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Abstract We present our current best estimate of the plausible observing scenarios for
the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over
the next several years, with the intention of providing information to facilitate planning
for multi-messenger astronomy with gravitational waves. We estimate the sensitivity
of the network to transient gravitational-wave signals for the third (O3), fourth (04)
and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO
and Advanced Virgo detectors. We study the capability of the network to determine
the sky location of the source for gravitational-wave signals from the inspiral of binary
systems of compact objects, that is binary neutron star, neutron star—black hole, and
binary black hole systems. The ability to localize the sources is given as a sky-area
probability, luminosity distance, and comoving volume. The median sky localization
area (90% credible region) is expected to be a few hundreds of square degrees for all
types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network.
The median sky localization area will improve to a few tens of square degrees during
04 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the
median localization volume (90% credible region) is expected to be on the order of
10%,10°, 107 Mpc? for binary neutron star, neutron star—black hole, and binary black
hole systems, respectively. The localization volume in O4 is expected to be about a
factor two smaller than in O3. We predict a detection count of 1f}2 ( IOf% ) for
binary neutron star mergers, of 0:1)9 ( lf?l ) for neutron star—black hole mergers, and
17ﬁ% ( 79f§2 ) for binary black hole mergers in a one-calendar-year observing run
of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity
and localization expectations for unmodeled signal searches, including the search for
intermediate mass black hole binary mergers.
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1 Introduction

Advanced LIGO (Aasi et al.|[2015a), Advanced Virgo (Acernese et al.[2015)), and
KAGRA (Somiyal2012}; [Aso et al.[2013)) are kilometer-scale gravitational-wave (GW)

detectors that are sensitive to GWs with frequencies of ~ 20-2000 HzEl The era
of GW astronomy began with the detection of GW150914 (Abbott et al|2016j),
a signal from the coalescence of a binary black hole (BBH); the first confirmed
multi-messenger counterpart to a GW observation came with GW170817
let al|[20171), a signal from a binary neutron star (BNS) coalescence which was
accompanied by detections across the electromagnetic spectrum (Abbott et al.|[2017j).
In this article, we describe the schedule, sensitivity, sky-localization accuracy, and
expected detections for the GW-detector network. We discuss the past, present, and
future planned sequence of observing runs and the prospects for multi-messenger
astronomy.

The purpose of this article is to provide information to the astronomy community
to assist in the formulation of plans in the era of GW observations. In particular, we
intend this article to provide the information required for assessing the features of

ILIGO is short for Laser Interferometer Gravitational-Wave Observatory. KAGRA is named after the
Japanese word KAGURA, which means traditional sacred music and dance for the gods ; the name has a
secondary meaning as an abbreviation for KAmioka GRavitational-wave Antenna. Virgo is named for the
Virgo constellation and is not written in capital letters.
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programs for joint observation of GW events using electromagnetic, neutrino, or other
facilities (e.g.,/Abbott et al.|20161; | Adrian-Martinez et al.[2016; |Albert et al.[2017b;
Abbott et al.[|2017j; |Albert et al.|2017a).

The full science of ground-based GW detectors is broad (Abbott et al.|2018f),
and is not covered in this article. We concentrate solely on candidate GW transient
signals. We place particular emphasis on the coalescence of binary systems of compact
objects, such as BNS and neutron star—black hole (NSBH) systems, which are the GW
sources for which electromagnetic follow-up is most promising (Li and Paczynski
1998} Metzger and Berger|2012; |Patricelli et al.[2016; [Paschalidis|2017; Rosswog et al.
2017;|Ciolfi and Siegel|2015; | Metzger[2017}; |Ghirlanda et al.[2016; [Foucart et al.[2018;
Vinciguerra et al.[2019; Barbieri et al.|2019), and BBHs, which are the most commonly
detected source (Abbott et al.|2016c, 20171, 2018dlc). No electromagnetic emission is
expected for vacuum BBH mergers (Centrella et al.|2010), but is possible if there is
surrounding material (Schnittman|2013), for example, remnants of mass lost from the
parent star (Perna et al.[2016} Janiuk et al.|2017) or if the binary was embedded in
a common envelope (Woosley|2016), or a disk of an active galactic nucleus (Bartos
et al.|2017; Stone et al.|[2017). Mergers of binary systems of compact objects are
absolute distance indicators, and thus can be used as standard sirens to estimate the
Hubble constant (Schutz|1986} |Holz and Hughes||2005; |Abbott et al.|2017a)). When an
electromagnetic counterpart, and hence a host galaxy cannot be identified, a statistical
approach which uses galaxy catalogs and the GW localization volume can be used
(Del Pozzo|[2012; (Chen et al.|2018} [Fishbach et al.|[2019; |Soares-Santos et al.[2019).
For more general introductory articles on GW generation, detection and astrophysics,
we point readers to [Blanchet| (2014)); [Pitkin et al.[(2011); Sathyaprakash and Schutz
(2009).

As the detector network grows and evolves we will release updated versions
of this article: This is the fourth version. The plausible observing scenarios for the
upcoming observing runs includes KAGRA and the upgrades of the Advanced LIGO
(aLIGO) and Advanced Virgo (AdV) detectors, called A+ and AdV+, respectively.
The predicted sky-localization accuracies and detection rates have been updated and
now incorporate the atsrophysical results from the first and second observing runs
(Abbott et al.|2018dlc)). Changes with respect to the previous version (Aasi et al.[2016))
are listed in Appendix [A] Throughout the paper we assume a flat cosmology with
Hubble parameter Hy = 67.9 km s~ 'Mpc~!, and density parameters £, = 0.3065
and Q4 = 0.6935 (Ade et al.|[2016)).

2 Construction, commissioning and observing phases

We divide the development of the GW observatories into three phases:

Construction: includes the installation and testing of the detectors. This phase
ends with acceptance of the detectors. Acceptance means that the interferometers
can lock for periods of hours: light is resonant in the arms of the interferometer with
no guaranteed GW sensitivity. Construction incorporates several short engineering
runs with no astrophysical output as the detectors progress towards acceptance.
The aLLIGO construction project ended in March 2015. The construction of AdV
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was completed in early 2017. Construction of KAGRA will be completed by
mid-late 2019.

Commissioning: improves the detectors’ performance with the goal of reaching
design sensitivity. Engineering runs in the commissioning phase allow us to
understand our detectors and analyses in an observational mode; these are not
intended to produce astrophysical results, but that does not preclude the possibility
of this happeningE] Rather than proceeding directly to design sensitivity before
making astrophysical observations, commissioning is interweaved with observing
runs.

Observing: begins when the detectors have reached (and can stably maintain) a
significantly improved sensitivity compared with previous operation. Observing
runs produce astrophysical results such as direct detections from certain GW
sources and upper limits on the rates or energetics of others. During the first two
observing runs (O1 and O2) a Memorandum Of Understanding (MOU) governed
the exchange of GW candidates between astronomical partners and the LIGO
and Virgo Collaborations. From the start of the third observing run (O3) GW
event candidates identified in low-latency are released immediately to the full
astronomical community (see Sect. d]for details). KAGRA will become a part of
the global network with full data sharing in the latter half of O3.

Commissioning is a complex process which involves both scheduled improvements
to the detectors and tackling unexpected new problems. While our experience makes
us cautiously optimistic regarding the schedule for the advanced detectors, it is not
possible to make concrete predictions for sensitivity or duty cycle as a function of
time.

As a standard figure of merit for detector sensitivity, we use the range, R, evaluated
for compact binary coalescences (CBCs) consisting of representative masses. We
define V as the orientation-averaged spacetime volume surveyed per unit detector
time, assuming a matched-filter detection signal-to-noise ratio (SNR) threshold of
8 in a single detector. The volume V corresponds to the comoving volume with the
inclusion of a (1 + z) factor to account for time dilation (redshifted volume V; in Chen
et al.|2017). For a population of sources with a constant comoving source-frame rate
density, V multiplied by the rate density gives the detection rate of those sources by the
particular detector. The range R is obtained as (47/3)R? = V. For further insight into
the range, and a discussion of additional quantities such as the median and average
distances to sources, see (Chen et al.|[2017).

For unmodeled short-duration (< 1 s) signals or bursts, we evaluate an approximate
sensitive luminosity distance determined by the total energy Egw emitted in GWs, the
central frequency fj of the burst, the detector noise power spectral density S(fp), and
the single-detector SNR threshold pge; (Sutton/2013):

D~ ( G EGW > 1/2 (1)

2The detection of GW 150914 occurred in the engineering run ER8 immediately preceding the formal
start of O1.
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Fig. 1 aLIGO (top left), AdV (top right) and KAGRA (bottom) target strain sensitivities as a function
of frequency. The quoted range is for a 1.4 Mz+1.4M: BNS merger. The BNS range (in megaparsec)
achieved in past observing runs and anticipated for future runs is shown. The O1 aLIGO curve is taken
from the Hanford detector, the O2 aLIGO curve comes from Livingston. In each case these had the better
performance for that observing run. The O3 curves for aLIGO and AdV reflect recent performance. For
some runs the anticipated ranges are shown as bands reflecting the uncertainty in the impact of improvements
and upgrades to the overall sensitivity. Detailed planning for the post-O3 to O4 period is now in progress
and may result in changes to both target sensitivities for O4 and the start date for this run. The KAGRA
BNS curve may be realized by detuning the signal recycling cavity to significantly improve the BNS range
to 155 Mpc once design sensitivity is reached

This distance is then corrected by the time dilation cosmology factor to obtain the
surveyed volume V, and the range R.

2.1 Ol: aLIGO

O1 began on 18 September 2015 and ended on 12 January 2016. Data from the
surrounding engineering periods were of sufficient quality to be included in the
analysis, meaning that observational data was collected from 12 September 2015 to 19
January 2016. The run involved the Hanford (H) and Livingston (L) detectors
et al|2016f; Martynov et al.]2016). We aimed for a BNS range of 60 —80 Mpc for

both instruments (see Fig. [I), and achieved a 80 Mpc range.
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The localizations of the three BBH events detected during this run (GW150914,
GW15101 GW151226), exhibit the characteristic broken arc for a two-detector
network (Abbott et al.|[20161lcl, 2018d). GW 150914 and GW 151226 were shared with
partner astronomers soon after detection. Their poor localization (the 90% credible
regions are given in Table[3) made the follow-up challenging (Abbott et al.|2016i/m
Adrian-Martinez et al.[|2016} |Albert et al.|2017b)). See Sect. for more discussion of
the O1 and O2 follow-up program.

In O1 the largest non-observing periods for each detector were due to Locking
and Environmental issues (see Table ). Locking refers to the amount of time spent in
bringing the interferometers from an uncontrolled state to their lowest noise configu-
ration (Staley et al.|2014)). Environmental effects include earthquakes, wind and the
microseism noise arising from ocean storms (Effler et al.[2015]; |Abbott et al.[2016d).
The latter two effects have seasonal variation, with the prevalence of storms being
higher during the winter months. The Livingston detector has a greater sensitivity to
microseism noise and to earthquakes than Hanford, mainly due to the local geophysical
environment (Daw et al.[2004).

2.2 02: aLIGO joined by AdV

02 began on 30 November 2016 and ended on 25 August 2017. It was preceded
by an engineering run which began on 31 October 2016 at Livingston and on 14
November 2016 at Hanford. The delay at Hanford was to facilitate extra commission-
ing activities. The achieved sensitivity across the run was typically a BNS range of
80— 100 Mpc (Abbott et al.|[2018d).

The AdV interferometer (V;|Acernese et al.[2015) joined O2 on 1 August 2017,
forming a three detector network for the last month of the run. The goal was a BNS
range of 40 Mpc. Because of a vacuum contamination issue, which has since been
resolved, AdV used steel wires, rather than fused silica fibers, to suspend the test
masses. This limited the highest possible BNS range for AdV; in O2 the BNS range
achieved was 30 Mpc. The aLIGO and AdV sensitivities are shown in Fig.

Of the eight GW signals detected during O2, five were localized by the three
detector LIGO-Hanford, LIGO-Livingston and Virgo (HLV) network. From Table
we see that GW 170818 was localized to a 90% credible region of 39 deg? making
it the best localized BBH detection to date (Abbott et al.|[2018d). GW170817, the
first detection of a BNS merger, was localized to a 90% credible region of 16 deg?.
The enhanced accuracy is due to the addition of AdV to the network. The discoveries
associated with this detection are highlighted in Sect. An overview of the extensive
multi-messenger observations accompanying GW 170817 is given in |Abbott et al.
(20173).

In O2 the aLIGO detectors saw some improvement in duty factors from operating
during non-winter months, with an almost 50% reduction in the fraction of time lost to
environmental effects at both sites (see Table[I)). O2 also saw a rise in the fraction of

3The significance of LVT151012, initially classified as a GW candidate, increased after reanalysis of
the O1 data with improved detection pipelines. It is now considered an astrophysical GW event (Abbott
et al.[2018d).
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Table 1 Percentage of time during the first and second observing runs that the aLIGO and AdV detectors
spent in different operating modes as recorded by the on-duty operator. Since several factors may influence
detector operation at any given time, there is a certain subjectivity to the assignments. Maintenance includes
a planned 4-h weekly period (~ 2.4% of the total), and unplanned corrective maintenance to deal with
equipment or hardware failures. Coincident operation of the alLIGO detectors occurred ~ 43% of the time in
O1 and ~ 46% in O2. After joining O2 on August 1 2017 AdV operated with a duty factor of approximately
85% until the end of the run on August 25 2017.

o1 02
Hanford Livingston Hanford Livingston  Virgo

Operating mode %  Observing 64.6 57.4 65.3 61.8 85.1

Locking 17.9 16.1 8.0 11.7 3.1

Environmental 9.7 19.8 5.8 10.1 5.6

Maintenance 4.4 4.9 5.4 6.0 3.1

Commissioning 2.9 1.6 34 4.7 1.1

Planned engineering 0.1 0.0 11.9 5.5 -

Other 0.4 0.2 0.2 0.2 2.0

time spent in planned engineering: it was a longer run and hence included a dedicated
break in observations to effect needed repairs and to attempt improvements to the
sensitivity. During O1 and O2, Livingston lost over twice as much observing time
to earthquakes, microseism noise and wind compared to Hanford. For the aLIGO
instruments improvements to control systems, the locking process and the addition of
extra sensors (Coughlin et al.[2017; Biscans et al.|2018} Ross et al.|2017;|Venkateswara
et al.[|2014) may lead to modest increases in the duty factor of the aLIGO instruments.
The Virgo instrument operated with a duty factor of approximately 85% after joining
02 and similar performance is expected during O3.

Our expectations from earlier versions of this document that we expect duty factors
of at most 70 —75% for each LIGO instrument during extended runs are borne out by
experience. Assuming unplanned downtime periods are uncorrelated among detectors,
these duty factor estimates imply that all detectors in a three-detector network will
be operating in coincidence approximately 34 —42% of the time, and at least two
detectors will be operating for 78 — 84% of the time. For a four-detector network, three
or more detectors will be operational around 65—74% of the time, and for a five-
detector network, three of more detectors will be operating for 84 —90% of the time.
The weekly maintenance period for aLIGO instruments overlaps for three of the four
hours. The timezone difference makes overlapping the AdV and aLIGO maintenance
periods impractical. Longer planned engineering interruptions may take place at the
same time across the network, so these coincidence times are conservative estimates.

2.3 03: aLIGO, AdV and KAGRA

The third observing run started on April 1, 2019 and is expected to end on April 30,
2020, with a commissioning break from October 1, 2019 to November 1, 2019. The
increase in sensitivity of the LIGO detectors (whose target sensitivity was expected to
be 120 Mpc) comes from a variety of changes, chiefly from increasing the input laser
power, adding a squeezed vacuum source at the interferometer output and mitigating
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noise arising from scattered light. Additionally, end test-mass optics with lower-loss
coatings, along with new reaction masses, have been installed in each interferometer.
The Livingston instrument began the run with an average BNS range of 130 Mpc and
the Hanford instrument typically operates with an average range of 110 Mpc.

Fused silica fibers were installed on the AdV test mass suspensions in preparation
for O3. Other improvements included reduction of technical noises, increasing the
input laser power and installation of a squeezed vacuum source. The result was a BNS
range of 50 Mpc at the start of O3.

The KAGRA detector (K;|Somiya|2012;|Aso et al.|2013)) is located at the Kamioka
underground site. The first operation of a detector in an initial configuration with a
simple Michelson interferometer occurred in March 2016 (Akutsu et al.|2018). The
detector is now being upgraded to its baseline design configuration. Initial operation
was made in April-May 2018, in a simple Michelson configuration with a single end
test mass cryogenically cooled to 20 K and the other test mass at room temperature.
Subsequently, all the optical components have been installed and the test masses will
be cryogenically cooled to reduce thermal noise. Early observations may come in
late-2019 — early 2020 with a range of 8 — 25 Mpc; KAGRA intends to join the network
for the latter part of O3. The exact timing of observations has yet to be decided.

2.4 Commissioning and observing roadmap

The anticipated strain sensitivity evolution for aLIGO, AdV and KAGRA is shown in
Fig.[I] In Table 2] we present values of the range for different detector networks and
GW sources (BNSs, BBHs, NSBHs, and unmodelled signals, such as from the core-
collpase of massive star. In previous versions of this paper, an option to optimize the
detector sensitivity for a specific class of astrophysical signals, such as BNS mergers
was discussed. Given the success of the aLIGO and AdV instruments and the approval
of the new upgrades Advanced LIGO Plus (A+) and Advanced Virgo Plus (AdV+),
such an optimization is no longer planned for these instruments.

Assuming that no unexpected obstacles are encountered, the aLIGO detectors are
expected to achieve design sensitivity with a BNS range of 160—190 Mpc in O4. A
configuration upgrade after O3 will increase the range of AdV to 90— 120 Mpc in
0O4. KAGRA is currently intended to participate fully in O4 with a BNS range of
25-130 Mpc. Owing to the cryogenic test mass suspension system, mirror coating
thermal noise is expected to be lower than quantum noise. KAGRA will retain the
option of optimizing the quantum noise by detuning the signal recycling cavity and
significantly improve the BNS range to 155 Mpc.

Upgrading of the existing instruments will enable LIGO and Virgo to increase
their range with respect to the aLIGO and AdV detector design sensitivities. The A+
upgrade to the aLIGO instruments will include higher power, frequency-dependent

4 For details on different models of core-collapse supernovae, GW peak frequency and emitted energy,
and the corresponding search sensitivities see e.g (Abbott et al.|2019c). Based on the majority of the
theoretical expectations, it is unlikely that advanced detectors will be sufficiently sensitive to detect an
extra-galactic core-collapse supernova.
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Table 2 Achieved and projected detector sensitivities for a 1.4 My +1.4 Mz BNS system, a 30 M+30 M,
BBH system, a 1.4M:+10Ms NSBH system, and for an unmodeled burst signal. The quoted ranges
correspond to the orientation-averaged spacetime volumes surveyed per unit detector time. For the burst
ranges, we assume an emitted energy in GWs at 140 Hz of Egw = 1072 Mg c? and of Egw = 107° M2
The later is consistent with the order of magnitude of the energy expected from core-collapse of massive
stars (see footnote EI) Both CBC and burst ranges are obtained using a single-detector SNR threshold of 8.
The O1 and O2 numbers are representative of the best ranges for the LIGO detectors: Hanford in O1 and
Livingston in O2. The O3 numbers for aLIGO and AdV reflect recent average performance of each of the
three detectors. Range intervals are quoted for future observing runs due to uncertainty about the sequence
and impact of upgrades.

(6] 02 03 04 05
BNS Range (Mpc) aLIGO 80 100 110-130 160-190 330
AdV - 30 50 90-120 150-260
KAGRA - - 8-25 25-130 130+
BBH Range (Mpc) aLIGO 740 910 990-1200  1400-1600 2500
AdV - 270 500 860—1100 1300-2100
KAGRA - - 80-260 260-1200 1200+
NSBH Range (Mpc)  aLIGO 140 180 190-240 300-330 590
AdV - 50 90 170-220 270-480
KAGRA - - 15-45 45-290 290+
Burst Range (Mpc) aLIGO 50 60 80-90 110-120 210
[Egw = 1072 M5 c2] AdV - 25 35 65-80 100-155
KAGRA - - 5-25 25-95 95+
Burst Range (kpc) aLIGO 15 20 25-30 35-40 70
[Egw = 1079 Mz 2] AdV - 10 10 20-25 35-50
KAGRA - - 0-10 10-30 30+

squeezing and, crucially, new test masses with improved coating thermal noise. Facil-
ities modifications to incorporate the filter cavity required for frequency-dependent
squeezing will begin after O3. The full A+ configuration, adding improved test masses
and balanced homodyne readout, is expected to be in place for O5. The AdV+ upgrade
will occur in two phases. Phase 1 installation will begin after O3 and will involve
adding signal recycling, frequency-dependent squeezing, higher input laser power (to
50 W from 20 W currently) and cancellation of Newtonian noise. Phase 2 will be
implemented between O4 and O5 and will include input laser power increase to 200
W, 100 kg test masses and better optical coatings. Discussion of upgrades to increase
the sensitivity of KAGRA in advance of O5 have begun, but the detailed plan and
expected sensitivity are still being formulated.

The original aLIGO design called for three identical 4-km interferometers, two at
Hanford and one at Livingston. In 2011, the LIGO Lab and the IndIGdﬂ consortium
in India proposed installing one of the aLIGO Hanford detectors at a new observatory
in India (LIGO-India; Iyer et al.|2011). In early 2015, the LIGO Laboratory placed
this interferometer in long-term storage for use in India. The Government of India
granted in-principle approval to LIGO-India in February 2016. This detector will be

Swww.gw-indigo.org
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configured, including upgrades, identically to the other LIGO instruments. Operation
is anticipated in 2025.

GEO 600 (Liick et al.[2010; |Dooley et al.|2016) will continue to operate as a GW
detector beyond O3 as techniques for improving the sensitivity at high frequency are
investigated (Affeldt et al.[2014). At its current sensitivity, it is unlikely to contribute
to detections. By around 2021 with a deliberate focus on high frequency narrow-band
sensitivity at a few kilohertz, GEO 600 may contribute to the understanding of BNS
merger physics, as well as sky localization for such systems. In the meantime, it will
continue observing with frequent commissioning and instrument science investigations
related to detuned signal recycling and novel applications of squeezed light, as well as
increasing the circulating power and levels of applied squeezing (Abadie et al.[2011a;
Grote et al.[|2013;|Aasi et al.[2013a;|Brown et al.[[2017).

Third-generation observatories, such as, the Einstein Telescopeﬂ (Punturo et al.
2010) or Cosmic Explorelﬂ (Abbott et al.[[2017d), are envisioned in the future. It is
also possible that for some sources, there could be multiband GW observations. The
space-borne Laser Interferometer Space Antenna (LISA (Amaro-Seoane et al.[2017)
could provide early warning and sky localization (Sesanal2016), as well as additional
information on system parameters (Vitale|2016)), formation mechanisms (Nishizawa
et al.[2016alb; Breivik et al.[2016) and tests of general relativity (Barausse et al.|[2016).
These future observatories are beyond the scope of this paper.

2.5 Envisioned Observing Schedule

Keeping in mind the important caveats about commissioning affecting the scheduling
and length of observing runs, the following are plausible scenarios for the operation
of the ground-based GW detector network over the next decade:

2019-2020 (03): A year-long run (started April 1, 2019) with the aLLIGO detec-
tors at 110—130 Mpc and AdV at 50 Mpc. KAGRA plans to join for the latter part
of the run with a range of 8 —25 Mpc. A one-month commissioning break for the
LIGO and Virgo instruments is scheduled to begin October 1, 2019. To preserve
the 12 month O3 observing period, the end date for O3 is now planned to be April
30, 2020. Possible extensions of the run will be limited so that O3 will end no later
than June 30, 2020.

Late 2021/Early 2022 - Late 2022/Early 2023 (0O4): A four-detector network
with the two aLIGO instruments at 160—190 Mpc; Phase 1 of AdV+ at 90—
120 Mpc and KAGRA at 25— 130 Mpc. The projected sensitivities and precise
dates of this run are now being actively planned and remain fluid.

Late 2024/Early 2025 -2026 (O5): O5 will begin with a four-detector network
incorporating the A+ upgrade for the aLIGO instruments and the AdV+ Phase
2 upgrade for Virgo. The target range for aLIGO is 330 Mpc and for AdV it is
150-260 Mpc. KAGRA will operate at or above its O4 sensitivity of 130 Mpc.

Swww.et- gw.eu
7
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Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with achieved sensitivities in O1, O2 and
03, and the expected sensitivities given by the data in Fig.[T]for future runs. There is significant uncertainty
in the start and end times of the planned observing runs, especially for those further in the future, and
these could move forward or backwards relative to what is shown above. Uncertainty in start or finish
dates is represented by shading. The break between O3 and O4 will last at least 18 months. O3 is expected
to finish by June 30, 2020 at the latest. The O4 run is planned to last for one calendar year. We indicate
arange of potential sensitivities for aLIGO during O4 depending on which upgrades and improvements
are made after O3. The most significant driver of the aLIGO range in O4 is from the implementation of
frequency-dependent squeezing. The observing plan is summarised in Sect. |Z5|

2025+ : With the addition of an upgraded aLLIGO interferometer in India we will
have a five-detector network: three aLIGO detectors with a design sensitivity of
330 Mpc, AdV at 150-260 Mpc and KAGRA at 130+ Mpc.

This timeline is summarized in Fig. Detailed planning for the post-O3 period
is in progress and may result in significant changes to both target sensitivities and
uncertainty in the start and end times of the planned observing runs, especially for those
further in the future. As the network grows to include more detectors, sky localization
will improve (Klimenko et al.|201 1} |Veitch et al.[2012; Nissanke et al.|2013;|Rodriguez
et al|2014; [Pankow et al[2018), as will the fraction of observational time with multiple
instruments on-sky. The observational implications of these scenarios are discussed in
Section

3 Searches and localization of gravitational-wave transients
Data from GW detectors are searched for many types of possible signals (Abbott

et al.|[2018f). Here we focus on signals from CBCs, including BNS, NSBH and BBH
systems and generic unmodeled transient signals.

9GEO 600 will continue observing with frequent commissioning breaks during this period.
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Observational results of searches for transient signals are reported in detail else-
where (Abbott et al|[2016elc, [20171| [2016k| 2017b}, 2016p| [2017klflelhl [2018dla). The
O1 and O2 results include ten clear detections originating from BBH coalescences
and GW 170817 which is the first detection of a BNS coalescence (Abbott et al.[2018d,
20171). The public release of the LIGO and Virgo data allows researchers to perform
independent analyses of the GW data. Some of these analyses report a few additional
significant BBH event candidates (Zackay et al.[2019} |Venumadhav et al.|2019blja)).
No other type of transient source has been identified during O1 and O2 (Abbott et al.
2016p}, 2017bll1, [2018d).

Using the observation of GW 170817, we estimate a BNS event rate of 110 — 3840
Gpc 3 yr~! (Abbott et al.[2018d). This rate is obtained by combining the results over
different search pipelines and two different astrophysical populations, which assume
a uniform mass distribution in the 1My — 2M, range for the NSs, and a Gaussian
mass distribution (Ozel and Freire|2016)) centered at 1.33M., with a standard deviation
of 0.09M . Compatible estimates for the merger rate were derived from the rate of
electromagnetic transients similar to the counterpart of GW170817 (Siebert et al.[2017;
Kasliwal et al.|2017; Smartt et al.|2017; Yang et al.[[2017; Zhang et al.|2018)). Rate
estimation based upon astrophysical population models and observations of Galactic
BNS systems remains an active area of research. The BNS merger rate inferred from
O1 and O2 is close to the most optimistic values predicted by current astrophysical
population models (e.g.,|/Abadie et al.|2010b; [Kim et al.[2013; [Dominik et al.[2015};
Vangioni et al.|2016; de Mink and Belczynski|2015; [Eldridge et al.|2017; Belczynski
et al.|2017; Kruckow et al.|2018}; [Mapelli and Giacobbo|[2018; /Giacobbo and Mapelli
2018} Barrett et al.|2018}; |Klencki et al.|2018}; [Spera et al.[|2019; Pol et al.||2019;
Chruslinska et al.[2019; Eldridge et al.|2019; |Artale et al.[2019).

From the observations of BBHs during O1 and O2, we infer that their rate of
mergers is 9.7 — 101 Gpc—3yr~—! (Abbott et al.[2018d). This rate combines results
from different search pipelines and two astrophysical populations; a population of
BBHs with primary mass following a power law distribution of index o¢ = —2.3, and
a population of BBHs with primary mass distribution uniform in the log. For both
populations, masses are cut off at a lower mass of 5M, and at a maximum mass
of 50M, (Abbott et al.|2018c|d). Using a power law mass distribution with flexible
values for the power law index, and the minimum and maximum masses (Model B
in |Abbott et al.|2018c), the BBH rate is estimated to be 25 — 109 Gpc’3 yr’l. The
non-detection of NSBHs in O1 and O2 allows us to place a 90% upper limit of the
merger rate of 610 Gpc~3yr~! (Abbott et al.[2018d).

For the purpose of detection, the gravitational waveform from the inspiral phase
of a BNS coalescence is well modeled and matched filtering can be used to search for
signals (Lindblom et al.[2008}; Buonanno et al.|2009; [Brown et al.[2012; Read et al.
2013; |Abbott et al.|2016e} |[Harry et al.|2016). For systems containing black holes, or
in which the component spin is significant, uncertainties in the waveform model can
reduce the sensitivity of the search (Nitz et al.[2013; Harry et al.[2014; Taracchini et al.
2014; [Pan et al.|2014; |Dal Canton et al.|2015; Schmidt et al.[2015; |[Khan et al.|2016}
Bustillo et al.[2017).

Searches for unmodeled transients make few assumptions on the signal mor-
phology, using time—frequency decompositions to identify statistically significant
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excess-power transients in the data. The search for these transients focuses mainly
on short-duration signals (< 1 s), but is also used for much longer signals (Abbott
et al.|2019a)). Their astrophysical targets include core-collapse supernovae, magnetar
flares, BNS post-merger remnants, and as-yet-unknown systems (e.g., Klimenko et al.
2008} Sutton et al.|[2010; (Chassande-Mottin et al.[|[2010; Thrane et al.[2011; |/Adams
et al.[2013; Thrane and Coughlin|/2013; |Cornish and Littenberg|[2015}; Thrane et al.
2015 |[Kanner et al.|[2016). Expected detection rates for these transient sources are
lower and/or less well constrained than CBCs. The burst search is complementary to
the CBC search for BBH coalescences. It spans a larger parameter space with good
efficiency to search for non-standard-BBHs, possible non-GR events, BBHs with
eccentricity larger than 0.2, high-mass BBH systems, and intermediate mass black
hole binaries (IMBHBs; |Abadie et al.|2012¢}; |Aasi et al.|[2014a; |Abbott et al.[[20171,
2019elf). The search for short-duration gravitational-wave transients includes also the
cosmic string cusps for which the waveform is well-modeled, and a matched-filter
search is performed (Abbott et al.|2019b| |2018b)).

During the observing runs, CBC and unmodeled searches are carried out in near
real-time to rapidly identify event candidates and deliver prompt notice of potential
GW transients enabling follow-up observations in the electromagnetic spectrum. In-
creased detection confidence, improved sky localization, identification of a host galaxy,
and the source redshift are just some of the benefits of joint GW—electromagnetic
observations. Here, we focus on two points of particular relevance for the rapid detec-
tion of GW transients and for the follow-up of candidate GW events: the GW signal
significance and the source localization afforded by a GW detector network.

3.1 Detection and false alarm rates

Detection pipelines search the data looking for signal-like features. Candidate trig-
gers flagged by a pipeline are assigned a detection statistic to quantify how signal-
like they are. For CBC searches, this involves matching a bank of waveform tem-
plates (Sathyaprakash and Dhurandhar|1991} |Owen|1996; |Owen and Sathyaprakash
1999; Babak et al.|2006} (Cokelaer|2007} [Prix|2007; Harry et al.[2009; |Ajith et al.[2014;
Brown et al.|2012; |Capano et al.|2016; Dal Canton and Harry|2017)) to the data (Abbott
et al.|2016elc); for unmodeled searches, requirements on waveform morphology are
relaxed, but coherence of the signal in multiple detectors is required (Abbott et al.
2016k} 2017b). A detection statistic is used to rank candidates; we assess significance
by comparing results with those from an estimated background distribution of noise
triggers. It is difficult to theoretically model the behaviour of non-Gaussian noise, and
therefore the distribution must be estimated from the data (Abadie et al.[2010a; Babak:
et al.[2013}|Abadie et al.|2012a; Abbott et al.|2016b; (Capano et al.|2017; |Messick et al.
2017; |Abbott et al.|2016elclkl |2017bj |Nitz et al.|2017). From the background noise
distribution we can map a value of the detection statistic to a false alarm rate (FAR),
the expected rate of triggers with detection statistics equal to or greater than that
value, assuming that the data contain no signals. While each pipeline has its own
detection statistic, they all compute a FAR. The FAR, combined with the observation
time, may then be used to calculate a p-value, the probability of there being at least
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one noise trigger with a FAR this low or lower in the observed time. The smaller the
FAR or p-value of a trigger, the more significant it is, and the more likely that it is of
astrophysical origin.
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Fig. 3 Cumulative histograms of triggers obtained by the offline searches plotted versus the IFAR. The
top panel shows results for the matched-filter searches; on the left the PyCBC (Dal Canton et al.|2014b
[Usman et alJ2016)) search pipeline, and on the right the GstLAL (Cannon et al.J2012} [Privitera et al.|2014
Messick et al. 2017 [Sachdev et al.|2019) search pipeline. The bottom panels show unmodeled searches
performed by the cWB (Klimenko et al.|2016}[2008)) pipeline; on the left looking for stellar-mass BBHs
mergers, and on the right for generic transients. The dashed lines show the expected background, given
the analysis time. Shaded regions denote the sigma uncertainty bounds for the Poisson statistic. The blue
dots are the confident GW events found by each search. Any events with a measured or bounded inverse
false alarm rate greater than 3000 yrs are shown with a right pointing arrow. The values of the FARs of the

confident events can be found in[Abbott et al| (2018d), [Abbott et al.| 2019b), and [Abbott et al.| (20170).

The p-value is distinct from the probability that a trigger is a real astrophysical
GW signal, which we indicate as pagro. The p-value assumes that the data contain
no signals, whereas the probability of there being a GW must include the hypothesis
that there is an astrophysical signal. Thus, to calculate p,y;, requires an extra layer of
inference, folding in both our knowledge of trigger distribution, assumptions about
signal distribution (such as that sources are uniformly distributed in volume), and
knowledge and assumptions about merger rate per unit volume for each class of
sources. A method to evaluate pagyo is described in[Abbott et al.| (20160|nlc, 2018d);
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Kapadia et al.|(2019). The p,suo 1S given in the public GW alerts (see Sect. . Details
on how it is evaluated in low-latency are given in the the LIGO/Virgo Public Alerts
User Guide[™]

The rate of noise triggers above a given detection statistic depends critically upon
the data quality of the advanced detectors; non-stationary transients or glitches (Aasi
et al.|2012} 2015bj |Abbott et al.|2016d;|Dal Canton et al.|[2014a)) produce an elevated
background of loud triggers. Over 200,000 auxiliary channels record data on instru-
mental and environmental conditions (Effler et al.|[2015;|Abbott et al.|2016d). These
channels act as witnesses to disturbances that may couple into the GW channel (Berger|
2018} (Walker et al.|2018; |Covas et al.|2018; |Zevin et al.[2017). However, it is not
always possible to identify what produces certain glitches. An intensive study of the
quality of the data is used to veto stretches ranging from seconds to hours in dura-
tion (Nuttall et al.|2015). When a significant problem with the data is identified or a
known instrumental issue affects the searches’ background, the contaminated data are
removed from the analysis data set. Our experience to date is that this removes a small
percentage of the data. For CBC searches, the waveforms are well modeled, and signal
consistency tests reduce the background significantly (Allen|2005} Cannon et al.[2015;
Usman et al.[2016). For burst sources which are not well modeled, or which spend
only a short time in the detectors’ sensitive band, it is more difficult to distinguish
between the signal and a glitch. Consequently a reduction of the FAR threshold comes
at a higher cost in terms of reduced detection efficiency.

Search pipelines are run both online, analysing data as soon as they are available in
order to provide low-latency alerts of interesting triggers, and offline, taking advantage
of improved calibration of the data and additional information regarding data quality.
In Fig. [3] we show the results of the offline transient searches performed during O1
and O2. In each plot we show the observed distribution of events as a function of
IFAR, as well as the expected background for the analysis. The FAR of the eleven
confident gravitational wave detections are reported in the GWTC-1 catalog (Abbott
et al.[2018d) and (Abbott et al.|2019b)). Full strain data from O1 and O2, as well as
auxiliary data for GW events and software to analyze GW data, are publicly available
from the LIGO and Virgo Gravitational Wave Open Science Cente (Vallisneri et al.
2015)). Publication of a GW event is accompanied by the release of strain data around
the time of that event. Data from O3 and subsequent runs will be available at the same
location (Anderson and Williams|2017).

3.2 Localization

Following the detection of a GW transient, posterior probability distributions for the
position are constructed following a Bayesian framework (Veitch et al.|2015; /Cornish
and Littenberg|2015; [Singer and Price|2016; |Abbott et al.[2016l), with information for
the sky localization coming from the time of arrival, plus the phase and amplitude of
the GW signal.

10The User Guide is available at emfollow.docs.ligo.org/userguide/

Hwww.gw-openscience.org


https://emfollow.docs.ligo.org/userguide/
https://www.gw-openscience.org

Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 17

An intuitive understanding of localization can be gained by considering triangula-
tion using the observed time delays between sites (Fairhurst|2009, 2011). The effective
single-site timing accuracy is approximately

o — 1
t — o7 pr ’

2

where p is the SNR in the given detector and oy is the effective bandwidth of the
signal in the detector, typically of order 100 Hz. Thus a typical timing accuracy is
on the order of 10* s (about 1/100 of the typical light travel time between sites,
which is of order 10 ms). This sets the localization scale. The simple model of Eq. (2)
ignores many other relevant issues such as information from the signal amplitudes and
phases across the detector network, uncertainty in the emitted gravitational waveform,
and instrumental calibration accuracies. The source sky location of CBC signals is
currently evaluated by introducing the requirement of phase and amplitude consistency
between detectors (Grover et al.|2014} |Fairhurst|2017). A Bayesian inference algorithm
constructs posterior probability distributions for the system parameters — location,
mass, distance, orientation, etc. — by matching GW models to the detector strain (Cutler
and Flanagan||1994; Rover et al.|2007bja; [Fairhurst|[2009; | Vitale and Zanolin|2011}
Vitale et al. [2012; [Nissanke et al.| 2011} |Veitch et al.|[2012; Nissanke et al.|[2013;
Jaranowski and Krolak|2012; |Aasi et al.|2013b; Singer et al.[2014; Berry et al.|[2015;
Singer and Price|2016; |Abbott et al.|2017c}; |[Fairhurst[2017).

Source localization using only timing for a two-site network yields an annulus
on the sky; see Fig. ] Adding the signal amplitude and phase (and also precession
effects) resolve this to only parts of the annulus. However, even then sources will be
localized to regions of hundreds to thousands of square degrees (Singer et al.|2014;
Berry et al.|2015)).

For three detectors, the time delays restrict the source to two sky regions which
are mirror images with respect to the plane passing through the three sites. Requiring
consistent amplitudes and phase in all the detectors typically eliminates one of these
regions (Fairhurst2017). This typically yields regions with areas of several tens to
hundreds of square degrees. If there is a significant difference in sensitivity between
detectors, the source is less well localized and we may be left with the majority of the
annulus on the sky determined by the two most sensitive detectors. With four or more
detectors, timing information alone is sufficient to localize to a single sky region, and
the additional baselines help to localize within regions smaller than ten square degrees
for some signals.

From Eq. (2), it follows that the linear size of the localization ellipse scales
inversely with the SNR of the signal and the frequency bandwidth of the signal in
the detector (Berry et al.|2015). For GWs that sweep across the band of the detector,
such as CBC signals, the effective bandwidth is ~ 100 Hz. Higher mass CBC systems
merge at lower frequencies and so have a smaller effective bandwidth. For burst
signals, the bandwidth 6 depends on the specific signal. For example, GWs emitted
by various processes in core-collapse supernovae are anticipated to have relatively
large bandwidths, between 150 Hz and 500 Hz (Dimmelmeier et al.|2008}; (Ott|2009;
Yakunin et al.|2010; (Ott et al.[[2011). By contrast, the sky localization region for
narrowband burst signals may consist of multiple disconnected regions and exhibit
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Fig. 4 Source localization by timing triangulation for the aLIGO-AdV-KAGRA network. The locations of
the four detectors are indicated by black dots, with LIGO Hanford labeled H, LIGO Livingston as L, Virgo
as V and KAGRA as K. The locus of constant time delay (with associated timing uncertainty) between
two detectors forms an annulus on the sky concentric about the baseline between the two sites (labeled by
the two detectors). For clarity we omit the HK and LV combinations. For four or more detectors there is a
unique intersection region, S. Figure adapted from|Chatterji et al.|(2006)

fringing features; see, for example, Klimenko et al.| (2011)); Abadie et al.| (2012c));
Essick et al.[(2015)).

The sky localization of GW events confidently detected during O1 and O2 and
sent in low-latency is shown in the top plot of Fig.[5] The refined sky localization
obtained offline by the parameter estimation analysis is shown in the bottom plot of
the same figure. The offline analyses exploit refined instrumental calibration, noise
subtraction, updated estimates of the amplitude power spectral density, and extended
template banks (Abbott et al.[2018d, [2019d). The plots show that even if the posterior
probability is primarily distributed along a ring, the ring is broken into disconnected
components determined by the sensitivity of the individual detectors. The events
detected by the two LIGO interferometers show the expected trend of the sky area
to scale inversely with the square of the SNR (Abbott et al.|[2018d). Five of the 11
confident events were observed with the three-site HLV network (see Table[3). The
Virgo data were used to estimate the low-latency sky localization for two events
(GW170814 and GW170817). With the contribution from the third detector we were
able to significantly shrink the localization to areas covering a few tens of square
degrees (see GW 170814, GW170817, GW170718).

In addition to localizing sources on the sky, it is possible to provide distance
estimates for CBC signals since the waveform amplitude is inversely proportional
to the luminosity distance (Veitch et al.||2015; |Abbott et al.|[2016l). Uncertainty in



Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 19

GW170608

bios o S

[ W 8
GW170817-HLV g re00

5000
GW170814-HLV

o y

GW150914 __

GW170818-HLV

" GW170608

08:00 06:00 04:00 0200

817-HLV GW170809-HLV

GW170729 ¢ GW170814-HLV

HLV

GW150914

Fig. 5 Sky locations of GW events confidently detected in O1 and O2. Top panel: initial sky location
released in low-latency to the astronomers (Abbott et al.2016i; |LIGO Scientific Collaboration and Virgo|
[ColTaboration|2015} [Abbott et alJ2019d). Bottom panel: refined sky location including updated calibration
and final choice of waveform models (Abbott et all|[2018d). Three events (GW151012, GW 170729,
GW170818) among the 11 confidetent detections were identified offline, and were not shared in low-latency.
The shaded areas enclose the 90% credible regions of the posterior probability sky areas in a Mollweide
projection. The inner lines enclose regions starting from the 10% credible area with the color scheme
changing with every 10% increase in confidence level. The localization is shown in equatorial coordinates
(right ascension in hours, and declination in degrees). The HLV label indicates events for which both the
LIGO and Virgo data were used to estimate the sky location

distance measurement is dominated by the degeneracy with the inclination of the
binary, which also determines the signal amplitude (Cutler and Flanaganl[1994; Rover|
et al[2007a}; [Nissanke et al.|2010; [Aasi et al|2013b). The degeneracy could be broken
by observing with more non-co-aligned detectors (Veitch et al.|2012; |[Rodriguez et al.|

2014), or if precession of the orbital plane is observed (Vecchio|2004; [van der Sluys
et al[2008}; [Vitale et al.[2014)), but this is not expected for slowly spinning BNS
let al.|2016). Distance information can further aid the hunt for counterparts, particularly

if the localization can be used together with galaxy catalogs (Abadie et al.|2012c}
[Nissanke et al.[2013} [Hanna et al.[2014; [Fan et al.2014; [Blackburn et al.|2015}; [Singer|

et al|[2016a; [Del Pozzo et al|[2018). Table [3] reports the low-latency and refined
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Table 3 Luminosity distance d;, and sky localization AQ for the eleven confident signals detected during
O1 and O2. The distances are given as median value with 90% credible intervals, and the sky localizations
as the 90% credible areas. For event detected in low-latency columns 2 and 3 show the initial source
parameters, which were obtained by the on-line analysis (Abbott et al.|2019d). Columns 5 and 6 show the
source parameter obtained by the offline refined analysis (Abbott et al.|2018d). The IFOs columns indicate
the detector data used for the parameter estimation. All the initial sky maps were produced by BAYESTAR,
except GW 150914, which was detected in low-latency by the unmodeled search cWB (Abbott et al.|20161).
The final refined sky maps are produced by LALINFERENCE. Details about localization pipelines are given
in Sect.[3.2.1]and[3.2.2} GW151012, GW170729, GW 170818 were identified offline, and were not shared
in low-latency. The distance of GW 150914 and of GW 151226 were not shared in low-latency following the
policy applied in O1. In contrast to the median luminosity distances listed here, the sky map headers(see
footnote[T2) list the posterior mean and standard deviation.

Low-latency analyisis Refined analysis

Event dr(Mpc) AQ(deg?) IFOs dp(Mpc) AQ(deg?) IFOs
GW150914 — 307 HL 440713 182 HL
GW151012 — — — 10807339 1523 HL
GW151226 — 1337 HL  4907}% 1033 HL
GW170104 7307330 1632 HL 990733 921 HL
GW170608 310729 864 HL  3200% 392 HL
GW170729 — — —  28401}4% 1041 HLV
GW170809 10801320 1155 HL 1030732 308 HLV
GW170814 480719 97 HLV  600%330 87 HLV
GW170817 4019 31 HLV 407, 16 HLV
GW170818 — — — 1060753 39 HLV
GW170823 1380179 2145 HL 19407900 1666 HL

estimates for the luminosity distance and the sky localization (90% credible region) of
the eleven confident signals detected during O1 and 02[1—_21

Some GW searches are triggered by electromagnetic observations, and in these
cases initial localization information is typically available a priori. For example, in
GW searches triggered by gamma-ray bursts (Abadie et al.|2012d; |Aasi et al.|2014dlc;
Abbott et al.[2017k), the triggering space-based telescope provides a localization. The
rapid identification of a GW counterpart to such a trigger will prompt longer and
deeper follow-up in different wavelengths that may not always be done in response
to gamma-ray bursts (cf. |Abbott et al.|[2017j). This is particularly important for
gamma-ray bursts with larger sky localization uncertainties, such as those reported
by Fermi-GBM (Meegan et al.|2009), which are not followed up as frequently as
the bursts reported by the Neil Gehrels Swift Observatory (Gehrels et al.|2004) or
Fermi-LAT (Atwood et al.|2009), which provide good sky localization. In the case
of GW170817, the LIGO-Virgo localization was tighter than the localization from
Fermi-GBM and INTEGRAL (Abbott et al.|[2017¢;|Goldstein et al.[2017a; |[Savchenko

12 The initial sky maps are available from dcc.ligo.org/public/0160/P1900170/001/01_02 LowLatency_Skymaps.zip)
and the refined sky maps from dcc.ligo.org/LIGO-P1800381/public, respectively.
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https://dcc.ligo.org/LIGO-P1800381/public
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et al.[2017a) and showed that the source was nearby (40f? 4 Mpc; |Abbott et al.[2017i),
making it a prime target for further follow-up. Other possible targets for externally-
triggered GW searches are electromagnetic or neutrino emission from core-collapse
supernovae (e.g.,/Abbott et al.[2016a), soft-gamma ray repeaters and pulsar glitches
(Abadie et al.|[2008], 201 1b; |Lasky| 2015} |/Abbott et al.[2019g). All GW data are stored
permanently, so that it is possible to perform retroactive analyses at any time.

3.2.1 Localization for compact binary coalescences

Providing prompt localizations for GW signals helps to maximise the chance that
electromagnetic observatories can find a counterpart. Localizations are produced at
several different latencies, with updates coming from more computationally expensive
algorithms that refine our understanding of the source.

For CBC signals, rapid localization is performed using BAYESTAR (Singer and
Price|[2016)), a Bayesian parameter-estimation code that computes source location
using output from the detection pipeline. BAYESTAR produces sky localizations (as
in Fig. [5] top plot) with latencies of only a few seconds. It also provides distance
estimates (Singer et al.|2016a). These are communicated as an additional component
of the sky localization (3D sky map): for each line of sight, the distance posterior
probability is approximated as a Gaussian multiplied by the distance squared (Singer|
et al. 2016a,b)E] Results from BAYESTAR are shared in low latency for prompt
electromagnetic/neutrino follow-up.

At higher latency, the CBC parameter estimation is performed using the Bayesian
inference algorithms of LALINFERENCE (Veitch et al.|[2015)), which constructs pos-
terior probability distributions for the system parameters, and not just location like
BAYESTAR. Computing waveforms for a large number of source parameters is compu-
tationally expensive; this expense increases as the detectors’ low-frequency sensitivity
improves and waveforms must be computed down to lower frequencies. The quickest
LALINFERENCE binary system coalescence follow-up is computed using waveforms
that do not include the full effects of component spins (Singer et al.|[2014} Berry
et al.[2015; |Abbott et al.|2017f)). Localizations are reported with latency of hours to a
couple of days. Parameter estimation is then performed using more accurate waveform
approximants, those that include full effects of spin precession and the effects of tidal
distortions of neutron stars (Farr et al.|2016; |Abbott et al.|2016h, [20171}1). Provided
that BNSs are slowly spinning (Mandel and O’ Shaughnessy|[2010), the restrictions on
the spins should cause negligible difference between the mid-latency LALINFERENCE
and the high-latency fully spinning LALINFERENCE localizations (Farr et al.|2016).
Methods of reducing the computational cost are actively being investigated (e.g.,
Canizares et al.[|2013} [Purrer|2014; |Canizares et al.[[2015F Smith et al.|2016; [Vin-
ciguerra et al.[[2017). Parameter estimation through Bayesian inference is an active
field of research and new algorithms are currently being considered (Ashton et al.
2019).

Differences between the BAYESTAR and LALINFERENCE localizations are ex-
pected to be negligible, except in the case of strong precession of the binary sys-

13A data release of example three-dimension localizations in this format, constructed using results from
BAYESTAR and LALINFERENCE for BNS signals, is available from dcc.ligo.org/P150007 1/public/html.
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tem (Farr et al.|2016), because BAYESTAR uses the maximum likelihood template
from the low-latency detection pipelines which do not currently include precession.
Differences among the low- and mid-latency sky maps are possible as improvements
are made in the handling of data calibration and the characterisation of the noise.
Significant shifts and shape changes of the sky maps, such as for GW170814 (Abbott
et al.[2019d), are expected only in the case of problems in the data calibration, data
quality or glitch treatment.

Fig.[6] shows the expectations for the sky localization of astrophysically motivated
populations of BNS, NSBH, and BBH signals during O3 and O4. For O3, we consider
two scenarios; the HLV network, and the HLVK network, which is expected to be
operational in the latter half of the run. For O4, we consider only the HLVK network.
We assume a source to be detected if it has SNR larger than 4 in at least two detectors
and a network SNR larger than 12{131 We use: 1) a population of BNSs with component
masses drawn from a Gaussian distribution with mean 1.33 and standard deviation
0.09, and spins aligned or anti-aligned with uniformly distributed magnitudes smaller
than 0.05; 2) a population of BBHs with the primary masses distributed as a power-law
with index of ¢ = —2.3, mass range 5—-50M,, and spins aligned or anti-aligned, and
3) a NSBH population with the mass and spin distributions described for the BNSs
and BBHs. The merger rate density is assumed constant in the comoving frame. The
results of our simulation are quantified using the GW signal sky-localization area,
luminosity distance, and comoving volume. Sky-localization area (volume) is given as
the 90% credible region, defined as the smallest area (volume) enclosing 90% of the
total posterior probability. This coresponds to the area (volume) of the sky that must
be covered to have a 90% chance of including the source.

During O3 the expected four-detector localizations are only slightly better than
the three-detector ones (the median 90% credible area is reduced by about 30%). This
is due to the limited sensitivity of KAGRA with respect to the other detectors, which
only significantly improves the localization of loud signals. A large improvement of
the localization capability is shown for O4, where the expanded network of detectors
is accompanied by higher sensitivies. The 90% credible regions for the area and the
volume as well as the predictions for the number of expected detections are shown in
TableBland discussed further in Sections 5.1]and[5.21

LALINFERENCE has the ability to include the effects of the detectors’ calibra-
tion uncertainty on parameter estimation (Abbott et al.|2016llc)). Initial results for
GW150914 assumed a calibration uncertainty of 10% for the amplitude of the GW
strain and 10 deg for its phase (Abbott et al|2017c). Incorporating this calibration
uncertainty into the analysis, the 90% credible area was 610 deg2 (Abbott et al.[20161).
By the end of Ol1, the calibration uncertainty had been improved, such that the 90%
credible area was 230 deg2 (Abbott et al.|2016c¢). If the detectors were assumed to
be perfectly calibrated, such that calibration uncertainty could be ignored, the 90%
credible area would be 150 deg®. The sky localization is particularly sensitive to
calibration uncertainty, while distance is less affected. For GW 150914, the initial

distance estimate was 410f{§8 Mpc (Abbott et al.||2016l), the estimate at the end of

14Using the SNR threshold of 12 is a conservative choice. Some of the GW events detected in O1 and
02 have a network SNR smaller than 12 (Abbott et al.|2018d).
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Fig. 6 Anticipated GW sky localization for CBC signals during the third and fourth runs (for O3, see
Sect. @ and for O4, see Sect. . For O3, the detector sensitivities were taken to be representative
of the first three months of observations for aLIGO Hanford and Livingston, and AdV, and the highest
expected O3 sensitivity for KAGRA (see Fig. EI) For O4, the detector sensitivities were taken to be the
target sensitivities for aLIGO and AdV, and the mid of the interval expected for KAGRA during O4. Top:
The plot shows the cumulative fractions of events with sky-localization area smaller than the abscissa value.
Central: The plot shows the cumulative fractions of events with luminosity distance smaller than the abscissa
value. Bottom: The plot shows the cumulative fractions of events with comoving volume smaller than the
abscissa value. Sky-localization area (comoving volume) is given as the 90% credible region, the smallest
area (comoving volume) enclosing 90% of the total posterior probability. Results are obtained using the
low-latency BAYESTAR pipeline (Singer and Price]2016). The simulation accounts for an independent 70%
duty cycle for each detector, and the different sensitivity of each sub-network or network of detectors. For
03, all the combinations of sub-networks of two operating detectors and the three detector network (HLV)
are included in the blue lines. All the combinations of sub-networks of two and three operating detectors,
and the four detector network (HLVK) are included in the orange lines for O3 and in the green lines for O4.
The O3 HLV and the O3 HLVK curves in the central panel are very similar due to the modest contribution
by KAGRA to the network SNR. Solid lines represent BNSs, dashed lines NSBHs, dotted lines BBHs. As
a comparison, the plots show the area, distance and volume of GW 170817 and GW 170818, which are the
best localized BNS and BBH signals during O1 and O2
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the run was 420f{§8 Mpc, and the equivalent result without calibration uncertainty

was 420f{‘7‘8 Mpc (Abbott et al.|[2016c)). The effects of calibration uncertainty de-
pend upon the signal’s SNR, bandwidth and the position of the source relative to the
detectors. For example, for GW151226, GW151012 and GW 170104, there is negligi-
ble difference between the sky areas or distances with and without final calibration
uncertainties (Abbott et al.[2016c, 20171).

The targets for O3 on the calibration uncertainties are < 3% for the amplitude of
the GW strain and < 2 deg for its phase at 68% confidence interval, from 20 - 1024
Hz. This includes a site-to-site timing uncertainty of ~ 1us. This information is folded
into the parameter estimation of CBC candidate events over which the uncertainties
are marginalized. The current techniques for this marginalization are discussed in [Farr
et al.[|(2015)).

3.2.2 Localization for unmodeled signals

Sky localizations are also produced for unmodeled triggers and distributed for follow
up. The lowest latency sky localizations are produced as part of the COHERENT WAVE
BURST (CWB) detection pipeline (Klimenko et al.[2008} 2016). Sky localizations are
produced using a constrained likelihood algorithm that coherently combines data from
all the detectors. The cWB sky localizations are calculated with a latency of a few
minutes.

Following detection, an unmodeled burst signal is analyzed by parameter-estimation
codes: LALINFERENCEBURST (LIB), a stochastic sampling algorithm similar to
the LALINFERENCE code used to reconstruct CBC signals (Veitch et al.|2015), and
BAYESWAVE, a reversible jump Markov-chain Monte Carlo algorithm that models
both signals and glitches (Cornish and Littenberg|2015)). LIB uses sine—Gaussian wave-
forms (in place of the CBC templates used by LALINFERENCE), and can produce sky
localizations in a few hours. BAYESWAVE uses a variable number of sine—Gaussian
wavelets to model the signal and the glitches while also fitting for the noise spectrum
using BAYESLINE (Littenberg and Cornish|[2015); it produces sky localizations with a
latency of minutes.

The sky-localization performance of unmodeled algorithms depends upon the
type of signal. Studies of burst localization using BAYESWAVE in the first year of
the advanced-detector era, and using cWB and LIB in the first two years have been
completed in|Bécsy et al.|(2017) and [Essick et al.|(2015)), respectively. These works
show results for a variety of waveform morphologies that could be detected in a burst
search (Abadie et al.|2012c)): Gaussian, sine—~Gaussian, broadband white-noise and
BBH waveforms.

We present sky localization results obtained by cWB for two astrophysically
motivated populations, which are expected to emit signals detectable by burst searches:
the mergers of BBHs and the mergers of IMBHBs. We assume a population of BBHs
with total mass less than 100 M., distribution of the primary mass uniform in the log,
component masses in the 5—50 M., range, and isotropic distribution of the spin. The
population of IMBHBs is composed of black holes of individual mass 100 M, and
with spins aligned with the binary orbital angular momentum. To search for these
signals cWB identifies regions of excess power in the time-frequency representation
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Fig. 7 Simulated sky localization for unmodeled searches for mergers of BBHs and mergers of IMBHBs.
The simulation uses a population of BBHs with the distribution of the primary mass uniform in the log,
component masses in the 5—50 M, range and isotropic distribution of the spin. The population of IMBHBs
is composed of black holes of individual mass 100 M, and with spins aligned with the binary orbital
angular momentum. The plots show the cumulative fractions of events with 90% credible areas smaller than
the abscissa value. The results obtained by the low-latency COHERENT WAVE BURST pipeline (Klimenko!
et al.|2005] 2008 [2016) for the third (Top plots - O3) and fourth observing runs (Bottom plots — O4) consider
separately the HL, HLV and HLVK networks (without including sub-networks). These specific network
configurations will be operating for a limited interval of time during the run. Assuming an instrument duty
cycle of 70%, the HL network and HLV network would be operational 14% and 34% of the time during O3.
Once KAGRA joins the observations, the HL, HLV, and HLVK networks will be operational 4%, 10%, and
24% of the time, respectively. The detection thresholds for cWB are set to 0.7 for the network correlation
coefficient and 12 for the network SNR (see [Abbott et al.|2018d). Shaded regions denote the 1—sigma
uncertainty

of the gravitational strain. The search pattern is optimized with a different selection
of pixels tuned for BBHs and IMBHBsS, respectively. The cWB searches optimized
for BBH and IMBHB currently run in low-latency together with the standard cWB.
Figure[/|shows the sky localization area for BBHs (Left plots) and IMBHBs (Right
plots) for the LIGO network (HL), for the LIGO and Virgo network (HLV), and the
LIGO, Virgo and KAGRA network (HLVKE during O3 (Top plots) and O4 (Bottom
plots). The median BBH sky-localization obtained with the unmodeled search is lf}z

( 11“}2 ) square degrees with three (four) detectors in O3. It reduces to about 1f%zsquare

151n contrast to the CBC simulation, the burst sky localization simulation uses a specific network (HL,
HLYV, HLVK) without including sub-networks.
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degrees in O4 with four sensitive detectors. The IMBHB sky-localization is larger;
lﬂz ( lﬂz ) square degrees with HLV (HLVK) in O3, and lﬂz square degrees
with HLVK in O4. The anticipated ranges of the cWB searches for BBH mergers and
IMBHB mergers during O3 and O4 are reported in Table[d] The unmodeled searches
for BBHs and IMBHBs are able to reach ranges up to the gigaparsec scale.

Table 4 Range of the cWB searches for merging BBHs with a total mass less than 100 M., and merging
IMBHBs with component masses of 100M,. The range corresponds to the orientation-averaged spacetime
volume surveyed per unit detector time. The range is given for the HL, HLV and HLVK networks for O3
and O4. The 1-sigma error on the range estimates is around 1-2 percent. While the inclusion of KAGRA
improves the sky-localization, the detection efficiency remains the same (the HLV and HLVK ranges are
consistent within the errors). The range evaluations are obtained using the simplified assumption of Gaussian
noise, and the values can be considered as indicative of range expectations.

Run IFOnet BBHsystems IMBHB systems
Range (Mpc) Range (Mpc)

03 LH 700 2240
03 LHV 710 2290
03 LHVK 700 2280
04 LH 990 3070
04 LHV 1070 3250
04 LHVK 1060 3270

3.3 The O1 and O2 follow-up program

During the first (O1) and second (O2) observing runs, GW candidate alerts were sent
privately to groups of astronomers who signed an MOU with the LIGO Scientific
Collaboration (LSC) and Virgo collaborations. At the end of O2, the follow-up pro-
gram included 95 groups, with capabilities to search for electromagnetic counterparts
from very high-energy to the radio band, and to search for neutrino counterparts. The
low-latency identification and validation of GW signal candidates, and the distribution
of alerts is detailed in |Abbott et al.| (2019d). Only candidates with a FAR below a
threshold of once per two months were selected to trigger the search for counterparts.
Properties of the GW candidates were distributed using the Gamma-ray Coordinates
Network (GCN) system widely used in the astronomical community for the mul-
tiwavelength follow-up of gamma-ray bursts. The GCNs included event time, sky
localization probability map, and the estimated FARs. For compact binary merger
candidates, they also included volume localization (3D sky map), probability of the
system to contain a neutron star and probability to be electromagnetically bright (based
on the estimate of the baryon mass left outside the merger remnant, Foucart|2012;
Pannarale and Ohme|[2014).

16Details of the GCN are available from |gen.gsfc.nasa.gov
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Seventeen alerts were sent to the astronomers during Ol and O2. Among them
seven signals are confident detections originating from BBHs (Abbott et al.|2016jlg]
2017flglhl [2018d) and one confident signal from a BNS, GW170817 (Abbott et al.
20171). Four BBH mergers were detected in low-latency by the aLIGO interferome-
ters, while three BBH mergers (GW 170809, GW 170814, GW170823), and the BN'S
merger GW170817 were observed with Advanced Virgo as part of the network of GW
detectors. The inclusion of the third detector significantly improves the sky localization
for the majority of these events (see e.g./Abbott et al.[2018d,|2017h), and consequently
the efficiency of searches for electromagnetic counterparts.

For each GW trigger, tens of teams responded to the alert and operated ground-
and space-based instruments spanning 19 orders of magnitude in electromagnetic
wavelength (see e.g.; |Abbott et al.|20161; |(Cowperthwaite et al.|2016; [Smartt et al.
2016; Racusin et al.[2017; [Evans et al.[2016bj [Palliyaguru et al.[|2016; Abbott et al.
2017), and references therein) The search for electromagnetic signatures of the GW
source includes analysis of archival data around the time of the GW trigger, follow-
up by covering the sky map or targeting the galaxies in the GW localization, and
photometric and spectroscopic follow-up of the electromagnetic counterpart candidates
by larger telescopes to remove contaminants and characterize the source. No firm
electromagnetic counterpart has been found for any of the detected BBHs. A weak
transient was found in Fermi-GBM data 0.4 s after GW 150914 (Connaughton et al.
20165 Bagoly et al.|2016; |(Connaughton et al.[2018; Burns et al.[2019), and a weak
signal was found in the AGILE-MCAL data 0.46 s before GW170104 (Verrecchia
et al.|2017), but neither signal was confirmed by other satellites (Savchenko et al.
2016j [Tavani et al.[2016; Hurley et al.[2016} Savchenko et al.[2017b; |Goldstein et al.
2017b).

GW170817 was the first GW transient consistent with the coalescence of a BNS
(Abbott et al.|20171) and with the first firm electromagnetic counterpart (Abbott
et al.[2017j). A prompt gamma-ray signal GRB 170817A (Goldstein et al.[2017al)
was detected ~ 1.7 s after the merger time by Fermi-GBM, and later confirmed by
INTEGRAL (Savchenko et al.[2017a). The three-detector GW localization led to the
discovery of the bright transient AT 2017gfo by the One-Meter, Two-Hemisphere team
with the 1-m Swope Telescope (Coulter et al.[[2017), and confirmed by other teams
within an hour (Soares-Santos et al.[2017|Valenti et al.[2017}; [Arcavi et al.|2017; Tanvir|
et al.[2017; |Lipunov et al.|2017). Observations from the near infrared to the ultraviolet
showed a transient thermal emission with a blue component fading within two days
and a red-ward evolution in one week (e.g., |Villar et al.[2017). An X-ray signal (Troja
et al.|2017; Margutti et al|[2017; Haggard et al.[|[2017} Ruan et al.|2018}; [Pooley
et al.|2017) and a radio signal (Hallinan et al.|2017; |Alexander et al.[[2017; Mooley
et al.|2018)) were discovered at the position of the optical transient after ~9 days and
~16 days, respectively. A slow multi-wavelength flux-rise of the non-thermal emission
was observed until ~150 days (Lyman et al.|2018}; Margutti et al.|2018; |Troja et al.
2018)) before entering a flattening-decaying phase (D’Avanzo et al.|2018;|Dobie et al.
2018} |Alexander et al.|2018)). Very Long Baseline Interferometry observations enabled
measurement of the superluminal proper motion of the radio counterpart (Mooley
et al.[2018)) and constrained the apparent size of the source (Ghirlanda et al.[2018)),
proving that a relativistic and narrowly-collimated jet successfully emerged from
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the neutron star merger. These multimessenger observations support the hypothesis
that GW170817 came from a BNS coalescence, which was the source of the short
GRB 170817A (Goldstein et al.[2017a}; Savchenko et al.[2017al) and of the kilonova
powered by the radioactive decay of r-process nuclei produced in the collision (Pian
et al.|2017; McCully et al.[2017; [Smartt et al.|[2017} |Chornock et al.2017; Nicholl
et al.|2017} [Shappee et al.[2017).

4 Public Alerts

Time since gravitational-wave signal

Set Preferred Event [J]
Automated Vetting |
Classification |

Rapid Sky Localization l

Preliminary
Alert Sent

Parameter Estimation |

| Initial Alert or

AU ET Vettmg| Retraction Sent

Classification |

Parameter Estimation _ Update

Classification | Alert Sent

10 second 1 minute 1 hour 1 day 1 week

Fig. 8 Alert timeline. The Preliminary GCN Notice is sent autonomously within 1-10 minutes after the GW
candidate trigger time. Some preliminary alerts may be retracted after human inspection for data quality,
instrumental conditions, and pipeline behavior. The human vetted Initial GCN Notice or Retraction GCN
Notice and associated GCN Circular are distributed within a few hours for BNS or NSBH sources and
within one day for BBH. Update notices and circulars are sent whenever the estimate of the parameters
of the signal significantly improves. Figure adapted from the LIGO/Virgo Public Alerts User Guide (see
footnote[T7)

To facilitate the rapid identification of electromagnetic or neutrino counterparts
to GW detections, and to maximize the science that the entire scientific community
can do with them, GW candidate events are released as public alerts as of the start of
03[

Within minutes of detection Preliminary GCN Notices are issued automatically
for a candidate that satisfies pre-established criteria. After each Preliminary GCN
Notice, a Rapid Response Team (RRT), composed of staff from the detector sites, the
analysis teams, the detector characterization team, and the low-latency follow-up team,
are called upon to confirm or retract the candidate on the basis of semi-automated
detector characterization and data quality checks. Events which are expected to be

"Documentation is available in the LIGO/Virgo Public Alerts User Guide at lemfol/
low.docs.ligo.org/userguide/
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electromagnetically bright such as BNS or NSBH mergers require vetting by the full
RRT. BBH mergers are also inspected by the RRT but the issuance of a circular or
retraction may have a latency of up to one day. For non-BBH events our goal is to
issue an Initial GCN Notice accompanied by either a GCN Circular, or a Retraction
GCN Notice within a few hours.

Interesting events, which do not satisfy our criteria for issuing an automatic alert
are discussed in ad hoc daily meetings. Alerts generated by such events may have a
latency on the order of one day.

Update GCN Notices and Circulars are issued whenever further analysis leads to
improved estimates of the source localization, significance, or classification. Local-
ization updates are sent until the position is determined more accurately by public
announcement of an unambiguous counterpart. Figure [§] shows the timeline of the
different types of GCN Notices after a GW signal. Update GCN Notices and Circulars
may be issued hours, days, or even weeks after the event.

4.1 O3 False Alarm Rate Threshold for automatic Alerts

The FAR threshold to release automatic alerts for CBC events targets an overall
astrophysical purity of 90% across all categories of mergers. Different classes of CBCs
may individually have higher or lower purity than 90%. This 90% purity translates to
a FAR threshold of 1/(2 months) for CBC. For the unmodeled burst events the FAR
threshold is 1/yr. Single detector CBC candidates, which are found in coincidence
with a multi-messenger source, must still satisfy the FAR threshold of 1/(2 months) in
order to generate an automatic alert. In general multiple pipelines search for CBC and
Burst candidates. Individual FAR thresholds for each pipeline are corrected by a trials
factor, so that the overall FAR thresholds described above are satisfied for each class
of event.

4.2 Alert Contents

The alert contains information to support the search for counterparts including:

— A candidate identifier, which can be used to examine the event properties in the
Gravitational Wave Candidate Event Database [[¥]

— The FAR of the candidate in Hz.

— The localization given as a posterior probability distribution of the source’s sky po-
sition. For CBC events, we send a 3-D sky map, which also contains the direction-
dependent luminosity distance. The localization is encoded as a HEALPIX projec-
tion in FITS file format.

— For Burst candidates the central frequency in Hz, the duration in seconds and the
GW fluence in erg/cm?.

— For CBC candidates the probability p,s o, that the signal is astrophyiscal (see
Sect.[3.1). This probability comes from evaluating whether the source belongs to

8gracedb.ligo.org
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Fig. 9 The four astrophysical categories in terms (BNS, NSBH, BBH, and MassGap) of component masses
ml and m2, which are used to define the source classification. By convention, the component masses are
defined such that m1 > m2 , so that the primary compact object in the binary (i.e., component 1), is always
more massive than the secondary compact object (i.e., component 2). Figure adapted from the LIGO/Virgo
Public Alerts User Guide (see footnote[T7)

one of five categories: BNS merger (both component masses < 3Mg ), MassGap
merger (3M < one component mass < SMy) NSBH merger (one component
mass < 3M;, and the other > 5SM), BBH merger (both component masses >
5Mg), Terrestrial (i.e. Noise). Details about the formalism used to compute this
probability are given in [Kapadia et al.|(2019). For the astrophysical categories see
Fig. 9]

— For CBC candidates the probability that one or both components has a mass
consistent with a neutron star (HasNS), that is a mass < 3M,. And the probability
that the system ejected a non-zero amount of neutron star matter (HasRemnant).
This latter evaluates the probability that baryon mass is left outside the merger
remnant using the masses and spins of the binary system inferred from the signal
(Foucart2012; Pannarale and Ohmel[2014; |[Foucart et al.|[2018)).

GCN Circulars and Updates may also include a concise description of any instru-
ment or data quality issues that could affect the significance estimate, the localization,
and the GW parameter inferences.
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5 Observing Scenarios

In this section we present an estimate of the expected number of BNS, NSBH and
BBH detections for the three-detector HLV network in O3 and for the four-detector
HLVK network in O4. We also summarize the expected localization area and comoving
volume obtained with the simulations described in Section [3.2.1] The expectations for
the number of events we will detect in each source category comes from simulations
of populations which use the same astrophysical parameter distribution, detector duty
cycle, and detection threshold as the localization simulations.

In contrast to previous versions of this paper where we gave the range of estimated
rates per unit time, here, we evaluate the plausible detection counts per one-calendar-
year observing run. We model each source category as a Poisson process combined
with the source rate densities and anticipated surveyed volume, and we marginal-
ize over the uncertainty in the source rate estimates. This procedure allows us to
incorporate the counting uncertainty from the Poisson process, but makes forming an
exact 90% confidence interval impossible, and as such, these intervals overcover. All
source categories assume parameterized physical property distribution for which
the chosen parameters (e.g., power laws or mass limits) are consistent with current
measurements and their uncertainties (Abbott et al.|2018c). We assume constant rate
density in comoving volume. For BNS we use the source rate density 110 — 3840
Gpc 3 yr~from Abbott et al. (2018d) and Abbott et al. (20180 For BBH we use the
rate calculated using Model B in|Abbott et al.[(2018c), 25 — 109 Gpc’3 yr‘l, and for
NSBH we use the rate from |Abadie et al.[|(2010b)), 0.6 — 1000 Gpc_3 yr_1 E]There
are numerous uncertainties involved in the component mass and spin distributions for
NSBH systems and this is reflected in our estimates for expected detections. The rate
is obtained assuming that NSBH mergers exist, but the absence of this type of system
cannot be excluded by the O1 and O2 GW observations.

As for the localization simulations, we assume a duty factor of 70% for each
detector, uncorrelated between instruments, and we require a network SNR of at least
12 and an SNR > 4 in at least two instruments{zzl All SNRs are calculated assuming
perfect templates. Event significance is established not solely by SNR, but by ranking
statistics used by the detection pipelines which also use the goodness of fit and the rate
of background in the ranking (Cannon et al.[2015} |[Usman et al.[2016; [Nitz et al.|[2017).
The thresholds set on the ranking statistic propagate to the inferred search volume
VT, where V is the spacetime volumes surveyed per unit detector time defined in
Section[2] and T is the observing time incorporating the effects of the detectors duty
cycles. Our estimates are realistic projections, but the search volume is sensitive to our
assumptions on source population, detection criteria and network characteristics. but

19Details on the adopted distributions of the source properties are given in Section

20This rate combines rate intervals estimated with uniform mass and Gaussian mass distribution
populations (See sect. [3). While this does not represent a physical distribution of sources, it does incorporate
a degree of uncertainty arising from our ignorance of the actual BNS distribution.

2I'We do not limit the rate to the O1-O2 upper limit of 610 Gpc 3 yr~!obtained with point mass
assumptions in order to consider a broad distribution of masses.

22This is a conservative choice since we routinely detect events with lower SNR (see |Abbott et al.
2018d)



32 KAGRA Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration

the actual search ranking will differ also based on the characteristics of the background
which is different in different parts of the source mass space (Kapadia et al.|2019).
The simulation results for the HLV network in O3 and the HLVK network in O4 are
summarized in Table 5] Adding KAGRA to the network in O3 does not change the
detection counts. The results are given for a population of sources with aligned and
anti-aligned spins; there is no significant change of the detection counts using isotropic
spin distributions. Using uniform mass distributions (instead of a Gaussian distribution
for NS and a power-law distribution for BH) increases the counts in Table[5|by about
50% for BNSs and NSBHs.

5.1 03: aLIGO 110-130 Mpc, AdV 50 Mpc, KAGRA 8 -25 Mpc

This year long run began in April 2019 with the three detector HLV network and with
KAGRA planning to join in latter stages. The simulations to estimate the number
of expected GW detections use the curves in Fig. [I] for the two aLIGO and the
AdV detectors, corresponding to a BNS range of 130 Mpc, 110 Mpc, and 50 Mpc
respectively. For KAGRA we use the 25 Mpc curve.

The BNS search volume VT is evaluated to be 3.3 x 106 Mpc? yr with lﬂz
expected detections. The median 90% credible region for the localization area (volume)
of BNS is 270%35 deg” (120137 10° Mpc3)A percentage of 9 — 13 % (2 — 4 %)
of the events are expected to have a 90% credible region smaller than 20 deg? (5 deg?).
For BBH the search volume VT is 3.4 x 108 Mpc? yr, and the expected detections
are 171%% . The median 90% credible region for the localization area (volume) is
280733 deg? (1600073200 103 Mpc?). A percentage of 9 — 13 % (2 — 3 %) of the
events are expected to have a 90% credible area smaller than 20 deg? (5 deg?).

5.2 O4: aLIGO 160 - 190 Mpc, AdV 90-120 Mpc, KAGRA 25-130 Mpc

04 is planned to have a duration of one year. The aLLIGO detectors will be near their
design sensitivity, with a BNS range of 160—190 Mpc. AdV will have completed
Phase 1 of the AdV+ upgrade with an anticipated BNS range of 90— 120 Mpc. As
the newest member of the network, KAGRA has the largest uncertainty in projected
04 sensitivity, a BNS range of 25— 130 Mpc. For estimating the number of events
expected to be detected in O4 we use an intermediate sensitivity curve for KAGRA,
one with a BNS range of 80 Mpc, and the target sensitivity curve (the highest O4
sensitivity) for aLIGO and for AdV.

In O4 we predict a BNS search volume VT of 1.6 x 107 Mpc3yr, and 10137 ex-
pected detections. The median 90% credible region for the localization area (volume)
of BNS is 332 deg” (5272" 10° Mpc?). A percentage of 38 — 44 % ( 12 — 16
%) of the events are expected to have a 90% credible region smaller than 20 deg?
(5 deg?). For BBH the VT searched is 1.5 Gpc> yr with 79f§2 expected detections.

23The median area and volume are given as 90% Monte Carlo sampling confidence bounds on the
median 90% credible regions.
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The median 90% credible region for the localization area (volume) of BBH is 41fg
deg® (77007§30° 103 Mpc?). A percentage of 35 — 39 % ( 11 — 14 %) of the events
are expected to have a 90% credible area smaller than 20 deg? (5 deg?).

Table [3]lists the results described above for O3 and O4, including also predictions
for NSBH. Localization capabilities of unmodelled searches for BBHs and IMBHB
are shown in Section[3.2.2] where we give also the BBH and IMBHB ranges for the
unmodeled search algorithm ¢WB in Table 4]

5.3 05: aLIGO (LIGO-India will join in 2025) 330 Mpc, AdV 150-260 Mpc,
KAGRA 130+ Mpc

There is considerable uncertainty in looking this far ahead. The current plan envisions
the aLIGO instruments, including an instrument in India in 2025, beginning observa-
tions after the A+ upgrade (Abbott et al.|2018e)), the AdV instrument participating
after the completion of the AdV+ upgrade (Phase 2), and KAGRA operating at or
above its final O4 sensitivity of 130+ Mpc. In Fig.[2] we show target sensitivities for
this phase of observations. In practice the detectors are likely to begin observations
at a lower sensitivity and then gradually improve over the span of several years. For
now we make no quantitative predictions about the expected performance of the GW
network in this era.

For O3, O4 and OS5, Table E] gives the ranges for BNS, NSBH, and BBH, and for
generic burst sources emitting 1072 M c? and 1072 M c? in GWs.

6 Conclusions

We have presented our current best estimate of the plausible observing scenarios
for the network of Advanced GW detectors, including aLIGO, AdV, and KAGRA.
This includes plans, already approved and in progress, to upgrade the aLIGO and
AdV instruments. We outlined the observing schedule and sensitivity evolution for
the next decade, showing the anticipated strain sensitivities and the corresponding
range at which we can detect BNSs, BBHs, NSBHs, and unmodeled signals. We
evaluated our ability to localize BNSs, BBHs, NSBHs, and IMBHBs using matched-
filter and unmodelled searches. For BNSs, BBHs, and NSBHs systems we estimated
the number of expected detections in a one-calendar-year observing run. We detailed
our plan to automatically notify the astronomical community of event candidates,
starting in O3. This information will help to optimize multi-messenger follow-up
and source identification, to plan instrument operation and projects, and to evaluate
joint detections in order to maximize the science return of each GW detection. (e.g.,
Abadie et al.|2012b; |Aasi et al.[2014bj Kasliwal and Nissanke|2014; |[Singer et al.[2014;
Cannon et al.|[2012; |[Evans et al.[|2016a; |Gehrels et al.|[2016}; \Ghosh et al.|2016; |(Chan
et al.|2017; Rana et al.|2017}|Salafia et al.|2017} Patricelli et al.|2018}; |Coughlin et al.
2018).
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Table 5 Expected BNS, BBH and NSBH detections and localization accuracy for the O3 and O4 observing
runs. Results are shown for the three-detector HLV network in O3 and the four-detector HLVK network
in O4. The detection number predictions are given as detection counts in a one-calendar-year observing
run; the quoted confidence intervals combine the log-normal uncertainty in the merger rate with Poisson
counting statistics. The localization accuracy is given as the median 90% credible area and median 90%
credible comoving volume; their confidence intervals describe Monte Carlo uncertainty from the simulation.

All quantities are given as 90% credible intervals of the form x

the 5th percentile, and (x + b) is the 95th percentile.

+b
—a»

where x is the 50th percentile, (x — a) is

Observation ~ Network Expected Expected Expected
Run BNS Detections NSBH Detections BBH Detections
12 19 22
03 HLV 1] ot} 1715
52 91 89
04 HLVK 10432 117 7915
Area (degz) Area (degz) Area (degz)
90% c.r. 90% c.r. 90% c.r.
34 24 30
03 HLV 270135 33013 280739
04 HLVK 3313 50*8 417]
Comoving Volume  Comoving Volume  Comoving Volume
(103 Mpc?) (10% Mpc?) (103 Mpc?)
90% c.r. 90% c.r. 90% c.r.
19 150 2200
03 HLV 1207, 860112, 1600073200
10 100 1500
04 HLVK 521 430175 77001 550

The three-detector aLIGO and AdV network has demonstrated the ability to
localize signals to sky areas of a few tens of square degrees. The addition of KAGRA,
and later LIGO-India to the network will improve this situation further. While the
median sky localization area is expected to be a few hundreds of square degrees for all
types of binary systems in O3, it will improve to be a few tens of square degrees during
04. By 2025 a five-detector network consisting of three upgraded LIGO detectors in
the United States and India, an upgraded Virgo detector, and possibly an upgraded
KAGRA instrument is expected to operate at sensitivities approaching twice that of
their predecessors, and a median sky localization area of a few degrees. Detection of
BBHs will become routine. A few hundred BBH detections will allow us to probe
the major formation channel, and distinguish between isolated binaries and systems
formed in star clusters (see e.g, |Zevin et al.|2017} |Stevenson et al.[|2017; |Farr et al.
2017). BNSs are expected to be detected with a rate from a few per year, to a few per
month. Associated electromagnetic counterparts will probe properties of relativistic
jets and sub-relativistic dynamical ejecta, the nucleosynthesis of heavy elements, and
will enable precise cosmology.

The scenarios described here are our best current projections, they will evolve
as detector installation and commissioning progress. Regular updates are planned to
ensure that the content remains timely and relevant.
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A Changes between versions

Since publication of the previous version (Abbott et al.|[2018g), several updates to
the document have been made. The most significant changes are that we now frame
our projections in terms of observing runs, we include final results from O2, and we
updated our localization projections to include KAGRA as a fourth detector. Key
differences are outlined below.

A.1 Updates to Section 2] “Construction, commissioning and observing phases”:

1. The observing roadmap is now discussed in terms of observing runs rather than
the “Early”,“Mid”, “Late” nomenclature used in previous versions.

2. The O1 and O2 discussion happens earlier in the section. Future planned runs
are discussed at the end. Discussion of O1 and O2 duty cycle now occurs in this
section.

. A subsection has been added for O3.

4. Table[2)and Figure [[|have been updated to include the actual performance in O1
and 02, and in the first months of O3 (which started April 1st 2019 and is ongoing).
The projected performance is given for O4 and OS.

5. Table|2|also includes ranges for NSBH and Burst sources.

6. There is now a discussion, with projected sensitivities, of upgrades to alLIGO and
AdV.

7. Fig.2Jnow extends past 2026, showing LIGO-India joining the network.

W

A.2 Updates to Section 3] “Searches for gravitational-wave transients”:

. We include the latest O2 results from (Abbott et al.|[2018d\c).

. The discussion is considerably shortened compared to the previous version.

. There is a new subsection describing the O1 and O2 follow-up program.

. New localization simulations have been performed for three-detector and four-
detector networks at O3 and O4 sensitivities. Results are presented for both CBC
and Burst signals.

5. The CBC simulation used astrophysically motivated populations of sources with
properties consistent with the O1 and O2 results.

6. CBC signal sky-localization now includes luminosity distance and comoving
volume in addition to area.

7. The anticipated sky-localization is given as before for BNS systems and addition-
ally for NSBH and BBH systems.

8. The burst simulation used astrophysically motivated populations of BBHs and
IMBHBEs in contrast to the previous version which included a variety of generic
waveform morphologies.

9. Fig.[3]has new results from O2 and updated results from O1.

10. Fig.[d]is updated to show the effect of adding KAGRA to the network.

AW N =
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11.

12.

13.

14.

15.

Fig. [5|shows sky maps of the confident GW events detected during O1 and O2
(Abbott et al.[2019d, 2018d)) by the low-latency and full offline analysis. The
previous version of this figure showed the sky location for a simulated BNS signal.
Table [3]is new. It shows luminosity distance and localization of the O1 and 02
confident detections obtained by the low-latency and full offline analysis.

Fig. [6| has updated localization plots for compact binary mergers (BNS, BBH,
NSBH) in O3 and O4. This includes also luminosity distance and comoving
volume expectations. The Figure no longer shows the performance of LALIN-
FERENCE, which is evaluated to be consistent with BAYESTAR. The previous
version of this figure had results for BNS systems alone.

Fig. [7| has updated localization plots for burst sources in O3 and O4. The Fig-
ure no longer shows the umodeled search performance for generic waveform
morphologies, but for BBH and IMBHB signals.

Table E] is new; it shows the range of the cWB searches for BBH and IMBHB
mergers.

A.3 Section[d] “Public Alerts”

1.

This is a new section describing how alerts are issued publicly and automatically
starting starting from O3.

A.4 Updates to Section[5] “Observing Scenarios”:

. The scenarios are now discussed in terms of observing runs up to OS.
. Discussion of the O1 and O2 runs has been moved to earlier in the paper.
. New simulations have been performed for the expected number of detections in

O3 and O4. We give the range of plausible detection counts in a one-calendar-year
observing run instead of range of estimated rates per unit time as given in the
previous version. The detection expectations are given also for NSBH andBBH
mergers.

. The rate simulation uses source properties and astrophysical rates consistent with

the O1 and O2 results.

. Table[5] which replaces Table 3 in the previous version, has been updated signifi-

cantly. In particular, we no longer quote ranges since these are reported in Sect. 2]
We show anticipated numbers for O3 and O4 only; prior run information is no
longer reported here. We added estimates of comoving volume localization, and
information for BBH and NSBH mergers.
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