FEATURES

High speed
$350 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth
1200 V/ $\mu \mathrm{s}$ slew rate
Resistor settable gain
Internal common-mode feedback to improve gain and phase balance - $\mathbf{6 8}$ dB @ $\mathbf{1 0 ~ M H z}$
Separate input to set the common-mode output voltage
Low distortion: -99 dBc SFDR @ 5 MHz 800Ω Load
Low power: 10.7 mA @ 5 V
Power supply range: $+\mathbf{2 . 7} \mathrm{V}$ to $\pm 5.5 \mathrm{~V}$

APPLICATIONS

Low power differential ADC drivers Differential gain and differential filtering Video line drivers Differential in/out level shifting Single-ended input to differential output drivers Active transformers

GENERAL DESCRIPTION

The AD8132 is a low cost differential or single-ended input to differential output amplifier with resistor settable gain. The AD8132 is a major advancement over op amps for driving differential input ADCs or for driving signals over long lines. The AD8132 has a unique internal feedback feature that provides output gain and phase matching balanced to -68 dB at 10 MHz , suppressing harmonics and reducing radiated EMI.

Manufactured using ADI's next generation XFCB bipolar process, the AD8132 has a -3 dB bandwidth of 350 MHz and delivers a differential signal with -99 dBc SFDR at 5 MHz , despite its low cost. The AD8132 eliminates the need for a transformer with high performance ADCs, preserving the low frequency and dc information. The common-mode level of the differential output is adjustable by applying a voltage on the Vосм pin, easily level shifting the input signals for driving single-supply ADCs. Fast overload recovery preserves sampling accuracy.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
The AD8132 can also be used as a differential driver for the transmission of high speed signals over low cost twisted pair or coaxial cables. The feedback network can be adjusted to boost the high frequency components of the signal. The AD8132 can be used for either analog or digital video signals or for other high speed data transmission. The AD8132 is capable of driving either cat 3 or cat 5 twisted pair or coaxial with minimal line attenuation. The AD8132 has considerable cost and performance improvements over discrete line driver solutions.

Differential signal processing reduces the effects of ground noise that plagues ground referenced systems. The AD8132 can be used for differential signal processing (gain and filtering) throughout a signal chain, easily simplifying the conversion between differential and single-ended components.

The AD8132 is available in both SOIC and MSOP packages for operation over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperatures.

Figure 2. Large Signal Frequency Response

SPECIFICATIONS

$\pm \mathrm{D}_{\text {IN }}$ TO \pm OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OCM }}=0 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=499 \Omega, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=348 \Omega$, unless otherwise noted. For $\mathrm{G}=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=200 \Omega, \mathrm{R}_{\mathrm{F}}=1000 \Omega$, $\mathrm{R}_{\mathrm{G}}=499 \Omega$. Refer to Figure 56 and Figure 57 for test setup and label descriptions. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Large Signal Bandwidth	$\mathrm{V}_{\text {OUt }}=2 \mathrm{Vp}$-p	300	350		MHz
	$\mathrm{V}_{\text {OUT }}=2 \mathrm{Vp-p} \mathrm{G}=$,		190		MHz
-3 dB Small Signal Bandwidth	$\mathrm{V}_{\text {out }}=0.2 \mathrm{~V}$ p-p		360		MHz
	$\mathrm{V}_{\text {Out }}=0.2 \mathrm{Vp-p}, \mathrm{G}=2$		160		MHz
Bandwidth for 0.1 dB Flatness	$\mathrm{V}_{\text {out }}=0.2 \mathrm{~V}$ p-p		90		MHz
	$\mathrm{V}_{\text {Out }}=0.2 \mathrm{Vp-p,G}=2$		50		MHz
Slew Rate	$\mathrm{V}_{\text {Out }}=2 \mathrm{~V}$ p-p	1000	1200		V/ $/ \mathrm{s}$
Settling Time	$0.1 \%, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}$ p-p		15		ns
Overdrive Recovery Time	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ to 0 V Step, $\mathrm{G}=2$		5		ns
NOISE/HARMONIC PERFORMANCE Second Harmonic					
	Vout $=2 \mathrm{~V}$ p-p, $1 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		-96		dBc
	$V_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, 5 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-83		dBc
	$V_{\text {OUT }}=2 \mathrm{~V}$ p-p, $20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-73		dBc
Third Harmonic	$V_{\text {Out }}=2 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-102		dBC
	$V_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, 5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-98		dBc
	$V_{\text {OUt }}=2 \mathrm{~V}$ p-p, $20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-67		dBc
IMD	$20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-76		dBc
IP3	$20 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		40		dBm
Input Voltage Noise (RTI)	$\mathrm{f}=0.1 \mathrm{MHz}$ to 100 MHz		8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Current Noise	$\mathrm{f}=0.1 \mathrm{MHz}$ to 100 MHz		1.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Differential Gain Error	NTSC, G $=2, \mathrm{RL}, \mathrm{dm}=150 \Omega$		0.01		\%
Differential Phase Error	NTSC, G $=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=150 \Omega$		0.10		Degrees
INPUT CHARACTERISTICS Offset Voltage (RTI)					
	$\mathrm{V}_{\mathrm{OS}, \mathrm{dm}}=\mathrm{V}_{\mathrm{OUT}, \mathrm{dm} / 2 ; \mathrm{V}_{\mathrm{DIN+}+}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V} .{ }^{2} .}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Variation		± 1.0	± 3.5	mV
					$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current			3	7	$\mu \mathrm{A}$
Input Resistance	Differential		12		$\mathrm{M} \Omega$
	Common-Mode		3.5		$\mathrm{M} \Omega$
Input Capacitance					pF
Input Common-Mode Voltage			-4 to +3		V
CMRR	$\Delta \mathrm{V}_{\text {Out, }} \mathrm{dm} / \Delta \mathrm{V}_{\mathrm{IN}, \mathrm{cm} ;} ; \mathrm{V}_{\mathrm{IN}, \mathrm{cm}}= \pm 1 \mathrm{~V} ;$ Resistors Matched to 0.01%		-70	-60	dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing	Maximum $\Delta V_{\text {Vout; }}$ Single-Ended Output		-3.6 to +3.6		V
Output Current					mA
Output Balance Error	$\Delta \mathrm{V}_{\text {OUT, }} \mathrm{cm} / \Delta \mathrm{V}_{\text {OUT, }} \mathrm{dm} ; ~ \Delta \mathrm{~V}_{\text {OUT, }} \mathrm{dm}=1 \mathrm{~V}$		-70		dB

AD8132

$\mathbf{V}_{\text {oCM }} \mathbf{T O} \pm$ OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}, \mathrm{Vocm}^{\prime}=0 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=499 \Omega, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=348 \Omega$, unless otherwise noted. For $\mathrm{G}=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=200 \Omega, \mathrm{R}_{\mathrm{F}}=1000 \Omega$, $\mathrm{R}_{\mathrm{G}}=499 \Omega$. Refer to Figure 56 and Figure 57 for test setup and label descriptions. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate Input Voltage Noise (RTI)	$\begin{aligned} & \Delta \mathrm{V} \text { осм }=600 \mathrm{mV} \text { p-p } \\ & \Delta \mathrm{V} \text { осм }=-1 \mathrm{~V} \text { to }+1 \mathrm{~V} \\ & \mathrm{f}=0.1 \mathrm{MHz} \text { to } 100 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 210 \\ & 400 \\ & 12 \\ & \hline \end{aligned}$		MHz $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
DC PERFORMANCE Input Voltage Range Input Resistance			$\begin{aligned} & \pm 3.6 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \end{aligned}$
Input Offset Voltage Input Bias Current Vосм CMRR Gain	$\begin{aligned} & \mathrm{V}_{\text {OS, cm }}=\mathrm{V}_{\text {OUT, cm } ;} ; \mathrm{V}_{\text {DIN }+}=\mathrm{V}_{\text {DIN }-}=\mathrm{V}_{\text {OCM }}=0 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\text {OUT, dm }} / \Delta \mathrm{V}_{\text {OCM }} ; \Delta \mathrm{V}_{\text {OCM }}= \pm 1 \mathrm{~V} ; \text { Resistors Matched to } 0.01 \% \\ & \Delta \mathrm{~V}_{\text {OUT }, \mathrm{cm}} / \Delta \mathrm{V}_{\text {OCM }} ; \Delta \mathrm{V}_{\text {OCM }}= \pm 1 \mathrm{~V} \end{aligned}$	0.985	$\begin{aligned} & \hline \pm 1.5 \\ & 0.5 \\ & -68 \\ & 1 \end{aligned}$	± 7 1.015	$\begin{aligned} & \mathrm{mV} \\ & \mu \mathrm{~A} \\ & \mathrm{~dB} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{DIN}+}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\text {OCM }}=0 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Variation $\Delta \mathrm{V}_{\text {out, }} / \mathrm{m} / \Delta \mathrm{V}_{\mathrm{s}} ; \Delta \mathrm{V}_{\mathrm{s}}= \pm 1 \mathrm{~V}$	$\begin{aligned} & \pm 1.35 \\ & 11 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & -70 \end{aligned}$	$\begin{aligned} & \pm 5.5 \\ & 13 \\ & -60 \end{aligned}$	V mA $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$ dB
OPERATING TEMPERATURE RANGE		-40		+125	${ }^{\circ} \mathrm{C}$

$\pm \mathrm{D}_{\text {IN }}$ TO \pm OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~V}_{\text {ocm }}=2.5 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=499 \Omega, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=348 \Omega$, unless otherwise noted. For $\mathrm{G}=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=200 \Omega, \mathrm{R}_{\mathrm{F}}=1000 \Omega$, $\mathrm{R}_{\mathrm{G}}=499 \Omega$. Refer to Figure 56 and Figure 57 for test setup and label descriptions. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 3.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Large Signal Bandwidth	$V_{\text {OUT }}=2 V p-p$	250	300		MHz MHz
			180		
-3 dB Small Signal Bandwidth	$V_{\text {out }}=0.2 \mathrm{Vp}-\mathrm{p}$		360		MHz
	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ p-p, $\mathrm{G}=2$		155		MHz
Bandwidth for 0.1 dB Flatness	$V_{\text {Out }}=0.2 \mathrm{Vp}-\mathrm{p}$		65		MHz
	$\mathrm{V}_{\text {Out }}=0.2 \mathrm{~V}$ p-p, $\mathrm{G}=2$		50		MHz
Slew Rate	$\mathrm{V}_{\text {Out }}=2 \mathrm{~V}$ p-p	800	1000		V/ $/ \mathrm{s}$
Settling Time	0.1\%, Vout $=2 \mathrm{~V}$ p-p		20		ns
Overdrive Recovery Time	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 0 V Step, $\mathrm{G}=2$		5		ns
NOISE/HARMONIC PERFORMANCE					
Second Harmonic	Vout $=2 \mathrm{~V}$ p-p, $1 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		-97		dBc
	$\mathrm{V}_{\text {out }}=2 \mathrm{~V}$ p-p, $5 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		-100		dBC
	$V_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}, 20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-74		dBC
Third Harmonic	Vout $=2 \mathrm{~V}$ p-p, $1 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		-100		dBc
	Vout $=2 \mathrm{~V}$ p-p, $5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-99		dBC
	$V_{\text {out }}=2 \mathrm{~V}$ p-p, $20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-67		dBC
IMD	$20 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		-76		dBcdBm
IP3	$20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		40		
Input Voltage Noise (RTI)	$\mathrm{f}=0.1 \mathrm{MHz}$ to 100 MHz		8		$\mathrm{nV} / \sqrt{\underline{\mathrm{Hz}}}$
Input Current Noise	$\mathrm{f}=0.1 \mathrm{MHz}$ to 100 MHz		1.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Differential Gain Error	NTSC, G $=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=150 \Omega$		0.025		\% Degree
Differential Phase Error	NTSC, G $=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=150 \Omega$		0.15		
INPUT CHARACTERISTICS					
Offset Voltage (RTI)	$\mathrm{Vos}_{\mathrm{os}, \mathrm{dm}}=\mathrm{V}_{\text {out }, \mathrm{dm}} / 2 ; \mathrm{V}_{\mathrm{DIN}+}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\mathrm{OCM}}=2.5 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Variation		± 1.0	± 3.5	$\begin{aligned} & \mathrm{mV} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current			$3 \quad 7$		$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~A} \end{aligned}$
Input Resistance	Differential		10		$\mathrm{M} \Omega$
	Common-Mode		3		$\mathrm{M} \Omega$
Input Capacitance			1		pF
Input Common-Mode Voltage			1 to 3		VdB
CMRR	$\Delta \mathrm{V}_{\text {out }} \mathrm{dm} / \Delta \mathrm{V}_{\mathrm{IN}, \mathrm{cm}} ; \Delta \mathrm{V}_{\mathrm{IN}, \mathrm{cm}}= \pm 1 \mathrm{~V} ;$ Resistors Matched to 0.01%		-70	-60	
OUTPUT CHARACTERISTICS					
Output Voltage Swing	Maximum $\Delta \mathrm{V}_{\text {out; }}$ Single-Ended Output		1.0 to 4.0		V
Output Current			50		mA
Output Balance Error	$\Delta \mathrm{V}_{\text {OUT, }} \mathrm{cm} / \Delta \mathrm{V}_{\text {OUT, }} \mathrm{dm} ; ~ \Delta \mathrm{~V}_{\text {OUT, }} \mathrm{dm}=1 \mathrm{~V}$		-68		dB

AD8132

$\mathbf{V}_{\text {ocm }} \mathbf{T O} \pm$ OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OCM }}=2.5 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=499 \Omega, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=348 \Omega$, unless otherwise noted. For $\mathrm{G}=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=200 \Omega, \mathrm{R}_{\mathrm{F}}=1000 \Omega$, $\mathrm{R}_{\mathrm{G}}=499 \Omega$. Refer to Figure 56 and Figure 57 for test setup and label descriptions. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 4.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Slew Rate Input Voltage Noise (RTI)	$\begin{aligned} & \Delta \mathrm{V} \text { осм }=600 \mathrm{mV} \text { p-p } \\ & \Delta \mathrm{V} \text { осм }=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & \mathrm{f}=0.1 \mathrm{MHz} \text { to } 100 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 210 \\ & 340 \\ & 12 \end{aligned}$		MHz $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
DC PERFORMANCE Input Voltage Range Input Resistance Input Offset Voltage Input Bias Current V осм CMRR Gain	$\begin{aligned} & \mathrm{V}_{\text {OS, cm }}=\mathrm{V}_{\text {OUT, cm } ;} \mathrm{V}_{\mathrm{DIN}+}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\text {OcM }}=2.5 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\text {out, dm }} / \Delta \mathrm{V}_{\text {ocm }} ; \Delta \mathrm{V}_{\text {OCM }}=2.5 \mathrm{~V} \pm 1 \mathrm{~V} ; \text { Resistors Matched to } 0.01 \% \\ & \Delta \mathrm{~V}_{\text {out }, \mathrm{cm}} / \Delta \mathrm{V}_{\text {Ocm }} ; \Delta \mathrm{V}_{\text {OcM }}=2.5 \mathrm{~V} \pm 1 \mathrm{~V} \end{aligned}$	0.985	$\begin{aligned} & 1.0 \text { to } 3.7 \\ & 30 \\ & \pm 5 \\ & 0.5 \\ & -66 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 11 \\ & 1.015 \end{aligned}$	V k Ω mV $\mu \mathrm{A}$ dB V/V
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{DIN}+}=\mathrm{V}_{\mathrm{DIN}-}=\mathrm{V}_{\mathrm{OCM}}=2.5 \mathrm{~V}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Variation $\Delta \mathrm{V}_{\text {out, } \mathrm{dm}} / \Delta \mathrm{V}_{\mathrm{s}} ; \Delta \mathrm{V}_{\mathrm{S}}= \pm 1 \mathrm{~V}$	2.7 9.4	$\begin{aligned} & 10.7 \\ & 10 \\ & -70 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \\ & -60 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~dB} \end{aligned}$
OPERATING TEMPERATURE RANGE		-40		+125	${ }^{\circ} \mathrm{C}$

$\pm \mathrm{D}_{\text {IN }}$ TO \pm OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}, \mathrm{Vocm}^{\prime}=1.5 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=499 \Omega, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=348 \Omega$ unless otherwise noted. For $\mathrm{G}=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=200 \Omega, \mathrm{R}_{\mathrm{F}}=1000 \Omega$, $\mathrm{R}_{\mathrm{G}}=499 \Omega$. Refer to Figure 56 and Figure 57 for test setup and label descriptions. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 5.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Large Signal Bandwidth	$\mathrm{V}_{\text {OUt }}=1 \mathrm{Vp}$-p		350		MHz
	$V_{\text {Out }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=2$		165		MHz
-3 dB Small Signal Bandwidth	$\mathrm{V}_{\text {out }}=0.2 \mathrm{Vp}-\mathrm{p}$		350		MHz
	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ p-p, $\mathrm{G}=2$		150		MHz
Bandwidth for 0.1 dB Flatness	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ p-p		45		MHz
	$\mathrm{V}_{\text {Out }}=0.2 \mathrm{~V}$ p-p, $\mathrm{G}=2$		50		MHz
NOISE/HARMONIC PERFORMANCE					
Second Harmonic	$\mathrm{V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-100		dBc
	$\mathrm{V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-94		dBc
	$V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 20 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		-77		dBc
Third Harmonic	$V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{MHz}, \mathrm{RL}, \mathrm{dm}=800 \Omega$		-90		dBc
	$V_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, 5 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-85		dBc
	$V_{\text {OUT }}=1 \mathrm{Vp}-\mathrm{p}, 20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=800 \Omega$		-66		dBc
INPUT CHARACTERISTICS					
Offset Voltage (RTI)	$\mathrm{V}_{\mathrm{OS}, \mathrm{dm}}=\mathrm{V}_{\text {OUT, } \mathrm{dm} / 2 ;} \mathrm{V}_{\text {DIN }+}=\mathrm{V}_{\mathrm{DIN}}=\mathrm{V}_{\mathrm{OCM}}=1.5 \mathrm{~V}$		± 10		mV
Input Bias Current			3		$\mu \mathrm{A}$
CMRR			-60		dB

$\mathbf{V}_{\text {OCM }} \mathbf{T O} \pm$ OUT SPECIFICATIONS

At $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OCM}}=1.5 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=499 \Omega, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=348 \Omega$ unless otherwise noted. For $\mathrm{G}=2, \mathrm{R}_{\mathrm{L}, \mathrm{dm}}=200 \Omega, \mathrm{R}_{\mathrm{F}}=1000 \Omega$, $\mathrm{R}_{\mathrm{G}}=499 \Omega$. Refer to Figure 56 and Figure 57 for test setup and label descriptions. All specifications refer to single-ended input and differential outputs, unless otherwise noted.
Table 6.

Parameter	Conditions$\begin{aligned} & \mathrm{V}_{\text {os }, \mathrm{cm}}=\mathrm{V}_{\text {out }, \mathrm{cm} ;} ; \mathrm{V}_{\text {DIN }+}=\mathrm{V}_{\text {DIN }-}=\mathrm{V}_{\text {ocm }}=1.5 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\text {out }, \mathrm{cm}} / \Delta \mathrm{V}_{\text {OCM }} ; \Delta \mathrm{V}_{\text {OCM }}= \pm 0.5 \mathrm{~V} \end{aligned}$	Min	$\begin{aligned} & \text { Typ } \\ & \pm 7 \\ & 1 \end{aligned}$	Max	Unit mV V/V
DC PERFORMANCE Input Offset Voltage Gain					
POWER SUPPLY Operating Range Quiescent Current Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{DIN+}+}=\mathrm{V}_{\mathrm{DIN}}=\mathrm{V}_{\mathrm{OCM}}=0 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\mathrm{OUT}, \mathrm{dm}} / \Delta \mathrm{V}_{\mathrm{S}} ; \Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V} \end{aligned}$	2.7	$\begin{aligned} & 7.25 \\ & -70 \end{aligned}$	11	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~dB} \end{aligned}$
OPERATING TEMPERATURE RANGE		-40		+125	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Table 7. ${ }^{1}$

Parameter	Ratings
Supply Voltage	$\pm 5.5 \mathrm{~V}$
Vocm	$\pm \mathrm{V} \mathrm{s}$
Internal Power Dissipation	250 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec$)$	$300^{\circ} \mathrm{C}$

Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational section of this specification is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability.
${ }^{1}$ Thermal resistance measured on SEMI-standard, 4-layer board. 8-Lead SOIC: $\theta_{\mathrm{JA}}=121^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead MSOP: $\theta_{\mathrm{JA}}=142^{\circ} \mathrm{C} / \mathrm{W}$

Figure 3. Plot of Maximum Power Dissipation vs. Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD8132

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration

Pin No.	Mnemonic	Description
1	-IN	Negative Input.
2	Vocm	Voltage applied to this pin sets the common-mode output voltage with a ratio of $1: 1$. For example, 1 V dc on Vосм sets the dc bias level on +OUT and -OUT to 1 V .
3	V+	Positive Supply Voltage.
4	+OUT	Positive Output. Note that the voltage at - Din $_{\text {IN }}$ is inverted at +OUT (see Figure 64).
5	-OUT	Negative Output. Note that the voltage at + Din is inverted at -OUT (see Figure 64).
6	V-	Negative Supply Voltage.
7	NC	No Connect.
8	+IN	Positive Input.

OUTLINE DIMENSIONS

Figure 82. 8-Lead Standard Small Outline Package [SOIC]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

Figure 83. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
AD8132AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC	R-8	
AD8132AR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC, 13" Tape and Reel of 2,500	R-8	
AD8132AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC, 7 " Tape and Reel of 1,000	R-8	
AD8132ARZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC	R-8	
AD8132ARZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC, 13" Tape and Reel of 2,500	R-8	
AD8132ARZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC, 7 " Tape and Reel of 1,000	R-8	
AD8132ARM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	HMA
AD8132ARM-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP, 13" Tape and Reel of 3,000	RM-8	HMA
AD8132ARM-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP, 7" Tape and Reel of 1,000	RM-8	HMA
AD8132ARMZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	HMA
AD8132ARMZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP, 13" Tape and Reel of 3,000	RM-8	HMA
AD8132ARMZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP, 7 " Tape and Reel of 1,000	RM-8	HMA

[^0]
[^0]: ${ }^{1} \mathrm{Z}=$ Pb-free part

