JAY-BEE OIL & GAS, INC.

APPLICATION FOR GENERAL PERMIT

Happy Well Pad Production Facility Tyler County, West Virginia

98 Vanadium Road Bridgeville, PA 15017 (412) 221-1100

APPLICATION FOR G70-D GENERAL PERMIT MODIFICATION

Jay-Bee Oil & Gas, Inc. Happy Well Pad Production Facility Tyler County, West Virginia

Table of Contents

I. Application Form

II. Attachments

- Attachment A Single Source Determination Form
- Attachment B Siting Criteria Waiver Not Applicable
- Attachment C Current Business Certificate
- Attachment D Process Flow Diagram
- Attachment E Process Description
- Attachment F Plot Plan
- Attachment G Area Map
- Attachment H G70-D Section Applicability Form
- Attachment I Emission Units/ERD Table
- Attachment J Fugitive Emissions Summary Sheet
- Attachment K Gas Well Affected Facility Data Sheet
- Attachment L Storage Vessels Data Sheet(s)
- Attachment M Small Heaters and Reboilers Not Subject to 40CFR60 Subpart Dc Data Sheet(s)
- Attachment N Internal Combustion Engine Data Sheet(s)
- Attachment O Tanker Truck Loading Data Sheet(s)
- Attachment P Glycol Dehydration Unit Data Sheet(s)
- Attachment Q Pneumatic Controllers Data Sheet
- Attachment R Pneumatic Pump Data Sheet
- Attachment S Air Pollution Control Device/Emission Reduction Device Sheet(s)
- Attachment T Emission Calculations
- Attachment U Facility-wide Controlled Emission Summary Sheet(s)
- Attachment V Class I Legal Advertisement

SECTION I

Application Form

dep	West Virginia department of environmental protection			Division of Air Quality 601 57 th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov
G70-D GI	ENERAL PE	RMIT REGIS	TRATION A	PPLICATION
	RELOCATION, A	POLLUTION IN REGA DMINISTRATIVE UPD DUCTION FACILITIES I	ATE AND OPERATION	
⊡CONSTR ⊠MODIFIC □RELOCA	CATION		ASS I ADMINISTRATIV ASS II ADMINISTRATI	
	SE	CTION 1. GENERAL INI	FORMATION	
Name of Applicant (a	as registered with the V	VV Secretary of State's Of	fice): Jay-Bee Oil & (Gas, Inc.
				- - -
Federal Employer ID	No. (FEIN): 55-073-	8862		1
Applicant's Ma	iling Address: 3570 S	Shields Hill Rd.		
City: Cairo		State: WV		ZIP Code: 26337
Facility Name: Happ	y Production Facility			
Operating Site Physic If none available, list	cal Address: Access ro road, city or town and	ad off Walnut Fork, CR13 I zip of facility.	/1	
City: Alma		Zip Code: 26320		County: Tyler
Latitude & Longitude Latitude: 39.469846 Longitude: -80.75079		, Decimal Degrees to 5 dig	its):	
SIC Code: 1311 NAICS Code: 21111	[DAQ 1 095-0	Facility ID No. (For exis 0064	ting facilities)
	C	ERTIFICATION OF INFO	ORMATION	AND
Official is a Presider Directors, or Owner, authority to bi Proprietorship. R compliance certi Representative. If a b off and the appre- unsigned G70-D Res	nt, Vice President, Sec depending on business nd the Corporation, Pa cequired records of dai fications and all requi business wishes to cert opriate names and sign vistration Application	retary, Treasurer, General s structure. A business may rtnership, Limited Liabilii ly throughput, hours of op red notifications must be s ify an Authorized Represe atures entered. Any admin	Partner, General Manag y certify an Authorized F y Company, Association eration and maintenance igned by a Responsible ntative, the official agreen- istratively incomplete pplicant. Furthermore	, general correspondence, Official or an Authorized ement below shall be checked or improperly signed or e, if the G70-D forms are not
obligate and legally h	artnership, Limited Lia	bility Company, Associati e business changes its Aut	on Joint Venture or Sole	nt the interest of the business Proprietorship) and may a Responsible Official shall
documents appended	hereto is, to the best of	ed in this G70-D General f my knowledge, true, acc chensive information possi	urate and complete, and	lication and any supporting that all reasonable efforts
Responsible Official Name and Title: Shar Email: sdowell@jay	ne Dowell, Office Man	ager Phone: 304-628-3 Date:	119 Fax:	
If applicable: Authorized Representative Signature: Name and Title: Phone: Email: Date:			Fax:	
Email: Date: If applicable: Environmental Contact Name and Title: Phone: Email: Date:			Fax:	

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Natural gas production and separation of liquids followed by dehydration and transfer to a gathering line. Jay-Bee is applying for a G70D permit, adding 7 new wells to existing permit G70-A184 and the recently acquired ICON Happy Dehydration facility (R13-3306) to this new application.

Directions to the facility: From Middlebourne, proceed south/east on State Route 18 (Main Street) out of town. Proceed approximately 5.8 miles to the junction with Indian Creek Road on the left. From WV 18 and Indian Creek CR13 intersection, take Indian Creek Rd east for 4.6 miles. Turn left onto CR 13/1 (Walnut Fork) follow north for 2.0 miles to well pad entrance on left. Access road is approximately 0.9 miles.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \boxtimes Check attached to front of application.

 \Box I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

□ I wish to pay by credit card. Contact for payment (incl. name and email address):

S500 (Construction, Modification, and Relocation)
 S300 (Class II Administrative Update)
 \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa ¹
 \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

Responsible Official or Authorized Representative Signature (if applicable)

Single Source Determination Form (must be completed) – Attachment A

□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C
🖾 Process Flow Diagram – Attachment D	\boxtimes Process Description – Attachment E

⊠ Plot Plan – Attachment F ⊠ Area Map – Attachment G

 Image: Section Applicability Form – Attachment H
 Image: Section End of the section Control of the section Control

Superior Fugitive Emissions Summary Sheet – Attachment J

🖾 Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

🖾 Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

🛛 Tanker Truck/Rail Car Loading Data Sheet (if applicable) - Attachment O

 \boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

Pneumatic Controllers Data Sheet - Attachment Q

⊠ Pneumatic Pump Data Sheet – Attachment R

🖾 Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S

 \boxtimes Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T

 \boxtimes Facility-wide Emission Summary Sheet(s) – Attachment U

🖾 Class I Legal Advertisement – Attachment V

🖾 One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

SECTION II

Attachments

ATTACHMENT A

Single Source Determination Form

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM	ATTACHMENT A -	SINGLE S	SOURCE	DETERMIN	ATION 3	FORM
--	----------------	----------	--------	----------	---------	------

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes 🛛 No 🗆

Is there equipment and activities under the control of the same person/people?

 $Yes \boxtimes No \square$

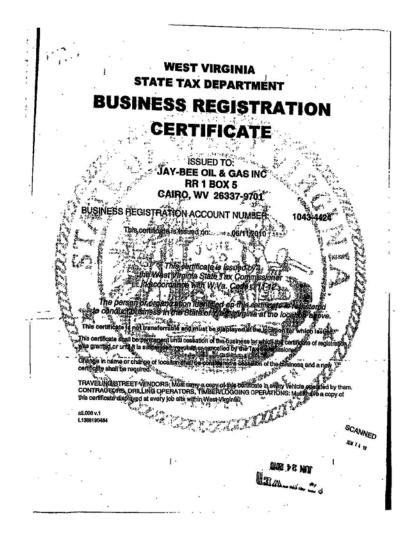
Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes \Box No \boxtimes

ATTACHMENT B

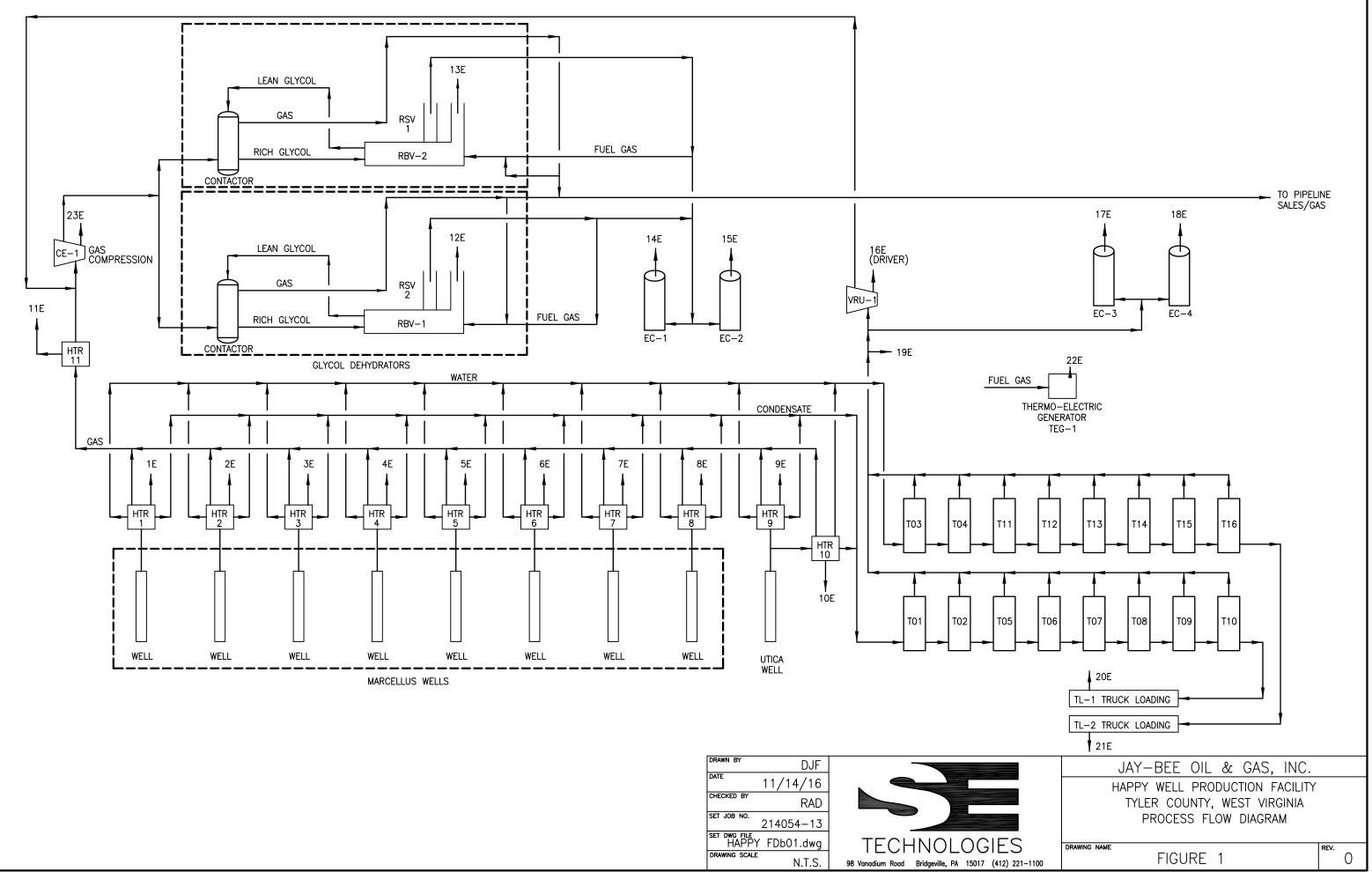
SITING CRITERIA WAIVER

ATTACHMENT B - SITING CRITERIA WAIVER


If applicable, please complete this form and it must be notarized.

Not Applicable

ATTACHMENT C


Current Business Certificate

Attached Current WV Business Certificate

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

Process Description

Happy Facility Process Description

Jay Bee Oil & Gas is seeking to modify the Happy Production Facility (WV Facility ID No. 095-00064and WV G70-A184) by increasing the number of wells on the Happy Well Pad and incorporating the Happy Dehydration Facility (WV R13-3306), recently acquired from ICON Midstream Pipeline, LLC (ICON), into a new WV G70-D permit.

At the Happy facility, natural gas and produced fluids (condensate and water) will be received from eight Marcellus wells (two existing and six new) and one new Utica well and then passed through gas processing units (one per Marcellus well, two per Utica well) to avoid ice formation during subsequent pressure drops. The materials will then pass through a three-way separator for gas, condensate, and produced water separation.

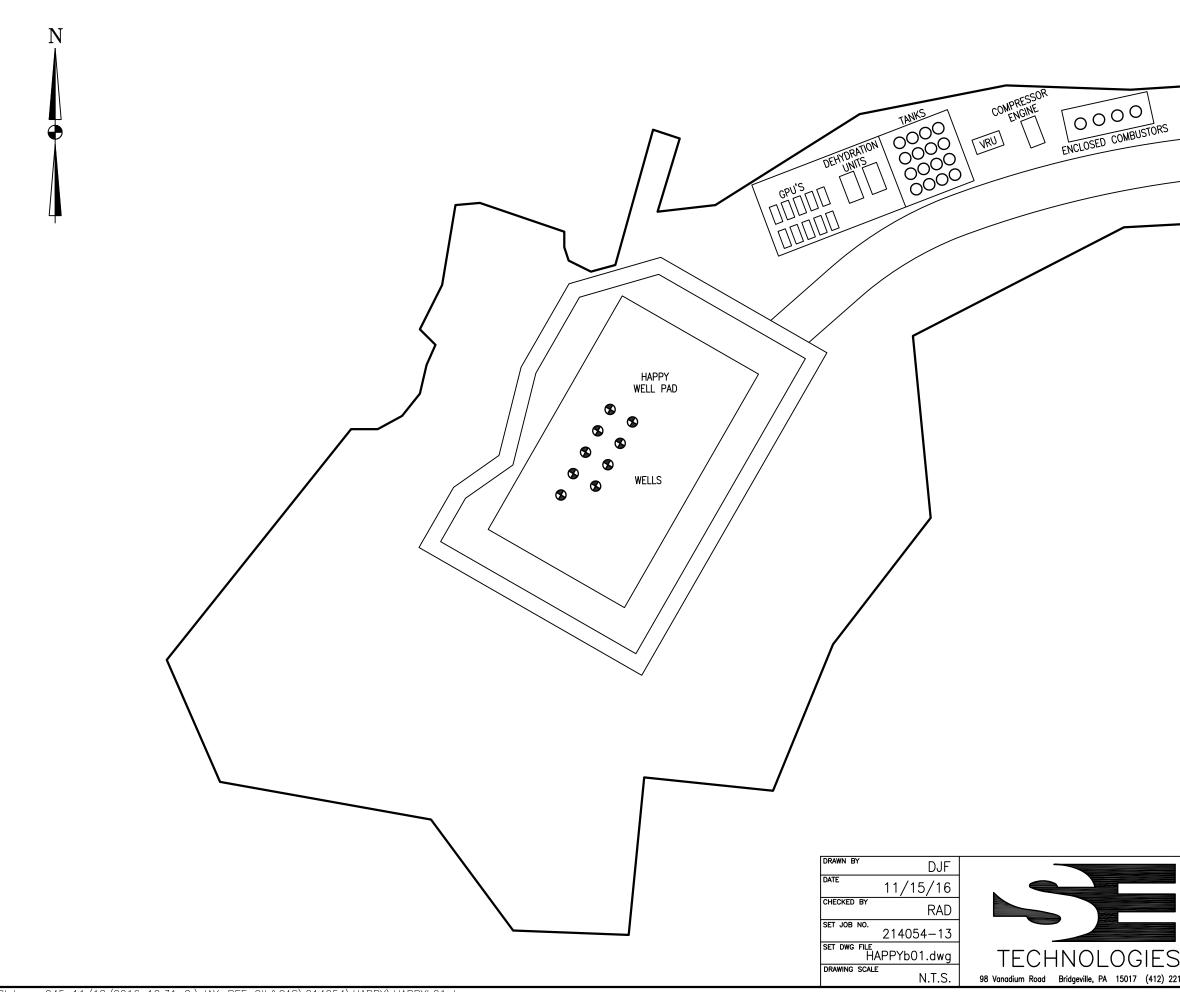
Water vapor will be removed from the gas stream with a new, 40-mmscfd dehydration unit and the existing 20-mmscfd dehydration unit acquired from the ICON Happy dehydration facility. Dry gas will then be routed to a gathering pipeline owned and operated by others. Emissions from the dehydration unit still vents will be routed to two enclosed combustors (one existing and one new).

Both condensate and produced water will be accumulated in sixteen 210 BBL tanks (eight for condensate and eight for produced water), pending truck transportation by others. The condensate will be transported to a regional processing facility and the produced water a regional disposal facility.

Flash, working and breathing losses from these tanks will be routed to a vapor recovery unit (VRU) with the captured vapors routed back to the raw gas discharge line. Two new enclosed combustors will be utilized as a backup control devices for times when the VRU is not available (estimated max of 440 hours per year) or if a large slug of condensate production generates flash gas in excess of the capacity of the VRU. The VRU utilizes an 84HP driver that utilizes natural gas produced at the site as fuel. A capture and control efficiency of 95% is claimed for the VRU and 98% for the combustors. Once vapor reduces past the point that the VRU is able to process it, the combustor will then be converted as the primary source of recovery.

The Happy facility utilizes a Thermo-electric generator to meet the minor electric demands for various monitoring and data tracking equipment on the well pad. Finally, a Caterpillar model 3516 gas compressor engine will be installed at the site to facilitate the transfer of produced gas.

A Process Flow Diagram depicting these features is provided in Attachment D.

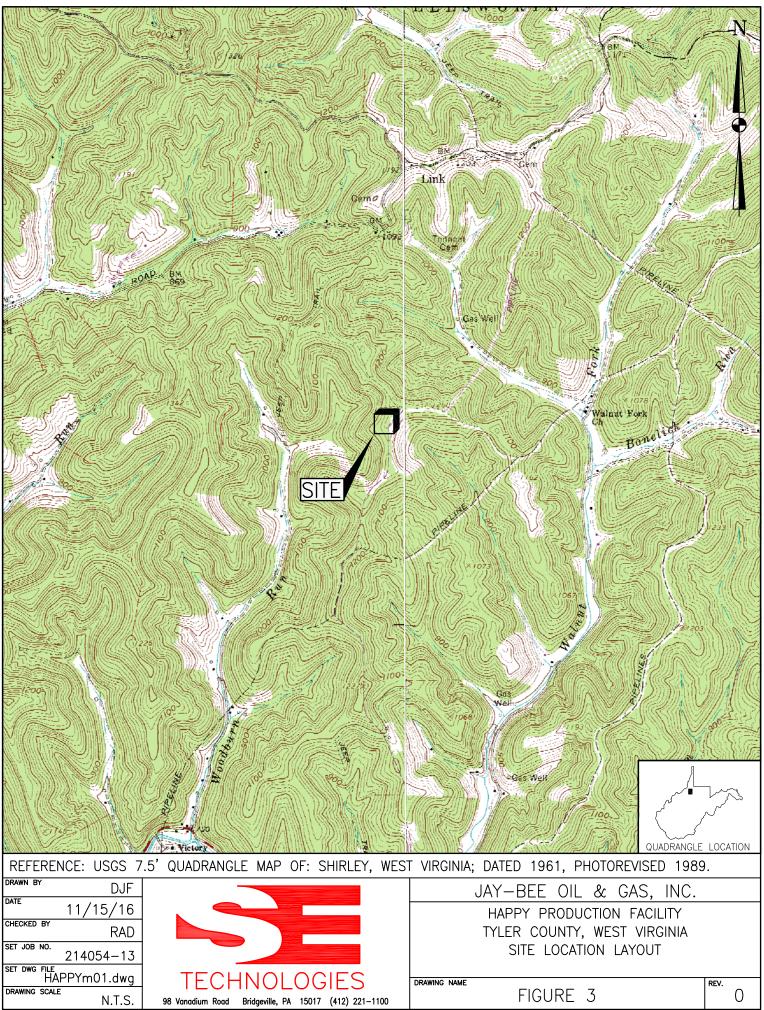

In summary, upon approval of this application, emission sources at this facility will include the following:

- Ten Gas Processing Units (GPUs), each with a 1.5-mmBtu/hr heater (Sources 1E & 2E, existing; and Sources 3E 10E, new);
- One Line Heater (Source 11E, existing)
- One 20-mmscfd dehydration unit (Source 12E reboiler vent, existing; and 14E/15E still vent, existing);
- One 40-mmscfd dehydration unit (Source 13E reboiler vent, new; and 14E/15E still vent, new);
- Two enclosed combustors for control of still vent vapors (Sources 14E, existing; and 15E, new);
- One vapor recovery unit (VRU) with driver engine (Source 16E, existing), controlling emissions from T01-T16;
- Two enclosed combustors for VRU backup (Sources 17E and 18E, both new);
- Uncontrolled tank emissions. (Source 19E, existing);

- Eight Condensate Tanks (T01 & T02, existing; T05-T10, new);
- Eight Produced Water Tanks (T03 & T04, existing; T11-T16, new);
- Condensate Truck Loading (Max. 255 bbl/day) (Source 20E, existing);
- Produced Water Truck Loading (Max. 535 bbl/day) (Source 21E, existing);
- One Thermoelectric Generator (Source 22E, existing); and
- One Caterpillar 3516 Gas Compressor (Source 23E, new).

ATTACHMENT F

Plot Plan



TO WALNUT FORK ROAD .

	JAY-BEE OIL & GAS, INC.	
	HAPPY PRODUCTION FACILITY TYLER COUNTY, WEST VIRGINIA SITE LAYOUT	
-S 2) 221-1100	drawing name FIGURE 2	rev.

ATTACHMENT G

Area Map

Plot: env045 11/15/2016 10:59 G:\JAY-BEE OIL&GAS\214054\HAPPY\HAPPYm01.dwg

ATTACHMENT H

G70-D Section Applicability Form

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PER	MIT G70-D APPLICABLE SECTIONS
⊠Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)
⊠Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
⊠Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)
⊠Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)
⊠Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines
Section 14.0	Tanker Truck/Rail Car Loading ²
⊠Section 15.0	Glycol Dehydration Units ³

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units / Emission Reduction Devices (ERD) Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
HTR-1	1E	Gas Processing Unit	2016		1.5 MMBTU/hr	EXISTING 06/01/16	None	None
HTR-2	2E	Gas Processing Unit	2016		1.5 MMBTU/hr	EXISTING 06/01/16	None	None
HTR-3	3E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-4	4E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-5	5E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-6	6E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-7	7E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-8	8E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-9	9E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-10	10E	Gas Processing Unit	TBD		1.5 MMBTU/hr	NEW	None	None
HTR-11	11E	Line Heater	TBD		0.5 MMBTU/hr	NEW	None	None
RBV-1	12E	Dehydration Unit Re-boiler Vent	2016		0.300 MMBTU/hr	EXISTING 09/01/16	None	None
RSV-1	14E/15E	Dehydration Unit Still Vent	2016		20 MMSCFD	EXISTING 09/01/16	EC-1/EC-2	None
RBV-2	13E	Dehydration Unit Re-boiler Vent	TBD		0.500 MMBTU/hr	NEW	None	None
RSV-2	14E/15E	Dehydration Unit Still Vent	TBD		40 MMSCFD	NEW	EC-1/EC-2	None
EC-1	14E	Enclosed Combustor	2016		10.0 MMBTU/hr	EXISTING 06/01/16	None	None
EC-2	15E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	None	None
VRU-1	16E	VRU Driver	2016	>03/01/13	84 HP	EXISTING 06/01/16	1C	None
EC-3	17E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	None	None
EC-4	18E	Enclosed Combustor	TBD		10.0 MMBTU/hr	NEW	None	None
T01	16E/17E/18E	Condensate Tank	2016		210 BBL	EXISTING 03/01/16	EC-3/EC-4	VRU-1
T02	16E/17E/18E	Condensate Tank	2016		210 BBL	EXISTING 03/01/16	EC-3/EC-4	VRU-1

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE CONT.

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
T05	16E/17E/18E	Condensate Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T06	16E/17E/18E	Condensate Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T07	16E/17E/18E	Condensate Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T08	16E/17E/18E	Condensate Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T09	16E/17E/18E	Condensate Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T10	16E/17E/18E	Condensate Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T03	16E/17E/18E	Produced Water Tank	2016		210 BBL	EXISTING 03/01/16	EC-3/EC-4	VRU-1
T04	16E/17E/18E	Produced Water Tank	2016		210 BBL	EXISTING 03/01/16	EC-3/EC-4	VRU-1
T11	16E/17E/18E	Produced Water Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T12	16E/17E/18E	Produced Water Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T13	16E/17E/18E	Produced Water Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T14	16E/17E/18E	Produced Water Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T15	16E/17E/18E	Produced Water Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T16	16E/17E/18E	Produced Water Tank	TBD		210 BBL	NEW	EC-3/EC-4	VRU-1
T01-T16	19E	Un-captured/Un-controlled VRU-1 Emissions	TBD			NEW	None	None
TL-1	20E	Condensate Truck Loading	TBD		93,075 BBL/yr	Modification Pending App.	None	None
TL-2	21E	Produced Water Truck Loading	TBD		195,275 BBL/yr	Modification Pending App.	None	None
TEG-1	22E	Thermoelectric Generator	2016		4.4 KW/hr	EXISTING 06/01/16	None	None
CE-1	23E	Compressor Engine	TBD	3/21/2012	1,380 HP	NEW	2C	None

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

			ATTACHMEN	T J – FUGITIVE EMIS	SIONS SUMM	ARY SHEE	ET	
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc.							
	Use extra pages for each associated source or equipment if necessary.							
			by Production Facility					
	Leak Detection Method Used		Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	Other (please	describe)		□ None required
Componen	t Closed	a .	Source of	Leak Factors	Stream type		Estimated Emi	ssions (tpy)
Туре	Vent System	Count	(EPA, oth	er (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (methane, CO ₂ e
Pumps	□ Yes ⊠ No	1		API	⊠ Gas □ Liquid □ Both	0.004	0.000	0.344
Valves	□ Yes ⊠ No	558	I	EPA	□ Gas □ Liquid ⊠ Both	1.98	0.019	45.4
Safety Relie Valves	ef □ Yes ⊠ No	25	I	EPA		0.047	0.002	3.77
Open Ended Lines	d □ Yes ⊠ No	57	I	EPA		0.162	0.006	13.1
Connections (Not samplin		1,980	I	EPA		0.926	0.008	17.9
Compressor	rs □ Yes ⊠ No	1		API		0.016	0.001	1.26
Flanges	□ Yes ⊠ No	180		API	□ Gas □ Liquid ⊠ Both	0.129	0.003	6.71
Other ¹	□ Yes □ No			NA Gas D Gas D Liquid D Both				
¹ Other equi	ipment types ma	ay include	compressor seals, relief valves, o	diaphragms, drains, meters, etc.				
Please provi Blowdowns		ion of the	sources of fugitive emissions (e.g	g. pigging operations, equipment	blowdowns, pneum	atic controllers,	, etc.):	
Please indic No	cate if there are	any close	d vent bypasses (include compone	ent):				
	equipment used h, VRU and En		osed vent system (e.g. VRU, ERD ombustors	, thief hatches, tanker truck/rail	car loading, etc.)			

ATTACHMENT K

Gas Well Affected Facility Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-095-02147	DUC ¹	DUC	Flow to separator and into gathering line as soon as practical	Yes
47-095-02148	DUC	DUC	Flow to separator and into gathering line as soon as practical	Yes
47-095-02225	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-095-02226	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-095-02227	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-095-02228	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-095-02229	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-095-02230	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes
47-095-02384	Pending	Pending	Flow to separator and into gathering line as soon as practical	Yes

1 - Drilled/uncompleted

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,	
047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- \Box For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- $\hfill\square$ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name Happy Tank Farm	2. Tank Name T01-T02 , T05-T10					
3. Emission Unit ID number N/A Vapors to combustors,	4. Emission Point ID number 17E/18E					
emission point 17E & 18E						
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:					
T01-T02: 03/01/16; T05-T10: Pending Permit Approval	\boxtimes New construction \square New stored material \square Other					
Was the tank manufactured after August 23, 2011 and on or	□ Relocation					
before September 18, 2015?						
\Box Yes \boxtimes No						
Was the tank manufactured after September 18, 2015?						
\boxtimes Yes \square No						
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.						
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?						
\boxtimes Yes \square No						
If Yes, please provide the appropriate documentation and items	If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 210 BBL ea					
9A. Tank Internal Diameter (ft.) 12.5	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (ft.) 14	10B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 196 BBL				
13A. Maximum annual throughput (gal/yr) 482,000 ea.	13B. Maximum daily throughput (gal/day) 1,320 ea.				
14. Number of tank turnovers per year: 58 ea.	15. Maximum tank fill rate (gal/min) 50				
16. Tank fill method □ Submerged □ Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	🗵 No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per	year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \square vertical \square horizontal \square flat root	\square cone roof \square dome roof \square other (describe)				
\Box External Floating Roof \Box pontoon roof \Box double	deck roof				
Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support	□ self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragm					
\Box Pressurized \Box spherical \Box cylindrical					
\Box Other (describe)					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:									
□ Does Not Apply	□ Rupture Disc (psig)								
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹								
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)									
$\Box \text{ Conservation Vent (psig)} \qquad \Box \text{ Condenser}^1$									
0.4 oz. Vacuum Setting 14 oz. Pressure Setting									
□ Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
☑ Thief Hatch Weighted □	⊠ Yes □] No							
¹ Complete appropriate Air	Pollution	n Control	Device Sh	leet					
20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). T01 – T02, T05 – T10 total									
Material Name	Flashing Loss		Breathing Loss		Working Loss		Total		
							Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC (uncontrolled)	405.4	1,776	0.25	1.11	0.941	4.12	407	1,781	MB & EPA
HAP (uncontrolled)	13.2	58.0	0.008	0.036	0.031	0.134	13.3	58.1	MB

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
□ Riveted □ Gunite lined □ Epoxy-coated rivets ⊠ Other (describe) Welded							
21A. Shell Color: Blue	21B. Roof Color: Blu	e		21C. Year	Last Painted: New		
22. Shell Condition (if metal and unlined): ∇		11					
⊠ No Rust □ Light Rust □ Dense Rust □ Not applicable							
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is h				s, how is heat provided to tank?			
23. Operating Pressure Range (psig): 2 oz – 14	4 oz						
Must be listed for tanks using VRUs with		•					
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome a	oof prov	ride radius (ft):	24B. If yes	s, for cone roof, provide slope		
\boxtimes Yes \Box No		(ft/ft): 0.05					
25. Complete item 25 for Floating Roof Tanks Does not apply							
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal	□ Liquid mou	unted resilie	ent seal		
🗆 Vap	or mounted resilient se	eal	\Box Other (des	cribe):			
25C. Is the Floating Roof equipped with a second	ndary seal? 🛛 Yes	□ No					
25D. If yes, how is the secondary seal mounted		e 🗆	Rim 🗆 Oth	er (describ	e):		
25E. Is the floating roof equipped with a weather		□ N			<i>,</i>		
25F. Describe deck fittings:			0				
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	7			
	/elded		For bolted decks,		k construction:		
	orada			1			
26C. Deck seam. Continuous sheet constructio	n:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box	other (de	scribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. F	26F. For column supported 26G. For column supported				
		tanks, # of columns: tanks, diameter of column:			tanks, diameter of column:		
27. Closed Vent System with VRU? Yes	_ No						
28. Closed Vent System with Enclosed Combus	stor? 🗆 Yes 🗆 No						
SITE INFORMATION		D ' 1	1.54				
29. Provide the city and state on which the data	in this section are based:		-	T			
30. Daily Avg. Ambient Temperature (°F):32. Annual Avg. Minimum Temperature (°F):	-			ximum Temperature (°F):			
 34. Annual Avg. Solar Insulation Factor (BTU/ 	ft ² -day).	-day): 33. Avg. Wind Speed					
LIQUID INFORMATION	it duy).	<i>55.</i> 11	inospherie riess	are (psiu). I			
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 4	9.3		36B. Maxi	mum (°F): 67.7		
liquid (°F): 58.5							
37. Avg. operating pressure range of tank	37A. Minimum (psig):	<0.1		37B. Maxi	mum (psig): 0.8		
(psig): 0-0.5 psig		205					
38A. Minimum liquid surface temperature (°F)	: 36	1 0			apor pressure (psia): 0.11		
39A. Avg. liquid surface temperature (°F): 65			39B. Corresponding vapor pressure (psia): 0.31 40B. Corresponding vapor pressure (psia): 0.95				
40A. Maximum liquid surface temperature (°F): 100 40B. Corresponding vapor pressure (psia): 0.95 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.							
41A. Material name and composition:	Condensate	nuu uut	nuonai pages ii ii	leeessury.			
41B. CAS number:	68919-39-1						
41C. Liquid density (lb/gal):	5.49						
41D. Liquid molecular weight (lb/lb-mole):	81.3						
41E. Vapor molecular weight (lb/lb-mole):	39.56						
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):	5.28						
41H. Months Storage per year.	12						
From: January To: December 42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as							
inputs into flashing emission calculations.							

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name				
P2 Tank Farm	T03-T04, T11-T16				
3. Emission Unit ID number N/A Vapors to combustors,	4. Emission Point ID number 17E/18E				
emission point 17E & 18E					
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
T03-T04: 03/01/16; T11-T16: Pending Permit Approval	\boxtimes New construction \square New stored material \square Other				
Was the tank manufactured after August 23, 2011 and on or	□ Relocation				
before September 18, 2015?					
\Box Yes \boxtimes No					
Was the tank manufactured after September 18, 2015?					
\boxtimes Yes \Box No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.					
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items 8-42 below are not required.					

TANK INFORMATION

8. Design Capacity (specify barre	els or gallons). Use the internal	l cross-sectional area multiplied by internal height.				
210 BBL						
9A. Tank Internal Diameter (ft.) 1	10	9B. Tank Internal Height (ft.) 15				
10A. Maximum Liquid Height (ft	t.) 14	10B. Average Liquid Height (ft.) 8				
11A. Maximum Vapor Space Hei	ight (ft.) 14.5	11B. Average Vapor Space Height (ft.) 7				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 190 BBL						
13A. Maximum annual throughpu	ut (gal/yr) 1,020,600 (each)	13B. Maximum daily throughput (gal/day) 2,796 (each)				
14. Number of tank turnovers per	year 128 (max)	15. Maximum tank fill rate (gal/min) 50				
16. Tank fill method \Box Submer	rged 🛛 Splash 🛛	□ Bottom Loading				
17. Is the tank system a variable vapor space system? Yes No						
If yes, (A) What is the volume expansion capacity of the system (gal)?						
(B) What are the number of transfers into the system per year?						
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof \square cone roof \square dome roof \square other (describe)						
□ External Floating Roof □ pontoon roof □ double deck roof						
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof	□ vertical column support □	□ self-supporting				
□ Variable Vapor Space	□ lifter roof □ diaphragm					
□ Pressurized	\Box spherical \Box cylindrical					
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:					
□ Does Not Apply	□ Rupture Disc (psig)				
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹				
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors) as back-up to VRU					
Conservation Vent (psig)	\Box Condenser ¹				
0.4 oz Vacuum Setting 14 oz Pressure Setting					
□ Emergency Relief Valve (psig)					
Vacuum Setting Pressure Setting					
\boxtimes Thief Hatch Weighted \boxtimes Yes \square No					
¹ Complete appropriate Air Pollution Control Device Sheet					

Material Name	Flashi	Flashing Loss Br		Breathing Loss		Working Loss		tal ns Loss	Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	3.94	17.3					3.94	17.3	МВ
HAPs	0.330	1.45					0.330	1.45	МВ

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION									
21. Tank Shell Construction:									
\Box Riveted \Box Gunite lined	🗆 Ероху	-coated rivets 🛛 Oth	ner (describe) Welded						
21A. Shell Color: Blue		21B. Roof Color: Blu	e	21C. Year	Last Painted: 2016				
22. Shell Condition (if metal and u	22. Shell Condition (if metal and unlined):								
🖾 No Rust 🛛 Light Rust 🔲 Dense Rust 🖓 Not applicable									
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?									
23. Operating Pressure Range (psig				•					
Must be listed for tanks using				r					
24. Is the tank a Vertical Fixed Ro	of Tank?		roof provide radius (ft):	-	s, for cone roof, provide slop (ft/ft):				
⊠ Yes □ No		n/a		n/a					
25. Complete item 25 for Floating	Roof Tank	\square Does not apply	\boxtimes						
25A. Year Internal Floaters Installe	ed:								
25B. Primary Seal Type (check one	e): 🗆 Met	allic (mechanical) shoe	e seal 🛛 🗆 Liquid mou	inted resilie	ent seal				
	🗆 Vap	or mounted resilient se	eal 🛛 Other (des	cribe):					
25C. Is the Floating Roof equipped	l with a seco	ndary seal? 🛛 Yes	□ No						
25D. If yes, how is the secondary s	eal mounted	? (check one) \Box Sho	e 🗆 Rim 🗆 Oth	er (describe	e):				
25E. Is the floating roof equipped	with a weath	er shield? 🛛 Yes	□ No						
25F. Describe deck fittings:									
26. Complete the following section	for Interna	l Floating Roof Tanks	Does not apply						
26A. Deck Type: 🗆 Bolted	□ W	elded	26B. For bolted decks,	, provide dec	k construction:				
26C. Deck seam. Continuous shee	t constructio	on:	I.						
\Box 5 ft. wide \Box 6 ft. wide \Box	7 ft. wide	\Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (desc	cribe)				
26D. Deck seam length (ft.):	26E. Area	a of deck (ft ²):	26F. For column support	orted	26G. For column supported				
			tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU									
28. Closed Vent System with Enclo									
		h 35 are N/A for Water							
29. Provide the city and state on wh		in this section are based:			(PD)				
30. Daily Avg. Ambient Temperatu			31. Annual Avg. Maxi		erature (°F):				
32. Annual Avg. Minimum Temperature (°F): 33. Avg. Wind Speed (mph):									

34. Annual Avg. Solar Insulation Factor (BTU	35. Atmospheric Pressure (psia):					
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	36		m (°F): 70		
liquid (°F): 60						
37. Avg. operating pressure range of tank	37A. Minimum (psig)): <0.1 p	sig	37B. Maximu	m (psig): 0.8 psig	
(psig): 0-0.5 psig						
38A. Minimum liquid surface temperature (°F	<i>T</i>): 36	38B. (Corresponding	vapor pressure (ps	sia): 0.11	
39A. Avg. liquid surface temperature (°F): 65		39B. (Corresponding	vapor pressure (ps	sia): .031	
40A. Maximum liquid surface temperature (°I	F): 70	40B. (Corresponding vapor pressure (psia): 0.95			
41. Provide the following for each liquid or ga	as to be stored in the tank.	Add add	litional pages i	if necessary.		
41A. Material name and composition:	Produced Wat	er				
41B. CAS number:	7732-15-8, 7747-	40-7,				
41C. Liquid density (lb/gal):	7647-14-5					
41D. Liquid molecular weight (lb/lb-mole):	9-10 lb/gal					
41D. Liquid molecular weight (10/10-mole). 41E. Vapor molecular weight (1b/lb-mole):	Varies					
1 8 ()	18					
41F. Maximum true vapor pressure (psia):	0.95					
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.	Continuous					
From: To:						
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as n/a						
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
T17	New	Tri-ethylene Glycol (TEG)	250 Gallons

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

- EXIST Existing Equipment
- NEW Installation of New Equipment
- Equipment Removed REM
- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT $\overline{\mathbf{M}}$

Small Heaters And Reboilers Not Subject To 40CFR60 Subpart Dc Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
HTR-1	1E	Gas Processing Unit	2016	EXISTING (06/01/16)	1.5	1263
HTR-2	2E	Gas Processing Unit	2016	EXISTING (06/01/16)	1.5	1263
HTR-3	3E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-4	4E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-5	5E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-6	6E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-7	7E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-8	8E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-9	9E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-10	10E	Gas Processing Unit	TBD	NEW	1.5	1263
HTR-11	11E	Line Heater	TBD	NEW	0.5	1263
RBV-1	12E	Reboiler	2016	EXISTING (09/01/16)	0.300	1263
RBV-2	13E	Reboiler	TBD	NEW	0.500	1263
TEG-1	22E	Thermoelectric Generator	2016	EXISTING (06/01/16)	4.4 KW/hr	1263

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Internal Combustion Engine Data Sheet

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

		1			F 1	1	
Emission Unit I			U-1		CE-1		
Engine Manufac	turer/Model		ns G5.9		G3516 BLE		
Manufacturers F	Rated bhp/rpm	84 @	1800	1380	@ 1400		
Source Status ²		E	ES	N	IS		
Date Installed/ Modified/Remov	ved/Relocated ³	Upon Recei	pt of Permit	Upon Rece	ipt of Permit		
Engine Manufac /Reconstruction		After 3	/1/2013	3/21	/2012		
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certific □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources 	ed? Subpart IIII ed? Subpart ZZZZ	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS	□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶	ne Type ⁶ 4SRB 4SLB						
APCD Type ⁷		NS	CR	Ox	Cat		
Fuel Type ⁸		R	G	R	RG		
H ₂ S (gr/100 scf)		<	:1	<	<1		
Operating bhp/rpm		84 @	1800	1380	@ 1400		
BSFC (BTU/bhg	o-hr)	79	014	82	256		
Hourly Fuel Th	oughput	526.4 ft ³ /hr gal/hr		9,020.65 ga	ft ³ /hr l/hr	ft ³ /hr gal/hr	
Annual Fuel The (Must use 8,760 emergency gene	hrs/yr unless	4.62 MMf gal	t ³ /yr l/yr		1ft ³ /yr l/yr	MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
AP	NOx	0.19	0.81	1.52	6.66		
AP	СО	0.37	1.62	0.52	2.27		
AP	VOC	0.04	0.18	1.40	6.13		
AP	SO ₂	0.0004	0.002	<0.01	0.03		
AP	PM ₁₀	0.013	0.057	0.11	0.50		
AP	Formaldehyde	0.015	0.065	0.32	1.41		
AP	Total HAPs	0.022	0.096	0.53	2.31		
		1				1	

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB	Two Stroke Lean Burn	4SRI	B Four S	troke Rich Burn		
	4SLB	Four Stroke Lean Burn					
7	Enter th	e Air Pollution Control Device (APCD) type design	ation(s)	using the f	ollowing codes:		
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion Low Emission Combust Oxidation Catalyst		S
8	Enter th	e Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas R	G I	Raw Natura	al Gas /Production Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference design	ation u	sing the	following codes. Attack	n all refer	ence data used.
	MD	Manufacturer's Data	1	AP AI	P-42		
	GR	GRI-HAPCalc TM	(DT Ot	ther (please l	ist)	

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# VRU-1)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \Box No \Box

⊠ NSCR \Box SCR □ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Manufacturer: Miratech Model #: VXC-1408-04-HSG Design Operating Temperature: 1000 °F Design gas volume: 430± scfm Service life of catalyst: 2+ years, depending on site Provide manufacturer data? ⊠Yes 🗆 No conditions Volume of gas handled: 430 acfm at 1,078 °F Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F Reducing agent used, if any: None Ammonia slip (ppm): N/A Pressure drop against catalyst bed (delta P): 3.0 inches of H₂O Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Part of the routine maintenance inspection to warn or alert operations of emissions control degradation is a task called the post-PM emissions check. Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? \Box Yes \boxtimes No How often is catalyst recommended or required to be replaced (hours of operation)? Because there are so many factors that impact life of a catalyst, the vendor does not recommend "hours of operation prior to replacement." The routine post-PM emissions check task (every 60 days or 1440 hrs of operation, whichever comes first) determines when the catalyst needs to be serviced or replaced. How often is performance test required? 🗌 Initial Annual Every 8,760 hours of operation Field Testing Required
 No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT,

ATTACHMENT O

Tanker Truck/Rail Car Loading Data Sheet

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-	on Point ID#	: 20E		Year Installed/Modified: TDB					
Emission Unit Descripti	on: Conde	nsate Truck Lo	oading						
Loading Area Data									
Number of Pumps: 1		Numbe	r of Liquids	Loaded: 1		Max number at one (1) tir	of trucks/rail cars loading ne: 1		
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:									
Provide description of c	Provide description of closed vent system and any bypasses. None								
 Are any of the following truck/rail car loadout systems utilized? Closed System to tanker truck/rail car passing a MACT level annual leak test? Closed System to tanker truck/rail car passing a NSPS level annual leak test? Closed System to tanker truck/rail car not passing an annual leak test and has vapor return? 									
		kimum Operat	0			•	· · · · · · · · · · · · · · · · · · ·		
Time	Jan	– Mar		- Jun	J	ul – Sept	Oct - Dec		
Hours/day		24		.4		24	24		
Days/week		7		7		7	7		
		Bulk Liquid	Data (use e	xtra pages a	s necess	ary)			
Liquid Name		Conde	Condensate						
Max. Daily Throughput gal/day)	(1000	10.	6						
Max. Annual Throughpu (1000 gal/yr)	ıt	3,85	56						
Loading Method ¹		SU	В						
Max. Fill Rate (gal/min))	50)						
Average Fill Time (min.	/loading)	12	0						
Max. Bulk Liquid Temp (°F)	erature	75							
True Vapor Pressure ²	sia								
Cargo Vessel Condition ³ U									
Control Equipment or Method ⁴ None									
Max. Collection Efficie	ncy (%)	n/a	a						
Max. Control Efficiency	(%)	n/:	a						

Max.VOC Emission Rate	Loading (lb/hr)	2.48	
	Annual (ton/yr)	4.07	
Max.HAP	Loading (lb/hr)	0.134	
Emission Rate	Annual (ton/yr)	0.220	
Estimation Method ⁵		EPA	

1	BF	Bottom Fill	SP Splash Fill			SUB	Submerged Fill	
2	At maximum bulk liquid temperature							
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)								Sheets)
	CA	Carbon Adsorption		VB	Dedicat	ed Vapoi	Balance (closed system)
	ECD	Enclosed Combustion Devi	ice	F	Flare			
	TO	Thermal Oxidization or Inc	cineration					
5	EPA	EPA Emission Factor in Al	P-42			MB	Materia	l Balance
	ТМ	Test Measurement based up	pon test da	ta submit	tal	0	Other (d	escribe)

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TL-2 Emission Point ID#: 21E Year Installed/Modified: TBD									
Emission Unit Descripti	ion: Pr	oduced water Tr	uck Loading						
Loading Area Data									
Number of Pumps: 1		Numbe	er of Liquids	Loaded: 1		Max numbe at one (1) ti	r of trucks/rail cars loading ime: 1		
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? \Box Yes \Box No \boxtimes Not Required If Yes, Please describe:									
Provide description of closed vent system and any bypasses. None									
 Are any of the following truck/rail car loadout systems utilized? Closed System to tanker truck/rail car passing a MACT level annual leak test? Closed System to tanker truck/rail car passing a NSPS level annual leak test? Closed System to tanker truck/rail car not passing an annual leak test and has vapor return? 									
Pro	jected l	Maximum Operat			r transf	er point as a	whole)		
Time		Jan – Mar	Apr	- Jun	J	ul – Sept	Oct - Dec		
Hours/day		24	2	.4		24	24		
Days/week		7	,	7		7	7		
		Bulk Liquid	Data (use e	xtra pages a	s necess	ary)			
Liquid Name		Produced	oduced Water						
Max. Daily Throughput (1000 gal/day)		22.4	22.4						
Max. Annual Throughpu (1000 gal/yr)	ut	8,165							
Loading Method ¹		SP							
Max. Fill Rate (gal/min)	50							
Average Fill Time (min/loading)		120							
Max. Bulk Liquid Temperature (°F)		75							
True Vapor Pressure ²	n/a								
Cargo Vessel Condition ³ U									
Control Equipment or Method ⁴ None									
Max. Collection Efficie (%)	ncy	n/a							
Max. Control Efficiency (%) n/a									

Max.VOC Emission	Loading (lb/hr)	0.143	
Rate	Annual (ton/yr)	0.197	
Max.HAP Emission	Loading (lb/hr)	0.016	
Rate	Annual (ton/yr)	0.022	
Estimation M	ethod ⁵	ЕРА	

1	BF	Bottom Fill	SP	Splash F	i11		SUB	Submerged Fill
2	At maxi	mum bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as	many as apply (complete and	submit ap	propriate	Air Pollu	tion Cont	rol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicat	ed Vapor	Balance (closed system)
	ECD	Enclosed Combustion Device	ce	F	Flare			•
	ТО	Thermal Oxidization or Inc	ineration					
5	EPA	EPA Emission Factor in AP	-42			MB	Materia	al Balance

 TM
 Test Measurement based upon test data submittal
 O
 Other (describe)

ATTACHMENT P

Glycol Dehydration Unit Data Sheet

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalcTM input and aggregate report. Use extra pages if necessary. Manufacturer: Exterran Model: HANO-486824035 Max. Dry Gas Flow Rate: 20 mmscf/day Reboiler Design Heat Input: 0.300 MMBTU/hr Design Type: ⊠ TEG \Box DEG \Box EG Source Status1: ES Date Installed/Modified/Removed²: Upon Permit Regenerator Still Vent APCD/ERD³: FL / EC-1 & EC-2 Control Device/ERD ID#3: FL / EC-1 & EC-2 (14E/15E) Fuel HV (BTU/scf): 634.4 (HHV) H₂S Content (gr/100 scf): <0.001% Operation (hours/year): 8,760 Pump Rate (gpm): 3.5 Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lb/MMscf Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? 🛛 Yes \Box No: If Yes, answer the following: The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in (3.3772b)(1) of this subpart. \Box Yes X No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. 🛛 Yes 🗆 No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? 🛛 No

Is a lean glycol pump optimization plan being utilized? \Box Yes 🛛 No

Recycling the glycol dehydration unit back to the flame zone of the reboiler. □ Yes 🖾 No

Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. □ Yes 🖾 No

What happens when temperature controller shuts off fuel to the reboiler? Still vent to enclosed combustors (EC-1/2). Still vent emissions to the atmosphere.

Still vent emissions stopped with valve.

☐ Still vent emissions to glow plug.

Please indicate if the following equipment is present.

Flash Tank

Burner management system that continuously burns condenser or flash tank vapors

Control Device Technical Data

Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)				
Hydrocarbons	99+% (Note: 98% used for calculations)				

Emissions Data

Emissions Data					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)
		AP-42	NO _x	0.030	0.131
		AP-42	СО	0.025	0.110
	Reboiler Vent	AP-42	VOC	0.002	0.007
RBV-1 / 12E	2E Reboller vent	AP-42	SO_2	0.0002	0.001
	AP-42	PM_{10}	0.002	0.010	
		AP-42	GHG (CO ₂ e)	36.2	158.7
		GRI-GlyCalc [™]	VOC	0.374	1.64

	Glycol	GRI-GlyCalc TM	Benzene	0.005	0.020
		GRI-GlyCalc TM	Toluene	0.016	0.069
RSV-1 / 14E & 15E	Regenerator	GRI-GlyCalc TM	Ethylbenzene	0.000	0.000
	Still Vent	GRI-GlyCalc TM	Xylenes	0.000	0.000
		GRI-GlyCalc TM	n-Hexane	0.009	0.040
	None Glycol Flash Tank	GRI-GlyCalc TM	VOC		
		GRI-GlyCalc TM	Benzene		
News		GRI-GlyCalc TM	Toluene		
None		GRI-GlyCalc [™]	Ethylbenzene		
		GRI-GlyCalc TM	Xylenes		
		GRI-GlyCalc TM	n-Hexane		

1 Enter the Source Status using the following codes:

Construction of New Source ES Existing Source NS

MS Modification of Existing Source

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or 2 removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: NA FL Flare

(please list)

- None CD Condenser
- CCCondenser/Combustion Combination TO Thermal Oxidizer 0 Other
- 4 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

Enter the Potential Emissions Data Reference designation using the following codes: 5

- Manufacturer's Data GRI-GLYCalc[™] MD AP-42 AP
- GR OT Other (please list)

Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalc[™] (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary. Manufacturer: Exterran Model: 48875001 Max. Dry Gas Flow Rate: 40 mmscf/day Reboiler Design Heat Input: 0.500 MMBTU/hr Design Type: 🛛 TEG □ DEG \Box EG Source Status¹: NS Date Installed/Modified/Removed²: TBD Regenerator Still Vent APCD/ERD³: FL / EC-1 & EC-2 Control Device/ERD ID#3: FL / EC-1 & EC-2 (14E/15E) Fuel HV (BTU/scf): 634.4 (HHV) H₂S Content (gr/100 scf): <0.001% Operation (hours/year): 8760 Pump Rate (gpm): 7.5 Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lb/MMscf \Box No: If Yes, answer the following: The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in (63.772(b)(1)) of this subpart. \Box Yes × No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. 🛛 Yes 🗆 No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? No Is a lean glycol pump optimization plan being utilized? \Box Yes 🖾 No Recycling the glycol dehydration unit back to the flame zone of the reboiler. □ Yes 🖾 No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. □ Yes 🖾 No What happens when temperature controller shuts off fuel to the reboiler? Still vent to enclosed combustors (EC-1/2). ☐ Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug. Please indicate if the following equipment is present. 🗌 Flash Tank Burner management system that continuously burns condenser or flash tank vapors **Control Device Technical Data** Pollutants Controlled Manufacturer's Guaranteed Control Efficiency (%) Hydrocarbons 99+% (Note: 98% used for calculations) **Emissions** Data Controlled Controlled **Emission Unit** Maximum Calculation Maximum ID / Emission PTE⁶ Description Hourly Methodology⁵ Annual **Point ID⁴** Emissions **Emissions** (tpy) (lb/hr) AP-42 NOx 0.050 0.219 0.184 AP-42 СО 0.042 0.012 AP-42 VOC 0.003 RBV-2 / 13E Reboiler Vent AP-42 SO_2 0.0003 0.001 AP-42 0.004 0.017 PM_{10}

AP-42

GHG (CO₂e)

60.4

265

		GRI-GlyCalc TM	VOC	0.802	3.51
		GRI-GlyCalc TM	Benzene	0.010	0.042
RSV-2 / 14E &	Glycol	GRI-GlyCalc TM	Toluene	0.034	0.147
15E	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	0.000	0.000
	None Glycol Flash Tank	GRI-GlyCalc TM	Xylenes	0.000	0.000
		GRI-GlyCalc TM	n-Hexane	0.020	0.086
		GRI-GlyCalc [™]	VOC		
		GRI-GlyCalc TM	Benzene		
Nona		GRI-GlyCalc TM	Toluene		
None		GRI-GlyCalc TM	Ethylbenzene		
		GRI-GlyCalc [™]	Xylenes		
		GRI-GlyCalc [™]	n-Hexane		

1 Enter the Source Status using the following codes: NS Construction of New Source

ES **Existing Source**

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

NA None Condenser FL Flare CD Condenser/Combustion Combination TO CC Thermal Oxidizer 0 Other (please list)

Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc. 5

Enter the Potential Emissions Data Reference designation using the following codes:

MD	Manufacturer's Data	AP	AP-42

GRI-GLYCalc[™] GR OT Other (please list)

6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controllers Data Sheet

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?				
\Box Yes \boxtimes No				
Please list approximate number.				

ATTACHMENT R

Pneumatic Pump Data Sheet

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size

ATTACHMENT S

Air Pollution Control Device / Emission Reduction Device Sheet

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID: T01-T16	Make/Model: Condensate and Produced Water Tanks				
Primary Control Device ID: VRU-1	Make/Model: Arrow/WRC2				
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: ⊠ Yes □ No				
Secondary Control Device ID: EC-3 & EC-4 (17E/18E)	Make/Model: Hy-Bon CH 10.0				
Control Efficiency (%): 98	APCD/ERD Data Sheet Completed: 🛛 Yes 🛛 No				

		(In	VAPOR CO cluding Enclo			rs)			
		(11)	8	formation	IDUSIO	13)			
Control Device ID#:	Control Device ID#: EC-3 & EC-4 (17E/18E)					Installation Date: TBD – Upon Permit			
Maximum Rated Total Flow Capacity scfh 65000 scfd ea.			Maximum Design Heat Input (from mfg. spec sheet) 10.0 MMBTU/hr, ea.			leat Content U/scf			
			Control Devic	e Informati	on				
Enclosed Combu		e	Type of Vapor Co Elevate		ontrol?		Ground Flare		
Manufacturer: Hy-B Model: CH-10.0	Manufacturer: Hy-Bon Model: CH-10.0					per year? 8	3,760		
List the emission un	its whose er	nissions	are controlled by this	vapor contr	ol device	e (Emissior	n Point ID# 17E & 18E)		
Emission Unit ID#	mission Unit ID# Emission Source Description			Emission Unit ID#	Emission Source Description				
T01-T02, T05-T10	Condensate Tanks								
T03-T04, T11-T16	4, T11-T16 Produced Water Tanks								
If this vapor co	ombustor con	ntrols em	issions from more the	an six (6) em	ission un	iits, please	attach additional pages.		
Assist Type (Flares	only)		Flare Height	Tip Diameter		er	Was the design per §60.18?		
Steam Pressure	☐ Air ⊠ Non		feet	feet			☐ Yes ☐ No Provide determination.		
			Waste Gas 1	Information	L				
Maximum Waste 88.9 (s		Rate		Waste Gas StreamExit Velocity of the Emissions StreamBTU/ft3(ft/s)					
Provide an attachment with the characteristics of the waste gas stream to be burned.									
			Pilot Gas I	nformation					
Number of Pilot Lights 1 (ea. EC)Fuel Flow Rate to Pilot Flame per Pilot 798 scfh			Heat Input per Pilot 985,100 BTU/hr			Will automatic re-ignition be used? ⊠ Yes □ No			
	If automatic re-ignition is used, please describe the method. The unit will try to re-ignite up to 25 times. After that, it will enter manual mode requiring inspection and manual start. Gas flow is shut off if it fails to ignite.								

Is pilot flame equipped with a monitor to detect the	If Yes, what type? 🛛 Thermocouple 🛛 Infrared
presence of the flame? \square Yes \square No	\Box Ultraviolet \Box Camera \Box Other:

Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (*If unavailable, please indicate*). Combustor burner, pilot, and air inlet arrestor must be checked for foreign debris (dust, sand, etc.) and cleaned at least quarterly.

Additional information attached? \boxtimes Yes \Box No

Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.

VAPOR COMBUSTION									
(Including Enclosed Combustors)									
General Information									
Control Device ID#: EC-1 &	EC-2 (14E	E/15E)	Installation		C-1: 06/06 Aodified	i/16; EC-2: TBD, Upon Permit			
Maximum Rated Total Flow scfh 65000 s					Design H 1020 BT	leat Content U/scf			
		Control Devic	e Informati	on					
Enclosed Combustion De	vice	Type of Vapor Co Elevato		ontrol?		Ground Flare			
Manufacturer: Hy-Bon Model: CH-10.0			Hours of o	peration	per year? 8	3,760			
List the emission units whos	e emissions	are controlled by this	vapor contr	ol device	e (Emissior	n Point ID# 14E & 15E)			
Emission Unit ID# Emission Source	Description	n	Emission Unit ID#	Emissio	on Source	Description			
RSV-1 Dehydration Un	t Still Vent								
RSV-2 Dehydration Un	t Still Vent								
If this vapor combustor	controls en	nissions from more the	an six (6) em	ission ur	iits, please	attach additional pages.			
Assist Type (Flares only)		Flare Height	Tip Diameter Was the design per §			Was the design per §60.18?			
SteamAirPressureNo		feet	feet			☐ Yes ☐ No Provide determination.			
		Waste Gas 1	Information						
Maximum Waste Gas Flo 47.8 (scfm)	w Rate		Vaste Gas Stream Exit Ve TU/ft ³		Exit Vel	it Velocity of the Emissions Stream (ft/s)			
Provide d	n attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.			
		Pilot Gas I	nformation						
Number of Pilot Lights 1 (ea. EC)		Flow Rate to Pilot ame per Pilot 798 scfh	Heat Input per Pilot 985,100 BTU/hr			Will automatic re-ignition be used? ⊠ Yes □ No			
If automatic re-ignition is used, please describe the method. The unit will try to re-ignite up to 25 times. After that, it will enter manual mode requiring inspection and manual start. Gas flow is shut off if it fails to ignite.									
Is pilot flame equipped with a monitor to detect the presence of the flame? □ Yes □ No □ Ultraviolet □ Camera □ Other:									
Describe all operating range unavailable, please indicate (dust, sand, etc.) and clean	. Combusto	or burner, pilot, and							
Additional information attac Please attach copies of many performance testing.			flame demoi	nstration	per §60.18	or §63.11(b) and			

VAPOR RECOVERY UNIT See Attachment N								
	General II	nformation						
Emission Unit ID#: Installation Date:								
	Device In	formation						
Manufactu Model:	rer:							
List the en	nission units whose emissions are controlled by this	vapor recov	very unit (Emission Point ID#)					
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description					
If this	vapor recovery unit controls emissions from more t	han six (6) e	emission units, please attach additional pages.					
Please atta	information attached? Yes No ich copies of manufacturer's data sheets, drawings, rant may claim a capture and control efficiency of 9 nit.		-					
	rant may claim a capture and control efficiency of 9 8.1.2 of this general permit.	98% if the V	RU has a backup flare that meet the requirements					

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

To:

Unit Information Sheet

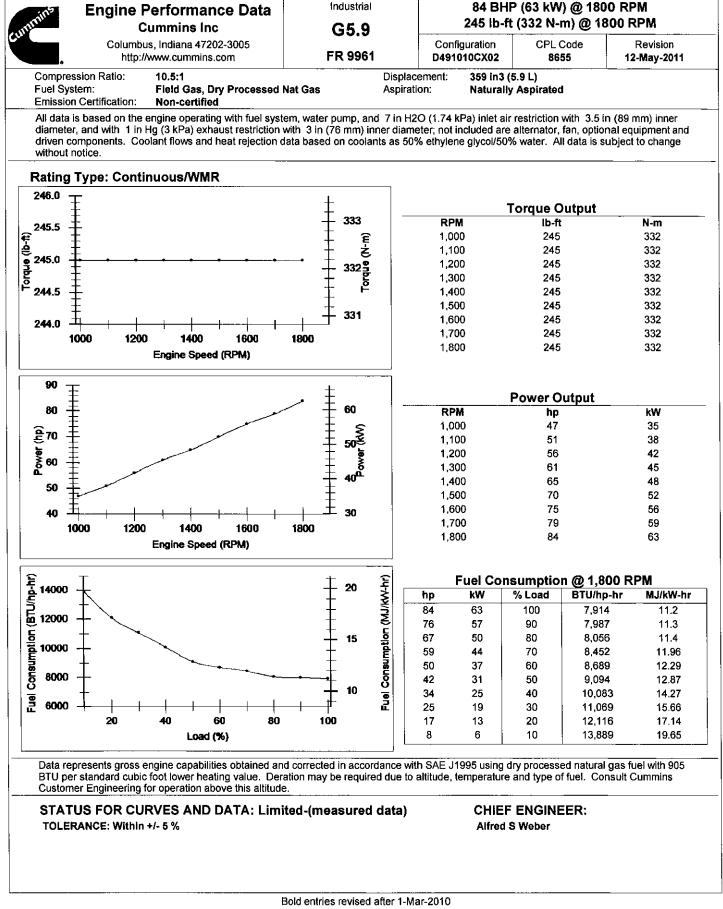
Date: May 27, 2014 Unit #: 6041 Customer: To Be Determined

Lease Location: To Be Determined

Please find the below information for the USA Compression unit number listed above:

Package Information						
Compressor Manufacturer:	Arrow					
	•					
Compressor Model:	VRC2	\neg				
Compressor Serial Number:	12095	ゴ				
Compressor Cylinders:	6.5" x 4.0" x 2.25"	╡				
Driver Manufacturer:	Cummins					
Driver Model:	G5.9					
Rated HP & Speed	84 HP @ 1800 RPM					
Driver Type:	4-stroke Rich Burn					
Engine Serial Number:	73364060					
Engine Manufacturing Date:	3/19/2012					
Engine Catalyst Model:	VXC-1408-04-HSG	_				
Engine Catalyst Element:	VX-RE-08XC					
Engine AFR Model:	AFR-1RD-10-TK2	_				
Engine Stack Height:	9' 5"	_				
Engine Stack Diameter:	4 "					
Operating Information						
Suction Pressure:	N/A psig					
Discharge Pressure:	N/A psig					
Design Capacity:	N/A MSCFD					
Gas Specific Gravity:	N/A					

Emission Output information included in the attached catalyst specification sheet,



MIRATECH Emissions Control Equipment Specification Summary

	Propos	al Number:	TJ-14-0081 Rev(1)
Engine Data			
Number of Engines:	1		
Application:	Gas Compression		
Engine Manufacturer:	Cummins		
Model Number:	G 5.9		
Power Output:	84 bhp		
Lubrication Oil:	0.6 wt% sulfated ash or less		
Type of Fuel:	Natural Gas		
Exhaust Flow Rate:	430 acfm (cfm)		
Exhaust Temperature:	1,078°F		
System Details			
Housing Model Number:	VXC-1408-04-HSG		
Element Model Number:	VX-RE-08XC		
Number of Catalyst Layers:	1		
Number of Spare Catalyst Layers:	1		
System Pressure Loss:	3.0 inches of WC (Fresh)		
Sound Attenuation:	28-32 dBA insertion loss		
Exhaust Temperature Limits:	750 – 1250°F (catalyst inlet); 1350°F (catalyst outlet)		
NSCR Housing & Catalyst Detail	S		
Model Number:	VXC-1408-04-XC1		
Material:	Carbon Steel		
Approximate Diameter:	14 inches		
Inlet Pipe Size & Connection:	4 inch FF Flange, 150# ANSI standard bolt pattern		
Outlet Pipe Size & Connection:	4 inch FF Flange, 150# ANSI standard bolt pattern		
Overall Length:	53 inches		
Weight Without Catalyst:	152 lbs		
Weight Including Catalyst:	162 lbs		
Instrumentation Ports:	1 inlet/1 outlet (1/2" NPT)		

		Warranted					
	Engine Outputs		Converter Outputs	Requested			
Exhaust Gases	(g/ bhp-hr)	Reduction (%)	(g/ bhp-hr)	Emissions Targets			
NOx	11.41	91%	1.00	1.00 g/bhp-hr			
со	14.64	86%	2.00	2.00 g/bhp-hr			
NMNEHC	0.22	0%	0.70	0.70 g/bhp-hr			
CH2O	0.08	0%	1.00	1.00 g/bhp-hr			
Oxygen	0.5%						

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

ntake Air System								
Maximum allowable air te Aspirated Engines) or 1								
parameter impacts emi			ingines). (This	1!	o delta deg	τF	8.3	delta deg
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					0.0	uona uog
Cooling System								
Maximum coolant temper	• •				o deg F			deg C
Maximum coolant operation	ng temperature at engin	e outlet (max. top	tank temp):	212	deg F		100	deg C
Exhaust System								
Maximum exhaust back p	ressure:			2	in-Hg		7	kPa
Recommended exhaust p	iping size (inner diamet	er):		;	3 in		76	mm
Lubrication System								
Nominal operating oil pres	ssure							
@ minimum low				1() psi		69	kPa
@ maximum rat	ted speed			50) psi		345	kPa
Minimum engine oil press	ure for engine protectio	n devices						
@ minimum low	v idle			10) psi		69	kPa
Fuel System								
Maximum fuel inlet press	ure:				l psi		5	kPa
Performance Data								
Engine low idle speed:				90) RPM			
Maximum low idle speed:				1,80	RPM			
Minimum low idle speed:				80	RPM			
Engine high idle speed				1,80	D RPM			
Governor break speed:								
Maximum torque available	e at closed throttle low i	dle speed:		5) Ib-ft		68	N-m
	100	% Load	75%	6 Load		50%	Load	
Engine Speed	1,800 RPM		1,800 RPM		1.	800 RPM		
Output Power	84 hp	63 kW	63 hp	47 kW		42 hp		31 kW
Torque	245 lb-ft	332 N-m	184 lb-ft	249 N-m		123 lb-ft	1	67 N-m
Intake Manifold Pressure	-1 in-Hg	-3 kPa	-5 in-Hg	-17 kPa		-9 in-Hg		-30 kPa
Intel Air Class	404 60/00	67 1 /*	404 00/11	40 1/2		00 00 00		00 1/2

loiquo	240		002		104		240		120		107	14-111
Intake Manifold Pressure	-1	in-Hg	-3	kPa	-5	in-Hg	-17	kPa	-9	in-Hg	-30	kPa
Inlet Air Flow	121	ft3/min	57	L/s	101	ft3/min	48	L/s	82	ft3/min	39	L/s
Exhaust Gas Flow	430	ft3/min	203	∐s	360	ft3/min	170	L/s	292	ft3/min	138	L/s
Exhaust Gas Temperature	1,078	deg F	581	deg C	999	deg F	537	deg C	902	deg F	483	deg C
Heat Rejection to Coolant	3,824	BTU/min	67	kW	3,244	BTU/min	57	kW	2,596	BTU/min	46	kW
Heat Rejection to Ambient	1,194	BTU/min	21	kW	784	BTU/min	14	kW	613	BTU/min	11	kW
Heat Rejection to Exhaust	2,523	BTU/min	44	kW	1,916	BTU/min	34	kW	1,371	BTU/min	24	kW
Fuel Consumption	7,914	BTU/hp-hr	11	MJ/kW-hr	8,214	BTU/hp-hr	12	MJ/kW-hr	9,094	BTU/hp-hr	13	MJ/kW-hr
Air Fuel Ratio (dry)		vol/vol				vol/vol				vol/vol		
Ignition timing (BTDC)		deg	26	deg		deg	26	deg		deg	26	deg
Total Hydrocarbons	1.48	g/hp-hr		ļ	1.3	g/hp-hr			1.62	g/hp-hr		
VOC ppm w/o Catalyst VOC ppm with Catalyst												
NOx	11.41	g/hp-hr	15.3	g/kW-hr	13.7	g/hp-hr	18 37	g/kW-hr	12.85	g/hp-hr	17 23	g/kW-hr
NOx ppm w/o Catalyst	1 11.41	grip in	10.0	g/X77 11	10.1	amp m	10.07	g/KTT III	12.00	grip in	11.20	gai(***-1ii
NOx ppm with Catalyst	1											
co	14.64	g/hp-hr	19.63	g/kW-hr	0.82	g/hp-hr	1.1	g/kW-hr	1.38	g/hp-hr	1.85	g/kW-hr
CO ppm w/o Catalyst				-				-				-
CO ppm with Catalyst												1
CO2		g/hp-hr	602	g/kW-hr		g/hp-hr	656	g/kW-hr		g/hp-hr	724	g/kW-hr
02	0.45	%			1.66	%			3.67	%		

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

Cranking	System	(Cold Starting	Capability)
----------	--------	----------------	-------------

Unaided Cold Start:

Minimum cranking speed Cold starting aids available Maximum parasitic load at 10 deg F @

Noise Emissions

Тор	89.9 dBa
Right Side	90.1 dBa
Left Side	89.8 dBa
Front	90.5 dBa
Exhaust noise emissions	103.1 dBa
Estimated Free Field Sound Pressure Level at 3.28ft (1m) and Full-Load Governed Speed (Excludes Noise from Intake, Exhaust, Cooling System and Driven Components)	

Aftercooler Heat Rejection - Heat Load on Aftercooler BTU/min (kW)

		Ambient Temp deg F (deg C)								
]	120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)			
[0 (0)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	1000 (305)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	2000 (610)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	3000 (914)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	4000 (1219)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	5000 (1524)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	6000 (1829)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	7000 (2134)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	8000 (2438)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	9000 (2743)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			
	10000 (3048)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)			

Altitude ft (m)

End of Report

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

250 RPM Block Heater, Oil Pan Heater

Cummins Stationary Na		Industrial G5.9 Available FR Number(s From Selection:	NG 84 HP (63 kW) @1800 RPM 8 10.5:1 Compression Ratio
Date: 4/10/2014		FR9936, FR9961	Industrial Continuous
Engine (as entered by user)			
Application:	Indust	rial	=
Fuel Type:	NG		
Engine: Fuel Rating:	G5.9 Cataly	et.	
Compression Ratio:	10.5:1		
RPM:	1800		
HP (Natural Gas):	84 HP	(63 kW)	
HP (Propane):	NA HF	? (NA kW)	
Site (as entered by user)			
Ambient Air Temperature:	90° F		
Relative Humidity: Altitude:	30% 1200 f		
Cooling Fan Load:	8 HP		
Generator Efficiency:	93%		
Vapor Pressure (Calculated from Site Conditions Ent		inHg	
Dew Point (Calculated from Site Conditions Entered)			
Dry Barometer (Calculated from Site Conditions Ente	red): 28.22	inHg	
Derate (Natural Gas)		(02.1344)	
Advertised NG Rating: Engine Derate Due to Site Altitude and Temperature		(63 kW)	
Engine Derate Due to Gas Composition:	270		
Derate Due to Low BTU Fuel:	0%		The sample
Derate Due to Methane Number:	0%		percentage for "Name Sample" is
Total Power Available (%) After All Applicable Derate		of rated	99.991%. Results
Total Site Derate due to Altitude, Temperature, and (Total Available Horsepower from Selected Engine R		(1 kW)	are based on the input sample
Specified Fuel Composition at Specified Site (includ		1	normalized to 100%.
for cooling fan load):		' (55 kW)	
Derate (Propane)			<u> </u>
Advertised Propane Rating:	NA H	P (NA KW)	
Engine Derate Due to Site Altitude and Temperature			
Total Power Available (%) After All Applicable Derate		of rated	
Total Site Derate due to Altitude and Temperature: Total Available Horsepower from Selected Engine R		P (NA kW)	
at Specified Site (includes 8 HP reduction for for co		P (NA kW)	
Intake Manifold Requirements for Turbocharg	ed Engines		
Maximum Allowed Intake Manifold Temperature for		um Aftercooler Water Inlet (C.	AC air inlet) of na °F
based on FR9936	······································		
Factory Set Points		ry Supplied	Recommended
Engine Speed Target:	1800	•	NOTICE: A Change to Ignition Timing Is
Spark Plug Gap:	0.020		Recommended Due to
Excess Oxygen Target-PV:	na %		Methane Number of
Propane Engine Timing Target:	na °B		Fuel
Propane Gas over air Press at Carb Low: Bropane Gas Bross at Sas Bas Target:	na ini na ini		
Propane Gas Press at Sec Reg Target: Excess Oxygen Target NG:	0.459		
Excess Oxygen Target-NG:		-	Recommended Timing: 25 °
Natural Gas Engine Timing Target:		ITY: 26 BIDC	BTDC
Natural Gas over air Press at Carb Target:	5 inH		
Natural Gas Press at Sec Reg Target:	15 inl	120	

FR9936 Created/Revised On: 4/30/2013. Data Files Updated On: 12/12/2013

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

https://gce.cummins.com/ice/ice_generic/gas_analysis_tool/index.html

as Sample Analysis			The sample percentage for "Name Sample" is 99.991%. Results are based on the input sample normalized to 100%.
Sample Name: Name Sample			
Gas Compound:		Volume Fraction % (User Input)	Mass Fraction % (Calculated)
Methane:		77.09	59.36
Ethane:		14.83	21.41
Propane:		4.97	10.51
i-Butane:		0.62	1.72
n-Butane:		1.21	3.38
i-Pentane:		0.27	0.92
n-Pentane:		0.26	0.91
n-Hexane:		0.15	0.62
n-Heptane:		0.04	0.2
n-Octane:		0.02	0.09
n-Nonane:		0	0
n-Decane:		0	0.02
Hydrogen:		0	0
Hydrogen Sulfide (H ₂ S):		0 ppm	0 ppm
Carbon Dioxide:		0.15	0.32
Carbon Monoxide:		0	0
Nitrogen:		0.39	0.53
Oxygen:		0	0
Total Percent: (Sample Input Perc	entage: 99.991%)	Normalized Percentage: 100%	
Performance Parameters:		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	1140.6 Btu/scf	42.5 MJ/scm
Standard Conditions (60F/14.696psia)	by mass	20776 Btu/lbm	48.326 MJ/kg
Higher Heating Value (HHV): Standard Conditions (60F/14.696psia)	by volume	1257.5 Btu/scf	46.85 MJ/scm
	by mass	22906 Btu/lbm	53.280 MJ/kg
Methane Number:		56.1	56.1
Specific Gravity (SG):		0.7193	0.7193
Wobbe Index :	LHV/V SG	1345 Btu/scf	50.11 MJ/scm
	HV/√ SG	1483 Btu/scf	55.24 MJ/scm
Molecular Weight:		20.83 g/mol	20.83 g/mol
Specific Heat (Cp):		0.473 BTU/lbm-R	1.979 kJ/kg-K
Specific Heat Ratio (Cp/Cv):		1.253	1.253
Ideal Gas Density:		0.0549 lbm/ft3	0.8788 kg/m3 std
H/C Ratio:	-	3.492	3.492
Gas Constant (R _{GAS}):		95.3 BTU/lbm-°R	399.1 kJ/kg-°K
Stoich Air Fuel Ratio (Dry):		16.54	16.54
uel Flow Data			
BTU/HP-HR:		7914	
Maximum Fuel Flow (SCFH):	ed on 100% Continuou	583 s Rating of 84 HP at 1800 RPM and	10.5:1 Compression Ratio from FR9936
Gas Regulator Details			Totol Compression Rate nom PRese

Differences for Selected Engine			
Description of FR Differences for Selected Engl	ne		
Description of FR Differences for Selected Engl	ne FR9936	FR9961	
Description of FR Differences for Selected Engl Exhaust Manifold		FR9961 Wet	

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

Gas Analysis Tool References & Standards			Date: 4/10/2014		
······································				Tool Revision Date: 3/27/2014	
Performance Parameters:		Reference Standard or Docum	ent		
		Standard Units		Metric Units	
Lower Heating Value (LHV):	by volume	ASTM D 3588-91 @ 60F/14.6		ASTM D 3588-91 @ 15.5C/101.3kPa	
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.6	696psia	ASTM D 3588-91 @ 15.5C/101.3kPa	
Lower Heating Value (LHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.6	696psia	ASTM D 3588-91 @ 0C/101.3kPa	
Higher Heating Value (HHV):	by volume	ASTM D 3588-91 @ 60F/14.6		ASTM D 3588-91 @ 15.5C/101.3kPa	
Standard Conditions	by mass	ASTM D 3588-91 @ 60F/14.6	696psia	ASTM D 3588-91 @ 15.5C/101.3kPa	
Higher Heating Value (HHV): Normal Conditions	by volume	ASTM D 3588-91 @ 32F/14.6	696psia	ASTM D 3588-91 @ 0C/101.3kPa	
Methane Number:		Cummins Methane Number		Cummins Methane Number	
Specific Gravity (SG) (Ideal Rel.		-		-	
Wobbe Index :	LHV/√SG	Ideal gas @ 60F/14.696psia		Ideal gas @ 15.5C/101.3kPa Ideal gas @ 15.5C/101.3kPa	
Molecular Weight:	HV/√ SG	Ideal gas @ 60F/14.696psia			
Molecular Weight: Specific Heat (Cp):					
Specific Heat Ratio (Cp/Cv):		@ 60F/14.696psia		@ 15.5C/101.3kPa	
Ideal Gas Density:		ASTM D 3588-91 @ 60F/14.696psia		ASTM D 3588-91 @ 15.5C/101.3kPa	
H/C Ratio:		-		-	
Gas Constant (R _{GAS}):		@ 60F/14.696psia		@ 15.5C/101.3kPa	
Stoich Air Fuel Ratio (Dry):		-		-	
Conversion Factors					
		Standard Units		Metric Units	
Notes					

©2014 Cummins Inc., All Rights Reserved All Data is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

Model 5120 Thermoelectric Generators

Global Thermoelectric's Model 5120 Thermoelectric Generator contains no moving parts. It is a reliable, low maintenance source of DC electrical power for any application where regular utilities are unavailable or unreliable.

Power Specifiations

Power Rating at 20°C 120 Watts at 6.7 Volts 108 Watts at 12 Volts 108 Watts at 24 Volts 108 Watts at 48 Volts

Electrical

Adjustment:

6.7V	up to 11 Volts
12 V	12 -18 Volts
24 V	24 - 30 Volts
48 V	48 - 60 Volts

Reverse current protection included.

Output: Terminal block which accepts up to 8 AWG wire. Opening for 3/4" conduit in the base of the cabinet.

Fuel

Natural Gas:

Propane: Max. Supply Pressure: Min. Supply Pressure: Fuel Connection: 8.8 m³/day (311 ft³/day) of Std. 1000 BTU/SCF (37.7 MJ/SM³) gas 11.4 l/day (3.0 US gal/day) 1724 kPa (250 psi) 103 kPa (15 psi) 1/4" MNPT

Environmental

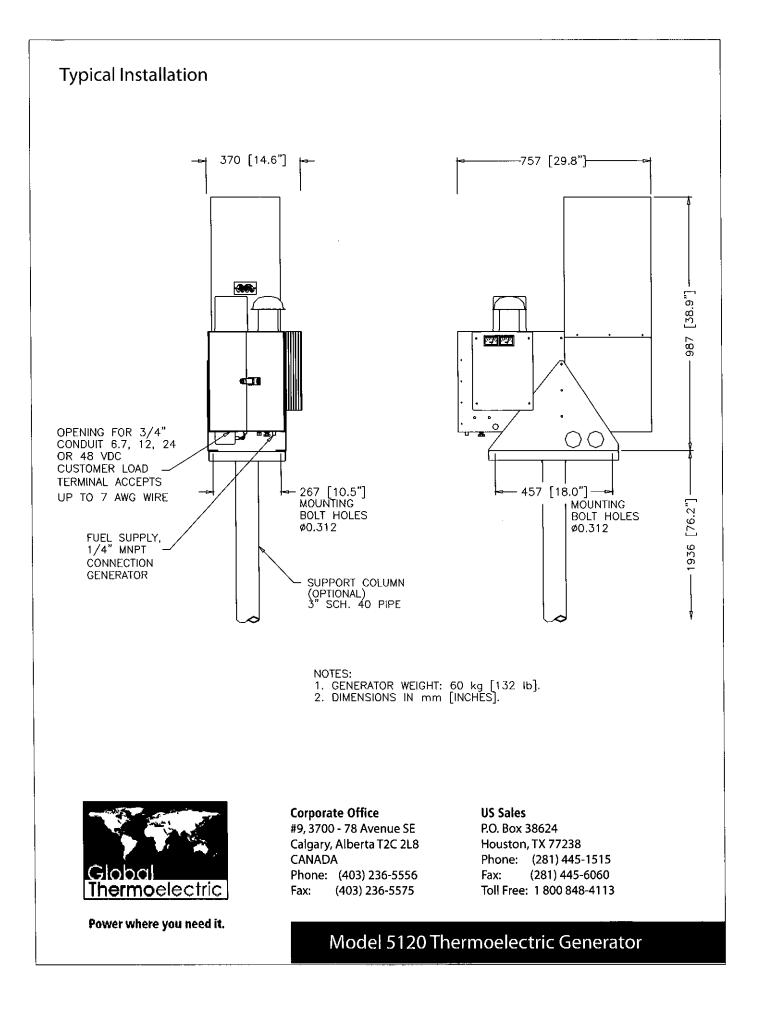
Ambient Operation Temperature: Max. 55°C (130°F) Min. -55°C (-67°F) Operating Conditions: Unsheltered operation

Materials of Construction

Cabinet:	304 SS
Cooling Type:	Natural Convection
Thermopile:	Hermetically Sealed Lead Tin-Telluride (PbSnTe)
Burner:	Meeker Type/Inconel 600
Fuel System:	Brass, Aluminum & SS

Standard Features

- Automatic Spark Ignition (SI)
- Fuel Filter
- Low Voltage Alarm Contacts (VSR)
- Volt & Amp Meter


Optional Features

- Cathodic Protection Interface
- Pole Mount or bench stand
- Automatic Fuel Shut-off (SO)
- Corrosive Environmental Fuel System
- Flame Arrestor

Note: Specifications shown are for standard configurations. Global Thermoelectric's Applications Engineering Department is available to design custom voltages, fuel supply systems and non-standard operating temperatures.

Power where you need it.

2404 Commerce Dr. Midland, TX 79703 432-697-2292 <u>hy-bon.com</u> 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the *means* of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the CH10.0 enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

r	GENERAL PROPERTIES							
	ТҮРЕ	Enclosed Tank Battery Flare						
	AMBIENT TEMPERATURE	•20 °F to +100 °F						
	PILOT FUEL REQUIREMENTS	Propane or Site Gas @Spsi of natural gas = 13,3 SCFM @Spsi of propane = 12.5 SCFM						
	BURNER SIZE	10.0 million BTU/hr						
	INLET PRESSURE REQUIRMENTS	Minimum 0.5 oz/in² (~1.0 jnches w.c.)						
	TURN DOWN RATIO	5:1						
	DESTRUCTION							
	EFFICIENCY	99.99% DRE						
	MECHANICAL PROPERTIES							
	DESIGN WIND SPEED	100 MPH						
	AMBIENT TEMPERATURE	-20 °F to +120 °F						
	ELECTRICAL AREA CLASSIFICATION	Général Area Classification (Non- Hazardous)						
	ELEVATION	up to 3,000ft ASL						
	PROCESS PROPERTIES							
	SMOKELESS CAPACITY	1100%						
	OPERATING	800 °F to 2000 °F (1500 °F						
19 - AZZAN	TEMPERATURE	Nominal)						
PA 40 CFR 60, Quad O Compliant	UTILITIES	Press, the structure of the Charles truct of the structure of						
completely Enclosed Combustion	PILOT GAS	Process Gas						
99.99% Destruction Efficiency	ELECTRICITY	1 Phase, 60 Hz, 120V/10A						
Fully Automated System	SOLAR PANEL OPTION AVAILABLE	YES						

- Output Operational Data via Thumb Drive
- Capable of SCADA Integration


≽

 \geq

Revision #3: 09/04/2015 1 | 2

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Revision #3: 09/04/2015 2 | 2

				Engine Emis	510115	
Date of Manufacture March 22, 2	2012 Engine	Serial Number	JEF01613	Date Modified/F	Reconstructed	Not Ar
Driver Rated HP1	.380 Rated	Speed in RPM	1400	Combustion Typ	e	Spark Ignited 4 Strok
Number of Cylinders	16 Compr	ression Ratio	8:1	Combustion Set	ting	Ultra Lean Bur
Total Displacement (in ³) 4	230 Fuel D	elivery Method	Carburetor	Combustion Air Treatment		T.C./Aftercoole
					-	
Raw Engine Emissions (905 LHV BTU/SCF F	uel Gas with little to	no H2S)				
Fuel Consumption 7443 LHV	/BTU/bhp-hr or	8256 H	IHV BTU/bhp-hr			
Altitude 1200 ft						
Maximum Air Inlet Temp 105 F						
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		0.5		1.52	6.66	
Carbon Monoxide (CO)		2.43		7.39	32.38	
Volatile Organic Compounds (VOC or NMNE	EHC)	0.92		2.80	12.26	
Formaldehyde (CH2O)		0.44		1.34	5.86	
Particulate Matter (PM) Filterable+Condensable		10 A	9.99E-03	1.14E-01	4.98E-01	
Sulfur Dioxide (SO2)			5.88E-04	6.70E-03	2.93E-01	
			5.082-04	0.702-03	2.336-02	
		g/bhp-hr ¹		lb/hr	Metric Tonne/yr	
Carbon Dioxide (CO2)		474		1442	5729	
g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100)% Load Operation. F	or Air Permitting				
Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur	ng 905 LHV BTU/ or Air Permitting and load.	, it is recommended to add a safet	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
¹ g/bhp-hr are based on Caterpillar Specific: Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2-	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur	ng 905 LHV BTU/ or Air Permitting and load.	, it is recommended to add a safet	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
¹ g/bhp-hr are based on Caterpillar Specific: Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2-	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur	ng 905 LHV BTU/ or Air Permitting and load.	, it is recommended to add a safet	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur 2).	ng 905 LHV BTU/ or Air Permitting and load.	; it is recommended to add a safet	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model:	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur 2).	ng 905 LHV BTU/: or Air Permitting and load. ne I, Chapter 3: S 	; it is recommended to add a safet	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type:	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002	ng 905 LHV BTU/: or Air Permitting and load. ne I, Chapter 3: S 	; it is recommended to add a safet	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing:	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-3615Z 1.5	ng 905 LHV BTU/: or Air Permitting and load. ne I, Chapter 3: S 	; it is recommended to add a safet itationary Internal Combution Sou	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-3615Z 1.5	ng 905 LHV BTU/: or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac % Reduction	; it is recommended to add a safet itationary Internal Combution Sou	d 105 F Max Air Inl ty margin to CO, V	let Temperature. OC, and	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-3615Z 1.5	ng 905 LHV BTU/ or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac <u>% Reduction</u> 0	; it is recommended to add a safet itationary Internal Combution Sou	d 105 F Max Air Inl ty margin to CO, V irces (Section 3.2 T	let Temperature. OC, and Natural	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	0% Load Operation. F uel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-3615Z 1.5	ng 905 LHV BTU/: or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac % Reduction	; it is recommended to add a safet itationary Internal Combution Sou	d 105 F Max Air Inl ty margin to CO, V irces (Section 3.2 T	let Temperature. OC, and Natural	
g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	0% Load Operation. F fuel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-36152 1.5 Caterpillar ADEI	ng 905 LHV BTU/ or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac <u>% Reduction</u> 0 93	; it is recommended to add a safet itationary Internal Combution Sou	d 105 F Max Air Ini ty margin to CO, V irces (Section 3.2 f irces (Secti	let Temperature. OC, and Natural 	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNI	0% Load Operation. F fuel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-36152 1.5 Caterpillar ADEI	ng 905 LHV BTU/ or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac <u>% Reduction</u> 0 93	; it is recommended to add a safet itationary Internal Combution Sou 6P :k	d 105 F Max Air Ini ty margin to CO, V irces (Section 3.2 f irces (Secti	let Temperature. OC, and Natural 	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNI Formaldehyde (CH2O)	0% Load Operation. F fuel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-36152 1.5 Caterpillar ADEI	ng 905 LHV BTU/: or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac <u>% Reduction</u> 0 93 50 (t	; it is recommended to add a safet itationary Internal Combution Sou 6P :k	d 105 F Max Air Ini ty margin to CO, V irces (Section 3.2 T irces <u>Ib/hr</u> 1.52 0.52 1.40	let Temperature. OC, and Natural <u>TPY</u> 6.66 2.27 6.13	
g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOX) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNI Formaldehyde (CH2O) Particulate Matter (PM)	0% Load Operation. F fuel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-36152 1.5 Caterpillar ADEI	ng 905 LHV BTU/: or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac <u>% Reduction</u> 0 93 50 (t 76	; it is recommended to add a safet itationary Internal Combution Sou 6P :k	d 105 F Max Air Ini ty margin to CO, V irces (Section 3.2 f	let Temperature. OC, and Natural 	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4 Gas-Fired Reciprocating Engines, Table 3.2- Catalytic Converter Emissions Catalytic Converter Make amd Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNI Formaldehyde (CH2O) Particulate Matter (PM)	0% Load Operation. F fuel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-36152 1.5 Caterpillar ADEI	ng 905 LHV BTU/: or Air Permitting and load. me I, Chapter 3: S 7-1616F-31CEO-3 M3, NOx Feedbac <u>% Reduction</u> 0 93 50 (t 76 0	; it is recommended to add a safet itationary Internal Combution Sou 6P :k	d 105 F Max Air Ini ty margin to CO, V irces (Section 3.2 f	let Temperature. OC, and Natural <u>TPY</u> 6.66 2.27 6.13 1.41 4.98E-01	
¹ g/bhp-hr are based on Caterpillar Specifica Note that g/bhp-hr values are based on 100 Formaldehyde to account for variations in f ² Emission Factor obtained from EPA's AP-4	0% Load Operation. F fuel gas composition a 2, Fifth Edition, Volur -2). EMIT ELX-42002 EMIT RE-36152 1.5 Caterpillar ADEI	ng 905 LHV BTU/ or Air Permitting and load. me I, Chapter 3: S 2-1616F-31CEO-3 M3, NOx Feedbac <u>% Reduction</u> 0 93 50 (t 76 0 0	; it is recommended to add a safet itationary Internal Combution Sou 6P :k	d 105 F Max Air Ini ty margin to CO, V irces (Section 3.2 f 1.52 0.52 1.40 0.32 1.14E-01 6.70E-03	let Temperature. OC, and Natural <u>TPY</u> 6.66 2.27 6.13 1.41 4.98E-01 2.93E-02	

G3516B

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G3516B

CATERPILLAR*

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): COOLING SYSTEM: IGNITION SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX):	1400 8:1 130 201 210 JW+OC+1AC, 2AC ADEM3 DRY Ultra Lean Burn 0.5	FUEL SYSTEM: SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(C FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMP NAMEPLATE RATING:			3) :	AIR FUEL RAT	WIDE RANGE FIO CONTROL Nat Gas 7.0-50.0 84.8 905 1200 105 bhp@1400mm
SET POINT TIMING:	30.0					1000	onp@1400rpm
SET POINT TIMING:	30.0		2	MAXIMUM		SAT MAXIMU	
SET POINT TIMING:	30.0	NOTES	LOAD	MAXIMUM		SAT MAXIMU	
SET POINT TIMING:	30.0	NOTES (1)	LOAD bhp °F	MAXIMUM RATING	Ţ	GAT MAXIMU EMPERATUR	MINLET AIR

FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7443	7443	7972	8562
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8256	8256	8843	9498
AIR FLOW	(3)(4)	lb/hr	13863	13863	10874	7602
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	3126	3126	2452	1715
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	94.6	94.6	76.8	54.0
EXHAUST STACK TEMPERATURE	(6)	۴F	992	992	986	1006
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	9126	9126	7138	5065
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	14380	14380	11290	7900
EMISSIONS DATA						
NOx (as NO2)	(8)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)	g/bhp-hr	2.43	2.43	2.61	2.56
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	4.77	4.77	5.11	5,19
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.72	0.72	0.77	0.78
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.48	0.48	0.51	0.52
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.44	0.44	0.43	0.42
CO2	(8)	g/bhp-hr	474	474	506	550
EXHAUST OXYGEN	(10)	% DRY	9.0	9.0	8.7	8.3
HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	23438	23438	21564	19970
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	4449	4449	3947	3323
HEAT REJ. TO A/C - STAGE 1 (1AC)	(11)(12)	Btu/min	12934	12934	10814	3965
HEAT REJ. TO A/C - STAGE 2 (2AC)	(11)(12)	Btu/min	5679	5679	5341	3462

HEAT EXCHANGER SIZING CRITERIA			
TOTAL JACKET WATER CIRCUIT (JW+OC+1AC)	(12)(13)	Btu/min	44701
TOTAL AFTERCOOLER CIRCUIT (2AC)	(12)(13)	Btu/min	5963
A cooling system safety factor of 0% has been added to the	ne heat exchange	r sizing criteria	a.

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max: rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

PREPARED BY: Joel LeBlanc, USA Compression Data generated by Gas Engine Rating Pro Version 3.04.00 Ref. Data Set DM8800-04-002, Printed 31Jan2011

Prepared For: Joel LeBlanc USA COMPRESSION

INFORMATION PROVIDED BY CATERPILLAR

Engine: G3516B Horsepower: RPM: 1380 1400 Compression Ratio: 8.0:1 Exhaust Flow Rate: 9126 CFM 992 °F DM8800-04 Exhaust Temperature: Reference: Natural Gas 8760 Fuel: Annual Operating Hours: **Uncontrolled Emissions** NOx: CO: THC: NMHC: NMNEHC:

POST CATALYST EMISSIONS

NOx: CO: voc: HCHO:

HCHO: Oxygen: 0.50 g/bhp-hr 2.43 g/bhp-hr 4.77 g/bhp-hr 0.72 g/bhp-hr 0.48 g/bhp-hr 0.44 g/bhp-hr 9.00 % Unaffected by Oxidation Catalyst >93% Reduction

>50% Reduction

>76% Reduction

Catalytic Converter Model: Catalyst Type: Manufacturer: Element Size:

Catalyst Elements: Housing Type: Catalyst Installation: Construction: Sample Ports: Inlet Connections: Outlet Connections: Configuration: Silencer: Silencer Grade: Insertion Loss:

CONTROL EQUIPMENT

ELX-4200Z-1616F-31CE0-36P Oxidation, Precious group metals EMIT Technologies, Inc. 1 - Rectangle 36 x 15 x 3.5 1 - Rectangle 18 x 15 x 3.5

772 Airfield Lane

Sheridan, WY 82801 Office: 307.673.0883 EST@emittechnologies.com

2 3 Element Capacity Accessible Housing 10 gauge Carbon Steel 6 (0.5" NPT) 16" Flat Face Flange 16" Flat Face Flange End In / Side Out Integrated Hospital Enhanced 35-50 dBA

www.emittechoologies.com

ATTACHMENT T

Emissions Calculations

Happy Production Facility Tyler County, WV

Emission Unit ID	Description	NOx lb/hr	CO lb/hr	CO _{2e} lb/hr	CH4 lb/hr	VOC ⁴ lb/hr	SO ₂ lb/hr	PM lb/hr	Benzene lb/hr	Ethylbenzene lb/hr	Xylenes lb/hr	n-Hexane lb/hr	Toluene lb/hr	Formaldehyde lb/hr	Total HAPs lb/hr
HTR-1	GPU #1	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-2	GPU #2	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-3	GPU #3	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-4	GPU #4	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-5	GPU #5	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-6	GPU #6	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-7	GPU #7	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-8	GPU #8	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-9	GPU #9	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-10	GPU #10	0.150	0.126	181.1	0.003	0.008	0.001	0.011	3.15E-06			0.003	5.10E-06	1.13E-04	0.003
HTR-11	Line Heater	0.050	0.042	60.4	0.0012	2.75E-03	0.0003	0.004	1.05E-06			0.001	1.70E-06	3.75E-05	0.001
RBV-1	300 MBTU/hr Reboiler	0.030	0.025	36.2	0.0007	0.002	1.80E-04	0.0023	6.30E-07			0.001	1.02E-06	2.25E-05	0.001
RBV-2	500 MBTU/hr Reboiler	0.050	0.042	60.4	0.0012	0.003	3.00E-04	0.0038	1.05E-06			0.001	1.70E-06	3.75E-05	0.001
RSV-1	Controlled Still Vent Emissions (EC-1/2)				0.0026	0.374			0.005			0.009	0.016	1.40E-04	0.030
RSV-2	Controlled Still Vent Emissions (EC-1/2)				0.0054	0.802			0.010			0.020	0.034	2.90E-04	0.063
EC-1	Dehydration Unit Combustor 1	0.223	0.754	333	0.006	0.594	6.00E-04	0.029	0.007			0.016	0.025	2.90E-04	0.048
EC-2	Dehydration Unit Combustor 2	0.223	0.754	333	0.006	0.594	6.00E-04	0.029	0.007			0.016	0.025	2.90E-04	0.048
VRU-1	VRU Compressor Driver	0.185	0.370	89.7	0.126	0.04	0.0004	0.013	0.001	1.65E-05	1.30E-04		3.71E-04	0.015	0.022
EC-3	Tank Enclosed Combustor 11	0.470	2.33	797.7	0.58	4.12	3.00E-04	0.024	2.11E-03			0.124	0.005	2.38E-04	0.135
EC-4	Tank Enclosed Combustor 2 ¹	0.470	2.33	797.7	0.58	4.12	3.00E-04	0.024	2.11E-03			0.124	0.005	2.38E-04	0.135
TEG-1	Thermoelectric Generator	0.001	0.001	1.57	0.0007	7.15E-05	7.80E-06	9.88E-05	2.73E-08			2.34E-05	4.42E-08		2.45E-05
CE-1	Compressor Engine (Controlled)	1.521	0.518	1750	12.3	1.40	6.70E-03	1.14E-01	5.01E-03	4.52E-04	2.10E-03	1.26E-02	4.65E-03	0.321	5.28E-01
TL-1	Truck Loading - Condensate ²					2.48						0.13			0.134
TL-2	Truck Loading - Produced Water ²					0.143						0.016			0.016
T01-T16	Condensate Tanks + Water Tanks ³			29.1		8.23			0.004	5.87E-04	7.86E-03	0.246	0.0096		0.269
	Truck Traffic Fugitive Dust							30.96							I
	Fugitive Emissions			20.2	0.81	0.76									0.009
· 0	Fugitive Emissions)	4.73	8.42	6099.47	13.67	19.19	0.019	0.36	0.029	1.06E-03	1.01E-02	0.569	0.074	0.338	1.217
Total		4.73	8.42	6119.69	14.47	22.57	0.019	31.31	0.029	1.06E-03	1.01E-02	0.719	0.074	0.338	1.376

Happy Production Facility Tyler County, WV

Emission		NOx	СО	CO _{2e}	CH ₄	VOC	SO ₂	РМ	Benzene	Ethylbenzene	Xylenes	n-Hexane	Toluene	Formaldehyde	Total HAPs
Unit ID	Description	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy	tpy
miki	GPU #1	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-2	GPU #2	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-3	GPU #3	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-4	GPU #4	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-5	GPU #5	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-6	GPU #6	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-7	GPU #7	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-8	GPU #8	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-9	GPU #9	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-10	GPU #10	0.657	0.552	793.4	0.015	0.036	0.004	0.050	0.000			0.012	2.23E-05	4.93E-04	0.012
HTR-11	Line Heater	0.219	0.184	264.5	0.005	0.012	0.001	0.017	0.000			0.004	7.45E-06	1.64E-04	0.004
RBV-1	300 MBTU/hr Reboiler	0.131	0.110	158.7	0.003	0.007	0.001	0.010	0.000			0.002	4.47E-06	9.86E-05	0.002
RBV-2	500 MBTU/hr Reboiler	0.219	0.184	264.5	0.005	0.012	0.001	0.017	0.000			0.004	7.45E-06	1.64E-04	0.004
RSV-1	Controlled Still Vent Emissions (EC-1/2)					1.638			0.020			0.040	6.92E-02	6.14E-04	0.130
RSV-2	Controlled Still Vent Emissions (EC-1/2)					3.513			0.042			0.086	1.47E-01	1.27E-03	0.276
EC-1	Dehydration Unit Enclosed Combustor 1	0.977	3.301	1457	0.028	2.600	2.63E-03	0.129	0.031			0.071	0.108	1.27E-03	0.211
EC-2	Dehydration Unit Enclosed Combustor 2	0.977	3.301	1457	0.028	2.600	2.63E-03	0.129	0.031			0.071	0.108	1.27E-03	0.211
VRU-1	VRU Compressor	0.81	1.62	393.0	0.553	0.18	0.0017	0.057	0.0046	7.22E-05	5.68E-04		0.002	0.065	0.096
EC-3	Tank Enclosed Combustor 1 ¹	2.06	10.20	3,494.0	0.133	0.91	0.001	0.106	0.001			0.027	0.002	0.001	0.034
EC-4	Tank Enclosed Combustor 2 ¹	2.06	10.20	3,494.0	0.133	0.91	0.001	0.106	0.001			0.027	0.002	0.001	0.034
TEG-1	Thermoelectric Generator	0.006	0.005	6.88	0.003	3.13E-04	3.42E-05	4.33E-04	1.20E-07			1.03E-04	1.94E-07		1.07E-04
CE-1	Compressor Engine (Controlled)	6.663	2.267	7,666	53.969	6.13	0.029	0.499	0.022	0.002	0.009	0.055	0.020	1.41	2.31
TL-1	Truck Loading - Condensate ²					4.07						0.220			0.22
TL-2	Truck Loading - Produced Water ²					0.197						0.022			0.022
T01-T16	Condensate Tanks + Water Tanks ³			127.6		36.06			0.019	2.57E-03	0.034	1.08	0.042		1.18
	Truck Traffic Fugitive Dust							27.69							
	Fugitive Emissions			88.58	3.54	3.31									0.039
Total (Exluding	Fugitive Emissions)	20.7	36.9	26716	55.0	49.8	0.082	1.57	0.110	0.005	0.044	1.46	0.285	1.48	4.21
Total		20.7	36.9	26804	58.6	57.4	0.082	29.3	0.110	0.005	0.044	1.70	0.285	1.48	4.49

¹ Condensate and water tank emissions are currently controlled by a VRU + Enclosed Combustor at 98%. This line represents the un-controlled 2%.

² Truck loading is un-controlled.
 ³ This line represents the 2% Un-captured/Controlled associated with the VRU.

Un-controlled Emissions

Source CE-1							
<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission) Aspiration (Natural or Turbocharged)	Caterpillar G3516 BL Lean Turbo						
Turbocharge Cooler Temperature Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee) Number of Cylinders Fuel Heat Content (HHV) Fuel Consumption (HHV)	130 1,380 1,400 In-Line 16 1,263 8,256	deg. F hp rpm BTU/scf Btu/bhp-hi	r				
Emission Rates:	g/bhp-hr	lb/hr	tons/year	g/hr	lb/dav	AP-42 4Stroke Lean Ib/mmbtu	
Circles of Nitrogen, NOx Carbon Monoxide CO VOC (NMNEHC) CO2e	0.50 2.43 0.92	1.52 7.39 2.80 1750.13	e 6.66 32.38 12.26	690 3,353 1,270	36.51 177.43 67.18		Comment 453.59 grams = 1 pound 2,000 pounds = 1 ton
Total Annual Hours of Operation SO2 PM2.5	8,760	0.006699	0.0293			0.00058 0.000077	
PM CO2 Methane acrolein	474 4.05	0.113819 1442.09 12.32 0.058561	6316.35 53.97			0.0099	Mfg. Data Mfg. Data
acetaldehyde formaldehyde benzene ethylbenzene	0.440	0.095248 1.338624 0.005013 0.000452	0.4172 5.8632 0.0220			0.0083 0.1174 0.0004 0.000039	6 9 Mfg. Data 4
methanol toluene xylenes n-Hexane		0.0028483 0.004648 0.002096 0.012647	0.1248 0.0204 0.0092			0.0025 0.0004 0.0001 0.0011	0 1 8
total HAPs		1.545774				0.13456621	
Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow Rate	<mark>NOT UP T</mark> 992 9126	ODATE 11- deg. F acfm	-8-16				
Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet	9,126 152.1	acfm acf per se	с				
Exhaust Stack Height	240 <mark>12.00</mark>	inches feet	Roger: Where d	lo we find th	nis?		
Exhaust Stack Inside Diameter	<mark>6</mark> 0.500	inches feet	Roger: Where d	lo we find th	nis?		
Exhaust Stack Velocity	774.6 46,478.3	ft/sec ft/min	_		3.1416	4 x acfm x (stack diameter)	^2

Controlled Emissions

Emission Rates: g/bp-hr Ib/hr tons/year g/hr Ib/day lb/ Oxides of Nitrogen, NOx 0.50 1.52 6.66 690 36.51 Carbon Monoxide CO 0.17 0.52 2.27 235 12.42 VOC (MMNEHC) 0.46 1.40 6.13 635 33.59 CO2e 1750.13 7665.57 7	Source CE-1							
Turbocharge Cooler Temperature 130 deg, F 1,300 hp Speed at Above Rating 1,400 rpm Configeration (In-line or Vee) In-Line Number of Cylinders 16 Fuel Reat Content (HHV) 1,263 BTU/scf Fuel Reat Content (HHV) 1,263 BTU/scf Streke Software g/bp-hr lb/hr tons/year g/hr lb/day lb/mmt Oxides of Nitrogen, NOx 0.50 1.52 6.66 660 30.51 Carbon Monoxide CO 0.17 0.52 2.27 235 12.42 VOC (NIMNEHC) 0.46 1.40 6.13 635 33.59 CO2 1750.13 7665.57 7 Total Anual Hours of Operation 8,760 0.008678 0.0038 9 SO2 0.008661 0.285248 0.4172 9 9 PM 0.0385248 0.4172 9 9 1442.09 6316.35 9 9 16 Soze 0.0085248 0.4172 0.008548 0.4172 9 9 1442.09 </td <td><u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission)</td> <td>G3516 BL Lean</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>Engine Data:</u> Engine Manufacturer Engine Model Type (Rich-burn or Low Emission)	G3516 BL Lean						
Manufacturer Rating 1.380 hp Speed at Above Rating 1.400 rpm Speed at Above Rating 1.400 rpm Configeration (In-line or Vee) In-Line In-Line Number of Cylinders 16 In-Line Fuel Heat Content (IHV) 1.263 BTU/scf Emission Rates: g/bhp-hr Ib/hr tons/year g/hr Ib/day Oxides of Nitrogen, NOx 0.50 1.52 6.66 690 36.51 Carbon Monxide CO 0.17 0.52 2.27 235 12.42 VOC (NMNEHC) 0.46 1.40 6.13 635 33.59 CO2 1750.13 7665.57 7 Total Annual Hours of Operation 8,760 30.35 8 SO2 0.006899 0.0293 9 PM 0.13819 0.4985 6 CO2 474 1442.09 6316.35 PM 0.005613 0.02665 6 acrolein 0.0058264 0.1248 6 Benzene 0.000464 0.02665								
Fuel Heat Content (HHV) 1,263 BTU/scf Fuel Consumption (HHV) 8,256 Btu/bhp-hr Emission Rates: g/bhp-hr Ib/m tons/year g/hr Ib/day [b/mm] Oxides of Nitrogen, NOx 0.50 1.52 6.66 690 36.51 Carbon Monoxide CO 0.17 0.52 2.27 235 12.42 VOC (NMNEHC) 0.46 1.40 6.13 635 33.59 CO2e 1750.13 7665.57 57 Total Annual Hours of Operation 8,760 50 53.57 SO2 0.006699 0.0293 98.5 6000878 PM 0.113819 0.4985 64172 640 CO2 474 1442.09 6316.35 635 Methane 4.05 12.32 53.97 6300513 6400352 colein 0.005248 0.4172 6000513 0.0220 6404483 64172 formaldehyde 0.000652 0.0020 60092 60092 6400448 640448 toluene 0.002066 0.00922 649. F	Manufacturer Rating Speed at Above Rating Configeration (In-line or Vee)	1,380 1,400 In-Line	hp					
Emission Rates: g/bp-hr lb/hr tons/year g/hr lb/day lb/mmt Oxides of Nitrogen, NOx 0.50 1.52 6.66 690 36.51 Carbon Monoxide CO 0.17 0.52 2.27 235 12.42 VOC (NMNEHC) 0.46 1.40 6.13 635 33.59 CO2e 1750.13 7665.57 7 7 7 Total Annual Hours of Operation 8,760 0.000878 0.0038 9 9 SO2 0.000878 0.0038 0.4113819 0.4985 9 9 9 9 9 9 10	Fuel Heat Content (HHV)	1,263						
Oxides of Nitrogen, NOx 0.50 1.52 6.66 690 36.51 Carbon Monoxide CO 0.17 0.52 2.27 235 12.42 VOC (NMNEHC) 0.46 1.40 6.13 635 33.59 CO2e 1750.13 7665.57 7665.57 7665.57 Total Annual Hours of Operation 8,760 0.006699 0.0293 SO2 0.000878 0.0038 0.038 PM 0.113819 0.4985 CO2 CO2 474 1442.09 6316.35 Methane 4.05 12.32 53.97 acrolein 0.058561 0.2565 acetaldehyde 0.008248 0.4172 formaldehyde 0.0020 ethylbenzene 0.002548 0.22483 0.1248 toluene 0.002483 0.1248 0.0204 xylenes 0.012647 0.0554 0.01248 toluene 0.012647 0.0554 0.01248 tolal HAPs 9126 acfm								
Carbon Monoxide CO 0.17 0.52 2.27 235 12.42 VOC (MMNEHC) 0.46 1.40 6.13 635 33.59 CO2e 1750.13 7665.57 765 33.59 Total Annual Hours of Operation 8,760 0.000699 0.0293 SO2 0.000878 0.0038 0.113819 0.4985 CO2 474 1442.09 6316.35 635 acrolein 0.05561 0.2565 0.2665 acrelation 0.005248 0.4172 600020 formaldehyde 0.106 0.32127 1.4072 benzene 0.000452 0.0020 ethylbenzene 0.00296 0.0092 n-Hexane 0.012647 0.0554 total HAPs 0.528419 2.3145 Exhaust Gas Volume Flow, wet 9,126 acfm Total Exhaust Gas Volume Flow, wet 9,126 acfm Total Exhaust Gas Volume Flow, wet 9,126 acfm Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Inside Diameter 6 inches				-	-		hmbt	u
VOC (NMNEHC) CO2e 0.46 1.40 6.13 635 33.59 CO2e 1750.13 7665.57 635 33.59 Total Annual Hours of Operation SO2 8,760 0.006699 0.0293 PM2.5 0.000878 0.0038 0.013819 0.4985 CO2 474 1442.09 6316.35 635 33.59 Methane 4.05 12.32 53.97 635 635 635 acrolein 0.056561 0.2565 0.0220 6316.35 636 635 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
CO2e 1750.13 7665.57 Total Annual Hours of Operation 8,760 SO2 0.006699 0.0293 PM2.5 0.000878 0.0038 CO2 474 1442.09 6316.35 Methane 4.05 12.32 53.97 actaldehyde 0.058561 0.2565 0.200 formaldehyde 0.106 0.32127 1.4072 benzene 0.005013 0.0220 ethylbenzene 0.000452 0.0002 methanol 0.028483 0.1248 toluene 0.002096 0.0092 xylenes 0.002096 0.0092 n-Hexane 0.012647 0.0554 tolal HAPs 0.528419 2.3145 Exhaust Gas Flow Rate 992 deg. F 992 deg. F 992 deg. F Total Exhaust Gas Volume Flow, wet 152.1 acfm Total Exhaust Gas Volume Flow, wet 152.1 acfm Total Exhaust Gas Volume Flow, wet 152.1 acfm Total Exhaust Gas Volume Flow, wet 152.1 acfm <								
SO2 0.006699 0.0293 PM 0.000878 0.0038 PM 0.113819 0.4985 CO2 474 1442.09 6316.35 Methane 4.05 12.32 53.97 acrolein 0.058561 0.2565 acataldehyde 0.095248 0.4172 formaldehyde 0.106 0.32127 1.4072 benzene 0.000452 0.0020 ethylbenzene 0.000452 0.0020 methanol 0.028483 0.1248 toluene 0.002096 0.0922 n-Hexane 0.012647 0.0554 total HAPs 0.528419 2.3145 0. Exhaust Gas Temperature 992 deg. F exhaust Gas Flow Rate 9126 acfm Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 inches Total Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x ac								
PM2.5 0.000878 0.0038 PM 0.113819 0.4985 CO2 474 1442.09 6316.35 Methane 4.05 12.32 53.97 acrolein 0.058561 0.2565 acetaldehyde 0.095248 0.4172 formaldehyde 0.106 0.32127 1.4072 benzene 0.000513 0.0220 ethylbenzene 0.0028483 0.1248 toluene 0.002464 0.0204 xylenes 0.002096 0.0032 n-Hexane 0.012647 0.0554 0.00 total HAPs 0.528419 2.3145 0.00 Exhaust Gas Temperature 992 deg, F Exhaust Gas Flow Rate 9126 acfm Total Exhaust Gas Volume Flow, wet 9.126 acfm 12.00 feet Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Velocity 774.6 ft/sec 4 x ac	•	8,760						
PM 0.113819 0.4985 CO2 474 1442.09 6316.35 Methane 4.05 12.32 53.97 acrolein 0.058561 0.2565 acetaldehyde 0.095248 0.4172 formaldehyde 0.106 0.32127 1.4072 benzene 0.005013 0.0220 ethylbenzene 0.000452 0.0000 methanol 0.028483 0.1248 toluene 0.004648 0.0204 xylenes 0.002096 0.0092 n-Hexane 0.012647 0.0554 total HAPs 0.528419 2.3145 Cotal HAPs 0.528419 2.3145 Total Exhaust Gas Temperature 992 deg. F Exhaust Gas Volume Flow, wet 9,126 acfm Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 inches 12.00 feet 12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 feet 12.00 feet <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000588</td>								0.000588
CO2 474 1442.09 6316.35 Methane 4.05 12.32 53.97 acrolein 0.058561 0.2565 acetaldehyde 0.0095248 0.4172 formaldehyde 0.106 0.32127 1.4072 benzene 0.005013 0.0220 0 ethylbenzene 0.004642 0.0020 0 methanol 0.028483 0.1248 0 toluene 0.004648 0.0204 0 xylenes 0.002096 0.0092 0 n-Hexane 0.012647 0.0554 0.04 total HAPs 0.528419 2.3145 0.04 Exhaust Gas Temperature 992 deg. F 0.04 Exhaust Gas Volume Flow, wet 9,126 acfm 0.04 Total Exhaust Gas Volume Flow, wet 9,126 acfm 0.04 Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 Total Exhaust Gas Volume Flow, wet 152.0 feet Exhaust Stack Inside Diameter 6 inches 0.500 f							0	.0000771 0.00999
Methane 4.05 12.32 53.97 acrolein 0.058561 0.2565 acetaldehyde 0.095248 0.4172 formaldehyde 0.106 0.32127 1.4072 benzene 0.000452 0.0020 0.0 ethylbenzene 0.000452 0.0020 0.0 methanol 0.028483 0.1248 0.00 toluene 0.004648 0.0204 0.00 xylenes 0.002096 0.0092 0.04 n-Hexane 0.012647 0.0554 0.045 total HAPs 0.528419 2.3145 0.045 Exhaust Gas Temperature 992 deg. F 0.045 Exhaust Gas Volume Flow, wet 9.126 acfm 0.045 Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 inches 12.00 feet 12.00 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm		474						0.00333
acrolein 0.058561 0.2565 0.00000000000000000000000000000000000								
formaldehyde 0.106 0.32127 1.4072 0. benzene 0.005013 0.0220 0. ethylbenzene 0.000452 0.0020 0.00 methanol 0.028483 0.1248 0. toluene 0.004648 0.0204 0. xylenes 0.00296 0.0092 0. n-Hexane 0.012647 0.0554 0. total HAPs 0.528419 2.3145 0.0452 Exhaust Parameters: NOT UP TO DATE 11-8-16 0.0452 0.0452 Exhaust Gas Temperature 992 deg. F 5. 0.0452 Total Exhaust Gas Volume Flow, wet 9,126 acfm 0.0452 0. Total Exhaust Gas Volume Flow, wet 9,126 acfm 0. 0.500 feet Exhaust Stack Height 240 inches 12.00 feet 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm							0.	00514
benzene 0.005013 0.0220 0.00 ethylbenzene 0.000452 0.0020 0.0000 methanol 0.028483 0.1248 0.0 toluene 0.004648 0.0204 0.0 xylenes 0.002096 0.0092 0.0 n-Hexane 0.012647 0.0554 0.0 total HAPs 0.528419 2.3145 0.04527 Exhaust Parameters: NOT UP TO DATE 11-8-16 0.04527 0.04527 Exhaust Gas Temperature 992 deg. F 6 cfm Total Exhaust Gas Volume Flow, wet 9,126 acfm 0.0 0.0 Total Exhaust Gas Volume Flow, wet 9,126 acfm 0.500 feet Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 12.00 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm	acetaldehyde		0.095248	0.4172			0.0	0836
ethylbenzene 0.000452 0.0020 0.0000 methanol 0.028483 0.1248 0.000 toluene 0.004648 0.0204 0.000 xylenes 0.002096 0.0092 0.000 n-Hexane 0.012647 0.0554 0.0000 n-Hexane 0.528419 2.3145 0.045270 Exhaust Parameters: NOT UP TO DATE 11-8-16 0.045270 0.045270 Exhaust Gas Temperature 992 deg. F 5.28419 2.3145 Total Exhaust Gas Volume Flow, wet 9,126 acfm 0.045270 Total Exhaust Gas Volume Flow, wet 9,126 acfm 0.012 Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 inches 12.00 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm		0.106					0.02	
methanol 0.028483 0.1248 0.002 toluene 0.004648 0.0204 0.002 xylenes 0.002096 0.0092 0.000 n-Hexane 0.012647 0.0554 0.001 total HAPs 0.528419 2.3145 0.0452703 Exhaust Parameters: NOT UP TO DATE 11-8-16 0.0452703 Exhaust Gas Temperature 992 deg. F 0.0452703 Total Exhaust Gas Volume Flow, wet 9.126 acfm 0.0452703 Total Exhaust Gas Volume Flow, wet 9.126 acfm 0.0452703 Exhaust Stack Height 240 inches 0.0452703 Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm							0.000	
toluene 0.004648 0.0204 0.000 xylenes 0.002096 0.0092 0.000 n-Hexane 0.012647 0.0554 0.001 total HAPs 0.528419 2.3145 0.0452703 Exhaust Parameters: NOT UP TO DATE 11-8-16 0.0452703 0.0452703 Exhaust Gas Temperature 992 deg. F 9126 acfm Total Exhaust Gas Volume Flow, wet 9.126 acfm 152.1 acf per sec Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm								
xylenes0.0020960.00920.000n-Hexane0.0126470.05540.001total HAPs0.5284192.31450.0452703Exhaust Parameters:NOT UP TO DATE 11-8-16Exhaust Gas Temperature992deg. F992deg. F9126acfmTotal Exhaust Gas Volume Flow, wet9,126acfmTotal Exhaust Gas Volume Flow, wet9,126acfmTotal Exhaust Gas Volume Flow, wet152.1acf per secExhaust Stack Height240inches12.00feetExhaust Stack Inside Diameter60.500feetExhaust Stack Velocity774.6ft/sec4xacfm								
n-Hexane total HAPs0.012647 0.5284190.0554 2.31450.0017 0.04527034Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow RateNOT UP TO DATE 11-8-16 992 deg. F 9126AcfmTotal Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet9,126 152.1acfmExhaust Stack Height240 152.0inches feetExhaust Stack Inside Diameter6 0.500 feetinches 44 4Exhaust Stack Velocity774.6ft/sec4 4 4 4 4								
total HAPs0.5284192.31450.04527034Exhaust Parameters: Exhaust Gas Temperature Exhaust Gas Flow RateNOT UP TO DATE 11-8-16 992992deg. F992deg. F9126acfmTotal Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet9,126acfmTotal Exhaust Gas Volume Flow, wet Total Exhaust Gas Volume Flow, wet9,126acfmExhaust Stack Height240inches 12.00feetExhaust Stack Inside Diameter6 0.500inches 6Exhaust Stack Velocity774.6ft/sec4								
Exhaust Gas Temperature 992 deg. F Exhaust Gas Flow Rate 9126 acfm Total Exhaust Gas Volume Flow, wet 9,126 acfm Total Exhaust Gas Volume Flow, wet 9,126 acfm Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm							0.04527038	
Exhaust Gas Flow Rate 9126 acfm Total Exhaust Gas Volume Flow, wet 9,126 acfm Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm				-16				
Total Exhaust Gas Volume Flow, wet 9,126 acfm Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm	•		•					
Total Exhaust Gas Volume Flow, wet 152.1 acf per sec Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm		0120	dom					
Exhaust Stack Height 240 inches 12.00 feet Exhaust Stack Inside Diameter 6 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm								
12.00 feet Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm	,,							
Exhaust Stack Inside Diameter 6 inches 0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm	Exhaust Stack Height							
0.500 feet Exhaust Stack Velocity 774.6 ft/sec 4 x acfm								
	Exhaust Stack Inside Diameter							
	Exhaust Stack Velocity	774.6	ft/sec			4	x acfm	
		46,478.3			3			r)

Happy Production Facility Tyler County, WV

Potential Emission Rates

Sources: HTR-1 Through HTR-10

*Emissions shown below are for each Gas Processing Unit

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 1500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 29,084.8 scfd 0.000 Mole % 8760

NOx	0.1501	lb/hr	0.657	tpy
СО	0.1261	lb/hr	0.552	tpy
CO2	180.1	lb/hr	788.7	tpy
CH4	0.0035	lb/hr	0.0151	tpy
CO2e	181	lb/hr	793	tpy
VOC	0.0083	lb/hr	0.036	tpy
SO2	0.0009	lb/hr	0.004	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0114	lb/hr	0.050	tpy
СНОН	0.0001	lb/hr	4.93E-04	tpy
Benzene	3.15E-06	lb/hr	1.38E-05	tpy
N-Hexane	0.0027	lb/hr	0.012	tpy
Toluene	5.10E-06	lb/hr	2.23E-05	tpy
Total HAPs	0.0028	lb/hr	0.012	tpy

NOx CO	100 lb/MMCF 84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Happy Production Facility Tyler County, WV

Potential Emission Rates

Source HTR-11 Line Heater

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 9,694.9 scfd 0.000 Mole % 8760

NOx	0.0500	lb/hr	0.219	tpy
СО	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CH4	0.0012	lb/hr	0.005	tpy
CO2e	60	lb/hr	264	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO ₂	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N_2O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Happy Production Facility Tyler County, WV

Source RBV-1

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 300.0 MBtu/hr 98.0 % 1263.0 Btu/scf 5,817 scfd 0.000 Mole % 8760

NOx	0.0300	lb/hr	0.131	tpy
CO	0.0252	lb/hr	0.110	tpy
CO2	36.0	lb/hr	157.7	tpy
CH4	0.0007	lb/hr	0.003	tpy
CO2e	36.2	lb/hr	158.7	tpy
VOC	0.0017	lb/hr	0.007	tpy
SO2	0.0002	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0023	lb/hr	0.010	tpy
CHOH	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0005	lb/hr	0.002	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0006	lb/hr	0.002	tpy

NOx	100	lb/MMCF	
СО	84	lb/MMCF	
CO ₂	120,000	lb/MMCF	Global Warming Potential = 1
VOC	5.5	lb/MMCF	
PM	7.6	lb/MMCF	
SO ₂	0.6	lb/MMCF	
CH ₄	2.3	lb/MMCF	Global Warming Potential = 25
N_2O	2.2	lb/MMCF	Global Warming Potential = 298
нсон	0.075	lb/MMCF	
Benzene	0.0021	lb/MMCF	
n-Hexane	1.8	lb/MMCF	
Toluene	0.0034	lb/MMCF	

Source RBV-2

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 MBtu/hr 98.0 % 1263.0 Btu/scf 9,695 scfd 0.000 Mole % 8760

NOx	0.0500	lb/hr	0.219	tpy
СО	0.0420	lb/hr	0.184	tpy
CO2	60.0	lb/hr	262.9	tpy
CH4	0.0012	lb/hr	0.005	tpy
CO2e	60.4	lb/hr	264.5	tpy
VOC	0.0028	lb/hr	0.012	tpy
SO2	0.0003	lb/hr	0.001	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0038	lb/hr	0.017	tpy
СНОН	0.0000	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0009	lb/hr	0.004	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0009	lb/hr	0.004	tpy

Reboiler

NOx CO	100 lb/MMCF 84 lb/MMCF	
CO ₂		Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential = 298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Happy Production Facility Tyler County, WV

Potential Emission Rates

Sources EC-1 & EC-2 **Enclosed Combustor Pilot** Burner Duty Rating 1000.0 MBtu/hr Burner Efficiency 98.0 % 627.0 Btu/scf Gas Heat Content (HHV) Burner Gas Consumption 39058.7 scfd Number of Units 2 Total Burner Gas Consumption 78117.4 scfd H₂S Concentration 0.000 Mole % Hours of Operation 8760

NOx	0.2001	lb/hr	0.876	tpy
CO	0.1681	lb/hr	0.736	tpy
CO2	240.1	lb/hr	1051.6	tpy
CH4	0.0046	lb/hr	0.020	tpy
CO2e	242	lb/hr	1,058	tpy
VOC	0.0110	lb/hr	0.048	tpy
SO2	0.0012	lb/hr	0.005	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0152	lb/hr	0.067	tpy
СНОН	0.0002	lb/hr	0.001	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0036	lb/hr	0.016	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0038	lb/hr	0.016	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N ₂ O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Happy Production Facility Tyler County, WV

Potential Emission Rates

RSV-1 to Sources EC-1 & EC-2 Enclosed Vapor Combustor

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare 98.0 % 627.0 Btu/scf 0.04488 MMSCFD 1.17 MMBtu/hr

393.149 MMSCF/yr 10,271 MMBtu/yr

NOx	0.080	lb/hr	0.349	tpy
CO	0.434	lb/hr	1.90	tpy
CO2	137	lb/hr	600	tpy
CO2e	137	lb/hr	601	tpy
VOC	0.374	lb/hr	1.64	tpy
CH4	0.003	lb/hr	0.011	tpy
N2O	0.0003	lb/hr	0.001	tpy
PM	0.0142	lb/hr	0.062	tpy
Benzene	0.0046	lb/hr	0.020	tpy
СНОН	0.0001	lb/hr	0.001	tpy
n-Hexane	0.009	lb/hr	0.040	tpy
Toluene	0.016	lb/hr	0.069	tpy
Total HAPs	0.030	lb/hr	0.130	tpy

Note: VOCs and HAPs are set at 2% of the still vent emissions in the Glycalc Report.

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

Potential Emission Rates

RSV-2 to Sources EC-1 & EC-2 Enclosed Vapor Combustor

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare

Factors Used

98.0 % 634.0 Btu/scf 0.09264 MMSCFD 2.45 MMBtu/hr

811.526 MMSCF/yr 21,438 MMBtu/yr

NOx	0.166	lb/hr	0.729	tpy
CO	0.905	lb/hr	3.97	tpy
CO2	286	lb/hr	1,253	tpy
CO2e	286	lb/hr	1,254	tpy
VOC	0.802	lb/hr	3.51	tpy
CH4	0.005	lb/hr	0.024	tpy
N2O	0.001	lb/hr	0.002	tpy
PM	0.029	lb/hr	0.128	tpy
Benzene	0.010	lb/hr	0.042	tpy
СНОН	0.000	lb/hr	0.001	tpy
n-Hexane	0.020	lb/hr	0.086	tpy
Toluene	0.034	lb/hr	0.147	tpy
Total HAPs	0.063	lb/hr	0.276	tpy

Note: VOCs and HAPs are set at 2% of the still vent emissions in the Glycalc Report.

AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

Jay-Bee Oil &Gas ,LLC

Happy Production Facility Tyler County, WV

Controlled Emission Rates

Source VRU-1

Engine Data:							
Engine Manufacturer	Cummins						
Engine Model	G5.9						
Type (Rich-burn or Low Emission)	Rich Burn						
Aspiration (Natural or Turbocharged)	Natural						
rispitation (ration of ratioscharged)	1 (uturu)						
Manufacturer Rating	84	hp					
Speed at Above Rating	1,800	rpm					
Configuration (In-line or V)	In-line						
Number of Cylinders	6						
Engine Bore	4.020	inches					
Engine Stroke	4.720	inches					
Engine Displacement	359	cu. in.					
Engine BMEP	103	psi					
Fuel Consumption (HHV)	7,914	Btu/bhp-hr					
						AP-42	
						4strokerich	
Emission Rates:	g/bhp-hr	lb/hr	tpy	g/hr	lb/day	lb/MMBtu	
Oxides of Nitrogen, NOx	1.000	0.19	0.81	84	4.44		Comment
Carbon Monoxide CO	2.000	0.37	1.62	168	8.89		453.59 grams = 1 pound
VOC (NMNEHC)	0.220	0.04	0.18	18	0.98		2,000 pounds = 1 ton
CO2	449	83	364	37,716	1,996		
CO2e		89.7	393	,	,		
Total Annual Hours of Operation	8,760						
SO2		0.0004	0.0017			0.0006	
PM2.5		0.00632	0.0277			0.0095	
PM (Condensable)		0.00659	0.0289			0.00991	
CH ₄		0.12623	0.5529			0.0022	Factor From 40 CFR 98, Table C-2
N ₂ O		0.01148	0.0503			0.0002	Factor From 40 CFR 98, Table C-2
acrolein		0.00175	0.0077			0.00263	
acetaldehyde		0.00185	0.0081			0.00279	
formaldehyde	0.080	0.0148	0.0649				Per Mfg.
benzene		0.00105	0.0046			0.00158	
toluene		0.00037	0.0016			0.000558	
ethylbenzene		1.6E-05	0.0001			0.0000248	
xylenes		0.00013	0.0006			0.000195	
methanol		0.00203	0.0089			0.00306	
Total HAPs		0.02202	0.0964			0.00500	
Exhaust Parameters:							
Exhaust Gas Temperature	1,078	deg. F					
Exhaust Gas Mass Flow Rate		lb/hr					
Exhaust Gas Mass Flow Rate	430	acfm					
Exhaust Stack Height	96	inches					
LABRUST SIRCK HEIGHT	90 8.00	feet					
	0.00	icet					
Exhaust Stack Inside Diameter	4	inches					
Estimate Duck Inside Didiliciter	0.333	feet					
	0.555	100					
Exhaust Stack Velocity	82.1	ft/sec					
Lanasi Suck (crocky	4,927.4	ft/min					
	7,727.7	20 11111					

Happy Production Facility Tyler County, WV

Potential Emission Rates

Source EC-3 & 4						
Enc	Enclosed Combustor Pilot					
Burner Duty Rating	1000.0	MBtu/hr				
Burner Efficiency	98.0	%				
Gas Heat Content (HHV)	1263.0	Btu/scf				
Total Gas Consumption	19389.8	scfd				
Number of Units	2					
Total Burner Gas Consumptio	38779.7	scfd				
H2S Concentration	0.000	Mole %				
Hours of Operation	8760					
-						
	NOx	0.1000	lb/hr	0.43		

NOx	0.1000	lb/hr	0.438	tpy
CO	0.0840	lb/hr	0.368	tpy
CO2	120.0	lb/hr	525.8	tpy
CH4	0.0023	lb/hr	0.010	tpy
CO2e	121	lb/hr	529	tpy
VOC	0.0055	lb/hr	0.024	tpy
SO2	0.0006	lb/hr	0.003	tpy
H2S	0.0000	lb/hr	0.000	tpy
PM10	0.0076	lb/hr	0.033	tpy
СНОН	0.0001	lb/hr	0.000	tpy
Benzene	0.0000	lb/hr	0.000	tpy
N-Hexane	0.0018	lb/hr	0.008	tpy
Toluene	0.0000	lb/hr	0.000	tpy
Total HAPs	0.0019	lb/hr	0.008	tpy

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 lb/M	IMCF
СО	84 lb/M	IMCF
CO ₂	120,000 lb/M	MCF Global Warming Potential = 1
VOC	5.5 lb/M	IMCF
PM	7.6 lb/M	IMCF
SO ₂	0.6 lb/M	IMCF
CH ₄	2.3 lb/M	IMCF Global Warming Potential = 25
N_2O	2.2 lb/M	MCF Global Warming Potential =298
нсон	0.075 lb/M	IMCF
Benzene	0.0021 lb/M	IMCF
n-Hexane	1.8 lb/M	IMCF
Toluene	0.0034 lb/M	IMCF

Happy Production Facility Tyler County, WV

Potential Emission Rates

Source EC-3 & EC-4 Enclosed Vapor Combustor - Control of Tank Emissions

Destruction Efficiency Gas Heat Content (HHV) Max Flow to T-E Max BTUs to Flare Estimated Hours VRU Offline 98.0 % 2313.1 Btu/scf 0.128 MMSCFD 12.360 MMBTU/hr 5 %

46.808 MMSCF/yr 108,271 MMBTU/yr

NOx	0.84	lb/hr	3.68	tpy
CO	4.57	lb/hr	20.03	tpy
CO2	1,444.73	lb/hr	6,327.92	tpy
CO2e	1,474.67	lb/hr	6,459.05	tpy
VOC	8.23	lb/hr	1.80	tpy
CH4	1.17	lb/hr	0.26	tpy
N2O	0.0027	lb/hr	0.0119	tpy
PM	0.0406	lb/hr	0.1779	tpy
СНОН	0.0004	lb/hr	0.0018	tpy
Benzene	0.004	lb/hr	0.001	tpy
n-Hexane	0.246	lb/hr	0.054	tpy
Toluene	0.010	lb/hr	0.002	tpy
Total HAP	0.269	lb/hr	0.059	tpy

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions

Factors Used			
AP-42 Table 13.5-1	NOx	0.068 lb/MMBTU	
AP-42 Table 13.5-1	со	0.37 lb/MMBTU	
40 CFR 98 Table C-1	CO2	116.89 lb/MMBTU	Global Warming Potential = 1
40 CFR 98 Table C-2	CH4	0.0022 lb/MMBTU	Global Warming Potential = 25
40 CFR 98 Table C-2	N2O	0.00022 lb/MMBTU	Global Warming Potential =298
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF	
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF	
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF	
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF	
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF	

Happy Production Facility Tyler County, WV

sion factor LL can be
ns
'hr
'hr
y
y

Happy Production Facility Tyler County, WV

Truck	TL-2 Truck Loading - Produced Water				
Per AP-42, Chapter 5.2.2.1.1 estimated as follows:	, the uncontrol $L_L=12.46$	-	n factor LL can be		
Where, Loading Loss Saturation Factor True Vapor Pressure Molecular Weight of Vapors Temperature Maximum Daily Loading	S= P= M= T=	0.3 psia 30.68 lb/lb-mol 520 deg R BBL/day			
Hours of Loading	26,712 9	pd rr b/day 0.14 lb/hr			
Total HAP		b/day 0.016 lb/hr			
Maximum Annual Loading	194,400 8,164,800	BBL/yr			
Total VOC	393.0	b/yr 0.20 tpy			
Total HAP	43.3	b/yr 0.02 tpy			
Emissions Total VOC Total HAP		6			

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation Source TEG-1

13.0 MBtu/hr 98.0 % 1263.0 Btu/scf 252.1 scfd 0.000 Mole % 8760

NOx	0.0013	lb/hr	0.006	tpy
СО	0.0011	lb/hr	0.005	tpy
CO2	1.56	lb/hr	6.84	tpy
CO2e	1.57	lb/hr	6.88	tpy
CH_4	7.48E-04	lb/hr	3.28E-03	tpy
VOC	7.15E-05	lb/hr	3.13E-04	tpy
SO2	7.80E-06	lb/hr	3.42E-05	tpy
H2S	0.00E+00	lb/hr	0.00E+00	tpy
PM10	9.88E-05	lb/hr	4.33E-04	tpy
СНОН	9.75E-07	lb/hr	4.27E-06	tpy
Benzene	2.73E-08	lb/hr	1.20E-07	tpy
N-Hexane	2.34E-05	lb/hr	1.03E-04	tpy
Toluene	4.42E-08	lb/hr	1.94E-07	tpy
Total HAPs	2.45E-05	lb/hr	1.07E-04	tpy

NOx	100 lb/MMCF	
СО	84 lb/MMCF	
CO ₂	120,000 lb/MMCF	Global Warming Potential = 1
VOC	5.5 lb/MMCF	
PM	7.6 lb/MMCF	
SO_2	0.6 lb/MMCF	
CH ₄	2.3 lb/MMCF	Global Warming Potential = 25
N_2O	2.2 lb/MMCF	Global Warming Potential =298
нсон	0.075 lb/MMCF	
Benzene	0.0021 lb/MMCF	
n-Hexane	1.8 lb/MMCF	
Toluene	0.0034 lb/MMCF	

Happy Production Facility Tyler County, WV

Truck Loading Fugitive Dust

Item Number	Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Truck Capacity (BBL/Truck)	Maximum Trips per Year	Control	Control Efficiency (%)
1	Produced Water Transportation Trucks	18	27	10	1.8	1	80	2430	None	
2	Condensate Transportation Trucks	18	27	10	1.8	1	80	1148	None	
			54000	lbs						

		PM	PM-10
$\mathbf{k} =$	Particle size multiplier	0.8	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
$\mathbf{W} =$	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	27
p =	Number of days per year with precipitation >0.01 in.	157	157

E (lb/ vehicle mile traveled) = $k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365)$

Item 1 - Produ	Item 1 - Produced Water		PM-10
E	lb/vmt	7.378804125	1.220015589
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	13.282	2.196
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = tpy$	16.137	2.668 t

Item 2 - Cond	lensate	PM	PM-10
E	lb/vmt	7.378804125	1.220015589
Е	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$	13.282	2.196
E	$[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] \times [Ton \div 2000 lb] = tpy$	7.621	1.260

Inlet Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.394	0.110	0.004	0.530			-		0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			-		0.0015	
Hydrogen Sulfide, H2S	-	-	-	-			-		-	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.347	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.405	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.151	0.130	0.004	0.625	6.6	7.2	0.068	0.625	0.0015	0.062
Heptane+	0.071	0.071	0.002	0.341	3.6	3.9	0.037	0.341	0.0007	0.033
	100.000	20.837	0.719		1,140.8	1,257.7	11.875	18.400	0.9958	6.172

0.058

Gas Density (STP) =

Ideal Gross (HHV)	1,257.7
Ideal Gross (sat'd)	1,236.6
GPM	-
Real Gross (HHV)	1,263.0
Real Net (LHV)	1,145.6

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.575	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.602	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	74.187	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	9.798	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.605
Propane	4.384	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.201
Iso-Butane	1.841	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	2.043	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.640
Iso Pentane	1.305	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	0.928	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	1.149	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.471
Heptane	2.188	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	0.952
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.277

0.069

	Gas Density (STP) =	
Ideal Gross (HHV)	1,424.0	
Ideal Gross (sat'd)	1,399.9	
GPM	-	

1,430.5

1,302.3

GPM Real Gross (HHV) Real Net (LHV)

Jay-Bee (Dil & Gas - Happy								
Flash Emission Calculations - Condensate Using Gas-Oil Ratio Method									
Un-Controlled									
Site specific data									
Gas-Oil-ratio = Throughput = Stock tank gas molecular weight = Number of wells = Number of tanks =	500 scf/bbl Using GOW from comparable well pads. 91,809 bbl/yr 39.56 g/mole 9 8								
	Conversions								
1 lb = 1 mole = 1 scf = 1 ton =	453.6 g 22.4 L 28.32 L 2000 lb								
E	quations								
$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28.32(L)}{1(scf)} \times \frac{28.32(L)}{1(scf)} \times \frac{1}{2}$									
$R = Measu Q = Throu MW = Stock E_{spec} = E_{TOT} E_{spec} = Flash er$	stock tank flash emissions (TPY) ared gas-oil ratio (scf/bbl) ghput (bbl/yr) tank gas molecular weight (g/mole) $T \times X_{spec}$ nission from constituent fraction of constituent in stock tank gas								

Flash Emissions

Constituent	TPY	
Total	2530.7762	
VOC	1775.8203	
Nitrogen	6.33E-01	
Carbon Dioxide	3.97E+00	
Methane	2.51E+02	
Ethane	4.99E+02	
Propane	6.56E+02	
Isobutane	1.77E+02	
n-Butane	4.08E+02	
2,2 Dimethylpropane	4.99E+00	
Isopentane	1.40E+02	
n-Pentane	1.47E+02	
2,2 Dimethylbutane	5.29E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	7.67E+00	
2 Methylpentane	4.07E+01	
3 Methylpentane	2.43E+01	
n-Hexane	5.31E+01	HAP
Methylcyclopentane	3.87E+00	
Benzene	9.11E-01	HAP
Cyclohexane	5.49E+00	
2-Methylhexane	1.18E+01	
3-Methylhexane	1.16E+01	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	1.10E+01	
n-Heptane	1.71E+01	
Methylcyclohexane	1.06E+01	
Toluene	2.08E+00	HAP
Other C8's	1.73E+01	
n-Octane	5.77E+00	
Ethylbenzene	1.27E-01	HAP
M & P Xylenes	1.49E+00	HAP
O-Xylene	2.02E-01	HAP
Other C9's	7.19E+00	
n-Nonane	1.72E+00	
Other C10's	2.71E+00	
n-Decane	3.54E-01	
Undecanes (11)	3.80E-01	

E_{TOT} Sum of C3+

Jay-Bee Oil & Gas - Happy										
Flash Emission Calculations - Produced Water										
Using Gas-Water Ratio Method										
Un-Controlled										
	Site specific data									
Gas-Water-ratio	= 4.06 scf/bbl Using GOW from comparable well pads.									
Throughput	= 194,400 bbl/yr									
Stock tank gas molecular weight	= 30.68 g/mole									
Number of wells	= 9									
Number of tanks	= 8									
Conversions										
1 lb	= 453.6 g									
1 mole	= 22.4 L									
1 scf	= 28.32 L									
1 ton	= 2000 lb									
	Equations									
$E_{TOT} = Q \frac{(bbl)}{(yr)} \times R \frac{(scf)}{(bbl)} \times \frac{28}{1}$	$\frac{3.32(L)}{(scf)} \times \frac{1(mole)}{22.4(L)} \times MW \frac{(g)}{(mole)} \times \frac{1(lb)}{453.6(g)} \times \frac{1(ton)}{2000(lb)}$									
	= Total stock tank flash emissions (TPY)									
	= Measured gas-oil ratio (scf/bbl)									
	= Throughput (bbl/yr)									
MW										
	$E = E_{TOT} \times X_{spec}$									
E _{spec}	= Flash emission from constituent									
X _{spec}	= Weight fraction of constituent in stock tank gas									

Flash Emissions

Constituent	TPY	
Total	33.7458	
VOC	17.2593	
Nitrogen	5.61E-01	
Carbon Dioxide	5.08E-01	
Methane	9.99E+00	
Ethane	5.43E+00	
Propane	3.88E+00	
Isobutane	9.69E-01	
n-Butane	2.73E+00	
2,2 Dimethylpropane	4.29E-02	
Isopentane	1.37E+00	
n-Pentane	1.91E+00	
2,2 Dimethylbutane	7.12E-02	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	1.37E-01	
2 Methylpentane	7.65E-01	
3 Methylpentane	4.93E-01	
n-Hexane	1.33E+00	HAP
Methylcyclopentane	1.24E-01	
Benzene	2.43E-02	HAP
Cyclohexane	1.71E-01	
2-Methylhexane	3.72E-01	
3-Methylhexane	3.86E-01	
2,2,4 Trimethylpentane	0.00E+00	
Other C7's	3.56E-01	
n-Heptane	6.48E-01	
Methylcyclohexane	3.44E-01	
Toluene	5.33E-02	HAP
Other C8's	5.90E-01	
n-Octane	1.85E-01	
Ethylbenzene	3.71E-03	HAP
M & P Xylenes	3.04E-02	HAP
O-Xylene	3.37E-03	HAP
Other C9's	1.79E-01	
n-Nonane	3.34E-02	
Other C10's	3.91E-02	
n-Decane	6.75E-03	
Undecanes (11)	6.41E-03	

E_{TOT} Sum of C3+

Happy Production Facility Tyler County, WV

Fugitive VOC Emissions

Volatile Organic Compounds, NMNEHC from gas analysis: Methane from gas analysis: Carbon Dioxide from gas analysis: HAPs from gas analysis: Hexane

Gas Density:

18.40	weight percent
59.35	weight percent
0.32	weight percent

0.62 weight percent 0.0580 lb/scf

Emission Source:	Count	Oil & Gas Production*	VOC %	VOC (lb/hr)	VOC (tpy)	CO2 (lb/hr)	CO2 (tpy)	CH4 (lb/hr)	CH4 (tpy)	CO2e (tpy)	Hexane (tpy)
Pump Seals:											
Gas:	1	0.00529 lb/hr	18.4	0.001	0.004	0.000	0.000	0.003	0.0138	0.344	0.000
Valves:											
Gas/Vapor:	446	0.02700 scf/hr	18.4	0.129	0.563	0.002	0.010	0.415	1.8167	45.428	0.019
Light Liquid:	112	0.05000 scf/hr	100.0	0.324	1.417						
Low Bleed Pneumatic	-	1.39000 scf/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000	0.000
Relief Valves:	25	0.04000 scf/hr	18.4	0.011	0.047	0.000	0.001	0.034	0.1507	3.769	0.002
Open-ended Lines, gas:	57	0.06100 scf/hr	18.4	0.037	0.162	0.001	0.003	0.120	0.5241	13.105	0.006
Connectors:											
Gas:	1,584	0.00300 scf/hr	18.4	0.051	0.222	0.001	0.004	0.164	0.7163	17.911	0.008
Light Liquid:	396	0.00700 scf/hr	100.0	0.161	0.704						
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.012	0.0504	1.261	0.001
Flanges:											
Gas:	120	0.00086 lb/hr	18.4	0.019	0.083	0.000	0.001	0.061	0.2683	6.708	0.003
Light Liquid:	60	0.00300 scf/hr	100.0	0.010	0.046						

Blowdowns:

	Pressure (psig)	Internal Volume (scf)	Projected Blowdown Events (per year)		Gas Released Per Year (lbs)	Composition of Gas (% by volume)	Released (lb/hr)	Released (tpy)	CO2e (tpy)
VOC	290	65	16	1040	124.8	0.70	0.0100	0.0438	
CH4	290	65	16	1040	44.0	0.10	0.0005	0.0022	0.0546
HAPs	290	65	16	1040	116.3	0.02	0.0003	0.0013	

	gitive Calculat	
	lb/hr	tpy
VOC	0.755	3.308
CH4	0.809	3.542
CO2	0.004	0.019
CO2e	20.224	88.580
HAPs	0.009	0.039

Notes:

Factors are from 40 CFR 98, Table W-1A (scf/hr), where available. Remaining are API (lb/hr) Sampling Connectors are from TECQ. Remaining are API (lb/hr)

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.036	0.009	0.000	0.022			-		0.0003	
Carbon Dioxide, CO2	0.141	0.041	0.001	0.103			-		0.0009	
Hydrogen Sulfide, H2S	-	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	24.485	3.370	0.116	8.458	191.0	212.2	2.002		0.2096	
Ethane, C2H6	25.943	8.112	0.280	20.358	436.7	477.4	4.500		0.2676	7.176
Propane	23.253	11.311	0.391	28.386	593.8	645.4	6.110	28.386	0.2520	7.030
Iso-Butane	4.773	3.064	0.106	7.690	158.2	171.4	1.633	7.690	0.0512	1.715
Normal Butane	10.980	6.916	0.239	17.357	358.3	388.2	3.685	17.357	0.1150	3.731
Iso Pentane	3.027	2.367	0.082	5.941	121.4	131.3	1.250	5.941	0.0328	1.195
Normal Pentane	3.175	2.307	0.080	5.791	118.5	128.2	1.219	5.791	0.0320	1.152
Hexane	2.378	1.531	0.053	3.841	78.2	84.5	0.804	3.841	0.0175	0.726
Heptane	1.701	0.818	0.028	2.052	41.6	44.9	0.428	2.052	0.0081	0.374
	99.892	39.846	1.376		2,097.7	2,283.4	21.630	71.059	0.9872	23.100

	Gas Density (STP) =	0.111
Ideal Gross (HHV)	2,283.4	
Ideal Gross (sat'd)	2,244.3	
GPM	-	
Real Gross (HHV)	2,313.1	
Real Net (LHV)	2,124.9	

Still Vent Gas Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.156	0.044	0.002	0.214	0.0	0.0	-		0.0016	
Carbon Dioxide, CO2	0.162	0.071	0.002	0.349	0.0	0.0	0.012		0.0016	
Hydrogen Sulfide, H2S	-	-	-	-	0.0	0.0	-		-	
Water	55.355	9.964	0.344	48.728	0.0	0.0	-		0.5539	
Oxygen, O2	-	-	-	-	0.0	0.0	-		-	
Methane, CH4	30.241	4.852	0.168	23.726	275.0	305.4	5.044		0.3018	
Ethane, C2H6	7.585	2.281	0.079	11.155	122.8	134.2	1.807		0.0752	2.018
Propane	3.261	1.438	0.050	7.032	75.5	82.0	1.010	7.032	0.0320	0.894
Iso-Butane	0.500	0.291	0.010	1.422	15.0	16.3	0.155	1.422	0.0049	0.163
Normal Butane	1.177	0.684	0.024	3.346	35.4	38.4	0.449	3.346	0.0114	0.369
Iso Pentane	0.274	0.198	0.007	0.968	10.2	11.0	0.113	0.968	0.0027	0.100
Normal Pentane	0.324	0.234	0.008	1.144	12.0	13.0	0.133	1.144	0.0032	0.117
Hexane	0.284	0.245	0.008	1.196	12.5	13.5	0.197	1.196	0.0028	0.116
Heptane	0.147	0.147	0.005	0.721	7.5	8.1	1.310	0.721	0.0015	0.067
	99.467	20.448	0.706		565.9	621.9	10.228	15.828	0.9926	3.844

	Gas Density (STP) =	0.057
Ideal Gross (HHV)	621.9	
Ideal Gross (sat'd)	611.9	
GPM	-	
Real Gross (HHV)	626.6	
Real Net (LHV)	570.1	

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Jay Bee Happy - RBV-1 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy1.ddf Date: November 16, 2016

DESCRIPTION:

Description: 20 MMSCFD Still Vent as fuel and excess to EC-1/2 for destruction No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 85.00 deg. F Pressure: 500.00 psig Wet Gas Water Content: Saturated

Component Conc. (vol %) Carbon Dioxide 0.1510 Nitrogen 0.3940 Methane 77.0800 Ethane 14.8320 Propane 4.9670 Isobutane 0.6160 n-Butane 1.2100 Isopentane 0.2660 n-Pentane 0.2620 n-Hexane 0.0580 Cyclohexane 0.0060 Other Hexanes 0.0930 Heptanes 0.0420 Benzene 0.0010 Toluene 0.0020 C8+ Heavies 0.0200

DRY GAS:

Flow Rate: 20.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF Page: 2

LEAN GLYCOL:

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 3.5 gpm

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 60.0 deg. F

Page: 1 GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: Jay Bee Happy - RBV-1 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy1.ddf Date: November 16, 2016

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.4665	11.196	2.0432
Ethane	0.2192	5.260	0.9599
Propane	0.1384	3.322	0.6063
Isobutane	0.0279	0.671	0.1224
n-Butane	0.0659	1.581	0.2885
Isopentane	0.0190	0.456	0.0832
n-Pentane	0.0224	0.539	0.0983
n-Hexane	0.0092	0.221	0.0403
Cyclohexane	0.0035	0.084	0.0154
Other Hexanes	0.011	7 0.28	1 0.0512
Heptanes	0.0141	0.339	0.0620
	0.0046	0.109	0.0200
Toluene	0.0158	0.380	0.0693
C8+ Heavies	0.0416	0.997	0.1820
Total Emissions	1.0598	3 25.43	 95 4.6419
Total Hydrocarbon Emis Total VOC Emissic		1.0598	25.435 4.6419
Total HAP Emissio Total BTEX Emissio			710 0.1295
	UNS U.U	1204 0	.489 0.0892

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	23.3242	559.782	102.1602
Ethane 1	0.9577	262.986	47.9949
Propane	6.9210	166.104	30.3139
Isobutane	1.3969	33.525	6.1183
n-Butane	3.2938	79.050	14.4266
Isopentane	0.9498	22.794	4.1599
n-Pentane	1.1224	26.937	4.9160
n-Hexane	0.4596	11.031	2.0132
Cyclohexane	0.1757	4.216	0.7694
Other Hexanes	0.5848	8 14.03	5 2.5613
Heptanes	0.7072	16.974	3.0977

	Page: 2			
Benzene 0	.2280	5.471	0.9985	
Toluene 0.	7908	18.978	3.4635	
C8+ Heavies	2.0781	49.875	9.1021	
Total Emissions	52.9899	1271.75	7 232.095	56
Total Hydrocarbon Emissic Total VOC Emissions				32.0956 405
Total HAP Emissions	1.478	-		
Total BTEX Emissions				

Page: 1 GRI-GLYCalc VERSION 4.0 - EQUIPMENT SUMMARY REPORT

Case Name: Jay Bee Happy - RBV-1 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy1.ddf Date: November 16, 2016

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 2.58e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25 Calculated Dry Gas Dew Point: 3.66 lbs. H2O/MMSCF

Temperature: 85.0 deg. F Pressure: 500.0 psig Dry Gas Flow Rate: 20.0000 MMSCF/day Glycol Losses with Dry Gas: 0.0737 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 63.67 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 4.20 gal/lb H2O

.

		ining Abso in Dry Gas	
-	 Water	5.74% 9	 94.26%
	Carbon Dioxide	99.84%	0.16%
	Nitrogen	99.99%	0.01%
	Methane	99.99%	0.01%
	Ethane	99.96%	0.04%
	_		
	Propane	99.93%	0.07%
	Isobutane	99.90%	0.10%
	n-Butane	99.86%	0.14%
	isopentane	99.85%	0.15%
	n-Pentane	99.81%	0.19%
	n-Hexane	99.66%	0.34%
	Cyclohexane	98.49%	1.51%
	Other Hexanes	99.74%	0.26%
	Heptanes	99.31%	0.69%
	Benzene	86.79%	13.21%
	Toluene	80.54%	19.46%
	C8+ Heavies	97.30%	2.70%

REGENERATOR

.

No Stripping Gas used in regenerator.

Rema	ining Dis	tilled
Component	in Glycol	Overhead
Water 3		62.91%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	96.95%
Other Hexanes	0.779	6 99.23%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene	7.88%	92.12%
C8+ Heavies	11.75%	6 88.25%

Page: 1 GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Jay Bee Happy - RBV-1 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy1.ddf Date: November 16, 2016

DESCRIPTION:

Description: 20 MMSCFD Still Vent as fuel and excess to EC-1/2 for destruction No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.4665	11.196	2.0432
Ethane	0.2192	5.260	0.9599
Propane	0.1384	3.322	0.6063
Isobutane	0.0279	0.671	0.1224
n-Butane	0.0659	1.581	0.2885
Isopentane	0.0190	0.456	0.0832
n-Pentane	0.0224	0.539	0.0983
n-Hexane			0.0403
Cyclohexane			4 0.0154 ·
Other Hexanes	0.011	7 0.2	81 0.0512
Heptanes	0.0141	0.339	0.0620
Benzene	0.0046	0.109	0.0200
Toluene	0.0158	0.380	0.0693
C8+ Heavies	0.0416	6 0.99	7 0.1820
Total Emissions	1.059	8 25.4	35 4.6419
Total Hydrocarbon Emis		1.0598	25.435 4.6419
Total VOC Emissio			3.980 1.6388
Total HAP Emissio			0.710 0.1295
Total BTEX Emission	ons 0.0	0204	0.489 0.0892

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr

Page: 2

 Methane 23.3242 559.782 102.1602
Ethane 10.9577 262.986 47.9949
Propane 6.9210 166.104 30.3139
Isobutane 1.3969 33.525 6.1183
n-Butane 3.2938 79.050 14.4266
Isopentane 0.9498 22.794 4.1599
n-Pentane 1.1224 26.937 4.9160
n-Hexane 0.4596 11.031 2.0132
Cyclohexane 0.1757 4.216 0.7694
Other Hexanes 0.5848 14.035 2.5613
Heptanes 0.7072 16.974 3.0977
Benzene 0.2280 5.471 0.9985
Toluene 0.7908 18.978 3.4635
C8+ Heavies 2.0781 49.875 9.1021
Total Emissions 52.9899 1271.757 232.0956
Table Librarantean Emissiona 52,0000, 1071,757, 232,0056
Total Hydrocarbon Emissions 52.9899 1271.757 232.0956
Total VOC Emissions 18.7079 448.989 81.9405
Total HAP Emissions 1.4784 35.481 6.4752
Total BTEX Emissions 1.0187 24.449 4.4620

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 2.58e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%

	Page: 3		
Heptanes	2.00%	98.00%	
Benzene	2.00%	98.00%	
Toluene	2.00%	98.00%	
C8+ Heavies	2.00%	98.00%	

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25 Calculated Dry Gas Dew Point: 3.66 lbs. H2O/MMSCF

Temperature: 85.0 deg. F Pressure: 500.0 psig Dry Gas Flow Rate: 20.0000 MMSCF/day Glycol Losses with Dry Gas: 0.0737 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 63.67 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 4.20 gal/lb H2O

Rema Component	aining Abs in Dry Gas	
Water	5.74%	 94.26%
Carbon Dioxide	99.84%	0.16%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.96%	0.04%
Propane	99.93%	0.07%
Isobutane	99.90%	0.10%
n-Butane	99.86%	0.14%
Isopentane	99.85%	0.15%
n-Pentane	99.81%	0.19%
n-Hexane	99.66%	0.34%
Cyclohexane Other Hexanes	98.49%	
Heptanes	99.31%	0.69%
Benzene	86.79%	13.21%
Toluene C8+ Heavies	80.54% 97.30%	19.46% 2.70%

REGENERATOR

No Stripping Gas used in regenerator.

Remai Component i	-	tilled Overhead
Water 3		62.91%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
	0.0070	00.0170
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	96.95%
Other Hexanes	0.779	6 99.23%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene C8+ Heavies	7.88% 11.75%	92.12% 6 88.25%

STREAM REPORTS:

WET GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 8.35e+005 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 1.34e-001 5.31e+001 Carbon Dioxide 1.51e-001 1.46e+002 Nitrogen 3.93e-001 2.42e+002 Methane 7.70e+001 2.72e+004 Ethane 1.48e+001 9.80e+003

Propane 4.96e+000 4.81e+003 Isobutane 6.15e-001 7.86e+002 n-Butane 1.21e+000 1.54e+003 Isopentane 2.66e-001 4.22e+002 n-Pentane 2.62e-001 4.15e+002 Page: 5 n-Hexane 5.79e-002 1.10e+002 Cyclohexane 5.99e-003 1.11e+001 Other Hexanes 9.29e-002 1.76e+002 Heptanes 4.19e-002 9.25e+001 Benzene 9.99e-004 1.72e+000

Toluene 2.00e-003 4.05e+000 C8+ Heavies 2.00e-002 7.48e+001

Total Components 100.00 4.58e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 8.33e+005 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 7.72e-003 3.05e+000 Carbon Dioxide 1.51e-001 1.46e+002 Nitrogen 3.94e-001 2.42e+002 Methane 7.71e+001 2.72e+004 Ethane 1.48e+001 9.79e+003

Propane 4.96e+000 4.81e+003 Isobutane 6.15e-001 7.86e+002 n-Butane 1.21e+000 1.54e+003 Isopentane 2.66e-001 4.21e+002 n-Pentane 2.62e-001 4.14e+002

n-Hexane 5.78e-002 1.09e+002 Cyclohexane 5.91e-003 1.09e+001 Other Hexanes 9.28e-002 1.76e+002 Heptanes 4.17e-002 9.18e+001 Benzene 8.68e-004 1.49e+000

Toluene 1.61e-003 3.26e+000 C8+ Heavies 1.95e-002 7.28e+001

Total Components 100.00 4.58e+004

LEAN GLYCOL STREAM

Temperature: 85.00 deg. F Flow Rate: 3.50e+000 gpm

> Component Conc. Loading (wt%) (lb/hr)

Page: 6 TEG 9.85e+001 1.94e+003 Water 1.50e+000 2.96e+001 Carbon Dioxide 1.18e-012 2.32e-011 Nitrogen 1.35e-013 2.65e-012 Methane 4.77e-018 9.40e-017

Ethane 8.51e-008 1.68e-006 Propane 6.78e-009 1.34e-007 Isobutane 1.22e-009 2.41e-008 n-Butane 2.68e-009 5.27e-008 Isopentane 1.61e-004 3.17e-003

n-Pentane 2.06e-004 4.06e-003 n-Hexane 9.61e-005 1.89e-003 Cyclohexane 2.81e-004 5.53e-003 Other Hexanes 2.32e-004 4.56e-003 Heptanes 1.63e-004 3.20e-003

Benzene 6.06e-004 1.19e-002 Toluene 3.43e-003 6.76e-002 C8+ Heavies 1.40e-002 2.77e-001

Total Components 100.00 1.97e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 3.72e+000 gpm NOTE: Stream has more than one phase.

> Component Conc. Loading (wt%) (lb/hr)

TEG 9.36e+001 1.94e+003 Water 3.84e+000 7.97e+001 Carbon Dioxide 1.65e-002 3.42e-001 Nitrogen 1.01e-002 2.10e-001 Methane 1.13e+000 2.33e+001

Ethane 5.29e-001 1.10e+001 Propane 3.34e-001 6.92e+000 Isobutane 6.74e-002 1.40e+000 n-Butane 1.59e-001 3.29e+000 Isopentane 4.60e-002 9.53e-001

n-Pentane 5.43e-002 1.13e+000 n-Hexane 2.23e-002 4.62e-001 Cyclohexane 8.74e-003 1.81e-001 Other Hexanes 2.84e-002 5.89e-001 Heptanes 3.43e-002 7.10e-001

Benzene 1.16e-002 2.40e-001

Page: 7 Toluene 4.14e-002 8.58e-001 C8+ Heavies 1.14e-001 2.35e+000

Total Components 100.00 2.07e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 1.87e+003 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 5.65e+001 5.01e+001 Carbon Dioxide 1.58e-001 3.42e-001 Nitrogen 1.52e-001 2.10e-001 Methane 2.95e+001 2.33e+001 Ethane 7.39e+000 1.10e+001

Propane 3.18e+000 6.92e+000 Isobutane 4.88e-001 1.40e+000 n-Butane 1.15e+000 3.29e+000 Isopentane 2.67e-001 9.50e-001 n-Pentane 3.16e-001 1.12e+000

n-Hexane 1.08e-001 4.60e-001 Cyclohexane 4.24e-002 1.76e-001 Other Hexanes 1.38e-001 5.85e-001 Heptanes 1.43e-001 7.07e-001 Benzene 5.92e-002 2.28e-001

Toluene 1.74e-001 7.91e-001 C8+ Heavies 2.48e-001 2.08e+000

Total Components 100.00 1.04e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 1.62e+001 scfh

> Component Conc. Loading (vol%) (lb/hr)

> > Methane 6.83e+001 4.66e-001 Ethane 1.71e+001 2.19e-001 Propane 7.37e+000 1.38e-001 Isobutane 1.13e+000 2.79e-002 n-Butane 2.66e+000 6.59e-002

Page: 8

lsopentane 6.18e-001 1.90e-002 n-Pentane 7.30e-001 2.24e-002 n-Hexane 2.50e-001 9.19e-003 Cyclohexane 9.80e-002 3.51e-003 Other Hexanes 3.19e-001 1.17e-002

Heptanes 3.31e-001 1.41e-002 Benzene 1.37e-001 4.56e-003 Toluene 4.03e-001 1.58e-002 C8+ Heavies 5.73e-001 4.16e-002 ---------

_

Total Components 100.00 1.06e+000

Page: 1 GRI-GLYCaic VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Jay Bee Happy - RBV-2 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy2.ddf Date: November 16, 2016

DESCRIPTION:

Description: 40 MMSCFD Still Vent as fuel and excess to EC-1/2 for destruction No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 85.00 deg. F Pressure: 500.00 psig Wet Gas Water Content: Saturated

Component	Conc.
(vol %	b)
Carbon Dioxide	0.1510
Nitrogen	0.3940
Methane	77.0800
Ethane 1	4.8320
Propane	4.9670
Isobutane	0.6160
n-Butane	1.2100
Isopentane	0.2660
n-Pentane	0.2620
n-Hexane	0.0580
Cyclohexane	0.0060
Other Hexanes	0.0930
Heptanes	0.0420
Benzene	0.0010
Toluene	0.0020
C8+ Heavies	0.0200

DRY GAS:

Flow Rate: 40.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF Page: 2

LEAN GLYCOL:

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm

PUMP:

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

ŧ.

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 60.0 deg. F

Page: 1 GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: Jay Bee Happy - RBV-2 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy2.ddf Date: November 16, 2016

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.9985	23.963	4.3733
Ethane	0.4697	11.272	2.0572
Propane	0.2965	7.116	1.2987
Isobutane	0.0599	1.437	0.2623
n-Butane	0.1412	3.389	0.6186
Isopentane	0.0407	0.978	0.1784
n-Pentane	0.0482	1.156	0.2109
n-Hexane	0.0197	0.474	0.0865
Cyclohexane	0.0076	0.181	0.0331
Other Hexanes		1 0.60	3 0.1100
Heptanes	0.0304	0.730	0.1332
Benzene	0.0097	0.233	0.0426
Toluene	0.0336	0.807	0.1472
C8+ Heavies	0.0895		
Total Emissions	2.270	3 54.48	7 9. 9 439
Total Hydrocarbon Emis	sions	2.2703	54.487 9.943
Total VOC Emissio			.252 3.5135
Total HAP Emissio			514 0.2763
Total BTEX Emissi			.040 0.1898

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	49.9235	1198.164	218.6649
Ethane 2	23.4835	563.605	102.8579
Propane	14.8255	355.813	64.9359
Isobutane	2.9941	71.859	13.1143
n-Butane	7.0615	169.475	30.9292
Isopentane	2.0370	48.888	8.9220
n-Pentane	2.4078	57.787	10.5460
n-Hexane	0.9870	23.688	4.3230
Cyclohexane	0.3780	9.073	1.6558
Other Hexanes	1.255	5 30.13	1 5.4989
Heptanes	1.5206	36.494	6.6601

Benzene Toluene C8+ Heavies	0.4862 1.6806 4.4743	Page: 2 11.668 40.334 107.384	7.3610	'5
Total Emissions	113.515	1 2724.3	62 497. ⁻	1960
Total Hydrocarbon Emis Total VOC Emissio Total HAP Emissio Total BTEX Emissio	ns 40.1 ns 3.15	37 75.6	.593 176 390 13.8	5.6732

. . .

. . .

Page: 1 GRI-GLYCalc VERSION 4.0 - EQUIPMENT SUMMARY REPORT

Case Name: Jay Bee Happy - RBV-2 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy2.ddf Date: November 16, 2016

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 5.51e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	s 2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25 Calculated Dry Gas Dew Point: 3.53 lbs. H2O/MMSCF

Temperature: 85.0 deg. F Pressure: 500.0 psig Dry Gas Flow Rate: 40.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1475 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 63.67 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 4.49 gal/lb H2O

.

Co	Rema mponent	iining Abso in Dry Gas	
	Water		4.46%
	Carbon Dioxide	99.83%	0.17%
	Nitrogen	99.99%	0.01%
	Methane	99.99%	0.01%
	Ethane	99.96%	0.04%
	Propane	99.93%	0.07%
	Isobutane	99.89%	0.11%
	n-Butane	99.85%	0.15%
	Isopentane	99.84%	0.16%
	n-Pentane	99.79%	0.21%
			0.2170
	n-Hexane	99.63%	0.37%
	Cyclohexane	98.38%	1.62%
	Other Hexanes	99.72%	0.28%
	Heptanes	99.26%	0.74%
	Benzene	85.91%	14.09%
	Toluene	79.32%	20.68%
	C8+ Heavies		2.91%

REGENERATOR

No Stripping Gas used in regenerator.

	ning Dist n Glycol	
Water 3	 38.66%	61.34%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	96.95%
Other Hexanes	0.77%	5 99.23%
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
_ .		
Toluene	7.88%	92.12%
C8+ Heavies	11.75%	88.25%

Page: 1 GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Jay Bee Happy - RBV-2 File Name: C:\Program Files (x86)\GRI-GLYCalc4\Jay Bee Happy2.ddf Date: November 16, 2016

DESCRIPTION:

Description: 40 MMSCFD Still Vent as fuel and excess to EC-1/2 for destruction No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr	
Methane	0.9985	23.963	4.3733	
Ethane	0.4697	11.272	2.0572	
Propane	0.2965	7.116	1.2987	
Isobutane	0.0599	1.437	0.2623	
n-Butane	0.1412	3.389	0.6186	
Isopentane	0.0407	0.978	0.1784	
n-Pentane	0.0482	1.156	0.2109	
n-Hexane	0.0197	0.474	0.0865	
Cyclohexane		6 0.18 ⁻	0.0331	
Other Hexanes	s 0.025	51 0.60	0.1100	
Heptanes	0.0304	0.730	0.1332	
Benzene	0.0097	0.233	0.0426	
Toluene	0.0336	0.807	0.1472	
C8+ Heavies	0.089	5 2.148	3 0.3920	
Total Emissions	2.270	3 54.48		
Total Hydrocarbon Emis	ssions	2.2703	54.487 9.	9439
Total VOC Emissio	ons 0.8	3022 19	9.252 3.51	35
Total HAP Emissic	ons 0.0)631 1.	.514 0.276	3
Total BTEX Emissi	ons 0.	0433 1	.040 0.189	98

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/vr
oomponent	103/11	ibo/day	tons/yr

Page: 2

Methane	49.9235	1198.164	218.6649
Ethane 2	23.4835	563.605	102.8579
Propane	14.8255	355.813	64.9359
Isobutane	2.9941	71.859	13.1143
n-Butane	7.0615	169.475	30.9292
Isopentane	2.0370	48.888	8.9220
n-Pentane	2.4078	57.787	10.5460
n-Hexane	0.9870	23.688	4.3230
Cyclohexane	0.3780	9.073	1.6558
Other Hexanes	1.2555	5 30.131	5.4989
Heptanes	1.5206	36.494	6.6601
Benzene			
Toluene	1.6806	40.334	7.3610
C8+ Heavies	4.4743	107.384	19.5975
Total Emissions	113.515	1 2724.3	 62 497.1960
Total Hydrocarbon Emis Total VOC Emissio	ons 40.1	080 962	.724.362 497.1960 .593 175.6732
Total HAP Emissio			90 13.8134
Total BTEX Emission	ons 2.1	668 52.	002 9.4904

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 5.51e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%

Page: 3 Heptanes 2.00% 98.00% Benzene 2.00% 98.00% Toluene 2.00% 98.00% C8+ Heavies 2.00% 98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25 Calculated Dry Gas Dew Point: 3.53 lbs. H2O/MMSCF

Temperature: 85.0 deg. F Pressure: 500.0 psig Dry Gas Flow Rate: 40.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1475 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 63.67 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 4.49 gal/lb H2O

Rema Component	iining Ab in Dry Ga	sorbed s in Glycol
Water	5.54%	94.46%
Carbon Dioxide	99.83%	6 0.17%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.96%	0.04%
Propane	99.93%	0.07%
Isobutane	99.89%	0.11%
n-Butane	99.85%	0.15%
Isopentane	99.84%	0.16%
n-Pentane	99.79%	0.21%
n-Hexane	99.63%	0.37%
Cyclohexane	98.38%	6 1. 62%
Other Hexanes	99.72	% 0.28%
Heptanes	99.26%	0.74%
Benzene	85.91%	14.09%
Toluene C8+ Heavies	79.32% 97.09%	20.68% 6 2.91%

REGENERATOR

No Stripping Gas used in regenerator.

	ining Dis in Glycol	itilled Overhead
Water 3		 61.34%
Carbon Dioxide	0.00%	
Nitrogen	0.00%	100.00%
Methane	0.00%	
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
	• • • • •	00 500/
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	
Other Hexanes	0.77%	
Heptanes	0.45%	99.55%
Benzene	4.97%	95.03%
Toluene C8+ Heavies	7.88% 11.75%	92.12% % 88.25%

STREAM REPORTS:

WET GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 1.67e+006 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 1.34e-001 1.06e+002 Carbon Dioxide 1.51e-001 2.92e+002 Nitrogen 3.93e-001 4.85e+002 Methane 7.70e+001 5.43e+004 Ethane 1.48e+001 1.96e+004

Propane 4.96e+000 9.62e+003 Isobutane 6.15e-001 1.57e+003 n-Butane 1.21e+000 3.09e+003 Isopentane 2.66e-001 8.43e+002 n-Pentane 2.62e-001 8.31e+002 Page: 5 n-Hexane 5.79e-002 2.20e+002 Cyclohexane 5.99e-003 2.22e+001 Other Hexanes 9.29e-002 3.52e+002 Heptanes 4.19e-002 1.85e+002 Benzene 9.99e-004 3.43e+000

Toluene 2.00e-003 8.10e+000 C8+ Heavies 2.00e-002 1.50e+002

Total Components 100.00 9.17e+004

DRY GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 1.67e+006 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 7.44e-003 5.89e+000 Carbon Dioxide 1.51e-001 2.91e+002 Nitrogen 3.94e-001 4.85e+002 Methane 7.71e+001 5.43e+004 Ethane 1.48e+001 1.96e+004

Propane 4.96e+000 9.62e+003 Isobutane 6.15e-001 1.57e+003 n-Butane 1.21e+000 3.09e+003 Isopentane 2.66e-001 8.42e+002 n-Pentane 2.61e-001 8.29e+002

n-Hexane 5.78e-002 2.19e+002 Cyclohexane 5.90e-003 2.18e+001 Other Hexanes 9.28e-002 3.51e+002 Heptanes 4.17e-002 1.84e+002 Benzene 8.59e-004 2.95e+000

Toluene 1.59e-003 6.42e+000 C8+ Heavies 1.94e-002 1.45e+002

Total Components 100.00 9.16e+004

LEAN GLYCOL STREAM

Temperature: 85.00 deg. F Flow Rate: 7.50e+000 gpm

> Component Conc. Loading (wt%) (lb/hr)

Page: 6 TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.18e-012 4.97e-011 Nitrogen 1.35e-013 5.71e-012 Methane 4.78e-018 2.02e-016

Ethane 8.54e-008 3.61e-006 Propane 6.79e-009 2.87e-007 Isobutane 1.22e-009 5.17e-008 n-Butane 2.68e-009 1.13e-007 Isopentane 1.61e-004 6.81e-003

n-Pentane 2.07e-004 8.73e-003 n-Hexane 9.63e-005 4.07e-003 Cyclohexane 2.82e-004 1.19e-002 Other Hexanes 2.32e-004 9.81e-003 Heptanes 1.63e-004 6.89e-003

Benzene 6.03e-004 2.54e-002 Toluene 3.40e-003 1.44e-001 C8+ Heavies 1.41e-002 5.96e-001

Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 7.95e+000 gpm NOTE: Stream has more than one phase.

> Component Conc. Loading (wt%) (lb/hr)

TEG 9.37e+001 4.16e+003 Water 3.69e+000 1.64e+002 Carbon Dioxide 1.65e-002 7.33e-001 Nitrogen 1.01e-002 4.49e-001 Methane 1.13e+000 4.99e+001

Ethane 5.29e-001 2.35e+001 Propane 3.34e-001 1.48e+001 Isobutane 6.75e-002 2.99e+000 n-Butane 1.59e-001 7.06e+000 Isopentane 4.61e-002 2.04e+000

n-Pentane 5.45e-002 2.42e+000 n-Hexane 2.23e-002 9.91e-001 Cyclohexane 8.79e-003 3.90e-001 Other Hexanes 2.85e-002 1.27e+000 Heptanes 3.44e-002 1.53e+000

Benzene 1.15e-002 5.12e-001

Page: 7 Toluene 4.11e-002 1.82e+000 C8+ Heavies 1.14e-001 5.07e+000

Total Components 100.00 4.44e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 3.86e+003 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 5.48e+001 1.00e+002 Carbon Dioxide 1.64e-001 7.33e-001 Nitrogen 1.58e-001 4.49e-001 Methane 3.06e+001 4.99e+001 Ethane 7.68e+000 2.35e+001

Propane 3.30e+000 1.48e+001 Isobutane 5.06e-001 2.99e+000 n-Butane 1.19e+000 7.06e+000 Isopentane 2.78e-001 2.04e+000 n-Pentane 3.28e-001 2.41e+000

n-Hexane 1.13e-001 9.87e-001 Cyclohexane 4.42e-002 3.78e-001 Other Hexanes 1.43e-001 1.26e+000 Heptanes 1.49e-001 1.52e+000 Benzene 6.12e-002 4.86e-001

Toluene 1.79e-001 1.68e+000 C8+ Heavies 2.58e-001 4.47e+000

Total Components 100.00 2.15e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 3.46e+001 scfh

> Component Conc. Loading (vol%) (lb/hr)

> > Methane 6.82e+001 9.98e-001 Ethane 1.71e+001 4.70e-001 Propane 7.37e+000 2.97e-001 Isobutane 1.13e+000 5.99e-002 n-Butane 2.66e+000 1.41e-001

Isopentane 6.19e-001 4.07e-002 n-Pentane 7.32e-001 4.82e-002 n-Hexane 2.51e-001 1.97e-002 Cyclohexane 9.85e-002 7.56e-003 Other Hexanes 3.19e-001 2.51e-002

Heptanes 3.33e-001 3.04e-002 Benzene 1.36e-001 9.72e-003 Toluene 4.00e-001 3.36e-002 C8+ Heavies 5.76e-001 8.95e-002

Total Components 100.00 2.27e+000

• • •

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Happy 2016 Mod Huntington West Virginia Jay-Bee Oli & Gas Vertical Fixed Roof Tank 210 BBL Vertical, Fixed-Roof Condensate Tank Single Tank Determination
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 10.00 14.00 0.00 8.225.29 58.00 477,066.70 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.25 0.05
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Happy 2016 Mod - Vertical Fixed Roof Tank Huntington, West Virginia

·					Liquid								
		Da	ity Liquid S	urf.	Bulk				Vapor	Liquid	Vapor		
		Tem	peratura (de	8g F)	Temp	Vapo	r Pressure	(psia)	Mol.	Mass	Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 6)	Ali	56.69	48.70	64.69	52.55	2.7385	2.3081	3.2322	69.0000			92.00	Option 4. RVP=6, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Happy 2016 Mod - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	394.4042
Vapor Space Volume (cu ft):	399.2441 0.0341
Vapor Density (Ib/cu ft): Vapor Space Expansion Factor:	0.1379
Vented Vapor Saturation Factor	0.5754
To the Marcol Market and	
Tank Vapor Space Volume: Vapor Space Volume (cu fi):	399.2441
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft):	5.0833
Tank Shell Height (ft):	15.0000
Average Liquid Height (fi):	10.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (fl/ft):	0.0500
Sheli Radius (ft):	5.0000
Vapor Density	
Vapor Density (Ib/cu ft):	0.0341
Vapor Molecular Weight (b/b-mole):	69.0000
Vapor Pressure at Daily Average Liquid	2.7385
Surface Temperature (psia):	2.7385 516.3645
Daily Avg, Llquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	50.3083
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	512.2183
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,202.9556
Vapor Space Expansion Factor	
Vapor Space Expansion Factor.	0.1379
Daily Vapor Temperature Range (deg. R):	31.9767
Daily Vapor Pressure Range (psia):	0.9241
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	2.7385
Vapor Pressure at Dally Minimum Liquid	2.7303
Surface Temperature (psia):	2.3081
Vapor Pressure at Daily Maximum Liquid	2.000
Surface Temperature (psia):	3.2322
Daity Avg, Liquid Surface Temp, (deg R);	516.3645
Daily Min. Liquid Surface Temp. (deg R):	508.3704
Daily Max, Liquid Surface Temp. (deg R):	524.3587
Daily Ambient Temp. Range (deg. R):	19.1500
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5754
Vapor Pressure at Deily Average Liquid:	0 7007
Surface Temperature (psia): Vapor Spece Outage (ft):	2.7385 5.0833
Working Losses (lb):	1,467.8852
Vapor Molecular Weight (IbAb-mole):	69.0000
Vapor Pressure at Oaily Average Liquid	0.2000
Surface Temperature (psia): Annual Net Throughput (gal/yr.):	2.7385 477.068.7041
Annual Net Throughput (gal/yr.): Annual Turnovers:	477,088.7041 58.0000
Turnover Factor.	0 6839
Maximum Liquid Volume (gal).	8,225.2880
Maximum Liquid Height (ft):	14.0000
Tank Diameter (ft):	10.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	1,862 2694

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Happy 2016 Mod - Vertical Fixed Roof Tank Huntington, West Virginia

	Losses(lbs)			
Components	Working Loss	Breathing Loss	Total Emissions	
Gasoline (RVP 6)	1,467.87	394.40	1,862.27	

TANKS 4.0 Report

Certificate of Analysis

Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Apr. 02, 2014

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Jay Ree Oil & Gas Static Sam Cylin Analy

10. 41	Jay Bee Oil & Gas	Sampled By:	DW-GAS	
	RPT 8-1H	Sample Of:	Gas	Spot
	: Submeter	Sample Date:	03/25/2014	12:00
inder No:		Sample Conditions	:290 psig	
alyzed:	04/01/2014 13:29:16 by GR14	Method:	GPA 2286	

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.73 psía			<u> </u>
Nitrogen	0.394	0.530		GPM TOTAL C2+	6.223	<u> </u>
Carbon Dioxide	0.151	0.319			0.223	
Methane	77.080	59.336				
Ethane	14.832	21.401	3.980			
Propane	4.967	10.510	1.373			
Iso-Butane	0.616	1.718	0.202			
n-Butane	1.210	3.375	0.383			
iso-Pentane	0.266	0.921	0.097			
n-Pentane	0.262	0.907	0.095			
i-Hexanes	0.093	0.376	0.037			
n-Hexane	0.058	0.239	0.023			
Benzene	0.001	0.004	NIL			
Cyclohexane	0.006	0.023	0.002			
i-Heptanes	0.031	0.1 50	0.014			
n-Heptane	0.011	0.056	0.005			
Toluene	0.002	0.008	0.001			
i-Octanes	0.015	0.080	0.007			
n-Octane	0.002	0.012	0.001			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	NIL	NIL	NIL			
-Nonanes	NIL	NIL	NIL			
n-Nonane	NIL	NIL	NIL			
Decane Plus	0.003	0.035	0.003			
	100.000	100.000	6.223			
Physical Properties			Total	C10+		
Calculated Molecular	Weight		20.84	162.34		
GPA 2172-09 Calcul						
Calculated Gross B1	ru per ft' @					
Real Gas Dry BTU			1265.2	8778.9		
Vater Sat. Gas Base			1243.1	8626.1		
Relative Density Real		(0.7218	5.6078		
Compressibility Facto	r	().9964			

Patter S. Petro

Quality Assurance:

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

•

Apr. 02, 2014

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Jay Bee Oil & C Field: Station Name: RF Sample Point: Su Cylinder No: 02 Analyzed: 04

ay Bee Oil & Gas	Sampled By;	DW-GAS	
RPT 8-1H	Sample Of;	Gas Spot	
Submeter	Sample Date:	03/25/2014 12:00	
1258	Sample Conditio;	ns: 290 psig	
14/01/2014 13:29:16 by GR14	Method;	GPA 2286	

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-butane n-Butane Iso-pentane n-Pentane Hexanes Plus	0.394 0.151 77.080 14.832 4.967 0.616 1.210 0.266 0.262 0.222 100.000	0.530 0.319 59.336 21.401 10.510 1.718 3.375 0.921 0.907 0.983 100.000	3.980 1.373 0.202 0.383 0.097 0.095 0.093 6.223	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	6.223 2.243 0.285	
Relative Density Real Gas 0.72 Calculated Molecular Weight 20,1 Compressibility Factor 0.996 GPA 2172-09 Calculation: Calculated Gross BTU per ft³ @ 14.73 psia & 66 Paul Gross DTU Paul Action Determined		265.2	C6+ 3.1591 91.50 5014.1 4926.8			

Patter L. Petro

Quality Assurance:

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-14030288-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Alan Ball **Gas Analytical Services** PO Box 1028 Bridgeport, WV 26330

Field: Jay Bee Oil & Gas Station Name: RPT 8-1H Sample Point: Submeter Cylinder No: 0258 Analyzed: 04/01/2014 13:29:16 by GR14

Apr.	02,	201	4
------	-----	-----	---

Sampled By: DW-GAS Sample Of: Gas Spot Sample Date: 03/25/2014 12:00 Sample Conditions: 290 psig Method: GPA 2286

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-Butane n-Butane Iso-Pentane n-Pentane Hexanes Heptanes Plus	0.394 0.151 77.080 14.832 4.967 0.616 1.210 0.266 0.262 0.151 0.071 100.000	0.530 0.319 59.336 21.401 10.510 1.718 3.375 0.921 0.907 0.615 0.368 100.000	3.980 1.373 0.202 0.383 0.097 0.095 0.060 0.033 6.223	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL IC5+	6.223 2.243 0.285	
Relative Density Real Gas 0.72 Calculated Molecular Weight 20 Compressibility Factor 0.99 GPA 2172-09 Calculation: 0.99 Calculated Gross BTU per ft ³ @ 14.73 psia & 6 0.99 Real Gas Dry BTU 126		Total 0.7218 20.84 0.9964 & 60°F 1265.2 1243.1	C7+ 3.5570 103.02 5577.8 5480.7			

Patter L. Perro

Quality Assurance:

Hydrocarbon Laboratory Manager

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

		20	19	18	17	16	15	14	13	12	11	10	9	¢	7	<u></u> б	5	4	ω	2	<u> </u>	Referred to:	
<u>lab@gasana.com</u> Submitted by: Alan Ball, Lab M Stonewood, W	Please email results to:																		Jay-Bee Oil & Gas	Jay-Bee Oil & Gas	Jay-Bee Oil & Gas	Southern Petroleum Laboratories 4790 NE Evangeline Thruway Carencro, JA 70520 Attn: Patti Petro Client	
Submitted by: Alan Ball, Lab Manger Stonewood, WV Laboratory	al Off																		RPT 8-1H	RPT 8-2H	RPT 8H	Location	
															-				3/25/2014	3/25/2014	3/25/2014	Date of Collection	
Received by																			12:00	11:45		Time of Collection	
L.	Ā																		0258	0118		Cylinder Number	
	E		=																18.8.1			Sulfur Speciation	Testi
																						Total Sulfur (GPA-2199)	ng Rec
	`	Д				,		_				_										Extended Hydrocarbon	Testing Requested
			\downarrow									·· ·· ·-							×	×	×	Extended Hydrocarbon	
	12	<u>- (</u>						_														Extended Hydrocarbon C ₁ C ₁₄₊ (GPA-2286)	
1	F	•.								,												Hydrocarbon Dewpoint	
																						Gas Temperature (F)	

Gas Analytical Services, Inc. P.O. Box 1028, Bridgeport, WV 26330 4888 Water Street, Stonewood, WV 26301 Phone:(304) 623-0020 Fax: (304) 624-8076

HUBIN &

Date: 3/25/2014

ŀ	
	205 Water Street, Stonewood, WV 26301 Sample Date: <u>3 / 2.5 / / 3</u> Time: <u>10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 </u>
	ANGEAS 205 Water Street, Stonewood, WV 26301 Sample Frider
	Sample Source: <u>APt Sin</u>
	Sample Source: <u>APT. 8 in</u>
	Sample Source:
	Sample Source: <u>APt 8i1</u> Sample Pressure: <u>340 PS1</u> Sample Temp.: Sample Type: Weilhead Sub-meter Master Meter Alternative Fuel Source Analysis
	Sempled By: A Landred rest hat this same was obtained from the
	Sampled D
	Comments Randy_ Breda
	Send Results 10
	Analysis Type: OStandard OExtended
,	Analysis - TP
	14B0288 001A
ř.	2 / 257 14/Time: 1/ 72/
	CGAS 205 Water Street, Stonewood, WV 26301 Sample Date: 31251 14 Time: 11 45 A bb@gasana.com Phone: 304-623-0020 Meter ID Number:
(b GAS lab@gasana.com Phone: 304-02.50000 (Victor 12)
	$\int GAS how matched control of the source of$
	Sample Source: <u>RPTS-2h</u> Sample Source: <u>RPTS-2h</u> Sample Temp.:
	Sample Source. Sample Temp.: Sample Pressure: 320 PSi Sample Type: Weilhead Sub-meter Alternative Fuel
)	Sample Type: Weithead Above Sampled By: D. Wilson Who declares that this sate was obtained from the source Indicated above.
K .	Sampled By:
)	Comments: <u>Extended ANALysis</u> Send Results To: <u>RArdy Brada</u>
Į .	Send Results To: KArdy Black
	Analysis Type: DStandard DExtended
	• • •
	() C A C 205 Water Street, Slonewood, WV 26301 Sample Date: 3 1251 14 Time: 12:00 p
	A Lah @gusana.com Phone: 304-623-4020 Vieter ID Nathour
	Company Name: <u>TAY-Bre Oil + GAS TAC</u> .
	Sample Source: RP+S-1h
	Sample Pressive: 290 FS/ Sample Temp.:
	Sample Type 24 weilinean and a second s
	Sampled By: D Win 150 N (Frint and Sign) Who declares that this surger was obtained from the source indicated above.
	Comments: Extended ANALYSIS
	Send Results To: Randy Bruch 15
	Analysis Type: Standard Sextended

ŀ

V

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

FLASH LIBERAT	TION OF HYDROCARBON LIQUID)
Separator HC Liquid		
Pressure, psig	340	Stock Tank 0
Temperature, °F	65	70
Gas Oil Ratio (1)		500
Gas Specific Gravity (2)	403400	1.387
Separator Volume Factor (3)	1.2987	1.000

STOCK TANK FLUID PROPERTIES		
Shrinkage Recovery Factor (4)	0.7700	
Oil API Gravity at 60 °F	70.79	
Reid Vapor Pressure, psi (5)	5.28	

Quality Control Check			
	Sampling Conditions	Test Si	amples
Cylinder No.		W-2408*	W-2423
Pressure, psig	340	299	297
Temperature, °F	65	66	66

(1) - Sci of flashed vapor per barrel of stock tank oil

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

(4) - Fraction of first stage separator liquid

(5) - Absolute pressure at 100 deg F

Analyst _____M. G.

* Sample used for flash study Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

ŝ

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT Hydrogen Sulfide* Nitrogen	MOL% < 0.001 0.036	GPM
Carbon Dioxide	0.141	
Methane	24.485	
Ethane	25.943	6.993
Propane	23,253	6.457
isobutane	4.773	1.574
n-Bulane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.180
Hexanes	2.378	0.988
Heptanes Plus	<u>1.701</u>	<u>0.761</u>
Totals	100.000	22.579

Computed Real Characteristics	Of Heptanes Plus:
Specific Gravity	

Specific Gravity	3. 599	(Alr=1)
Molecular Weight	102.69	• •
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF
drogen Sulfide tested in laboratory by: S	itained Tu	be Method (G

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mot %

Base Conditions: 14.850 PSI & 60 Deg F

Analyst: MR Processor; AL Cylinder ID: ST# 20 Certified: FESCO, Ltd. - Alice, Texas

÷

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2288

COMPONENT	MOL %	GPM	WT %
Hydrogen Suifide*	< 0.001	or at	< 0.001
Nitrogen	0.036		0.025
Carbon Dloxide	0.141		0.157
Methane	24.485		9.930
Ethane	25.943	6.993	19,719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1.116	5.521
n-Pentane	3.175	1.160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.738	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.169	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	0.004	0.002	<u>0.015</u>
Totals	100.000	22.579	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

ì

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

MOL%	GPM
< 0.001	
0.185	
0.018	
0.000	
0.202	0.054
10.137	2.815
8.852	2.920
30.167	9.586
0.370	0.142
15.123	5.574
17.412	6.361
13,160	5.466
<u>4.374</u>	<u>1.881</u>
100.000	34.799
	< 0.001 0.185 0.018 0.000 0.202 10.137 8.852 30.167 0.370 15.123 17.412 13.160 <u>4.374</u>

Computed Real	Characteristics	Of Heptanes Plus:
---------------	-----------------	-------------------

Specific Gravity	3.547	(Air=1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Alr=1)
Compressibility (Z)	0.9539	• •
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF
Income Dublish to the University of the		L

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

ì.

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.012
Methane	0.000		0.001
Ethane	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.852	2.920	7.721
n-Butane	30.167	9.586	26.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17.412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.569	0.261	0.856
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0. 989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	0.008	0.032
O-Xylene	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals	100.000	34.799	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)
Compressibility (Z)	0.9539	
Molecular Weight	66.64	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Date Sampled: 08/12/15

Date Analyzed: 08/22/15

Job Number:

Sample: Well B1 2H

FLASH LIBERATION OF SEPARATOR WATER								
	Separator	Stock Tank						
Pressure, psig	540	0						
Temperature, °F	78	70						
Gas Water Ratio (1)		4.06						
Gas Specific Gravity (2)		1.069						

Piston No. : WF# 235

Base Conditions: 14.65 PSI & 60 °F

Certified: **FESCO**, Ltd. Alice, Texas ьß 6,4 6ne 6.F.A

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: SE Technologies, LLC Building D, Second Floor 98 Vanadium Road Bridgeville, Pennsylvania 15017-3061

Sample: Well B1 2H

Gas Liberated from Separator Water From 540 psig & 78 °F to 0 psig & 70 °F

Date Sampled: 08/12/15

Job Number:

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	1.821	
Carbon Dioxide	1.049	
Methane	56.602	
Ethane	16.424	4.367
Propane	8.000	2.191
Isobutane	1.516	0.493
n-Butane	4.274	1.340
2-2 Dimethylpropane	0.054	0.020
Isopentane	1.730	0.629
n-Pentane	2.405	0.867
Hexanes	2.953	1.209
Heptanes Plus	<u>3.172</u>	<u>1.397</u>
Totals	100.000	12.514

Specific Gravity	3.549	(Air=1)
Molecular Weight	101.90	
Gross Heating Value	5380	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compress/bility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

*Hydrogen Sulfide tested in laboratory by: Stained Tube Method (GPA 2377) Results: Results: CPA 2377)

Base Conditions: 14.650 PSI & 60 Deg F

Sampled By: (16) Gonzalez Analyst: MR Processor: OA Cylinder ID: WF# 10S

Alice, Texa Certified: FE SCO Ltd. r de la 200

David Dannhaus 361-661-7015

.

.

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	1.821		1.663
Carbon Dioxide	1.049		1.505
Methane	56.602		29.592
Ethane	16.424	4.367	16.095
Propane	8.000	2.191	11.497
Isobutane	1.516	0.493	2.872
n-Butane	4.274	1.340	8,096
2,2 Dimethylpropane	0.054	0.020	0.127
Isopentane	1.730	0.629	4.069
n-Pentane	2.405	0.867	5.655
2,2 Dimethylbutane	0.075	0.031	0.211
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.145	0.059	0.407
2 Methylpentane	0.807	0.333	2.268
3 Methylpentane	0.520	0.211	1.481
n-Hexane	1.405	0.575	3.947
Methylcyclopentane	0.134	0.046	0.368
Benzene	0.028	0.008	0.072
Cyclohexane	0.185	0.063	0.507
2-Methylhexane	0.337	0.156	1.102
3-Methylhexane	0.351	0.159	1.145
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.326	0.141	1.054
n-Heptane	0.588	0.270	1.921
Methylcyclohexane	0.318	0.127	1.018
Toluene	0.053	0.018	0.158
Other C8's	0.486	0.225	1.747
n-Octane	0.147	0.075	0.548
Ethylbenzene	0.003	0.001	0.011
M & P Xylenes	0.026	0.010	0.090
O-Xylene	0.003	0.001	0.010
Other C9's	0.129	0.065	0.530
n-Nonane	0.024	0.013	0.099
Other C10's	0.025	0.015	0.116
n-Decane	0.004	0.003	0.020
Undecanes (11)	<u>0.004</u>	<u>0,002</u>	<u>0.019</u>
Totals	100.000	12.514	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.069	(Air=1)
Compressibility (Z)	0.9914	
Molecular Weight	30.68	
Gross Heating Value		
Dry Basis	1741	BTU/CF
Saturated Basis	1712	BTU/CF

ATTACHMENT U

Facility-Wide Controlled Emissions Summary Sheet

		I	ATTA(CHME	NT U – F	ACILITY	Y-WIDE	CONTRO	OLLED H	EMISSIO	NS SUM	MARY S	HEET			
List all	sources	s of em	issions	in this	table. U	se extra p	ages if ne	cessary.								
Emission NO _x CO		V	C	C SO ₂		PM ₁₀		PM _{2.5}		CH ₄		GHG (CO ₂ e)				
Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
2E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
3E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
4E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
5E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
6E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
7E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
8E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
9E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
10E	0.150	0.657	0.126	0.552	0.008	0.036	0.001	0.004	0.011	0.050	0.011	0.050	0.003	0.015	181.1	793.4
11E	0.050	0.219	0.042	0.184	0.003	0.012	0.0003	0.001	0.004	0.017	0.004	0.017	0.001	0.005	60.4	264.5
12E	0.030	0.131	0.025	0.110	0.002	0.007	1.80E-04	0.001	0.002	0.010	0.002	0.010	0.001	0.003	36.2	158.7
13E	0.050	0.219	0.042	0.184	0.003	0.012	3.00E-04	0.001	0.004	0.017	0.004	0.017	0.001	0.005	60.4	264.5
14E	0.223	0.977	0.754	3.30	0.594	2.60	6.00E-04	0.003	0.029	0.129	0.029	0.129	0.006	0.028	333	1,457
15E	0.223	0.977	0.754	3.30	0.594	2.60	6.00E-04	0.003	0.029	0.129	0.029	0.129	0.006	0.028	333	1,457
16E	0.185	0.81	0.370	1.62	0.04	0.18	0.0004	0.0017	0.013	0.057	0.013	0.057	0.126	0.553	89.7	393.0
17E	0.470	2.06	2.33	10.20	4.12	0.91	3.00E-04	0.001	0.024	0.106	0.024	0.106	0.58	0.133	797.7	3,494.0
18E	0.470	2.06	2.33	10.20	4.12	0.91	3.00E-04	0.001	0.024	0.106	0.024	0.106	0.58	0.133	797.7	3,494.0
22E	0.001	0.006	0.001	0.005	7.15E-05	3.13E-04	7.80E-06	3.42E-05	9.88E-05	4.33E-04	9.88E-05	4.33E-04	0.001	0.003	1.6	6.88
23E	1.52	6.66	0.52	2.27	1.40	6.13	< 0.01	0.03	0.11	0.50	0.11	0.50	12.32	53.97	1,750	7,666
TOTAL	4.73	20.7	8.42	36.9	19.2	49.8	0.019	0.082	0.36	1.57	0.36	1.57	13.7	55.0	6,099	26,716

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET														
List all s	ources of	emissions	in this tab	le. Use ex	xtra pages	if necessa	ry.							
Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
1E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
2E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
3E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
4E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
5E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
6E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
7E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
8E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
9E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
10E	1.13E-04	4.93E-04	3.15E-06	0.000	5.10E-06	2.23E-05					0.003	0.012	0.003	0.012
11E	3.75E-05	1.64E-04	1.05E-06	0.000	1.70E-06	7.45E-06					0.001	0.004	0.001	0.004
12E	2.25E-05	9.86E-05	6.30E-07	0.000	1.02E-06	4.47E-06					0.001	0.002	0.001	0.002
13E	3.75E-05	1.64E-04	1.05E-06	0.000	1.70E-06	7.45E-06					0.001	0.004	0.001	0.004
14E	2.90E-04	0.001	0.007	0.031	0.025	0.108					0.016	0.071	0.048	0.211
15E	2.90E-04	0.001	0.007	0.031	0.025	0.108					0.016	0.071	0.048	0.211
16E	0.015	0.065	0.001	0.0046	3.71E-04	0.002	1.65E-05	7.22E-05	1.30E-04	5.68E-04			0.022	0.096
17E	2.38E-04	0.001	2.11E-03	0.001	0.005	0.002					0.124	0.027	0.135	0.034
18E	2.38E-04	0.001	2.11E-03	0.001	0.005	0.002					0.124	0.027	0.135	0.034
22E			2.73E-08	1.20E-07	4.42E-08	1.94E-07					2.34E-05	1.03E-04	2.45E-05	1.07E-04
23E	0.32	1.41	< 0.01	0.02	< 0.01	0.02	< 0.01	< 0.01	< 0.01	0.01	0.01	0.06	0.53	2.31
TOTAL	0.338	1.48	0.029	0.110	0.074	0.285	1.06E-03	0.005	0.010	0.044	0.569	1.46	1.22	4.21

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Class I Legal Advertisement

ATTACHMENT V – CLASS I LEGAL ADVERTISEMENT Affidavit Notice Will Be Submitted Upon Receipt

PLANNED PUBLIC NOTICE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for a natural gas production facility located on Walnut Fork Road, near Alma, in Tyler County, West Virginia. The latitude and longitude coordinates are: 39.469846, -80.750799.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

20.7 tons of Nitrogen Oxides per year
36.9 tons of Carbon Monoxide per year
29.3 tons of Particulate Matter per year
57.4 tons of Volatile Organic Compounds per year
0.08 tons of Sulfur Dioxide per year
1.48 tons of Formaldehyde per year
0.11 tons of Benzene per year
0.29 tons of Toluene per year
1.70 tons of Hexane per year
4.49 tons of Total Hazardous Air Pollutants per year
26,804 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the 1^{st} day of March, 2017. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the day of , 2016.

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc. 3570 Shields Ave. Cairo, WV 26337