<br>False<br>False<br>False                   |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene                                                                       | e                               | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol                                                                                 |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False         |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Liquid Molar Volum<br>Stability Calculation                        | e<br>1<br>1<br>1<br>1<br>1<br>1 | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Fa | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol<br>erty Method Sets<br>Overall Package<br>Vapor Package<br>Heavy Liquid Package |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Fa | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>True                   |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Liquid Molar Volum<br>Stability Calculation<br>Light Liquid Packag | e<br>1<br>e                     | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Fa | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol<br>erty Method Sets<br>Overall Package<br>Vapor Package<br>Heavy Liquid Package |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Fa | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>True                   |
| Carbon Dioxide<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Liquid Molar Volum<br>Stability Calculation<br>Light Liquid Packag | e<br>1<br>e                     | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Fa | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene<br>Ethylbenzene<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpentane<br>Neopentane<br>DecanesPlus<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Glycol<br><b>erty Method Sets</b><br>Overall Package<br>Heavy Liquid Package           |             | Component<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>Fa | Initiator<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>False<br>True          |

| Client Name:                              | TCEnergy                             |                                            |                           |                                               | Job: Waste    | water Tank A21     |                   |  |  |
|-------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------|-----------------------------------------------|---------------|--------------------|-------------------|--|--|
| Location:                                 | Ceredo Compr                         | essor Station                              |                           |                                               |               |                    |                   |  |  |
|                                           |                                      |                                            |                           |                                               |               |                    |                   |  |  |
|                                           |                                      |                                            |                           |                                               |               |                    |                   |  |  |
| Properties                                |                                      |                                            |                           |                                               |               |                    |                   |  |  |
| Volume Average<br>Point                   | Boiling                              | 240.832                                    | °F                        | Low Temperature Vis                           | cosity        | 0.441651           | cP                |  |  |
| * Molecular Weight                        |                                      | 108.848                                    | lb/lbmol                  | Temperature of High <sup>-</sup><br>Viscosity | Г             | 210                | °F                |  |  |
| <ul> <li>Specific Gravity</li> </ul>      |                                      | 0.7432                                     |                           | High Temperature Vis                          | cosity        | 0.256204           | cP                |  |  |
| API Gravity                               |                                      | 58.8929                                    |                           | Watson K                                      |               | 11.9499            |                   |  |  |
| Critical Temperat                         | ure                                  | 563.715                                    | °F                        | ASTM D86 10-90% S                             | lope          | 0                  | °F/%              |  |  |
| Critical Pressure                         |                                      | 421.397                                    | psia                      | ASTM D93 Flash Poir                           | nt            | 47.9739            | °F                |  |  |
| Critical Volume                           |                                      | 6.98262                                    | ft^3/lbmol                | ? Pour Point                                  |               | -22.4869           | °F                |  |  |
| Acentric Factor                           |                                      | 0.350921                                   |                           | Paraffinic Fraction                           |               | 56.3105            | %                 |  |  |
| Carbon to Hydrog                          | en Ratio                             | 5.84021                                    |                           | Naphthenic Fraction                           |               | 29.8859            | %                 |  |  |
| Refractive Index                          |                                      | 1.41346                                    |                           | Aromatic Fraction                             |               | 13.8037            | %                 |  |  |
| Temperature of L                          | owT                                  | 100                                        | °F                        | Ideal GasHeat Capac                           | ity           | 38.2665            | Btu/(lbmol*°F)    |  |  |
| Viscosity                                 |                                      |                                            |                           |                                               |               |                    |                   |  |  |
|                                           |                                      |                                            |                           |                                               |               |                    |                   |  |  |
| Warnings<br>ProMax:ProMax!Pro<br>Warning: | oject!Oils!Decand<br>Pour Point cald | esPlus!Properties!P<br>culation: The value | our Point<br>of 240.832°F | for Volume Average Boiling Po                 | oint should b | e between 340.33 ° | F and 1040.33 °F. |  |  |
|                                           |                                      |                                            |                           |                                               |               |                    |                   |  |  |

Remarks

|                                                      |                                     |                                              | Single<br>Lu                     | e Oil Report<br>Ibe Oil             |               |                      |                 |
|------------------------------------------------------|-------------------------------------|----------------------------------------------|----------------------------------|-------------------------------------|---------------|----------------------|-----------------|
| Client Name:                                         | TCEnergy                            |                                              |                                  |                                     | Job: Waste    | waterTankA21         |                 |
| Location:                                            | Ceredo Compre                       | essor Station                                |                                  |                                     |               |                      |                 |
|                                                      |                                     |                                              |                                  |                                     |               |                      |                 |
|                                                      |                                     |                                              |                                  |                                     |               |                      |                 |
|                                                      |                                     |                                              | Pro                              | operties                            |               |                      |                 |
| Volume Average<br>Point                              | Boiling                             | 791.482                                      | °F                               | Low Temperature Viso                | cosity        | 32.6194              | сР              |
| * Molecular Weight                                   |                                     | 380                                          | lb/lbmol                         | Temperature of High<br>Viscosity    | Γ             | 210                  | °F              |
| <ul> <li>Specific Gravity</li> </ul>                 |                                     | 0.9                                          |                                  | High Temperature Vis                | cosity        | 4.52357              | сР              |
| API Gravity                                          |                                     | 25.7222                                      |                                  | Watson K                            |               | 11.9728              |                 |
| Critical Temperat                                    | ure                                 | 1077.76                                      | °F                               | ASTM D86 10-90% SI                  | ope           | 0                    | °F/%            |
| Critical Pressure                                    |                                     | 162.989                                      | psia                             | ASTM D93 Flash Poir                 | nt            | 427.922              | °F              |
| Critical Volume                                      |                                     | 20.2275                                      | ft^3/lbmol                       | PourPoint                           |               | 89.7805              | °F              |
| Acentric Factor                                      |                                     | 1.0209                                       |                                  | Paraffinic Fraction                 |               | 58.4435              | %               |
| ? Carbon to Hydrog                                   | en Ratio                            | 6.55722                                      |                                  | Naphthenic Fraction                 |               | 30.863               | %               |
| Refractive Index                                     |                                     | 1.49164                                      |                                  | Aromatic Fraction                   |               | 10.6935              | %               |
| Temperature of Lo<br>Viscosity                       | owT                                 | 100                                          | °F                               | Ideal GasHeat Capac                 | ity           | 133.295              | Btu/(lbmol*°F)  |
|                                                      |                                     |                                              |                                  |                                     |               |                      |                 |
| Warnings<br>ProMax:ProMax!Pro<br>Warning:<br>650 °F. | oject!Oils!Lube O<br>Carbon to Hydr | il!Properties!Carbon<br>ogen Ratio calculati | to Hydrogen Ra<br>ion: The value | atio<br>of 791.482 °F for Volume Av | erage Boiling | g Point should be be | tween 80 °F and |

Remarks

| Client Name:  | TOFROM        | User Value       | Sets Report                          | Lieb: Worte | unter Text A 24 |
|---------------|---------------|------------------|--------------------------------------|-------------|-----------------|
| Client Name:  |               | accor Station    |                                      | Job: Waste  | water LankA21   |
| Location.     | Celedo Comple |                  |                                      |             |                 |
|               |               |                  |                                      | 1           |                 |
|               |               | Proces           | e Innute                             |             |                 |
|               |               |                  |                                      |             |                 |
| * Paramotor   |               |                  | ales Gas Targetj                     |             | MMSCED          |
| LowerBound    |               | 3 MMSCED         | * Enforce Bounds                     |             | Falso           |
| Lower Dound   |               |                  | Enleree Beands                       |             | 1 4155          |
|               |               | Usor Value [W    | ator Pato Targot]                    |             |                 |
| * Parameter   |               |                  |                                      |             | gal/yr          |
| LowerBound    |               |                  | * Enforce Bounds                     |             | False           |
| 201101 200110 |               |                  |                                      |             |                 |
|               |               | User Value [Conc | lonsato Pato Targot]                 |             |                 |
| * Parameter   |               |                  | Upper Bound                          |             | gal/yr          |
| LowerBound    |               | gal/yr           | * Enforce Bounds                     |             | False           |
| Lower Dound   |               | ganyi            | Enlette Beands                       |             | 1 4156          |
| Remarks       |               |                  |                                      |             |                 |
|               |               | Propylene        | Glycol Tanks                         |             |                 |
|               |               |                  |                                      |             |                 |
| * Doromotor   |               |                  |                                      |             |                 |
| Falameter     |               |                  | * Enforce Bounds                     |             | Falso           |
| Lower Dound   |               |                  | Enfolde Bounds                       |             | 1 4155          |
|               |               | Llear Value      | [Shall angth]                        |             |                 |
| * Parameter   |               |                  |                                      |             | ft              |
| LowerBound    |               | ft               | * Enforce Bounds                     |             | False           |
| 201101 200110 |               |                  |                                      |             |                 |
|               |               | llser Value      | [ShollDiam]                          |             |                 |
| * Parameter   |               | OSET Value       | Upper Bound                          |             | ft              |
| LowerBound    |               | ft               | * Enforce Bounds                     |             | False           |
|               |               |                  |                                      |             |                 |
|               |               | llser Value      | [Breather//P]                        |             |                 |
| * Parameter   |               |                  | UpperBound                           |             | psig            |
| Lower Bound   |               | psig             | * Enforce Bounds                     |             | False           |
|               |               |                  |                                      |             |                 |
|               |               | User Value [     | BreatherVacP1                        |             |                 |
| * Parameter   |               | -0.03 psig       | Upper Bound                          |             | psig            |
| Lower Bound   |               | psig             | * Enforce Bounds                     |             | False           |
|               |               |                  |                                      |             |                 |
|               |               | User Value       | [DomeRadius]                         |             |                 |
| Parameter     |               | ft               | Upper Bound                          |             | ft              |
| Lower Bound   |               | ft               | * Enforce Bounds                     |             | False           |
|               |               |                  |                                      |             |                 |
|               |               | User Valu        | e [OpPress]                          |             |                 |
| * Parameter   |               | 0 psig           | Upper Bound                          |             | psig            |
| Lower Bound   |               | psig             | * Enforce Bounds                     |             | False           |
|               |               |                  |                                      |             |                 |
|               |               | User Value [/    | AvgPercentLig]                       |             |                 |
| * Parameter   |               | 50 %             | Upper Bound                          |             | %               |
| Lower Bound   |               | %                | * Enforce Bounds                     |             | False           |
|               |               |                  |                                      |             |                 |
|               |               | User Value [     | MaxPercentLig]                       |             |                 |
| * Parameter   |               | 90 %             | Upper Bound                          |             | %               |
| Lower Bound   |               | %                | <ul> <li>* Enforce Bounds</li> </ul> |             | False           |
|               |               |                  |                                      |             |                 |

|               |               | User Value        | Sets Report                          |             |               |                  |
|---------------|---------------|-------------------|--------------------------------------|-------------|---------------|------------------|
| Client Name:  | TCEnergy      |                   |                                      | Job: Waster | water TankA21 |                  |
| Location:     | Ceredo Compre | essor Station     |                                      |             |               |                  |
|               |               |                   |                                      |             |               |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value [I     | MinPercentLiq]                       |             |               |                  |
| * Parameter   |               | 10 %              | UpperBound                           |             |               | %                |
| LowerBound    |               | %                 | * Enforce Bounds                     |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value        | [AnnNetTP]                           |             |               |                  |
| * Parameter   |               | 4.69867 bbl/day   | Upper Bound                          |             |               | bbl/day          |
| Lower Bound   |               | bbl/day           | * Enforce Bounds                     |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Val          | ue [OREff]                           |             |               |                  |
| * Parameter   |               | 0 %               | Upper Bound                          |             |               | %                |
| LowerBound    |               | %                 | * Enforce Bounds                     |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | llser Value       |                                      |             |               |                  |
| * Parameter   |               | 65.4 °F           | UpperBound                           |             |               | °F               |
| LowerBound    |               | °F                | * Enforce Bounds                     |             | False         | •                |
|               |               |                   |                                      |             |               |                  |
|               |               | Llser Value       |                                      |             |               |                  |
| * Parameter   |               |                   |                                      |             |               | °E               |
| LowerBound    |               | *5.5 T            | * Enforce Bounds                     |             | False         | 1                |
| Lonor Bound   |               | •                 | Emoloo Boundo                        |             | 1 4100        |                  |
|               |               | Lloor Volu        | Dulki aTi                            |             |               |                  |
| * Deverseter  |               |                   |                                      |             |               |                  |
| Parameter     |               | 58.7899 °F        | Upper Bound                          |             | Foloo         | F                |
| Lower Bound   |               | Γ                 | Lilloice Boulius                     |             | 1 alse        |                  |
|               |               |                   |                                      |             |               |                  |
| * Demonster   |               | User vai          |                                      |             |               | a da             |
| * Parameter   |               | 14.16 psia        | Upper Bound                          |             | Falco         | psia             |
| Lower bound   |               | psia              | Enioice Bounds                       |             | 1 8130        |                  |
|               |               |                   |                                      |             |               |                  |
| * Downood for |               |                   |                                      |             |               | Disc/fildO/class |
| ^ Parameter   |               | 1237 Btu/tt/2/day | Upper Bound                          |             | Falsa         | Btu/ft^2/day     |
| LowerBound    |               | Btu/It/2/day      | Enforce Bounds                       |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value [A     | vgWindSpeed]                         |             |               |                  |
| * Parameter   |               | 4 mi/h            | Upper Bound                          |             |               | mi/h             |
| LowerBound    |               | mı/h              | * Enforce Bounds                     |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value [MaxH  | lourlyLoadingRate]                   |             |               |                  |
| Parameter     |               | bbl/hr            | Upper Bound                          |             | _             | bbl/hr           |
| LowerBound    |               | bbl/hr            | * Enforce Bounds                     |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value [S     | umLiqLevelInc]                       |             |               |                  |
| Parameter     |               | ft/yr             | UpperBound                           |             |               | ft/yr            |
| LowerBound    |               | ft/yr             | * Enforce Bounds                     |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value        | [FlashingT]                          |             |               |                  |
| * Parameter   |               | 70.278 °F         | Upper Bound                          |             |               | °F               |
| LowerBound    |               | °F                | <ul> <li>* Enforce Bounds</li> </ul> |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value [Er    | ntrainedOilFrac]                     |             |               |                  |
| * Parameter   |               | 1 %               | Upper Bound                          |             |               | %                |
| LowerBound    |               | %                 | * Enforce Bounds                     |             | False         |                  |
|               |               |                   |                                      |             |               |                  |
|               |               | User Value [      | TurnoverRate1                        |             |               |                  |
| * Parameter   |               | 68.3814           | UpperBound                           |             |               |                  |
| LowerBound    |               |                   | * Enforce Bounds                     |             | False         |                  |

|              |               | User Value         | e Sets Report                        |            |              |
|--------------|---------------|--------------------|--------------------------------------|------------|--------------|
| Client Name: | TC Energy     |                    |                                      | Job: Waste | waterTankA21 |
| Location:    | Ceredo Compre | essor Station      |                                      |            |              |
|              | · · · ·       |                    |                                      |            |              |
|              |               |                    |                                      |            |              |
|              |               |                    |                                      |            |              |
|              |               | User Value [       | LLossSatFactor]                      |            |              |
| * Parameter  |               | 1.45               | Upper Bound                          |            |              |
| Lower Bound  |               |                    | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value         | [AtmPressure]                        |            |              |
| * Parameter  |               | 14.16 psia         | Upper Bound                          |            | psia         |
| Lower Bound  |               | psia               | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User V             | alue [TVP]                           |            |              |
| * Parameter  |               | 0.258949 psia      | Upper Bound                          |            | psia         |
| Lower Bound  |               | psia               | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Va            | lue [MaxVP]                          |            |              |
| * Parameter  |               | 0.34849 psia       | Upper Bound                          |            | psia         |
| Lower Bound  |               | psia               | <ul> <li>* Enforce Bounds</li> </ul> |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Va            | lue [MinVP]                          |            |              |
| * Parameter  |               | 0.190248 psia      | Upper Bound                          |            | psia         |
| Lower Bound  |               | psia               | <ul> <li>* Enforce Bounds</li> </ul> |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value [       | AvgLiqSurfaceT]                      |            |              |
| * Parameter  |               | 61.7293 °F         | UpperBound                           |            | °F           |
| Lower Bound  |               | °F                 | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value [       | MaxLiqSurfaceT]                      |            |              |
| * Parameter  |               | 70.278 °F          | Upper Bound                          |            | °F           |
| Lower Bound  |               | °F                 | <ul> <li>* Enforce Bounds</li> </ul> |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value         | e [TotalLosses]                      |            |              |
| * Parameter  |               | 2.54959E-12 ton/yr | Upper Bound                          |            | ton/yr       |
| Lower Bound  |               | ton/yr             | <ul> <li>Enforce Bounds</li> </ul>   |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value         | WorkingLosses]                       |            |              |
| * Parameter  |               | 1.94953E-12 ton/yr | Upper Bound                          |            | ton/yr       |
| Lower Bound  |               | ton/yr             | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value [       | StandingLosses]                      |            |              |
| * Parameter  |               | 6.00063E-13 ton/yr | UpperBound                           |            | ton/yr       |
| Lower Bound  |               | ton/yr             | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value         | RimSealLosses]                       |            |              |
| * Parameter  |               | 0 ton/yr           | UpperBound                           |            | ton/yr       |
| Lower Bound  |               | ton/yr             | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value         | WithdrawalLoss]                      |            |              |
| * Parameter  |               | 0 ton/yr           | Upper Bound                          |            | ton/yr       |
| Lower Bound  |               | ton/yr             | ^ Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value         | LoadingLosses]                       |            |              |
| * Parameter  |               | 4.6975E-12 ton/yr  | Upper Bound                          |            | ton/yr       |
| Lower Bound  |               | ton/yr             | * Enforce Bounds                     |            | False        |
|              |               |                    |                                      |            |              |
|              |               | User Value [Max    | HourlyLoadingLoss                    |            |              |
| * Parameter  |               | 0 lb/hr            | Upper Bound                          |            | lb/hr        |

ProMax 5.0.19263.0 Copyright © 2002-2019 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

|              |               | User Value       | Sets Report                          |            |               |
|--------------|---------------|------------------|--------------------------------------|------------|---------------|
| Client Name: | TC Energy     |                  |                                      | Job: Waste | waterTankA21  |
| Location:    | Ceredo Compre | ssor Station     |                                      |            |               |
|              |               |                  |                                      |            |               |
|              |               |                  | I south at a section of a section    |            |               |
| Lower Bound  |               |                  | HouriyLoadingLoss                    |            | Falsa         |
| Lower Bound  |               | ID/III           | Enforce Bounds                       |            | Faise         |
|              |               |                  | 120/1                                |            |               |
| Deverseder   |               | User Val         | ue [PStar]                           |            |               |
| Parameter    |               |                  | • Enforce Bounds                     |            | Falso         |
| Lower Bound  |               |                  | Enloice Bounds                       |            | T also        |
|              |               |                  |                                      |            |               |
| * Paramotor  |               |                  |                                      |            | top/ur        |
| LowerBound   |               |                  | * Enforce Bounds                     |            | Ealse         |
| Lower Bound  |               | ton/yi           | Enleree Beanas                       |            | 1 4100        |
|              |               |                  |                                      |            |               |
| * Parameter  |               |                  | Upper Bound                          |            | top/yr        |
| LowerBound   |               | ton/vr           | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            | · · · · · · · |
|              |               |                  |                                      |            |               |
| Parameter    |               |                  | UpperBound                           |            | lb/hr         |
| LowerBound   |               | Ib/hr            | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | llser Value [All | CElashinglosses]                     |            |               |
| * Parameter  |               |                  | UpperBound                           |            | ton/yr        |
| Lower Bound  |               | ton/yr           | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | User Value [Do   | ckFittingl osses]                    |            |               |
| * Parameter  |               |                  | UpperBound                           |            | ton/yr        |
| Lower Bound  |               | ton/vr           | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | Liser Value (Dr  | eckSeaml osses]                      |            |               |
| * Parameter  |               |                  | UpperBound                           |            | ton/vr        |
| Lower Bound  |               | ton/yr           | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | User Value [F    | lashingLosses                        |            |               |
| * Parameter  |               |                  | Upper Bound                          |            | ton/vr        |
| Lower Bound  |               | ton/yr           | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | User Value [     | TotalResidual]                       |            |               |
| * Parameter  |               | 283.565 ton/yr   | Upper Bound                          |            | ton/yr        |
| Lower Bound  |               | ton/yr           | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | User Value [C    | GasMoleWeight]                       |            |               |
| * Parameter  |               | 0.0180153 kg/mol | Upper Bound                          |            | kg/mol        |
| LowerBound   |               | kg/mol           | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | User Value [Va   | pReportableFrac]                     |            |               |
| * Parameter  |               | 8.06881E-08 %    | Upper Bound                          |            | %             |
| LowerBound   |               | %                | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | User Value [Lic  | ReportableFrac]                      |            |               |
| * Parameter  |               | 52.6104 %        | Upper Bound                          |            | %             |
| Lower Bound  |               | %                | * Enforce Bounds                     |            | False         |
|              |               |                  |                                      |            |               |
|              |               | User Value [Flag | shReportableFrac]                    |            |               |
| * Parameter  |               | 0 %              | Upper Bound                          |            | %             |
| Lower Bound  |               | %                | <ul> <li>* Enforce Bounds</li> </ul> |            | False         |
|              |               |                  |                                      |            |               |

| Client Name:                                                                                  |                | User Valu                        | e Sets Report            | Lioh: Waste | waterTank 421 |  |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------|----------------------------------|--------------------------|-------------|---------------|--|--|--|--|
| Location:                                                                                     | Ceredo Compre  | essor Station                    |                          | JOD: Waste  |               |  |  |  |  |
|                                                                                               |                |                                  |                          |             |               |  |  |  |  |
|                                                                                               |                |                                  |                          |             |               |  |  |  |  |
| ThisUser Value Set wasprogrammatically generated. GUID={2B36A6D8-C8D1-4CD2-9AE9-43032096E4C0} |                |                                  |                          |             |               |  |  |  |  |
| Sum Component Flow/Frac.22                                                                    |                |                                  |                          |             |               |  |  |  |  |
|                                                                                               |                | User Valu                        | ie [CompSum]             |             |               |  |  |  |  |
| * Parameter                                                                                   |                | 0 ton/yr                         | Upper Bound              |             | ton/yr        |  |  |  |  |
| Lower Bound                                                                                   |                | ton/yr                           | * Enforce Bounds         |             | False         |  |  |  |  |
| Remarks                                                                                       |                |                                  |                          |             |               |  |  |  |  |
| ThisUser Value Se                                                                             | t wasprogramma | atically generated. GUID={4357C5 | FC-CEB2-4442-A1F4-459C0  | F79940A}    |               |  |  |  |  |
|                                                                                               |                | Sum Compo                        | nent Flow/Frac.29        |             |               |  |  |  |  |
|                                                                                               |                | User Valu                        | ue [CompSum]             |             |               |  |  |  |  |
| * Parameter                                                                                   |                | 6.00063E-13 ton/yr               | Upper Bound              |             | ton/yr        |  |  |  |  |
| Lower Bound                                                                                   |                | ton/yr                           | * Enforce Bounds         |             | False         |  |  |  |  |
|                                                                                               |                | Sum Compo                        | nent Flow/Frac.30        |             |               |  |  |  |  |
| * Parameter                                                                                   |                | User Valu                        | Lie [CompSum]            |             | top/vr        |  |  |  |  |
| LowerBound                                                                                    |                | ton/yr                           | * Enforce Bounds         |             | False         |  |  |  |  |
|                                                                                               |                |                                  |                          |             |               |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                  | t wasprogramma | atically generated. GUID={9C3A16 | 55A-84A6-4C39-B59F-E141C | 34E0C72}    |               |  |  |  |  |
|                                                                                               |                | Sum Compo                        | nent Flow/Frac.31        |             |               |  |  |  |  |
|                                                                                               |                | User Valu                        | ue [CompSum]             |             |               |  |  |  |  |
| * Parameter                                                                                   |                | 1.94953E-12 ton/yr               | Upper Bound              |             | ton/yr        |  |  |  |  |
| Lower Bound                                                                                   |                | ton/yr                           | Enforce Bounds           |             | Faise         |  |  |  |  |
| <b>Remarks</b><br>ThisUser Value Se                                                           | t wasprogramma | atically generated. GUID={071E1B | 34-05C2-47CC-A085-38995  | 27648C5}    |               |  |  |  |  |
|                                                                                               |                |                                  |                          |             |               |  |  |  |  |
|                                                                                               |                | Sum Compo                        | nent Flow/Frac.32        |             |               |  |  |  |  |
|                                                                                               |                | User Valu                        | ue [CompSum]             |             |               |  |  |  |  |
| * Parameter                                                                                   |                | 0 lb/h                           | Upper Bound              |             | lb/h          |  |  |  |  |
| LowerBound                                                                                    |                | ID/h                             | " Enforce Bounds         |             | False         |  |  |  |  |
| Bomorke                                                                                       |                |                                  |                          |             |               |  |  |  |  |
| This User Value Se                                                                            | t wasprogramma | atically generated. GUID={F5A120 | A0-A5E7-452A-A7E7-C242F  | A991327}    |               |  |  |  |  |
|                                                                                               |                |                                  |                          |             |               |  |  |  |  |

|                                                                                                          |                                                                                                          | User Value                         | Sets Report            |            |                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|------------|-----------------|--|--|--|--|--|
| Client Name:                                                                                             | TC Energy                                                                                                | amor Station                       |                        | Job: Waste | waterTankA21    |  |  |  |  |  |
| Location:                                                                                                | Celedo Comple                                                                                            |                                    |                        |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          |                                    |                        | <u> </u>   |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compone                        | ent Flow/Frac.33       |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          |                                    | [CompSum]              |            |                 |  |  |  |  |  |
| * Parameter                                                                                              |                                                                                                          | 1.37001E-13 lb/h                   | UpperBound             |            | lb/h            |  |  |  |  |  |
| LowerBound                                                                                               |                                                                                                          | Ib/h                               | * Enforce Bounds       |            | False           |  |  |  |  |  |
|                                                                                                          |                                                                                                          |                                    |                        |            |                 |  |  |  |  |  |
| Remarks<br>ThisUser Value Set wasprogrammatically generated. GUID={CB3705AB-1F89-4C62-BF55-8508907E81B4} |                                                                                                          |                                    |                        |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compone                        | ont Flow/Frac 34       |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | Sull compone                       | FIL FIOW/FIAC.34       |            |                 |  |  |  |  |  |
| * Paramotor                                                                                              |                                                                                                          |                                    |                        |            | lb/b            |  |  |  |  |  |
| LowerBound                                                                                               |                                                                                                          | Ib/h                               | * Enforce Bounds       |            | False           |  |  |  |  |  |
| Lower Board                                                                                              |                                                                                                          | 10/11                              | Emoto Boundo           |            | 1 0100          |  |  |  |  |  |
| Remarks<br>ThisUser Value Set                                                                            | t wasprogramma                                                                                           | atically generated. GUID={DCFE8712 | 2-5BB2-48D4-BC97-394C4 | 135488B4}  |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          |                                    | /                      |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compone                        | ent Flow/Frac.35       |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | User Value                         | [CompSum]              |            |                 |  |  |  |  |  |
| * Parameter                                                                                              |                                                                                                          | 4.45097E-13 lb/h                   | Upper Bound            |            | lb/h            |  |  |  |  |  |
| Lower Bound                                                                                              |                                                                                                          | lb/h                               | * Enforce Bounds       |            | False           |  |  |  |  |  |
| Remarks<br>ThisUser Value Set                                                                            | t wasprogramma                                                                                           | atically generated. GUID={A5869694 | -840B-429A-B69A-1E3888 | ACE8B3}    |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compone                        | ent Flow/Frac 36       |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          |                                    |                        |            |                 |  |  |  |  |  |
| * Parameter                                                                                              |                                                                                                          |                                    |                        |            | ton/vr          |  |  |  |  |  |
| LowerBound                                                                                               |                                                                                                          | ton/vr                             | * Enforce Bounds       |            | False           |  |  |  |  |  |
|                                                                                                          |                                                                                                          | ,<br>,                             |                        |            |                 |  |  |  |  |  |
| Remarks<br>ThisUser Value Set                                                                            | t wasprogramma                                                                                           | atically generated. GUID={F59DBD01 | E-0AC2-4422-AB61-597DE | 381EEC86}  |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          |                                    |                        |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compone                        | ent Flow/Frac.37       |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | User Value                         | [CompSum]              |            |                 |  |  |  |  |  |
| * Parameter                                                                                              |                                                                                                          | 0 ton/yr                           | Upper Bound            |            | ton/yr          |  |  |  |  |  |
| Lower Bound                                                                                              |                                                                                                          | ton/yr                             | * Enforce Bounds       |            | False           |  |  |  |  |  |
| <b>Remarks</b><br>ThisUser Value Set                                                                     | Remarks<br>ThisUser Value Set wasprogrammatically generated. GUID={21936257-C6B2-46EC-958E-B899560405D5} |                                    |                        |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | 0                                  |                        |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | Sum Compone                        | ent Flow/Frac.38       |            |                 |  |  |  |  |  |
|                                                                                                          |                                                                                                          | User Value                         | [CompSum]              |            |                 |  |  |  |  |  |
| Parameter                                                                                                |                                                                                                          | U ton/yr                           | opper Bound            |            | ton/yr<br>False |  |  |  |  |  |
|                                                                                                          |                                                                                                          |                                    |                        |            |                 |  |  |  |  |  |
| Remarks                                                                                                  |                                                                                                          |                                    |                        |            |                 |  |  |  |  |  |

|                                                                                               | 1705            |                                 |                           |            |              |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-----------------|---------------------------------|---------------------------|------------|--------------|--|--|--|--|--|
| Client Name:                                                                                  | TC Energy       | e eest Station                  |                           | Job: Waste | waterTankA21 |  |  |  |  |  |
| Location:                                                                                     | Celedo Compi    |                                 |                           |            |              |  |  |  |  |  |
|                                                                                               |                 |                                 |                           |            |              |  |  |  |  |  |
| ThisUser Value Set wasprogrammatically generated. GUID={673602E1-F687-4A48-B880-B62DA6D53544} |                 |                                 |                           |            |              |  |  |  |  |  |
|                                                                                               |                 | Sum Compo                       | onent Flow/Frac.39        |            |              |  |  |  |  |  |
|                                                                                               |                 | User Val                        | ue [CompSum]              |            |              |  |  |  |  |  |
| * Parameter                                                                                   |                 | 0 ton/yr                        | UpperBound                |            | ton/yr       |  |  |  |  |  |
| LowerBound                                                                                    |                 | ton/yr                          | * Enforce Bounds          |            | False        |  |  |  |  |  |
|                                                                                               |                 |                                 |                           |            |              |  |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                  | et wasprogramm: | atically generated. GUID={A6687 | 4FE-5757-4A82-A90D-461551 | A14FE0}    |              |  |  |  |  |  |
|                                                                                               |                 |                                 |                           |            |              |  |  |  |  |  |
|                                                                                               |                 | Sun compo                       |                           |            |              |  |  |  |  |  |
| * Parameter                                                                                   |                 |                                 |                           |            | lb/b         |  |  |  |  |  |
| LowerBound                                                                                    |                 | lb/h                            | * Enforce Bounds          |            | False        |  |  |  |  |  |
|                                                                                               |                 |                                 |                           |            |              |  |  |  |  |  |
|                                                                                               |                 | Sum Comp                        | opent Flow/Frac 41        | _          |              |  |  |  |  |  |
|                                                                                               |                 | Liser Val                       |                           |            |              |  |  |  |  |  |
| * Parameter                                                                                   |                 | 0 lb/h                          | UpperBound                |            | lb/h         |  |  |  |  |  |
| LowerBound                                                                                    |                 | lb/h                            | * Enforce Bounds          |            | False        |  |  |  |  |  |
| <b>Remarks</b><br>ThisUser Value Se                                                           | et wasprogramm  | atically generated. GUID={15B55 | 6F6-F294-4267-BD11-BC8C5  | F036006}   |              |  |  |  |  |  |
|                                                                                               |                 | Sum Compo                       | onent Flow/Frac.42        |            |              |  |  |  |  |  |
|                                                                                               |                 | User Val                        | ue [CompSum]              |            |              |  |  |  |  |  |
| * Parameter                                                                                   |                 | 0 lb/h                          | Upper Bound               |            | lb/h         |  |  |  |  |  |
| Lower Bound                                                                                   |                 | lb/h                            | * Enforce Bounds          |            | False        |  |  |  |  |  |
| <b>Remarks</b><br>ThisUser Value Se                                                           | et wasprogramm  | atically generated. GUID={160EB | D9C-29DD-4770-9C07-6B583  | A1CF55A}   |              |  |  |  |  |  |
|                                                                                               |                 | Sum Compo                       | opent Flow/Frac.43        |            |              |  |  |  |  |  |
|                                                                                               |                 | liser Val                       | ue [CompSum]              |            |              |  |  |  |  |  |
| * Parameter                                                                                   |                 | 0 lb/h                          | Upper Bound               |            | lb/h         |  |  |  |  |  |
| LowerBound                                                                                    |                 | Ib/h                            | * Enforce Bounds          |            | False        |  |  |  |  |  |
|                                                                                               |                 |                                 |                           |            |              |  |  |  |  |  |
| Remarks<br>ThisUser Value Se                                                                  | et wasprogramm  | atically generated. GUID={C0316 | A6A-5A27-4BFC-8CB0-59283  | A21D199}   |              |  |  |  |  |  |

Page 1 of 7

|                        |          |               |                   | Recoveri    | es Report                             | :          |            | lob: Wastewater Tank A21 |         |          |  |
|------------------------|----------|---------------|-------------------|-------------|---------------------------------------|------------|------------|--------------------------|---------|----------|--|
| Client Name:           | TCEner   | gy<br>Compose | and Station       |             |                                       |            | Job: Waste | waterTankA21             |         |          |  |
| Location:              | Ceredo   | Compre        | ssor Station      |             |                                       |            |            |                          |         |          |  |
|                        | <u>.</u> |               |                   |             |                                       |            | <b>.</b>   |                          |         |          |  |
|                        | •        |               | Compo             | nent Deeev  |                                       | at Inlate  |            |                          | Statue  | Solved   |  |
|                        |          |               | Compo             | nent Recove | eries - Proje                         | ect miets  |            |                          | Status. | Solved   |  |
|                        |          |               | Recovery Stre     | eam Data So | purce - All I                         | nlets in I | Project    |                          |         |          |  |
| Flowsh                 | neet     |               | PStrear           | n           | F                                     | lowsheet   |            | P                        | Stream  |          |  |
| Wastew                 | ater     |               | Wastewa           | ter         |                                       |            |            |                          |         |          |  |
|                        |          |               |                   |             |                                       |            |            |                          |         |          |  |
|                        |          |               |                   | Parar       | neters                                |            |            |                          |         |          |  |
| Composition Basi       | S        |               | Molar Flow        |             | Summation                             | Option     |            | Streamsa                 | nd      |          |  |
|                        |          |               |                   |             |                                       |            |            | Summat                   | ion     |          |  |
| Calculate Ratios False |          |               |                   |             | Atomic Bas                            | is         |            | Fa                       | lse     |          |  |
|                        |          |               |                   |             |                                       |            |            |                          |         |          |  |
|                        |          |               |                   | Tabulat     | ed Data                               |            |            |                          |         |          |  |
|                        |          | Wast          | ewater:Wastewater | Summa       | rv Table                              |            |            |                          |         |          |  |
| Index                  |          |               | lbmol/h           | lbm         | ol/h                                  |            |            |                          |         |          |  |
| Carbon Dioxi           | de       |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Nitrogen               |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Methane                |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Ethane                 |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Propane                |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| i-Butane               |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| n-Butane               |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| i-Pentane              |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| n-Pentane              |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| I-nexalle<br>Hentane   |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Octane                 |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Nonane                 |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Benzene                |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Toluene                |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Ethylbenzen            | е        |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| m-Xylene               |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| n-Hexane               |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| 2,2,4-Trimethylpe      | entane   |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Neopentane             | Э        |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| DecanesPlu             | IS       |               | 1 70204           |             | 1 70204                               |            |            |                          |         |          |  |
|                        |          |               | 1.70304           |             | 1.70304                               |            |            |                          |         |          |  |
| Hydrogen               |          |               | 0                 |             | 0                                     |            |            |                          |         | <u> </u> |  |
| Oxvden                 |          |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Lube Oil               |          |               | 0.0896339         |             | 0.0896339                             |            |            |                          |         |          |  |
| Propylene Gly          | /col     |               | 0                 |             | 0                                     |            |            |                          |         |          |  |
| Total                  |          |               | 1.79268           |             | 1.79268                               |            |            |                          |         |          |  |
| Remarks                |          |               |                   |             |                                       |            |            |                          |         |          |  |
|                        |          |               |                   |             |                                       |            |            |                          |         |          |  |
|                        | •        |               |                   |             |                                       |            |            |                          |         |          |  |
|                        |          |               | Compon            | ent Recove  | ries - Proje                          | ct Outlet  | S          |                          | Status: | Solved   |  |
|                        |          |               | Recovery Stre     | am Data So  | urce - All O                          | utletsin   | Project    |                          |         |          |  |
| Flowsh                 | neet     |               | PStream           | n           | F                                     | lowsheet   |            | P                        | Stream  |          |  |
| Wastew                 | ater     |               | Flash             | ••          | I I I I I I I I I I I I I I I I I I I | astewater  |            | F                        | iquids  |          |  |
|                        |          |               |                   |             |                                       |            |            |                          | -1      |          |  |
|                        |          |               |                   | Dorer       | notors                                |            |            |                          |         |          |  |
| Composition Des        |          |               | MolerFlow         | Farar       | Summeter                              | Ontion     |            | Ctro om = =              | nd      |          |  |
| Composition Bas        | 10       |               | WOIAI FIOW        |             | Summation                             |            |            | Summati                  | ion     |          |  |
| Calculate Ratios       |          |               | False             |             | Atomic Bas                            | is         |            | Fa                       | lse     |          |  |
| calourato natios       |          |               | 1 4100            |             | ,onno Bae                             |            |            | 14                       |         |          |  |

| Recoveries Report                                                                                                                                                 |                                       |                                                                                                                                                          |                                                                              |                                                                                                                                   |                                                                                                      |         |                                                                      |    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|----|--|--|--|
|                                                                                                                                                                   |                                       |                                                                                                                                                          |                                                                              |                                                                                                                                   |                                                                                                      |         |                                                                      |    |  |  |  |
| Client Name:                                                                                                                                                      | TCEnergy                              |                                                                                                                                                          |                                                                              |                                                                                                                                   | Job: Wastev                                                                                          | vaterTa | nkA21                                                                |    |  |  |  |
| Location:                                                                                                                                                         | Ceredo Compr                          | essor Station                                                                                                                                            |                                                                              |                                                                                                                                   |                                                                                                      |         |                                                                      |    |  |  |  |
|                                                                                                                                                                   |                                       |                                                                                                                                                          |                                                                              |                                                                                                                                   |                                                                                                      |         |                                                                      |    |  |  |  |
|                                                                                                                                                                   |                                       |                                                                                                                                                          | Tabulat                                                                      | ad Data                                                                                                                           |                                                                                                      |         |                                                                      |    |  |  |  |
|                                                                                                                                                                   | N N                                   | lastewater:Flash                                                                                                                                         | Wastewate                                                                    | or liquids                                                                                                                        | Summary Table                                                                                        |         |                                                                      |    |  |  |  |
| Index                                                                                                                                                             |                                       | lbmol/h                                                                                                                                                  | Ibmo                                                                         | ol/h                                                                                                                              | Ibmol/h                                                                                              |         |                                                                      |    |  |  |  |
| Carbon Dioxid                                                                                                                                                     | de                                    |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Nitrogen                                                                                                                                                          |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Methane                                                                                                                                                           |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Propane                                                                                                                                                           |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| i-Butane                                                                                                                                                          |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| n-Butane                                                                                                                                                          |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| i-Pentane                                                                                                                                                         |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| n-Pentane                                                                                                                                                         |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| I-Hexane<br>Hontono                                                                                                                                               |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Octane                                                                                                                                                            |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Nonane                                                                                                                                                            |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | õ       |                                                                      |    |  |  |  |
| Benzene                                                                                                                                                           |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Toluene                                                                                                                                                           |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Ethylbenzen                                                                                                                                                       | e                                     |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| m-Xylene                                                                                                                                                          |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| 2 2 4-Trimethylpe                                                                                                                                                 | Intane                                |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Neopentane                                                                                                                                                        |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| DecanesPlu                                                                                                                                                        | S                                     |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Water                                                                                                                                                             |                                       |                                                                                                                                                          |                                                                              | 1.70304                                                                                                                           | 1.70                                                                                                 | 304     |                                                                      |    |  |  |  |
| Helium                                                                                                                                                            |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Hydrogen                                                                                                                                                          |                                       |                                                                                                                                                          |                                                                              | 0                                                                                                                                 |                                                                                                      | 0       |                                                                      |    |  |  |  |
| Lube Oil                                                                                                                                                          |                                       |                                                                                                                                                          |                                                                              | 0.0896339                                                                                                                         | 0.0896                                                                                               | 339     |                                                                      |    |  |  |  |
| Propylene Gly                                                                                                                                                     | col                                   |                                                                                                                                                          |                                                                              | 0                                                                                                                                 | 0.0000                                                                                               | 0       |                                                                      |    |  |  |  |
| Total                                                                                                                                                             |                                       |                                                                                                                                                          |                                                                              | 1.79268                                                                                                                           | 1.79                                                                                                 | 268     |                                                                      |    |  |  |  |
|                                                                                                                                                                   |                                       |                                                                                                                                                          |                                                                              |                                                                                                                                   |                                                                                                      |         |                                                                      |    |  |  |  |
| Remarks                                                                                                                                                           | Remarks                               |                                                                                                                                                          |                                                                              |                                                                                                                                   |                                                                                                      |         |                                                                      |    |  |  |  |
|                                                                                                                                                                   |                                       |                                                                                                                                                          |                                                                              |                                                                                                                                   |                                                                                                      |         |                                                                      | _  |  |  |  |
|                                                                                                                                                                   |                                       | Compon                                                                                                                                                   | ent Recover                                                                  | ies - Proiec                                                                                                                      | tLosses                                                                                              |         | Status: Solve                                                        | ed |  |  |  |
|                                                                                                                                                                   | -                                     | Compone<br>Reference Street                                                                                                                              | ent Recover                                                                  | ies - Projec                                                                                                                      | t Losses                                                                                             |         | Status: Solve                                                        | ed |  |  |  |
| Elowsh                                                                                                                                                            | eet                                   | Compone<br>Reference Stream                                                                                                                              | ent Recover<br>am Data Sou                                                   | <mark>ies - Projec</mark><br>Irce - All Ou                                                                                        | t Losses<br>utlets in Project                                                                        |         | Status: Solve                                                        | d  |  |  |  |
| Flowsh<br>Wastew:                                                                                                                                                 | eet<br>ater                           | Compone<br>Reference Stream<br>PStream<br>Flash                                                                                                          | <mark>ent Recover</mark><br>am Data Sou                                      | <mark>ies - Projec</mark><br>urce - All Ou<br>Fli<br>Wz                                                                           | t Losses<br>utlets in Project<br>ow sheet<br>astewater                                               |         | Status: Solve<br>PStream                                             | ed |  |  |  |
| Flow sh<br>Wastewa                                                                                                                                                | eet<br>ater                           | Compone<br>Reference Stream<br>PStream<br>Flash                                                                                                          | ent Recover<br>am Data Sou                                                   | <mark>ies - Projec</mark><br>urce - All Ou<br>Fli<br>Wa                                                                           | t Losses<br>utlets in Project<br>ow sheet<br>astewater                                               | _       | Status: Solve<br>PStream<br>Liquids                                  | ed |  |  |  |
| Flow sh<br>Wastewa                                                                                                                                                | eet<br>ater                           | Compon<br>Reference Stream<br>PStream<br>Flash                                                                                                           | ent Recover<br>am Data Sou<br>n<br>pam Data So                               | <mark>ies - Projec</mark><br>urce - All Ou<br>Wa                                                                                  | t Losses<br>utlets in Project<br>ow sheet<br>astewater                                               |         | Status: Solve<br>PStream<br>Liquids                                  | ed |  |  |  |
| Flowsh<br>Wastewa                                                                                                                                                 | eet<br>ater                           | Compone<br>Reference Stream<br>PStream<br>Flash<br>Recovery Stream                                                                                       | ent Recover<br>am Data Sou<br>am Data So                                     | <mark>ies - Projec</mark><br><mark>Irce - All Ou</mark><br>Flo<br>Wa<br><b>urce - All Ir</b>                                      | t Losses<br>utlets in Project<br>ow sheet<br>astewater                                               |         | Status: Solve<br>PStream<br>Liquids                                  | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Flow sh                                                                                                               | eet<br>ater<br>eet<br>ater            | Compone<br>Reference Strea<br>PStream<br>Flash<br>Recovery Stream<br>Wastewat                                                                            | ent Recover<br>am Data Sou<br>n<br>eam Data So<br>n<br>er                    | <mark>ies - Projec</mark><br><mark>Irce - All Ot</mark><br>Flu<br>Wa<br>urce - All Ir<br>Flu                                      | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>Ilets in Project<br>ow sheet               |         | Status: Solve<br>PStream<br>Liquids<br>PStream                       | ed |  |  |  |
| Flowsh<br>Wastewa<br>Flowsh<br>Wastewa                                                                                                                            | eet<br>ater<br>eet<br>ater            | Compone<br>Reference Strea<br>PStream<br>Flash<br>Recovery Stream<br>Wastewat                                                                            | ent Recover<br>am Data Sou<br>n<br>eam Data So<br>n<br>er                    | <mark>ies - Projec</mark><br>Irce - All Ou<br>Flu<br>Wa<br>urce - All Ir<br>Flu                                                   | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet                |         | Status: Solve<br>PStream<br>Liquids<br>PStream                       | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa                                                                                                                          | eet<br>ater<br>eet<br>ater            | Compone<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Strean<br>Wastewat                                                                            | ent Recover<br>am Data Sou<br>am Data Sou<br>er<br>Param                     | ies - Projec<br>irce - All Ou<br>Fla<br>Wa<br>urce - All Ir<br>Fla<br>peters                                                      | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet                |         | Status: Solve<br>PStream<br>Liquids<br>PStream                       | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi                                                                                                      | eet<br>ater<br>eet<br>ater<br>S       | Compone<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Strea<br>PStream<br>Wastewate<br>Molar Flow                                                   | ent Recover<br>am Data Sou<br>am Data Sou<br>am Data So<br>an<br>er<br>Param | ies - Projec<br>Irce - All Ou<br>Fla<br>Wa<br>urce - All Ir<br>Fla<br>Deters<br>Summation                                         | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet                | Summa   | Status: Solve<br>PStream<br>Liquids<br>PStream                       | ed |  |  |  |
| Flow sh<br>Wastew<br>Flow sh<br>Wastew<br>Composition Basi<br>Calculate Ratios                                                                                    | eet<br>ater<br>eet<br>ater<br>S       | Compone<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Strea<br>PStream<br>Wastewate<br>Molar Flow<br>False                                          | ent Recover<br>am Data Sou<br>am Data Sou<br>er<br>Param                     | ies - Project<br>arce - All Ou<br>File<br>Wa<br>urce - All Ir<br>File<br>beters<br>Summation<br>Atomic Bas                        | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet<br>Option<br>s | Summa   | Status: Solve<br>PStream<br>Liquids<br>PStream                       | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi<br>Calculate Ratios                                                                                  | eet<br>ater<br>eet<br>ater<br>S       | Compone<br>Reference Stream<br>Flash<br>Recovery Stream<br>Wastewate<br>Molar Flow<br>False                                                              | ent Recover<br>am Data Sou<br>n<br>eam Data Soo<br>er<br>Param               | ies - Project<br>arce - All Ou<br>Fli<br>Wa<br>urce - All Ir<br>Fli<br>urce - All Ir<br>Fli<br>Deters<br>Summation<br>Atomic Basi | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet<br>Option<br>s | Summa   | Status: Solve<br>PStream<br>Liquids<br>PStream<br>tion Only<br>False | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi<br>Calculate Ratios                                                                                  | eet<br>ater<br>eet<br>ater<br>S       | Compon<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Stree<br>PStrean<br>Wastewat<br>Molar Flow<br>False                                            | ent Recover<br>am Data Sou<br>am Data Sou<br>er<br>Paran<br>Paran            | ies - Project<br>arce - All Ou<br>Fli<br>Wa<br>urce - All Ir<br>Fli<br>urce - All Ir<br>Fli<br>beters<br>Summation<br>Atomic Basi | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet<br>Option<br>s | Summa   | Status: Solve<br>PStream<br>Liquids<br>PStream<br>tion Only<br>False | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi<br>Calculate Ratios                                                                                  | eet<br>ater<br>eet<br>ater<br>S       | Compon<br>Reference Strean<br>Flash<br>Recovery Stree<br>PStrean<br>Wastewate<br>Molar Flow<br>False<br>Summary Table                                    | ent Recover<br>am Data Sou<br>am Data Sou<br>er<br>Param<br>Tabulate         | ies - Project<br>arce - All Ou<br>Fli<br>Wa<br>urce - All Ir<br>Fli<br>urce - All Ir<br>Fli<br>beters<br>Summation<br>Atomic Basi | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>hets in Project<br>ow sheet<br>Option<br>s | Summa   | Status: Solve<br>PStream<br>Liquids<br>PStream<br>tion Only<br>False | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi<br>Calculate Ratios                                                                                  | eet<br>ater<br>eet<br>ater<br>S       | Compon<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Stre<br>PStrean<br>Wastewat<br>Molar Flow<br>False<br>Summary Table<br>Ibmol/h                 | ent Recover<br>am Data Sou<br>n<br>eam Data Soo<br>er<br>Param<br>Tabulate   | ies - Projec<br>arce - All Ou<br>Fli<br>Wa<br>urce - All Ir<br>Fli<br>Neters<br>Summation<br>Atomic Basi<br>ed Data               | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet<br>Option<br>S | Summa   | Status: Solve                                                        | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi<br>Calculate Ratios                                                                                  | eet<br>ater<br>eet<br>ater<br>S       | Compon<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Stre<br>PStrean<br>Wastewat<br>Molar Flow<br>False<br>Summary Table<br>Ibmol/h                 | ent Recover<br>am Data Sou<br>n<br>eam Data Soo<br>e<br>Param<br>Tabulate    | ies - Projec<br>arce - All Ou<br>Flu<br>Wa<br>urce - All Ir<br>Flu<br>Deters<br>Summation<br>Atomic Bas<br>ed Data                | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet<br>Option<br>s | Summa   | Status Solve                                                         | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi<br>Calculate Ratios                                                                                  | eet<br>ater<br>eet<br>ater<br>S       | Compon<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Stre<br>PStrean<br>Wastewat<br>Molar Flow<br>False<br>Summary Table<br>Ibmol/h                 | ent Recover<br>am Data Sou<br>n<br>eam Data So<br>Param<br>Param             | ies - Projec<br>urce - All Ou<br>Flu<br>Wa<br>urce - All Ir<br>Flu<br>neters<br>Summation<br>Atomic Basi<br>ed Data               | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet<br>Option<br>s | Summa   | Status Solve                                                         | ed |  |  |  |
| Flow sh<br>Wastewn<br>Flow sh<br>Wastewn<br>Composition Basi<br>Calculate Ratios<br>Calculate Ratios                                                              | eet<br>ater<br>eet<br>ater<br>S       | Compone<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Stre<br>PStrean<br>Wastewat<br>Molar Flow<br>False<br>Summary Table<br>Ibmol/h<br>0<br>0      | ent Recover<br>am Data Sou<br>n<br>eam Data So<br>Param<br>Param             | ies - Projec<br>arce - All Ou<br>Flu<br>Wa<br>urce - All Ir<br>Flu<br>beters<br>Summation<br>Atomic Basi<br>ed Data               | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet<br>Option<br>s | Summa   | Status Solve<br>PStream<br>Liquids<br>PStream<br>tion Only<br>False  | ed |  |  |  |
| Flow sh<br>Wastewa<br>Flow sh<br>Wastewa<br>Composition Basi<br>Calculate Ratios<br>Calculate Ratios<br>Carbon Dioxia<br>Nitrogen<br>Methane<br>Ethane<br>Propane | eet<br>ater<br>eet<br>ater<br>S<br>de | Compone<br>Reference Strea<br>PStrean<br>Flash<br>Recovery Stre<br>PStrean<br>Wastewat<br>Molar Flow<br>False<br>Summary Table<br>Ibmol/h<br>0<br>0<br>0 | ent Recover<br>am Data Sou<br>am Data Sou<br>er<br>Param                     | ies - Projec<br>arce - All Ou<br>Flo<br>Wa<br>urce - All Ir<br>Flo<br>neters<br>Summation<br>Atomic Bas                           | t Losses<br>utlets in Project<br>ow sheet<br>astewater<br>lets in Project<br>ow sheet                | Summa   | Status: Solve                                                        | ed |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                             | Recoveries Report                                                              |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                             |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Client Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TCEnergy                                |                                                                                                                             |                                                                                |                                                                                                                                    | Job: Wastew                                                                                                                         | ater TankA21                                                                             |  |  |  |
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ceredo Co                               | mpressor Station                                                                                                            |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                             |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                             | Tabula                                                                         | ted Data                                                                                                                           |                                                                                                                                     |                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l.                                      | Summary Table                                                                                                               |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| n-Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | Ibmol/h                                                                                                                     |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| i-Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| n-Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| i-Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Octane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Nonane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Ethylbenzen<br>m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ie                                      | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| n-Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| 2,2,4-Trimethylpe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | entane                                  | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Neopentan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e                                       | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| DecanesPlu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JS                                      | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Helium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Öxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Lube Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Propylene Gly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COI                                     | 0                                                                                                                           |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                             |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                             |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                             |                                                                                |                                                                                                                                    |                                                                                                                                     |                                                                                          |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                       | Compone                                                                                                                     | ent Recoveri                                                                   | es - Project                                                                                                                       | Recoveries                                                                                                                          | Status: Solved                                                                           |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Compone<br>Reference St                                                                                                     | ent Recoverio                                                                  | es - Project                                                                                                                       | Recoveries                                                                                                                          | Status: Solved                                                                           |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet                                    | Compone<br>Reference St<br>PStre                                                                                            | ent Recoverio<br>tream Data S                                                  | es - Project<br>ource - All In<br>Fi                                                                                               | Recoveries<br>nlets in Project                                                                                                      | Status: Solved                                                                           |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater                           | Compone<br>Reference St<br>PStre<br>Wastew                                                                                  | ent Recoveri<br>tream Data S<br>am<br>ater                                     | <mark>es - Project  <br/>ource - All I</mark>                                                                                      | Recoveries<br>nlets in Project<br>owsheet                                                                                           | Status: Solved<br>PStream                                                                |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater                           | Compone<br>Reference St<br>PStre<br>Wastew                                                                                  | ent Recoverie<br>ream Data S<br>am<br>ater                                     | e <mark>s - Project</mark><br>ource - All I<br>Fi                                                                                  | Recoveries<br>nlets in Project<br>owsheet                                                                                           | Status: Solved                                                                           |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h <b>eet</b><br>/ater                   | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str                                                                  | ent Recoverie<br>tream Data S<br>am<br>ater<br>eam Data So                     | es - Project<br>ource - All In<br>Fi<br>urce - All Ou                                                                              | Recoveries<br>nlets in Project<br>owsheet<br>utlets in Project                                                                      | Status: Solved                                                                           |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater                           | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre                                                         | ent Recoverio<br>tream Data S<br>am<br>ter<br>eam Data So<br>am                | es - Project<br>ource - All In<br>Fi<br>urce - All Ou                                                                              | Recoveries<br>nlets in Project<br>owsheet<br>utlets in Project<br>owsheet                                                           | Status: Solved<br>PStream<br>PStream                                                     |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>heet<br>/ater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas                                                 | ent Recoveri<br>tream Data S<br>am<br>ater<br>eam Data So<br>am                | <mark>es - Project  </mark><br>ource - All II<br>FI<br>urce - All Ot<br>FI<br>W                                                    | Recoveries<br>nlets in Project<br>owsheet<br>utlets in Project<br>owsheet<br>astewater                                              | Status: Solved<br>PStream<br>PStream<br>Liquids                                          |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>heet<br>/ater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas                                                 | ent Recoverio<br>tream Data S<br>am<br>ater<br>eam Data So<br>am               | es - Project<br>ource - All In<br>Fi<br>urce - All Ou<br>Fi<br>W                                                                   | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater                                            | Status: Solved<br>PStream<br>PStream<br>Liquids                                          |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>heet<br>/ater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas                                                 | ent Recoverio<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>n<br>Para   | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>wa                                                                        | Recoveries<br>nlets in Project<br>owsheet<br>utlets in Project<br>owsheet<br>astewater                                              | Status: Solved<br>PStream<br>PStream<br>Liquids                                          |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>heet<br>/ater<br>/ater | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow                                   | ent Recoverio<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Parai  | es - Project<br>ource - All In<br>Fi<br>urce - All Ou<br>Fi<br>Wa<br>neters<br>Summation                                           | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater                                            | Streamsand<br>Summation                                                                  |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater<br>heet<br>vater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow                                   | ent Recoveri<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Parai   | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>War<br>Meters<br>Summation<br>Atomic Basi                                 | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s                             | Status Solved<br>PStream<br>Liquids<br>Streamsand<br>Summation<br>False                  |  |  |  |
| Remarks  Flow st Wastew  Composition Bas Calculate Ratios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | heet<br>vater<br>heet<br>vater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True                           | ent Recoverio<br>tream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Parai | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>www.<br>meters<br>Summation<br>Atomic Basi                                | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option                                  | Streams and<br>Summation<br>False                                                        |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater<br>heet<br>vater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True                           | ent Recoveria<br>aream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Paran | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>with the second<br>summation<br>Atomic Basi                               | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s                             | Status: Solved<br>PStream<br>PStream<br>Liquids<br>Streams and<br>Summation<br>False     |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>/ater                  | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True                           | ent Recoveria<br>ream Data S<br>am<br>eater<br>eam Data So<br>am<br>Parai      | es - Project<br>ource - All In<br>Fi<br>urce - All Or<br>Fi<br>Wa<br>neters<br>Summation<br>Atomic Basi<br>ted Data<br>er:Liquids  | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>Summary Table            | PStream<br>PStream<br>Liquids<br>Streams and<br>Summation<br>False                       |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater<br>heet<br>vater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastewater:Flash<br>%  | ent Recoverio<br>ream Data So<br>am<br>ater<br>eam Data So<br>am<br>Paran      | es - Project<br>ource - All In<br>Fi<br>urce - All Ou<br>Fi<br>Summation<br>Atomic Basi<br>ted Data                                | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>Summary Table<br>%       | Streams and Summation False                                                              |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>/ater                  | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastewater:Flash<br>%  | ent Recoverio<br>ream Data So<br>am<br>ater<br>eam Data So<br>am<br>Paran      | es - Project<br>ource - All In<br>Fi<br>urce - All Ou<br>Fi<br>Summation<br>Atomic Basi<br>ted Data<br>er:Liquids                  | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>Summary Table<br>%       | Streams and Summation False                                                              |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>heet<br>/ater          | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastewater:Flash<br>%  | ent Recoverio<br>ream Data So<br>am<br>ater<br>eam Data So<br>am<br>h<br>Paran | es - Project<br>ource - All In<br>Fi<br>urce - All Ou<br>Fi<br>W<br>Meters<br>Summation<br>Atomic Bas<br>ted Data<br>er:Liquids    | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>Summary Table<br>%       | Status: Solved                                                                           |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater                           | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastewater:Flash<br>%  | ent Recoveria<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Paran  | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>W/<br>Meters<br>Summation<br>Atomic Basi<br>ted Data<br>ter:Liquids       | Recoveries<br>hlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>Summary Table<br>%       | Status Solved  PStream  PStream  Liquids  Streams and Summation False                    |  |  |  |
| Remarks  Rem | heet<br>vater                           | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastew ater:Flash<br>% | ent Recoverio<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Parai  | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>W/<br>meters<br>Summation<br>Atomic Basi<br>ted Data                      | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>Summary Table<br>%       | Streams and<br>Summation<br>False                                                        |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater                           | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastew ater:Flash<br>% | ent Recoverio<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Parai  | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>www.<br>Meters<br>Summation<br>Atomic Basi<br>ted Data                    | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>S<br>Summary Table<br>%  | Streams and<br>Summation<br>False                                                        |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>vater<br>heet<br>vater<br>de    | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastewater:Flash<br>%  | ent Recoverio<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Parai  | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>www.<br>meters<br>Summation<br>Atomic Basi<br>ted Data                    | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>Summary Table<br>%       | Streams and<br>Summation<br>False                                                        |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater<br>heet<br>/ater<br>de    | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastewater:Flash<br>%  | ent Recoveri<br>ream Data S<br>am<br>ater<br>eam Data So<br>am<br>h<br>Parai   | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>www.<br>meters<br>Summation<br>Atomic Basi<br>ted Data<br>er:Liquids<br>% | Recoveries<br>nlets in Project<br>ow sheet<br>.ttlets in Project<br>ow sheet<br>astewater<br>Option<br>s<br>S<br>Summary Table<br>% | Status: Solved<br>PStream<br>PStream<br>Liquids<br>Streamsand<br>Summation<br>False<br>I |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heet<br>/ater                           | Compone<br>Reference St<br>PStre<br>Wastew<br>Recovery Str<br>PStre<br>Flas<br>Molar Flow<br>True<br>Wastewater:Flash<br>%  | ent Recoveria<br>ream Data S<br>am<br>eater<br>eam Data So<br>am<br>Parai      | es - Project<br>ource - All In<br>urce - All Ou<br>Fi<br>www.<br>neters<br>Summation<br>Atomic Basi<br>ted Data<br>er:Liquids<br>% | Recoveries<br>nlets in Project<br>ow sheet<br>utlets in Project<br>ow sheet<br>astewater<br>Option<br>S<br>Summary Table<br>%       | Streams and<br>Summation<br>False                                                        |  |  |  |

| Client Name: TC Energy Job: Wastewater Tank A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|--|--|
| Location: Ceredo Compressor Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |  |  |
| Tabulated Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |  |  |  |  |  |  |  |  |  |
| Wastewater:Flash Wastewater:Liquids Summary Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |  |  |  |  |  |  |  |  |  |
| Index % % %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |  |  |  |  |  |  |  |  |
| Nonane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |  |  |  |  |  |  |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |  |  |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |  |  |  |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |  |  |  |  |
| m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |  |  |
| Neopentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |  |  |  |  |  |  |  |  |
| DecanesPlus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |  |  |  |  |  |  |  |  |
| Water 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |  |  |  |  |  |  |  |
| Helium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |  |  |  |  |  |  |  |
| Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |  |  |
| Propylene Glycol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |  |  |  |  |  |  |  |  |  |
| Total 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |  |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |  |  |  |  |  |
| Remarks Component Recoveries - Wastewater Inlets Status: Solv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed        |  |  |  |  |  |  |  |  |  |
| Component Recoveries - Wastewater Inlets       Status:       Solv         Recovery Stream Data Source - All Inlets in Flowsheet       Status:       Solv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | red       |  |  |  |  |  |  |  |  |  |
| Component Recoveries - Wastewater Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet       Status: Solv         Flowsheet       PStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed        |  |  |  |  |  |  |  |  |  |
| Component Recoveries - Wastewater Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet       Status: Solv         Flow sheet       PStream         Wastewater       Wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'ed       |  |  |  |  |  |  |  |  |  |
| Component Recoveries - Waste water Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet       Status: Solv         Flow sheet       PStream         Wastewater       Wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | red       |  |  |  |  |  |  |  |  |  |
| Component Recoveries - Waste water Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet       PStream         Flowsheet       PStream         Wastewater       Wastewater         Parameters       Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | red       |  |  |  |  |  |  |  |  |  |
| Remarks       Status:       Solv         Component Recoveries - Waste water Inlets       Status:       Solv         Recovery Stream Data Source - All Inlets in Flowsheet       PStream         Flow sheet       PStream       Flow sheet       PStream         Wastewater       Wastewater       Parameters       Composition Basis       Molar Flow       Summation Option       Streams and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | red       |  |  |  |  |  |  |  |  |  |
| Remarks       Status:       Solv         Component Recoveries - Waste water Inlets       Status:       Solv         Recovery Stream Data Source - All Inlets in Flowsheet       Pstream         Flow sheet       PStream       PStream         Wastewater       Wastewater       Parameters         Composition Basis       Molar Flow       Summation Option       Streams and Summation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | red       |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Waste water Inlets       Status: Solv         Component Recoveries - Waste water Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       PStream         Wastewater       Wastewater       Parameters         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | red       |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Waste water Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       Flow sheet       PStream         Wastewater       Wastewater       Parameters       Parameters         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | red       |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Waste water Inlets       Status Solv         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       Flowsheet       PStream         Wastewater       Wastewater       Parameters       Parameters         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | red       |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Wastewater Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       Flow sheet       PStream         Wastewater       Wastewater       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data       Summary Table       Mastewater: Wastewater       Summary Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | red       |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Wastewater Inlets       Status       Solv         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       Flow sheet       PStream         Wastewater       Wastewater       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Wastewater:Wastewater         Index       Wastewater:Wastewater       Summary Table         Index       Bumol/h       Dumol/h       Dumol/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | red       |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Waste water Inlets       Status: Solv         Recovery Stream Data Source - All Inlets in Flowsheet         Flowsheet       PStream       Flowsheet       PStream         Wastewater       Wastewater       Summation Option       Streams and Summation         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Wastewater:Wastewater         Tabulated Data         Mater:Wastewater         Summary Table         Index       Wastewater:Wastewater         Mater:Wastewater         Tabulated Data         O         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | red       |  |  |  |  |  |  |  |  |  |
| Remarks       Component Recoveries - Waste water Inlets     Status:     Soli       Recovery Stream Data Source - All Inlets in Flowsheet       Flow sheet     PStream     Flow sheet       Wastewater     Wastewater     PStream       Wastewater     Wastewater     Parameters       Composition Basis     Molar Flow     Summation Option     Streams and Summation       Calculate Ratios     False     Atomic Basis     False       Tabulated Data       Vastewater:Wastewater       Use of the second |           |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Wastewater Inlets       Status: Soli         Recovery Stream Data Source - All Inlets in Flowsheet         Flowsheet       PStream       Flowsheet       PStream         Wastewater       Vastewater       Parameters       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Undex user:Wastewater       Summary Table         Index       Wastewater:Wastewater       Summary Table       Imol/h         Index       Ibmol/h       Ibmol/h       Imol         Mitrogen       0       0       0         Methane       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |  |  |  |  |  |  |  |
| Remarks       Component Recoveries - Wastewater Inlets     Status: Sol       Recovery Stream Data Source - All Inlets in Flowsheet       Flow sheet     PStream     Flow sheet     PStream       Wastewater     Wastewater     Parameters       Composition Basis     Molar Flow     Summation Option     Streams and Summation       Calculate Ratios     False     Atomic Basis     False       Tabulated Data       Mastewater:Wastewater       Index     Wastewater:Wastewater     Summary Table       Index     Wastewater:Wastewater     Summary Table       Ibmol/h     0     0     Immol/h       Propane     0     0     Immol/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |  |  |  |  |  |  |  |  |  |
| Kemarks       Component Recoveries - Wastewater Inlets     Status: Sol       Recovery Stream Data Source - All Inlets in Flowsheet       Flowsheet     PStream     Flowsheet     PStream       Wastewater     Wastewater     Flowsheet     PStream       Wastewater     Wastewater     Flowsheet     PStream       Composition Basis     Molar Flow     Summation Option     Streamsand       Calculate Ratios     False     Atomic Basis     False       Tabulated Data       Status: Sol       Stream       Molar Flow       Summation Option       Streamsand       Summation Option       Streamsand       Summation Option       Tabulated Data       Wastewater: Wastewater     Summary Table       Ibmol/h     Ibmol/h     Ibmol/h       Ibmol/h     O     O       Methane     0     0       O     0     Image: Colspan="2">O       Index     Ibmol/h     Ibmol/h       Ibmol/h     0     Image: Colspan="2">O       O     0     Image: Colspan="2">O       Index     Ibmol/h     Image: Colspan="2">O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |  |  |  |  |  |  |  |
| Kemarks         Component Recoveries - Waste water Inlets       Status: Sol         Recovery Stream Data Source - All Inlets in Flowsheet       Pstream         Flow sheet       PStream       Flowsheet       PStream         Wastewater         Wastewater       Parameters         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Molar Flow       Summary Table         Index       Wastewater: Wastewater       Summary Table         Index       Molar Flow       Summary Table         Index       Wastewater       Summary Table       Index <th <<="" colspan="2" td=""><td></td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <td></td> |  |  |  |  |  |  |  |  |  |
| Kemarks       Component Recoveries - Wastewater Inlets     Status     Sol       Recovery Stream Data Source - All Inlets in Flowsheet       Flowsheet     PStream     Flowsheet     PStream       Wastewater     Vastewater     Parameters       Composition Basis     Molar Flow     Summation Option     Streams and<br>Summation       Calculate Ratios     False     Atomic Basis     False       Tabulated Data       Wastewater:Wastewater       Index     Wastewater:Wastewater     Summary Table       Ibmol/h     0     0       Nitrogen     0     0       Methane     0     0       Ethane     0     0       Propane     0     0       Index     0     0       Ibutane     0     0       Propane     0     0       Index     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |  |  |  |  |  |  |  |  |  |
| Kemarks       Status                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Wastewater Inlets       Status       Sol         Recovery Stream Data Source - All Inlets in Flowsheet         Flowsheet       PStream       Flowsheet       PStream         Wastewater       Wastewater       Summation Option       Streamsand         Composition Basis       Molar Flow       Summation Option       Streamsand         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Mastewater:Wastewater         Mastewater:Wastewater         Mastewater:Wastewater         Tabulated Data         Mastewater:Wastewater         Mastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /ed       |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Wastewater Inlets       Status       Sol         Recovery Stream Data Source - All Inlets in Flowsheet         Flowsheet       PStream       Flowsheet       PStream         Wastewater       Wastewater       Summation Option       Streams and<br>Summation         Composition Basis       Molar Flow       Summation Option       Streams and<br>Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Tabulated Data         Mastewater:Wastewater         Index       Wastewater:Wastewater         Index       Ibmol/h       0       0         Tabulated Data         Mastewater:Wastewater       Summary Table       1         Ubmol/h       Carbon Dioxide       0       0       0         Methane       0       0       0       0       0         Propane       0       0       0       0       0       0         Propane       0       0       0       0       0       0       0       0         Propane       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |  |  |  |  |  |  |  |  |
| Remarks       Component Recoveries - Wastewater Inlets     Status     Soft       Recovery Stream Data Source - All Inlets in Flowsheet       Flow sheet     PStream     Flow sheet     PStream       Wastewater     Wastewater     Parameters     Parameters       Composition Basis     Molar Flow     Summation Option     Streams and Summation       Calculate Ratios     False     Atomic Basis     False       Tabulated Data       Undex     Wastewater:Wastewater       Index     Wastewater:Wastewater     Summary Table       Index     Wastewater:Wastewater     Ibmol/h     Ibmol/h       Carbon Dioxide     0     0     Ibmol/h       Carbon Dioxide     0     0     Ibmol/h       Index     Wastewater:Wastewater     Ibmol/h     Ibmol/h       Ibmol/h     0     0     Ibmol/h       Carbon Dioxide     0     0     Ibmol/h       Ithane     0     0     Ibmol/h       Ibmol/h     0     Ibmol/h     Ibmol/h       Ibmol/h     0     Ibmol/h     Ibmol/h       Index     Ibmol/h     Ibmol/h     Ibmol/h       Index     Ibmol/h     Ibmol/h     Ibmol/h       Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Waste water Inlets       Status: Sol         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       Flowsheet       PStream         Wastewater       Vastewater       Parameters         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Wastewater       Summary Table         Index       Wastewater: Wastewater       Summary Table         Index       Wastewater: Wastewater       Summary Table         Index       Wastewater: Wastewater       Summary Table         Index       Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |  |  |  |  |  |  |
| Itemarks         Component Recoveries - Wastewater Inlets       Status Soft         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       Flow sheet       PStream         Wastewater       Wastewater       Parameters       Pow sheet       PStream         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Use of the stream   |           |  |  |  |  |  |  |  |  |  |
| Remarks         Component Recoveries - Wastewater Inlets       Status: Sol         Recovery Stream Data Source - All Inlets in Flowsheet         Flow sheet       PStream       Flowsheet       PStream         Wastewater       Wastewater       PStream       Flowsheet       PStream         Composition Basis       Molar Flow       Summation Option       Streams and Summation         Calculate Ratios       False       Atomic Basis       False         Tabulated Data         Vastewater       Bumoi/h         Use water: Wastewater       Summary Table       Immoi/h         Wastewater       Summary Table       Immoi/h       Immoi/h         Wastewater       O       O       Immoi/h       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |  |  |  |  |  |  |  |
| Remarks     Component Recoveries - Wastewater Inlets     Status     Sof       Recovery Stream Data Source - All Inlets in Flowsheet       Flow sheet     PStream     Flowsheet       Parameters     Parameters       Composition Basis     Molar Flow     Summation Option       Streams and     Summation Option     Streams and       Calculate Ratios     False     Atomic Basis     False       Tabulated Data       Wastewater       Summary Table       Index     Wastewater:Wastewater     Summary Table       Index       Wastewater:Wastewater     Summary Table       Ibmol/h     0     0       Propane     0     0       Propane     0     0       Propane     0     0       n-Pentane     0     0       Nonane     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |  |  |  |  |  |
| Remarks       Component Recoveries - Wastewater Inlets     Status     Sof       Recovery Stream Data Source - All Inlets in Flowsheet       Flow sheet     PStream     Flowsheet     PStream       Wastewater     Wastewater     Parameters     Parameters       Composition Basis     Molar Flow     Summation Option     Streams and Summation       Calculate Ratios     False     Atomic Basis     False       Tabulated Data       Wastewater: Wastewater       Undex     Wastewater: Wastewater     Summary Table       Index     Wastewater: Wastewater     Summary Table       Index     Wastewater: Wastewater     0     0       Wastewater: Wastewater     Summary Table     Ibmol/h       Carbon Dioxide     0     0     0       Methane     0     0     0       Propane     0     0     0       Propane     0     0     0       Propane     0     0     0       I-Pentane     0     0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |  |  |  |  |  |  |  |  |  |

| Client Name: TC Energy Job: Wastewater Tank A21                                                                                                                                                                                                                                                                                                       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Client Name:                                                                                                                                                                                                                                                                                                                                          | TCEnergy   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Job: Wastewa             | aterTankA21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Location:                                                                                                                                                                                                                                                                                                                                             | Ceredo Com | pressor Station             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             | Tabulated Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       | Wa         | astewater:Wastewater        | Summary Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Index                                                                                                                                                                                                                                                                                                                                                 |            | lbmol/h                     | lbmol/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Water                                                                                                                                                                                                                                                                                                                                                 |            | 1.70304                     | 1.70304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Helium                                                                                                                                                                                                                                                                                                                                                |            | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Hydrogen                                                                                                                                                                                                                                                                                                                                              |            | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Oxygen                                                                                                                                                                                                                                                                                                                                                |            | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Lube Oil                                                                                                                                                                                                                                                                                                                                              |            | 0.0896339                   | 0.0896339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Propylene Gly                                                                                                                                                                                                                                                                                                                                         | col        | 0                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Total                                                                                                                                                                                                                                                                                                                                                 |            | 1.79268                     | 1.79268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Remarks                                                                                                                                                                                                                                                                                                                                               | _          | Commona                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Status Salvad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            | Componen                    | t Recoveries - Wastewa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ater Outlets             | Status. Solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            | Recovery Stream             | n Data Source - All Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ets in Flowsheet         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Flowsh                                                                                                                                                                                                                                                                                                                                                | leet       | PStream                     | n Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | owsheet                  | PStream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Wastewa                                                                                                                                                                                                                                                                                                                                               | ater       | Flash                       | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | astewater                | Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Composition Basi                                                                                                                                                                                                                                                                                                                                      | s          | Molar Flow                  | Summation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Option                   | Streamsand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | Summation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Calculate Ratios                                                                                                                                                                                                                                                                                                                                      |            | False                       | Atomic Basi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                        | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            |                             | Tabulated Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                       |            | Wastewater:Flash            | Tabulated Data<br>Wastewater:Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Summary Table            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Index                                                                                                                                                                                                                                                                                                                                                 |            | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Summary Table<br>Ibmol/h |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Index<br>Carbon Dioxid                                                                                                                                                                                                                                                                                                                                | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Summary Table<br>Ibmol/h | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen                                                                                                                                                                                                                                                                                                                    | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Summary Table<br>Ibmol/h | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane                                                                                                                                                                                                                                                                                                         | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Summary Table<br>Ibmol/h | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane                                                                                                                                                                                                                                                                                               | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane                                                                                                                                                                                                                                                                                    | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane                                                                                                                                                                                                                                                                        | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane                                                                                                                                                                                                                                                            | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane                                                                                                                                                                                                                                               | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane                                                                                                                                                                                                                                  | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data<br>Wastewater:Liquids<br>Ibmol/h<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane                                                                                                                                                                                                                      | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                 | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Hexane<br>i-Hexane<br>Othera                                                                                                                                                                                                             | de         | Wastewater:Flash<br>Ibmol/h | Cabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                 | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane                                                                                                                                                                                                              | de         | Wastewater:Flash<br>Ibmol/h | Operation           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                      | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane                                                                                                                                                                                       | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                 | Summary Table<br>Ibmol/h | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene                                                                                                                                                                                         | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                                                                                                                 | Summary Table<br>Ibmol/h | 0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0                                                                                                                             |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene                                                                                                                                                                |            | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                         | Summary Table<br>Ibmol/h | 0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                 |  |  |  |
| Index<br>Carbon Dioxid<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene                                                                                                                                      | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                     | Summary Table<br>Ibmol/h | 0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                                                                 |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane                                                                                                                          | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                 | Summary Table<br>Ibmol/h | 0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                 |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2.2.4-Trimethylpe                                                                                       |            | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                     | Summary Table<br>Ibmol/h | 0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                                                 |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane                                                                                      | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                 | Summary Table<br>Ibmol/h | 0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                         |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>i-Pentane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu                                                                       | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                 | Summary Table<br>Ibmol/h | 0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                     |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>2,2,4-Trimethylpe<br>Decanes Plu                                                                                                  | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""></t<> |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu<br>Water<br>Helium                                                     | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1.70304                                                                                                                                                                                           | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                         |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen                                         | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0                                                                                                                         | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                         |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>n-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen<br>Oxygen                               | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                 |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil                   | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""></t<> |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Gly  | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""></t<> |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>i-Pentane<br>i-Hexane<br>Heptane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Gly  | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""></t<> |  |  |  |
| Index<br>Carbon Dioxio<br>Nitrogen<br>Methane<br>Ethane<br>Propane<br>i-Butane<br>n-Butane<br>i-Pentane<br>n-Pentane<br>i-Hexane<br>i-Hexane<br>Octane<br>Nonane<br>Benzene<br>Toluene<br>Ethylbenzen<br>m-Xylene<br>n-Hexane<br>2,2,4-Trimethylpe<br>Neopentane<br>Decanes Plu<br>Water<br>Helium<br>Hydrogen<br>Oxygen<br>Lube Oil<br>Propylene Gly | de         | Wastewater:Flash<br>Ibmol/h | Tabulated Data           Wastew ater:Liquids<br>Ibmol/h           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | Summary Table<br>Ibmol/h | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""></t<> |  |  |  |

|                            |          |        | Recoveries Report       |      |              |               |            |            |         |             |        |
|----------------------------|----------|--------|-------------------------|------|--------------|---------------|------------|------------|---------|-------------|--------|
| Client Name:               | TCEner   | ду     |                         |      |              |               |            | Job: Waste | water T | ankA21      |        |
| Location:                  | Ceredo ( | Compre | essor Station           |      |              |               |            |            |         |             |        |
|                            |          |        |                         |      |              |               |            | <u> </u>   |         |             |        |
|                            |          |        |                         |      |              |               |            |            |         |             |        |
|                            |          |        |                         |      |              |               |            |            |         |             |        |
|                            |          |        |                         |      |              |               |            |            |         |             |        |
|                            |          |        | Compon                  | on   | t Pacovaria  | s - Wastow    | atorlos    | 200        |         | Status:     | Solved |
| 1                          | · ·      |        |                         | CI   |              |               |            |            |         |             |        |
|                            |          |        | Reference Stre          | ear  | m Data Sour  | ce - All Ou   | tiets in F | lowsneet   | -       |             |        |
| Flowsh                     | eet      |        | PStre                   | ean  | n            | FI            | low sheet  |            |         | PStream     |        |
| wastewa                    | aler     |        | Fla                     | Sn   |              | V             | astewater  |            |         | Liquids     |        |
|                            |          |        | <b>D</b> = = = = = 0 (m |      |              |               | -1-1-5     |            |         |             |        |
|                            |          |        | Recovery Str            | ea   | m Data Sou   | rce - All Ini | ets in Fi  | owsneet    | -       |             |        |
| Flowsh                     | eet      |        | PStre                   | ean  | n            | FI            | lowsheet   |            |         | PStream     |        |
| Wastewa                    | ater     |        | Waste                   | wat  | ter          |               |            |            |         |             |        |
|                            |          |        |                         |      | _            |               |            |            |         |             |        |
|                            |          |        |                         |      | Paran        | neters        |            |            |         |             |        |
| Composition Basis          | S        |        | Molar Flow              |      |              | Summation     | Option     |            | Sumn    | nation Only |        |
| Calculate Ratios           |          |        | False                   |      |              | Atomic Bas    | 15         |            |         | False       |        |
|                            |          |        |                         |      |              |               |            |            |         |             |        |
|                            |          |        |                         |      | Tabulat      | ed Data       | •          |            |         |             |        |
|                            |          | S      | Summary Table           |      |              |               |            |            |         |             |        |
| Index                      |          |        | lbmol/h                 |      |              |               |            |            |         |             |        |
| Carbon Dioxid              | le       |        | 0                       |      |              |               |            |            |         |             |        |
| Methane                    |          |        | 0                       |      |              |               |            |            |         |             |        |
| Ethane                     |          |        | 0                       |      |              |               |            |            |         |             |        |
| Propane                    |          |        | 0                       |      |              |               |            |            |         |             |        |
| i-Butane                   |          |        | 0                       |      |              |               |            |            |         |             |        |
| n-Butane                   |          |        | 0                       |      |              |               |            |            |         |             |        |
| i-Pentane                  |          |        | 0                       |      |              |               |            |            |         |             |        |
| n-Pentane                  |          |        | 0                       |      |              |               |            |            |         |             |        |
| I-Hexane<br>Hentane        |          |        | 0                       |      |              |               |            |            |         |             |        |
| Octane                     |          |        | 0                       |      |              |               |            |            |         |             |        |
| Nonane                     |          |        | 0                       |      |              |               |            |            |         |             |        |
| Benzene                    |          |        | 0                       |      |              |               |            |            |         |             |        |
| Toluene                    |          |        | 0                       | 1    |              |               |            |            |         |             |        |
| Ethylbenzene               | e        |        | 0                       |      |              |               |            |            |         |             |        |
| m-Xylene                   |          |        | 0                       |      |              |               |            |            |         |             |        |
| n-Hexane                   | ntono    |        | 0                       |      |              |               |            |            |         |             |        |
| 2,2,4-1 Inneuryipe         | niane    |        | 0                       |      |              |               |            |            |         |             |        |
| DecanesPlus                | s        |        | 0                       |      |              |               |            |            |         |             |        |
| Water                      |          |        | 0                       |      |              |               |            |            |         |             |        |
| Helium                     |          |        | 0                       |      |              |               |            |            |         |             |        |
| Hydrogen                   |          |        | 0                       |      |              |               |            |            |         |             |        |
| Oxygen                     |          |        | 0                       |      |              |               |            |            |         |             |        |
| Lube OII<br>Pronylene Clyr |          |        | 0                       |      |              |               |            |            |         |             |        |
| Total                      | 501      |        | 0                       |      |              |               |            |            |         |             |        |
|                            |          |        | 0                       |      | 1            |               |            |            |         | 1           |        |
| Remarks                    |          |        |                         |      |              |               |            |            |         |             |        |
| Keinarko                   |          |        |                         |      |              |               |            |            |         |             |        |
|                            |          |        |                         |      |              |               |            |            |         |             |        |
|                            |          |        | Componer                | nt F | Recoveries - | Wastewate     | er Reco    | veries     |         | Status:     | Solved |
|                            |          |        | Reference Str           | 62   | m Data Sou   | rce - All Inl | ets in Fl  | owsheet    |         |             |        |
| Flowsh                     | eet      |        | DQtr                    | 20   | n            | E             | lowsheet   |            |         | PStream     |        |
| Wastewa                    | ater     |        | Waster                  | wat  | ter          |               | ion oneot  |            |         | i ou cam    |        |
| 11460110                   |          |        | 11000                   |      |              |               |            |            |         |             |        |

|                   |            |                   | Recoveri     |                                 |            |                |            |        |  |  |  |
|-------------------|------------|-------------------|--------------|---------------------------------|------------|----------------|------------|--------|--|--|--|
| Client Name:      | TCEnergy   | /                 |              |                                 |            | Job: Wastewate | rTankA21   |        |  |  |  |
| Location:         | Ceredo Co  | ompressor Station |              |                                 |            |                |            |        |  |  |  |
|                   |            | •                 |              |                                 |            |                |            |        |  |  |  |
| <u> </u>          |            |                   |              |                                 |            |                |            |        |  |  |  |
|                   |            | Be any any Stream | n Data Sour  |                                 | lata in El | owohaat        |            |        |  |  |  |
|                   |            | Recovery Stream   | Il Dala Sour | ince - All Oullets In Flowsheet |            |                |            |        |  |  |  |
| Flowsh            | eet        | PStrear           | n            | FI                              | owsheet    |                | PSt        | ream   |  |  |  |
| Wastewa           | ater       | Flash             |              | W                               | astewater  |                | Liq        | luids  |  |  |  |
|                   |            |                   |              |                                 |            |                |            |        |  |  |  |
|                   | Parameters |                   |              |                                 |            |                |            |        |  |  |  |
| Composition Basis | s          | MolarElow         | i uiui       | Summation                       | Option     |                | Streamsand | 1      |  |  |  |
| Composition Basis | 0          | Wordthiow         |              | Cummation                       | Option     |                | Summation  | ۰<br>۱ |  |  |  |
| Calculate Ratios  | True       |                   | Atomic Basi  | c                               |            | False          |            |        |  |  |  |
| Carculate Matios  |            | The               |              | Atomic Das                      | 3          |                | 1 8130     | ,      |  |  |  |
|                   |            |                   |              |                                 |            |                |            |        |  |  |  |
|                   |            |                   | labulat      | ed Data                         |            |                |            |        |  |  |  |
|                   |            | Wastewater:Flash  | Wastewate    | er:Liquids                      | Sur        | nmary Table    |            |        |  |  |  |
| Index             |            | %                 | %            | 0                               |            | %              |            |        |  |  |  |
| Carbon Dioxid     | le         |                   |              |                                 |            |                |            |        |  |  |  |
| Nitrogen          |            |                   |              |                                 |            |                |            |        |  |  |  |
| Methane           |            |                   |              |                                 |            |                |            |        |  |  |  |
| Ethane            |            |                   |              |                                 |            |                |            |        |  |  |  |
| Propane           |            |                   |              |                                 |            |                |            |        |  |  |  |
| i-Butane          |            |                   |              |                                 |            |                |            |        |  |  |  |
| n-Butane          |            |                   |              |                                 |            |                |            |        |  |  |  |
| i-Pentane         |            |                   |              |                                 |            |                |            |        |  |  |  |
| n-Pentane         |            |                   |              |                                 |            |                |            |        |  |  |  |
| i-Hexane          |            |                   |              |                                 |            |                |            |        |  |  |  |
| Heptane           |            |                   |              |                                 |            |                |            |        |  |  |  |
| Octane            |            |                   |              |                                 |            |                |            |        |  |  |  |
| Nonane            |            |                   |              |                                 |            |                |            |        |  |  |  |
| Benzene           |            |                   |              |                                 |            |                |            |        |  |  |  |
| Toluene           |            |                   |              |                                 |            |                |            |        |  |  |  |
| Ethylbenzene      | e          |                   |              |                                 |            |                |            |        |  |  |  |
| m-Xylene          |            |                   |              |                                 |            |                |            |        |  |  |  |
| n-Hexane          |            |                   |              |                                 |            |                |            |        |  |  |  |
| 2,2,4-Trimethylpe | ntane      |                   |              |                                 |            |                |            |        |  |  |  |
| Neopentane        |            |                   |              |                                 |            |                |            |        |  |  |  |
| DecanesPlus       | S          |                   |              |                                 |            |                |            |        |  |  |  |
| Water             |            |                   |              | 100                             |            | 100            |            |        |  |  |  |
| Helium            |            |                   |              |                                 |            |                |            |        |  |  |  |
| Hydrogen          |            |                   |              |                                 |            |                |            |        |  |  |  |
| Oxygen            |            |                   |              |                                 |            |                |            |        |  |  |  |
| Lube Oil          |            |                   |              | 100                             |            | 100            |            |        |  |  |  |
| Propylene Glyc    | col        |                   |              |                                 |            |                |            |        |  |  |  |
| Total             |            |                   |              | 100                             |            | 100            |            |        |  |  |  |
|                   |            |                   |              |                                 |            |                |            |        |  |  |  |
| Remarks           |            |                   |              |                                 |            |                |            |        |  |  |  |

|                   | Energy Budgets Report |                 |                  |                    |            |              |          |         |        |
|-------------------|-----------------------|-----------------|------------------|--------------------|------------|--------------|----------|---------|--------|
| Client Name:      | TCEnergy              | •               |                  |                    |            | Job: Wastewa | terTankA | 21      |        |
| Location:         | Ceredo Compr          | essor Station   |                  |                    |            |              |          |         |        |
|                   |                       |                 |                  |                    |            |              |          |         |        |
|                   | · ·                   |                 |                  |                    |            |              |          |         |        |
|                   |                       | Power           | Budget - Pro     | oject Powei        | r Budget   |              |          | Status: | Solved |
|                   |                       |                 | Parar            | neters             |            |              |          |         |        |
| Net Power         |                       | 0 hp            |                  | Total Powe         | r Required |              |          | 0 hp    |        |
| Total Power Supp  | blied                 | 0 hp            | )                | External Er        | nergy Only |              |          | True    |        |
|                   |                       |                 |                  |                    |            |              |          |         |        |
| Remarks           |                       |                 |                  |                    |            |              |          |         |        |
|                   |                       | Heat            | Rudget - Pro     | niect Heat F       | Rudaet     |              |          | Status: | Solved |
|                   |                       | Heat Budget D   |                  |                    | a age      | Droject      |          |         |        |
|                   |                       | Heat Budget D   | ata Source       | - All Exchai       | ngersin    | Project      |          |         |        |
| Flowsh            | leet                  | Block           | -                | F                  | lowsheet   |              |          | Block   |        |
| Wastew            | ater                  | Wastewater      | Lank             |                    |            |              |          |         |        |
|                   |                       |                 |                  |                    |            |              |          |         |        |
|                   |                       |                 | Parar            | neters             |            |              |          |         |        |
| Net Duty          |                       | 0 Bt            | u/h              | Total Duty         | Required   |              |          | 0 Btu   | /h     |
| Total Duty Suppli | ed                    | 0 Bt            | u/h              | External Er        | nergy Only |              |          | True    |        |
|                   |                       |                 |                  |                    |            |              |          |         |        |
|                   |                       |                 | Tabulat          | ed Data            |            |              |          |         |        |
|                   |                       | Block Duty      | Block H<br>Tempe | lighest<br>erature | Block Lo   | west Tempera | ture     |         |        |
| Index             |                       | Btu/h           | 0                | F                  |            | °F           |          |         |        |
| Wastewater:Waste  | ewater                | 0               |                  | 60                 |            | 6            | 50       |         |        |
| Tank              |                       |                 |                  |                    | <u> </u>   |              |          |         |        |
| Remarks           |                       |                 |                  |                    | _          |              |          |         |        |
|                   |                       | Power Bu        | dget - Wast      | ewater Pow         | ver Budg   | et           |          | Status: | Solved |
|                   |                       |                 | Parar            | neters             |            |              |          |         |        |
| Net Power         |                       | 0 hp            | )                | Total Powe         | r Required |              |          | 0 hp    |        |
| Total Power Supp  | lied                  | 0 hp            |                  | External Er        | nergy Only |              |          | True    |        |
| Remarks           |                       |                 |                  |                    |            |              |          |         |        |
|                   | <u> </u>              | Lleat Du        | denat Wast       | oweter Lles        | + Dudge    | 4            |          | Status  | Solved |
|                   |                       | neat Bu         | uget - wast      | ewater Hea         | it budget  |              |          | Status. | Conved |
|                   |                       | Heat Budget Dat | a Source - A     | All Exchang        | gers in F  | lowsheet     |          |         |        |
| Flowsh            | leet                  | Block           |                  | F                  | lowsheet   |              |          | Block   |        |
| Wastew            | ater                  | Wastewater      | Tank             |                    |            |              |          |         |        |
|                   |                       |                 |                  |                    |            |              |          |         |        |
|                   |                       |                 | Parar            | neters             |            |              |          |         |        |
| Net Duty          |                       | 0 Bt            | u/h              | Total Duty         | Required   |              |          | 0 Btu   | /h     |
| Total Duty Suppli | ed                    | 0 Bt            | u/h              | External Ér        | nergy Only |              |          | True    |        |
|                   |                       |                 |                  |                    |            |              |          |         |        |
|                   |                       |                 | Tabulat          | ed Data            |            |              |          |         |        |
|                   | 1                     | Pleak Duty      | Disal            | lighost            | Bleek      | woot Tomas   | ture     |         |        |
|                   |                       | BIOCK Duty      | Block F          | ngnest             | BIOCK LO   | west lempera | ture     |         |        |
| Index             |                       | Btu/b           | rempe            | F                  |            | °F           |          |         |        |
| Wastewater Waste  | ewater                |                 |                  | 60                 |            | 6            | 50       |         |        |
| Tank              |                       | v               |                  | 00                 |            | C C          |          |         |        |
| L                 |                       |                 |                  |                    |            |              | 1        |         |        |

|              |                           | Energy Budgets Report |            |                    |  |
|--------------|---------------------------|-----------------------|------------|--------------------|--|
| Client Name: | TCEnergy                  |                       | Job: Waste | :WastewaterTankA21 |  |
| Location:    | Ceredo Compressor Station |                       |            |                    |  |
|              |                           |                       |            |                    |  |
|              |                           |                       |            |                    |  |
|              |                           |                       |            |                    |  |
| Remarks      |                           |                       |            |                    |  |