

2201 Double Creek Drive Suite 4004 Round Rock, TX 78664 Tel (512) 671-3434 Fax (512) 671-3446

January 30, 2018 PBW Project No. 1862

Mr. James Fish Alaska Department of Environmental Conservation Division of Spill Prevention and Response 610 University Avenue Fairbanks, AK 99709

Subject: Kiewit Infrastructure West Co., Fairbanks, AK – 2050 Peger Road Site,

2017 Data Collection Update to Alaska Department of Environmental Conservation

ADEC File No. 102.38.164/ADEC Hazard ID: 25680

Dear Mr. Fish,

Pastor, Behling & Wheeler, LLC (PBW), on behalf of Kiewit Infrastructure West Co. (Kiewit) is pleased to provide the following update on the site investigation activities and data evaluation at the Kiewit 2050 Peger Road, Fairbanks, Alaska Site (the Site). Additional investigation activities were conducted to address comments raised by the Alaska Department of Environmental Conservation (ADEC) in an email dated March 24, 2017. In that email, the ADEC provided additional guidance on developing the Method 3, specifically the ADEC Contaminated Site Program Technical Memorandum Determining the Fraction of Organic Carbon (foc) for Methods Three and Four (March 6, 2017). PBW prepared a brief scope of work in an email to ADEC dated August 18, 2017 detailing the planned sampling activities to address the foc sampling at the Site. The proposed sampling was approved by the ADEC in an email dated August 18, 2017, and the field investigation was conducted in September 2017. During the investigation, soil borings were also drilled and sampled near the two areas where total petroleum hydrocarbons (TPH) diesel-range organics (DRO) concentrations in soils exceeded the Maximum Allowable Concentration (MAC) of 12,500 mg/kg. The objective of the DRO sampling was to refine and verify the extent of DRO concentrations in soil that exceeded the MAC. Groundwater samples were also collected from the Site monitoring wells in October 2017 during the seasonal high groundwater period. Details of the field activities and results are summarized below.

FIELD ACTIVITIES

Field activities were completed by Nortech on behalf of Kiewit in September 2017. Soil samples were collected using either direct push technology (DPT) or hand augers. Locations of the soil borings are shown on Figure 1.

FOC Soil Sampling

Nortech oversaw the drilling and sampling of four boring locations (BH-47, BH-48, BH-49, and BH-50 (Figure 1)) located east of the 4-Bay Building on September 13, 2017. The soil samples were collected from each boring and analyzed for organic carbon. The sampling program was conducted in accordance with the ADEC Contaminated Site Program Technical Memorandum *Determining the Fraction of Organic Carbon (foc) for Methods Three and Four* (March 6, 2017). Per the PBW email dated August 18, 2017, two soil samples were collected from each soil boring at the following intervals since the DRO contamination extends to or below the seasonal high groundwater level:

- a shallow sample collected within the vadose zone (either 2.5-5 ft bgs or 5-7.5 ft bgs) and
- a deeper sample collected at the groundwater interface (either 5-7.5 ft bgs or 10-12.5 ft bgs).

A total of eight soil samples were collected and submitted to SGS in Anchorage, Alaska and analyzed for modified total organic carbon (TOC) (in triplicate) using the Method SW9060_Mod in accordance with ADEC guidance (March 2017). The TOC data were then used to evaluate the percentage of *f*oc in the soils at the Site. The analytical report for the TOC analyses is provided in Attachment A and the data are summarized on Table 1.

DRO Soil Sampling

As detailed in the Site Characterization Report Addendum (PBW, 2016), there were two areas near the former source areas where DRO concentrations were detected above the ADEC DRO MAC of 12,500 mg/kg. The two areas, as shown on the attached Figure 2, were represented by three soil samples: samples BH1 (15,600 mg/kg) and BH6 (12,900 mg/kg) near the 4-Bay Building; and soil sample FDL-11 (17,000 mg/kg) near the former fuel delivery lines west of the 4-Bay Building.

To evaluate the extent of the DRO concentrations in previous soils boring that were above the MAC, four additional DPT soil borings (BH-51, BH-52, BH-53, and BH-54) were advanced west of the 4-Bay Building on September 13, 2017. One soil sample per boring was collected (four normal samples and one duplicate) and analyzed for DRO by AK102 Analytical Method. Soil samples were collected from each boring where the highest PID reading or visual staining was observed. If no PID readings or staining was observed, a sample from immediately above the saturated zone was collected and submitted for analyses. Four hand auger samples (three normal samples and one duplicate) were collected at 2.5 ft bgs from three locations (BH55, BH56, and BH57) near soil boring FDL-11 on September 26, 2017 and analyzed for DRO by AK102 Method. The soil samples collected were submitted to SGS for analysis.

Soil DRO analytical results are presented on Table 2. All soil cuttings and investigation-derived wastes were placed in drums for proper disposal pending profiling with an approved disposal facility.

Groundwater Sampling

In response to the ADEC email dated March 24, 2017, Kiewit scheduled to conduct two groundwater sampling events at the Site. The first of the two events was conducted in September 2017 during the seasonal high groundwater event. Nortech measured the groundwater elevations and collected groundwater samples from monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5 on September 26-27, 2017. Nortech collected samples using low-flow sampling techniques in accordance with the ADEC guidance. One duplicate sample, equipment blank, and trip blank were collected as part of the field sampling program. Groundwater samples were submitted to SGS in Anchorage, Alaska for laboratory analysis for the following analytes:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) by EPA 8021B
- Gasoline-range organics (GRO) by AK 101;
- DRO by AK 102;
- Residual range organics (RRO) by AK 103; and
- Polycyclic aromatic hydrocarbons (PAHs) by EPA 8270SIM

The analytical report for the groundwater samples in provided in Attachment B. In addition to the groundwater sampling, the monitoring wells were re-surveyed by a licensed, professional surveyor on October 6, 2017. The groundwater elevations and survey elevations are summarized on Table 3.

DATA EVALUATION

foc Soil Data Evaluation

Following the ADEC Guidance (March 2017), PBW developed a site-specific *f*oc by calculating the 95% lower confidence level (LCL) of the mean for the data collected in September 2017 (Table 1). Since the soil lithology was relatively similar for the two intervals sampled, PBW proposes to calculate a 95% LCL on the entire data set. The 95% LCL calculated for the foc using the TOC data is 0.489%. Details of the statistical analysis are provided in Attachment C.

Proposed Method 3 Site-Specific Data/Petroleum Cleanup Levels

As detailed in the SCR Addendum (PBW, May 2016), PBW developed Method 3 Alternative Cleanup Levels (ACLs) for site-specific chemicals of concern (COCs) (DRO, GRO, 1,2,4-trimethylbenzene, 1-methylnaphthalene, and 2-methylnaphthalene) using the ADEC Cumulative Risk Calculator and provided the information in the February 13, 2017 letter. The ADEC email dated March 24, 2017 stated that the Method 3 ACLs proposed would need to be updated with the recently revised soil and groundwater cleanup levels and equations that became effective November 6, 2016. The ADEC also stated that the foc value from one sample used to calculate the Method 3 levels was not consistent with the ADEC guidance.

PBW reviewed the ADEC guidance and proposes to develop site-specific petroleum cleanup levels. The site-specific petroleum cleanup levels were developed using the ADEC Petroleum Cleanup Level Calculator with the following site-specific parameters:

- PBW proposes to change the Organic Carbon Content of Soil from the default value of 0.001 g/g to 0.00489 g/g (or 0.489%) based on the 95% LCL calculated using the TOC analytical data previously discussed.
- The calculated mean value for hydraulic conductivity (K) for the uppermost groundwater bearing zone is 420 meters per year (m/yr) (details provided in the February 13, 2017 letter). Therefore, PBW proposes to use that value for K instead of the default value for K of 876 m/yr.
- PBW proposes to use default values for the other parameters.

The proposed resulting DRO petroleum cleanup levels are provided in Attachment D.

For soils at the Site, PBW also evaluated Method 3 Cleanup Levels assuming the commercial/industrial land use scenario in accordance with 18 AAC 75.340(e) using the most recent soil cleanup levels and calculators provided on the ADEC Contaminated Sites website

(http://dec.alaska.gov/spar/csp/Calculators.htm). As detailed in the Site Characterization Report – Addendum dated May 5, 2016, the current and future land use is assumed to be and remain commercial/industrial. PBW used the site-specific foc (95% LCL) in soils in the calculation for Outdoor Worker Cleanup Levels for the site-related COCs. The proposed calculated Method 3 Cleanup Levels for soils (not including migration to groundwater pathway) are provided in Attachment E. However, the soil analytical data were compared to Method 2 Human Health Cleanup Levels, as provided on Table 4. Once the ADEC approves use of the Method 3 values, the summary table will be updated with the Method 3 Human Health Cleanup Levels.

For groundwater at the Site, the 2016 ADEC Method 2 Cleanup Levels for Migration to Groundwater listed in 18 AAC 75.341 Table B1 were used to evaluate the concentrations of the primary COCs at the Site (Table 5). Based on the 2016 Migration to Groundwater Cleanup Levels, there are additional COCs in soils at concentrations that indicate a risk for migration to groundwater that prior to 2016 were not

considered a risk to impact groundwater. However, as discussed in the groundwater data review, the groundwater concentrations indicate that the contaminants in soil are protective of groundwater and will not lead to a migration of COCs in groundwater.

DRO Soil Data Evaluation

The additional soil samples that was collected in September 2017 (BH51 through BH57) had DRO detections that were less than the ADEC MAC of 12,500 mg/kg. Based on the additional sampling, the estimated area near the Former Used Oil AST where soil concentrations are greater than the MAC is approximately 100 ft² and the area near the former Fuel Delivery Lines is approximately 25 ft² (5 feet x 5 feet), indicating the areas where the MAC exceedances are relatively small in size. The DRO MAC exceedances near the Former Used Oil AST are in the 7.5 feet to 10 feet bgs range, which is within the groundwater smear zone for the Site (i.e., depth to groundwater at MW-3 has ranged from about 6.4 feet to 10.2 feet bgs).

ADEC guidance states that the MAC should not be exceeded unless a demonstration is made under Method Three or Method Four that the petroleum hydrocarbons "will not migrate and will not pose a significant risk to human health, safety, or welfare, or to the environment; free product must be recovered as required by 18 AAC 75.325(f)" (ADEC Guidance Document – Cleanup Levels Guidance for Levels 2 and 3 – DRAFT (April 2017)). The concern would be that soil concentrations above the MAC could indicate the potential for non-aqueous phase liquid (NAPL) being mobile in the vadose zone. However, given the small areas (less than 100 ft² in total area) where these DRO concentrations above the MAC have been detected, and that the MAC exceedances near the Former Used Oil AST are trapped within the groundwater smear zone and no significant NAPL has been measured in MW-3 (measured as a "sheen", Table 3) immediately adjacent to this area, the amount of residual NAPL in the soils is likely minimal and does not pose a risk for mobile NAPL.

Groundwater Data Review

PBW prepared a groundwater potentiometric surface map using the groundwater elevation data collected in September 2017 (Figure 3). The groundwater gradient is to the northwest, which is consistent with the previous monitoring events. Groundwater analytical data compared to the ADEC November 6, 2016 groundwater cleanup levels are presented in Table 6. The following COCs were detected in September 2017 above the new groundwater cleanup levels:

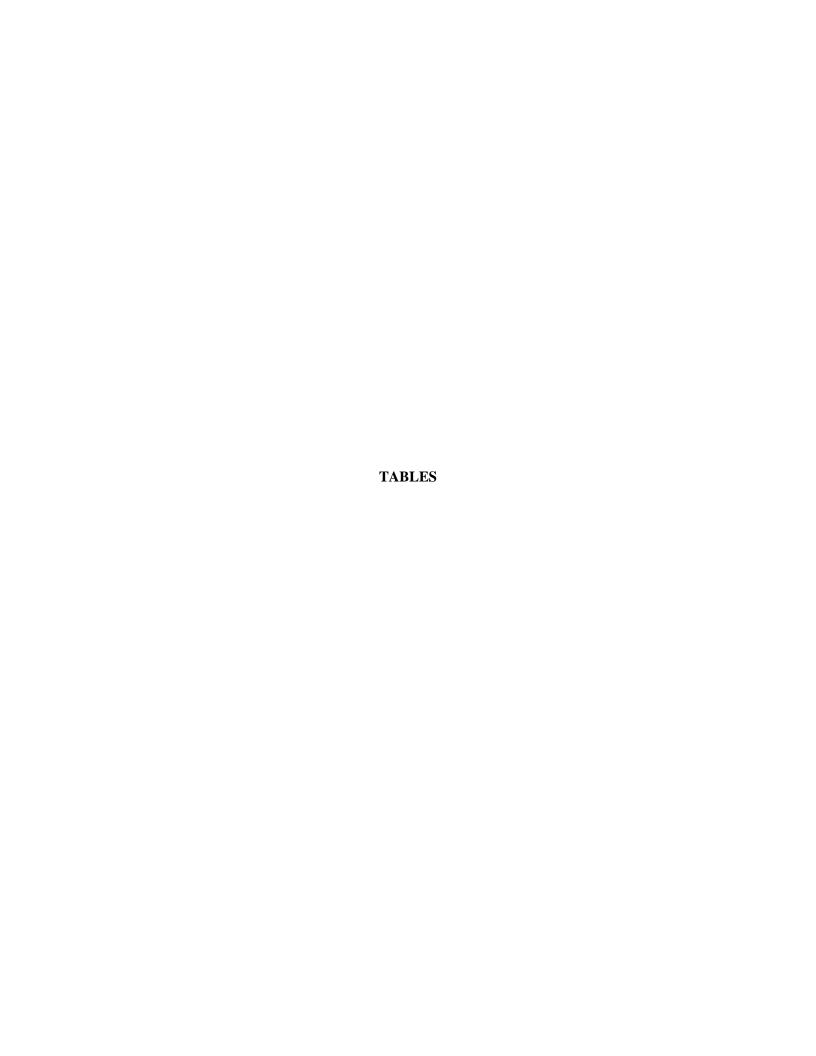
- DRO concentrations exceeded its respective Method 2 Cleanup Level of 1.5 mg/L in samples collected from MW-2 (6.16 mg/L) and MW-3 (6.42 mg/L). Figure 4 shows DRO concentrations over time. DRO concentrations were detected above the groundwater Cleanup Levels in monitoring wells MW-2 and MW-3; however, the concentrations detected are less than the historical highs at each well. DRO concentrations appear to be overall decreasing in MW-2, with a slight increase in MW-3.
- Naphthalene concentrations exceeded the Method 2 Cleanup Level of 0.0017 mg/L (previous Cleanup Level was 0.730 mg/L) in monitoring well MW-2 at 0.0312 mg/L.

The groundwater concentrations for the site COCs are presented on Figure 5. Kiewit plans to conduct another groundwater sampling event in the Spring of 2018. After that event, the groundwater trends for the seasonal high and seasonal low events will be evaluated separately using the Mann-Kendall analysis. With the 2016 groundwater cleanup levels being used, COC 1,2,4-Trimethylbenzene will also be analyzed in the groundwater samples collected in the Spring 2018.

RECOMMENDATIONS

Following ADEC review of the foc calculation and statistical evaluation for the DRO concentrations in soil, PBW proposes to prepare the Response Action Plan for the Site to include the following:

- Finalize the ADEC-approved Method 3 Cleanup Levels for soils at the Site using the 2016 Human Health Cleanup criteria; and
- Draft Equitable Servitude documentation as recording institutional controls proposed for the property for groundwater restrictions and restrictions on soil excavation within the property. We have assumed that with the institutional control preventing groundwater use at the Site, the Migration to Groundwater pathway would not be considered complete, thereby removing that pathway from further consideration upon ADEC approval.


Please do not hesitate to contact me at eric.matzner@pbwllc.com or 512-671-3434 if you have any questions or concerns.

Sincerely,

PASTOR, BEHLING & WHEELER, LLC

Eric C. Matzner

Associate Hydrogeologist

TABLE 1 SUMMARY OF ORGANIC CARBON RESULTS

KIEWIT INFRASTRUCTURE WEST CO. - 2050 PEGER ROAD SITE

Sample ID	Depth	Date	TOC(%)	TOC2 (%)	TOC3 (%)	Lithology
BH47	5-7.5	9/13/2017	0.405	0.375	0.548	mixed sandy silt, very fine sand
DH47	10-12.5	9/13/2017	0.15	0.118	1.1	coarse sand with gravel
BH48	2.5-5	9/13/2017	1.5	1.29	1.2	sand with silt lenses
D1140	5-7.5	9/13/2017	0.176	0.19	0.204	silty sand
BH49	2.5-5	9/13/2017	2.43	1.93	2.22	silty sand
БП49	5-7.5	9/13/2017	0.127	0.297	0.349	silty sand
BH50	2.5-5	9/13/2017	0.191	0.241	0.23	sandy silt
BH30	5-7.5	9/13/2017	0.696	0.348	0.268	silty sand to sandy silt

95% Lower Confidence Level:	0.489%
(see statistics in Attachment C)	

TABLE 2
DRO SOIL CONCENTRATIONS NEAR AREAS WITH MAXIMUM ALLOWABLE EXCEEDANCES KIEWIT INFRASTRUCTURE WEST CO. - 2050 PEGER ROAD, FAIRBANKS, ALASKA

S A	Leading ID:	Carrella Dadas	Sample	TPH-DRO
Source Area	Location ID:	Sample Date:	Interval:	12,500
	BH1-3-0718	18-Jul-12	8-10	15,600
E II 10'I ACT	BH1-4-0718 (Dup)	18-Jul-12	8-10	13,700
Former Used Oil AST Excavation - Base	BH6-4-0718	18-Jul-12	7.5-10	12,900
LACCIVATION Base	BH51	13-Sep-17	7.5-10	6,890
	BH510 (Dup)	13-Sep-17	7.5-10	8,690
	FDL-11-0915	15-Sep-10	2	17,000
	BH52	13-Sep-17	7.5-10	4,310
	BH53	13-Sep-17	7.5-10	6,300
Former Fuel Delivery Line	BH54	13-Sep-17	7.5-10	6,670
Former Fuel Delivery Line	BH-55	25-Sep-17	2.5	<12.4
	BH-155 (Dup)	25-Sep-17	2.5	<12.2
	BH-56	25-Sep-17	2.5	32.6
	BH-57	25-Sep-17	2.5	895

Notes:

Values in mg/kg

Highlighted values exceed the Maximum Allowable Concentration for DRO of 12,500 mg/kg

TABLE 3 MONITORING WELL GROUNDWATER MEASUREMENTS KIEWIT INFRASTRUCTURE WEST CO. - 2050 PEGER ROAD, FAIRBANKS, ALASKA

WELL ID	TOP OF CASING ELEVATION (FT SSRP)	SCREENED INTERVAL (FT BGS)	DATE	DEPTH TO NAPL (FT BTOC)	DEPTH TO GROUNDWATER (FT BTOC)	GROUNDWATER ELEVATION (FT SSRP)	Notes
MW-1	99.66	5 - 15	10/16/2012		9.40	90.26	
	99.66		7/2/2014		8.25	91.41	
	99.66		10/16/2014		8.03	91.63	
	99.66		4/27/2015		10.47	89.19	
	99.66		9/2/2015		8.21	91.45	
	99.66		8/25/2016		6.83	92.83	
	437.66		9/26/2017		9.57	428.09	Survey conducted 10-6-17
MW-2	98.52	4 - 14	10/16/2012	Sheen	8.50	90.02	
	98.52		7/2/2014	6.68	6.82	91.70	
	98.52		8/8/2014		5.33	93.19	
	98.52		10/16/2014	6.56	7.06	91.46	
	98.52		4/27/2015	Sheen	9.19	89.33	
	98.52		9/2/2015	Sheen	7.08	91.44	
	98.52		8/25/2016	Sheen	5.71	92.81	[
	436.06		9/26/2017	Sheen	8.15	427.91	Survey conducted 10-6-17
MW-3	99.08	4 - 14	10/16/2012	Sheen	9.10	89.98	
	99.08		7/2/2014		7.56	91.52	
	99.08		10/16/2014		7.71	91.37	
	99.08		4/27/2015	Sheen	10.20	88.88	
	99.08		9/2/2015		7.63	91.45	
	99.08		8/25/2016	Sheen	6.35	92.73	
	436.32		9/26/2017	Sheen	8.49	427.83	Survey conducted 10-6-17
MW-4	99.81	5 - 15	10/16/2012		10.10	89.71	
	99.81		7/2/2014		8.36	91.45	
	99.81		10/16/2014		8.78	91.03	
	99.81		4/27/2015		11.23	88.58	
	99.81		9/2/2015		8.90	90.91	
	99.81		8/25/2016		7.52	92.29	
	437.37		9/26/2017		9.69	427.68	Survey conducted 10-6-17
MW-5	99.72	5 - 15	10/16/2012		9.90	89.82	
	99.72		7/2/2014		8.13	91.59	
	99.72		10/16/2014		8.49	91.23	
	99.72		4/27/2015		11.10	88.62	
	99.72		9/2/2015		8.42	91.30	
	99.72		8/25/2016		7.18	92.54	ļ
	437.37		9/26/2017		9.64	427.73	Survey conducted 10-6-17

- 1. SSRP Site-specific reference point (southwest corner of 4-Bay building arbitrary eleavtion of 100.0 ft)
- 2. BGS below ground surface
- 3. BTOC below top of casing
- 3. --- No non-aqueous phase liquids (NAPL) detected
- 4. NAPL non-aqueous phase liquids

					Fo	rmer Used Oil	AST Excavation	ı - Base			Former	Used Oil AST	Excavation - S	idewalls	
				oral aall	aras coll	orga coll	DIII 2 0510	DIII 4 0510	DITC 4 0710	GEG 4 SOLL	oras com	orac anti	aras coll	GEGG COLL	araa aass
Location ID: Sample Date:			ADEC 2016	CFS1-0811 11-Aug-10	CFS2-0811	CFS3-0811	BH1-3-0718 18-Jul-12	BH1-4-0718 18-Jul-12	BH6-4-0718 18-Jul-12	CFS4-0811 11-Aug-10	CFS5-0811 11-Aug-10	CFS6-0811 11-Aug-10	CFS7-0811 11-Aug-10	CFS8-0811	CFS9-0811 11-Aug-10
•			Human Health	11-Aug-10 8	11-Aug-10 7.5	11-Aug-10 8	8-10	8-10	7.5-10	7.5	11-Aug-10	11-Aug-10	11-Aug-10	11-Aug-10	11-Aug-10 8
Sample Interval: Constituent	CAS	Method	Cleanup Criteria			Ü					/	/	/	4	
Total Petroleum Hydrocarbons	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TPH-GRO		AK 101	5,200	<33	<38	<23				<27	<43	<3.4	<3.5	<24	<31
TPH-DRO TPH-RRO		AK 102 AK 103	10,300 10,000	11,000 450	3,000 <210	8,400 <210	15,600 <748	13,700	12,900	7,600 <210	9,200 <230	<10 <21	<11 <22	11,000 36,000	13,000 340
		AK 103	10,000	450	<210	<210	48</td <td>342</td> <td>183</td> <td><210</td> <td><230</td> <td><21</td> <td><22</td> <td>36,000</td> <td>340</td>	342	183	<210	<230	<21	<22	36,000	340
Volatile Organic Compounds															
Benzene	71-43-2	8260B/8021B	11	< 0.15	< 0.18	< 0.13	0.142J	0.148J	0.0562	< 0.15	< 0.17	< 0.028	< 0.034	< 0.04	< 0.17
Butylbenzene, sec-	135-98-8	8260B	28	2.0	0.58	0.38	1.56	1.57	0.843	< 0.15	1.3	< 0.028	< 0.034	< 0.04	2.7
Ethylbenzene	100-41-4	8260	49	1.4	0.35	0.17	1.33	1.38	0.906	< 0.15	0.59	< 0.028	< 0.034	< 0.04	2.2
Isopropylbenzene	98-82-8	8260B	5.6	1.2	0.36	0.17	1.02	1.08	0.549	< 0.15	0.53	< 0.028	< 0.034	< 0.04	1.7
Toluene	108-88-3	8260B/8021B	200	< 0.77	< 0.92	< 0.63	0.249J	< 0.264	< 0.284	< 0.76	< 0.87	< 0.14	< 0.17	< 0.2	< 0.86
Trimethylbenzene, 1,2,4-	95-63-6	8260B	43	28	9	14	29.4	28	31.7	13	16	0.058	< 0.034	0.086	47
Trimethylbenzene, 1,3,5-	108-67-8	8260B	37	10	3	4.8	8.73	8.19	10.6	5.6	5.4	< 0.028	< 0.034	1.8	14
Xylenes	1330-20-7	8260B	57	7.4	1.44	2.96	5.18	5.17	13.9	1.36	2.45	< 0.056	< 0.067	0.39	10.4
Semi-Volatile Organic Compounds															
Acenaphthene	83-32-9	8270D/SIM	4600	1.8			< 0.0716	< 0.172		1.1					1.2
Anthracene	120-12-7	8270D/SIM	23000	0.39			0.204	< 0.172		0.17					0.63
Fluorene	86-73-7	8270D/SIM	3100	6.9			1.49	10.1J		3.6					7
Methylnaphthalene, 1-	90-12-0	8270D/SIM	68	40			13.9	62.9		21					41
Methylnaphthalene, 2-	91-57-6	8270D/SIM	310	67			22.5	103		34					70
Naphthalene	91-20-3	8260B/8270D SIM	29	22	7	8.5	33.3	34	32.9	12	16	0.11	0.037	0.38	30
Phenanthrene	85-01-8	8270D/SIM	2,300	7.2			1.96	11.8J		3.7					7.7
Pyrene	129-00-0	8270D/SIM	2,300	0.21			0.348	0.381		0.095					0.28

- Notes:

 1. Sampling locations shown on Figure 1.

 2. Human Health cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone

 3. Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.

 4. Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria are italic/highlight type.
- J = Estimated value.
 6. <= Compound not detected at the specified detection limit.</p>
 --- = not analyzed

		I	1	ı										I						
							A	djacent to Fo	rmer Used (il AST						Adjacent	to Former Use	d Oil AST		
				BH7-4-	BH13-4-	BH14-4-	BH15-3-	BH16-3-	BH17-3-	BH25-4-										
Location ID:				0718	0718	0718	0718	0718	0718	0719	CD05 1014	SB06-1014	SB08-1015	CD00 1015	SB09-1015	CD10 1015	SB10-1015	SB10-1015	SB11-1015	SB11-1015
Sample Date:			ADEC 2016	18-Jul-12	18-Jul-12	18-Jul-12	18-Jul-12	18-Jul-12	18-Jul-12	19-Jul-12	14-Oct-14	14-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14
*			Human Health	7.5-10	-	7.5-10	7.5-10	5-7.5	5-7.5			7.5-10	0-2	0-2	10-12.5	0-2	5-7.5	10-12.5	0-2	12.5-15
Sample Interval:	CAS	Method	Cleanup Criteria		7.5-10					7.5-10	10-12.5									
Constituent Total Petroleum Hydrocarbons	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
J																				
TPH-GRO		AK 101	5,200																	
TPH-DRO TPH-RRO		AK 102 AK 103	10,300 10,000	11.3J	9,420 143	6,560 112	10,900	15.5J 30.4	9.13J	7,740 85	2,910	8,590	< 0.0077	0.0325	4.41	< 0.00714	6.94	4.31	< 0.00663	1.79
		AK 103	10,000	<13.8	143	112	122	30.4	23.4J	85			0.0771	0.224	< 0.0266	0.0352	< 0.0266	< 0.0255	< 0.00663	< 0.0262
Volatile Organic Compounds							_													
Benzene	71-43-2	8260B/8021B	11	0.0183	0.108J	0.0916J	0.0864J	0.0141J	0.0163J	0.0822J			< 0.00646	< 0.00482	< 0.2	< 0.00608	< 0.179	< 0.0751	< 0.00458	< 0.00339
Butylbenzene, sec-	135-98-8	8260B	28	0.177	2.9	1.72	2.2	< 0.0266	< 0.0318	0.46			< 0.0129	< 0.00965	1.73	< 0.0122	< 0.357	1.82	< 0.00916	0.303
Ethylbenzene	100-41-4	8260	49	0.167	3.34	2.34	1.62	0.0282J	0.0337J	0.252J			< 0.0129	< 0.00965	1.36	< 0.0122	< 0.357	1.2	< 0.00916	0.107
Isopropylbenzene	98-82-8	8260B	5.6	0.116	1.68	1.24	1.17	0.0324J	0.0388J	0.258J			< 0.0129	< 0.00965	< 0.4	< 0.0122	< 0.357	0.881	< 0.00916	0.109
Toluene	108-88-3	8260B/8021B	200	0.0254J	0.31	0.292	0.161J	0.0299J	0.0352J	0.175J			< 0.0129	< 0.00965	< 0.4	< 0.0122	< 0.357	< 0.15	< 0.00916	< 0.00678
Trimethylbenzene, 1,2,4-	95-63-6	8260B	43	1.48J	73.8	55.2	40.9	0.0388J	0.0786J	34.9			< 0.0248	< 0.0186	37	< 0.0234	41.7	7.22	< 0.0176	4.79
Trimethylbenzene, 1,3,5-	108-67-8	8260B	37	1.18	20.3	10.3	11	0.0333J	0.0556	22.2			< 0.0129	< 0.00965	9.41	0.0122	13.4	10	< 0.00916	1.17
Xylenes	1330-20-7	8260B	57	1.29	28.9	14.4	11.3	0.0896J	0.115J	10.4			< 0.0378	< 0.0282	10.9	< 0.0355	7.38	9.73	< 0.0268	0.68
Semi-Volatile Organic Compounds																				
Acenaphthene	83-32-9	8270D/SIM	4600										< 0.00185	< 0.00855	< 0.161	< 0.00169	< 0.0768	< 0.16	< 0.00162	< 0.157
Anthracene	120-12-7	8270D/SIM	23000										< 0.00185	< 0.00855	< 0.161	< 0.00169	< 0.0768	< 0.16	< 0.00162	< 0.157
Fluorene	86-73-7	8270D/SIM	3100										< 0.00185	< 0.00855	1.74	< 0.00169	0.605	3.03	< 0.00162	1.13
Methylnaphthalene, 1-	90-12-0	8270D/SIM	68										< 0.00185	< 0.00855	16.3	0.00668	9.57	23.3	< 0.00162	4.6
Methylnaphthalene, 2-	91-57-6	8270D/SIM	310										< 0.00185	< 0.00855	23	0.00999	10.6	35.6	< 0.00162	7.05
Naphthalene	91-20-3	8260B/8270D SIM	29	1.57J	14.8	14.5	20.8	0.0435J	0.0577J	12.4			< 0.0248	< 0.0186	8.79	< 0.0234	5.01	13.9	< 0.0176	2.19
Phenanthrene	85-01-8	8270D/SIM	2,300										< 0.00185	< 0.00855	1.92	< 0.00169	0.763	3.41	< 0.00162	1.45
Pyrene	129-00-0	8270D/SIM	2,300										< 0.00185	< 0.00855	0.103	< 0.00169	0.0601	< 0.16	< 0.00162	0.0464

- Notes:

 1. Sampling locations shown on Figure 1.

 2. Human Health cleanup criteria based on 18AAC 75.341, Method 2,
 Under 40-Inch Zone

 3. Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.

 4. Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria are in.
- J = Estimated value.

 Compound not detected at the specified detection limit.

 --- = not analyzed

							Adjacent to	Former Fuel	Delivery Line	3						Fu	iel Delivery L	ine			
																					1 /
				D1125 4	DITO 0	DIIIO A	D1120 4						EDI I	EDI A	EDI O	EDI A	EDI 4	TDI 6	EDI (EDI S	EDI O
Location ID:				BH27-4- 0719	BH28-3- 0719	BH29-3- 0719	BH30-4- 0912	CD01 1014	CD02 1014	CD02 1014	CD04 1014	SB04-2-1014	FDL-1- 0915	FDL-2- 0915	FDL-2A- 0915	FDL-3- 0915	FDL-4- 0915	FDL-5- 0915	FDL-6- 0915	FDL-7- 0915	FDL-8- 0915
			ADEC 2016																		
Sample Date:			Human Health	19-Jul-12	19-Jul-12	19-Jul-12	09-Oct-12		14-Oct-14			14-Oct-14	15-Sep-10	15-Sep-10	15-Sep-10	15-Sep-10	15-Sep-10	15-Sep-10	15-Sep-10	15-Sep-10	15-Sep-10
Sample Interval:			Cleanup Criteria	7.5-10	7.5-10	7.5-10	7.5-10	12.5-15	10-12.5	10-12.5	10-12.5	10-12.5	4	6	6	6	6	3	3	3	3
Constituent	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Total Petroleum Hydrocarbons																					
TPH-GRO		AK 101	5,200																		
TPH-DRO		AK 102	10,300	10,100	12.3J	957	<14	378	< 9.14	9,360	4,450	4,490	1,900	3,900	3,200	6,700	3,900	1,000	5,500	660	6,800
TPH-RRO		AK 103	10,000	97.7	44.8	18.1J	<28						49	<210	<210	250	<210	<20	<220	150	290
Volatile Organic Compounds																					
Benzene	71-43-2	8260B/8021B	11	0.0866J	0.0166J	0.0102J	< 0.048							< 0.11	< 0.11						
Butylbenzene, sec-	135-98-8	8260B	28	< 0.164	< 0.0314	< 0.0199	< 0.048							0.24	0.24						
Ethylbenzene	100-41-4	8260	49	0.417	0.0368J	0.0217J	< 0.048							0.18	0.16						
Isopropylbenzene	98-82-8	8260B	5.6	0.336	0.0403J	0.0249J	< 0.048							0.14	0.13						
Toluene	108-88-3	8260B/8021B	200	0.186J	0.0348J	0.022J	< 0.24							< 0.53	< 0.55						
Trimethylbenzene, 1,2,4-	95-63-6	8260B	43	17.8	0.147	0.0652	< 0.048							20	18						
Trimethylbenzene, 1,3,5-	108-67-8	8260B	37	16.7	0.066	0.047	< 0.048							17	14						
Xylenes	1330-20-7	8260B	57	2.98	0.134J	0.0728J	< 0.096							12.4	9.3						
Semi-Volatile Organic Compounds																					
Acenaphthene	83-32-9	8270D/SIM	4600											0.26	0.26						
Anthracene	120-12-7	8270D/SIM	23000											0.045	0.042						
Fluorene	86-73-7	8270D/SIM	3100											0.52	0.45						
Methylnaphthalene, 1-	90-12-0	8270D/SIM	68											23	17						
Methylnaphthalene, 2-	91-57-6	8270D/SIM	310											14	7.6						
Naphthalene	91-20-3	8260B/8270D SIM	29	14.4	0.117	0.0885	< 0.048							4	3.7						
Phenanthrene	85-01-8	8270D/SIM	2,300											0.52	0.46						
Pyrene	129-00-0	8270D/SIM	2,300											0.051	0.04						

- Notes:

 1. Sampling locations shown on Figure 1.

 2. Human Health cleanup criteria based on 18AAC 75.341, Method 2,
 Under 40-Inch Zone

 3. Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.

 4. Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria are in
- J = Estimated value.
 < = Compound not detected at the specified detection limit.
 --- = not analyzed

											1					
						Fu	el Delivery L	ine					East of 4-B	ay Building		
				FDL-9-	FDL-10-	FDL-11-	BH24-4-	BH24-5-	SB07-1015/	SB07-1015/	,					
Location ID:			ADEC 2016	0915	0915	0915	0719	0719	TSP07	TSP07	SB12-1015	SB12-1015	SB12-2-1015	SB13-1015	SB13-1015	SB13-1015
Sample Date:			Human Health	15-Sep-10	15-Sep-10	15-Sep-10	19-Jul-12	19-Jul-12	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14	15-Oct-14
Sample Interval:			Cleanup Criteria	4	3	2	7.5-10	7.5-10	0-2.5	7.5-10	0-2	10-12.5	10-12.5	0-2	8.5-10	10-12.5
Constituent	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Total Petroleum Hydrocarbons																
TPH-GRO		AK 101	5,200													
TPH-DRO		AK 102	10,300	7,200	5,600	17,000	7,380	6,300	91.5	5,840	< 6.36	<7.67	<7.66	46.2		<8.01
TPH-RRO		AK 103	10,000	<220	<230	450	<266	<132	85.8	<26.4	57.9	<7.67	<7.66	326		<8.01
Volatile Organic Compounds																
Benzene	71-43-2	8260B/8021B	11				0.0716J	0.0643J	< 0.00716	< 0.156	< 0.0035	< 0.00646	< 0.00604	< 0.00366		< 0.00721
Butylbenzene, sec-	135-98-8	8260B	28				2.53	2.2	< 0.0143	1.77	< 0.00701	< 0.0129	< 0.0121	< 0.00732		< 0.0144
Ethylbenzene	100-41-4	8260	49				1.5	1.61	< 0.0143	1.05	< 0.00701	< 0.0129	< 0.0121	< 0.00732		< 0.0144
Isopropylbenzene	98-82-8	8260B	5.6				1.33	1.35	< 0.0143	< 0.312	< 0.00701	< 0.0129	< 0.0121	< 0.00732		< 0.0144
Toluene	108-88-3	8260B/8021B	200				0.193J	0.182J	< 0.0143	< 0.312	< 0.00701	< 0.0129	< 0.0121	< 0.00732		< 0.0144
Trimethylbenzene, 1,2,4-	95-63-6	8260B	43				62.4	61.7	< 0.0275	54.9	< 0.0135	< 0.0249	< 0.0232	< 0.0141		< 0.0277
Trimethylbenzene, 1,3,5-	108-67-8	8260B	37				20.4	20.3	< 0.0143	16.8	< 0.00701	< 0.0129	< 0.0121	< 0.00732		< 0.0144
Xylenes	1330-20-7	8260B	57				38.8	38.5	< 0.0419	11	< 0.0205	< 0.0378	< 0.0353	< 0.0214		< 0.0421
Semi-Volatile Organic Compounds																
Acenaphthene	83-32-9	8270D/SIM	4600				< 0.161	< 0.157	< 0.00186	< 0.158	< 0.00154	< 0.00183	< 0.00186	< 0.00768		< 0.00194
Anthracene	120-12-7	8270D/SIM	23000				< 0.161	< 0.157	< 0.00186	< 0.158	< 0.00154	< 0.00183	< 0.00186	< 0.00768		< 0.00194
Fluorene	86-73-7	8270D/SIM	3100				0.981	0.865	< 0.00186	0.567	< 0.00154	< 0.00183	< 0.00186	< 0.00768		< 0.00194
Methylnaphthalene, 1-	90-12-0	8270D/SIM	68				26.7	22	< 0.00186	11.3	< 0.00154	< 0.00183	< 0.00186	< 0.00768		< 0.00194
Methylnaphthalene, 2-	91-57-6	8270D/SIM	310				31	28.5	< 0.00186	15.4	< 0.00154	< 0.00183	0.00735	< 0.00768		< 0.00194
Naphthalene	91-20-3	8260B/8270D SIM	29				19.5	18.6	< 0.0275	8.04	< 0.0135	< 0.0249	< 0.0232	< 0.0141		< 0.0277
Phenanthrene	85-01-8	8270D/SIM	2,300				1.12	0.999	< 0.00186	0.708	< 0.00154	< 0.00183	< 0.00186	< 0.00768		< 0.00194
Pyrene	129-00-0	8270D/SIM	2,300				0.0632	0.0572	< 0.00186	0.0396	< 0.00154	< 0.00183	< 0.00186	< 0.00768		< 0.00194

- Notes:

 1. Sampling locations shown on Figure 1.

 2. Human Health cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone

 3. Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.

 4. Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria are in
- J = Estimated value.
 < = Compound not detected at the specified detection limit.
 --- = not analyzed

														Off-Site			
				BH31-3-	BH31-4-	BH32-2-	BH33-5-	BH34-4-	BH34-5-	BH35-4-							
Location ID:	:		ADEC 2016	1012	1012	1012	1012	1012	1012	1012	BH35	BH36	BH37	BH38	BH39	BH40	BH41
Sample Date:	:		Human Health	10-Oct-12	22-Jun-15												
Sample Interval	:		Cleanup Criteria	10-15	15-20	10-12.5	10-15	10-16	15-20	10-15	5-6	7.5-10	7.5-10	11	10-10.5	10-10.5	9-10.5
Constituent	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Total Petroleum Hydrocarbons																	
TPH-GRO		AK 101	5,200								13 J	8.88 J	3,300	9,690	6,130	9,370	7,800
TPH-DRO		AK 102	10,300	830	<13	<11	<11	970	<12	<11	1.58 J	0.628 J	165	465	404	444	596
TPH-RRO		AK 103	10,000	<22	<26	<22	<23	<22	<24	<23	20.4 J	< 6.32	39.2	405 J	41.7	55.4	40.3
Volatile Organic Compounds																	
Benzene	71-43-2	8260B/8021B	11	< 0.019	< 0.034	< 0.027	< 0.03	< 0.12	< 0.033	< 0.026			< 0.0683		< 0.00481		< 0.00506
Butylbenzene, sec-	135-98-8	8260B	28	0.19	< 0.034	< 0.027	< 0.03	1.3	< 0.033	< 0.026			< 0.137		0.602		1.24
Ethylbenzene	100-41-4	8260	49	< 0.019	< 0.034	< 0.027	< 0.03	< 0.12	< 0.033	< 0.026			< 0.137		0.352		0.372
Isopropylbenzene	98-82-8	8260B	5.6	< 0.019	< 0.034	< 0.027	< 0.03	0.37	< 0.033	< 0.026			< 0.137		0.251		0.35
Toluene	108-88-3	8260B/8021B	200	< 0.094	< 0.17	< 0.13	< 0.15	< 0.61	< 0.17	< 0.13			< 0.137		< 0.00961		< 0.0101
Trimethylbenzene, 1,2,4-	95-63-6	8260B	43	< 0.019	< 0.034	< 0.027	< 0.03	12	< 0.033	< 0.026			22.3		26.6		45.9
Trimethylbenzene, 1,3,5-	108-67-8	8260B	37	< 0.019	< 0.034	< 0.027	< 0.03	2.8	< 0.033	< 0.026			9.44		16.1		21.9
Xylenes	1330-20-7	8260B	57	< 0.038	< 0.067	< 0.053	< 0.059	< 0.24	< 0.067	< 0.051			2.71		4.51		8.37 J
Semi-Volatile Organic Compounds					_	_		_									
Acenaphthene	83-32-9	8270D/SIM	4600										0.413 J		<1.66		<2.08
Anthracene	120-12-7	8270D/SIM	23000										< 0.317		<1.66		<2.08
Fluorene	86-73-7	8270D/SIM	3100										1.07		<1.66		<2.08
Methylnaphthalene, 1-	90-12-0	8270D/SIM	68										8.18		18		16.1
Methylnaphthalene, 2-	91-57-6	8270D/SIM	310										9.8		23.1		19.6
Naphthalene	91-20-3	8260B/8270D SIM		< 0.019	< 0.034	< 0.027	< 0.03	< 0.12	< 0.033	< 0.026			3.23		9.4		7.82
Phenanthrene	85-01-8 129-00-0	8270D/SIM 8270D/SIM	2,300 2,300										1.26		1.93 J		<2.08
Pyrene	129-00-0	62 / UD/SIM	2,300										< 0.317		<1.66		< 2.08

- Notes:

 1. Sampling locations shown on Figure 1.

 2. Human Health cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone

 3. Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.

 4. Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria are in
- J = Estimated value.
 6. <= Compound not detected at the specified detection limit.
 ... = not analyzed

				ı												
													Permane	ent Wells		
									BH55/	BH56/	MW1-4-	MW2-2-	MW4-4-	MW5-5-	MW5-6-	MW5-11-
Location ID:			ADEC 2016	BH42	BH43	BH44	BH45	BH46	BH37 DUP	BH40 DUP	0912	0912	1012	1112	1112	1112
Sample Date:			Human Health	22-Jun-15	09-Oct-12	09-Oct-12	10-Oct-12	11-Oct-12	11-Oct-12	11-Oct-12						
Sample Interval:			Cleanup Criteria	12	10	11	10-11	9.5-10.5	7.5-10	10-10.5	7.5-10	10-15	10-15	10-12.5	10-12.5	30-35
Constituent	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Total Petroleum Hydrocarbons																
TPH-GRO		AK 101	5,200	440	1,470	5,460	11.4 J	40	5,290	9,800						
TPH-DRO		AK 102	10,300	30.2	92.9 J	211	1.03 J	0.952 J	216	295	<13		<12	48	<14	<11
TPH-RRO		AK 103	10,000	8.47 J	11.9 J	35	19.1 J	8.27 J	50.6	73.3	<26		<25	40	<28	<22
Volatile Organic Compounds																
Benzene	71-43-2	8260B/8021B	11		< 0.0398				< 0.0895		< 0.037	< 0.12	< 0.036	< 0.05	< 0.04	< 0.00089
Butylbenzene, sec-	135-98-8	8260B	28		1.2				< 0.179		< 0.037	0.46	< 0.036	0.22	0.058	< 0.00089
Ethylbenzene	100-41-4	8260	49		< 0.0795				< 0.179		< 0.037	0.29	< 0.036	0.066	< 0.04	< 0.00089
Isopropylbenzene	98-82-8	8260B	5.6		0.367				< 0.179		< 0.037	0.2	< 0.036	0.13	0.049	< 0.00089
Toluene	108-88-3	8260B/8021B	200		< 0.0795				< 0.179		< 0.19	< 0.62	< 0.18	< 0.25	< 0.2	< 0.0044
Trimethylbenzene, 1,2,4-	95-63-6	8260B	43		18.9				25.9		< 0.037	21	< 0.036	1.5	0.62	< 0.00089
Trimethylbenzene, 1,3,5-	108-67-8	8260B	37		5.78				10.8		< 0.037	7.7	< 0.036	0.35	0.13	< 0.00089
Xylenes	1330-20-7	8260B	57		< 0.232				2.92		< 0.074	11.4	< 0.072	0.15	0.087	< 0.0018
Semi-Volatile Organic Compounds																
Acenaphthene	83-32-9	8270D/SIM	4600		< 0.418				<1.57					< 0.01	< 0.0092	
Anthracene	120-12-7	8270D/SIM	23000		< 0.418				<1.57					< 0.01	< 0.0092	
Fluorene	86-73-7	8270D/SIM	3100		< 0.418				<1.57					< 0.01	< 0.0092	
Methylnaphthalene, 1-	90-12-0	8270D/SIM	68		1.71				8.61					0.13	0.072	
Methylnaphthalene, 2-	91-57-6	8270D/SIM	310		1.97				10.5					0.13	0.069	
Naphthalene	91-20-3	8260B/8270D SIM	29		< 0.418				3.58 J		< 0.037	5.7	< 0.036	0.13	0.077	< 0.00089
Phenanthrene	85-01-8	8270D/SIM	2,300		< 0.418				<1.57					< 0.01	< 0.0092	
Pyrene	129-00-0	8270D/SIM	2,300		< 0.418				<1.57					< 0.01	< 0.0092	

- Notes:

 1. Sampling locations shown on Figure 1.
 2. Human Health cleanup criteria based on 18AAC 75.341, Method 2,
 Under 40-Inch Zone
 3. Concentrations > ADEC Method 3 Cleanup Criteria are bold/highlight type.
 4. Limits of Quantitation (LOQs)/Non-detect concentrations > ADEC Cleanup Criteria are in
- J = Estimated value.
 Compound not detected at the specified detection limit.
 --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

					For	mer Used Oil	AST Excavation	ı - Base			Former V	Used Oil AST	Excavation - S	Sidewalls		
Location ID: Sample Date: Sample Interval:			ADEC 2016 Migration to Groundwater Cleanup Criteria	CFS1-0811 11-Aug-10 8		CFS3-0811 11-Aug-10 8	BH1-3-0718 18-Jul-12 8-10	BH1-4-0718 18-Jul-12 8-10	BH6-4-0718 18-Jul-12 7.5-10	CFS4-0811 11-Aug-10 7.5	CFS5-0811 11-Aug-10 7			CFS8-0811 11-Aug-10 4	CFS9-0811 11-Aug-10 8	BH7-4- 0718 18-Jul-12 7.5-10
Constituent	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Total Petroleum Hydrocarbons																
TPH-GRO		AK 101	580	<33	<38	<23				<27	<43	<3.4	<3.5	<24	<31	
TPH-DRO		AK 102	550	11,000	3,000	8,400	15,600	13,700	12,900	7,600	9,200	<10	<11	11,000	13,000	11.3J
TPH-RRO		AK 103	24,000	450	<210	<210	<748	342	183	<210	<230	<21	<22	36,000	340	<13.8
Volatile Organic Compounds																
Benzene	71-43-2	8260B/8021B	0.022	< 0.15	<0.18	< 0.13	0.142J	0.148J	0.0562	< 0.15	< 0.17	<0.028	< 0.034	< 0.04	< 0.17	0.0183
Butylbenzene, sec-	135-98-8	8260B	42	2.0	0.58	0.38	1.56	1.57	0.843	< 0.15	1.3	< 0.028	< 0.034	< 0.04	2.7	0.177
Ethylbenzene	100-41-4	8260	0.13	1.4	0.35	0.17	1.33	1.38	0.906	< 0.15	0.59	< 0.028	< 0.034	< 0.04	2.2	0.167
Isopropylbenzene	98-82-8	8260B	5.6	1.2	0.36	0.17	1.02	1.08	0.549	< 0.15	0.53	< 0.028	< 0.034	< 0.04	1.7	0.116
Toluene	108-88-3	8260B/8021B	6.7	< 0.77	< 0.92	< 0.63	0.249J	< 0.264	< 0.284	< 0.76	< 0.87	< 0.14	< 0.17	< 0.2	< 0.86	0.0254J
Trimethylbenzene, 1,2,4-	95-63-6	8260B	0.16	28	9	14	29.4	28	31.7	13	16	0.058	< 0.034	0.086	47	1.48J
Trimethylbenzene, 1,3,5-	108-67-8	8260B	1.3	10	3	4.8	8.73	8.19	10.6	5.6	5.4	< 0.028	< 0.034	1.8	14	1.18
Xylenes	1330-20-7	8260B	1.5	7.4	1.44	2.96	5.18	5.17	13.9	1.36	2.45	< 0.056	< 0.067	0.39	10.4	1.29
Semi-Volatile Organic Compounds												•				
Acenaphthene	83-32-9	8270D/SIM	37	1.8			< 0.0716	< 0.172		1.1					1.2	
Anthracene	120-12-7	8270D/SIM	390	0.39			0.204	< 0.172		0.17					0.63	
Fluorene	86-73-7	8270D/SIM	36	6.9			1.49	10.1J		3.6					7	
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.41	40			13.9	62.9		21					41	
Methylnaphthalene, 2-	91-57-6	8270D/SIM	1.3	67			22.5	103		34					70	
Naphthalene	91-20-3	8260B/8270D SIM	0.038	22	7	8.5	33.3	34	32.9	12	16	0.11	0.037	0.38	30	1.57J
Phenanthrene	85-01-8	8270D/SIM	39	7.2			1.96	11.8J		3.7					7.7	
Pyrene	129-00-0	8270D/SIM	87	0.21			0.348	0.381		0.095					0.28	

- 1. Sampling locations shown on Figure 1.
- 2. Migration to Groundwater cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone
- Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.
 Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria are italic/highlight type.
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

						Ad	jacent to Fo	rmer Used (Dil AST						Adjacent	to Former Use	ed Oil AST
Location ID: Sample Date: Sample Interval: Constituent	CAS	Method	ADEC 2016 Migration to Groundwater Cleanup Criteria	BH13-4- 0718 18-Jul-12 7.5-10	BH14-4- 0718 18-Jul-12 7.5-10	BH15-3- 0718 18-Jul-12 7.5-10	BH16-3- 0718 18-Jul-12 5-7.5	5-7.5	7.5-10	SB05-1014 14-Oct-14 10-12.5	SB06-1014 14-Oct-14 7.5-10	SB08-1015 15-Oct-14 0-2	SB09-1015 15-Oct-14 0-2	15-Oct-14 10-12.5	SB10-1015 15-Oct-14 0-2	SB10-1015 15-Oct-14 5-7.5	SB10-1015 15-Oct-14 10-12.5
Total Petroleum Hydrocarbons	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TPH-GRO		AK 101	580												I		
TPH-DRO		AK 101 AK 102	550	9,420	6,560	10,900	15.5J	9.13J	7,740	2,910	8,590	< 0.0077	0.0325	4.41	< 0.00714	6.94	4.31
TPH-RRO		AK 102	24,000	143	112	122	30.4	23.4J	85			0.0771	0.224	<0.0266	0.0352	< 0.0266	< 0.0255
Volatile Organic Compounds																	
Benzene	71-43-2	8260B/8021B	0.022	0.108J	0.0916J	0.0864J	0.0141J	0.0163J	0.0822J			< 0.00646	< 0.00482	< 0.2	< 0.00608	< 0.179	< 0.0751
Butylbenzene, sec-	135-98-8	8260B	42	2.9	1.72	2.2	< 0.0266	< 0.0318	0.46			< 0.0129	< 0.00965	1.73	< 0.0122	< 0.357	1.82
Ethylbenzene	100-41-4	8260	0.13	3.34	2.34	1.62	0.0282J	0.0337J	0.252J			< 0.0129	< 0.00965	1.36	< 0.0122	< 0.357	1.2
Isopropylbenzene	98-82-8	8260B	5.6	1.68	1.24	1.17	0.0324J	0.0388J	0.258J			< 0.0129	< 0.00965	< 0.4	< 0.0122	< 0.357	0.881
Toluene	108-88-3	8260B/8021B	6.7	0.31	0.292	0.161J	0.0299J	0.0352J	0.175J			< 0.0129	< 0.00965	< 0.4	< 0.0122	< 0.357	< 0.15
Trimethylbenzene, 1,2,4-	95-63-6	8260B	0.16	73.8	55.2	40.9	0.0388J	0.0786J	34.9			< 0.0248	< 0.0186	37	< 0.0234	41.7	7.22
Trimethylbenzene, 1,3,5-	108-67-8	8260B	1.3	20.3	10.3	11	0.0333J	0.0556	22.2			< 0.0129	< 0.00965	9.41	0.0122	13.4	10
Xylenes	1330-20-7	8260B	1.5	28.9	14.4	11.3	0.0896J	0.115J	10.4			< 0.0378	< 0.0282	10.9	< 0.0355	7.38	9.73
Semi-Volatile Organic Compounds										 							
Acenaphthene	83-32-9	8270D/SIM	37									< 0.00185	< 0.00855	< 0.161	< 0.00169	< 0.0768	< 0.16
Anthracene	120-12-7	8270D/SIM	390									< 0.00185	< 0.00855	< 0.161	< 0.00169	< 0.0768	< 0.16
Fluorene	86-73-7	8270D/SIM	36									< 0.00185	< 0.00855	1.74	< 0.00169	0.605	3.03
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.41									< 0.00185	< 0.00855	16.3	0.00668	9.57	23.3
Methylnaphthalene, 2-	91-57-6	8270D/SIM	1.3									< 0.00185	< 0.00855	23	0.00999	10.6	35.6
Naphthalene	91-20-3	8260B/8270D SIM	0.038	14.8	14.5	20.8	0.0435J	0.0577J	12.4			<0.0248	< 0.0186	8.79	< 0.0234	5.01	13.9
Phenanthrene	85-01-8 129-00-0	8270D/SIM 8270D/SIM	39 87									< 0.00185	< 0.00855	1.92	< 0.00169	0.763	3.41
Pyrene	129-00-0	62/0D/SIM	0/									< 0.00185	< 0.00855	0.103	< 0.00169	0.0601	< 0.16

- Notes:
 1. Sampling locations shown on Figure 1.
- 2. Migration to Groundwater cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone
- Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.
 Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria a
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

									Adjacent to	Former Fuel	Delivery Lit	ne					
Location ID: Sample Date: Sample Interval: Constituent	CAS	Method	ADEC 2016 Migration to Groundwater Cleanup Criteria mg/kg	SB11-1015 15-Oct-14 0-2 mg/kg	SB11-1015 15-Oct-14 12.5-15 mg/kg	BH27-4- 0719 19-Jul-12 7.5-10 mg/kg	BH28-3- 0719 19-Jul-12 7.5-10 mg/kg	BH29-3- 0719 19-Jul-12 7.5-10 mg/kg	BH30-4-	SB01-1014	SB02-1014			SB04-2-1014 14-Oct-14 10-12.5 mg/kg	FDL-1- 0915 15-Sep-10 4 mg/kg	FDL-2- 0915 15-Sep-10 6 mg/kg	FDL-2A- 0915 15-Sep-10 6 mg/kg
Total Petroleum Hydrocarbons	1										1	T	T				
TPH-GRO		AK 101	580														
TPH-DRO TPH-RRO		AK 102 AK 103	550 24.000	< 0.00663	1.79	10,100	12.3J	957	<14 <28	378	<9.14	9,360	4,450	4,490	1,900 49	3,900 <210	3,200 <210
Volatile Organic Compounds		AK 103	24,000	< 0.00663	< 0.0262	97.7	44.8	18.1J	<28						49	<210	<210
0 1	71-43-2	8260B/8021B	0.022	<0.00458	< 0.00339	0.0866J	0.0166J	0.0102J	<0.048			_	_	1		<0.11	<0.11
Benzene	135-98-8	8260B/8021B 8260B	42	<0.00458	0.303	<0.164	< 0.01663	<0.01023	<0.048 <0.048							0.24	0.24
Butylbenzene, sec- Ethylbenzene	100-41-4	8260B 8260	0.13	< 0.00916	0.303	0.164	0.0314 0.0368J	0.0199 0.0217J	<0.048							0.24	0.24
Isopropylbenzene	98-82-8	8260B	5.6	<0.00916	0.107	0.336	0.0308J 0.0403J	0.0217J 0.0249J	<0.048							0.16	0.13
Toluene	108-88-3	8260B/8021B	6.7	< 0.00916	<0.00678	0.330 0.186J	0.0403J 0.0348J	0.02493 0.022J	<0.048							< 0.53	< 0.55
Trimethylbenzene, 1,2,4-	95-63-6	8260B 8260B	0.16	< 0.00310	4.79	17.8	0.03483	0.0223	< 0.048							20	18
Trimethylbenzene, 1,3,5-	108-67-8	8260B 8260B	1.3	< 0.0176	1.17	16.7	0.066	0.0032	<0.048							17	14
Xylenes	1330-20-7	8260B	1.5	< 0.0268	0.68	2.98	0.000 0.134J	0.0728J	< 0.096							12.4	9.3
Semi-Volatile Organic Compounds											•						
Acenaphthene	83-32-9	8270D/SIM	37	< 0.00162	< 0.157											0.26	0.26
Anthracene	120-12-7	8270D/SIM	390	< 0.00162	< 0.157											0.045	0.042
Fluorene	86-73-7	8270D/SIM	36	< 0.00162	1.13											0.52	0.45
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.41	< 0.00162	4.6											23	17
Methylnaphthalene, 2-	91-57-6	8270D/SIM	1.3	< 0.00162	7.05											14	7.6
Naphthalene	91-20-3	8260B/8270D SIM	0.038	< 0.0176	2.19	14.4	0.117	0.0885	< 0.048							4	3.7
Phenanthrene	85-01-8	8270D/SIM	39	< 0.00162	1.45											0.52	0.46
Pyrene	129-00-0	8270D/SIM	87	< 0.00162	0.0464											0.051	0.04

- 1. Sampling locations shown on Figure 1.
 2. Migration to Groundwater cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone
- Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.
 Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria a
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

				Fu	el Delivery I	ine						Fu	el Delivery L	ine				
Location ID: Sample Date: Sample Interval: Constituent	CAS	Method	ADEC 2016 Migration to Groundwater Cleanup Criteria mg/kg	FDL-3- 0915 15-Sep-10 6 mg/kg	FDL-4- 0915 15-Sep-10 6	FDL-5- 0915 15-Sep-10 3	FDL-6- 0915 15-Sep-10 3 mg/kg	FDL-7- 0915 15-Sep-10 3 mg/kg	FDL-8- 0915 15-Sep-10 3 mg/kg	FDL-9- 0915 15-Sep-10 4 mg/kg	FDL-10- 0915 15-Sep-10 3	FDL-11- 0915 15-Sep-10 2 mg/kg	BH24-4- 0719 19-Jul-12 7.5-10 mg/kg	BH24-5- 0719 19-Jul-12 7.5-10 mg/kg	SB07- 1015/ TSP07 15-Oct-14 0-2.5	SB07- 1015/ TSP07 15-Oct-14 7.5-10 mg/kg	SB12-1015 15-Oct-14 0-2 mg/kg	SB12-1015 15-Oct-14 10-12.5 mg/kg
Total Petroleum Hydrocarbons																		
TPH-GRO		AK 101	580															
TPH-DRO		AK 102	550	6,700	3,900	1,000	5,500	660	6,800	7,200	5,600	17,000	7,380	6,300	91.5	5,840	< 6.36	<7.67
TPH-RRO		AK 103	24,000	250	<210	<20	<220	150	290	<220	<230	450	<266	<132	85.8	<26.4	57.9	<7.67
Volatile Organic Compounds																		
Benzene	71-43-2	8260B/8021B	0.022										0.0716J	0.0643J	< 0.00716	< 0.156	< 0.0035	< 0.00646
Butylbenzene, sec-	135-98-8	8260B	42										2.53	2.2	< 0.0143	1.77	< 0.00701	< 0.0129
Ethylbenzene	100-41-4	8260	0.13										1.5	1.61	< 0.0143	1.05	< 0.00701	< 0.0129
Isopropylbenzene	98-82-8	8260B	5.6										1.33	1.35	< 0.0143	< 0.312	< 0.00701	< 0.0129
Toluene	108-88-3	8260B/8021B	6.7										0.193J	0.182J	< 0.0143	< 0.312	< 0.00701	< 0.0129
Trimethylbenzene, 1,2,4-	95-63-6	8260B	0.16										62.4	61.7	< 0.0275	54.9	< 0.0135	< 0.0249
Trimethylbenzene, 1,3,5-	108-67-8	8260B	1.3										20.4	20.3	< 0.0143	16.8	< 0.00701	< 0.0129
Xylenes	1330-20-7	8260B	1.5										38.8	38.5	< 0.0419	11	< 0.0205	< 0.0378
Semi-Volatile Organic Compounds																		
Acenaphthene	83-32-9	8270D/SIM	37										< 0.161	< 0.157	< 0.00186	< 0.158	< 0.00154	< 0.00183
Anthracene	120-12-7	8270D/SIM	390										< 0.161	< 0.157	< 0.00186	< 0.158	< 0.00154	< 0.00183
Fluorene	86-73-7	8270D/SIM	36										0.981	0.865	< 0.00186	0.567	< 0.00154	< 0.00183
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.41										26.7	22	< 0.00186	11.3	< 0.00154	< 0.00183
Methylnaphthalene, 2-	91-57-6	8270D/SIM	1.3										31	28.5	< 0.00186	15.4	< 0.00154	< 0.00183
Naphthalene	91-20-3	8260B/8270D SIM	0.038										19.5	18.6	< 0.0275	8.04	< 0.0135	< 0.0249
Phenanthrene	85-01-8	8270D/SIM	39										1.12	0.999	< 0.00186	0.708	< 0.00154	< 0.00183
Pyrene	129-00-0	8270D/SIM	87										0.0632	0.0572	< 0.00186	0.0396	< 0.00154	< 0.00183

- Notes:

 1. Sampling locations shown on Figure 1.

 2. Migration to Groundwater cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone
- Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.
 Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria a
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
 7. --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

				East of 4-Bay Building											•		
Location ID: Sample Date: Sample Interval: Constituent	CAS	Method	ADEC 2016 Migration to Groundwater Cleanup Criteria mg/kg	SB12-2-1015 15-Oct-14 10-12.5 mg/kg	, ,	SB13-1015 15-Oct-14 8.5-10 mg/kg	SB13-1015 15-Oct-14 10-12.5 mg/kg	BH31-3- 1012 10-Oct-12 10-15 mg/kg	BH31-4- 1012 10-Oct-12 15-20 mg/kg	BH32-2- 1012 10-Oct-12 10-12.5 mg/kg	BH33-5- 1012 10-Oct-12 10-15 mg/kg	BH34-4- 1012 10-Oct-12 10-16 mg/kg	BH34-5- 1012 10-Oct-12 15-20 mg/kg	BH35-4- 1012 10-Oct-12 10-15 mg/kg	BH35 22-Jun-15 5-6 mg/kg	BH36 22-Jun-15 7.5-10 mg/kg	BH37 22-Jun-15 7.5-10 mg/kg
Total Petroleum Hydrocarbons																	
TPH-GRO		AK 101	580												13 J	8.88 J	3,300
TPH-DRO		AK 102	550	<7.66	46.2		< 8.01	830	<13	<11	<11	970	<12	<11	1.58 J	0.628 J	165
TPH-RRO		AK 103	24,000	<7.66	326		<8.01	<22	<26	<22	<23	<22	<24	<23	20.4 J	< 6.32	39.2
Volatile Organic Compounds																	
Benzene	71-43-2	8260B/8021B	0.022	< 0.00604	< 0.00366		< 0.00721	< 0.019	< 0.034	< 0.027	< 0.03	<0.12	< 0.033	<0.026			< 0.0683
Butylbenzene, sec-	135-98-8	8260B	42	< 0.0121	< 0.00732		< 0.0144	0.19	< 0.034	< 0.027	< 0.03	1.3	< 0.033	< 0.026			< 0.137
Ethylbenzene	100-41-4	8260	0.13	< 0.0121	< 0.00732		< 0.0144	< 0.019	< 0.034	< 0.027	< 0.03	< 0.12	< 0.033	< 0.026			< 0.137
Isopropylbenzene	98-82-8	8260B	5.6	< 0.0121	< 0.00732		< 0.0144	< 0.019	< 0.034	< 0.027	< 0.03	0.37	< 0.033	< 0.026			< 0.137
Toluene	108-88-3	8260B/8021B	6.7	< 0.0121	< 0.00732		< 0.0144	< 0.094	< 0.17	< 0.13	< 0.15	< 0.61	< 0.17	< 0.13			< 0.137
Trimethylbenzene, 1,2,4-	95-63-6	8260B	0.16	< 0.0232	< 0.0141		< 0.0277	< 0.019	< 0.034	< 0.027	< 0.03	12	< 0.033	< 0.026			22.3
Trimethylbenzene, 1,3,5-	108-67-8	8260B	1.3	< 0.0121	< 0.00732		< 0.0144	< 0.019	< 0.034	< 0.027	< 0.03	2.8	< 0.033	< 0.026			9.44
Xylenes	1330-20-7	8260B	1.5	< 0.0353	< 0.0214		< 0.0421	< 0.038	< 0.067	< 0.053	< 0.059	< 0.24	< 0.067	< 0.051			2.71
Semi-Volatile Organic Compounds		•															
Acenaphthene	83-32-9	8270D/SIM	37	< 0.00186	< 0.00768		< 0.00194										0.413 J
Anthracene	120-12-7	8270D/SIM	390	< 0.00186	< 0.00768		< 0.00194										< 0.317
Fluorene	86-73-7	8270D/SIM	36	< 0.00186	< 0.00768		< 0.00194										1.07
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.41	< 0.00186	< 0.00768		< 0.00194										8.18
Methylnaphthalene, 2-	91-57-6	8270D/SIM	1.3	0.00735	< 0.00768		< 0.00194										9.8
Naphthalene	91-20-3	8260B/8270D SIM	0.038	< 0.0232	< 0.0141		< 0.0277	< 0.019	< 0.034	< 0.027	< 0.03	<0.12	< 0.033	< 0.026			3.23
Phenanthrene	85-01-8 129-00-0	8270D/SIM 8270D/SIM	39 87	< 0.00186	< 0.00768		< 0.00194										1.26
Pyrene	129-00-0	82/0D/SIM	8/	< 0.00186	< 0.00768		< 0.00194										< 0.317

- 1. Sampling locations shown on Figure 1.
 2. Migration to Groundwater cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone
- Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.
 Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria a
- 5. J = Estimated value.
- $6. \le$ Compound not detected at the specified detection limit.
- 7. --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

				Off-Site										Permane			
Location ID: Sample Date: Sample Interval: Constituent	CAS	Method	ADEC 2016 Migration to Groundwater Cleanup Criteria	BH38 22-Jun-15 11	BH39 22-Jun-15 10-10.5	BH40 22-Jun-15 10-10.5	BH41 22-Jun-15 9-10.5	BH42 22-Jun-15 12	BH43 22-Jun-15 10	BH44 22-Jun-15 11	BH45 22-Jun-15 10-11	BH46 22-Jun-15 9.5-10.5	22-Jun-15 7.5-10	BH56/ BH40 DUP 22-Jun-15 10-10.5	MW1-4- 0912 09-Oct-12 7.5-10	MW2-2- 0912 09-Oct-12 10-15	MW4-4- 1012 10-Oct-12 10-15
Total Petroleum Hydrocarbons	CAS	Method	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TPH-GRO TPH-DRO TPH-RRO		AK 101 AK 102 AK 103	580 550 24,000	9,690 465 405 J	6,130 404 41.7	9,370 444 55.4	7,800 596 40.3	440 30.2 8.47 J	1,470 92.9 J 11.9 J	5,460 211 35	11.4 J 1.03 J 19.1 J	40 0.952 J 8.27 J	5,290 216 50.6	9,800 295 73.3	 <13 <26		 <12 <25
Volatile Organic Compounds																	
Benzene	71-43-2	8260B/8021B	0.022		< 0.00481		< 0.00506		< 0.0398				< 0.0895		< 0.037	< 0.12	< 0.036
Butylbenzene, sec-	135-98-8	8260B	42		0.602		1.24		1.2				< 0.179		< 0.037	0.46	< 0.036
Ethylbenzene	100-41-4	8260	0.13		0.352		0.372		< 0.0795				< 0.179		< 0.037	0.29	< 0.036
Isopropylbenzene	98-82-8	8260B	5.6		0.251		0.35		0.367				< 0.179		< 0.037	0.2	< 0.036
Toluene	108-88-3	8260B/8021B	6.7		< 0.00961		< 0.0101		< 0.0795				< 0.179		< 0.19	< 0.62	< 0.18
Trimethylbenzene, 1,2,4-	95-63-6	8260B	0.16		26.6		45.9		18.9				25.9		< 0.037	21	< 0.036
Trimethylbenzene, 1,3,5-	108-67-8	8260B	1.3		16.1		21.9		5.78				10.8		< 0.037	7.7	< 0.036
Xylenes Semi-Volatile Organic Compounds	1330-20-7	8260B	1.5		4.51		8.37 J		< 0.232				2.92		< 0.074	11.4	< 0.072
Acenaphthene	83-32-9	8270D/SIM	37		<1.66		<2.08		< 0.418				<1.57				
Acenaphinene Anthracene	120-12-7	8270D/SIM 8270D/SIM	390		<1.66 <1.66		<2.08		<0.418				<1.57				
Fluorene	86-73-7	8270D/SIM 8270D/SIM	36		<1.66		<2.08		<0.418				<1.57				
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.41		18		16.1		1.71				8.61				
Methylnaphthalene, 2-	91-57-6	8270D/SIM	1.3		23.1		19.6		1.97				10.5				
Naphthalene	91-20-3	8260B/8270D SIM	0.038		9.4		7.82		< 0.418				3.58 [< 0.037	5.7	< 0.036
Phenanthrene	85-01-8	8270D/SIM	39		1.93 J		<2.08		< 0.418				<1.57				
Pyrene	129-00-0	8270D/SIM	87		<1.66		< 2.08		< 0.418				<1.57				

- 1. Sampling locations shown on Figure 1.
- 2. Migration to Groundwater cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone
- Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.
 Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria a
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

TABLE 5 SUMMARY OF SOIL SAMPLING RESULTS - MIGRATION TO GROUNDWATER CLEANUP LEVELS

Kiewit Infrastructure West Co., Fairbanks, Alaska

				nt Wells		
Location ID: Sample Date: Sample Interval: Constituent Total Petroleum Hydrocarbons	CAS	Method	ADEC 2016 Migration to Groundwater Cleanup Criteria mg/kg	MW5-5- 1112 11-Oct-12 10-12.5 mg/kg	MW5-6- 1112 11-Oct-12 10-12.5 mg/kg	MW5-11- 1112 11-Oct-12 30-35 mg/kg
		ATZ 101	500			
TPH-GRO TPH-DRO		AK 101 AK 102	580 550	40		
TPH-DRO TPH-RRO		AK 102 AK 103	24,000	48 40	<14 <28	<11 <22
Volatile Organic Compounds		7111 105	21,000	40	~28	-22
Benzene	71-43-2	8260B/8021B	0.022	< 0.05	< 0.04	< 0.00089
Butylbenzene, sec-	135-98-8	8260B	42	0.22	0.058	< 0.00089
Ethylbenzene	100-41-4	8260	0.13	0.066	< 0.04	< 0.00089
Isopropylbenzene	98-82-8	8260B	5.6	0.13	0.049	< 0.00089
Toluene	108-88-3	8260B/8021B	6.7	< 0.25	< 0.2	< 0.0044
Trimethylbenzene, 1,2,4-	95-63-6	8260B	0.16	1.5	0.62	< 0.00089
Trimethylbenzene, 1,3,5-	108-67-8	8260B	1.3	0.35	0.13	< 0.00089
Xylenes	1330-20-7	8260B	1.5	0.15	0.087	< 0.0018
Semi-Volatile Organic Compounds						
Acenaphthene	83-32-9	8270D/SIM	37	< 0.01	< 0.0092	
Anthracene	120-12-7	8270D/SIM	390	< 0.01	< 0.0092	
Fluorene	86-73-7	8270D/SIM	36	< 0.01	< 0.0092	
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.41	0.13	0.072	
Methylnaphthalene, 2-	91-57-6	8270D/SIM	1.3	0.13	0.069	
Naphthalene	91-20-3	8260B/8270D SIM	0.038	0.13	0.077	< 0.00089
Phenanthrene Pyrene	85-01-8 129-00-0	8270D/SIM 8270D/SIM	39 87	<0.01 <0.01	<0.0092 <0.0092	
i yiene	127-00-0	62 / UD/ SIM	0/	~0.01	~0.009Z	

- 1. Sampling locations shown on Figure 1.
- 2. Migration to Groundwater cleanup criteria based on 18AAC 75.341, Method 2, Under 40-Inch Zone
- Concentrations >ADEC Method 3 Cleanup Criteria are bold/highlight type.
 Limits of Quantitation (LOQs)/Non-detect concentrations >ADEC Cleanup Criteria a
- 5. J = Estimated value.
- $6. \le$ Compound not detected at the specified detection limit.
- 7. --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

								MW-1				
			ADEC									
			Cleanup				MW-11					
		Location ID ¹ :	Criteria ²	MW1-1016	MW-1	MW-1	(MW1-DUP)	MW-1	MW-1	MW-1	MW-1	MW-1
		Sample Date:		16-Oct-12	02-Jul-14	24-Jul-14	24-Jul-14	16-Oct-14	27-Apr-15	02-Sep-15	25-Aug-16	26-Sep-17
Constituent	CAS	Method	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Petroleum Hydrocarbons												
TPH-GRO		AK 101	2.2	< 0.1					< 0.031		0.031	< 0.031
TPH-DRO		AK 102	1.5	< 0.24	< 0.6	< 0.6	< 0.6	< 0.6	0.203 Ј	1.07	0.407 J	< 0.176
TPH-RRO		AK 103	1.1		< 0.5	< 0.5	< 0.5	< 0.5	0.162 J	< 0.144	0.199 J	< 0.147
BTEX/VOCs												
Benzene	71-43-2	8260C	0.005	< 0.0002	< 0.0004	< 0.0004	< 0.0004	< 0.00012	< 0.00012	< 0.00015	< 0.00015	< 0.00015
Toluene	108-88-3	8260C	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031
Ethylbenze	100-41-4	8260C	0.7	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031
Xylenes	1330-20-7	8260C	10	< 0.0004	< 0.003	< 0.003	< 0.003	< 0.001	< 0.00093	< 0.00093	< 0.00093	0.00074 J
Trimethylbenzene, 1,2,4-	95-63-6	8260C	0.015	< 0.0002	< 0.001	< 0.001	< 0.001	< 0.00031				
Semi-Volatile Organic Compound	As .											
Acenaphthene	83-32-9	8270D/SIM	0.53	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Acenaphthylene	208-96-8	8270D/SIM	0.26	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Anthracene	120-12-7	8270D/SIM	0.043	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Benz-a-anthracene	56-55-3	8270D/SIM	0.0012	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Benzo-a-pyrene	50-32-8	8270D/SIM	0.000034	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.00000585	< 0.00000608
Benzo-b-fluoranthene	205-99-2	8270D/SIM	0.00034	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Benzo-g,h,i-perylene	191-24-2	8270D/SIM	0.00026	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Benzo-j,k-fluoranthene	207-08-9	8270D/SIM	0.0008	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Chrysene	218-01-9	8270D/SIM	0.002	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Dibenz-a,h-anthracene	53-70-3	8270D/SIM	0.000034	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.00000945	< 0.00000608
Fluoranthene	206-44-0	8270D/SIM	0.26	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000236	< 0.0000147
Fluorene	86-73-7	8270D/SIM	0.29	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Indeno-1,2,3-cd-pyrene	193-39-5	8270D/SIM	0.00019	< 0.0000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.011	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Methylnaphthalene, 2-	91-57-6	8270D/SIM	0.036	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147
Naphthalene	91-20-3	8270D SIM	0.0017	< 0.000098	< 0.0001	< 0.0001	< 0.0001	< 0.0031	< 0.000031	< 0.00000807	< 0.0000292	< 0.0000304
Phenanthrene	85-01-8	8270D/SIM	0.17	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	0.0000157 J	< 0.00000391	< 0.0000142	< 0.0000147
Pyrene	129-00-0	8270D/SIM	0.12	< 0.000098	< 0.00005	< 0.00005	< 0.00005	< 0.0000155	< 0.000015	< 0.00000391	< 0.0000142	< 0.0000147

- 1. Sampling locations shown on Figure 3.
- 2. Groundwater cleanup criteria based on 18AAC 75.345 Table C (as ammended through November 7, 2017)
- 3. Concentrations > ADEC Cleanup Criteria are bold/highlight type.
- 4. Limits of Quantitation (LOQs)/Non-detected concentrations >ADEC Cleanup Criteria are *italic/highlight* type.
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

				MW-2								
		Location ID ¹ : Sample Date:	ADEC Cleanup Criteria ²	MW2-1016 17-Oct-12	MW11-1016 (MW2 DUP) 16-Oct-12	MW-2 08-Aug-14	MW12 (MW2 DUP) 08-Aug-14	MW-2 27-Apr-15	MW-2 02-Sep-15	MW-6 (MW-2 DUP) 02-Sep-15	MW-2 25-Aug-16	MW-2 26-Sep-17
Constituent	CAS	Method	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Petroleum Hydrocarbons												
TPH-GRO		AK 101	2.2	2.7	3.2			0.67			0.7	1.11
TPH-DRO		AK 102	1.5	12	21	15.2	14.5	4.46	1.53	1.44	13	6.16
TPH-RRO		AK 103	1.1			1.31	1.40	0.3 J	< 0.144	< 0.144	< 0.692	0.361 J
BTEX/VOCs												
Benzene	71-43-2	8260C	0.005	< 0.002	< 0.004	0.00067	< 0.0004	< 0.00012	< 0.00015	< 0.00015	0.0003 J	0.0004 J
Toluene	108-88-3	8260C	1	< 0.01	< 0.02	< 0.001	< 0.001	< 0.00031	< 0.00031	< 0.00031	< 0.00031	0.00402
Ethylbenze	100-41-4	8260C	0.7	< 0.064	< 0.081	0.0409	0.0398	0.011	0.0251	0.0233	0.0185	0.0155
Xylenes	1330-20-7	8260C	10	0.0114	< 0.74	0.23	0.191	0.1448	0.202	0.184	0.1435	0.388
Trimethylbenzene, 1,2,4-	95-63-6	8260C	0.015	0.68	0.75	0.347	0.336					
Semi-Volatile Organic Compoun	ds											
Acenaphthene	83-32-9	8270D/SIM	0.53	0.0019	0.0013	< 0.000448	< 0.000315	0.0012	0.0000913	0.0000786	0.000783	0.000988
Acenaphthylene	208-96-8	8270D/SIM	0.26	< 0.0019	< 0.00047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Anthracene	120-12-7	8270D/SIM	0.043	< 0.00048	< 0.00047	< 0.0000515	< 0.0000521	0.000294	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Benz-a-anthracene	56-55-3	8270D/SIM	0.0012	< 0.000048	< 0.000047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Benzo-a-pyrene	50-32-8	8270D/SIM	0.000034	< 0.000048	< 0.000047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.00000585	< 0.0000064
Benzo-b-fluoranthene	205-99-2	8270D/SIM	0.00034	< 0.000048	< 0.000047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Benzo-g,h,i-perylene	191-24-2	8270D/SIM	0.00026	< 0.000048	< 0.000047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Benzo-j,k-fluoranthene	207-08-9	8270D/SIM	0.0008	< 0.000048	< 0.000047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Chrysene	218-01-9	8270D/SIM	0.002	< 0.000048	< 0.000047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Dibenz-a,h-anthracene	53-70-3	8270D/SIM	0.000034	< 0.000048	<0.000047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.00000585	< 0.0000064
Fluoranthene	206-44-0	8270D/SIM	0.26	< 0.00048	< 0.00047	< 0.0000515	< 0.0000521	< 0.0000785	< 0.00000391	< 0.00000391	< 0.0000142	< 0.0000155
Fluorene	86-73-7	8270D/SIM	0.29	0.0037	0.0023	< 0.00136	< 0.00102	0.00202	0.000268	0.000248	0.00149	0.00109
Indeno-1,2,3-cd-pyrene	193-39-5	8270D/SIM	0.00019	<0.000048	<0.000047	<0.0000515	<0.0000521	< 0.0000785	< 0.00000391	<0.00000391	< 0.0000142	< 0.0000155
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.011	0.061	0.03	<0.0232	<0.0154	0.0261	0.00263	0.00228	0.0118	0.0237
Methylnaphthalene, 2-	91-57-6	8270D/SIM	0.036	0.083	0.038	< 0.0125	< 0.0057	0.00797	0.00248	0.00215	0.0899	0.00708
Naphthalene	91-20-3	8270D SIM	0.0017	0.082	0.25	<0.1	<0.0202	0.0171	0.00368	0.00328	0.0113	0.0312
Phenanthrene Pyrene	85-01-8 129-00-0	8270D/SIM 8270D/SIM	0.17 0.12	0.0027 <0.00048	0.0013 <0.00047	<0.000638 <0.0000515	<0.000456 <0.0000521	0.00105 <0.0000785	0.000141 <0.0000391	0.000106 <0.00000391	0.00103 <0.0000142	0.000432 <0.0000155
i yiene	129-00-0	02/UD/SHVI	0.12	~U.UUU46	~0.000 4 /	~0.0000313	~0.0000321	<0.0000/85	<0.00000391	<0.00000391	<0.0000142	<0.0000155

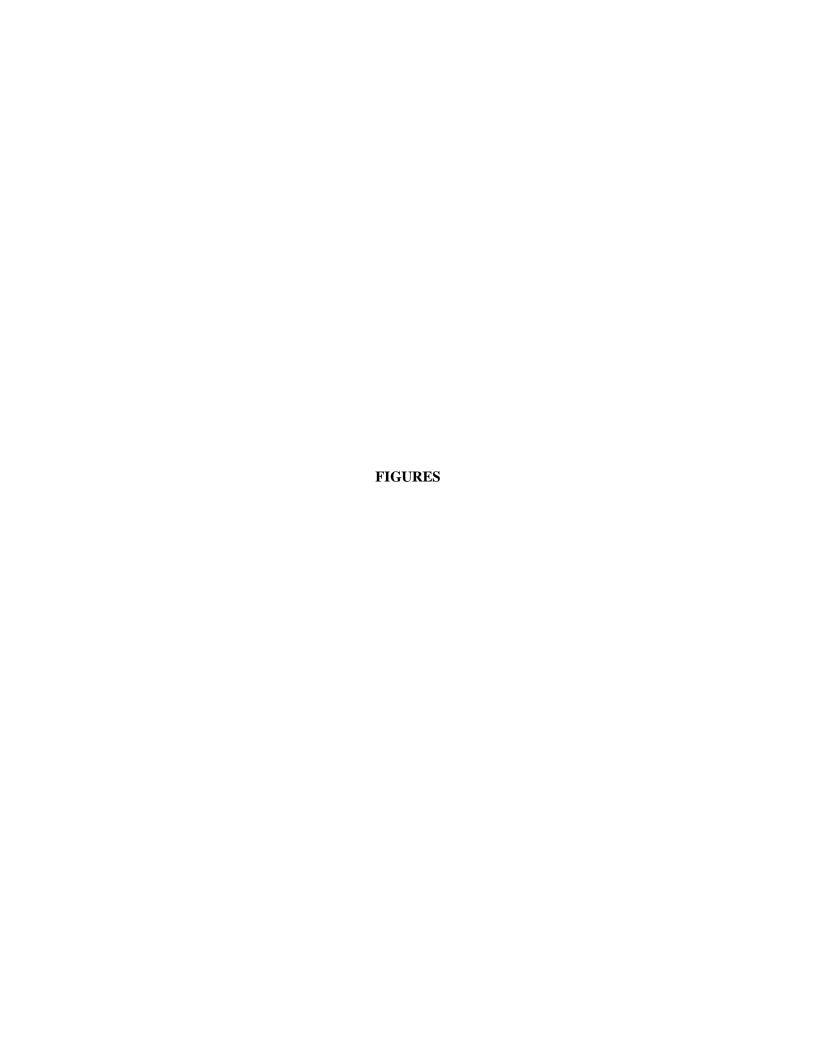
- 1. Sampling locations shown on Figure 3.
- 2. Groundwater cleanup criteria based on 18AAC 75.345 Table C (as ammended through November 7, 2017)
- 3. Concentrations > ADEC Cleanup Criteria are bold/highlight type.
- 4. Limits of Quantitation (LOQs)/Non-detected concentrations >ADEC Cleanup Criteria are *italic/highlight* type.
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

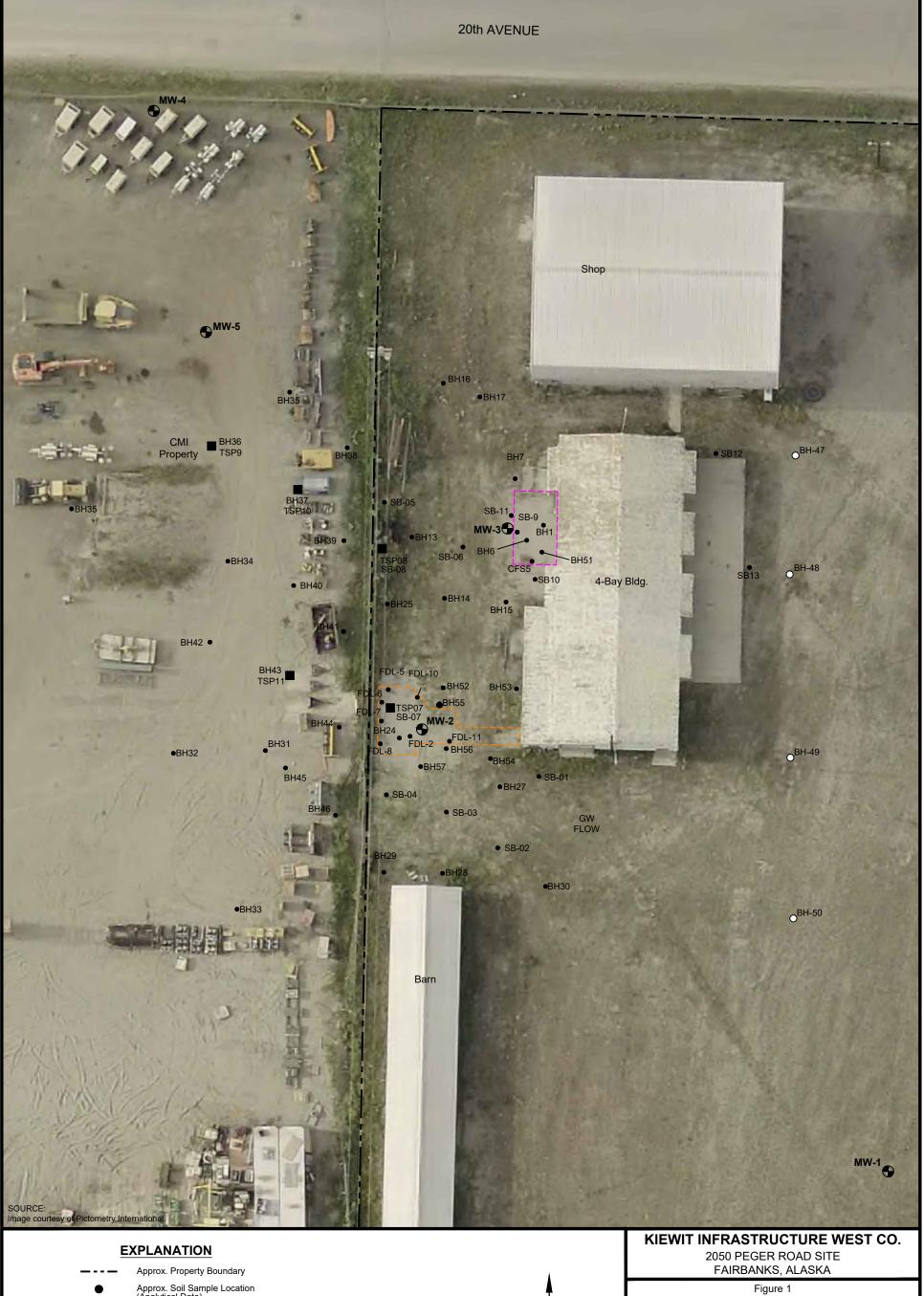
Kiewit Infrastructure West Co., Fairbanks, Alaska

							MW-3			
			ADEC				141 44 -3			
			Cleanup							
		Location ID ¹ :	Criteria ²	MW3-1016	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
		Sample Date:		16-Oct-12	02-Jul-14	16-Oct-14	27-Apr-15	02-Sep-15	25-Aug-16	26-Sep-17
Constituent	CAS	Method	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Petroleum Hydrocarbons				g =	g =	g =				g _
TPH-GRO		AK 101	2.2	0.58			0.104		0.136	0.164
TPH-DRO		AK 102	1.5	6.6	14.6	17.2	1.47	4.04	3.74	6.42
TPH-RRO		AK 103	1.1		2.53	3.04	0.242 J	< 0.144	0.413 J	0.462 J
BTEX/VOCs										
Benzene	71-43-2	8260C	0.005	0.0031	0.00147	0.00653	0.00265	0.00286	0.00364	0.00477
Toluene	108-88-3	8260C	1	< 0.002	< 0.001	0.0192	0.00041 J	< 0.00031	0.00054 J	< 0.00035
Ethylbenze	100-41-4	8260C	0.7	0.011	0.00299	0.00315	0.00128	0.00165	0.00212	0.00282
Xylenes	1330-20-7	8260C	10	0.08	0.00618	0.037	< 0.00767	0.00893	0.00951	0.01497
Trimethylbenzene, 1,2,4-	95-63-6	8260C	0.015	0.16	0.00589	0.0518				
Semi-Volatile Organic Compound	ds									
Acenaphthene	83-32-9	8270D/SIM	0.53	< 0.0027	< 0.000528	< 0.000306	0.000339	0.0000401	0.000402	< 0.0000154
Acenaphthylene	208-96-8	8270D/SIM	0.26	< 0.00054	< 0.0005	< 0.000306	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Anthracene	120-12-7	8270D/SIM	0.043	< 0.0005	< 0.0005	< 0.000306	0.0000582	< 0.00000391	< 0.0000147	< 0.0000154
Benz-a-anthracene	56-55-3	8270D/SIM	0.0012	< 0.000052	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Benzo-a-pyrene	50-32-8	8270D/SIM	0.000034	< 0.00005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.00000608	< 0.00000635
Benzo-b-fluoranthene	205-99-2	8270D/SIM	0.00034	< 0.00005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Benzo-g,h,i-perylene	191-24-2	8270D/SIM	0.00026	< 0.00005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Benzo-j,k-fluoranthene	207-08-9	8270D/SIM	0.0008	< 0.00005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Chrysene	218-01-9	8270D/SIM	0.002	< 0.00005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Dibenz-a,h-anthracene	53-70-3	8270D/SIM	0.000034	< 0.00005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.00000608	< 0.00000635
Fluoranthene	206-44-0	8270D/SIM	0.26	< 0.0005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Fluorene	86-73-7	8270D/SIM	0.29	< 0.0071	< 0.000562	< 0.00148	0.000747	< 0.00000391	< 0.0000147	< 0.0000154
Indeno-1,2,3-cd-pyrene	193-39-5	8270D/SIM	0.00019	< 0.00005	< 0.00005	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000147	< 0.0000154
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.011	< 0.057	< 0.000725	< 0.00628	0.0013	0.000028	< 0.0000147	< 0.0000154
Methylnaphthalene, 2-	91-57-6	8270D/SIM	0.036	< 0.088	< 0.0005	< 0.00447	0.000247	0.0000164	< 0.0000147	< 0.0000154
Naphthalene	91-20-3	8270D SIM	0.0017	<0.12	<0.00438	< 0.0391	0.00166	0.000193	0.000195	< 0.0000318
Phenanthrene	85-01-8	8270D/SIM	0.17	<0.0044	< 0.0005	< 0.000306	0.0000769	< 0.00000391	< 0.0000147	< 0.0000154
Pyrene	129-00-0	8270D/SIM	0.12	< 0.0005	< 0.000057	< 0.0000153	0.0000277 J	< 0.00000391	< 0.0000515	< 0.0000154

- 1. Sampling locations shown on Figure 3.
- 2. Groundwater cleanup criteria based on 18AAC 75.345 Table C (as ammended through November 7, 2017)
- 3. Concentrations > ADEC Cleanup Criteria are *bold/highlight* type.
- 4. Limits of Quantitation (LOQs)/Non-detected concentrations >ADEC Cleanup Criteria are *italic/highlight* type.
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

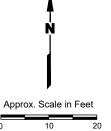

Ir-										
							MW-4			
			ADEC							
		,	Cleanup							
		Location ID ¹ :	Criteria ²	MW4-1016	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
		Sample Date:		16-Oct-12	03-Jul-14	16-Oct-14	27-Apr-15	02-Sep-15	25-Aug-16	26-Sep-17
Constituent	CAS	Method	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Petroleum Hydrocarbons										
TPH-GRO		AK 101	2.2	< 0.1			0.0318 J		0.0326 J	< 0.031
TPH-DRO		AK 102	1.5	0.59	< 0.6	1.12	1.72	0.994	1.15	0.769
TPH-RRO		AK 103	1.1		0.533	0.947	0.371 J	< 0.144	0.25 J	0.316 J
BTEX/VOCs										
Benzene	71-43-2	8260C	0.005	< 0.0002	0.0008	< 0.00012	0.0003 J	< 0.00015	0.00023 J	0.00051
Toluene	108-88-3	8260C	1	< 0.001	< 0.001	< 0.00031	< 0.00031	< 0.00031	< 0.00031	0.00055 J
Ethylbenze	100-41-4	8260C	0.7	< 0.0002	< 0.001	< 0.00031	< 0.00031	< 0.00031	< 0.00031	0.00036 J
Xylenes	1330-20-7	8260C	10	< 0.0004	0.0036	< 0.001	< 0.00093	< 0.00093	< 0.00093	0.00171 J
Trimethylbenzene, 1,2,4-	95-63-6	8260C	0.015	0.00036	0.00539	< 0.00031				
Semi-Volatile Organic Compound	ds									
Acenaphthene	83-32-9	8270D/SIM	0.53	< 0.00014	< 0.0000884	< 0.0000153	0.000129	0.0000341	0.000211	0.0000587
Acenaphthylene	208-96-8	8270D/SIM	0.26	< 0.0001	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Anthracene	120-12-7	8270D/SIM	0.043	< 0.0001	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Benz-a-anthracene	56-55-3	8270D/SIM	0.0012	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Benzo-a-pyrene	50-32-8	8270D/SIM	0.000034	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.00000585	< 0.00000596
Benzo-b-fluoranthene	205-99-2	8270D/SIM	0.00034	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Benzo-g,h,i-perylene	191-24-2	8270D/SIM	0.00026	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Benzo-j,k-fluoranthene	207-08-9	8270D/SIM	0.0008	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Chrysene	218-01-9	8270D/SIM	0.002	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Dibenz-a,h-anthracene	53-70-3	8270D/SIM	0.000034	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000585	< 0.00000596
Fluoranthene	206-44-0	8270D/SIM	0.26	< 0.0001	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Fluorene	86-73-7	8270D/SIM	0.29	< 0.00029	< 0.000161	< 0.0000876	0.000213	0.0000613		0.000117
Indeno-1,2,3-cd-pyrene	193-39-5	8270D/SIM	0.00019	< 0.00005	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.011	< 0.00028	< 0.0000954	< 0.0000153	0.0000371 J	< 0.00000391	0.0000259	< 0.0000144
Methylnaphthalene, 2-	91-57-6	8270D/SIM	0.036	< 0.00036	< 0.0000524	< 0.0000153	0.0000174 J	< 0.00000391	0.0000284	< 0.0000144
Naphthalene	91-20-3	8270D SIM	0.0017	< 0.00022	< 0.000231	< 0.0031	0.000192	< 0.00000807	< 0.0000292	< 0.0000298
Phenanthrene	85-01-8	8270D/SIM	0.17	< 0.0001	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144
Pyrene	129-00-0	8270D/SIM	0.12	< 0.0001	< 0.0000524	< 0.0000153	< 0.0000155	< 0.00000391	< 0.0000142	< 0.0000144


- 1. Sampling locations shown on Figure 3.
- 2. Groundwater cleanup criteria based on 18AAC 75.345 Table C (as ammended through November 7, 2017)
- 3. Concentrations > ADEC Cleanup Criteria are bold/highlight type.
- 4. Limits of Quantitation (LOQs)/Non-detected concentrations >ADEC Cleanup Criteria are *italic/highlight* type.
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed

Kiewit Infrastructure West Co., Fairbanks, Alaska

								MW-5				
			ADEC									
			Cleanup					MW-52				MW-55 (MW-5
		Location ID ¹ :	Criteria ²	MW5-1016	MW-5	MW-5	MW-5	(MW5 DUP)	MW-5	MW-5	MW-5	DUP)
		Sample Date:		16-Oct-12	02-Jul-14	16-Oct-14	27-Apr-15	27-Apr-15	02-Sep-15	25-Aug-16	26-Sep-17	27-Sep-17
Constituent	CAS	Method	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Petroleum Hydrocarbons												
TPH-GRO		AK 101	2.2	< 0.1			< 0.031	0.0449 J		< 0.031	< 0.031	< 0.031
TPH-DRO		AK 102	1.5	0.24	< 0.6	< 0.6	< 0.18	< 0.18	< 0.173	0.277	< 0.176	< 0.17
TPH-RRO		AK 103	1.1		< 0.5	< 0.5	< 0.15	< 0.15	< 0.144	< 0.144	< 0.147	< 0.142
BTEX/VOCs												
Benzene	71-43-2	8260C	0.005	< 0.0002	< 0.0004	< 0.00012	< 0.00012	< 0.00012	< 0.00015	< 0.00015	< 0.00015	< 0.00015
Toluene	108-88-3	8260C	1	< 0.001	< 0.001	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031
Ethylbenze	100-41-4	8260C	0.7	< 0.0002	< 0.001	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031	< 0.00031
Xylenes	1330-20-7	8260C	10	< 0.0004	< 0.003	< 0.001	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00062	0.00076 J
Trimethylbenzene, 1,2,4-	95-63-6	8260C	0.015	< 0.0002	< 0.001	< 0.00031						
Semi-Volatile Organic Compound	ds											
Acenaphthene	83-32-9	8270D/SIM	0.53	< 0.000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Acenaphthylene	208-96-8	8270D/SIM	0.26	< 0.000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Anthracene	120-12-7	8270D/SIM	0.043	< 0.000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Benz-a-anthracene	56-55-3	8270D/SIM	0.0012	< 0.0000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Benzo-a-pyrene	50-32-8	8270D/SIM	0.000034	< 0.0000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.00000574	< 0.00000608	< 0.0000062
Benzo-b-fluoranthene	205-99-2	8270D/SIM	0.00034	< 0.0000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Benzo-g,h,i-perylene	191-24-2	8270D/SIM	0.00026	< 0.0000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Benzo-j,k-fluoranthene	207-08-9	8270D/SIM	0.0008	< 0.0000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Chrysene	218-01-9	8270D/SIM	0.002	< 0.0000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Dibenz-a,h-anthracene	53-70-3	8270D/SIM	0.000034	< 0.0000097	<0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.00000574	<0.00000608	< 0.0000062
Fluoranthene	206-44-0	8270D/SIM	0.26	< 0.000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Fluorene	86-73-7	8270D/SIM	0.29	< 0.000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Indeno-1,2,3-cd-pyrene	193-39-5	8270D/SIM	0.00019	<0.0000097	<0.00005	<0.000015	< 0.0000153	< 0.0000153	< 0.00000391	<0.0000139	< 0.0000147	< 0.000015
Methylnaphthalene, 1-	90-12-0	8270D/SIM	0.011	<0.000097	<0.00005	<0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015
Methylnaphthalene, 2-	91-57-6	8270D/SIM	0.036	<0.000097	< 0.00005	< 0.000015	< 0.0000153	< 0.0000153	<0.00000391	<0.0000139	< 0.0000147	< 0.000015
Naphthalene	91-20-3	8270D SIM	0.0017	<0.000097	<0.0001	<0.0031	< 0.0000316	<0.0000316	< 0.00000807	< 0.0000287	<0.0000304	<0.000031
Phenanthrene	85-01-8 129-00-0	8270D/SIM 8270D/SIM	0.17 0.12	<0.000097 <0.000097	<0.00005 <0.00005	<0.000015	<0.0000153	<0.0000153	<0.00000391	<0.0000139	<0.0000147	<0.000015
Pyrene	129-00-0	62/UD/SHVI	0.12	~0.00009/	<0.00003	< 0.000015	< 0.0000153	< 0.0000153	< 0.00000391	< 0.0000139	< 0.0000147	< 0.000015

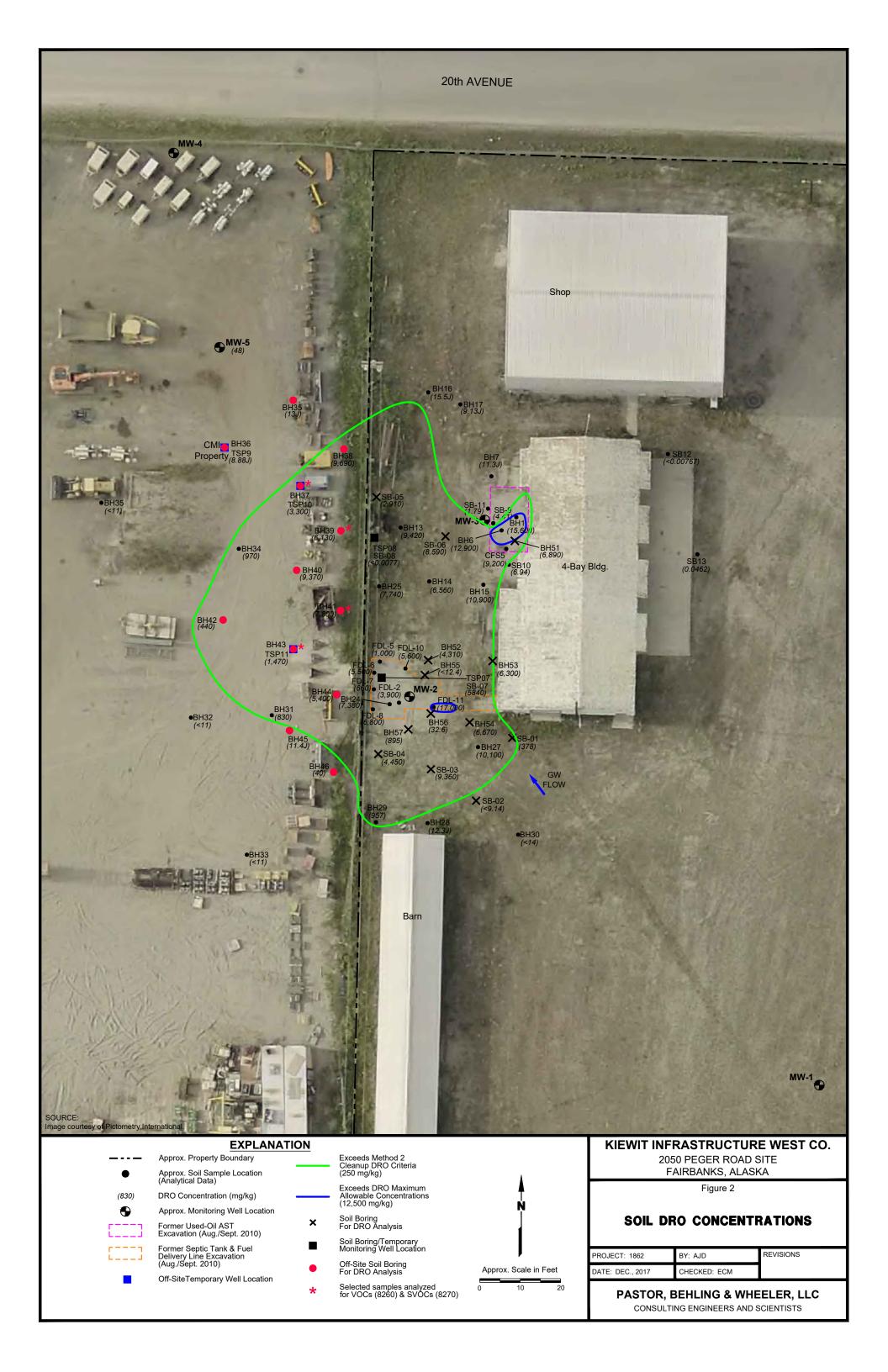
- 1. Sampling locations shown on Figure 3.
- 2. Groundwater cleanup criteria based on 18AAC 75.345 Table C (as ammended through November 7, 2017)
- 3. Concentrations > ADEC Cleanup Criteria are bold/highlight type.
- 4. Limits of Quantitation (LOQs)/Non-detected concentrations >ADEC Cleanup Criteria are *italic/highlight* type.
- 5. J = Estimated value.
- 6. <= Compound not detected at the specified detection limit.
- 7. --- = not analyzed


Approx. Soil Sample Location (Analytical Data)

Soil Boring/Temporary Monitoring Well Location

 \circ Soil Boring for TOC Analysis (Sept. 2017)

Approx. Monitoring Well Location Former Used-Oil AST Excavation (Aug./Sept. 2010)


Former Septic Tank & Fuel Delivery Line Excavation (Aug./Sept. 2010)



SOIL BORING LOCATION MAP

PROJECT: 1862	BY: BZH	REVISIONS
DATE: DEC., 2017	CHECKED: ECM	

PASTOR, BEHLING & WHEELER, LLC CONSULTING ENGINEERS AND SCIENTISTS

EXPLANATION

Approx. Property Boundary Approx. Monitoring Well Location Former Used-Oil AST Excavation Former Septic Tank & Fuel Delivery Line Excavation (428.09) Water-Level Elevation (Ft NAVD) Potentiometric Contour (Ft NAVD) C.I.= 0.1 Ft 428 -

SOURCE:

Image courtesy of Pictometry International.

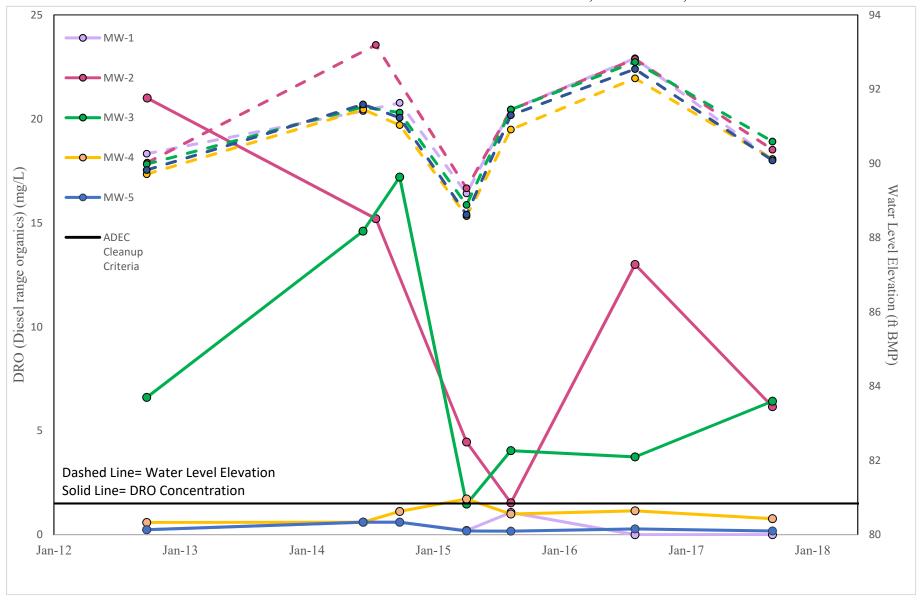
Approx. Groundwater Flow Direction

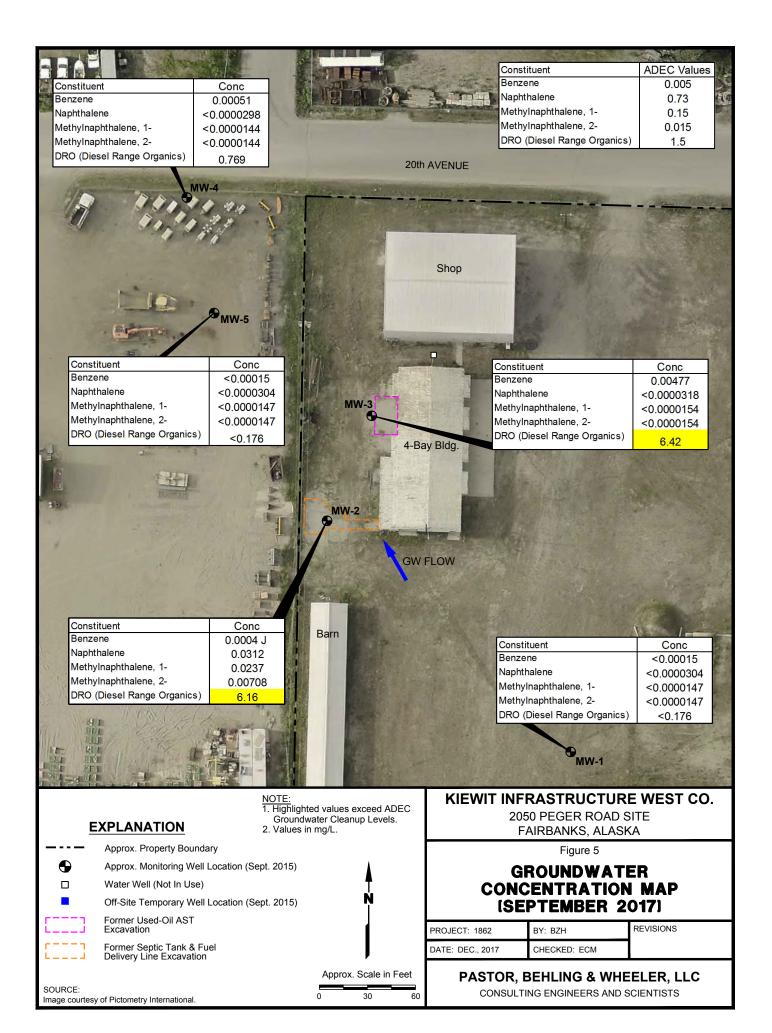
Approx. Scale in Feet

KIEWIT INFRASTRUCTURE WEST CO.

2050 PEGER ROAD SITE FAIRBANKS, ALASKA

Figure 3


POTENTIOMETRIC SURFACE MAP SEPTEMBER 2017


PROJECT: 1862	BY: BZH	REVISIONS
DATE: DEC., 2017	CHECKED: ECM	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

FIGURE 4
DRO CONCENTRATIONS AND GROUNDWATER ELEVATIONS OVER TIME
KIEWIT INFRASTRUCTURE WEST CO. - 2050 PEGER ROAD, FAIRBANKS, ALASKA

ATTACHMENT A TOTAL ORGANIC CARBON SAMPLE ANALYTICAL REPORT

Laboratory Report of Analysis

To: Nortech

2400 College Rd. Fairbanks, AK 99709 (907)388-8671

Report Number: 1178376

Client Project: Kiewit Soil Invest.

Dear Susan Vogt,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 09/21/2017 3:35:04PM

SGS North America Inc.

Case Narrative

SGS Client: Nortech SGS Project: 1178376 Project Name/Site: Kiewit Soil Invest. Project Contact: Susan Vogt

Refer to sample receipt form for information on sample condition.

BH51 (7.5-10) (1178376009) PS

AK102 - Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).

BH510 (7.5-10) (1178376010) PS

AK102 - Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).

BH52 (7.5-10) (1178376011) PS

AK102 - Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (20X).

BH53 (7.5-10) (1178376012) PS

AK102 - Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).

BH54 (7.5-10) (1178376013) PS

AK102 - Surrogate recovery for 5a-androstane (0%) does not meet QC criteria due to sample dilution (40X).

1178376001MS (1413755) MS

9060A Mod - Total Organic Carbon - MS recovery (49.8%) is outside of QC criteria. Refer to LCS for accuracy requirements.

1178376005MS (1414339) MS

9060A Mod - Total Organic Carbon - MS recovery (-134%) is outside of QC criteria. Refer to LCS for accuracy requirements.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/21/2017 3:35:05PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICVInitial Calibration VerificationJThe quantitation is an estimation.LCS(D)Laboratory Control Spike (Duplicate)LLQC/LLIQCLow Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/21/2017 3:35:07PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Samp	le Summar	V

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
BH47 (5-7.5)	1178376001	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH47 (10-12.5)	1178376002	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH48 (2.5-5)	1178376003	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH48 (5-7.5)	1178376004	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH49 (2.5-5)	1178376005	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH49 (5-7.5)	1178376006	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH50 (2.5-5)	1178376007	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH50 (5-7.5)	1178376008	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH51 (7.5-10)	1178376009	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH510 (7.5-10)	1178376010	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH52 (7.5-10)	1178376011	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH53 (7.5-10)	1178376012	09/13/2017	09/15/2017	Soil/Solid (dry weight)
BH54 (7.5-10)	1178376013	09/13/2017	09/15/2017	Soil/Solid (dry weight)

Method Description

AK102 Diesel Range Organics (S) SM21 2540G Percent Solids SM2540G

SW9060A-Mod Total Organic Carbon-M in Triplicate (S)

	Detectable Results Summary			
Client Sample ID: BH47 (5-7.5)				
Lab Sample ID: 1178376001	<u>Parameter</u>	Result	<u>Units</u>	
Waters Department	Total Organic Carbon	0.405	%	
	Total Organic Carbon 2	0.375	%	
	Total Organic Carbon 3	0.548	%	
Client Sample ID: BH47 (10-12.5)				
Lab Sample ID: 1178376002	Parameter	Result	Units	
Waters Department	Total Organic Carbon	0.150	%	
•	Total Organic Carbon 2	0.118	%	
	Total Organic Carbon 3	1.10	%	
Client Sample ID: PH49 (2 5 5)	-			
Client Sample ID: BH48 (2.5-5) Lab Sample ID: 1178376003	Darameter	Doorth	Linita	
	<u>Parameter</u> Total Organic Carbon	<u>Result</u> 1.50	<u>Units</u> %	
Waters Department	Total Organic Carbon Total Organic Carbon 2	1.50	%	
	Total Organic Carbon 3	1.29	%	
	Total Organic Carbon 3	1.20	/0	
Client Sample ID: BH48 (5-7.5)				
Lab Sample ID: 1178376004	<u>Parameter</u>	Result	<u>Units</u>	
Waters Department	Total Organic Carbon	0.176	%	
	Total Organic Carbon 2	0.190	%	
	Total Organic Carbon 3	0.204	%	
Client Sample ID: BH49 (2.5-5)				
Lab Sample ID: 1178376005	Parameter	Result	Units	
Waters Department	Total Organic Carbon	2.43	%	
	Total Organic Carbon 2	1.93	%	
	Total Organic Carbon 3	2.22	%	
Client Sample ID: BH49 (5-7.5)	-			
Lab Sample ID: 1178376006	Devementes	Desult	l leite	
Waters Department	<u>Parameter</u> Total Organic Carbon	<u>Result</u> 0.127	<u>Units</u> %	
waters Department	Total Organic Carbon 2	0.297	%	
	Total Organic Carbon 3	0.349	%	
	Total Organic Garbon 5	0.043	70	
Client Sample ID: BH50 (2.5-5)				
Lab Sample ID: 1178376007	<u>Parameter</u>	Result	<u>Units</u>	
Waters Department	Total Organic Carbon	0.191	%	
	Total Organic Carbon 2	0.241	%	
	Total Organic Carbon 3	0.230	%	
Client Sample ID: BH50 (5-7.5)				
Lab Sample ID: 1178376008	<u>Parameter</u>	Result	<u>Units</u>	
Waters Department	Total Organic Carbon	0.696	%	
•	Total Organic Carbon 2	0.348	%	
	Total Organic Carbon 3	0.268	%	
Client Sample ID: BH51 (7.5-10)				
Lab Sample ID: 1178376009	Parameter	Docult	Units	
Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 6890	mg/Kg	
Jennyolatile Organic Fuels	Diosci Rango Organios	0000	1119/119	

Print Date: 09/21/2017 3:35:08PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Detectable Results Summary

Client Sample ID: BH510 (7.5-10) Lab Sample ID: 1178376010 Semivolatile Organic Fuels	Parameter Diesel Range Organics	<u>Result</u> 8690	<u>Units</u> mg/Kg
Client Sample ID: BH52 (7.5-10) Lab Sample ID: 1178376011 Semivolatile Organic Fuels	Parameter Diesel Range Organics	<u>Result</u> 4310	<u>Units</u> mg/Kg
Client Sample ID: BH53 (7.5-10) Lab Sample ID: 1178376012 Semivolatile Organic Fuels	Parameter Diesel Range Organics	Result 6300	<u>Units</u> mg/Kg
Client Sample ID: BH54 (7.5-10) Lab Sample ID: 1178376013 Semivolatile Organic Fuels	Parameter Diesel Range Organics	Result 6670	<u>Units</u> mg/Kg

Print Date: 09/21/2017 3:35:08PM

Results of BH47 (5-7.5)

Client Sample ID: **BH47 (5-7.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376001 Lab Project ID: 1178376 Collection Date: 09/13/17 09:25 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):80.2 Location:

Results by

<u>Parameter</u> <u>Result Qual LOQ/CL DL Units DF Limits Date Analyzed</u>

TOC Trip, Average 0.443 0.0600 0.0180 % 1 09/18/17 11:05

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 11:05 Container ID: 1178376001-A Prep Batch: WXX12004 Prep Method: METHOD Prep Date/Time: 09/18/17 10:00 Prep Initial Wt./Vol.: 519.1 mg Prep Extract Vol: 1 mL

Results of BH47 (5-7.5)

Client Sample ID: BH47 (5-7.5) Client Project ID: Kiewit Soil Invest.

Lab Sample ID: 1178376001 Lab Project ID: 1178376

Collection Date: 09/13/17 09:25 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):80.2 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	0.405	0.0600	0.0180	%	1		09/18/17 11:05
Total Organic Carbon 2	0.375	0.0600	0.0180	%	1		09/18/17 11:05
Total Organic Carbon 3	0.548	0.0600	0.0180	%	1		09/18/17 11:05

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 11:05 Container ID: 1178376001-A

Prep Batch: WXX12004 Prep Method: METHOD

Prep Date/Time: 09/18/17 10:00 Prep Initial Wt./Vol.: 519.1 mg Prep Extract Vol: 1 mL

Results of BH47 (10-12.5)

Client Sample ID: **BH47 (10-12.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376002 Lab Project ID: 1178376 Collection Date: 09/13/17 09:27 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):82.8 Location:

Results by

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed **Limits** 0.454 TOC Trip, Average 0.0562 0.0169 % 1 09/18/17 12:04

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 12:04 Container ID: 1178376002-A Prep Batch: WXX12004 Prep Method: METHOD Prep Date/Time: 09/18/17 10:00 Prep Initial Wt./Vol.: 537 mg Prep Extract Vol: 1 mL

Results of BH47 (10-12.5)

Client Sample ID: **BH47 (10-12.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376002 Lab Project ID: 1178376 Collection Date: 09/13/17 09:27 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):82.8 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	0.150	0.0562	0.0169	%	1		09/18/17 12:04
Total Organic Carbon 2	0.118	0.0562	0.0169	%	1		09/18/17 12:04
Total Organic Carbon 3	1.10	0.0562	0.0169	%	1		09/18/17 12:04

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 12:04 Container ID: 1178376002-A Prep Batch: WXX12004
Prep Method: METHOD
Prep Date/Time: 09/18/17 10:00
Prep Initial Wt./Vol.: 537 mg

Prep Extract Vol: 1 mL

Results of BH48 (2.5-5)

Client Sample ID: **BH48 (2.5-5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376003 Lab Project ID: 1178376 Collection Date: 09/13/17 09:58 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):79.0 Location:

Results by

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed **Limits** 1.33 TOC Trip, Average 0.0617 0.0185 % 1 09/18/17 12:39

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 12:39 Container ID: 1178376003-A Prep Batch: WXX12004 Prep Method: METHOD Prep Date/Time: 09/18/17 10:00 Prep Initial Wt./Vol.: 513.2 mg Prep Extract Vol: 1 mL

Results of BH48 (2.5-5)

Client Sample ID: BH48 (2.5-5) Client Project ID: Kiewit Soil Invest.

Lab Sample ID: 1178376003 Lab Project ID: 1178376

Collection Date: 09/13/17 09:58 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):79.0 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	1.50	0.0617	0.0185	%	1		09/18/17 12:39
Total Organic Carbon 2	1.29	0.0617	0.0185	%	1		09/18/17 12:39
Total Organic Carbon 3	1.20	0.0617	0.0185	%	1		09/18/17 12:39

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 12:39 Container ID: 1178376003-A

Prep Batch: WXX12004 Prep Method: METHOD

Prep Date/Time: 09/18/17 10:00 Prep Initial Wt./Vol.: 513.2 mg Prep Extract Vol: 1 mL

Results of BH48 (5-7.5)

Client Sample ID: BH48 (5-7.5) Client Project ID: Kiewit Soil Invest.

Lab Sample ID: 1178376004 Lab Project ID: 1178376

Collection Date: 09/13/17 09:59 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):73.4 Location:

Results by

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF **Limits**

Date Analyzed TOC Trip, Average 0.190 0.0637 0.0191 % 1 09/18/17 13:15

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 13:15 Container ID: 1178376004-A

Prep Batch: WXX12004 Prep Method: METHOD Prep Date/Time: 09/18/17 10:00 Prep Initial Wt./Vol.: 534.4 mg Prep Extract Vol: 1 mL

Results of BH48 (5-7.5)

Client Sample ID: **BH48 (5-7.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376004 Lab Project ID: 1178376 Collection Date: 09/13/17 09:59 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):73.4 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	0.176	0.0637	0.0191	%	1		09/18/17 13:15
Total Organic Carbon 2	0.190	0.0637	0.0191	%	1		09/18/17 13:15
Total Organic Carbon 3	0.204	0.0637	0.0191	%	1		09/18/17 13:15

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/18/17 13:15 Container ID: 1178376004-A Prep Batch: WXX12004
Prep Method: METHOD

Prep Date/Time: 09/18/17 10:00 Prep Initial Wt./Vol.: 534.4 mg Prep Extract Vol: 1 mL

Results of BH49 (2.5-5)

Client Sample ID: **BH49 (2.5-5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376005 Lab Project ID: 1178376 Collection Date: 09/13/17 10:25 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):74.3 Location:

Results by

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed **Limits** TOC Trip, Average 2.19 0.0632 0.0190 % 1 09/19/17 11:50

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 11:50 Container ID: 1178376005-A Prep Batch: WXX12010
Prep Method: METHOD
Prep Date/Time: 09/19/17 10:00
Prep Initial Wt./Vol.: 532.6 mg
Prep Extract Vol: 1 mL

Results of BH49 (2.5-5)

Client Sample ID: **BH49 (2.5-5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376005 Lab Project ID: 1178376 Collection Date: 09/13/17 10:25 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):74.3 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	2.43	0.0632	0.0190	%	1		09/19/17 11:50
Total Organic Carbon 2	1.93	0.0632	0.0190	%	1		09/19/17 11:50
Total Organic Carbon 3	2.22	0.0632	0.0190	%	1		09/19/17 11:50

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 11:50 Container ID: 1178376005-A Prep Batch: WXX12010
Prep Method: METHOD

Prep Date/Time: 09/19/17 10:00 Prep Initial Wt./Vol.: 532.6 mg Prep Extract Vol: 1 mL

Results of BH49 (5-7.5)

Client Sample ID: **BH49 (5-7.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376006 Lab Project ID: 1178376 Collection Date: 09/13/17 10:26 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):73.0 Location:

Results by

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed **Limits** TOC Trip, Average 0.257 0.0570 0.0171 % 1 09/19/17 12:46

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 12:46 Container ID: 1178376006-A Prep Batch: WXX12010
Prep Method: METHOD
Prep Date/Time: 09/19/17 10:00
Prep Initial Wt./Vol.: 601.2 mg
Prep Extract Vol: 1 mL

Results of BH49 (5-7.5)

Client Sample ID: **BH49 (5-7.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376006 Lab Project ID: 1178376 Collection Date: 09/13/17 10:26 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):73.0 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	0.127	0.0570	0.0171	%	1		09/19/17 12:46
Total Organic Carbon 2	0.297	0.0570	0.0171	%	1		09/19/17 12:46
Total Organic Carbon 3	0.349	0.0570	0.0171	%	1		09/19/17 12:46

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 12:46 Container ID: 1178376006-A Prep Batch: WXX12010 Prep Method: METHOD Prep Date/Time: 09/19/17 10:00

Prep Initial Wt./Vol.: 601.2 mg Prep Extract Vol: 1 mL

Print Date: 09/21/2017 3:35:10PM

J flagging is activated

Results of BH50 (2.5-5)

Client Sample ID: **BH50 (2.5-5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376007 Lab Project ID: 1178376 Collection Date: 09/13/17 10:50 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed **Limits** TOC Trip, Average 0.221 0.0537 0.0161 % 1 09/19/17 15:30

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 15:30 Container ID: 1178376007-A Prep Batch: WXX12010
Prep Method: METHOD
Prep Date/Time: 09/19/17 10:00
Prep Initial Wt./Vol.: 543.5 mg
Prep Extract Vol: 1 mL

Results of BH50 (2.5-5)

Client Sample ID: BH50 (2.5-5) Client Project ID: Kiewit Soil Invest.

Lab Sample ID: 1178376007 Lab Project ID: 1178376

Collection Date: 09/13/17 10:50 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):85.6 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	0.191	0.0537	0.0161	%	1		09/19/17 15:30
Total Organic Carbon 2	0.241	0.0537	0.0161	%	1		09/19/17 15:30
Total Organic Carbon 3	0.230	0.0537	0.0161	%	1		09/19/17 15:30

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 15:30 Container ID: 1178376007-A

Prep Batch: WXX12010 Prep Method: METHOD

Prep Date/Time: 09/19/17 10:00 Prep Initial Wt./Vol.: 543.5 mg Prep Extract Vol: 1 mL

Results of BH50 (5-7.5)

Client Sample ID: **BH50 (5-7.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376008 Lab Project ID: 1178376 Collection Date: 09/13/17 10:49 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):70.1 Location:

Results by

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> DF Date Analyzed **Limits** TOC Trip, Average 0.437 0.0697 0.0209 % 1 09/19/17 16:07

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 16:07 Container ID: 1178376008-A Prep Batch: WXX12010
Prep Method: METHOD
Prep Date/Time: 09/19/17 10:00
Prep Initial Wt./Vol.: 511.5 mg
Prep Extract Vol: 1 mL

Results of BH50 (5-7.5)

Client Sample ID: **BH50 (5-7.5)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376008 Lab Project ID: 1178376 Collection Date: 09/13/17 10:49 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):70.1 Location:

Results by Waters Department

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Total Organic Carbon	0.696	0.0697	0.0209	%	1		09/19/17 16:07
Total Organic Carbon 2	0.348	0.0697	0.0209	%	1		09/19/17 16:07
Total Organic Carbon 3	0.268	0.0697	0.0209	%	1		09/19/17 16:07

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Analyst: K.W

Analytical Date/Time: 09/19/17 16:07 Container ID: 1178376008-A Prep Batch: WXX12010 Prep Method: METHOD Prep Date/Time: 09/19/17 10:00

Prep Initial Wt./Vol.: 511.5 mg
Prep Extract Vol: 1 mL

Results of BH51 (7.5-10)

Client Sample ID: **BH51** (7.5-10)
Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376009 Lab Project ID: 1178376 Collection Date: 09/13/17 11:15 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):96.0 Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	6890	832	258	mg/Kg	40		09/21/17 03:09
Surrogates							
5a Androstane (surr)	0 *	50-150		%	40		09/21/17 03:09

Batch Information

Analytical Batch: XFC13815 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 09/21/17 03:09 Container ID: 1178376009-A Prep Batch: XXX38468 Prep Method: SW3550C Prep Date/Time: 09/19/17 11:51 Prep Initial Wt./Vol.: 30.06 g Prep Extract Vol: 1 mL

Results of BH510 (7.5-10)

Client Sample ID: **BH510 (7.5-10)**Client Project ID: **Kiewit Soil Invest.**Lab Sample ID: 1178376010

Lab Project ID: 1178376

Collection Date: 09/13/17 11:17 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):95.6 Location:

Results by Semivolatile Organic Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics Surrogates	8690	837	259	mg/Kg	40		09/21/17 03:19
5a Androstane (surr)	0 *	50-150		%	40		09/21/17 03:19

Batch Information

Analytical Batch: XFC13815 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 09/21/17 03:19 Container ID: 1178376010-A Prep Batch: XXX38468
Prep Method: SW3550C
Prep Date/Time: 09/19/17 11:51
Prep Initial Wt./Vol.: 30.01 g
Prep Extract Vol: 1 mL

Results of BH52 (7.5-10)

Client Sample ID: **BH52 (7.5-10)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376011 Lab Project ID: 1178376 Collection Date: 09/13/17 12:01 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):93.9 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u>	<u>Date Analyzed</u>
	4310	424	131	mg/Kg	20	<u>Limits</u>	09/21/17 03:29
Surrogates 5a Androstane (surr)	0 *	50-150		%	20		09/21/17 03:29

Batch Information

Analytical Batch: XFC13815 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 09/21/17 03:29 Container ID: 1178376011-A Prep Batch: XXX38468 Prep Method: SW3550C Prep Date/Time: 09/19/17 11:51 Prep Initial Wt./Vol.: 30.187 g Prep Extract Vol: 1 mL

Results of BH53 (7.5-10)

Client Sample ID: **BH53 (7.5-10)**Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376012 Lab Project ID: 1178376 Collection Date: 09/13/17 12:06 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):93.4 Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
Diesel Range Organics Surrogates	6300	855	265	mg/Kg	40		09/21/17 03:38
5a Androstane (surr)	0 *	50-150		%	40		09/21/17 03:38

Batch Information

Analytical Batch: XFC13815 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 09/21/17 03:38 Container ID: 1178376012-A Prep Batch: XXX38468 Prep Method: SW3550C Prep Date/Time: 09/19/17 11:51 Prep Initial Wt./Vol.: 30.059 g Prep Extract Vol: 1 mL

Results of BH54 (7.5-10)

Client Sample ID: **BH54** (7.5-10)
Client Project ID: **Kiewit Soil Invest.**

Lab Sample ID: 1178376013 Lab Project ID: 1178376 Collection Date: 09/13/17 12:08 Received Date: 09/15/17 10:10 Matrix: Soil/Solid (dry weight)

Solids (%):94.1 Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	<u>Result Qual</u>	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	6670	847	263	mg/Kg	40	Limits	09/21/17 03:48
Surrogates 5a Androstane (surr)		50-150		%	40		09/21/17 03:48

Batch Information

Analytical Batch: XFC13815 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 09/21/17 03:48 Container ID: 1178376013-A Prep Batch: XXX38468 Prep Method: SW3550C Prep Date/Time: 09/19/17 11:51 Prep Initial Wt./Vol.: 30.101 g Prep Extract Vol: 1 mL

Method Blank

Blank ID: MB for HBN 1768739 [SPT/10311]

Blank Lab ID: 1414020

QC for Samples:

Matrix: Soil/Solid (dry weight)

1178376010, 1178376011, 1178376012, 1178376013

Results by SM21 2540G

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Solids
 100
 %

Batch Information

Analytical Batch: SPT10311 Analytical Method: SM21 2540G

Instrument: Analyst: CNB

Analytical Date/Time: 9/18/2017 4:42:00PM

Print Date: 09/21/2017 3:35:12PM

Duplicate Sample Summary

Original Sample ID: 1176619007 Duplicate Sample ID: 1414023

QC for Samples:

Analysis Date: 09/18/2017 16:42 Matrix: Soil/Solid (dry weight)

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	93.5	92.4	%	1.20	(< 15)

Batch Information

Analytical Batch: SPT10311 Analytical Method: SM21 2540G

Instrument: Analyst: CNB

Print Date: 09/21/2017 3:35:13PM

Duplicate Sample Summary

Original Sample ID: 1176640010 Analysis Date: 09/18/2017 16:42
Duplicate Sample ID: 1414024 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1178376001,\,1178376002,\,1178376003,\,1178376004,\,1178376005,\,1178376006,\,1178376007,\,1178376008,\,1178376007,\,1178376007,\,1178376008,\,1178376007,\,1178376008,\,1178376007,\,1178376008,\,11780008,\,117800008,\,1178000000000000000000000000000$

 $1178376009,\,1178376010,\,1178376011,\,1178376012,\,1178376013$

Results by SM21 2540G

NAME	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	91.3	91.1	%	0.25	(< 15)

Batch Information

Analytical Batch: SPT10311 Analytical Method: SM21 2540G

Instrument: Analyst: CNB

Print Date: 09/21/2017 3:35:13PM

Duplicate Sample Summary

Original Sample ID: 1178379002 Analysis Date: 09/18/2017 16:42
Duplicate Sample ID: 1414025 Matrix: Soil/Solid (dry weight)

QC for Samples:

 $1178376009,\,1178376010,\,1178376011,\,1178376012,\,1178376013$

Results by SM21 2540G

<u>NAME</u>	<u>Original</u>	<u>Duplicate</u>	<u>Units</u>	RPD (%)	RPD CL
Total Solids	81.0	81.6	%	0.68	(< 15)

Batch Information

Analytical Batch: SPT10311 Analytical Method: SM21 2540G

Instrument: Analyst: CNB

Print Date: 09/21/2017 3:35:13PM

Method Blank

Blank ID: MB for HBN 1768698 [WXX/12004]

Blank Lab ID: 1413752

QC for Samples:

1178376001, 1178376002, 1178376003, 1178376004

Matrix: Soil/Solid (dry weight)

Results by SW9060A-Mod

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Organic Carbon
 0.0250U
 0.0500
 0.0150
 %

Batch Information

Analytical Batch: WTC2733
Analytical Method: SW9060A-Mod

Instrument: TOC Analyzer

Analyst: K.W

Analytical Date/Time: 9/18/2017 10:23:31AM

Prep Batch: WXX12004 Prep Method: METHOD

Prep Date/Time: 9/18/2017 10:00:00AM

Prep Initial Wt./Vol.: 500 mg Prep Extract Vol: 1 mL

Print Date: 09/21/2017 3:35:16PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178376 [WXX12004]

Blank Spike Lab ID: 1413753 Date Analyzed: 09/18/2017 10:37 Spike Duplicate ID: LCSD for HBN 1178376

[WXX12004]

Spike Duplicate Lab ID: 1413754 Matrix: Soil/Solid (dry weight)

QC for Samples: 1178376001, 1178376002, 1178376003, 1178376004

Results by SW9060A-Mod

Blank Spike (%) Spike Duplicate (%) Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL 3.35 3.35 3.44 103 3.48 104 (75-125)1.30 (< 25)

Batch Information

Total Organic Carbon

<u>Parameter</u>

Analytical Batch: WTC2733
Analytical Method: SW9060A-Mod

Instrument: TOC Analyzer

Analyst: K.W

Prep Batch: WXX12004
Prep Method: METHOD

Prep Date/Time: 09/18/2017 10:00

Spike Init Wt./Vol.: 3.35 % Extract Vol: 1 mL Dupe Init Wt./Vol.: 3.35 % Extract Vol: 1 mL

Print Date: 09/21/2017 3:35:18PM

Matrix Spike Summary

Original Sample ID: 1178376001 MS Sample ID: 1413755 MS

MSD Sample ID:

Analysis Date: 09/18/2017 11:05 Analysis Date: 09/18/2017 11:45

Analysis Date:

Matrix: Soil/Solid (dry weight)

QC for Samples: 1178376001, 1178376002, 1178376003, 1178376004

Results by SW9060A-Mod

Matrix Spike (%) Spike Duplicate (%)

Parameter Sample Spike Result Rec (%) Spike Result Rec (%) CL RPD (%) RPD CL

Total Organic Carbon 0.405 0.218 0.514 50 * 75-125

Batch Information

Analytical Batch: WTC2733 Analytical Method: SW9060A-Mod Instrument: TOC Analyzer

Analyst: K.W

Analytical Date/Time: 9/18/2017 11:45:56AM

Prep Batch: WXX12004

Prep Method: TOC Soils Prep (S) Prep Date/Time: 9/18/2017 10:00:00AM

Prep Initial Wt./Vol.: 572.40mg Prep Extract Vol: 1.00mL

Print Date: 09/21/2017 3:35:19PM

Method Blank

Blank ID: MB for HBN 1768806 [WXX/12010]

Blank Lab ID: 1414336

QC for Samples:

1178376005, 1178376006, 1178376007, 1178376008

Matrix: Soil/Solid (dry weight)

Results by SW9060A-Mod

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Total Organic Carbon
 0.0250U
 0.0500
 0.0150
 %

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod

Instrument: TOC Analyzer

Analyst: K.W

Analytical Date/Time: 9/19/2017 10:51:04AM

Prep Batch: WXX12010 Prep Method: METHOD

Prep Date/Time: 9/19/2017 10:00:00AM

Prep Initial Wt./Vol.: 500 mg Prep Extract Vol: 1 mL

Print Date: 09/21/2017 3:35:21PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178376 [WXX12010]

Blank Spike Lab ID: 1414337

Date Analyzed: 09/19/2017 11:20

Spike Duplicate ID: LCSD for HBN 1178376

[WXX12010]

Spike Duplicate Lab ID: 1414338

Matrix: Soil/Solid (dry weight)

QC for Samples: 1178376005, 1178376006, 1178376007, 1178376008

Results by SW9060A-Mod

Blank Spike (%) Spike Duplicate (%)

<u>Parameter</u> Spike Result Rec (%) Spike Result Rec (%) RPD (%) RPD CL **Total Organic Carbon** 3.35 3.35 3.35 100 3.29 98 (75-125)1.90 (< 25)

Batch Information

Analytical Batch: WTC2735
Analytical Method: SW9060A-Mod

Instrument: TOC Analyzer

Analyst: K.W

Prep Batch: WXX12010
Prep Method: METHOD

Prep Date/Time: 09/19/2017 10:00

Spike Init Wt./Vol.: 3.35 % Extract Vol: 1 mL Dupe Init Wt./Vol.: 3.35 % Extract Vol: 1 mL

Print Date: 09/21/2017 3:35:23PM

Matrix Spike Summary

Original Sample ID: 1178376005 MS Sample ID: 1414339 MS

MSD Sample ID:

Analysis Date: 09/19/2017 11:50 Analysis Date: 09/19/2017 12:30

Analysis Date:

Matrix: Soil/Solid (dry weight)

QC for Samples: 1178376005, 1178376006, 1178376007, 1178376008

Results by SW9060A-Mod

Matrix Spike (%) Spike Duplicate (%)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Total Organic Carbon 2.43 0.244 2.10 -134 * 75-125

Batch Information

Analytical Batch: WTC2735 Analytical Method: SW9060A-Mod Instrument: TOC Analyzer

Analyst: K.W

Analytical Date/Time: 9/19/2017 12:30:34PM

Prep Batch: WXX12010

Prep Method: TOC Soils Prep (S)
Prep Date/Time: 9/19/2017 10:00:00AM

Prep Initial Wt./Vol.: 552.50mg Prep Extract Vol: 1.00mL

Print Date: 09/21/2017 3:35:24PM

Method Blank

Blank ID: MB for HBN 1768767 [XXX/38468]

Blank Lab ID: 1414159

QC for Samples:

1178376009, 1178376010, 1178376011, 1178376012, 1178376013

Matrix: Soil/Solid (dry weight)

Results by AK102

ParameterResultsLOQ/CLDLUnitsDiesel Range Organics10.0U20.06.20mg/Kg

Surrogates

5a Androstane (surr) 79.5 60-120 %

Batch Information

Analytical Batch: XFC13811 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Analytical Date/Time: 9/19/2017 8:32:00PM

Prep Batch: XXX38468 Prep Method: SW3550C

Prep Date/Time: 9/19/2017 11:51:45AM

Prep Initial Wt./Vol.: 30 g Prep Extract Vol: 1 mL

Print Date: 09/21/2017 3:35:25PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178376 [XXX38468]

Blank Spike Lab ID: 1414160 Date Analyzed: 09/19/2017 20:42 Spike Duplicate ID: LCSD for HBN 1178376

[XXX38468]

Spike Duplicate Lab ID: 1414161 Matrix: Soil/Solid (dry weight)

QC for Samples: 1178376009, 1178376010, 1178376011, 1178376012, 1178376013

Results by AK102

	В	lank Spike	(mg/Kg)	S	pike Duplic	ate (mg/Kg)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	167	153	92	167	148	89	(75-125)	3.20	(< 20)
Surrogates									
5a Androstane (surr)	3.33	102	102	3.33	102	102	(60-120)	0.47	

Batch Information

Analytical Batch: XFC13811 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: JMG

Prep Batch: XXX38468
Prep Method: SW3550C

Prep Date/Time: 09/19/2017 11:51

Spike Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL Dupe Init Wt./Vol.: 167 mg/Kg Extract Vol: 1 mL

Print Date: 09/21/2017 3:35:27PM

1178376

ပ

Locations Nationwide

Maryland New Jersey Alaska

New York Kentucky Indiana North Carolina West Virgina

www.us.sgs.com

irem irem	<u></u>	CLIENT: Nortch					Instru Om	uction: ission	s: Section <u>s may dek</u>	s 1 - { ny the	Instructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	l out. sis.	Z ***
Februs F	Λ	n Vost	Ö	-75h-t1	-58.88	Section	on 3	7		Pre	servative		5
E-MAIL: Substitute Feature F	الآكي ا	+ soil	": #: 1°	t 201-		# 0		vsu V	nou				
Solution Date Time Received By: Post Time Time Received By: Time	ᆮ		-MAIL:			0 Z	Type	مدهدا ۲					
EDENTIFICATION DATE Time NATRIX Natronal Time Time P.O.#: $(7-7-1)$ $(7-7-1)$ $(7-7-1)$ $(7-7-1)$ $(7-7-5)$ $(7-7$	- اد		Svoct	@ nordech	engr:com	- ∢	# 00 # 00 # 00 # 00 # 00 # 00 # 00 # 0	مکست مکر (د	てのし				
LEIDENTIFICATION DATE TIME MATRIX E mere $\frac{1}{12}$ \frac		٤.	:	7201		- z	GRAB MI =	Fred	> 1∀				
(5-7.5) 9 (3 17 0425 5c 1 04ch ×				TIME	MATRIX/ MATRIX CODE	шко	Incre- mental Soils	- 70 <u>- 0900</u>	- ૦૫(REMARKS/ LOC ID
(2.5-5) $(2.5-5)$ $(2.5-5)$ $(2.5-5)$ $(1.5-5)$)	41/81/6	09.25	1.05	1	grado	メ					
$(2.5-5)$ 0958 1 \times		_		2260	_			×					Bas 9060-mod
(2.5-2.5) $(2.5-2.5)$		134 48 (2.5-5)		0958		1		×					
$(2.5-5)$ 1026 1 \times		9		0959)		×					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		BH49 (2.5-5)		1025		1		X					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		BH 49 (5-7.5)		1026		_		X					
1 (7.5-10) 1 (1157 10 (7.5-10) 1 (1177 10 (7.5-10) 1 (1177 1		\sim		2501		_		Х					
(ユ・S-10) 1115 1 1 1 1 1 1 1 1		_		1049				メ					
Date Time Received By 1 1 1 1 1 1 1 1 1				1115		_			×				
Mark A cooler ID: Date Time Received By: $ \frac{4 3 1}{164} + \frac{1644}{1600} + \frac{4 13 1}{1600} + \frac{1644}{1600} + \frac{1644}{1600} $ Date Time Received By: Date Time Received By: $ \frac{4 13 1}{1600} + \frac{1600}{1600} + \frac{1600}{1600} + \frac{1600}{1600} + \frac{1600}{1600} $ Temp Blank °C: $\frac{4}{1600} + \frac{1}{1600} + \frac{1}{1600} + \frac{1}{1600} $ The Received For Laboratory By: $ \frac{24 14 14}{1600} + \frac{1}{1600} + \frac{1}{1600} + \frac{1}{1600} $ The Received For Laboratory By: $ \frac{24 14 14}{1600} + \frac{1}{1600} + \frac{1}{16000} $ The Received For Laboratory By: $ \frac{24 14 14}{16000} + \frac{1}{16000} + \frac{1}{160000} $ The Received Sample Receipt Form)) o	>	1117	\	1	\rightarrow		X				
Mark 1644 1644 1644 Cooler ID: Date Time Received By: Requested Turnaround Time and/or Spec 公 は 16 の		ed By: (1)	Date	Time	Received By:		9/13/17	4	Section	Щ	OD Project? Yes No		erable Requirements:
Date Time Received By: Requested Turnaround Time and/or Specific Time Received By: Time Received For Laboratory By: Temp Blank °C: $\frac{4}{4}$. Temp Blank °C: $\frac{4}{4}$. Or Ambient [] See attached Sample Receipt Form)	117	# the Many	4/13/17	1647	1/1	\	(647		Cooler	ä			
Date Time Received By: Temp Blank °C: 4.6 Temp Blank °C: 4.6 Or Ambient [] See attached Sample Receipt Form)	₩ 1\	ed By: (2)	Date (2)	Time	Received By:				Requeste	d Turnar	ound Time and/or Sp	oecial Instruction	ıs:
Date Time Received For Laboratory By: Temp Blank °C: Ψ, 6 OND OND <td< td=""><td>w: NO</td><td>d By: (3)</td><td>Date</td><td>Time</td><td>Received By:</td><td></td><td></td><td></td><td>T</td><td></td><td></td><td></td><td></td></td<>	w: NO	d By: (3)	Date	Time	Received By:				T				
Date Time Received For Laboratory By: ONSTITUTE OF CONTROL See attached Sample Receipt Form)									Temp Bla	투 .c.	97	Chain of C	Sustody Seal: (Circle)
アルタルキ IO/O My See attached Sample Receipt Form)		id By: (4)	Date	Time	Received For	Laborat	ory By:	Ì		or A	mbient []		
			+ //Kw.z	0/0		1,		n N	(See att	ached S	ample Receipt Form)		d Sample Receipt Forn

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (910) 362-2343 Fax: (907) 561-5301 $\mathcal{AC}^{-1}(A) \mathcal{A}^{-1}(A) \mathcal{A}^{-1}$

1178376

. JRD

Locations Nationwide

New York Maryland Indiana North Carolina New Jersey Alaska

Kentucky West Virgina

www.us.sgs.com

30.00	c	Page 7 of 7				REMARKS/									(P)		Data Deliverable Requirements:		ons:		Chain of Custody Seal: (Circle)	BROKEN ABSENT
	l out. sis.					_										>)			Requested Turnaround Time and/or Special Instructions:		Chain o	INTACT
	istructions: Sections 1 - 5 must be filled out. Omissions may delay the onset of analysis.	Ve												_	/		DOD Project? Yes No		Time and/or S			f []
l	1 - 5 mu the onse	Preservative																	Turnaround		k°c: 4.6	or Ambient []
	Sections may delay	:										/	/				Section 4	Cooler ID:	Requested		Temp Blank °C:	
	Instructions: Omissions		non	721	71 YV	- OU()	×	X	义 义													
	Instr On	Section 3	# O	O N I	COMP GRAB		1 grab	1	1								t1/81/6	15.3				boratory By:
						MATRIX/ MATRIX CODE	1,505	1	>								Received By:	M	Received By:	Received By:		Received For Laboratory By:
			th01-t1	-		TIME HH:MM	1201	1206	1208								Time	1647	Time 6 00	Time	\	Time
		PHONE NO:		E-MAIL:	QUOTE#: P.O.#:	DATE mm/dd/yy	4/13/17	9/13/17	4/13/17								Date	4/13/17	Date 9 // 4/73			Date Time
		A COMMENT OF THE PARTY OF THE P	of Yes		QUOTE P.O.#:	SAMPLE IDENTIFICATION	81452 (7.5-10)	BH53 (75-10)	(01-5.t) HS #8								By: (1)	The Mark	By: (2)			
	CLIENT:	CONTACT:	PROJECT NAME:	REPORTS TO:	INVOICE TO:	RESERVED for lab use	A(II)		13A	uoi	ect	6					Relinquished By: (1)	100	Relii	Relinquished By: (3)	S age 4	Relinquished By: (4)

http://www.sgs.com/terms-and-conditions

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:	C	onditi	on:	Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes_		N/A)	Exemption permitted if sampler hand
COC accompanied samples?	Yes	No	N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	Tes	No		□Exemption permitted if chilled &
If >6°C, were samples collected <8 hours ago?	Yes	No	N/A	collected <8hrs ago
If <0°C, were all sample containers ice free?	Yes	No	N/A)	
Cooler ID: <u>@ 4.6</u> w/Therm. ID: <u>D'23</u>	1	210	CANADO	
Cooler ID: w/Therm. ID:				
Cooler ID: w/Therm. ID:				
Cooler ID: w/Therm. ID:				
Cooler ID: w/Therm. ID:				_
If samples are received without a temperature blank, the "cooler temperature" will be documented in lieu of the temperature blank and "COOLER TEMP" will be noted to				* · · · · · · · · · · · · · · · · · · ·
the right. In cases where neither a temp blank nor cooler temp can be obtained, note				Note: Identify containers received at
ambient () or chilled (). Please check one.				non-compliant temperature. Use form
				FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:		king/		
		ee atta		
For camples received with account		Or N/		
For samples received with payment, note amount (\$) and when	ether cash	/ chec	k / CC (cir	cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	Yes	No	N/A	Note: some samples are sent to
Packing material used (specify all that apply): Bubble Wrap Separate plastic bags Vermiculite Other:				Anchorage without inspection by SGS
Separate plastic bags Vermiculite Other:				Fairbanks personnel.
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Tes	N.7	77/4	
For RUSH/SHORT Hold Time, were COC/Bottles flagged		No	N/A	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No		
	Yes	No	(N/A)	
Additional notes (if applicable):				
Profile #: 3375 74				
Profile #: 3375 94				
Note to Client: any "no" circled above indicates non-compliance w	vith standard	proced	ures and ma	impact data quality.

e-Sample Receipt Form

SGS Workorder #:

1178376

	_					7 6 3		<u> </u>
Review Criteria	Condition (Yes,			•		ted below		
Chain of Custody / Temperature Require	rements	ı	N/A Ex	emption permit	ted if sam	pler hand carries/	delive	ers.
Were Custody Seals intact? Note # &	location Yes	1 Front 1	Back					
COC accompanied sa	amples? Yes							
N/A **Exemption permitted if		cted <8 ho	urs ago	or for sample	s where o	hilling is not requi	ed	
Exemplion permitted if	Yes	Cooler ID		1	@	1.1 °C Therm		D42
	163	Cooler ID	_			°C Therm		
T	05/0				@			
Temperature blank compliant* (i.e., 0-6 °C afte	er CF)?	Cooler ID			@	°C Therm		
		Cooler ID			@	°C Therm		
		Cooler ID	:		@	°C Therm	. ID:	
*If >6°C, were samples collected <8 hours	ago? N/A							
If <0°C, were sample containers ice	froo?							
ii <0 C, were sample containers ice	N/A							
If samples received <u>without</u> a temperature blank, the	"cooler							
temperature" will be documented in lieu of the temperature b								
"COOLER TEMP" will be noted to the right. In cases where no								
temp blank nor cooler temp can be obtained, note "ambi								
"C	chilled".							
Note: Identify containers received at non-compliant temper	rature .							
Use form FS-0029 if more space is n								
Holding Time / Documentation / Sample Condition Re	equirements	Note: Refe	er to for	m F-083 "Sam	ole Guide	for specific holdi	ng tim	ies.
Were samples received within holding	g time? Yes							
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes							
**Note: If times differ <1hr, record details & login per	r COC.							
Were analyses requested unambiguous? (i.e., method is speci-	fied for Yes							
analyses with >1 option for an	nalysis)							
		ı	N/A <u>***</u>	Exemption perr	mitted for	metals (e.g,200.8	/6020	<u>A).</u>
Were proper containers (type/mass/volume/preservative***								
Volatile / LL-Hg Req	uirements							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sar	mples? N/A							
Were all water VOA vials free of headspace (i.e., bubbles ≤	6mm)? N/A							
Were all soil VOAs field extracted with MeOH	+BFB? N/A							
Note to Client: Any "No", answer above indicates no	n-compliance	with standa	ard prod	cedures and ma	ay impact	data quality.		
Additiona	al notes (if a	nnlicable	·).					
, additional		PPIIOGDIC	/-					

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1178376001-A	No Preservative Required	ОК			
1178376002-A	No Preservative Required	ОК			
1178376003-A	No Preservative Required	ОК			
1178376004-A	No Preservative Required	ОК			
1178376005-A	No Preservative Required	ОК			
1178376006-A	No Preservative Required	ОК			
1178376007-A	No Preservative Required	ОК			
1178376008-A	No Preservative Required	ОК			
1178376009-A	No Preservative Required	ОК			
1178376010-A	No Preservative Required	ОК			
1178376011-A	No Preservative Required	ОК			
1178376012-A	No Preservative Required	ОК			
1178376013-A	No Preservative Required	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.
- FR- The container was received frozen and not usable for Bacteria or BOD analyses.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

9/15/2017 Page 44 of 44

ATTACHMENT B SEPTEMBER 2017 GROUNDWATER ANALYTICAL REPORTS

Laboratory Report of Analysis

To: Nortech

2400 College Rd. Fairbanks, AK 99709 (907)388-8671

Report Number: 1178438

Client Project: Kiewit Groundwater Sampling

Dear Susan Vogt,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 10/26/2017 8:30:38AM

SGS North America Inc.

Case Narrative

SGS Client: Nortech SGS Project: 1178438

Project Name/Site: Kiewit Groundwater Sampling

Project Contact: Susan Vogt

Refer to sample receipt form for information on sample condition.

MW-3 (1178438003) PS

8270D SIM - PAH surrogate recovery for 2-methylnaphthalene-d10 (28.2%) does not meet QC criteria. Sample was re-extracted past hold time and surrogates were double-spiked. The corrected surrogate recoveries were within QC criteria. In-hold data reported.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 10/26/2017 8:30:39AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are **AK00971 DW Chemistry (Provisionally Certified as of 10/12/2017) & Microbiology (Provisionally Certified as of 9/21/2017) &** UST-005 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020A, 7470A, 7471B, 8015C, 8021B, 8082A, 8260C, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification

CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit
DF Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 10/26/2017 8:30:41AM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-1	1178438001	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)
MW-2	1178438002	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)
MW-3	1178438003	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)
MW-4	1178438004	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)
MW-5	1178438005	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)
MW-55	1178438006	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)
EB-Kiewit	1178438007	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)
TB-Kiewit	1178438008	09/26/2017	09/29/2017	Water (Surface, Eff., Ground)

Method Description

8270D SIM LV (PAH) 8270 PAH SIM GC/MS Liq/Liq ext. LV

AK101 AK101/8021 Combo. SW8021B AK101/8021 Combo.

AK102 DRO/RRO Low Volume Water
AK103 DRO/RRO Low Volume Water

Print Date: 10/26/2017 8:30:43AM

Detectable Results Summary

Client Sample ID: MW-1 Lab Sample ID: 1178438001	Doromotor	Dogult	Linita
Volatile Fuels	Parameter P & M -Xylene	<u>Result</u> 0.740J	<u>Units</u> ug/L
	F & IVI - Aylette	0.7403	ug/L
Client Sample ID: MW-2			
Lab Sample ID: 1178438002	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	1-Methylnaphthalene	23.7	ug/L
	2-Methylnaphthalene	7.08	ug/L
	Acenaphthene	0.988	ug/L
	Fluorene	1.09	ug/L
	Naphthalene	31.2	ug/L
	Phenanthrene	0.432	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	6.16	mg/L
	Residual Range Organics	0.361J	mg/L
Volatile Fuels	Benzene	0.400J	ug/L
	Ethylbenzene	15.5	ug/L
	Gasoline Range Organics	1.11	mg/L
	o-Xylene	178	ug/L
	P & M -Xylene	210	ug/L
	Toluene	4.02	ug/L
Client Sample ID: MW-3			
Lab Sample ID: 1178438003	Б	D "	
•	Parameter Diesel Range Organics	<u>Result</u> 6.42	<u>Units</u>
Semivolatile Organic Fuels			mg/L
	Residual Range Organics	0.462J	mg/L
Volatile Fuels	Benzene	4.77	ug/L
	Ethylbenzene	2.82	ug/L
	Gasoline Range Organics	0.164	mg/L
	o-Xylene	6.85	ug/L
	P & M -Xylene	8.12	ug/L
	Toluene	0.350J	ug/L
Client Sample ID: MW-4			
Lab Sample ID: 1178438004	Parameter	Result	Units
Polynuclear Aromatics GC/MS	Acenaphthene	0.0587	ug/L
,	Fluorene	0.117	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.769	mg/L
	Residual Range Organics	0.316J	mg/L
Volatile Fuels	Benzene	0.510	ug/L
	Ethylbenzene	0.360J	ug/L
	o-Xylene	0.380J	ug/L
	P & M -Xylene	1.33J	ug/L
	Toluene	0.550J	ug/L
OI: O ID	. 5.555	3.5555	~y, L
Client Sample ID: MW-55			
Lab Sample ID: 1178438006	<u>Parameter</u>	Result	<u>Units</u>
Volatile Fuels	P & M -Xylene	0.760J	ug/L

Print Date: 10/26/2017 8:30:44AM

SGS North America Inc. 200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Member of SGS Group

Client Sample ID: MW-1

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438001 Lab Project ID: 1178438 Collection Date: 09/26/17 12:58 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
2-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1	10/16/17 02:43
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1	10/16/17 02:43
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Naphthalene	0.0490 U	0.0980	0.0304	ug/L	1	10/16/17 02:43
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 02:43
Surrogates						
2-Methylnaphthalene-d10 (surr)	64.5	47-106		%	1	10/16/17 02:43
Fluoranthene-d10 (surr)	64.5	24-116		%	1	10/16/17 02:43

Batch Information

Analytical Batch: XMS10483

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 02:43 Container ID: 1178438001-F Prep Batch: XXX38560 Prep Method: SW3520C

Prep Date/Time: 10/01/17 08:08 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-1

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438001 Lab Project ID: 1178438 Collection Date: 09/26/17 12:58 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Diesel Range Organics	0.294 U	0.588	0.176	mg/L	1		10/06/17 20:25
Surrogates							
5a Androstane (surr)	78	50-150		%	1		10/06/17 20:25

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/06/17 20:25 Container ID: 1178438001-D Prep Batch: XXX38570 Prep Method: SW3520C Prep Date/Time: 10/03/17 08:17 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

<u>Parameter</u> Residual Range Organics	Result Qual 0.245 U	<u>LOQ/CL</u> 0.490	<u>DL</u> 0.147	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/06/17 20:25
Surrogates							
n-Triacontane-d62 (surr)	86.8	50-150		%	1		10/06/17 20:25

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/06/17 20:25 Container ID: 1178438001-D Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-1

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438001 Lab Project ID: 1178438

Collection Date: 09/26/17 12:58 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL 0.100	<u>DL</u> 0.0310	Units mg/l	<u>DF</u>	Allowable Limits	Date Analyzed 10/04/17 18:34
Surrogates	0.0500 0	0.100	0.0310	mg/L	ı		10/04/17 16.54
4-Bromofluorobenzene (surr)	72.2	50-150		%	1		10/04/17 18:34

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101 Analyst: ST

Analytical Date/Time: 10/04/17 18:34

Container ID: 1178438001-A

Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		10/04/17 18:34
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/04/17 18:34
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/04/17 18:34
P & M -Xylene	0.740 J	2.00	0.620	ug/L	1		10/04/17 18:34
Toluene	0.500 U	1.00	0.310	ug/L	1		10/04/17 18:34
Surrogates							
1,4-Difluorobenzene (surr)	90.9	77-115		%	1		10/04/17 18:34

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 18:34 Container ID: 1178438001-A

Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-2

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438002 Lab Project ID: 1178438

Collection Date: 09/26/17 12:20 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	23.7	0.258	0.0775	ug/L	5		10/16/17 18:56
2-Methylnaphthalene	7.08	0.0517	0.0155	ug/L	1		10/16/17 03:04
Acenaphthene	0.988	0.0517	0.0155	ug/L	1		10/16/17 03:04
Acenaphthylene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Anthracene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Benzo(a)Anthracene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Benzo[a]pyrene	0.0104 U	0.0207	0.00640	ug/L	1		10/16/17 03:04
Benzo[b]Fluoranthene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Benzo[g,h,i]perylene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Benzo[k]fluoranthene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Chrysene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Dibenzo[a,h]anthracene	0.0104 U	0.0207	0.00640	ug/L	1		10/16/17 03:04
Fluoranthene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Fluorene	1.09	0.0517	0.0155	ug/L	1		10/16/17 03:04
Indeno[1,2,3-c,d] pyrene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Naphthalene	31.2	0.517	0.160	ug/L	5		10/16/17 18:56
Phenanthrene	0.432	0.0517	0.0155	ug/L	1		10/16/17 03:04
Pyrene	0.0259 U	0.0517	0.0155	ug/L	1		10/16/17 03:04
Surrogates							
2-Methylnaphthalene-d10 (surr)	67.7	47-106		%	1		10/16/17 03:04
Fluoranthene-d10 (surr)	64.7	24-116		%	1		10/16/17 03:04

Batch Information

Analytical Batch: XMS10483

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 03:04

Container ID: 1178438002-F

Analytical Batch: XMS10486

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 18:56 Container ID: 1178438002-F

Prep Batch: XXX38560 Prep Method: SW3520C

Prep Date/Time: 10/01/17 08:08 Prep Initial Wt./Vol.: 242 mL

Prep Extract Vol: 1 mL

Prep Batch: XXX38560

Prep Method: SW3520C Prep Date/Time: 10/01/17 08:08 Prep Initial Wt./Vol.: 242 mL Prep Extract Vol: 1 mL

Print Date: 10/26/2017 8:30:46AM

J flagging is activated

SGS North America Inc.

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-2

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438002 Lab Project ID: 1178438 Collection Date: 09/26/17 12:20 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	6.16	0.556	0.167	mg/L	1		10/06/17 20:46
Surrogates							
5a Androstane (surr)	84.3	50-150		%	1		10/06/17 20:46

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/06/17 20:46 Container ID: 1178438002-D Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 270 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.361 J	0.463	0.139	mg/L	1		10/06/17 20:46
Surrogates							
n-Triacontane-d62 (surr)	88	50-150		%	1		10/06/17 20:46

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/06/17 20:46 Container ID: 1178438002-D Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 270 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-2

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438002 Lab Project ID: 1178438 Collection Date: 09/26/17 12:20 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	1.11	0.100	0.0310	mg/L	1		10/04/17 18:53
Surrogates							
4-Bromofluorobenzene (surr)	126	50-150		%	1		10/04/17 18:53

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/04/17 18:53 Container ID: 1178438002-A Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.400 J	0.500	0.150	ug/L	1		10/04/17 18:53
Ethylbenzene	15.5	1.00	0.310	ug/L	1		10/04/17 18:53
o-Xylene	178	1.00	0.310	ug/L	1		10/04/17 18:53
P & M -Xylene	210	2.00	0.620	ug/L	1		10/04/17 18:53
Toluene	4.02	1.00	0.310	ug/L	1		10/04/17 18:53
Surrogates							
1,4-Difluorobenzene (surr)	84.7	77-115		%	1		10/04/17 18:53

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 18:53 Container ID: 1178438002-A Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-3

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438003 Lab Project ID: 1178438 Collection Date: 09/26/17 11:20 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Develope	Decult Ovel	1.00/01	DI	l laita	DE	Allowable
Parameter 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
2-Methylnaphthalene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Acenaphthene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Acenaphthylene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Anthracene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Benzo(a)Anthracene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Benzo[a]pyrene	0.0103 U	0.0205	0.00635	ug/L	1	10/16/17 03:24
Benzo[b]Fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Benzo[g,h,i]perylene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Benzo[k]fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Chrysene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Dibenzo[a,h]anthracene	0.0103 U	0.0205	0.00635	ug/L	1	10/16/17 03:24
Fluoranthene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Fluorene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Indeno[1,2,3-c,d] pyrene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Naphthalene	0.0510 U	0.102	0.0318	ug/L	1	10/16/17 03:24
Phenanthrene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Pyrene	0.0256 U	0.0512	0.0154	ug/L	1	10/16/17 03:24
Surrogates						
2-Methylnaphthalene-d10 (surr)	28.2 *	47-106		%	1	10/16/17 03:24
Fluoranthene-d10 (surr)	46.7	24-116		%	1	10/16/17 03:24

Batch Information

Analytical Batch: XMS10483

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 03:24 Container ID: 1178438003-F Prep Batch: XXX38560 Prep Method: SW3520C

Prep Date/Time: 10/01/17 08:08 Prep Initial Wt./Vol.: 244 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-3

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438003 Lab Project ID: 1178438 Collection Date: 09/26/17 11:20 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Diesel Range Organics	6.42	0.620	0.186	mg/L	1		10/06/17 21:06
Surrogates							
5a Androstane (surr)	86.8	50-150		%	1		10/06/17 21:06

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/06/17 21:06 Container ID: 1178438003-D Prep Batch: XXX38570 Prep Method: SW3520C Prep Date/Time: 10/03/17 08:17 Prep Initial Wt./Vol.: 242 mL Prep Extract Vol: 1 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.462 J	0.517	0.155	mg/L	1		10/06/17 21:06
Summamataa							
Surrogates							
n-Triacontane-d62 (surr)	90.6	50-150		%	1		10/06/17 21:06

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/06/17 21:06 Container ID: 1178438003-D Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 242 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-3

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438003 Lab Project ID: 1178438 Collection Date: 09/26/17 11:20 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	<u>Result Qual</u> 0.164	LOQ/CL 0.100	<u>DL</u> 0.0310	Units mg/L	<u>DF</u>	Allowable Limits	Date Analyzed 10/04/17 19:12
Surrogates	0.104	0.100	0.0310	IIIg/L	'		10/04/17 19.12
4-Bromofluorobenzene (surr)	82.6	50-150		%	1		10/04/17 19:12

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/04/17 19:12 Container ID: 1178438003-A Prep Batch: VXX31431
Prep Method: SW5030B
Prep Date/Time: 10/04/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	4.77	0.500	0.150	ug/L	1		10/04/17 19:12
Ethylbenzene	2.82	1.00	0.310	ug/L	1		10/04/17 19:12
o-Xylene	6.85	1.00	0.310	ug/L	1		10/04/17 19:12
P & M -Xylene	8.12	2.00	0.620	ug/L	1		10/04/17 19:12
Toluene	0.350 J	1.00	0.310	ug/L	1		10/04/17 19:12
Surrogates							
1,4-Difluorobenzene (surr)	86.3	77-115		%	1		10/04/17 19:12

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 19:12 Container ID: 1178438003-A Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-4

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438004 Lab Project ID: 1178438 Collection Date: 09/26/17 11:44 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Acenaphthene	0.0587	0.0481	0.0144	ug/L	1		10/16/17 03:44
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		10/16/17 03:44
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		10/16/17 03:44
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Fluorene	0.117	0.0481	0.0144	ug/L	1		10/16/17 03:44
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		10/16/17 03:44
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 03:44
Surrogates							
2-Methylnaphthalene-d10 (surr)	55.7	47-106		%	1		10/16/17 03:44
Fluoranthene-d10 (surr)	56.4	24-116		%	1		10/16/17 03:44

Batch Information

Analytical Batch: XMS10483

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 03:44 Container ID: 1178438004-F Prep Batch: XXX38560 Prep Method: SW3520C Prep Date/Time: 10/01/17 08:08

Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-4

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438004 Lab Project ID: 1178438 Collection Date: 09/26/17 11:44 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.769	0.625	0.188	mg/L	1		10/06/17 21:27
Surrogates							
5a Androstane (surr)	88.2	50-150		%	1		10/06/17 21:27

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/06/17 21:27 Container ID: 1178438004-D

Prep Batch: XXX38570 Prep Method: SW3520C Prep Date/Time: 10/03/17 08:17 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.316 J	0.521	0.156	mg/L	1		10/06/17 21:27
Surrogates							
n-Triacontane-d62 (surr)	94.1	50-150		%	1		10/06/17 21:27

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/06/17 21:27 Container ID: 1178438004-D

Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-4

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438004 Lab Project ID: 1178438

Collection Date: 09/26/17 11:44 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		10/04/17 20:29
Surrogates							
4-Bromofluorobenzene (surr)	76.2	50-150		%	1		10/04/17 20:29

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101 Analyst: ST

Analytical Date/Time: 10/04/17 20:29

Container ID: 1178438004-A

Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.510	0.500	0.150	ug/L	1		10/04/17 20:29
Ethylbenzene	0.360 J	1.00	0.310	ug/L	1		10/04/17 20:29
o-Xylene	0.380 J	1.00	0.310	ug/L	1		10/04/17 20:29
P & M -Xylene	1.33 J	2.00	0.620	ug/L	1		10/04/17 20:29
Toluene	0.550 J	1.00	0.310	ug/L	1		10/04/17 20:29
Surrogates							
1,4-Difluorobenzene (surr)	89.9	77-115		%	1		10/04/17 20:29

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 20:29 Container ID: 1178438004-A

Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-5

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438005 Lab Project ID: 1178438 Collection Date: 09/26/17 13:35 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						Allowable
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
2-Methylnaphthalene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Acenaphthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Acenaphthylene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Benzo(a)Anthracene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Benzo[a]pyrene	0.00980 U	0.0196	0.00608	ug/L	1	10/16/17 04:05
Benzo[b]Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Benzo[g,h,i]perylene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Benzo[k]fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Chrysene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Dibenzo[a,h]anthracene	0.00980 U	0.0196	0.00608	ug/L	1	10/16/17 04:05
Fluoranthene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Fluorene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Indeno[1,2,3-c,d] pyrene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Naphthalene	0.0490 U	0.0980	0.0304	ug/L	1	10/16/17 04:05
Phenanthrene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Pyrene	0.0245 U	0.0490	0.0147	ug/L	1	10/16/17 04:05
Surrogates						
2-Methylnaphthalene-d10 (surr)	61.5	47-106		%	1	10/16/17 04:05
Fluoranthene-d10 (surr)	61.9	24-116		%	1	10/16/17 04:05

Batch Information

Analytical Batch: XMS10483

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 04:05 Container ID: 1178438005-F Prep Batch: XXX38560 Prep Method: SW3520C Prep Date/Time: 10/01/17 08:08 Prep Initial Wt./Vol.: 255 mL

Prep Extract Vol: 1 mL

Client Sample ID: MW-5

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438005 Lab Project ID: 1178438 Collection Date: 09/26/17 13:35 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.294 U	0.588	0.176	mg/L	1		10/06/17 21:48
Surrogates							
5a Androstane (surr)	88.2	50-150		%	1		10/06/17 21:48

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/06/17 21:48 Container ID: 1178438005-D Prep Batch: XXX38570 Prep Method: SW3520C Prep Date/Time: 10/03/17 08:17 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.245 U	0.490	0.147	mg/L	1		10/06/17 21:48
Surrogates							
n-Triacontane-d62 (surr)	96.6	50-150		%	1		10/06/17 21:48

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/06/17 21:48 Container ID: 1178438005-D Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Client Sample ID: MW-5

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438005 Lab Project ID: 1178438 Collection Date: 09/26/17 13:35 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0310	mg/L	1	Limits	10/04/17 20:48
Surrogates 4-Bromofluorobenzene (surr)	78	50-150		%	1		10/04/17 20:48

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/04/17 20:48 Container ID: 1178438005-A Prep Batch: VXX31431
Prep Method: SW5030B
Prep Date/Time: 10/04/17 08:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		10/04/17 20:48
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/04/17 20:48
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/04/17 20:48
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/04/17 20:48
Toluene	0.500 U	1.00	0.310	ug/L	1		10/04/17 20:48
Surrogates							
1,4-Difluorobenzene (surr)	89	77-115		%	1		10/04/17 20:48

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 20:48 Container ID: 1178438005-A Prep Batch: VXX31431 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-55

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438006 Lab Project ID: 1178438 Collection Date: 09/26/17 13:40 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1		10/16/17 04:25
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1		10/16/17 04:25
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1		10/16/17 04:25
Phenanthrene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1		10/16/17 04:25
Surrogates							
2-Methylnaphthalene-d10 (surr)	60.4	47-106		%	1		10/16/17 04:25
Fluoranthene-d10 (surr)	61.6	24-116		%	1		10/16/17 04:25

Batch Information

Analytical Batch: XMS10483

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 04:25 Container ID: 1178438006-F Prep Batch: XXX38560 Prep Method: SW3520C Prep Date/Time: 10/01/17 08:08 Prep Initial Wt./Vol.: 250 mL

Prep Extract Vol: 1 mL

Client Sample ID: MW-55

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438006 Lab Project ID: 1178438 Collection Date: 09/26/17 13:40 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 0.283 U	LOQ/CL 0.566	<u>DL</u> 0.170	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 10/06/17 22:09
Surrogates							
5a Androstane (surr)	87.3	50-150		%	1		10/06/17 22:09

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/06/17 22:09 Container ID: 1178438006-D Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 265 mL
Prep Extract Vol: 1 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.236 U	0.472	0.142	mg/L	1		10/06/17 22:09
Surrogates							
n-Triacontane-d62 (surr)	97.6	50-150		%	1		10/06/17 22:09

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/06/17 22:09 Container ID: 1178438006-D Prep Batch: XXX38570 Prep Method: SW3520C Prep Date/Time: 10/03/17 08:17 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Client Sample ID: MW-55

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438006 Lab Project ID: 1178438 Collection Date: 09/26/17 13:40 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		10/04/17 23:20
Surrogates							
4-Bromofluorobenzene (surr)	74.2	50-150		%	1		10/04/17 23:20

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/04/17 23:20 Container ID: 1178438006-A

Prep Batch: VXX31432 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		10/04/17 23:20
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/04/17 23:20
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/04/17 23:20
P & M -Xylene	0.760 J	2.00	0.620	ug/L	1		10/04/17 23:20
Toluene	0.500 U	1.00	0.310	ug/L	1		10/04/17 23:20
Surrogates							
1,4-Difluorobenzene (surr)	91.4	77-115		%	1		10/04/17 23:20

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 23:20 Container ID: 1178438006-A Prep Batch: VXX31432 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of EB-Kiewit

Client Sample ID: EB-Kiewit

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438007 Lab Project ID: 1178438 Collection Date: 09/26/17 13:12 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		10/16/17 04:46
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		10/16/17 04:46
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		10/16/17 04:46
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		10/16/17 04:46
Surrogates							
2-Methylnaphthalene-d10 (surr)	60.8	47-106		%	1		10/16/17 04:46
Fluoranthene-d10 (surr)	62.5	24-116		%	1		10/16/17 04:46

Batch Information

Analytical Batch: XMS10483

Analytical Method: 8270D SIM LV (PAH)

Analyst: NRB

Analytical Date/Time: 10/16/17 04:46 Container ID: 1178438007-F Prep Batch: XXX38560 Prep Method: SW3520C Prep Date/Time: 10/01/17 08:08

Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Results of EB-Kiewit

Client Sample ID: EB-Kiewit

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438007 Lab Project ID: 1178438 Collection Date: 09/26/17 13:12 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.300 U	0.600	0.180	mg/L	1	Limits	10/06/17 22:30
Surrogates 5a Androstane (surr)	91.8	50-150		%	1		10/06/17 22:30

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK102

Analyst: JMG

Analytical Date/Time: 10/06/17 22:30 Container ID: 1178438007-D

Prep Batch: XXX38570
Prep Method: SW3520C
Prep Date/Time: 10/03/17 08:17
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Residual Range Organics	0.250 U	0.500	0.150	mg/L	1		10/06/17 22:30
Surrogates							
n-Triacontane-d62 (surr)	100	50-150		%	1		10/06/17 22:30

Batch Information

Analytical Batch: XFC13862 Analytical Method: AK103

Analyst: JMG

Analytical Date/Time: 10/06/17 22:30 Container ID: 1178438007-D

Prep Batch: XXX38570 Prep Method: SW3520C Prep Date/Time: 10/03/17 08:17 Prep Initial Wt./Vol.: 250 mL

Prep Extract Vol: 1 mL

Results of EB-Kiewit

Client Sample ID: EB-Kiewit

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438007 Lab Project ID: 1178438 Collection Date: 09/26/17 13:12 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1	<u>=</u>	10/04/17 23:39
Surrogates							
4-Bromofluorobenzene (surr)	74.7	50-150		%	1		10/04/17 23:39

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/04/17 23:39 Container ID: 1178438007-A Prep Batch: VXX31432 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		10/04/17 23:39
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/04/17 23:39
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/04/17 23:39
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/04/17 23:39
Toluene	0.500 U	1.00	0.310	ug/L	1		10/04/17 23:39
Surrogates							
1,4-Difluorobenzene (surr)	90.5	77-115		%	1		10/04/17 23:39

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 23:39 Container ID: 1178438007-A Prep Batch: VXX31432 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Results of TB-Kiewit

Client Sample ID: TB-Kiewit

Client Project ID: Kiewit Groundwater Sampling

Lab Sample ID: 1178438008 Lab Project ID: 1178438

Collection Date: 09/26/17 12:00 Received Date: 09/29/17 16:18 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics Surrogates	0.0500 U	0.100	0.0310	mg/L	1		10/04/17 22:04
4-Bromofluorobenzene (surr)	74.8	50-150		%	1		10/04/17 22:04

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Analyst: ST

Analytical Date/Time: 10/04/17 22:04 Container ID: 1178438008-A

Prep Batch: VXX31432 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		10/04/17 22:04
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		10/04/17 22:04
o-Xylene	0.500 U	1.00	0.310	ug/L	1		10/04/17 22:04
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		10/04/17 22:04
Toluene	0.500 U	1.00	0.310	ug/L	1		10/04/17 22:04
Surrogates							
1,4-Difluorobenzene (surr)	89.6	77-115		%	1		10/04/17 22:04

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Analyst: ST

Analytical Date/Time: 10/04/17 22:04 Container ID: 1178438008-A

Prep Batch: VXX31432 Prep Method: SW5030B Prep Date/Time: 10/04/17 08:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1769638 [VXX/31431]

Blank Lab ID: 1417983

QC for Samples:

 $1178438001,\,1178438002,\,1178438003,\,1178438004,\,1178438005$

Matrix: Water (Surface, Eff., Ground)

Results by AK101

Results LOQ/CL <u>Units</u> **Parameter** DL Gasoline Range Organics 0.0500U 0.100 0.0310 mg/L

Surrogates

4-Bromofluorobenzene (surr) 75 50-150 %

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/4/2017 12:32:00PM

Prep Batch: VXX31431 Prep Method: SW5030B

Prep Date/Time: 10/4/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/26/2017 8:30:49AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178438 [VXX31431]

Blank Spike Lab ID: 1417986 Date Analyzed: 10/04/2017 13:29 Spike Duplicate ID: LCSD for HBN 1178438

[VXX31431]

Spike Duplicate Lab ID: 1417987 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178438001, 1178438002, 1178438003, 1178438004, 1178438005

Results by AK101

1										
l		Blank Spike (mg/L)			Spike Duplicate (mg/L)					
l	<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
	Gasoline Range Organics	1.00	0.982	98	1.00	0.965	97	(60-120)	1.80	(< 20)
	Surrogates									
	4-Bromofluorobenzene (surr)	0.0500	85.4	85	0.0500	83.3	83	(50-150)	2.50	

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31431
Prep Method: SW5030B

Prep Date/Time: 10/04/2017 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 10/26/2017 8:30:51AM

Method Blank

Blank ID: MB for HBN 1769638 [VXX/31431]

Blank Lab ID: 1417983

QC for Samples:

 $1178438001,\,1178438002,\,1178438003,\,1178438004,\,1178438005$

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	89.5	77-115		%

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/4/2017 12:32:00PM

Prep Batch: VXX31431 Prep Method: SW5030B

Prep Date/Time: 10/4/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/26/2017 8:30:52AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178438 [VXX31431]

Blank Spike Lab ID: 1417984 Date Analyzed: 10/04/2017 13:10 Spike Duplicate ID: LCSD for HBN 1178438

[VXX31431]

Spike Duplicate Lab ID: 1417985 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178438001, 1178438002, 1178438003, 1178438004, 1178438005

Results by SW8021B

		Blank Spik	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	100	95.7	96	100	114	114	(80-120)	17.30	(< 20)
Ethylbenzene	100	91.7	92	100	109	109	(75-125)	17.10	(< 20)
o-Xylene	100	89.4	89	100	107	107	(80-120)	18.30	(< 20)
P & M -Xylene	200	179	90	200	216	108	(75-130)	18.50	(< 20)
Toluene	100	97.2	97	100	114	114	(75-120)	15.70	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	101	101	50	101	101	(77-115)	0.55	

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31431
Prep Method: SW5030B

Prep Date/Time: 10/04/2017 08:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 10/26/2017 8:30:55AM

Method Blank

Blank ID: MB for HBN 1769639 [VXX/31432]

Blank Lab ID: 1417988

QC for Samples:

1178438006, 1178438007, 1178438008

Matrix: Water (Surface, Eff., Ground)

Results by AK101

Results LOQ/CL <u>Units</u> **Parameter** <u>DL</u> Gasoline Range Organics 0.0500U 0.100 0.0310 mg/L

Surrogates

4-Bromofluorobenzene (surr) 72.5 50-150 %

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/4/2017 9:45:00PM

Prep Batch: VXX31432 Prep Method: SW5030B

Prep Date/Time: 10/4/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/26/2017 8:30:57AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178438 [VXX31432]

Blank Spike Lab ID: 1417991 Date Analyzed: 10/05/2017 02:50 Spike Duplicate ID: LCSD for HBN 1178438

[VXX31432]

Spike Duplicate Lab ID: 1417992 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178438006, 1178438007, 1178438008

Results by AK101

	E	Blank Spike	e (mg/L)	S	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	0.955	96	1.00	0.943	94	(60-120)	1.20	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	80.2	80	0.0500	83.2	83	(50-150)	3.70	

Batch Information

Analytical Batch: VFC13921 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31432 Prep Method: SW5030B

Prep Date/Time: 10/04/2017 08:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 10/26/2017 8:30:59AM

Method Blank

Blank ID: MB for HBN 1769639 [VXX/31432]

Blank Lab ID: 1417988

QC for Samples:

1178438006, 1178438007, 1178438008

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	89.9	77-115		%

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Analytical Date/Time: 10/4/2017 9:45:00PM

Prep Batch: VXX31432 Prep Method: SW5030B

Prep Date/Time: 10/4/2017 8:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 10/26/2017 8:31:00AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178438 [VXX31432]

Blank Spike Lab ID: 1417989 Date Analyzed: 10/05/2017 02:31

1178438006, 1178438007, 1178438008

Spike Duplicate ID: LCSD for HBN 1178438

[VXX31432]

Spike Duplicate Lab ID: 1417990 Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

QC for Samples:

		Blank Spik	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	100	112	112	100	106	106	(80-120)	5.20	(< 20)
Ethylbenzene	100	107	107	100	102	102	(75-125)	5.00	(< 20)
o-Xylene	100	107	107	100	99.1	99	(80-120)	7.40	(< 20)
P & M -Xylene	200	213	107	200	201	100	(75-130)	6.00	(< 20)
Toluene	100	112	112	100	107	107	(75-120)	4.30	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50	101	101	50	102	102	(77-115)	0.79	

Batch Information

Analytical Batch: VFC13921 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: ST

Prep Batch: VXX31432
Prep Method: SW5030B

Prep Date/Time: 10/04/2017 08:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 10/26/2017 8:31:02AM

Method Blank

Blank ID: MB for HBN 1769385 [XXX/38560]

Blank Lab ID: 1417099

QC for Samples:

 $1178438001,\,1178438002,\,1178438003,\,1178438004,\,1178438005,\,1178438006,\,1178438007,\,1178$

Results by 8270D SIM LV (PAH)

Parameter	Results	LOQ/CL	DL	Units
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	67.5	47-106		%
Fluoranthene-d10 (surr)	68.7	24-116		%

Batch Information

Analytical Batch: XMS10480

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Analytical Date/Time: 10/15/2017 9:22:00AM

Prep Batch: XXX38560 Prep Method: SW3520C

Prep Date/Time: 10/1/2017 8:08:27AM

Matrix: Water (Surface, Eff., Ground)

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 10/26/2017 8:31:05AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178438 [XXX38560]

Blank Spike Lab ID: 1417100 Date Analyzed: 10/15/2017 09:42

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178438001, 1178438002, 1178438003, 1178438004, 1178438005, 1178438006, 1178438007

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)	
<u>Parameter</u>	Spike	Result	Rec (%)	<u>CL</u>
1-Methylnaphthalene	2	1.36	68	(41-115)
2-Methylnaphthalene	2	1.25	62	(39-114)
Acenaphthene	2	1.36	68	(48-114)
Acenaphthylene	2	1.48	74	(35-121)
Anthracene	2	1.57	78	(53-119)
Benzo(a)Anthracene	2	1.57	79	(59-120)
Benzo[a]pyrene	2	1.48	74	(53-120)
Benzo[b]Fluoranthene	2	1.58	79	(53-126)
Benzo[g,h,i]perylene	2	1.36	68	(44-128)
Benzo[k]fluoranthene	2	1.53	76	(54-125)
Chrysene	2	1.55	77	(57-120)
Dibenzo[a,h]anthracene	2	1.22	61	(44-131)
Fluoranthene	2	1.41	71	(58-120)
Fluorene	2	1.47	74	(50-118)
Indeno[1,2,3-c,d] pyrene	2	1.47	73	(48-130)
Naphthalene	2	1.30	65	(43-114)
Phenanthrene	2	1.57	79	(53-115)
Pyrene	2	1.50	75	(53-121)
Surrogates				
2-Methylnaphthalene-d10 (surr)	2	64.6	65	(47-106)
Fluoranthene-d10 (surr)	2	65.2	65	(24-116)

Batch Information

Analytical Batch: XMS10480

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Prep Batch: XXX38560
Prep Method: SW3520C

Prep Date/Time: 10/01/2017 08:08

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 10/26/2017 8:31:07AM

Matrix Spike Summary

Original Sample ID: 1176978005 MS Sample ID: 1417112 MS MSD Sample ID: 1417113 MSD Analysis Date: 10/15/2017 10:03 Analysis Date: 10/15/2017 10:23 Analysis Date: 10/15/2017 10:43 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178438001, 1178438002, 1178438003, 1178438004, 1178438005, 1178438006, 1178438007

Results by 8270D SIM LV (PAH)

		Ма	trix Spike ((ug/L)	Spike	e Duplicate	e (ug/L)			
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	0.0282U	2.08	1.42	68	2.17	1.62	74	41-115	13.10	(< 20)
2-Methylnaphthalene	0.0282U	2.08	1.32	63	2.17	1.48	68	39-114	11.40	(< 20)
Acenaphthene	0.0282U	2.08	1.42	68	2.17	1.60	74	48-114	11.60	(< 20)
Acenaphthylene	0.0282U	2.08	1.54	74	2.17	1.73	79	35-121	11.50	(< 20)
Anthracene	0.0282U	2.08	1.62	78	2.17	1.79	82	53-119	9.90	(< 20)
Benzo(a)Anthracene	0.0282U	2.08	1.47	71	2.17	1.63	75	59-120	10.30	(< 20)
Benzo[a]pyrene	0.0113U	2.08	1.27	61	2.17	1.43	66	53-120	11.60	(< 20)
Benzo[b]Fluoranthene	0.0282U	2.08	1.38	66	2.17	1.50	69	53-126	8.40	(< 20)
Benzo[g,h,i]perylene	0.0282U	2.08	1.16	56	2.17	1.30	60	44-128	11.70	(< 20)
Benzo[k]fluoranthene	0.0282U	2.08	1.34	64	2.17	1.56	72	54-125	15.50	(< 20)
Chrysene	0.0282U	2.08	1.47	70	2.17	1.65	76	57-120	11.90	(< 20)
Dibenzo[a,h]anthracene	0.0113U	2.08	1.08	52	2.17	1.22	56	44-131	12.70	(< 20)
Fluoranthene	0.0282U	2.08	1.41	68	2.17	1.58	73	58-120	11.30	(< 20)
Fluorene	0.0282U	2.08	1.54	74	2.17	1.72	79	50-118	11.40	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0282U	2.08	1.14	55	2.17	1.29	60	48-130	12.80	(< 20)
Naphthalene	0.0565U	2.08	1.34	65	2.17	1.52	70	43-114	12.40	(< 20)
Phenanthrene	0.0282U	2.08	1.63	78	2.17	1.83	84	53-115	11.70	(< 20)
Pyrene	0.0282U	2.08	1.49	72	2.17	1.68	77	53-121	12.00	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		2.08	1.32	63	2.17	1.50	69	47-106	12.60	
Fluoranthene-d10 (surr)		2.08	1.32	63	2.17	1.48	68	24-116	11.90	

Batch Information

Analytical Batch: XMS10480

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: NRB

Analytical Date/Time: 10/15/2017 10:23:00AM

Prep Batch: XXX38560

Prep Method: 3520 Liq/Liq Ext for 8270 PAH SIM LV

Prep Date/Time: 10/1/2017 8:08:27AM

Prep Initial Wt./Vol.: 240.00mL Prep Extract Vol: 1.00mL

Print Date: 10/26/2017 8:31:08AM

Method Blank

Blank ID: MB for HBN 1769456 [XXX/38570]

Blank Lab ID: 1417397

QC for Samples:

1178438001, 1178438002, 1178438003, 1178438004, 1178438005, 1178438006, 1178438007

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Matrix: Water (Surface, Eff., Ground)

Surrogates

5a Androstane (surr) 88.2 60-120 %

Batch Information

Analytical Batch: XFC13862 Prep Batch: XXX38570
Analytical Method: AK102 Prep Method: SW3520C

Instrument: HP 7890A FID SV E F Prep Date/Time: 10/3/2017 8:17:47AM

Analyst: JMG Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 10/6/2017 2:53:00PM Prep Extract Vol: 1 mL

Print Date: 10/26/2017 8:31:09AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178438 [XXX38570]

Blank Spike Lab ID: 1417398 Date Analyzed: 10/06/2017 15:13 Spike Duplicate ID: LCSD for HBN 1178438

[XXX38570]

Spike Duplicate Lab ID: 1417399 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178438001, 1178438002, 1178438003, 1178438004, 1178438005, 1178438006, 1178438007

Results by AK102

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	18.4	92	20	17.5	87	(75-125)	5.10	(< 20)
Surrogates									
5a Androstane (surr)	0.4	88.2	88	0.4	76.5	77	(60-120)	14.30	

Batch Information

Analytical Batch: **XFC13862** Analytical Method: **AK102**

Instrument: HP 7890A FID SV E F

Analyst: JMG

Prep Batch: XXX38570 Prep Method: SW3520C

Prep Date/Time: 10/03/2017 08:17

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/26/2017 8:31:13AM

Method Blank

Blank ID: MB for HBN 1769456 [XXX/38570]

Blank Lab ID: 1417397

QC for Samples:

1178438001, 1178438002, 1178438003, 1178438004, 1178438005, 1178438006, 1178438007

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.250U0.5000.150mg/L

Matrix: Water (Surface, Eff., Ground)

Surrogates

n-Triacontane-d62 (surr) 95.1 60-120 %

Batch Information

Analytical Batch: XFC13862 Prep Batch: XXX38570 Analytical Method: AK103 Prep Method: SW3520C

Instrument: HP 7890A FID SV E F Prep Date/Time: 10/3/2017 8:17:47AM

Analyst: JMG Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 10/6/2017 2:53:00PM Prep Extract Vol: 1 mL

Print Date: 10/26/2017 8:31:16AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1178438 [XXX38570]

Blank Spike Lab ID: 1417398 Date Analyzed: 10/06/2017 15:13 Spike Duplicate ID: LCSD for HBN 1178438

[XXX38570]

Spike Duplicate Lab ID: 1417399 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1178438001, 1178438002, 1178438003, 1178438004, 1178438005, 1178438006, 1178438007

Results by AK103

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	17.8	89	20	17.4	87	(60-120)	2.50	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	81.3	81	0.4	73.5	74	(60-120)	10.10	

Batch Information

Analytical Batch: **XFC13862** Analytical Method: **AK103**

Instrument: HP 7890A FID SV E F

Analyst: JMG

Prep Batch: XXX38570
Prep Method: SW3520C

Prep Date/Time: 10/03/2017 08:17

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 10/26/2017 8:31:18AM

1178438

°¥ CH**A**

Locations Nationwide

Maryland New Jersey Alaska

New York

www.us.sgs.com

Kentucky Indiana North Carolina West Virgina

<u></u>	CLIENT:	CLIENT: Nostock					Instri	Instructions:	1S: St	Sections 1	18 1 -	Structions: Sections 1 - 5 must be filled out.	be fille	d out.		
			1									1000		212.		Pageof
ŀ	CONTACT:	CONTACT: SUSAN VOST	ONE NO: 90	PHONE NO: 907-452-5688	-5688	Section 3	on 3				<u>a</u>	Preservative				
noitoe	PROJECT $_{\mathcal{S}}$	us wiren	,	17-1047		# O		אָכּו	ISH	1-24	1-34 6	Nons				
3	REPORTS TO	O: (AIL:			0 z	Туре				<u> </u>	, 4				
	545AM	Voyt	Svert	5Vottenergy, corr-	45.Corz-	z	= 0 0 0 0 0	٤٥	70			TOL				
	INVOICE TO:	1	QUOTE #:	17-1047		< −	GRAB MI=	אד ני	21 Xt			18 H				
\perp	1					z I	Multi	/	/ -			in 13				
	RESERVED for lab use	SAMPLE IDENTIFICATION	DATE mm/dd/yy	TIME HH:MM	MATRIX/ MATRIX CODE	шко	mental Soils	KRO.	- 0HC	045	(318	=5 - 114d	-			REMARKS/ LOC ID
	04-6	MW-1	9/26/17	1258	Warek) 	GRab	×	×	×	×	×				
	Q) A-1	MW-8	4/2417	(220		7		×	×	×	×	X				
7	3A-6	MW-3	6/21/13	11.20		2		×	×		×	X				
noi	19 A-C	MW-4	4/26/17	1144		7		×	×	×	×	×				
ည်ခ်င်	(S)A-G	MW - 5	9/26/17	1335		7		' ×	×	×	×	×				
3	(6A-C	MW-55	9/26/17	1340		1		×	×	×	×	×				
	DA-6	EB-Kiewit	4/26/17	1312	À	7		×	×	×	×	×				
	8)4-0	TB-Kiewit	4/26/17	1200	Waren	1	01.00			×	×					TRip Blank
	Relinquished By: (1)		Date	Time	Received By:		9/12/17			Section 4	4	DOD Project? Yes	ct? Yes		ta Delivera	Data Deliverable Requirements:
	Sett a. M.	6	9/28/17	1312	11/1	13	1312			Cooler ID:	l	22				
g u	Relinquished/By: (2)		Date Alasliz	Time LS36	Received By:				<u> </u>	equest	od Turn	Requested Turnaround Time and/or Special Instructions:	ie and/or Sp	Special Ins	tructions:	
oitoa	Relinquished		Date	Time	Received By:		\bigvee)	3	N R C. L.	`	.		
3 age 4			$\setminus \mid$						<u> </u>	Temp Blank °C:	ınk °C:	1.6		์ 5	nain of Cus	Chain of Custody Seal: (Circle)
3 of 47	Relinquished By: (4)		9/94/17	Time	Received For Laboratory By:	Labora	iory By:			**************************************	or or	or Ambient []	1		INTACT BE	BROKEN (ABSEN)
╛			, ,	4					1	(See al	tacned	(See attached Sample Receipt Form)	ceipt For	П	attached S	(See attached Sample Receipt Form)

[] 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 [] 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

http://www.sgs.com/terms-and-conditions ANC: 1.4 # 0/0FOR

F083-Kit_Request_and_COC_Templates-Blank Revised 2013-03-24

ANC: 17,18

SGS

FAIRBANKS SAMPLE RECEIPT FORM

Note: This form is to be completed by Fairbanks Receiving Staff for all samples

Review Criteria:		onditio		Comments/Actions Taken
Were custody seals intact? Note # & location, if applicable.	Yes	No	N/A	Exemption permitted if sampler hand
COC accompanied samples?	Ves	No	N/A	carries/delivers.
Temperature blank compliant* (i.e., 0-6°C)	(Yes)	No		□Exemption permitted if chilled &
If >6 °C, were samples collected <8 hours ago?	Yes	No	N/A)	collected <8hrs ago
If <0°C, were all sample containers ice free?	Yes	No	NA	
Cooler ID: @ w/Therm. ID: 22				
Cooler ID: @i.0w/Therm. ID:2 Cooler ID: @w/Therm. ID:				
Cooler ID: @ w/Therm. ID:				
Cooler ID:w/Therm. ID:				
Cooler ID:w/Therm. ID:				
If samples are received without a temperature blank, the "cooler temperature" will be				
documented in lieu of the temperature blank and "COOLER TEMP" will be noted to				Note: Identify containers received at
the right. In cases where neither a temp blank nor cooler temp can be obtained, note ambient () or chilled (). Please check one.				non-compliant temperature. Use form
	<u> </u>			FS-0029 if more space is needed.
Delivery Method: Client (hand carried) Other:		king/A		
		ee atta		
		QF NA		
				cle one) was received.
Were samples in good condition (no leaks/cracks/breakage)?	Yes	No	N/A	Note: some samples are sent to
Packing material used (specify all that apply): Bubble Wrap	,			Anchorage without inspection by SGS Fairbanks personnel.
Separate plastic bags Vermiculite Other:				Tui buiks personnen
			27/4	
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes	No	N/A	
For RUSH/SHORT Hold Time, were COC/Bottles flagged	Yes	No	(NA)	
accordingly? Was Rush/Short HT email sent, if applicable?	Yes	No	(N/A)	
Additional notes (if applicable):	L			
Additional notes (if applicable).				
•				
Profile #: 337594				
	with star I-	ud muc s	dumas and	av impact data quality
Note to Client: any "no" circled above indicates non-compliance	wun stanaa	ги ртосе	cuures ana m	ау итрасі аша дашиу.

e-Sample Receipt Form

SGS Workorder #:

1178438

						l		8 4	<u> </u>	0
Review Criteria	Condition (Yes, No, N/A			eptions					
Chain of Custody / Temperature Requi		n/a	Exemption pe	ermitted it	fsamp	oler hand	d carries	/delive	ers.	
Were Custody Seals intact? Note # &	location y	es 1-F, 1-E	3							
COC accompanied sa	amples?	es								
n/a **Exemption permitted if	chilled & c	ollected <8	hours	ago, or for san	nples wh	ere ch	illing is	not requi	ired	
		es Cooler		1	<u>.</u>	_		Cherm		D10
		/a Cooler	_		@			CTherm		
Temperature blank compliant* (i.e., 0-6 °C afte	 	/a Cooler			@			CTherm		
remperature biank compliant (i.e., 0-0 C and	=		_							
					@			C Therm		
****		/a Cooler	ID:		@	2		CTherm	ı. ID:	
*If >6°C, were samples collected <8 hours	s ago?	/a								
If <0°C, were sample containers ice	e free?	/a								
If samples received without a temperature blank, the										
temperature" will be documented in lieu of the temperature by										
"COOLER TEMP" will be noted to the right. In cases where no										
temp blank nor cooler temp can be obtained, note "amb	chilled".									
	orillica .									
Note: Identify containers received at non-compliant tempe										
Use form FS-0029 if more space is n	needed.									
Holding Time / Documentation / Sample Condition Re	equiremen	nts Note: R	efer t	o form F-083 "S	Sample G	Suide"	for spec	cific hold	ing tim	es.
Were samples received within holding	g time?	es								
·										
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? v	es								
**Note: If times differ <1hr, record details & login pe	•									
		06								
Were analyses requested unambiguous? (i.e., method is speci analyses with >1 option for ar										
analyses with 21 option for all	ilaly3i3)									
			n/a	***Exemption	permitte	d for r	netals (e	e.g,200.8	3/6020	A).
Were proper containers (type/mass/volume/preservative***	*)used?	es								
Volatile / LL-Hg Reg										
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa										
Were all water VOA vials free of headspace (i.e., bubbles ≤	_									
Were all soil VOAs field extracted with MeOH	· ·									
Note to Client: Any "No", answer above indicates no	on-complian	ce with star	ndard	procedures and	d may im	pact c	lata qua	lity.		
Additiona	al notes (i	f applicat	ole):							
	,		•							

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	<u>Container Id</u>	<u>Preservative</u>	Container Condition
1178438001-A	HCL to pH < 2	ОК	1178438007-A	HCL to pH < 2	ОК
1178438001-B	HCL to pH < 2	ОК	1178438007-В	HCL to pH < 2	ОК
1178438001-C	HCL to pH < 2	ОК	1178438007-C	HCL to pH < 2	ОК
1178438001-D	HCL to pH < 2	ОК	1178438007-D	HCL to pH < 2	ОК
1178438001-E	HCL to pH < 2	ОК	1178438007-E	HCL to pH < 2	OK
1178438001-F	No Preservative Required	ОК	1178438007-F	No Preservative Required	OK
1178438001-G	No Preservative Required	ОК	1178438007-G	No Preservative Required	OK
1178438002-A	HCL to pH < 2	ОК	1178438008-A	HCL to pH < 2	OK
1178438002-B	HCL to pH < 2	OK	1178438008-В	HCL to pH < 2	OK
1178438002-C	HCL to pH < 2	OK	1178438008-C	HCL to pH < 2	OK
1178438002-D	HCL to pH < 2	OK	1178438008-D	HCL to pH < 2	OK
1178438002-E	HCL to pH < 2	ОК			
1178438002-F	No Preservative Required	OK			
1178438002-G	No Preservative Required	OK			
1178438003-A	HCL to pH < 2	OK			
1178438003-В	HCL to pH < 2	OK			
1178438003-C	HCL to pH < 2	OK			
1178438003-D	HCL to pH < 2	OK			
1178438003-E	HCL to pH < 2	OK			
1178438003-F	No Preservative Required	OK			
1178438003-G	No Preservative Required	OK			
1178438004-A	HCL to pH < 2	OK			
1178438004-B	HCL to pH < 2	OK			
1178438004-C	HCL to pH < 2	OK			
1178438004-D	HCL to pH < 2	OK			
1178438004-E	HCL to pH < 2	OK			
1178438004-F	No Preservative Required	OK			
1178438004-G	No Preservative Required	OK			
1178438005-A	HCL to pH < 2	OK			
1178438005-В	HCL to pH < 2	OK			
1178438005-C	HCL to pH < 2	OK			
1178438005-D	HCL to pH < 2	OK			
1178438005-E	HCL to pH < 2	OK			
1178438005-F	No Preservative Required	OK			
1178438005-G	No Preservative Required	OK			
1178438006-A	HCL to pH < 2	OK			
1178438006-В	HCL to pH < 2	OK			
1178438006-C	HCL to pH < 2	OK			
1178438006-D	HCL to pH < 2	OK			
1178438006-E	HCL to pH < 2	OK			
1178438006-F	No Preservative Required	OK			
1178438006-G	No Preservative Required	OK			

9/29/2017 Page 46 of 47

 Container Id
 Preservative
 Container
 Container Id
 Preservative
 Container

 Condition
 Condition
 Condition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM- The container was received damaged.
- FR- The container was received frozen and not usable for Bacteria or BOD analyses.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

9/29/2017 Page 47 of 47

Laboratory Data Review Checklist

Completed By:
William Watts
Title:
Project Manager
Date:
November 10, 2017
CS Report Name:
Kiewit Pacific Company – 2050 Peger Road
Report Date:
October 26, 2017
Consultant Firm:
NORTECH, Inc.
Laboratory Name:
SGS North America Inc.
Laboratory Report Number:
1178438
ADEC File Number:
102.38.164
Hazard Identification Number:

117	8438				
1	т .1				
1.	<u>Labor</u>	<u>atory</u>			
	a.	Did an ADI	EC CS appro	ved laboratory receive and <u>perform</u> all of the submitted sample analyses?	
		Yes	□ No	Comments:	
				transferred to another "network" laboratory or sub-contracted to an alternat aboratory performing the analyses ADEC CS approved?	te
		TYes	No	Comments:	
	San	nples were a	analyzed by S	SGS North America Inc. in Anchorage, Alaska.	
2.	Chain	of Custody	<u> (CoC)</u>		
	a.	CoC inform	nation comple	eted, signed, and dated (including released/received by)?	
		• Yes	□ No	Comments:	
	b.	Correct Ana	alyses reques	ted?	
		• Yes	□ No	Comments:	
3.	Labor	atory Samp	le Receipt D	ocumentation	
	a.	Sample/coo	oler temperati	are documented and within range at receipt (0° to 6° C)?	
		C Yes	□ No	Comments:	
	b.	Sample pre	servation acc	eptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX,	

Comments:

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?

Comments:

July 2017 Page 2

The samples were received by the laboratory in good condition.

Volatile Chlorinated Solvents, etc.)?

🗆 No

🔲 No

Yes

Yes

1	1	7	O	1	2	0
1	- 1	- /	a	4	٠.٦	0

			s, were they documented? For example, incorrect sample temperature outside of acceptable range, insufficient or missing
	samples, etc	.?	
Г	• Yes	□ No	Comments:
	There were no o	discrepancies ident	tified on the laboratory sample receipt checklist.
	e. Data quality	or usability affect	red?
_			Comments:
	Data quality or	usability are not af	fected.
4.	Case Narrative		
	a. Present and	d understandable?	
	• Yes	□ No	Comments:
	103		Сопиненся.
	h Discrepance	vies errors or OC	failures identified by the lab?
	• Discrepance • Yes	, , ,	Comments:
			analytical sample MW-3 had a low surrogate recovery for 2-
	methylnaphtha hold-time and	llene-d10 which do surrogates were do	bes not meet laboratory recovery. The sample was re-extracted after buble-spiked. The corrected surrogate recovery for the out-of-hold The in-hold data is reported.
	c. Were all co	orrective actions do	ocumented?
	• Yes	□ No	Comments:
	d. What is the	e effect on data qua	ality/usability according to the case narrative?
			Comments:
	The case narra	tive does not state	any effect upon data quality or usability.
5. <u>Sa</u>	amples Results		
	a. Correct and	alyses performed/r	eported as requested on COC?
	• Yes	□ No	Comments:
	b. All applica	ble holding times	met?
	• Yes	□ No	Comments:

1178438	
c.	All soils reported on a dry weight basis?

c.	All soils rep	ported on a dry	weight basis?
	C Yes	🖸 No	Comments:
Th	nere were no	soil samples s	abmitted with this work order.
d.	Are the reported the project?		ss than the Cleanup Level or the minimum required detection level for
	© Yes	□ No	Comments:
	Data quality	y on ugobility o	ffootod?
e.		y or usability a	
	© Yes	□ No	Comments:
Da	ata quality or	usability are r	ot affected.
o. <u>QC Sa</u>	amples		
a.	Method Bla	ınk	
	i. One	method blank	reported per matrix, analysis and 20 samples?
	Yes	□ No	Comments:
	ii. All 1	method blank	results less than limit of quantitation (LOQ)?
	• Yes	□ No	Comments:
	iii. If ab	ove LOQ, wh	at samples are affected?
			Comments:
Al	ll method bla	nk results were	e less than LOQ.
	iv. Do t	the affected sar	mple(s) have data flags? If so, are the data flags clearly defined?
	T Yes	© No	Comments:
No	o samples are	affected, no f	ags were applied to QC results.
	v. Data	a quality or usa	bility affected?
		·	Comments:
Da	ata quality or	usability are r	ot affected.

1	1	7	Q	1	3	ς
- 1	- 1	- /	O	4	•.)	C

b. Laboratory Co	ontrol Sample/Duplicate	e (LCS/LCSD)
_	ics – One LCS/LCSD re ed per AK methods, LC	eported per matrix, analysis and 20 samples? (LCS/LCSD S required per SW846)
TYes	© No	Comments:
	ds BTEX, DRO, GRO, eported in this work ord	and RRO have LCS/LCSD results. PAH does have an LCS ler.
ii. Metals 20 san	_	and one sample duplicate reported per matrix, analysis and
☐ Yes	© No	Comments:
No metal or inorg	ganic analyses were requ	uested with this work order.
And p	roject specified DQOs,	eries (%R) reported and within method or laboratory limits? if applicable. (AK Petroleum methods: AK101 60%-120%, 0%-120%; all other analyses see the laboratory QC pages)
⊙ Yes	□ No	Comments:
labora LCS/L	tory limits? And project	nt differences (RPD) reported and less than method or t specified DQOs, if applicable. RPD reported from r sample/sample duplicate. (AK Petroleum methods 20%; all bry QC pages)
⊙ Yes	□ No	Comments:
An LCS/LCSD R	RPD for PAH is not calc	ulable. The MS/MSD for PAH meets RPD criteria.
v. If %R	or RPD is outside of ac	ceptable limits, what samples are affected?
		Comments:
The %R and RPD) were within acceptable	e limits.
vi. Do the	e affected sample(s) hav	e data flags? If so, are the data flags clearly defined?
Yes	© No	Comments:
No project sample	es are affected.	
vii. Data q	uality or usability affec	ted? (Use comment box to explain.)
	•	Comments:
Data quality or us	sability are not affected.	,

1178438

c. Surrogates	– Organics	Only
i. Are	surrogate r	ecoveries reported for organic analyses – field, QC and laboratory samples
C Yes	C No	Comments:
And	d project spe	percent recoveries (%R) reported and within method or laboratory limits? cified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other e laboratory report pages)
Yes	No	Comments:
laboratory qua laboratory qua	The PAH sulity control lity control . The correct	rrogate recovery for 2-methylnaphthalene-d10 (28.2%) did not meet criteria (47–106%). The surrogate recovery for fluoranthene-d10 does meet criteria. The sample was re-extracted past hold time and surrogates were ted surrogate recoveries were within laboratory quality control criteria. The
	the sample i gs clearly de	results with failed surrogate recoveries have data flags? If so, are the data fined?
Yes	€ No	Comments:
Sample results	for MW-3	were not flagged by the laboratory.
iv. Dat	a quality or	usability affected?
		Comments:
		e MW-3 are reported as non-detected and there is no effect upon reported ate recovery of in-hold analysis.
Data quality or	r usability fo	or the remaining analytical results are not affected.
d. Trip blank <u>Soil</u>	– Volatile a	nalyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and
san	nples?	reported per matrix, analysis and for each cooler containing volatile planation below.)
© Yes	C No	Comments:
A trip blank w	as included,	TB-Kiewit, for BTEX and GRO analyses.
		ed to transport the trip blank and VOA samples clearly indicated on the comment explaining why must be entered below)
• Yes	□ No	Comments:

iii. All 1	results less than	LOQ?
• Yes	□ No	Comments:
iv. If ab	ove LOQ, wha	t samples are affected?
		Comments:
mples are	affected, the re	esults were less than LOQ.
v. Data	a quality or usal	pility affected?
		Comments:
quality or	usability are no	ot affected.
eld Dupli	cate	
i. One	field duplicate	submitted per matrix, analysis and 10 project samples?
C Yes	□ No	Comments:
ii. Subi	mitted blind to	lab?
• Yes	□ No	Comments:
	iv. If about the second of the	iv. If above LOQ, what iv. If above LOQ, what mples are affected, the reverse v. Data quality or usability are not led Duplicate i. One field duplicate Yes No ii. Submitted blind to

RPD (%) = Absolute value of:

PD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 = Sample Concentration$ R_2 = Field Duplicate Concentration

TYes 🖸 No Comments:

Duplicate results were non-detect for the requested analysis, an RPD is not calculable, however the results are comparable.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data quality or usability are not affected.

Page 7 **July 2017**

117843	8
--------	---

	f. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below).
	Yes No Not Applicable
	EB-Kiewit was submitted for BTEX, DRO, GRO, PAH and RRO.
	i. All results less than LOQ?
	Yes No Comments:
	ii. If above LOQ, what samples are affected?
	Comments:
	No samples are affected, the results were less than LOQ.
	iii. Data quality or usability affected?
	Comments:
	Data quality or usability are not affected.
<u>O</u>	ther Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	Yes No Comments:
	There are no other data flags or qualifications for this work order.

ATTACHMENT C 95% LCL ORGANIC CARBON STATISTICS

All Samp	oles - Lognormal LCL (H-	-statistic)
Results of Distribution Para	ameter Estimation	
Assumed Distribution: Estimated Parameter(s):	Lognormal mean = 0.6737563 cv = 1.1160778	

Estimation Method: mvue

Data: toc.data\$DETorND

Sample Size: 24

Confidence Interval for: mean
Confidence Interval Method: Land
Confidence Interval Type: lower

Confidence Level: 95%

Confidence Interval: LCL = 0.4884674

UCL = Inf

1	А	В	С	D Background	E Statistics fo	F r Uncensore	G d Full Data Set	H ts	I	J	K	L
2		User Selec	cted Options									
3	Date	Time of C	omputation	ProUCL 5.1	12/11/2017 8	3:57:42 AM						
			From File				· DRO\output\p	roucl rawd	lata 201712	11.xls		
4		Fu	III Precision	OFF			F - F					
5	С		Coefficient	95%								
6			Coverage	95%								
7	New or F	uture K Ok	bservations	1								
8	Number of			2000								
9	Nullibel of	Бооізпар	Орегация	2000								
10	DETorND - al	I TOC com	anlos									
	DETOIND - ai	i i OC Saii	ilhiea									
12	O	-41										
13	General Statis	STICS	-							(5)		
14			I otal	Number of C					Numbe		Observations	24
15					Minimum						First Quartile	0.201
16				Sec	ond Largest						Median	0.349
17					Maximum	2.43				Т	Third Quartile	1.125
18					Mean						SD	0.706
19				Coefficient	of Variation	1.022					Skewness	1.373
20				Mean of	logged Data	-0.827				SD of	logged Data	0.957
21												
22				Crit	ical Values fo	or Backgrour	nd Threshold V	alues (BT	/s)			
23			Tole	rance Factor	K (For UTL)	2.309				d2m	nax (for USL)	2.644
24												
25						Normal C	GOF Test					
26			S	Shapiro Wilk 1	Test Statistic	0.769			Shapiro W	ilk GOF Test		
			5% S	hapiro Wilk C	Critical Value	0.916		Data No	t Normal at	5% Significar	nce Level	
27				•	Test Statistic					GOF Test		
28			5	% Lilliefors C	Critical Value			Data No		5% Significar	nce Level	
29							 % Significance					
30						- rtorria at o	70 Olgililloanio					
31				R	ackground S	tatietice Aeei	uming Normal I	Distribution	n			
32			95% I	ل 35 UTL with						90% 5	Percentile (z)	1.596
33			33 /0 (95% UPL (t)						Percentile (z)	1.852
34											` '	
35					95% USL	2.558				99% F	Percentile (z)	2.333
36						0	OOE Took					
37							GOF Test			0	F T	
38					Test Statistic				-	Gamma GO		
39					Critical Value		Data				gnificance Leve	d.
40					Test Statistic					ov Gamma G		
41					Critical Value					ted at 5% Sig	gnificance Leve	d.
42				Da	ta Not Gamr	na Distribute	ed at 5% Signifi	cance Lev	el			
43												
44						Gamma	Statistics					
45					k hat (MLE)	1.234			k	star (bias cor	rrected MLE)	1.108
46				The	ta hat (MLE)	0.56			Theta	star (bias co	rrected MLE)	0.624
47				r	nu hat (MLE)	59.24				nu star (bia	as corrected)	53.16
48			М	LE Mean (bia	s corrected)	0.691				MLE Sd (bia	as corrected)	0.657
49						I .	1					
50				Ва	ackground St	tatistics Assu	ıming Gamma	Distributio	n			
		95% Wilso	on Hilferty (W		-		-			90	% Percentile	1.551
51			ins Wixley (H								% Percentile	1.997
52		<i></i>	-, (, FF. 5								

	A B C D E	F	G	Н	I	J	K	L
53	95% WH Approx. Gamma UTL with 95% Coverage	2.877				99	9% Percentile	3.024
54	95% HW Approx. Gamma UTL with 95% Coverage	3.046						3.748
55	95% WH USL	3.462		95% HW USL				
56								
57			I GOF Test					
58	Shapiro Wilk Test Statistic	0.916		-	piro Wilk Log			
59	5% Shapiro Wilk Critical Value	0.916			Lognormal a	•		
60	Lilliefors Test Statistic	0.157			liefors Logno			
61	5% Lilliefors Critical Value	0.177				at 5% Sign	ificance Level	
62	Data appear Approx	kimate Logn	normal at 5%	Significance	Level			
63								
64	Background Stat		ming Lognorn	nal Distributi	ion			
65	95% UTL with 95% Coverage	3.991					Percentile (z)	1.492
66	95% UPL (t)	2.335					Percentile (z)	2.113
67	95% USL	5.499				99%	Percentile (z)	4.057
68								
69	Nonparametric I							
70	Data appear Approx	kimate Logn	normal at 5%	Significance	Level			
71								
72	Nonparametric Upp		r Background	Threshold \				
73	Order of Statistic, r	24					5% Coverage	
74	Approx, f used to compute achieved CC	1.263					nieved by UTL	0.708
75			Approxin	•			specified CC	59
76	95% Percentile Bootstrap UTL with 95% Coverage	2.43		95% BC	A Bootstrap I		5% Coverage	
77	95% UPL	2.378					0% Percentile	1.801
78	90% Chebyshev UPL	2.853					5% Percentile	2.177
79	95% Chebyshev UPL	3.832				99	9% Percentile	2.382
80	95% USL	2.43						
81								
82	Note: The use of USL tends to yield a conservative			-				
	Therefore, one may use USL to estimate a BTV only when the data set represents a background data set free of outliers						e of outliers	
83		and consists of observations collected from clean unimpacted locations.						
83 84								
	The use of USL tends to provide a balan	nce between	n false positiv	es and false	negatives p			
84		nce between	n false positiv	es and false	negatives p			
84 85	The use of USL tends to provide a balan	nce between	n false positiv	es and false	negatives p			

ATTACHMENT D PROPOSED PETROLEUM HYDROCARBON CLEAN-UP LEVELS

Petroleum Cleanup Level Calculator

Kiewit 2050 Peger Road

Site zone and exposure scenario: Under 40-inch Zone - Commercial/Industrial Exposures

Cleanup Level Calculations

12/21/2017

Chemical	CAS	Туре	Calculations		
DRO Aliphatic	Organic		Ingestion Indoor Worker:	204000	mg/kg
		Non-Carcinogenic	Ingestion Outdoor Worker:	102000	mg/kg
		Petroleum	Inhalation Cleanup Level:	61500	mg/kg
			Groundwater Cleanup Level:	3.7	mg/L
			Migration to Groundwater:	32800	mg/kg
DRO Aromatic	Organic		Ingestion Indoor Worker:	81800	mg/kg
	Non-Carcinogenic Petroleum	Ingestion Outdoor Worker:	40900	mg/kg	
		Inhalation Cleanup Level:	18900	mg/kg	
			Groundwater Cleanup Level:	1.5	mg/L
			Migration to Groundwater:	450	mg/kg
DRO (Total)		Organic	Ingestion Indoor Worker:	205000	mg/kg
		Non-Carcinogenic	Ingestion Outdoor Worker:	102000	mg/kg
	Petroleum	Inhalation Cleanup Level:	47300	mg/kg	
			Groundwater Cleanup Level:	1.5	mg/L
			Migration to Groundwater:	1100	mg/kg

Please Note

Chemical	Notes		
DRO Aliphatic	The Maximum Allowable DRO Aliphatic concentration is 10000 mg/kg		
DRO Aromatic	The Maximum Allowable DRO Aromatic concentration is 5000 mg/kg		
DRO (Total)	The Maximum Allowable DRO concentration is 12500 mg/kg		

The parameters used to calculate the above cleanup levels and the parameters' default values are as follows:

Volatilization Pathway Parameters

Symbol	Description	Value	Default	Units
ρЬ	Dry soil bulk density	1.5	1.5	g/cm ³
n	Total soil porosity	0.434	0.434	L _{pore} /L _{soil}
$\Theta_{ m W}$	Water-filled soil porosity	0.15	0.15	L _{water} /L _{soil}
Θα	Air-filled soil porosity	0.284	0.284	L _{air} /L _{soil}
w	Average soil moisture content	0.1	0.1	g _{water} /g _{soil}
foc	Organic carbon content of soil	0.00489	0.001	g/g

Groundwater Pathway Parameters

Symbol	Description	Value	Default	Units

Method 3 Calculator: Review Cleanup Levels | DEC - Contaminated Sites Program

$\Theta_{ m W}$	Water-filled soil porosity	0.3	0.3	L _{water} /L _{soil}
Θa	Air-filled soil porosity	0.13	0.13	L _{air} /L _{soil}
W	Average soil moisture content	0.1	0.1	g _{water} /g _{soil}
K	Aquifer hydraulic conductivity	420	876	m/yr
i	Hydraulic gradient	0.002	0.002	m/m
L	Source length parallel to groundwater flow	32	32	m
I	Infiltration rate	0.13	0.13	m/yr
da	Aquifer thickness	10	10	m

ATTACHMENT E METHOD 3 HUMAN-HEALTH CLEANUP LEVELS

Variable	Value
TR (target cancer risk) unitless	1.0E-5
THQ (target hazard quotient) unitless	1
AT (averaging time)	365
EF (exposure frequency) d/yr	225
ED (exposure duration) yr	25
	8
` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	70
OM () - 9 - 7	80
- 0111 (100
AF _{ow} (skin adherence factor - adult) mg/cm ²	0.12
ow (3527
. ,	0.5
Q/C _{wp} (g/m²-s per kg/m³)	93.7736
PEF (particulate emission factor) m ³/kg	1.36E+09
A (PEF Dispersion Constant)	16.2302
B (PEF Dispersion Constant)	18.7762
,	216.108
` ,	0.5
m '	4.69
7	11.32
m 17	0.194
e ' ' '	0.5
C - wp (3 1 3. /	93.7736
, , , , , , , , , , , , , , , , , , , ,	0.00235
p _b (dry soil bulk density) g/cm ³	1.5
p _s (soil particle density) g/cm ⁻³	2.65
θ $_{_{\text{\tiny water}}}$ (water-filled soil porosity) L $_{_{\text{\tiny water}}}$ /L $_{_{\text{\tiny coil}}}$	0.15
θ $_{a}$ (air-filled soil porosity) L $_{air}$ /L $_{coil}$	0.28396
n (total soil porosity) L/L	0.43396
, ,	819936000
,	16.2302
,	18.7762
C (VF Dispersion Constant)	216.108

Site-specific

Outdoor Worker Cleanup Levels Calculator for Soil (<40" Precipitation Zone)

ca=Cancer, nc=Noncancer, ca* (Where nc CL < 100 x ca CL), ca** (Where nc CL < 10 x ca CL), max=CL exceeds ceiling limit (see User's Guide), sat=CL exceeds csat, sol=CL exceeds Solubility I=IRIS; D=Drinking Water/Health Advisory Goals; P=PPRTV; A=ATSDR; C=Cal EPA; X=APPENDIX PPRTV SCREEN; H=HEAST; S=SURROGATE

Substitution for threshold maximum in soil has been enabled.

Chemical	CAS Number	Mutagen?	VOC?	Ingestion SF (mg/kg-day) -1	SFO Ref		IUR Ref	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m ³)	Chronic RfC Ref	GIABS	ABS
Acenaphthene	83-32-9	No	Yes	-		-		6.00E-02	ı	-		1	0.13
Anthracene	120-12-7	No	Yes	-		-		3.00E-01	I	-		1	0.13
Benzene	71-43-2	No	Yes	5.50E-02	ı	7.80E-06	I	4.00E-03	I	3.00E-02	1	1	-
Butylbenzene, sec-	135-98-8	No	Yes	-		-		1.00E-01	Χ	-		1	-
Cumene	98-82-8	No	Yes	-		-		1.00E-01	1	4.00E-01	1	1	-
Ethylbenzene	100-41-4	No	Yes	1.10E-02	С	2.50E-06	С	1.00E-01	1	1.00E+00	1	1	-
Fluorene	86-73-7	No	Yes	-		-		4.00E-02	1	-		1	0.13
Methylnaphthalene, 1-	90-12-0	No	Yes	2.90E-02	Р	-		7.00E-02	Α	-		1	0.13
Methylnaphthalene, 2-	91-57-6	No	Yes	-		-		4.00E-03	1	-		1	0.13
Naphthalene	91-20-3	No	Yes	-		3.40E-05	С	2.00E-02	1	3.00E-03	1	1	0.13
Phenanthrene	85-01-8	No	Yes	-		-		3.00E-02	S	-		1	0.13
Pyrene	129-00-0	No	Yes	-		-		3.00E-02	1	-		1	0.13
Toluene	108-88-3	No	Yes	-		-		8.00E-02	1	5.00E+00	1	1	-
Trimethylbenzene, 1,2,4-	95-63-6	No	Yes	-		-		-		7.00E-03	Р	1	- 1
Trimethylbenzene, 1,3,5-	108-67-8	No	Yes	-		-		1.00E-02	Χ	-		1	-
Xylenes	1330-20-7	No	Yes	-		-		2.00E-01	I	1.00E-01	I	1	-

Site-specific

Outdoor Worker Cleanup Levels Calculator for Soil (<40" Precipitation Zone)

ca=Cancer, nc=Noncancer, ca* (Where nc CL < 100 x ca CL), ca** (Where nc CL < 10 x ca CL), max=CL exceeds ceiling limit (see User's Guide), sat=CL exceeds csat, sol=CL exceeds Solubility

I=IRIS; D=Drinking Water/Health Advisory Goals; P=PPRTV; A=ATSDR; C=Cal EPA; X=APPENDIX PPRTV SCREEN; H=HEAST; S=SURROGATE

Substitution for threshold maximum in soil has been enabled.

Chemical	RBA	D _{ia} (cm²/s)	D _{iw} (cm²/s)	Volatilization Factor (m³/kg)	H`	Soil Saturation Concentration (mg/kg)	Water Solubility (mg/L)	Particulate Emission Factor (m³/kg)
Acenaphthene	1.00E+00	5.06E-02	8.33E-06	121396.468037465	0.00752248569092	-	3.9	1360000000
Anthracene	1.00E+00	3.90E-02	7.85E-06	450881.868712733	0.00227309893704	-	0.0434	1360000000
Benzene	1.00E+00	8.95E-02	1.03E-05	3359.31612373049	0.22690106295993	869.195765227788	1790	1360000000
Butylbenzene, sec-	1.00E+00	5.28E-02	7.34E-06	6466.29752867479	0.71954210956663	59.207547597258	17.6	1360000000
Cumene	1.00E+00	6.03E-02	7.86E-06	5518.59654052433	0.47015535568274	112.107539700823	61.3	1360000000
Ethylbenzene	1.00E+00	6.85E-02	8.46E-06	5087.86150618503	0.3221586263287	204.375462272147	169	1360000000
Fluorene	1.00E+00	4.40E-02	7.89E-06	242328.159382283	0.00393295175797	-	1.69	1360000000
Methylnaphthalene, 1-	1.00E+00	5.28E-02	7.85E-06	50711.0140044319	0.02101390024529	155.955275060707	25.8	1360000000
Methylnaphthalene, 2-	1.00E+00	5.24E-02	7.78E-06	50183.0720563651	0.02117743254292	-	24.6	1360000000
Naphthalene	1.00E+00	6.05E-02	8.38E-06	40218.9565352316	0.01798855273916	-	31	1360000000
Phenanthrene	1.00E+00	3.45E-02	6.69E-06	554321.105248288	0.00172935404742	-	1.15	1360000000
Pyrene	1.00E+00	2.78E-02	7.25E-06	2048296.97899641	0.00048650858544	-	0.135	1360000000
Toluene	1.00E+00	7.78E-02	9.20E-06	3958.69870535591	0.27146361406377	368.755078151108	526	1360000000
Trimethylbenzene, 1,2,4-	1.00E+00	6.07E-02	7.92E-06	7011.89614703549	0.25183973834832	90.7029783275737	57	1360000000
Trimethylbenzene, 1,3,5-	1.00E+00	6.02E-02	7.84E-06	5882.84672220485	0.3585445625511	76.2914621084301	48.2	1360000000
Xylenes	1.00E+00	6.85E-02	8.46E-06	5169.39009218698	0.2710547833197	111.419555985282	106	1360000000

Site-specific

Outdoor Worker Cleanup Levels Calculator for Soil (<40" Precipitation Zone)

ca=Cancer, nc=Noncancer, ca* (Where nc CL < 100 x ca CL), ca** (Where nc CL < 10 x ca CL), max=CL exceeds ceiling limit (see User's Guide), sat=CL exceeds csat, sol=CL exceeds Solubility

I=IRIS; D=Drinking Water/Health Advisory Goals; P=PPRTV; A=ATSDR; C=Cal EPA; X=APPENDIX PPRTV SCREEN; H=HEAST; S=SURROGATE

Substitution for threshold maximum in soil has been enabled.

Chemical	Ingestion CL TR=1.0E-5 (mg/kg)	Dermal CL TR=1.0E-5 (mg/kg)	Inhalation CL TR=1.0E-5 (mg/kg)	Carcinogenic CL TR=1.0E-5 (mg/kg)	Ingestion CL HQ=1 (mg/kg)	Dermal CL HQ=1 (mg/kg)	Inhalation CL HQ=1 (mg/kg)	Noncarcinogenic CL HI=1 (mg/kg)	Cleanup Level (mg/kg)
Acenaphthene	-	-	-	-	7.79E+04	1.42E+05	-	5.02E+04	5.0E+04 nc
Anthracene	_	-	-	-	3.89E+05	7.08E+05	-	1.00E+05	1.0E+05 Smax
Benzene	6.61E+02	-	5.87E+01	5.39E+01	5.19E+03	-	4.90E+02	4.48E+02	5.4E+01 ca**
Butylbenzene, sec-	-	-	-	-	1.30E+05	-	-	1.00E+05	5.9E+01 ca**
Cumene	-	-	-	-	1.30E+05	-	1.07E+04	9.92E+03	1.1E+02 ca**
Ethylbenzene	3.30E+03	-	2.77E+02	2.56E+02	1.30E+05	-	2.48E+04	2.08E+04	2.0E+02 ca**
Fluorene	_	-	-	-	5.19E+04	9.43E+04	-	3.35E+04	3.3E+04 nc
Methylnaphthalene, 1-	1.25E+03	2.28E+03	-	8.08E+02	9.08E+04	1.65E+05	-	5.86E+04	1.6E+02 nc
Methylnaphthalene, 2-	-	-	-	-	5.19E+03	9.43E+03	-	3.35E+03	3.3E+03 nc
Naphthalene	_	-	1.61E+02	1.61E+02	2.60E+04	4.72E+04	5.87E+02	5.67E+02	1.6E+02 ca**
Phenanthrene	_	-	-	-	3.89E+04	7.08E+04	-	2.51E+04	2.5E+04 nc
Pyrene	_	-	-	-	3.89E+04	7.08E+04	-	2.51E+04	2.5E+04 nc
Toluene	-	-	-	-	1.04E+05	-	9.63E+04	5.00E+04	3.7E+02 nc
Trimethylbenzene, 1,2,4-	-	-	-	-	-	-	2.39E+02	2.39E+02	9.1E+01 nc
Trimethylbenzene, 1,3,5-	-	-	-	-	1.30E+04	-	-	1.30E+04	7.6E+01 nc
Xylenes	-	-	-	-	2.60E+05	-	2.52E+03	2.49E+03	1.1E+02 nc

Site-specific
Outdoor Worker Risk for Soil (<40" Precipitation Zone)

Chemical	Ingestion SF (mg/kg-day) -1	SFO Ref	Inhalation Unit Risk (ug/m³)-1	IUR	Chronic RfD (mg/kg-day)	Chronic RfD Ref	Chronic RfC (mg/m ³)	RfC	GIABS	ABS	RBA	D _{ia} (cm²/s)	D _{iw} (cm²/s)
Acenaphthene	-		-		6.00E-02	ı	-		1	0.13	1.00E+00	5.06E-02	8.33E-06
Anthracene	_		-		3.00E-01	1	-		1	0.13	1.00E+00	3.90E-02	7.85E-06
Benzene	5.50E-02	ı	7.80E-06	1	4.00E-03	1	3.00E-02	1	1	-	1.00E+00	8.95E-02	1.03E-05
Butylbenzene, sec-	-		-		1.00E-01	Χ	-		1	-	1.00E+00	5.28E-02	7.34E-06
Cumene	-		-		1.00E-01	1	4.00E-01	1	1	-	1.00E+00	6.03E-02	7.86E-06
Ethylbenzene	1.10E-02	С	2.50E-06	С	1.00E-01	ı	1.00E+00	ı	1	-	1.00E+00	6.85E-02	8.46E-06
Fluorene	-		-		4.00E-02	ı	-		1	0.13	1.00E+00	4.40E-02	7.89E-06
Methylnaphthalene, 1-	2.90E-02	Р	-		7.00E-02	Α	-		1	0.13	1.00E+00	5.28E-02	7.85E-06
Methylnaphthalene, 2-	_		-		4.00E-03	ı	-		1	0.13	1.00E+00	5.24E-02	7.78E-06
Naphthalene	_		3.40E-05	С	2.00E-02	ı	3.00E-03	I	1	0.13	1.00E+00	6.05E-02	8.38E-06
Phenanthrene	_		-		3.00E-02	S	-		1	0.13	1.00E+00	3.45E-02	6.69E-06
Pyrene	_		-		3.00E-02	ı	-		1	0.13	1.00E+00	2.78E-02	7.25E-06
Toluene	-		-		8.00E-02	ı	5.00E+00	I	1	-	1.00E+00	7.78E-02	9.20E-06
Trimethylbenzene, 1,2,4-	-		-		-		7.00E-03	Р	1	-	1.00E+00	6.07E-02	7.92E-06
Trimethylbenzene, 1,3,5-	_		-		1.00E-02	Χ	-		1	-	1.00E+00	6.02E-02	7.84E-06
Xylenes	_		-		2.00E-01	ı	1.00E-01	I	1	-	1.00E+00	6.85E-02	8.46E-06
*Total Risk	-		-		-		-		-	-	-	-	-

Site-specific
Outdoor Worker Risk for Soil (<40" Precipitation Zone)

Chemical	Volatilization Factor (m³/kg)	H,	Soil Saturation Concentration (mg/kg)	Particulate Emission Factor (m³/kg)	Concentration (mg/kg)	Ingestion Risk TR=1.0E-5	Dermal Risk TR=1.0E-5
Acenaphthene	121396.468037465	0.00752248569092	-	1360000000	2.08	-	-
Anthracene	450881.868712733	0.00227309893704	-	1360000000	2.08	-	-
Benzene	3359.31612373049	0.22690106295993	869.195765227788	1360000000	0.2	3.0271526418786E-9	-
Butylbenzene, sec-	6466.29752867479	0.71954210956663	59.207547597258	1360000000	2.9	-	-
Cumene	5518.59654052433	0.47015535568274	112.107539700823	1360000000	1.7	-	-
Ethylbenzene	5087.86150618503	0.3221586263287	204.375462272147	1360000000	3.34	1.0110689823874E-8	-
Fluorene	242328.159382283	0.00393295175797	-	1360000000	10.1	-	-
Methylnaphthalene, 1-	50711.0140044319	0.02101390024529	155.955275060707	1360000000	62.9	5.0198446673189E-7	2.7619787740949E-7
Methylnaphthalene, 2-	50183.0720563651	0.02117743254292	-	1360000000	103	-	-
Naphthalene	40218.9565352316	0.01798855273916	-	1360000000	34	-	-
Phenanthrene	554321.105248288	0.00172935404742	-	1360000000	11.8	-	-
Pyrene	2048296.97899641	0.00048650858544	-	1360000000	2.08	-	-
Toluene	3958.69870535591	0.27146361406377	368.755078151108	1360000000	0.92	-	-
Trimethylbenzene, 1,2,4-	7011.89614703549	0.25183973834832	90.7029783275737	1360000000	73.8	-	-
Trimethylbenzene, 1,3,5-	5882.84672220485	0.3585445625511	76.2914621084301	1360000000	22.2	-	-
Xylenes	5169.39009218698	0.2710547833197	111.419555985282	1360000000	38.8	-	-
*Total Risk	-	-	-	-	-	5.1512230919765E-7	2.7619787740949E-7

Site-specific
Outdoor Worker Risk for Soil (<40" Precipitation Zone)

Chemical	Inhalation Risk TR=1.0E-5	Carcinogenic Risk TR=1.0E-5	Ingestion Risk HQ=1	Dermal Risk HQ=1	Inhalation Risk HQ=1	Noncarcinogenic Risk HI=1
Acenaphthene	-	_	0.00002671232876	0.00001469744383	-	0.0000414097726
Anthracene	-	_	5.3424657534246E-6	2.9394887671232E-6	-	8.2819545205479E-6
Benzene	3.4078868306589E-8	3.7106020948467E-8	0.00003852739726	-	0.00040778133016	0.00044630872742
Butylbenzene, sec-	-	_	0.00002234589041	-	-	0.00002234589041
Cumene	-	_	0.00001309931506	-	0.00015824516404	0.00017134447911
Ethylbenzene	1.2043790341085E-7	1.3054859323472E-7	0.00002573630136	-	0.00013489045182	0.00016062675319
Fluorene	-	_	0.00019456335616	0.00010705109332	-	0.00030161444948
Methylnaphthalene, 1-	-	7.7818234414139E-7	0.0006923923679	0.00038096258953	-	0.00107335495743
Methylnaphthalene, 2-	-	-	0.01984160958904	0.0109170916952	-	0.03075870128424
Naphthalene	2.1093577647275E-6	2.1093577647275E-6	0.00130993150684	0.00072074003424	0.05790393863957	0.05993461018067
Phenanthrene	-	_	0.00030308219178	0.0001667594589	-	0.00046984165068
Pyrene	-	_	0.00005342465753	0.00002939488767	-	0.0000828195452
Toluene	-	_	8.861301369863E-6	-	9.5506963385194E-6	0.0000184119977
Trimethylbenzene, 1,2,4-	-	_	-	-	0.30895375981196	0.30895375981196
Trimethylbenzene, 1,3,5-	-	_	0.00171061643835	-	-	0.00171061643835
Xylenes	-	_	0.00014948630136	-	0.01542277309622	0.01557225939759
*Total Risk	2.2638745364449E-6	3.055194723052E-6	0.024395731409	0.01233963669148	0.38299093919013	0.41972630729061