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Abstract 

Human aging is often accompanied by the development of chronic disease. Research has 

identified molecular processes that are shared by aging-related diseases, and it is widely believed that pre-

clinical changes in these aging-related molecular processes (i.e. measures of “biological age”) may be 

more informative of morbidity and mortality risks than simple chronological age. DNA methylation age 

(DNAm-age) is a DNA methylation based predictor of chronological age and a novel measure of 

biological age. Studies have demonstrated associations of DNAm-age with a host of aging-related health 

outcomes including all-cause mortality, frailty, cancer, and Parkinson’s disease. However, very few 

studies have examined DNAm-age relationships with aging risk factors.  

Fine particulate air pollution (PM2.5) is a well-documented aging risk factor and is considered the 

world’s largest singular environmental health risk. This body of work utilized multivariate linear mixed 

effects models and a well-established aging cohort, the United States Veterans Affairs Normative Aging 

Study (NAS), to examine the relationship of long-term PM2.5 exposure levels with DNAm-age. After 

determining the direct relationship of PM2.5 with DNAm-age in the NAS, we determined which of five 

major PM2.5 component species (ammonium, elemental carbon, organic carbon, sulfate, and nitrate) were 

most associated with DNAm-age. Finally, we examined if normal genetic variation in aging-related 

physiological processes (endothelial function, metal processing, oxidative stress, mitochondrial genome 

physiology, and microRNA processing) impacted the relationships of PM2.5 and its component species 

with DNAm-age. 

We found that PM2.5 was significantly, positively associated with DNAm-age and that sulfate and 

ammonium were the component species most associated with DNAm-age. Moreover, endothelial 

function, mitochondrial genome, and microRNA processing variants significantly modified the 

association of PM2.5 with DNAm-age. DNAm-age was also significantly associated with a number of 
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serum measures related to these effect modifiers including mitochondrial DNA copy number, intercellular 

adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM). 

In all, our studies demonstrate a novel association of PM2.5 with DNAm-age. Our studies also 

suggest that DNAm-age has robust relationships with endothelial function, mitochondrial physiology, and 

miRNA processing – all of which are processes known to play a role in aging-related diseases. Still, 

future studies will be necessary to further understand what DNAm-age represents and how it can best be 

used as a biomarker. 
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1.1. A Synopsis of Fine Particle (PM2.5) Exposure and Human Health 

In 1993, a prospective study involving 8111 residents of six United States cities reported important 

associations of air pollutant levels with premature mortality. Even after controlling for smoking and other 

risk factors, the study suggested that individuals living in highly polluted cities were at a greater risk of 

premature mortality and that these individuals were dying from cardiopulmonary disease and lung cancer1. 

Since this landmark 1993 paper, reanalysis of the original study data has confirmed the quality of the initial 

findings. Moreover, it has become widely accepted that fine particulate air pollution (PM2.5) is a major 

global health risk2. Continued follow-up of the six city study participants has demonstrated that reductions 

in the concentrations of ambient PM2.5 – due to legislation like the Clean Air Act of 1970 and amendments 

of 1977 and 1990 – are significantly associated with declines in cardiopulmonary mortality3.  

Researchers have continued to extensively study the relationships of ambient PM2.5 exposure with 

human health. Much of this work has been in observational studies which have reported consistent 

relationships of PM2.5 exposure with adverse cardiopulmonary and cardiometabolic health outcomes4,5. 

Still, emerging data from observational studies has also revealed novel associations of PM2.5 exposure with 

previously unconsidered health outcomes like dementia, Parkinson’s disease, and chronic kidney disease6-

8. Experimental toxicological studies in human cells and animal models have provided supportive evidence 

that PM2.5 exposure can result in health endpoints comparable to those described in human observational 

studies9,10. From this experimental work, we have come to understand that fine particles are particularly 

dangerous because they are readily inhalable and can penetrate into the lung’s alveolar gas exchange 

regions. In addition to respiratory-related consequences, PM2.5 can traverse the respiratory barrier, enter the 

circulatory system and cause systemic sequelae11. Experimental studies have also demonstrated that PM2.5 

exposure impacts biological process (e.g. inflammation and oxidative stress) and that disturbances in these 

processes are likely to be among the molecular mechanisms that manifest themselves in PM2.5-related 

disease12,13.  

Despite these compelling findings, there are studies that still report no relationships of PM2.5 mass 

with health endpoints including relationships that have been previously well-described. A leading theory to 
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explain these seemingly contradictory results is based on the premise that the levels and the composition of 

PM2.5 mass are known to vary both spatially and temporally. In fact, the chemical composition of PM2.5 is 

often dependent on particle sources. For instance, primary particles emitted from coal combustion are 

enriched with arsenic and selenium while those from oil combustion are enriched with nickel and 

vanadium14. Particles from soil sources are enriched for crustal elements like aluminum and silicon while 

sulfates, nitrates, and organic compounds are usually secondary PM2.5 component species from atmospheric 

photochemical reactions15. A study of 45 school children living Southern California with persistent asthma, 

demonstrated that associations of PM2.5 with airway inflammation in asthmatics is missed if only 

relationships with total PM2.5 mass are examined. However, when associations with particular component 

species (e.g. elemental carbon and nitric oxide) were examined, these associations were robust in magnitude 

and statistically significant16. Likewise, another more recently study, based on a population of individuals 

under the age of 20 living in the Shalu district of Taiwan, found the risk of asthma outpatient visits to be 

associated with carbon and nitrate PM2.5 component species17. Differential PM2.5 component species 

toxicity has also been reported in adult populations with respect to many health outcomes including risk of 

myocardial infarction and pre-term birth18,19. Ultimately, these data demonstrate the importance of 

component species analyses alongside total PM2.5 mass analyses especially when attempting to identify 

causal toxic pollutants20.  

 

1.2. The Importance of Continued PM2.5 Research 

It is important to re-emphasize that PM2.5 research has informed the implementation of new air 

quality standards that have helped to save many lives and reduced health risks across the world21,22. A 

critical component of defining meaningful current and future air quality standards will be work not only 

examining relationships of PM2.5 exposure with disease, but work that examines relationships of PM2.5 

exposure with molecular processes that may precede the manifestation of clinical disease.  Understanding 

relationships with molecular processes like biological aging may also inform additional interventions or 

therapeutics for individuals currently living in areas that do not adhere to PM2.5 air quality standards. 
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1.3. PM2.5 Exposure and Aging 

Human aging is often accompanied by the development of multiple chronic conditions including 

dementia, metabolic syndrome, and cardiovascular disease. Since many of these chronic conditions have 

been independently associated with PM2.5 exposure, exploring relationships of PM2.5 with aging remains 

one promising strategy to further understand the adverse impact of PM2.5 on human health. One large study 

of approximately 28 million adults across the United States found that every interquartile range (4.19 

µg/m3) increase in PM2.5 exposure was significantly associated with a lower probability of exceptional 

aging, which was defined as living to the age range of 85-94, and a lower probability of becoming a 

centenarian, living to the age range of at least 100 years23. Still, the mechanisms that explain how PM2.5 

exposure impacts the aging process are not well understood. One major hurdle in addressing this research 

gap is the variability in how aging is defined in current research. As demonstrated by the previously 

mentioned exceptional aging study, many studies define aging as the passing of time or chronological age. 

However, research has identified a number of molecular markers that outperform chronological age in 

representing morbidity and mortality risk. These molecular markers include telomere length, mitochondrial 

genome abundance, measures of cellular senescence, stem cell exhaustion, and epigenetic alterations. 

Furthermore, human observational studies and animal experimental studies have reported relationships of 

PM2.5 exposure with a number of these markers including telomere length, cellular senescence, and cell 

atrophy24-26. Some of the more novel associations of PM2.5 exposure with aging markers have involved 

epigenetic alterations, particularly DNA methylation.  

 

1.4. PM2.5 Exposure and DNA Methylation 

Epigenetic modifications are alterations to DNA, RNA, or proteins that result in changes in the 

regulation or function of these molecules. Although these molecules may be modified, their respective 

nucleic acid or protein sequences remain unchanged. Epigenetic changes are one major way that an 

organism’s internal and external environments can influence their cellular and phenotypic traits. DNA 
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methylation is one of the three major epigenetic modifications – histone modifications and non-coding 

RNAs are the other two – and it involves the addition of methyl residues to DNA nucleotides. DNA 

methylation is catalyzed by enzymes called DNA methyltransferases (DNMTs). Mammals have three major 

DNMTs: DNMT1, DNMT3A, and DNMT3B. DNMT3A and DNMT3B are involved in de novo 

methylation and are most active during embryogenesis and early life27. DNMT1 is the most abundant 

methyltransferase and it remains active throughout adulthood. DNMT1 is active in maintenance 

methylation which involves maintaining methylation patterns throughout an organism’s life. When DNA is 

replicated, if the template strand is methylated, DNMT1 methylates the newly synthesized strand 

accordingly. In most organisms, S-adenosylmethionine (SAM) serves as a methyl donor in the methylation 

processes28-30. 

In mammals, DNA methylation almost exclusively occurs on cytosine residues that are followed 

by guanine residues (CpG sites). In fact, approximately 80% of CpGs in mammalian genomes are 

methylated31. DNMTs transfer the methyl group from SAM to the 5 position of cytosine residues to form 

5-methylcytosine (5mC). Many CpG sites exist in clusters near transcriptionally integral regions of the 

genome like promoters and enhancers. Clusters of CpGs near transcriptional start sites are called CpG 

islands. Methylation of CpG islands usually leads to condensed chromatin, delayed replication, and 

inhibition of transcription initiation32,33. By covalently altering the structure of cytosine residues with 

methyl groups, the interactions of chromatin proteins and transcription factors with these areas of DNA are 

now altered. Since these interactions are critical for transcription, altering them is how methylation affects 

transcription and regulates a number of biological processes including development, genomic imprinting 

and inactivation of X chromosomes. It is also important to note that DNA can be demethylated. This process 

can occur passively or via enzymes known as Ten-eleven translocation (TET) enzymes. DNA 

demethylation may also involve the formation of additional DNA modifications like 5-

hydroxymethylcyotsine (5hmC)34. 

Both experimental and observational studies have revealed relationships of PM2.5 and its 

component species with DNA methylation. Moreover, the results of these studies have offered much insight 
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into the pathological effects PM2.5
35. For instance, one epigenome wide study, utilizing the peripheral blood 

leukocytes of individuals from three independent United States or German cohorts, identified 12 CpG sites 

with methylation levels associated with various time windows of short-term PM2.5 exposure. Methylation 

at 9 of the sites was positively associated with PM2.5 levels while methylation at the remaining 6 sites was 

negatively associated with PM2.5
36. In an epigenome-wide study made up of samples from 1207 individuals 

living in Los Angeles and Chicago, methylation at 5 CpG sites was associated with long-term PM2.5 

exposure levels37.  Not one of these 5 sites was among the previously identified 12 sites. The difference in 

these findings could be due a number of differences between the two studies including the length of PM2.5 

exposure or even the type of tissue that methylation was measured in. The latter study used methylation 

from CD14+ purified monocytes while the first used a mixture of blood leukocytes. Studies have also 

examined relationships of PM2.5 component species with DNA methylation. In peripheral blood monocytes, 

Dai et. al (2017) examined the relationships of long-term, one year PM2.5 component exposure (Al, Ca, Cu, 

Fe, K, Na, Ni, S, Si, V, and Zn) with methylation in a cohort of community dwelling older men. These 

authors found 20 CpG sites that were significantly associated with Fe, 8 that were associated with Ni, and 

1 that was associated with V38. Again, none of these component species-associated CpGs overlapped with 

the previously reported long-term or short-term total PM2.5-associated CpG sites. Together, these and other 

existing studies highlight that differences in research methods or particle composition can influence the 

results of PM2.5 epigenome-wide studies. Moreover, the biological applicability of findings from any 

epigenome-wide study should always be carefully considered.    

 

1.5. DNA Methylation and Aging 

In addition to its relationships with PM2.5 exposure levels, DNA methylation also has relationships 

with disease and physiological processes. One of the most well-studied of these relationships is the 

relationship of DNA methylation with aging. Although some site-specific hypermethylation is observed, 

mammalian aging is generally associated with DNA CpG hypomethylation. More specifically, sites like 

promoter-associated CpG islands, which normally have low baseline DNA methylation, tend to become 
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hypermethylated with age. On the other hand, sites with high baseline methylation, like intergenic non-

island CpGs, tend to become hypomethylated with age. Since most CpGs in the genome are located outside 

of CpG islands –and are thus highly methylated at baseline – this translates to an overall loss of DNA 

methylation with aging39. This aging-related change in DNA methylation is called epigenetic drift and to 

some extent is thought to be due to a decline in DNMT1 that occurs with aging40. Even though DNA 

methylation patterns are highly divergent in different tissues, this phenomenon of epigenetic drift has been 

replicated in many tissues and is believed to be a general total-organism phenomenon41. In addition to the 

general epigenetic drift patterns of global hypomethylation and local hypermethylation, research has 

identified specific sites in the genome that are so highly associated with aging that they can be used to 

predict chronological age42. A number of these “epigenetic clock” sites and measures have been described, 

but one particular measure developed by Steve Horvath, PhD, has demonstrated utility across individuals 

and tissue/cell types. Hereby, we refer to this Horvath measure as DNA methylation age (DNAm-age)43. 

 

1.6. DNA Methylation Age (DNAm-Age) 

DNA methylation age (DNAm-age) is a measure that arose out of the hypothesis that particular 

sites in the genome experienced aging-related changes in DNA methylation that were progressive and 

common across tissues and individuals. Horvath (2013) developed the measure as a predictor of age using 

data from 82 Illumina DNA methylation array datasets that consisted of 7844 non-cancer human samples 

from 51 healthy tissues or cell types. 39 of the datasets were used to train the age predictor, 31 were used 

to validate the measure, and the others were used for additional analyses. Beginning with 21,369 CpGs 

shared between the Illumina 27K and 450K platforms, a transformed version chronological age was 

regressed on the CpGs using a penalized regression elastic net model. From these 21,369 CpGs, 353 were 

selected by the elastic net. 193 CpGs were hypermethylated with age and 160 were hypomethylated. The 

hypermethylated CpGs were more likely to be in poised promoters and were over-represented near 

Polycomb-group target genes, which are known to play a critical role during embryonic development. The 

160 hypomethylated CpGs were more likely to be in weak promoters or strong enhancers and were over-
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represented in CpG shores. Pathway analysis of the genes that co-locate with the 353 CpGs revealed 

enrichment for the biological processes of organism tissue development; cellular growth and proliferation; 

cell death and survival; and cancer43.  

The weighted average derived from the regression coefficients of each of the 353 CpG sites was 

then used to calculate one measure of age prediction, DNAm-age. The measure performed well in the test 

datasets (age correlation = 0.96, error = 3.6 years) regardless of if the dataset was from mixed tissues (e.g. 

whole blood) or from an individual cell type (e.g. CD14+ monocytes). Moreover, early analyses 

demonstrated that DNAm-age possessed a number of other properties beyond its ability to accurately 

predict age in a multitude of human tissues including blood, brain, saliva, skin, and bone. First, DNAm-age 

appeared to be reflecting some intrinsic measurement of the methylome because it able was able to track 

chronological age in non-proliferative tissues (e.g. neurons) while also assigning similar ages to more short-

lived tissues (e.g. blood cells). Yet, there were some tissues where DNAm-age consistently performed 

poorly as an age predictor: breast tissue, dermal fibroblasts, uterine endometrium, skeletal muscle, and heart 

tissue. Heart tissue tended to have a lower DNAm-age than expected while the other mentioned tissues had 

higher DNAm-ages than expected. However, it is thought that this poor performance is due to some unique 

property of the methylome in these tissues rather than an error in the metric itself. Second, the DNAm-age 

of induced pluripotent stem cells and embryonic stem cells was found to be near zero but increased as these 

cells were passaged following cell culture. Third, DNAm-age could be calculated and accurately perform 

in chimpanzees. This suggested that the measure was somewhat evolutionarily conserved. Fourth, the 

number of somatic mutations in a cancer sample tended to be inversely correlated with the sample’s DNAm-

age even though DNAm-age had very weak relationships with tumor grade and stage.  

Since the initial publication that described DNAm-age and its intrinsic properties, researchers have 

published findings that further suggest that DNAm-age is not simply a predictor of chronological age.  Most 

of the emerging evidence suggests that DNAm-age captures risks associated with the molecular aging 

process and represents a novel measure of biological aging. Some of the most compelling evidence for this 

theory has come from studies demonstrating associations of DNAm-age with all-cause mortality. The 
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largest of such studies is a meta-analysis of 13 population-based cohorts amounting to 13,089 individuals. 

This study found that increases in DNAm-age were predictive of mortality even when accounting for 

chronological age and additional risk factors like cancer, coronary artery disease, hypertension, type 2 

diabetes, race, sex, physical activity, and body mass index44. Additional evidence comes from studies that 

report that centenarians (long-lived individuals) have DNAm-ages that are lower than their chronological 

ages45,46. Following this trend, aging-related lifestyle factors and health conditions have also been associated 

with DNAm-age. Negative lifestyle factors like exposure violence and personal life stressors have been 

associated with increased DNAm-age while more positive lifestyle factors like dietary fish intake or blood 

carotenoid levels (an indicator of fruit and vegetable intake) are correlated with decreases in DNAm-age47-

49. Menopause, Huntington’s disease, frailty, and Alzheimer’s disease-related cognitive decline have all 

been associated with increased DNAm-age50-53.  

Beyond these associations from observational studies, researchers are also beginning to explore 

molecular mechanisms related to DNAm-age. In his initial publication, Horvath reported the results from a 

number of simple studies that ultimately resulted in his epigenetic maintenance system (EMS)  hypothesis. 

The EMS hypothesis states that DNAm-age may represent the cumulative work performed by a yet to be 

defined epigenetic maintenance system, which plays a role in maintaining epigenetic homeostasis. Any 

event or exposure that disrupts the epigenome will result in more work being done by the EMS to return 

the epigenome to homeostasis. The output of this additional work is a higher DNAm-age. In line with his 

hypothesis, decreases in DNAm-age could be interpreted as epigenome stability or a disruption of the EMS’ 

ability to do work. Although Horvath hypothesized that methyltransferases would be a component of the 

EMS, no studies have explicitly looked to identify DNAm-age EMS components. One of the first studies 

to even explore the mechanistic underpinnings of DNAm-age used human cell lines to examine the 

relationships of three major forms of cellular senescence (DNA damage, oncogene-induced, and 

replicative) with DNAm-age. These researchers found that replicative senescence and oncogene-induced 

senescence were associated with increased DNAm-age, but DNA damage senescence was not. As part of 

their studies, the researchers also demonstrated that DNAm-age was independent of telomere length54. A 
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second study, that begins to explore the mechanistic relationships of DNAm-age, builds upon the widely 

accepted phenomenon in aging research that caloric restriction extends lifespan in model organisms. It was 

unknown whether this phenomenon and the biology associated with caloric restriction was at all related to 

DNAm-age, until a published report demonstrated that 30% caloric restriction since the age of 7-14 years 

in 22-30 year-old rhesus monkeys can impact DNAm-age. Specifically, caloric restricted monkeys had a 

blood DNAm-age that was on average 7 years younger than their chronological age when compared to ad 

libitum-fed controls55. 

 

1.7. Studying PM2.5 and DNAm-age Relationships 

The emerging research involving DNAm-age has inspired the pursuit of studies that examine the 

relationships of DNAm-age with PM2.5, an aging and environmental health and risk factor. The work 

presented in this dissertation is intended to contribute the growing body of research aimed at providing a 

better understanding of how long-term PM2.5 exposure can impact human health.  

 

  



	
11 

1.8. References 

1 Dockery, D. W. et al. An association between air pollution and mortality in six U.S. cities. N Engl 

J Med 329, 1753-1759, doi:10.1056/NEJM199312093292401 (1993). 

2 World Health, O. Burden of disease from household air pollution for 2012. WHO, Geneva (2014). 

3 Laden, F., Schwartz, J., Speizer, F. E. & Dockery, D. W. Reduction in fine particulate air pollution 

and mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 

173, 667-672, doi:10.1164/rccm.200503-443OC (2006). 

4 Lippmann, M. Toxicological and epidemiological studies of cardiovascular effects of ambient air 

fine particulate matter (PM2.5) and its chemical components: coherence and public health 

implications. Crit Rev Toxicol 44, 299-347, doi:10.3109/10408444.2013.861796 (2014). 

5 Brook, R. D., Newby, D. E. & Rajagopalan, S. Air Pollution and Cardiometabolic Disease: An 

Update and Call for Clinical Trials. Am J Hypertens, doi:10.1093/ajh/hpx109 (2017). 

6 Bowe, B. et al. Particulate Matter Air Pollution and the Risk of Incident CKD and Progression to 

ESRD. J Am Soc Nephrol, doi:10.1681/ASN.2017030253 (2017). 

7 Chen, H. et al. Exposure to ambient air pollution and the incidence of dementia: A population-

based cohort study. Environ Int 108, 271-277, doi:10.1016/j.envint.2017.08.020 (2017). 

8 Palacios, N. Air pollution and Parkinson's disease - evidence and future directions. Rev Environ 

Health, doi:10.1515/reveh-2017-0009 (2017). 

9 Haberzettl, P., O'Toole, T. E., Bhatnagar, A. & Conklin, D. J. Exposure to Fine Particulate Air 

Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress. Environ 

Health Perspect 124, 1830-1839, doi:10.1289/EHP212 (2016). 

10 Weldy, C. S. et al. In utero and early life exposure to diesel exhaust air pollution increases adult 

susceptibility to heart failure in mice. Part Fibre Toxicol 10, 59, doi:10.1186/1743-8977-10-59 

(2013). 

11 Feng, S., Gao, D., Liao, F., Zhou, F. & Wang, X. The health effects of ambient PM2.5 and potential 

mechanisms. Ecotoxicol Environ Saf 128, 67-74, doi:10.1016/j.ecoenv.2016.01.030 (2016). 



	
12 

12 Liu, Q. et al. Particulate matter 2.5 regulates lipid synthesis and inflammatory cytokine production 

in human SZ95 sebocytes. Int J Mol Med 40, 1029-1036, doi:10.3892/ijmm.2017.3109 (2017). 

13 He, M. et al. PM2.5-induced lung inflammation in mice: Differences of inflammatory response in 

macrophages and type II alveolar cells. J Appl Toxicol 37, 1203-1218, doi:10.1002/jat.3482 (2017). 

14 Kim, E., Hopke, P. K., Kenski, D. M. & Koerber, M. Sources of fine particles in a rural midwestern 

U.S. area. Environ Sci Technol 39, 4953-4960 (2005). 

15 Adar, S. D., Filigrana, P. A., Clements, N. & Peel, J. L. Ambient Coarse Particulate Matter and 

Human Health: A Systematic Review and Meta-Analysis. Curr Environ Health Rep 1, 258-274, 

doi:10.1007/s40572-014-0022-z (2014). 

16 Delfino, R. J. et al. Personal and ambient air pollution is associated with increased exhaled nitric 

oxide in children with asthma. Environ Health Perspect 114, 1736-1743 (2006). 

17 Jung, C. R. et al. PM2.5 components and outpatient visits for asthma: A time-stratified case-

crossover study in a suburban area. Environ Pollut 231, 1085-1092, 

doi:10.1016/j.envpol.2017.08.102 (2017). 

18 Rich, D. Q. et al. The triggering of myocardial infarction by fine particles is enhanced when 

particles are enriched in secondary species. Environ Sci Technol 47, 9414-9423, 

doi:10.1021/es4027248 (2013). 

19 Rappazzo, K. M., Daniels, J. L., Messer, L. C., Poole, C. & Lobdell, D. T. Exposure to Elemental 

Carbon, Organic Carbon, Nitrate, and Sulfate Fractions of Fine Particulate Matter and Risk of 

Preterm Birth in New Jersey, Ohio, and Pennsylvania (2000-2005). Environ Health Perspect 123, 

1059-1065, doi:10.1289/ehp.1408953 (2015). 

20 Grahame, T. J. & Schlesinger, R. B. Health effects of airborne particulate matter: do we know 

enough to consider regulating specific particle types or sources? Inhal Toxicol 19, 457-481, 

doi:10.1080/08958370701382220 (2007). 

21 Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing Global Mortality from Ambient 

PM2.5. Environ. Sci. Technol. 49, 8057-8066, doi:10.1021/acs.est.5b01236 (2015). 



	
13 

22 Fann, N., Kim, S. Y., Olives, C. & Sheppard, L. Estimated Changes in Life Expectancy and Adult 

Mortality Resulting from Declining PM2.5 Exposures in the Contiguous United States: 1980-2010. 

Environ Health Perspect 125, 097003, doi:10.1289/EHP507 (2017). 

23 Baccarelli, A. A. et al. Particulate Air Pollution, Exceptional Aging, and Rates of Centenarians: A 

Nationwide Analysis of the United States, 1980-2010. Environ Health Perspect 124, 1744-1750, 

doi:10.1289/EHP197 (2016). 

24 Shan, M. et al. A feasibility study of the association of exposure to biomass smoke with vascular 

function, inflammation, and cellular aging. Environ Res 135, 165-172, 

doi:10.1016/j.envres.2014.09.006 (2014). 

25 Gao, Z. X. et al. Assessment of DNA Damage and Cell Senescence in Corneal Epithelial Cells 

Exposed to Airborne Particulate Matter (PM2.5) Collected in Guangzhou, China. Invest 

Ophthalmol Vis Sci 57, 3093-3102, doi:10.1167/iovs.15-18839 (2016). 

26 Woodward, N. C. et al. Traffic-related air pollution impact on mouse brain accelerates myelin and 

neuritic aging changes with specificity for CA1 neurons. Neurobiol Aging 53, 48-58, 

doi:10.1016/j.neurobiolaging.2017.01.007 (2017). 

27 Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are 

essential for de novo methylation and mammalian development. Cell 99, 247-257 (1999). 

28 <J. Biol. Chem.-1951-Cantoni-745-54.pdf>. 

29 <J. Biol. Chem.-1953-Cantoni-403-16.pdf>. 

30 Santamaria, E. et al. Functional proteomics of nonalcoholic steatohepatitis: mitochondrial proteins 

as targets of S-adenosylmethionine. Proceedings of the National Academy of Sciences of the United 

States of America 100, 3065-3070, doi:10.1073/pnas.0536625100 (2003). 

31 Jabbari, K. & Bernardi, G. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 

333, 143-149, doi:10.1016/j.gene.2004.02.043 (2004). 

32 Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M. & Issa, J. P. Alterations in DNA 

methylation: a fundamental aspect of neoplasia. Advances in cancer research 72, 141-196 (1998). 



	
14 

33 Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature genetics 21, 163-167, 

doi:10.1038/5947 (1999). 

34 Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. 

Nat Rev Genet, doi:10.1038/nrg.2017.33 (2017). 

35 Leclercq, B. et al. Genetic and epigenetic alterations in normal and sensitive COPD-diseased 

human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5. Environ Pollut 

230, 163-177, doi:10.1016/j.envpol.2017.06.028 (2017). 

36 Panni, T. et al. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air 

Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study. 

Environ Health Perspect 124, 983-990, doi:10.1289/ehp.1509966 (2016). 

37 Chi, G. C. et al. Long-term outdoor air pollution and DNA methylation in circulating monocytes: 

results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health 15, 119, 

doi:10.1186/s12940-016-0202-4 (2016). 

38 Dai, L. et al. Differential DNA methylation and PM2.5 species in a 450 K epigenome-wide 

association study. Epigenetics, 1-10, doi:10.1080/15592294.2016.1271853 (2016). 

39 Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging 

Cell 14, 924-932, doi:10.1111/acel.12349 (2015). 

40 Pal, S. & Tyler, J. K. Epigenetics and aging. Sci Adv 2, e1600584, doi:10.1126/sciadv.1600584 

(2016). 

41 Jung, M. & Pfeifer, G. P. Aging and DNA methylation. BMC Biol 13, 7, doi:10.1186/s12915-015-

0118-4 (2015). 

42 Jylhava, J., Pedersen, N. L. & Hagg, S. Biological Age Predictors. EBioMedicine 21, 29-36, 

doi:10.1016/j.ebiom.2017.03.046 (2017). 

43 Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115, 

doi:10.1186/gb-2013-14-10-r115 (2013). 



	
15 

44 Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting 

time to death. Aging (Albany NY) 8, 1844-1865, doi:10.18632/aging.101020 (2016). 

45 Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and 

their offspring. Aging (Albany NY) 7, 1159-1170, doi:10.18632/aging.100861 (2015). 

46 Armstrong, N. J. et al. Aging, exceptional longevity and comparisons of the Hannum and Horvath 

epigenetic clocks. Epigenomics 9, 689-700, doi:10.2217/epi-2016-0179 (2017). 

47 Jovanovic, T. et al. Exposure to Violence Accelerates Epigenetic Aging in Children. Sci Rep 7, 

8962, doi:10.1038/s41598-017-09235-9 (2017). 

48 Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American 

cohort: relevance of glucocorticoid signaling. Genome Biol 16, 266, doi:10.1186/s13059-015-

0828-5 (2015). 

49 Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 

(Albany NY) 9, 419-446, doi:10.18632/aging.101168 (2017). 

50 Levine, M. E. et al. Menopause accelerates biological aging. Proc Natl Acad Sci U S A 113, 9327-

9332, doi:10.1073/pnas.1604558113 (2016). 

51 Horvath, S. et al. Huntington's disease accelerates epigenetic aging of human brain and disrupts 

DNA methylation levels. Aging (Albany NY) 8, 1485-1512, doi:10.18632/aging.101005 (2016). 

52 Breitling, L. P. et al. Frailty is associated with the epigenetic clock but not with telomere length in 

a German cohort. Clin Epigenetics 8, 21, doi:10.1186/s13148-016-0186-5 (2016). 

53 Levine, M. E., Lu, A. T., Bennett, D. A. & Horvath, S. Epigenetic age of the pre-frontal cortex is 

associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive 

functioning. Aging (Albany NY) 7, 1198-1211 (2015). 

54 Lowe, D., Horvath, S. & Raj, K. Epigenetic clock analyses of cellular senescence and ageing. 

Oncotarget 7, 8524-8531, doi:10.18632/oncotarget.7383 (2016). 

55 Maegawa, S. et al. Caloric restriction delays age-related methylation drift. Nat Commun 8, 539, 

doi:10.1038/s41467-017-00607-3 (2017).



	
16 

 

Chapter 2: 

Long-term Ambient Particle Exposures and Blood DNA Methylation Age: Findings from the VA 
Normative Aging Study 

 

Jamaji C. Nwanaji-Enwerem1, BS; Elena Colicino1, PhD; Letizia Trevisi1, PhD; Itai Kloog2, PhD; Allan 
C. Just3, PhD; Jincheng Shen4, PhD; Kasey Brennan1, BS; Alexandra Dereix1, BS; Lifang Hou5, MD, 
PhD, MS; Pantel Vokonas6, MD; Joel Schwartz1, PhD; and Andrea A. Baccarelli1, MD, PhD† 

 

1Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA 

2Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer 
Sheva, Israel 

3Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA 
 
4Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 
 
5Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 
USA 
 
6VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, 
Boston University School of Medicine, Boston, MA, USA 
 

This is a pre-copyedited, author-produced version of an article accepted for publication in Environmental 
Epigenetics following peer review. This version was reproduced with permission from [Nwanaji-
Enwerem, Jamaji C., et al. "Long-term ambient particle exposures and blood DNA methylation age: 
findings from the VA normative aging study." Environmental epigenetics 2.2 (2016).] Copyright 2016 
Oxford University Press. The version of record is available online at: 
https://academic.oup.com/eep/article/2/2/dvw006/2841034.  DOI: 10.1093/eep/dvw006. 
 
 

 

  



	
17 

2.1. Abstract 

Background: Ambient particles have been shown to exacerbate measures of biological aging; yet, no 

studies have examined their relationships with DNA methylation age (DNAm-age), an epigenome-wide 

DNA methylation based predictor of chronological age. 

Objective: We examined the relationship of DNAm-age with fine particulate matter (PM2.5), a measure of 

total inhalable particle mass, and black carbon (BC), a measure of particles from vehicular traffic. 

Methods: We used validated spatiotemporal models to generate 1-year PM2.5 and BC exposure levels at 

the addresses of 589 older men participating in the VA Normative Aging Study with 1 to 3 visits between 

2000 and 2011 (n=1032 observations). Blood DNAm-age was calculated using 353 CpG sites from the 

Illumina HumanMethylation450 BeadChip. We estimated associations of PM2.5 and BC with DNAm-age 

using linear mixed effects models adjusted for age, lifestyle/environmental factors, and aging-related 

diseases.  

Results: After adjusting for covariates, a 1-µg/m3 increase in PM2.5 (95%CI: 0.30, 0.75, P<0.0001) was 

significantly associated with a 0.52-year increase in DNAm-age. Adjusted BC models showed similar 

patterns of association (β=3.02, 95%CI: 0.48, 5.57, P=0.02). Only PM2.5 (β=0.54, 95%CI: 0.24, 0.84, 

P=0.0004) remained significantly associated with DNAm-age in two-particle models. Methylation levels 

from 20 of the 353 CpGs contributing to DNAm-age were significantly associated with PM2.5 levels in our 

two-particle models. Several of these CpGs mapped to genes implicated in lung pathologies including 

LZTFL1, PDLIM5, and ATPAF1.  

Conclusion: Our results support an association of long-term ambient particle levels with DNAm-age and 

suggest that DNAm-age is a biomarker of particle-related physiological processes.  
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2.2. Introduction  

Annually, air pollution – including ambient particle exposures – contributes to 3.7 million deaths 

worldwide and is one of the world’s largest single environmental health risks1. Emerging evidence has also 

suggested that ambient particles may have aging-related effects: particulate matter with aerodynamic 

diameter £ 2.5 µm (PM2.5) exposures have been associated with age-related outcomes including brain 

atrophy2, declines in cognitive performance3, ischemic heart disease4, and stroke5, as well as increases in 

systolic blood pressure by as much as 4.6 mmHg6,7. Moreover, traffic related particle exposures have been 

associated with hastened lung function decline by 6-7% over a five year period8, accelerated pigment spot 

formation, and other clinical hallmarks of premature skin aging9. Previous research has used telomere length 

(TL), a common biomarker of biological aging10, to characterize the relationship between particle exposures 

and aging. Nevertheless, data on the associations between ambient particles and TL have been conflicting 

and thus reflect a need for alternative biological aging markers6,11,12. 

Recent developments in the epigenetics of aging have provided new opportunities to address the 

relationship between particle exposures and aging biology. DNA methylation is an epigenetic mark 

involved in regulating genomic structure and transcription13. Reproducible changes in DNA methylation 

have long been associated with chronological aging14-16 and recent studies report persisting associations 

even after accounting for age-related cellular heterogeneity, a previously neglected confounder17-19. DNA 

methylation age (DNAm-age) is a novel tissue-independent predictor of chronological age and is calculated 

by an algorithm that uses methylation values from 353 chronological age-correlated CpG dinucleotides in 

Illumina’s HumanMethylation450 BeadChip20,21. Since DNA methylation in blood has been empirically 

shown to be sensitive to a number of biological processes22-28, the DNAm-age of blood cells may help in 

further understanding epigenetic aging relationships with ambient particles. In this study, we investigated 

the relationship of DNAm-age with ambient particle exposures – PM2.5 and Black Carbon (BC) – in a cohort 

of elderly men. We also examined the relationship of PM2.5 and BC with leukocyte TL. 

 

2.3. Materials and Methods 
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2.3.a. Study population 

The Normative Aging Study (NAS) is an ongoing longitudinal cohort study of male volunteers 

within the Eastern Massachusetts community established in 1963 by the U.S. Department of Veterans 

Affairs (VA). Participants free of any chronic medical conditions were enrolled in the study and returned 

for onsite, detailed medical examinations every 3-5 years, during which data on stress levels, diet, physical 

activity, smoking status, and additional risk factors that may impact health were collected. Participants 

provided written informed consent to the VA Institutional Review Board (IRB). The Harvard T.H. Chan 

School of Public Health and the VA IRBs granted human subjects approval.  

Eligibility for our study sample required continued participation as of 2000, when PM2.5 air 

pollution levels became available. We excluded NAS participants with a diagnosis of leukemia (11 

participants) because of a possible influence on the DNA methylation of blood cells. The remaining 589 

participants were used in the analysis (Fig. S1). Study staff measured DNA methylation on blood DNA 

collected at up to three different visits for the participants. Using all available visits for each participant 

resulted in 1032 total observations.   

 

2.3.b. Assessment of environmental factors: ambient particles and temperature 

We selected PM2.5 and BC as our ambient particle exposures because of their global pervasiveness 

[1] in addition to their status as the leading ambient particles with well-documented relationships with both 

DNA methylation53-55 and adverse health outcomes56-59.  

To generate daily PM2.5 exposure levels (in µg/m3) at each participant’s address, we employed a 

well-validated satellite based hybrid spatiotemporal prediction model with a multi-step approach60,61. The 

hybrid model combined satellite-derived aerosol optical depth (AOD) measurements and local land use 

regression model variables (e.g. traffic density, population density, and elevation) alongside temporal 

variables (e.g. temperature, wind speed, etc.). We fit the models to data from each year separately and 

generated daily predictions at the 1 x 1 km area resolution. Each participant’s residence was geocoded and 

linked to an area level grid-point. To create a metric of long-term exposure, we averaged daily PM2.5 level 
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predictions at each participant’s address over the 365 days prior to the day of visit. The prediction model 

had an out of sample R2 of 0.88 for daily samples.   

We generated daily black carbon (BC) exposure estimates (in µg/m3) based on participants’ 

residences using a validated spatiotemporal land-use regression model62. Daily average BC estimates from 

83 monitoring sites throughout the Greater Boston area were used to develop a prediction model. The final 

model included predictors based on information from meteorological conditions (e.g. wind speed), land use 

(e.g. traffic density), daily BC concentrations at a central monitor, and additional descriptors (e.g. day of 

the week). The prediction model had a high R2 of 0.83 based on the training data set and a moderate 

correlation between predicted values and observed BC levels in four out-of-sample validation samples (R2 

= 0.59). To generate a 1-year BC exposure, we averaged daily BC exposure levels for the 365 days prior to 

the day of NAS visit. 

To generate ambient temperature (in Celsius) for each participant we used a spatiotemporal 

prediction multi-step approach51. We obtained daily physical surface temperature (Ts) data from AOD 

measurements with 1 x 1 km resolution and daily near surface air temperature (Ta) data from the National 

Climatic Data Center, Environmental Protection Agency, and Weather Underground Inc. Mixed model 

regression was first used to calibrate Ts to Ta in 1 x 1 km grid cells where both were available. The model 

was validated with mean out of sample R2 for days with available Ts and days without Ts equal to 0.95 and 

0.94 respectively. Daily temperature measurements were averaged over the 365 days prior to the visit to 

generate 1-year temperature exposure estimates to complement the 1-year PM2.5 and BC measurements. 

We selected the 1-year average because it correlates well with averages of PM2.5, BC, and temperature over 

longer time windows and was available for a higher number of participants (Table S1). Moreover, existing 

studies examining relationships between particle exposures and other biological markers of aging, like 

telomere length, report more consistent and biologically significant results when a 1-year particle exposure 

is utilized6,11,45-48.  

 

2.3.c. DNA methylation and calculation of DNA methylation age (DNAm-age)  
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Laboratory staff extracted DNA from buffy coat of 7 mL whole blood using the QIAamp DNA 

Blood Kit (QIAGEN, Valencia, CA, USA). 500 ng DNA samples were then treated for bisulfite conversion 

using the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA, USA). Following bisulfite 

conversion, DNA samples were hybridized to the 12 sample Illumina HumanMethylation450 BeadChips 

as per Infinium HD Methylation protocol (Illumina, San Diego, CA, USA). Study staff then used a two-

stage age-stratified algorithm to randomize samples to avoid confounding with chip and plate effects while 

ensuring similar age distribution across chips and plates. For quality control, we removed samples where 

>5% of probes had beadcount < 3 and >1% of probes had a detection P-value >0.05. The Bioconductor 

minfi package Illumina-type background correction without normalization was used to preprocess the 

remaining samples and generate methylation beta values to compute DNAm-age63. 450k arrays were run in 

the Genomics Core Facility at Northwestern University. 

We calculated DNAm-age through Horvath’s publically available online calculator 

(http://labs.genetics.ucla.edu/horvath/dnamage/)20. In short, an elastic net model (penalized regression) was 

used to regress a calibrated version of chronological age on 21,369 CpG probes shared by Illumina 

HumanMethylation27 and HumanMethylation450 BeadChip platforms. The elastic net platform selected 

353 CpGs that correlate with age (193 positively and 160 negatively). The calculator predicts the age of 

each DNA sample (DNAm-age) using regression coefficients of the 353 CpGs resulting from the elastic 

net regression model trained from a number of training data sets. The calculator maintains predictive 

accuracy (age correlation 0.97, error = 3.6 years) across body tissues including blood20.   

 

2.3.d. Assessment of leukocyte telomere length (TL) 
 

Laboratory staff performed quantitative real time polymerase chain reaction (qRT-PCR) on DNA 

extracted from buffy coat of whole blood using the QIAamp DNA Blood Kits64. Relative TL was measured 

on a 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) as the qRT-PCR 

factor by which a sample differs from a reference DNA sample in its ratio of telomere repeat copy number 

(T) to single 36B4 gene copy number (S)11,64. The 36B4 gene is located on chromosome 12 and encodes 
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acidic ribosomal phosphoprotein PO. Laboratory staff ran all samples in triplicate and derived the average 

T:S ratio by dividing the average of the three T measurements by the average of the three S measurements. 

TL was then reported in relative units (qRT-PCR factor) of T:S ratio in the test sample to T:S ratio in the 

reference DNA pool. Batches for participant qRT-PCR telomere measurements were also recorded. 

 

2.3.e. Assessment of smoking status 

Smoking histories were collected on all study participants at NAS entry and standardized smoking 

interviews were administered at each subsequent NAS visit. Smoking status was characterized into three 

groups: 1) never smokers were individuals who reported at entry and consistently thereafter that their 

lifetime cigarette consumption was <100 cigarettes; 2) former smokers reported that they had smoked in 

the past but quit prior to study entry or they were smokers at entry and quit at some point during the follow 

up period and remained quit at the present study visit; 3) current smokers were those who reported 

smoking regularly at each the follow up visit or those who quit, but reported inability to maintain abstinence 

at the present study visit. All participants also reported their average number of cigarettes per day at each 

assessment. 

 

2.3.f. Statistical analysis 

We used generalized linear mixed effects models to evaluate the relationship of DNAm-age with 

1-year PM2.5 and 1-year BC exposure levels, singularly and in two-particle models. To account for within 

participant correlation between the repeated measurements, the mixed effects models included a random 

intercept for each participant. DNAm-age, 1-year PM2.5, and 1-year BC were all considered as continuous 

variables in all analyses. 

The aforementioned models were adjusted for known confounders and covariates with a priori 

biological/clinical relevance using a tiered approach. Given that results from previous DNA methylation 

studies have been confounded by blood cell heterogeneity, we obtained cell type estimates for six blood 

cell types (i.e. plasma, CD4T, CD8T, NK, monocytes and granulocytes) using Houseman and Horvath 
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methods20,65. We first constructed chronological age and blood cell type adjusted mixed effects models for 

the relationships of PM2.5 and BC with DNAm-age (Model 1). Next, we built models (Model 2) accounting 

for environmental/lifestyle factors by adjusting for average 1-year temperature (continuous), cumulative 

cigarette pack years (continuous), smoking status (current, former, or never), and season of visit (Spring 

[March-May], Summer [June-August], Fall [September-November], and Winter [December-February]), 

body mass index (lean [<25], overweight [25-30], obese [>30]), alcohol intake (yes/no ³ 2 drinks daily), 

and maximum years of education (continuous) in addition to the Model 1 covariates. We constructed a third 

(Model 3) and fourth set of models (Model 4) which accounted for aging-related diseases and disease-

related medications respectively. Model 3 adjusted for cancer (yes/no history of lifetime cancer diagnosis), 

coronary heart disease (yes/no based on electrocardiogram, validated medical records, or physical exam), 

diabetes (physician diagnosis or a fasting blood glucose > 126 mg/dL), and hypertension (yes/no 

antihypertensive medication use or systolic blood pressure ≥140 mmHg or diastolic blood pressure 

≥90 mmHg) in addition to the Model 2 covariates. Model 4 adjusted for subjects taking statins and/or any 

diabetes and hypertension medications in addition to the Model 2 covariates. Last, we constructed two-

particle mixed effects models with both PM2.5 and BC as predictors of DNAm-age using the covariates 

from the Model 1- 4 framework.  

To exclude sensitivity of our models to outliers, we repeated all analyses using robust regression. 

By iteratively reweighting data points such that points far from model predictions in the previous iteration 

are given smaller weights, robust regression is able to minimize the sensitivity of a model to outlying values. 

Iterations continue until the values of coefficient estimates meet a specified tolerance and weighted least 

squares regression is then used to compute model coefficients. We performed a set of additional sensitivity 

analyses: 1) we added a random intercept for 450k plate to account for potential batch effects, 2) we 

explored our particle DNAm-age associations in participants with only one NAS visit to see how our results 

compared to the primary analysis on the full study sample and 3) we stratified our study sample by season 

of NAS visit to further explore the contribution of season to the relationship between particle exposures 
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and DNAm-age. We also looked at the Pearson correlation between change in particle exposure and change 

in DNAm-age between study visits using participants with at least two NAS visits. 

Additionally, we evaluated the relationships of DNA methylation values at each of the 353 DNAm-

age CpG probes with 1-year PM2.5 and 1-year BC exposure levels using the aforementioned Model 2 

covariates and technical covariates (450k plate, chip, row, and column). FDR correction was performed to 

account for multiple hypotheses testing for all CpG methylation analyses. Gene ontology analyses were 

performed on significant CpG results using the publically available DAVID bioinformatics platform66,67. 

As a means of comparison with the DNAm-age results, we explored the relationships of a standard 

marker of aging, telomere length, with PM2.5 and BC exposure levels. We constructed mixed effects 

multivariable linear regression models adjusting for chronological age, blood cell type, average 1-year 

temperature, cumulative cigarette pack years, smoking status, season of visit, telomere batch (categorical 

with four batches), BMI, alcohol intake, and maximum years of education. Similar to our DNAm-age 

analyses, we constructed two additional sets of models adjusting for age-related diseases and disease-related 

medications respectively. There was one relative TL observation of 12.7, while the remaining 856 TL 

observations were < 4. We kept the outlying observation in the TL mixed effects models, but re-ran the 

models using robust regression and without the outlying value as sensitivity analyses.  

We performed all statistical analyses using R Version 3.1.1 (R Core Team, Vienna, Austria) and 

considered a P-value <0.05 to be statistically significant.  

 

2.4. Results 

2.4.a. Baseline characteristics and descriptive statistics 

All participants were Caucasian males with a mean age of 74.8 years (SD = 7.06) and a mean DNAm-age 

of 74.1 years (SD = 7.90, Table 1). Participants with coronary heart disease, hypertension, and a lifetime 

cancer diagnosis had a significantly higher mean DNAm-age than their respective counterparts (Table 

S2). 
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Table 1. Descriptive Statistics of Study Participants 
Characteristic  
Number of Observations (participants) 1032 (589) 
Total Number of Visits, N (%)  

One 589 (57%) 
Two 352 (34%) 
Three 91 (9%) 

Chronological Age, Mean (SD) 74.8 (7.06) 
DNAm-age, Mean (SD) 74.1 (7.90) 
1-year PM2.5 (µg/m3), Mean (SD) 10.7 (1.40) 
1-year BC (µg/m3), Mean (SD) 0.51 (0.18) 
Year Average Temperature (°C), Mean (SD) 11.5 (1.19) 
Cigarette Pack Years, Mean (SD) 20.5 (24.4) 
Relative Telomere Length, Mean (SD) 1.25 (0.64) 
Max Years Education, N (%)  

≤ 12 years 264 (25%) 
12 – 16 years 493 (48%) 
> 16 years 275 (27%) 

Body Mass Index, N (%)  
Underweight 2 (0%) 
Healthy/Lean 234 (23%) 
Overweight 549 (53%) 
Obese 247 (24%) 

Alcohol Consumption, N (%)  
< 2 drinks/day 831 (81%) 
≥ 2 drinks/day 201 (19%) 

Lifetime Cancer Diagnosis, N (%)  
Yes 574 (56%) 
No 458 (44%) 

Coronary Heart Disease, N (%)  
Yes 355 (33%) 
No 677 (67%) 

Diabetes, N (%)  
Yes 193 (19%) 
No 839 (81%) 

Hypertension, N (%)  
Yes 753 (73%) 
No 279 (27%) 

Smoking Status, N (%)  
Never 294 (29%) 
Former 701 (67%) 
Current 37 (4%) 

Season, N (%)  
Spring 249 (24%) 
Summer 245 (24%) 
Fall 350 (34%) 
Winter 188 (18%) 
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Furthermore, never smokers had a significantly higher mean DNAm-age when compared to former smokers 

(Table S2). No significant associations were found when comparing never smokers to current smokers or 

current smokers to former smokers. Mean 1-year PM2.5 and 1-year BC levels were 10.7 µg/m3 (SD = 1.40) 

and 0.51 µg/m3 (SD = 0.18) respectively (Table 1). Moreover, 1-year PM2.5 and BC levels were significantly 

correlated (r = 0.41, P <0.0001) in our study sample (Table S3).   

 

 

Table 2. 1-Year Particulate Matter 2.5 (PM2.5) and Black Carbon (BC) as Predictors of DNA 
Methylation (DNAm) Age 

Particle (1 µg/m3) Difference in DNAm-age (95% CI) P N AIC 
PM2.5     
Model 1 0.55 (0.33, 0.77) <0.0001 1032 6346.85 
Model 2 0.52 (0.30, 0.75) <0.0001 1032 6360.86 
Model 3 0.52 (0.29, 0.74) <0.0001 1032 6361.47 
Model 4 0.50 (0.27, 0.72) <0.0001 1032 6362.88 
BC     
Model 1 2.49 (0.11, 4.88) 0.04 898 5571.94 
Model 2 3.02 (0.48, 5.57) 0.02 898 5583.16 
Model 3 2.92 (0.36, 5.48) 0.03 898 5583.51 
Model 4 2.83 (0.28, 5.39) 0.03 898 5582.92 
Two-Particle Model 1   898 5560.38 
PM2.5  0.56 (0.28, 0.84) 0.0001   
BC 0.52 (-2.03, 3.08) 0.69   
Two-Particle Model 2   898 5574.56 
PM2.5  0.54 (0.24, 0.84) 0.0004   
BC 0.62 (-2.24, 3.47) 0.67   
Two-Particle Model 3   898 5575.71 
PM2.5  0.52 (0.22,0.83) 0.0007   
BC 0.61 (-2.25, 3.47) 0.67   
Two-Particle Model 4   898 5575.70 
PM2.5  0.51 (0.21,0.82) 0.0009   
BC 0.60 (-2.25, 3.46) 0.68   
     
Model 1: adjusted for chronological age and blood cell type. 
 
Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season, BMI, 
alcohol consumption, and education. 
 
Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes. 
 
Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension. 
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2.4.b. PM2.5 and BC as independent and joint predictors of DNAm-age 

Residuals from all models appeared normally distributed. In a model solely adjusted for 

chronological age and blood cell type, 1 µg/m3 increases in 1-year PM2.5 exposures were significantly 

associated with 0.55 year increases in DNAm-age (P <0.0001). Following adjustments in Model 2, PM2.5 

remained associated with increases in DNAm-age (β = 0.52, P <0.0001) (Table 2). These results remained 

consistent in Model 3 (β = 0.52, P <0.0001) and Model 4 (β = 0.50, P <0.0001), which were adjusted for 

aging-related disease covariates and disease medications respectively (Table 2). These PM2.5 associations 

persisted in sensitivity analyses with robust regression (data not shown) and in models adjusting for 450k 

plate, though the effect estimates were slightly attenuated (Table S4). In a model adjusted for chronological 

age and blood cell type, BC was a significant predictor of DNAm-age (β = 2.49, P = 0.04), and remained a 

significant predictor of DNAm-age in subsequent models adjusting for additional covariates (Table 2). 

Nonetheless, after adjusting for 450k plate, the BC associations with DNAm-age remained marginally 

significant at best (Tables S4). PM2.5 levels remained significantly associated with increases in DNAm-age 

of 0.51 years or greater (P <0.0001) in two-particle models with BC (Table 2) though the magnitude of the 

effect estimates were also attenuated following adjustments for 450k plate (Table S4). BC levels were not 

significantly associated with DNAm-age in any of the two-particle models (Tables 2 & S4).  

A sensitivity analysis exploring particle associations with DNAm-age in participants with only one 

NAS visit, revealed similar, but non-significant trends as the primary analysis (Table S5). A subsequent 

sensitivity analysis that stratified the study sample by season of NAS visit also revealed similar trends as 

the primary analysis, but results were only significant for PM2.5 associations in the summer and fall NAS 

visit groups (Table S6). Finally, an analysis using participants with at least two NAS visits and exploring 

the correlation between the change in particle exposure between visits and the change in DNAm-age 

between visits, revealed weak and non-significant correlations (Table S7). 

 

2.4.c. Associations between PM2.5 levels and methylation values at individual DNAm-age CpG sites 
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We explored associations between PM2.5 levels and the methylation values for the 353 CpG sites 

that are used to calculate DNAm-age. Methylation of 20 out of 353 CpGs was significantly associated with 

PM2.5 levels in two-particle mixed effects Model 2 (adjusting for BC, age, blood cell type, and 

lifestyle/environmental characteristics) following FDR correction (Fig. 1). PM2.5 levels were positively or 

negatively associated with CpG methylation depending on the CpG site (Table 3).  

 

 

Table 3. 1-Year Particulate Matter (PM2.5) as a Predictor of CpG Probe Methylation in a Two-
Particle Model 

CpG* Gene Process Difference in 
Methylation P FDR 

Negative Association 
cg14163776 ACAP2 GTPase activator activity -0.0049 <0.0001 0.003 

cg06044899 TMSL3 
actin cytoskeleton 

organization -0.0048 <0.0001 0.001 
cg01570885 FAM50B protein binding -0.0041 0.001 0.041 
cg18139769 SGCE (PEG10) calcium ion binding -0.0040 0.001 0.037 

cg22736354 NHLRC1 
ubiquitin-protein transferase 

activity -0.0032 0.002 0.042 
cg15661409 C14orf105 uncharacterized -0.0012 0.002 0.041 
Positive Association 
cg02047577 UCKL1 uridine kinase activity 0.0002 0.001 0.041 
cg10940099 CD164 cellular adhesion 0.0002 0.002 0.041 
cg22006386 CATSPERG ion channel activity 0.0003 0.002 0.044 
cg08186124 LZTFL1 protein binding: cytoplasm 0.0004 <0.0001 0.015 
cg04094160 ZBTB5 transcriptional regulation 0.0005 <0.0001 0.014 
cg16408394 RXRA DNA binding 0.0005 0.002 0.042 

cg23786576 ATPAF1 
ATP synthase complex 

assembly 0.0006 0.001 0.040 

cg15341340 DNASE2 
endodeoxyribonuclease 

activity 0.0007 0.002 0.041 

cg21395782 NDUFA13  
NADH dehydrogenase 

activity 0.0008 0.001 0.041 
cg26043391 FBXO28 protein binding 0.0009 0.001 0.041 

cg06557358 TMEM132E 
integral component of 

membrane 0.0010 0.003 0.050 
cg14409958 ENPP2 nucleic acid binding 0.0011 0.002 0.041 
cg20305610 PDLIM5 actin binding 0.0013 <0.0001 0.014 
cg05675373 KCNC4 potassium channel activity 0.0032 0.002 0.042 
      
*adjusted for chronological age, blood cell type, BC, temperature, pack years, smoking status, season, 
BMI, alcohol consumption, education, and 450k technical covariates. 
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The 20 CpGs mapped to 20 known genes; nevertheless, gene ontology analysis did not return significant 

pathway enrichment (data not shown). No CpGs were significantly associated with BC levels in the two-

particle mixed effects model. 

 

Figure 1 | Volcano plot of Regression Coefficients for Difference in DNA 
Methylation Beta Values from 353 DNAm-age CpGs Analyzed for Association with 
1-Year PM2.5 Levels in a Two-Particle Model. Linear mixed effects models were 
used to explore the associations between 1-Year PM2.5 exposure levels and DNA 
methylation values for the 353 CpG sites used to calculate DNAm-age. The 
regression coefficient for the difference in DNA methylation beta values given by a 
1µg/m3 increase in 1-Year PM2.5 exposure level is plotted on the x-axis, and the 
corresponding significance is plotted on the y-axis. CpG probes meeting statistical 
significance following FDR adjustment are depicted as hollow circles. DNA 
methylation beta values range from 0 (completely unmethylated) to 1 (completely 
methylated). 
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2.4.d. DNAm-age, PM2.5, and BC as predictors of relative TL 
 

TL showed a weak and non-significant correlation (r = -0.06, P = 0.08) with DNAm-age in 

participants’ NAS observations (Table S3). Moreover, DNAm-age was not a significant predictor of TL in 

mixed effects models adjusting for chronological age, blood cell type, and telomere batch (Table 4). TL 

also showed no significant associations with 1-year PM2.5 or 1-year BC levels in any of the single-particle 

or two-particle models (Table 5). 

 

 

 

 

 

 

 

 

Table 4. DNAm-age as a Predictor of Relative Telomere Length (TL) 
 Change in TL (95% CI) P N AIC 

DNAm-age     
Model 1 -0.006 (-0.01, 0.002) 0.14 857 1687.65 
Model 2 -0.004 (-0.01, 0.002) 0.23 856 1233.57 
     
Model 1: adjusted for chronological age, blood cell type, and telomere batch 
 
Model 2: Model 1 but excluding one participant with an outlying telomere value. 
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2.5. Discussion 
 

The present study showed a novel positive association between 1-year PM2.5 exposure levels and 

DNAm-age. To the best of our knowledge, this is the first study showing relationships between any 

environmental pollutant and an epigenetic biomarker of aging. PM2.5 remained a statistically significant 

positive predictor of DNAm-age after adjusting for chronological age and other covariates. The study also 

Table 5. 1-Year Particulate Matter 2.5 (PM2.5) and Black Carbon (BC) as Predictors of 
Telomere Length (TL) 

Particle (1 µg/m3) Difference in TL (95% CI) P N AIC 
PM2.5     
Model 1 0.02 (-0.01, 0.06) 0.24 857 1750.26 
Model 2 0.02 (-0.01, 0.06) 0.20 857 1754.13 
Model 3 0.02 (-0.01, 0.06) 0.23 857 1776.27 
Model 4 0.02 (-0.01, 0.06) 0.21 857 1771.64 
BC     
Model 1 0.11 (-0.16, 0.38) 0.42 770 1616.52 
Model 2 0.13 (-0.16, 0.42) 0.37 770 1637.87 
Model 3 0.12 (-0.16, 0.41) 0.40 770 1658.35 
Model 4 0.13 (-0.16, 0.42) 0.38 770 1654.71 
Two-Particle Model 1   770 1623.11 
PM2.5  0.02 (-0.02, 0.07) 0.32   
BC 0.05 (-0.24, 0.35) 0.71   
Two-Particle Model 2   770 1644.69 
PM2.5  0.02 (-0.03, 0.07) 0.40   
BC 0.07 (-0.25, 0.38) 0.66   
Two-Particle Model 3   770 1665.33 
PM2.5  0.02 (-0.03, 0.07) 0.47   
BC 0.07 (-0.24, 0.39) 0.65   
Two-Particle Model 4   770 1661.52 
PM2.5  0.02 (-0.03, 0.07) 0.39   
BC 0.07 (-0.25, 0.39) 0.67   
     
Model 1: adjusted for chronological age and blood cell type. 
 
Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season, 
telomere batch, BMI, alcohol consumption, and education. 
 
Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes. 
 
Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension. 
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revealed a significant positive association between BC and DNAm-age after adjusting for age and other 

covariates, but not after adjusting for 450k plate. Moreover, we identified 20 age-related CpG sites whose 

methylation was significantly associated with PM2.5 exposure levels in two-particle models adjusting for 

BC, age, and other covariates.  

Operating under the premise that adverse exposures accelerate aging, we expected 1-year PM2.5 and 

BC exposure levels to be associated with increases in DNAm-age. In alignment with our expectations, both 

PM2.5 and BC exposure levels were positively associated with DNAm-age. Pearson correlations of between 

visit changes in particle exposures and between visit changes in DNAm-age in participants with multiple 

visits were not significant potentially due to the smaller number of observations. Nonetheless, compared to 

the primary analysis, we observed similar trends in the association of our particles with DNAm-age in 

sensitivity analyses using participants with a single NAS visit. These trends suggest that having a single or 

multiple visits was not driving the results from the adjusted mixed effects models. Likewise, trends similar 

to the primary analysis were also observed in our seasonal analysis and were significant for the summer 

and fall seasons, which had the highest average particle exposures across all observations.  

Although DNAm-age is primarily viewed as a predictor of chronological age, emerging research 

suggests that it reflects underlying physiological processes including metabolic dysregulation, immune 

dysfunction, and genomic instability29-32. To date, two studies have described significant associations 

between DNAm-age and all-cause mortality29,33. Moreover, studies have also demonstrated that DNAm-

age may predict or be reflective of various disease processes31,32,34-37. It is hypothesized that DNAm-age 

may measure “the cumulative work done by a particular kind of epigenetic maintenance system [EMS], 

which helps maintain epigenetic stability”20. Under the EMS hypothesis, an increase in DNAm-age suggests 

that an event or process has occurred and the EMS has completed more work to repair or return the 

epigenome to homeostasis. Alternatively, a reduction in DNAm-age can be interpreted as epigenetic 

stability or disrupted activation of the EMS, both of which would result in less maintenance work. Given 

the known toxicity of ambient particles, our data supports the theory that some particles may disrupt the 
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epigenome thus requiring more maintenance work. Nevertheless, mechanistic studies are warranted to 

explicitly identify the components of this system.  

Given our interpretation of the relationship between adverse exposures and DNAm-age, it was 

interesting to find that cigarette pack years was negatively correlated with DNAm-age and that former 

smokers had a lower mean DNAm-age than never smokers. Though cigarette smoking can be considered a 

personal form of air pollution, it is also a complex mixture with a composition that differs from that of 

PM2.5. Differences in particle composition can account for differences in the toxicological pathways of 

these exposures and may be one reason why we observe differences in their DNAm-age relationships. 

Moreover, individuals who are sick are often urged to quit smoking so there may still be some confounding 

when observing the unadjusted correlations of pack years and cigarette smoking status with DNAm-age. A 

number of physiological factors can also affect the epigenome and should be considered when comparing 

smoking to air pollution exposures. For instance, it is widely known that smoking can account for 

substantial weight loss and it has been demonstrated that obesity accelerates the DNAm-age of liver cells31. 

Finally, a study sample with 37 current smoker observations may be underpowered to detect differences in 

mean DNAm-age between current smokers and other groups. 

In our two-particle models, BC exposure levels were not significantly associated with DNAm-age 

while PM2.5 remained a significant predictor of DNAm-age. BC is considered a specific marker of traffic-

related air pollution, while PM2.5 is a heterogeneous mixture of fine particles with component species often 

including carbonaceous fractions (e.g. black carbon), inorganic compounds (e.g. sulfate, nitrate, 

ammonium), and trace metals (e.g. nickel, lead, copper)38. Research on total PM2.5 is more extensive than 

any work singularly exploring BC or other components. Many studies suggest that BC may be more toxic 

than PM2.5
39, but data also exists where PM2.5 associations are stronger than that of BC40. The finding that 

PM2.5 was driving the association with DNAm-age in the two particle models may possibly be because other 

components apart from BC are responsible for the DNAm-age relationship. Another theory is that the 

mixture of the PM2.5 components is more harmful, with regards to DNAm-age, than any of the components 
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singularly. Ultimately, further work involving a detailed compositional analysis of PM2.5 will aid in further 

understanding what components are driving the associations with DNAm-age. 

Although we attributed the observed positive association of PM2.5 with DNAm-age to greater 

cumulative work by the epigenetic maintenance system, we also conducted additional analyses to identify 

which of the 353 CpG sites contributing to the DNAm-age metric had methylation values that were 

significantly associated with PM2.5 levels. We identified 20 such CpGs through a mixed effects model 

adjusting for chronological age, blood cell type, and lifestyle/environmental factors. These CpGs mapped 

to 20 known genes. A gene ontology analysis of these 20 genes did not return any significant enrichment 

for specific biological pathways. Nevertheless, a literature review revealed relationships between the genes. 

For instance, LZTFL1, PDLIM5, and ATPAF1, can all be generally characterized as being involved in 

protein binding. LZTFL1 (Leucine Zipper Transcription Factor-like 1) is a nuclear gene that encodes a 

cytoplasmic protein that interacts with other cytosolic proteins to regulate ciliary trafficking and control b-

catenin nuclear signaling. LZTFL1 downregulation has been implicated in non-small cell lung cancer and 

poor survival. In contrast, LZTFL1 re-expression in lung tumor cells inhibits tumor growth and lung tissue 

colonization by circulating tumor cells41. ATPAF1 (ATP Synthase Mitochondrial F1 Complex Assembly 

Factor 1) encodes a soluble mitochondrial protein that helps prevent abnormal aggregation of F1-ATP 

synthase subunits, and, like LZTFL1, is expressed in many tissues including the lung. ATPAF1 is highly 

expressed in bronchial biopsies of individuals with severe asthma and has been found to predispose children 

of different ancestries to asthma42. Unlike LZTFL1 and ATPAF1, PDLIM5 (PDZ and LIM domain 5) 

primarily is involved in cardiomyocyte function. Nonetheless, PDLIM5 still has implications for lung 

physiology as its downregulation has been linked to hypoxia-induced pulmonary hypertension43. 

Collectively, our data suggests putative relationships between ambient particle levels and genes involved in 

various elements of lung physiology. Nonetheless, additional methylation and mechanistic studies will be 

necessary to first confirm these changes in gene methylation and next ascertain if these changes actually 

manifest themselves as differences in gene expression and protein levels/activity.   
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Finally, to help interpret our DNAm-age results, we explored the relationship of PM2.5 and BC 

exposure levels with relative telomere length. Telomeres are nucleoprotein structures, at the ends of 

eukaryotic chromosomes, involved in maintaining genomic fidelity. Telomere shortening has been 

associated with aging and aging related diseases44. Contrary to our expectations, we observed no association 

of PM2.5 and BC with relative TL. As mentioned, the literature examining the relationship between particles 

and TL has been conflicting. Significant associations between annual PM2.5 exposures and decreased TL 

have been reported45, but in the NAS the relationship between annual BC exposures and decreased TL was 

only observed in never smokers11. The literature concerning short-term particle exposures is even more 

obscure. In some cases, short-term particle exposures have been associated with increased TL46, decreased 

TL47, and in other instances no significant association was observed6,48. Our findings add to the body of 

literature that suggests: 1) that exposure duration and study population characteristics are particularly 

critical in understanding and interpreting the results of TL studies; and 2) other measures, like DNAm-age, 

may offer more advantages for understanding the relationship between particle exposures and biological 

aging. Moreover, DNAm-age was not associated or correlated with TL in our study sample. Similar non-

significant relationships between DNAm-age and TL have also been independently reported in a study 

conducted in the Lothian Birth Cohorts49. The known relationships of DNAm-age and TL with in vitro cell 

passaging also highlight the differences between these markers. As cells are passaged, they divide and in 

most cases their telomeres shorten50. However, DNAm-age increases as cells are passaged and divide in 

vitro20. In all, our findings and existing evidence suggests that though DNAm-age and TL are both measures 

of “aging,” the two are not one in the same and may capture different elements of biological processes. 

Though we present a study with a number of objective, validated measures and rigorous statistical 

methods, our study does have a few limitations. First, our PM2.5 and BC measurements were generated 

using spatiotemporal prediction models. Though the models were validated51, we cannot completely 

eliminate residual measurement error or discrepancies in calibration coefficients52. Also, ambient levels of 

air pollution at a participant’s address may differ from personal exposures, which also depend on time spent 

at home, rates of penetration of ambient particles into the house, and the presence of indoor sources of 
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particles. However, we note that the demographics of the Normative Aging Study, which is composed 

primarily of retired older men, make it more likely that participants spend a large part of their day at home. 

Our findings are also based on a cohort of older Caucasian males residing in a lightly-polluted urban 

environment; thus, studies including younger individuals, females, non-Caucasians, and in different 

environments are warranted to confirm our findings more broadly. Lastly, we attempted to adjust for 

potential confounders, but cannot rule out the possibility of unknown or residual confounding in our 

analyses. 

 

2.6. Conclusion 

Our data suggests that DNAm-age and TL capture different elements of biological aging; describes 

novel associations between ambient particles and DNAm-age; and highlights existing limits in 

interpretations of biological/molecular aging. Further analyses utilizing DNAm-age with PM2.5, BC, and 

other particles may provide much needed insight into fully understanding the biologically adverse nature 

of ambient particles.   
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3.1. Abstract 

Background: Long-term PM2.5 exposure and aging have been implicated in multiple shared diseases; 

studying their relationship is a promising strategy to further understand the adverse impact of PM2.5 on 

human health.  

Objective: We assessed the relationship of major PM2.5 component species (ammonium, elemental 

carbon, organic carbon, nitrate, and sulfate) with Horvath and Hannum DNA methylation (DNAm) age, 

two DNA methylation-based predictors of chronological age. 

Methods: This analysis included 552 participants from the Normative Aging Study with multiple visits 

between 2000 and 2011 (n=940 visits). We estimated 1-year PM2.5 species levels at participants’ 

addresses using the GEOS-chem transport model. Blood DNAm-age was calculated using CpG sites on 

the Illumina HumanMethylation450 BeadChip. We fit linear mixed-effects models, controlling for PM2.5 

mass and lifestyle/environmental factors as fixed effects, with the adaptive LASSO penalty to identify 

PM2.5 species associated with DNAm-age.  

Results: Sulfate and ammonium were selected by the LASSO in the Horvath DNAm-age models. In a 

fully-adjusted multiple-species model, interquartile range increases in both 1-year sulfate (95%CI: 0.28, 

0.74, P<0.0001) and ammonium (95%CI: 0.02, 0.70, P=0.04) levels were associated with at least a 0.36-

year increase in Horvath DNAm-age. No PM2.5 species were selected by the LASSO in the Hannum 

DNAm-age models. Our findings persisted in sensitivity analyses including only visits with 1-year PM2.5 

levels within US EPA national ambient air quality standards. 

Conclusion: Our results demonstrate that sulfate and ammonium were most associated with Horvath 

DNAm-age and suggest that DNAm-age measures differ in their sensitivity to ambient particle exposures 

and potentially disease. 
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3.2. Introduction 

Fine particulate matter (PM2.5) remains an inescapable environmental exposure and an enormous 

global public health concern1. It is estimated that at least 2.1 million lives could be saved annually if PM2.5 

guidelines were adhered to worldwide2. For the millions of people exposed to PM2.5 daily, understanding 

the impact of PM2.5 on human health is critical for developing interventions aimed at reducing PM2.5-related 

morbidity and mortality globally. Researchers have consistently demonstrated that long-term PM2.5 

exposure is a major contributor to cardiopulmonary disease3-8, and emerging evidence suggests that PM2.5 

is a risk factor for previously unconsidered disease outcomes like cognitive decline9-11. Nevertheless, much 

remains to be understood about how PM2.5 contributes to even its most well-documented disease outcomes. 

One promising strategy to better understand the adverse impact of PM2.5 on human health, is to study the 

relationship of PM2.5 with aging. Many studies have implicated PM2.5 as a contributor to accelerated aging12-

17. Moreover, independent of PM2.5 exposures, aging is associated with cardiopulmonary disease, cognitive 

decline, and many other PM2.5-related disease outcomes18-21. Thus, understanding how PM2.5 can contribute 

to aging, may provide additional insight into other adverse PM2.5-related health effects. 

DNA methylation-based biomarkers of age have proved to be promising tools in understanding the 

relationship of PM2.5 with aging. These biomarkers have surpassed their initial utility of simply predicting 

chronological age, and have demonstrated remarkable usefulness in assessing individuals’ risk of mortality, 

malignancy, neurocognitive disease, and other biologically-relevant health endpoints22-28. Evidence also 

suggests that these biomarkers of age are reflective of individuals’ past environmental exposures29. One 

such study by our group demonstrated robust associations between PM2.5 exposure levels and Horvath DNA 

methylation (DNAm) age. Horvath DNAm-age is a tissue-independent predictor of chronological age that 

is calculated from DNA methylation values at 353 chronological age-correlated CpG dinucleotides in 

Illumina’s HumanMethylation450 BeadChip30. Specifically, in an elderly cohort and with fully-adjusted 

models, we observed that a 1 µg/m3 increase in 1-year PM2.5 exposure was associated with a 0.52-year 

increase in Horvath DNAm-age31. 

Still, PM2.5 is a heterogeneous mixture of carbonaceous fractions, inorganics, and metals; and it is 
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widely appreciated that PM2.5 component species often differ in their health effects32-35. The present study 

builds upon our previous research and examines the relationships of PM2.5 component species with both 

Horvath and Hannum DNAm-age in elderly men. Hannum DNAm-age is also a DNA methylation-based 

predictor of chronological age, but it is based on measurements from 71 CpG dinucleotides36. Only 6 CpG 

dinculeotides are shared between the Horvath and Hannum metrics. By investigating the relationships of 

PM2.5 component species with these two forms of DNAm-age, we aim to (1) better understand how specific 

PM2.5 species are related to aging, and (2) demonstrate differences in the biological utility of different 

DNAm-age measures. 

 

3.3. Materials and Methods 

3.3.a. Study population 

The participants in this analysis were part of the U.S. Veterans Affairs Normative Aging Study 

(NAS), a longitudinal investigation of aging men established in Eastern Massachusetts in 1963 37. The men 

were free of known chronic medical conditions at enrollment, and returned for onsite, follow-up visits every 

3-5 years. During these visits, detailed physical examinations were performed, bio-specimens including 

blood were obtained, and questionnaire data pertaining to diet, smoking status, and additional lifestyle 

factors that may impact health were collected. All participants provided written informed consent to the 

VA Institutional Review Board (IRB), and both the Harvard T.H. Chan School of Public Health and VA 

IRBs granted human subjects approval. 

All NAS men with continued study participation as of the year 2000, when PM2.5 component levels 

became available, were eligible for our study sample. After excluding participants with a diagnosis of 

leukemia (n=11), due to its potential influence on the DNA methylation of blood cells30, and those 

incomplete for the covariates of interest (n=16), we had a total of 552 participants with 940 observations 

between the years 2000 and 2011. Of the 552 participants, 249 (45%) had one visit, 218 (40%) had two 

visits, and 85 (15%) had three or more visits.  
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3.3.b. DNA Methylation and calculation of DNAm-age 

Laboratory staff extracted DNA from the buffy coat of whole blood collected from each participant 

at each NAS follow-up visit (QIAamp DNA Blood Kit, QIAGEN, Valencia, CA, USA). DNA samples 

were then treated with bisulfite conversion (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, 

USA) and hybridized to the 12 sample Illumina HumanMethylation450 BeadChips (Infinium HD 

Methylation protocol, Illumina, San Diego, CA, USA). To ensure a similar age distribution and avoid 

confounding across chips and plates, study staff employed a two-stage age-stratified algorithm to randomize 

samples. For quality control, study staff removed samples where >5% of probes had a beadcount < 3 or > 

1% of probes had a detection P-value >0.05. The Bioconductor minfi package Illumina-type background 

correction without normalization was used to preprocess the remaining samples and generate methylation 

beta values 38. The beta values represent the percentage of methylation for each of the ~480,000 CpG sites 

in the BeadChip array. The 450k arrays were run in the Genomics Core Facility at Northwestern University.  

To explore potential differences in the relationship of PM2.5 and PM2.5 species with different forms 

of DNAm-age, we calculated both Horvath DNAm-age and Hannum DNAm-age using the 450k beta values 

and Horvath’s publically available online calculator (http://labs.genetics.ucla.edu/horvath/dnamage/). 

Horvath DNAm-age was derived from an elastic net (penalized regression) using multiple data sets of 

varying tissue and cell types. 21,369 CpG probes, shared by the Illumina HumanMethylation27 and 

HumanMethylation450 BeadChip platforms were regressed on a calibrated version of chronological age. 

The elastic net selected 353 CpGs that correlate with age, and the resulting model coefficients are used by 

the calculator to predict the age of each DNA sample (DNAm-age) 30. Hannum DNAm-age was also derived 

using an elastic net. However, Hannum DNAm-age was based on a single cohort where DNA methylation 

values were calculated from whole blood. This elastic net selected 71 CpG probes in the Illumina 

HumanMethylation450 BeadChip that are predictive of chronological age. Hannum DNAm-age was 

calculated as the sum of the beta values multiplied by the reported effect sizes for the Hannum predictor36. 

The Hannum and Horvath DNAm-ages only share 6 CpG probes (cg04474832, cg05442902, cg06493994, 

cg09809672, cg19722847, and cg22736354).  
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3.3.c. Assessment of Environmental Factors: Ambient Particles and Temperature 

We employed the widely used GEOS-chem chemical transport model (http://www.geoschem.org) 

to generate 1-year exposure estimates for PM2.5 and the following major PM2.5 component species: organic 

carbon (OC), elemental carbon (EC), sulfate, nitrate, and ammonium 39. These 5 component species were 

selected because they make up a large fraction of total PM2.5 mass (~ 88.6%) and were best predicted by 

the model. GEOS-chem incorporates nonlinear chemistry, meteorology, and detailed emissions inventories 

to simulate the formation and transportation of atmospheric components to give raw estimates of PM2.5 and 

its major chemical components. Ten-fold cross-validation demonstrated that the model performs well for 

PM2.5 mass and its component species with R2s ranging from 0.70 to 0.88 40. We generated daily estimates 

at the 1x1 km area resolution. Each participant’s residence was geocoded and linked to an area level grid-

point. Time spent away from home (>7 days) and address changes were also accounted for as particle 

estimates were assigned to each participants’ address. Given that >90% of NAS participants are retired, 

home address exposures are expected to be a good proxy for their individual ambient exposures. We then 

generated 1-year total PM2.5 and PM2.5 component species exposure windows by averaging daily exposures 

for the 365 days prior to the day of each participants’ NAS visit. The 1-year PM2.5 exposure window was 

utilized because it has been previously reported to be robustly associated with DNAm-age31. 

We used a spatiotemporal prediction multi-step approach to generate temperature (in Celsius) for 

each participant 41. First, we obtained 1x1 km resolution daily physical surface temperature (Ts) data from 

NASA satellite measurements and daily near surface air (Ta) data from the Environmental Protection 

Agency, National Climatic Data Center, and Weather Underground Inc. We then used mixed model 

regression to calibrate Ts to Ta. The model was validated with a mean out of sample R2 of 0.95. To generate 

1-year temperature measurements to complement 1-year particle exposures, we averaged daily temperature 

measurements over the 365 days prior to participants’ NAS visits.  

 

3.3.d. Statistical Analysis 
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We first used generalized linear mixed effects models to determine the relationship of DNAm-age 

(Horvath and Hannum independently) with 1-year PM2.5 exposure levels and 1-year PM2.5 component 

species exposure levels. All linear mixed effects models included a random participant-specific intercept to 

account for correlation between repeated measures (i.e. multiple visits for a participant).  

We adjusted for confounders and covariates that have a priori biological/clinical relevance and/or 

are reported in the existing literature. Specifically, our previous publication was the first study examining 

associations of ambient particles and DNAm-age31. There, we used a tiered approach of adding confounders 

and covariates based on known relationships of ambient particles with DNA methylation and known 

relationships of ambient particles with older markers of aging30,42-45. Tier one adjusted for chronological 

age and blood cell types. Tier two made additional adjustments for lifestyle and environmental factors. Tier 

three expanded on tier two by additionally adjusting for age-related diseases, and tier four expanded on tier 

two by additionally adjusting for medications of age-related diseases. After considering model fit (assessed 

via AIC) and considering biological factors that are known to be important, the tier two covariates were 

deemed to be most appropriate. Thus, in line with the previously published tier two framework31, the models 

for this analysis were adjusted for chronological age (continuous), six blood cell type estimates [i.e. plasma 

cells, CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and granulocytes] 

(continuous) determined via Houseman and Horvath methods30,46, average 1-year temperature (continuous), 

cumulative cigarette pack years (continuous), smoking status (current, former, or never), season of visit 

(spring [March-May], Summer [June-August], Fall [September-November], and Winter [December-

February]), body mass index (BMI) (lean [<25], overweight [25-30], obese [>30]), alcohol intake (yes/no 

³ 2 drinks daily), and maximum years of education (continuous). All PM2.5 component species models were 

additionally adjusted for PM2.5 mass47.  

To more rigorously identify the PM2.5 component species that may be associated with DNAm-age, 

we applied the adaptive LASSO (least absolute shrinkage and selection operator)48. Given that PM2.5 

component species are correlated, placing them together within the same standard linear regression model 

can result in unaccounted for stochastic errors. The LASSO is a regression shrinkage and selection approach 
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that helps overcome such limitations. The LASSO applies an l1 penalty on the component regression 

coefficients, which minimizes the sum of squared errors subject to the sum of the absolute values of the 

coefficients being less than a given value49. The adaptive LASSO improves upon this procedure by utilizing 

weights for penalizing different coefficients in the l1 penalty to identify a subset of model predictors to 

achieve asymptotic normality50. Furthermore, the adaptive LASSO has been successfully applied in air 

pollution and health research51,52.  

To identify and select PM2.5 component species associated with DNAm-age, we applied a penalty 

to all PM2.5 component species, but not to PM2.5 mass and the other covariates in the model. l, the penalty 

parameter, determines how strongly the magnitude of the PM2.5 species regression coefficients are 

constrained. When l is small, the regression coefficients are weakly penalized and mirror those that would 

be given from a standard linear mixed effects model. When l is large, the coefficients are strongly 

penalized, shrinkage is maximized, and all coefficients tend towards zero such that the resulting model 

includes fixed covariates only. When l takes a value in between the extremes, the result is a penalized 

model where some PM2.5 component species will have coefficients of zero and others will be non-zero. 

PM2.5 component species with non-zero coefficients are considered as “selected” by the adaptive LASSO. 

We ran the model across a range of ls, beginning with a l of 0, and selected the l resulting in the model 

with the smallest Bayesian Information Criterion (BIC)53. Following LASSO selection, we fit a final 

multiple-species linear mixed effects model using the selected PM2.5 component species and our fixed 

covariates. From this final model, we were able to estimate component species effect sizes and their 

corresponding 95% confidence intervals. 

Additionally, we considered that the LASSO may not select the PM2.5 species that are most 

correlated with total PM2.5 mass. Thus, we conducted a sensitivity analysis where we performed LASSO 

selection without adjusting for PM2.5 mass. From this sensitivity analysis model, we fit a multiple-species 

linear mixed effects model using the selected PM2.5 component species and estimated component species 

effect sizes and their corresponding 95% confidence intervals. 
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After finding that Horvath DNAm-age alone was significantly associated with PM2.5 component 

species, we evaluated the relationships of the DNA methylation values of each of the 353 Horvath CpG 

probes with the particles in the aforementioned LASSO-selected multiple-species linear mixed effects 

model. In addition to the already described covariates, we included technical covariates (450k plate, chip, 

row, and column) to this analysis. To account for multiple hypothesis testing, we also performed FDR 

correction in this analysis. We then performed gene ontology analysis on the list of significant CpGs (FDR 

P-value < 0.05) using the publically available GoTermFinder tool (http://go.princeton.edu/cgi-

bin/GOTermFinder). 

In an additional sensitivity analyses, we re-ran our models excluding participant visits with PM2.5 

exposures greater than 12 µg/m3. This allowed us to assess if our findings persisted even at the PM2.5 levels 

currently deemed acceptable by the U.S. Environmental Protection Agency (EPA) National Ambient Air 

Quality Standards (NAAQS)54. 

All statistical analyses were performed using R Version 3.1.1 (R Core Team, Vienna, Austria) and 

we considered a P-value < 0.05 to be statistically significant. 

 

3.4. Results 

3.4.a. Descriptive Results 

Table 1 summarizes the characteristics of the study population. All study participants were 

Caucasian males with a mean (± SD) age of 74.7 ± 6.99 years across all study visits. Average Horvath 

DNAm-age and Hannum DNAm-age were 74.0 ± 7.92 years and 75.1 ± 8.95 years respectively. Horvath 

DNAm-age (r = 0.59, p<0.0001) and Hannum DNAm-age (r = 0.77, p<0.0001) were both strongly 

correlated with chronological age in the study population. Both measures of DNAm-age were also strongly 

correlated to each other (r = 0.69, p<0.0001). 
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Table 2 reports 1-year PM2.5 and PM2.5 component species exposure levels across all study visits. The 

participants had a mean 1-year PM2.5 exposure level of 10.3 ± 1.60 µg/m3, with an interquartile range (IQR) 

of 2.16 µg/m3. Of the measured PM2.5 component species, sulfate accounted for the largest proportion of 

total PM2.5 mass (33%), followed by organic carbon (28.6%), nitrate (11.5%), ammonium (10.1%), and 

elemental carbon (5.4%). OC was the PM2.5 species most correlated with total PM2.5 mass (r = 0.67). 1-year 

PM2.5 and PM2.5 species Pearson correlations across all visits are reported in Table S1. Moreover, 1-year 

PM2.5 and PM2.5 species exposure distributions across first visits are reported in Table S2. 

 

Table 1. Characteristics of Study Subjects (2000 – 2011) 
Variable First Visit (N = 552) All Visits (N = 940) 
Age (years), mean (SD) 73.3 (6.82) 74.7 (6.99) 
Horvath DNAm-age (years), mean (SD) 73.7 (7.77) 74.0 (7.92) 
Hannum DNAm-age (years), mean (SD) 73.8 (8.80) 75.1 (8.95) 
Temperature (°C), mean (SD) 11.5 (1.12) 11.3 (1.00) 
Pack years, mean (SD) 20.7 (24.7) 20.5 (24.4) 
Smoking Status, N (%) 

Current 25 (4) 40 (4) 
Former 355 (64) 614 (65) 

Never 172 (32) 286 (31) 
Season, N (%)  

Spring 145 (26) 241 (26) 
Summer 115 (21) 199 (21) 

Fall 177 (32) 313 (33) 
Winter 115 (21) 187 (20) 

BMI, N (%)  
Healthy/Lean 119 (21) 216 (23) 

Overweight 302 (55) 493 (52) 
Obese 131 (24) 231 (25) 

Alcohol Consumption, N ( %) 
<  2 drinks/day 441 (80) 761 (81) 
≥ 2 drinks/day 111 (20) 179 (19) 

Education, N (%)   
≤ 12 years 146 (27) 242 (26) 

12 - 16 years 262 (47) 434 (46) 
> 16 years 144 (26) 264 (28) 
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Table 2. Mean 1-Year Particulate Matter 2.5 (PM2.5) and Component Species Concentrations Across 
All Study Visits 

Particle 
(µg/m3) Mean (SD) IQR Proportion of PM2.5 (%) Pearson Correlation  

with PM2.5 
N 

PM2.5 10.3 (1.60) 2.16 - - 940 
PM2.5 Component Species         
EC 0.56 (0.17) 0.23 5.4 0.62 940 
OC 2.94 (0.91) 1.28 28.6 0.67 940 
Sulfate 3.40 (1.23) 0.82 33.0 0.30 940 
Nitrate 1.18 (0.32) 0.42 11.5 0.46 940 
Ammonium 1.04 (0.31) 0.3 10.1 0.53 940 
      
      

 

 

3.4.b. 1-Year PM2.5 and PM2.5 Component Species as Predictors of DNAm-age 

Table 3 summarizes the results of three model frameworks where PM2.5 and its component species 

were modeled as predictors of both Horvath and Hannum DNAm-age. Residuals from all models appeared 

normally distributed. In the model framework 1, PM2.5 was modeled as a predictor of Horvath and Hannum 

DNAm-age independently. In the fully adjusted model, an IQR increase in 1-year PM2.5 exposure was 

significantly associated with a 0.64-year increase in Horvath DNAm-age (p=0.005). However, an IQR 

increase in 1-year PM2.5 exposure was not significantly associated with Hannum DNAm-age (b=0.06, 

p=0.74). Under the model framework 2, each PM2.5 component species was modeled as an independent 

predictor of Horvath and Hannum DNAm-age adjusting for all covariates and total PM2.5 mass. 1-year IQR 

increases in OC (b=0.93, p=0.001), sulfate (b=0.59, p<0.0001), nitrate (b=0.58, p=0.01), and ammonium 

(b=0.59, p=0.0004) were all significantly associated with increases in Horvath DNAm-age of at least 0.58 

years. No PM2.5 component species were significantly associated with Hannum DNAm-age (Table 3). 

The model 3 framework reflects the results of the multiple-species fully-adjusted linear mixed 

effects models with the PM2.5 component species selected by the adaptive LASSO. The adaptive LASSO 

selected sulfate and ammonium as important predictors of Horvath DNAm-age. Figure 1A depicts the 

relationship between BIC, the model selection criterion, and l, the adaptive LASSO penalty parameter. The 
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model with the smallest BIC had l = 11. Figure 1B shows the LASSO coefficient paths for the PM2.5 

component species. Each component species coefficient is expressed as the difference in mean Horvath 

DNAm-age per an IQR increase in the 1-year component species exposure level. Each curve depicts the 

rate at which the component species coefficient shrinks towards zero as l increases. At l=0, all components 

species have a non-zero coefficient.  
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Table 3. 1-Year Particulate Matter 2.5 (PM2.5) and Component Species as Predictors of DNA Methylation (DNAm) Age 

Particle Difference in Horvath DNAm-age 
for IQR (95% CI) P Difference in Hannum DNAm-age 

for IQR (95% CI) P N 

Model Framework 1 
PM2.5 0.64 (0.20, 1.09) 0.005 0.06 (-0.28, 0.40) 0.74 940 

      
Model Framework 2      
EC 0.27 (-0.25, 0.80) 0.30 -0.09 (-0.48, 0.29) 0.64 940 
OC 0.93 (0.37, 1.50) 0.001 0.35 (-0.05, 0.77) 0.09 940 
Sulfate 0.59 (0.37, 0.81) <0.0001 0.08 (-0.09, 0.25) 0.36 940 
Nitrate 0.58 (0.11, 1.04) 0.01 0.30 (-0.04, 0.65) 0.08 940 
Ammonium 0.59 (0.26, 0.92) 0.0004 0.06 (-0.18, 0.30) 0.63 940 

      
Model Framework 3         
PM2.5 0.18 (-0.30, 0.66) 0.45 - - 940 
Sulfate 0.51 (0.28, 0.74) <0.0001 - - 940 
Ammonium 0.36 (0.02, 0.70) 0.04 - - 940 
      

Model Framework 1: adjusted for chronological age, blood cell types, temperature, pack years, smoking status, season, BMI, alcohol 
consumption, and education. Model Framework 2: PM2.5 component species as independent predictors of DNAm-age adjusted for PM2.5 in 
addition to model 1 covariates. Model Framework 3: PM2.5, sulfate, and ammonium as joint predictors of DNAm-age (given selection of sulfate 
and ammonium by the adaptive LASSO) adjusted for model 1 covariates. No species were selected as predictors of Hannum DNAm-age. 
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Figure 1 | A) The relationship between BIC, a criterion for model selection and λ (lambda), 
the adaptive LASSO penalty parameter, for DNAm-age.  The vertical line at λ = 11 denotes 
the penalty parameter with the lowest BIC.  B) LASSO coefficient paths: plot of coefficient 
profiles for PM2.5 components as a function of λ. At λ = 11, sulfate and ammonium are the 
only PM2.5 components with a non-zero coefficient. 
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In the multiple-species fully-adjusted linear mixed effects model, both sulfate (b=0.51, p<0.0001) 

and ammonium (b=0.36, p=0.04) remain significant positive predictors of Horvath DNAm-age. The 

adaptive LASSO did not select any PM2.5 component species as important predictors of Hannum DNAm-

age. 

In our sensitivity analysis – where LASSO selection was performed without adjusting for total 

PM2.5 mass – sulfate, ammonium, and OC were selected as important predictors of DNAm-age (Figure S1). 

Nonetheless, in a multiple-species fully-adjusted linear mixed effects model, both sulfate (b=0.45, 

p=0.0003) and ammonium (b=0.34, p<0.05) remained significant positive predictors of Horvath DNAm-

age, but OC (b=0.42, p=0.16) was not a significant predictor of Horvath DNAm-age (Table S3). Again, the 

sensitivity analysis adaptive LASSO did not select any PM2.5 component species as important predictors of 

Hannum DNAm-age. 

Significant findings from the main analysis multiple-species fully-adjusted linear mixed effects 

model persisted in the second sensitivity analyses excluding participant visits with PM2.5 exposures greater 

than 12 µg/m3, the annual PM2.5 exposure level currently deemed acceptable by the U.S. Environmental 

Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) (Table S4). 

 

3.4.c. Associations between 1-Year PM2.5 and PM2.5 Component Species Levels and Methylation Values at 

Horvath DNAm-age CpG Sites 

After FDR correction, 47 out of 353 Horvath DNAm-age CpG sites had methylation values that 

were significantly associated with total PM2.5 levels in the fully-adjusted multiple-species linear mixed 

effects model. PM2.5 levels were positively or negatively associated with CpG methylation values 

depending on the CpG site (Table 4). 46 of the 47 CpG sites mapped to known  
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Table 4. 1-Year Particle Exposures as Predictors of Horvath CpG Probe 

CpG Gene Process/Function 

Difference in 
Methylation 

per SD 
Direction of 
Association 

FDR 
Adjusted 

P (%) 

PM2.5 

cg15262928 TIMM17A Mitochondrial protein import 24.18 + 0.001 
cg14409958 ENPP2* Nucleic acid binding 19.85 + 0.001 

cg01570885 FAM50B* Protein binding 19.64 - 0.004 

cg08186124 LZTFL1* Protein binding: cytoplasm 19.59 + 0.004 
cg18139769 SGCE* Calcium binding 19.25 - 0.004 
cg15547534 PPP1R35 Phosphatase binding 18.79 + 0.004 
cg26456957 PPP1R12C Protein kinase binding 18.74 + 0.001 
cg05847778 BBS5 Transcription initiation 18.01 + 0.006 
cg15661409 C14orf105* Uncharacterized 17.52 - <0.001 
cg02335441 NEK11 DNA replication 17.32 + 0.008 
cg17285325 TYMP Phosphorylase activity 17.23 + 0.007 
cg04094160 ZBTB5* Transcriptional regulation 16.92 + 0.003 
cg03682823 SGCE Calcium binding 16.80 - 0.008 
cg07663789 NPR3 Hormone binding/blood volume 16.13 + 0.003 
cg15703512 PDZD9 Uncharacterized 15.80 + 0.015 
cg22190114 NLRP8 ATP binding 15.60 + 0.015 
cg19008809 SFMBT1 Transcription corepressor 

activity 
15.48 + 0.013 

cg00374717 ARSG Sulfatase enzyme activity 15.29 - 0.004 
cg12985418 MIB1 Protein binding 15.14 + 0.018 
cg03588357 GPR68 G-protein coupled receptor 

activity 
15.09 + 0.020 

cg14424579 AGBL5 Metallocarboxypeptidase 15.07 + 0.007 
cg14597908 GNAS G-protein binding 15.04 - 0.015 
cg19044674 LEPRE1 Oxidoreductase activity 14.88 + 0.023 
cg09441152 PQLC1 Membrane component 14.87 + 0.027 
cg07849904 MN1 Transcriptional activator 14.85 + 0.015 
cg19273182 PAPOLG Polynucleotide 

adenylyltransferase activity 
14.81 + 0.025 

cg17063929 NOX4 Nucleotide binding 14.56 - 0.015 
cg24116886 DEFB127 Immunologic response 14.40 - 0.015 
cg09191327 PRDM12 Methyltransferase activity 14.30 + 0.027 
cg23662675 ZMYND8 Transcription cofactor activity 14.16 + 0.014 
cg14992253 EIF3I Translation initiation 13.12 - 0.018 
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Table 4. 1-Year Particle Exposures as Predictors of Horvath CpG Probe (Continued) 
cg05442902 P2RX6 Channel activity 12.82 - 0.026 
cg06557358 TMEM132

E* 
Integral component of 

membrane 
12.60 + 0.031 

cg11932564 TNFRSF13
C 

Immunologic response 12.51 + 0.037 

cg18031008 MRPS21 Mitochondrial ribosome 12.10 + 0.030 
cg19945840 SDF4 Calcium binding 12.08 - 0.023 
cg19167673 PDGFB Protein homodimerization 

activity 
12.03 + 0.031 

cg25159610 PLK2 Cell division 11.96 + 0.038 
cg22006386 CATSPER

G* 
Ion channel activity 11.89 + 0.026 

cg27377450 unknown unknown 11.85 - 0.026 
cg20100381 NAE1 Protein heterodimerization 

activity 
11.84 + 0.046 

cg04268405 CHST3 Sulfotransferase 11.47 - 0.026 
cg07595943 ADAD2 RNA binding 11.36 - 0.023 
cg25505610 EIF3M Translation initiation 10.67 + 0.042 
cg16744741 PRKG2 Protein kinase activity 10.17 - 0.038 
cg21395782 NDUFA13* NADH dehydrogenase activity 8.27 + 0.027 
cg01459453 SELP Oligosaccharide binding 8.05 - 0.023 

 
Ammonium 

 
cg02275294 SOAT1 Fatty-acyl-CoA binding 10.81 + 0.036 

      
All models are fully adjusted. * = CpGs associated with PM2.5 levels in a prior publication. 

 
 

 

 

genes.  9 of these 46 genes (ENPP2, FAM50B, LZTFL1, SGCE, C14orf105, ZBTB5, TMEM132E, 

CATSPERG, and NDUFA13) were previously reported in a similar, previously published PM2.5 Horvath 

CpG analysis31. Gene ontology of our 46 genes combined with the genes in the previously reported study 

returned the GO term “regulation of translational initiation” (Table S5). 

Only 1 out 353 CpG sites (cg02275294) had methylation values that were significantly associated 

with ammonium levels in the fully-adjusted multiple-species linear mixed effects model. No individual 

CpG sites had methylation values that were significantly associated with sulfate levels after FDR correction. 
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3.5. Discussion 

In this study, we report positive associations of 1-year PM2.5 exposure levels with Horvath DNAm-

age in a population of community-dwelling, elderly men. Additionally, we utilized the adaptive LASSO to 

identify 1-year sulfate and ammonium levels as the PM2.5 components most robustly associated with 

Horvath DNAm-age. To our knowledge, this is the first report of associations of multiple PM2.5 component 

species with DNAm-age and the second time that satellite-derived PM2.5 exposure levels have been found 

to be associated with Horvath DNAm-age. In addition to being consistent with the existing literature31, our 

findings also demonstrate important public health relevance as they persist in sensitivity analyses including 

only participant visits with 1-year PM2.5 levels within current US EPA national ambient air quality 

standards54. Our study also extends the literature by exploring PM2.5 relationships with Hannum DNAm-

age although these relationships were found to be null. Furthermore, we identified 47 CpG sites, 9 of which 

were previously reported, whose methylation values were significantly associated with PM2.5 levels in fully-

adjusted linear mixed effects models. Only 1 CpG was associated with ammonium levels and 0 were 

associated with sulfate levels. 

Given our prior report of robust associations of PM2.5 levels from satellite-based spatiotemporal 

models with Horvath DNAm-age, we expected to observe a similar positive relationship using PM2.5 levels 

from the GEOS-chem chemical transport model. As expected, we observed that an IQR increase in 1-year 

PM2.5 exposure was associated with a 0.64-year increase in Horvath DNAm-age. Since PM2.5 component 

species are highly related to total PM2.5, we also expected that PM2.5
 component species would be associated 

with Horvath DNAm-age, even when adjusting for PM2.5 mass. Given the existing literature concerning the 

differential health effects of PM2.5 component species, we speculated that some component species may be 

more robustly associated with Horvath DNAm-age than others. In particular, we expected the carbonaceous 

fractions to be among the species most robustly associated with DNAm-age due to the extensive literature 

(including work from our group) on the adverse nature of carbonaceous fraction exposures on health31,43,55-

57. In our fully adjusted one-species linear mixed effects models, we observed strong positive associations 

of 4 out of the 5 component species examined with Horvath DNAm-age. IQR range increases in organic 
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carbon, sulfate, nitrate, and ammonium were all significantly associated with at least a 0.58-year increase 

in Horvath DNAm-age.  

Despite the results from our fully adjusted one-species linear mixed effects models, we desired a 

method to more comprehensively identify the component species most associated with DNAm-age. 

Nevertheless, we were aware that simply modeling highly-correlated PM2.5 species together would result 

in unaccounted for stochastic errors. Thus, we employed the adaptive LASSO as a penalized regression 

method to help overcome this difficulty. The literature has shown that carbonaceous fractions are robustly 

associated with age-related health outcomes31,43,55-57; however, neither elemental or organic carbon were 

selected in our models. Rather sulfate and ammonium were selected. This difference may be explained by 

the fact that a majority of the aforementioned studies did not consider other PM2.5 component species in 

addition to the carbonaceous fractions. Even in our single-species linear mixed effects models, we note that 

organic carbon was among the four species significantly associated with Horvath DNAm-age (Table 3). 

However, when all five component species are considered together in the adaptive LASSO, only sulfate 

and ammonium were selected. It is also possible that the LASSO did not select the carbonaceous fractions 

because the selection was performed under PM2.5 adjustment and PM2.5 may be capturing most of the 

variability of organic and elemental carbon. Thus, we performed LASSO selection not adjusting for total 

PM2.5 mass as a sensitivity analysis. This time LASSO did select organic carbon along with sulfate and 

ammonium. However, when these three component species were modeled with PM2.5 in a multiple-species 

fully-adjusted linear mixed effects model, organic carbon was the only species that was not a significant 

predictor of DNAm-age. This suggests that organic carbon was selected in the sensitivity analysis because 

of its strong correlation with PM2.5 mass and not because organic carbon itself is a good predictor of DNAm-

age. This finding also reiterates the notion that adjustment for PM2.5 mass in component species models is 

very important as PM2.5 mass often confounds the relationship between the outcome and species47. Failing 

to include PM2.5 mass may lead to misleading findings about species. In all, our data suggests that of the 

considered species, sulfate and ammonium have the most important relationships with DNAm-age. 

Furthermore, existing studies that do consider a range of PM2.5 components demonstrate that other non-
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carbonaceous components are important to age-related outcomes52,58,59. These data, together with our 

findings, also suggests the important need to consider a range of PM2.5 components, rather than one or two 

species, in air pollution and health studies.  

Both sulfate and ammonium are classified in the inorganic fraction of PM2.5. Sulfates are often 

produced from oxidation or photochemical reactions involving primary gases derived from sources like 

coal-burning power plants60. Additionally, ammonia from organic sources including animal feeds and 

fertilizers can contribute to the existence of sulfates in the form of atmospheric ammonium sulfate61. As far 

as direct ambient sulfate and ammonium toxicity to human health is concerned, existing studies are limited. 

Yet, there has been extensive evidence describing the ability of acidic sulfates, like ammonium sulfate, to 

increase the number and toxicity of biologically harmful secondary particles47,62-66. For instance, ammonium 

sulfate aerosols have been shown to influence the photo-chemical reactions of nitrogen oxides and toluene 

hastening the production of secondary organic aerosols67. Moreover, sulfur concentrations have been found 

to be directly proportional to the ability of soluble particle extracts to generate biologically damaging 

oxidants68. Furthermore, a prior study in the NAS has reported a 27% decrease in long interspersed 

nucleotide element-1 methylation per every IQR increase in 90-day sulfate exposure. This study provides 

evidence for the influence of sulfates on DNA methylation, which may be a potential pathway for sulfate 

toxicity42. It is still unclear what the molecular relevance of Horvath DNAm-age is, but our findings along 

with the existing literature will be helpful in providing additional insight for future work. 

Following the selection of sulfate and ammonium by the adaptive LASSO, we constructed a final 

multiple-species linear mixed effects model adjusted for PM2.5 mass and all covariates. Even in this model, 

sulfate and ammonium remained significant positive predictors of Horvath DNAm-age. We then looked to 

see if there were specific Horvath DNAm-age component CpG sites with methylation values that were 

associated with PM2.5, sulfate, and/or ammonium in our fully-adjusted multiple-species linear model. From 

this analysis, we identified 47 significant CpG sites after FDR adjustment. These sites mapped to 46 genes, 

and 9 of them were reported in a previous CpG-level analysis of the same 353 sites in the Horvath algorithm 

that we conducted using PM2.5 levels from a satellite-based spatiotemporal model. To better grasp the 
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impact of PM2.5 levels on methylation, we divided the coefficients for each significant CpG site (i.e. 

difference in methylation per IQR increase in particle level) by the standard deviation of the respective 

particle level. We were pleased to see that 5 of the 9 CpGs that were shared between both PM2.5
 prediction 

models were in the top 20% of our gene list. We then combined the gene lists from both PM2.5
 prediction 

models (removing any duplicates) and performed a gene ontology (GO) analysis. The GO analysis returned 

the term “regulation of translational initiation” with the following genes from our list falling into this 

category: RXRA, EIF3M, EIF31. Though the GO term itself is not highly specific, combining this pathway 

with what is known about the toxicity of PM2.5 will be useful in further understanding how PM2.5 may 

contribute to aging and disease. Only 1 CpG was associated with ammonium levels and it mapped to the 

gene SOAT1, which is involved in fatty-acyl-CoA binding. SOAT1 has been implicated in a number of 

diseases including familial hypercholesterolemia69. No CpG sites were specifically associated with sulfate 

levels. The finding that almost no CpGs sites were associated with ammonium and sulfate further 

demonstrates that Horvath DNAm-age is simply not a reflection of its 353 component CpGs, and reiterates 

the need for work focused on defining the molecular relevance of DNAm-age. 

Finally, our study demonstrates that all DNAm-age measures are not the same. In the literature, 

there is evidence of both Horvath and Hannum DNAm-age reflecting the same disease outcome and 

evidence where they differ in their reporting ability. For instance, both Horvath and Hannum DNAm-age 

appear to be useful in predicting mortality70,71. However, in a study of male and female veterans, Hannum 

DNAm-age was associated with post-traumatic stress disorder and neural integrity, but Horvath DNAm-

age was not72. The differences in these two DNAm-age measures may stem from the fact that they are 

derived from almost entirely different CpG sites or from the fact that Horvath DNAm-age was constructed 

using many datasets of multiple tissue types and the Hannum DNAm-age was based only on blood from 

one dataset30,36. Our results suggest that Hannum DNAm-age is not sensitive to exposure levels of PM2.5 

and its component species. Additional studies in different populations will be necessary to confirm these 

findings more broadly. Nonetheless, continued research exploring the specific sensitivity of DNAm-age 

measures will be a crucial next step in the growth of this field of research. Once more is known about the 
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profiles of these markers, we can begin to use them more effectively in answering questions concerning 

human health. 

Strengths of our study include rigorous statistical methods and access to a large cohort with 

extensive and repeated information regarding pollutant exposures, potential confounders, and DNA 

methylation data from multiple study visits. However, our study does have several limitations. First, 

although we used a validated chemical transport model to estimate the levels of ambient PM2.5 and its 

component species at participants’ addresses, we recognize that these estimates may differ from personal 

exposures. Nonetheless, we know that a majority of NAS participants are retired and spend most of their 

time at home. Moreover, our approach is expected to result in non-differential misclassification that is likely 

to underestimate the observed associations rather than bias them away from the null73. Secondly, it is known 

that LASSO regression is limited to linear relationships. Given the linear relationship of our particle 

exposures with DNAm-age and the scope of this paper, the adaptive LASSO was a good tool for identifying 

PM2.5 components that are independently important to DNAm-age. However, for future studies potentially 

interested in the interactions between PM2.5 components, another technique may be necessary as PM2.5 

species interactions that are important for the prediction of DNAm-age may be more complex (i.e. not 

linear). Third, we note that our findings are based on an elderly cohort of Caucasian males that reside in a 

lightly-polluted environment. Hence, additional studies involving other demographic groups and in 

different environments will be necessary to confirm our findings more broadly. Finally, we used the existing 

literature and a priori knowledge of biological/clinical relevance to adjust for potential confounders. 

Nonetheless, we cannot rule out the possibility of unknown or residual confounding in our analyses. 

 

3.6. Conclusion 

Our study utilizes the GEOS-chem chemical transport model to validate novel positive associations 

between long-term PM2.5 exposure levels and Horvath DNAm-age. For the first time, we demonstrate that 

sulfate and ammonium are among the PM2.5 component species most associated with Horvath DNAm-age 

in this population of elderly men. In contrast, we observed no relationships of long-term PM2.5 and PM2.5 
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component species exposure levels with Hannum DNAm-age. These results suggest that DNA methylation-

based biomarkers of age differ in their sensitivity to ambient particle exposures and potentially disease 

outcomes. Future studies in other populations will be critical for defining the environmental and disease 

sensitivity profiles of DNAm-age measures. 
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4.1. Abstract 

Background: Recent studies have reported robust associations of long-term PM2.5 exposure with DNA 

methylation-based measures of aging; yet, the molecular implications of these relationships remain poorly 

understood.  

Objective: We evaluated if genetic variation in three biological pathways implicated in PM2.5-related 

disease – oxidative stress, endothelial function, and metal processing – could modify the effect of PM2.5 on 

DNAm-age, one prominent DNA methylation-based measure of biological age.  

Methods: This analysis was based on 552 individuals from the Normative Aging Study with at least one 

visit between 2000 and 2011 (n=940 visits). A genetic-score approach was used to calculate aging-risk 

variant scores for endothelial function, oxidative stress, and metal processing pathways. One-year PM2.5 

and PM2.5 component (sulfate and ammonium) levels at participants’ addresses were estimated using the 

GEOS-chem transport model. Blood DNAm-age was calculated using CpG sites on the Illumina 

HumanMethylation450 BeadChip.  

Results: In fully-adjusted linear mixed-effects models, the effects of sulfate on DNAm-age (in years) were 

greater in individuals with high aging-risk endothelial function variant scores when compared to individuals 

with low aging-risk endothelial function variant scores (Pinteraction=0.0007; bHigh=1.09, 95%CIHigh: 0.70, 

1.48; bLow=0.40, 95%CILow: 0.14, 0.67).  Similar trends were observed in fully-adjusted models of 

ammonium and total PM2.5 alone. No effect modification was observed by oxidative stress and metal 

processing variant scores. Secondary analyses revealed significant associations of serum endothelial 

markers, ICAM1 (b=0.01, 95%CI: 0.002, 0.012) and VCAM1 (b=0.002, 95%CI: 0.0005, 0.0026), with 

DNAm-age.  

Conclusion: Our results add novel evidence that endothelial physiology may be important to DNAm-age 

relationships, but further research is required to establish their generalizability.  
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4.2. Introduction 

Approximately 92% of the world’s population lives in areas with ambient fine particle (PM2.5) 

levels higher than currently accepted global standards1. In fact, a substantial portion of global mortality and 

morbidity can be attributed to PM2.5 exposure2. Research continues to demonstrate that long-term PM2.5 

exposure is a major risk factor for cardiovascular disease3,4, and respiratory impairment5. PM2.5 has also 

been associated with cognitive decline6,7, and cancer8,9. Still, exactly how PM2.5 contributes to these and 

other important health outcomes is still not fully understood. Addressing this knowledge gap is a critical 

step for developing interventions to alleviate the disease burden of individuals already exposed to high 

PM2.5 levels. Aging also independently contributes to many PM2.5-related health endpoints10,11. Thus, 

studying how PM2.5 is related to aging may facilitate a greater understanding of the complex 

pathophysiology surrounding PM2.5-related diseases. 

Some of the most recent studies of PM2.5 and aging have involved DNA methylation age (DNAm-

age), a novel tissue-independent measure of biological age that is calculated using DNA methylation values 

from 353 age-correlated CpG dinucleotides12. Our research group was the first to report significant positive 

associations of long-term PM2.5 exposure levels with DNAm-age13. Recently, we have identified sulfate 

and ammonium as important component species in the PM2.5-DNAm-age relationship14. In collaboration 

with another research group, we have also demonstrated associations between other air pollutants (e.g. 

black carbon, PM10, and NOx) and epigenetic aging measures15. Despite this work, very little is known 

about the molecular implications of the PM2.5 and DNAm-age relationship. At the moment, the algorithm 

used to calculate DNAm-age relies on assays that have only been optimized for humans and chimpanzees12. 

Hence, this field of research is limited by a lack of traditional animal models to study DNAm-age’s 

relationships. It is possible that DNAm-age is simply reflecting a well-studied biological process (e.g. 

oxidative stress), but it may alternatively reflect a completely novel process. Existing epidemiologic studies 

have demonstrated robust associations of DNAm-age with mortality, cognitive decline, cancer, and other 

PM2.5-related outcomes thereby suggesting that DNAm-age processes are common to many disease 

pathologies16-18. There is also epidemiologic evidence that normal genetic variation may influence DNAm-
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age, but this has yet to be explored in the context of the PM2.5-DNAm-age association19. To our knowledge, 

only a couple of studies have peripherally examined the molecular implications of DNAm-age, and these 

studies only conclude that DNAm-age represents a form of biological aging that differs from cellular 

senescence12,20. 

Even with current limitations, existing technologies can be creatively utilized to begin 

understanding the molecular implications of DNAm-age. Here, we employ components of a previously 

developed genetic score approach that categorizes normal genetic variation into three biological pathways 

– oxidative stress, endothelial function, and metal processing21. Oxidative stress, endothelial function, and 

metal processing are all biological pathways that have been implicated in numerous PM2.5-related diseases; 

thus, they may also be involved in the PM2.5-DNAm-age relationship22. The existing studies that have used 

this Bind et al. method have suggested potential modification of the associations of PM2.5 exposure with 

inflammatory markers and cardiac autonomic function, but the results have not been statistically 

significant21-24. Given these previous findings, our aim is to use the candidate pathway-specific genetic 

variants employed by the Bind method to 1) identify variants specifically important to DNAm-age and 2) 

assess if the normal genetic variation captured by these variants modifies the PM2.5-DNAm-age relationship 

in a population of community-dwelling elderly Caucasian men. 

 

4.3. Materials and Methods 

4.3.a. Study Population 
 

Participants included in this analysis were part of the Normative Aging Study (NAS), an ongoing 

longitudinal cohort study of healthy male volunteers from the Eastern Massachusetts area25. The NAS is a 

closed cohort and participants are now elderly. The NAS was established by the U.S. Department of 

Veterans Affairs (VA) in 1963, and enrolled men who were free of any chronic disease. Every 3-5 years, 

NAS participants reported for onsite, detailed medical examinations during which bio-specimens were 

collected and assessments of lifestyle factors that may affect health were made. All participants provided 



	

	
79 

written informed consent to the VA Institutional Review Board (IRB), and human subjects approval was 

granted by the VA and Harvard T.H. Chan School of Public Health IRBs.  

All NAS men with continued study participation as of the year 2000, when address-specific PM2.5 

component species levels became available, were eligible for our study sample. After excluding participants 

with a diagnosis of leukemia (n=11), due to its potential influence on the DNA methylation of blood cells12, 

and those incomplete for the covariates of interest (n=16), we had a total of 552 participants with 940 

observations (i.e. study visits)  between the years 2000 and 2011. This was the study sample that was used 

in reporting the significant associations between PM2.5 component species and DNAm-age in our previous 

publication14. Of these 552 participants, 249 (45%) had one visit, 218 (40%) had two visits, and 85 (15%) 

had three or more visits. From this sample, we then excluded participants missing pathway specific 

polymorphism data. This resulted in three distinct, but not mutually exclusive, groups of participants: 1) 

Oxidative stress subset (n=410, obs=702); 2) Endothelial function subset (n=450, obs=779); and 3) Metal 

processing subset (n=426, obs=744). 

 

4.3.b. DNA Methylation Assay and Calculation of DNAm-age 

Laboratory staff extracted DNA from the buffy coat of whole blood collected from each participant 

during each NAS follow-up visit (QIAamp DNA Blood Kit, QIAGEN, Valencia, CA, USA). DNA samples 

underwent bisulfite conversion (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, USA) and 

were hybridized to the 12 sample Illumina HumanMethylation450 BeadChips (Infinium HD Methylation 

protocol, Illumina, San Diego, CA, USA). A two-stage age-stratified algorithm was used to randomize 

samples avoiding confounding and ensuring a similar age distribution across chips and plates. For quality 

control purposes, study staff removed samples where >5% of probes had a beadcount < 3 or > 1% of probes 

had a detection P-value >0.05. The Bioconductor minfi package Illumina-type background correction 

without normalization was used to preprocess the remaining samples and generate methylation beta 

values26. Beta values represent the percentage of methylation for each of the ~480,000 CpG sites in the 

BeadChip array. The 450k arrays were run in the Genomics Core Facility at Northwestern University. 
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DNAm age was determined using the publically available online calculator 

(http://labs.genetics.ucla.edu/horvath/dnamage/). DNAm-age was derived from penalized regression (an 

elastic net) using multiple data sets of varying cell and tissue types. 21,369 CpG probes, shared by the 

Illumina HumanMethylation27 and HumanMethylation450 BeadChip platforms were regressed on a 

calibrated version of chronological age. The elastic net selected 353 CpGs that correlated with age (193 

positively and 160 negatively), and the resulting model coefficients were used by the calculator to predict 

the age of each DNA sample (DNAm-age)12. Empirical data demonstrated that the calculator maintains 

predictive accuracy (age correlation 0.97, error = 3.6 years) across almost all body tissues including blood, 

brain, and bone. 

 

4.3.c. Ambient Particle (Exposure) Assessment 

We utilized the GEOS-chem chemical transport model (http://www.geoschem.org) to generate 1-

year exposure estimates for PM2.5, sulfate, and ammonium. Sulfate and ammonium are the major PM2.5 

component species previously demonstrated to be most important in predicting DNAm-age14. By 

incorporating meteorology variables, non-linear chemistry, and detailed emissions inventories, GEOS-

chem simulated the formation and transportation of atmospheric components and provided raw estimates 

of PM2.5 and its major component species. Ten-fold cross-validation demonstrated that the model performed 

well for PM2.5 mass and its component species with R2s ranging from 0.70 to 0.8827. Each participant’s 

residence was geocoded and linked to an area level grid-point. After accounting for address changes, we 

assigned particle estimates to each participant’s address. Greater than 90% of NAS participants are retired; 

thus, home address exposures are expected to be a good proxy for their individual ambient exposures. We 

generated daily estimates at the 1x1 km area resolution and 1-year total PM2.5 and PM2.5 component species 

exposure windows by averaging daily exposures for the 365 days prior to the day of each participants’ NAS 

visit. The 1-year PM2.5 exposure window was utilized because it has been previously reported to be robustly 

associated with DNAm-age13. 
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4.3.d. Serum Endothelial Function Marker Assays 

We used three common plasma endothelial function markers (vascular cell adhesion molecule-1 

[VCAM], intercellular adhesion molecule-1 [ICAM], and vascular endothelial growth factor [VEGF]) that 

were measured in blood collected from NAS participants during their study visits. These markers were 

selected because of all serum physiologic markers available in the NAS, they are most specific and directly 

related to the endothelium. Other markers like CRP are non-specific to the endothelium and have more 

nuanced relationships with other biological processes like general inflammation. These markers have also 

been consistently associated with PM2.5 levels in numerous (NAS and non-NAS) epidemiologic studies and 

have been extensively used to assess endothelial function22,28. VCAM and ICAM are two important cellular 

adhesion molecules that mediate leukocyte-endothelial cell adhesion and transendothelial migration29. 

Laboratory staff measured VCAM (ng/mL) and ICAM (ng/mL) in serum using the enzyme-linked 

immunosorbent assay method (R&D Systems, Minneapolis, MN). Sensitivity of the assay was 0.35 ng/mL 

for ICAM with day-to-day assay variabilities of 10.1, 7.4, 6.0 and 6.1% at concentrations of 64.2, 117, 290 

and 453 ng/mL, respectively. Sensitivity of the assay was 2.0 ng/mL for VCAM with day-to-day assay 

variabilities of 10.2, 8.5 and 8.9% at concentrations of 9.8, 24.9 and 49.6 ng/mL, respectively. VEGF is a 

signaling protein that stimulates the production of endothelial cells and the formation of blood vessels30. 

VEGF (pg/mL) was quantified using multiplexing technology (MILLIPLEXTM MAP) with commercially 

available MILLIPLEXTM MAP kits (EMD Millipore, Billerica, MA, USA). The VEGF assay has intra-

assay and inter-assay precision of 13% and 19% respectively.  

 

4.3.e. Statistical Analysis 

4.3.e.1. Primary Analysis and Variant Scores: 

We first used linear mixed effects models to determine if we could observe previously published 

positive associations of 1-year PM2.5, sulfate, and ammonium levels with DNAm-age in each of our three 

pathway subsets.  
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In our study reporting a relationship between PM2.5 and DNAm-age, we used a tiered framework 

adjusting for confounders and covariates with: 1) a priori biological/clinical relevance and/or 2) reported 

in the existing literature13. Tier one adjusted for chronological age and blood cell types. Tier two made 

additional adjustments for lifestyle and environmental factors. Tiers three and four expanded on tier two by 

additionally adjusting for age-related diseases and medications for age-related diseases respectively. After 

examining model fit (assessed via AIC) and considering the implications of genetic polymorphisms on 

disease independent of PM2.5 and DNAm-age relationships, we employed the tier three covariates for this 

analysis. In all, these models were adjusted for chronological age (continuous), six blood cell type estimates 

[i.e. plasma cells, CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and 

granulocytes] (continuous) determined via Houseman and Horvath methods12,31, average 1-year 

temperature (continuous address-specific satellite measurements14), cumulative cigarette pack years 

(continuous), smoking status (current, former, or never), season of visit (spring [March-May], Summer 

[June-August], Fall [September-November], and Winter [December-February]), body mass index (BMI) 

(lean [<25], overweight [25-30], obese [>30]), alcohol intake (yes/no ³ 2 drinks daily), maximum years of 

education (continuous), cancer (yes/no history of lifetime cancer diagnosis), coronary heart disease (yes/no 

based on electrocardiogram, validated medical records, or physical exam), diabetes (physician diagnosis or 

a fasting blood glucose > 126 mg/dL), and hypertension (yes/no antihypertensive medication use or systolic 

blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg). The sulfate and ammonium models 

were additionally adjusted for PM2.5 mass. All linear mixed effects models were run using the lme function 

from the nlme R package32, and included a random participant-specific intercept to account for correlation 

between repeated outcome measures (i.e. multiple visits for a participant). 

We next used fully adjusted mixed effects models to determine: 1) if oxidative stress, endothelial 

function, or metal processing genetic variants were associated with DNAm-age and 2) the impact of air 

pollution-genetic pathway interactions on DNAm-age. To accomplish this, we utilized genotyping data 

from the NAS dataset and components of a novel genetic score developed by Bind et al. (2014)21. Briefly, 

genotyping assays were performed using the Sequenom MassArray MALDI-TOF Mass Spectrometer with 
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semi-automated primer design and implementation of the short extension method (San Diego, CA). The 

MassArray system has the capacity to analyze multiple classes of genetic markers with high sensitivity. 

Bind et al. developed a novel approach to investigate interactions between environmental exposures 

and the biological pathways of oxidative stress, endothelial function, and metal processing21. The authors 

first related genes to one of these three pathways based on the biological functionality provided by 

GeneCards33. Then considering independent outcomes representative of each pathway (8-hydroxy-2'-

deoxyguanosine for oxidative stress, augmentation index for endothelial function, and patella lead 

concentration for metal processing), they used the least absolute shrinkage and selection operator (LASSO) 

method to select the most important gene variants for each of the outcomes.  

Although the Bind et al. method would allow us to broadly identify pathways that may be related 

to the PM2,5-DNAm-age relationship, it does not allow us to identify variants that are specifically important 

to this relationship. Identifying specific variants allows for a more comprehensive understanding of why 

these pathways are important. In an effort to identify pathway score component variants that were 

specifically sensitive to DNAm-age relationships, we made one alteration to the Bind et al. method. Two 

major limitations of LASSO selection are that 1) the number of selected variables are bounded by the 

number of observations and 2) that the LASSO tends to select one variable from a highly related group 

while ignoring the others34. Given our desire to maximize the identification of specific genetic variants 

important to DNAm-age from three individual groups of pathway-related variants, the latter of these two 

limitations was a concern to us. To overcome this limitation, we employed an elastic net penalized 

regression, which allows for the selection of highly-related variables35. Thus, starting with the reported 

Bind et al. list of candidate pathway-specific gene variants, we then employed an elastic net (penalized 

regression) via the glmnet function in the R glmnet package to determine which of these pathway-specific 

gene variants were also important for DNAm-age36. Our method was similar to that described by Lenters 

and colleagues37 and the full documentation for running all aspects of the elastic net via glmnet is publically 

available (https://cran.r-project.org/web/packages/glmnet/index.html). In short, all aforementioned 

covariates were included in the elastic net regression models as unpenalized variables. The fully-adjusted 
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elastic net regression linear models utilized a hybrid of ridge and LASSO penalty functions to determine 

which genetic variants, within each respective pathway, were important predictors of DNAm-age. With 

ridge, the square of the regression coefficients for predictors are penalized. All predictors are retained but 

coefficients from highly related predictors are proportionally shrunk towards zero. With LASSO, the 

absolute value of predictor coefficients is penalized and coefficients are shrunk by a constant factor. 

Coefficients for the least predictive variants are shrunk to zero and only one predictor from a highly 

correlated group tends to be selected. By combining both of these penalty functions, the elastic net 

performed selection while allowing for the inclusion of highly-related genetic variants bin35,36. Cross-

validation was also performed to determine the optimal degree of penalization. The proportion of ridge and 

LASSO functions and the corresponding penalty that yielded the minimum mean-squared error (MSE) of 

prediction from repeated 10-fold cross-validation was used in the final elastic net selection model. Gene 

variants with non-zero coefficients are considered as “selected” by the elastic net. Following this elastic net 

selection, we were left with three lists: 1) Oxidative stress gene variants that were important for DNAm-

age; 2) Endothelial function gene variants that were important for DNAm-age; and 3) Metal processing 

gene variants that were important for DNAm-age. 

Returning to the original Bind et al. methodology, we then summed the sign of the non-zero 

coefficients for each of the important variants to construct pathway specific variant scores for all study 

participants. For instance, say hypothetical oxidative stress variants A1, A2, and B3 had elastic net 

coefficients of +2.3, -1.7, and 1.6. A participant with all of these variants would have an oxidative stress 

polymorphism score of +1 (i.e. 1 – 1 + 1= 1). Another participant with only variants A1 and B3 would have 

an oxidative stress score of +2 (i.e. 1 + 1 = 2). Final binary pathway polymorphism scores were created by 

dichotomizing each score as low or high aging-risk using the median of each score’s distribution in the 

study sample.  

Again, we used fully adjusted mixed effects models to determine if each pathway polymorphism 

score was independently associated with DNAm-age. We then included interaction terms of our main 
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exposures (PM2.5, sulfate, and ammonium) with the three respective pathway polymorphism scores to 

identify genetic pathway-air pollution interactions that are related to DNAm-age. 

 

4.3.e.2. Secondary Analysis: 

Although our air pollution-genetic pathway interaction models provided us with some insight to 

biological pathways that may be genetically relevant to DNAm-age, we further investigated if these same 

pathways had functional relationships with DNAm-age. Thus, we first looked to see if serum endothelial 

function markers were correlated with DNAm-age in our study sample. We next constructed linear mixed 

effects models to see if the serum markers were significantly associated with DNAm-age after adjusting for 

chronological age, blood cell types, and the age-related diseases of lifetime cancer diagnosis, hypertension, 

diabetes, and coronary heart disease. 

All statistical analyses were performed using R Version 3.1.1 (R Core Team, Vienna, Austria) and 

we considered a P-value < 0.05 to be statistically significant. 

 

4.4. Results 
 
4.4.a. Descriptive Statistics 

The demographics and clinical data of all study participants in each of the three biological pathway 

subsets are presented in Table 1. Participants in each subset had an average age (SD) and an average 

DNAm-age (SD) both of approximately 74 ± 7 years. Table S1 lists all of the candidate pathway-specific 

genetic variants used by Bind et al. (2014)21. Table S2 lists the genetic variants that were selected by the 

elastic net as important for DNAm-age. No metal processing variants were selected by the elastic net; thus, 

no variant score could be calculated for that subset. Participants in the oxidative stress subset had variant 

scores ranging from -6 to 4, and endothelial function subset participants had variant scores ranging from -

3 to 0. Both subsets had variant scores with a median of 1. 
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Table 1. Characteristics of Study Subjects, 2000 – 2011  

Variable 
Oxidative Stress 
Subset (N = 702)* 

Endothelial  Function 
Subset (N = 779)* 

Metal Processing 
Subset (N = 744)* 

Age, mean (SD) 74.7 (6.89) 74.8 (6.95) 74.7 (6.80) 
DNAm-age, mean (SD) 74.2 (7.97) 73.9 (7.92) 73.8 (7.51) 
Variant Score, mean (range) -0.51 (-6, 4) -1.23 (-3, 0) - 
Temperature, mean (SD) 11.3 (0.99) 11.3 (0.98) 11.3 (1.03) 
Pack years, mean (SD) 20.4 (24.7) 20.6 (24.7) 20.9 (24.9) 
Smoking Status, N (%)  
Current 35 (5) 37 (5) 34 (5) 
Former 450 (64) 512 (65) 480 (65) 
Never 217 (31) 230 (30) 230 (30) 
Season, N (%)   
Spring 177 (25) 192 (25) 188 (25) 
Summer 146 (21) 164 (21) 157 (21) 
Fall 238 (34) 267 (34) 251 (34) 
Winter 141 (20) 156 (20) 148 (20) 
BMI, N (%)   
Healthy/Lean 168 (24) 189 (24) 172 (23) 
Overweight 370 (53) 406 (52) 391 (53) 
Obese 164 (23) 184 (24) 181 (24) 
Alcohol Consumption, N ( %)  
<  2 drinks/day 560 (80) 620 (80) 599 (81) 
≥ 2 drinks/day 142 (20) 159 (20) 145 (19) 
Education, N (%)    
≤ 12 years 192 (27) 207 (27) 192 (26) 
12 - 16 years 320 (46) 355 (46) 341 (46) 
> 16 years 190 (27) 217 (27) 211 (28) 
Lifetime Cancer Diagnosis, N (%)    
Yes 390 (55) 435 (56) 426 (57) 
No 312 (45) 344 (44) 318 (43) 
Coronary Heart Disease, N (%)    
Yes 221 (31) 261 (34) 257 (35) 
No 481 (69) 518 (66) 487 (65) 
Diabetes, N (%)    
Yes 120 (17) 138 (18) 131 (18) 
No 582 (83) 641 (82) 613 (82) 
Hypertension, N ( %)    
Yes 514 (73) 571 (73) 541 (73) 
No 188 (27) 208 (27) 203 (27) 
    
    
*From 552 participants (940 visits), we excluded participants missing pathway-specific variant data. 
This resulted in three distinct, but not mutually exclusive, subsets. 
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Table 2 summarizes the mean levels of PM2.5, sulfate, and ammonium in each of the three subsets. 

In the oxidative stress subset, 10.3 (2.14) µg/m3, 3.40 (0.80) µg/m3, and 1.04 (0.29) µg/m3 were the average 

(IQR) levels of PM2.5, sulfate, and ammonium respectively. Both the endothelial function and metal 

processing subsets showed similar levels of these particles. The mean (IQR) levels for PM2.5, sulfate, and 

ammonium in the endothelial function subset were 10.3 (2.09) µg/m3, 3.38 (0.80) µg/m3, and 1.04 (0.29) 

µg/m3. The mean (IQR) levels for same particles in the metal processing subset were 10.3 (2.09) µg/m3, 

3.42 (0.84) µg/m3, and 1.04 (0.28) µg/m3. 

 

 

 

 

 

4.4.b.-Year Particle Levels and Variant Scores as Predictors of DNAm-age 

Table 3 summarizes the results of linear mixed effects models where dichotomized variant scores 

and IQR increases in 1-year particle levels were modeled as independent predictors of DNAm-age. In the 

endothelial function subset, an IQR increase in 1-year PM2.5 (b=0.67, p=0.005), sulfate (b=0.64, p<0.0001), 

and ammonium (b=0.49, p=0.002) were all significantly, positively associated with DNAm-age. 1-year 

IQR increases in all three particles were also significant positive predictors of DNAm-age in the metal 

processing subset. Similar trends were observed in the oxidative stress subset where sulfate (b=0.64, 

p<0.0001) and ammonium (b=0.58, p=0.0005) were significant positive predictors of DNAm-age and PM2.5 

(b=0.46, p=0.07) was a marginally significant positive predictor of DNAm-age. 

13 oxidative stress variants and 3 endothelial function variants were selected by the elastic net as 

Table 2. Mean 1-Year Particulate Matter 2.5 (PM2.5), Sulfate, and Ammonium 
Concentrations, 2000-2011 

Particle (µg/m3) Oxidative Stress 
Subset (N = 702) 

Endothelial Function 
Subset (N = 779) 

Metal Processing 
Subset (N = 744) 

PM2.5, mean (IQR) 10.3 (2.14) 10.3 (2.09) 10.3 (2.09) 
Sulfate, mean (IQR) 3.40 (0.80) 3.38 (0.80) 3.42 (0.84) 
Ammonium, mean (IQR) 1.04 (0.29) 1.04 (0.29) 1.04 (0.28) 
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important for predicting DNAm-age. These variants were used to calculate the variant scores for these 

pathways (Table S2). Again, no variants were selected by the elastic net for the metal processing subset; 

hence, no variant score could be calculated for this biological pathway. In both the oxidative stress and 

endothelial function subsets, individuals with high aging-risk variant scores (≥ median) on average had at 

least a 0.62-year higher DNAm-age than their counterparts with low aging-risk variant scores. However, 

these relationships were not statistically significant (Table 3).  
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Figure 1 | Difference in DNAm-age for one interquartile range increase in 1-year 
particle exposure according to oxidative stress score (low versus high) in the fully-
adjusted linear mixed effects model. 
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Table 3. Mean 1-Year Particulate Concentrations and Polymorphism Score as Independent Predictors of DNAm-age 
  

Predictor Oxidative Stress Subset 
(N = 702)  

 Endothelial  Function Subset 
(N = 779)  

 Metal Processing Subset 
(N = 744)  

 
Difference in DNAm-age 
(years) for IQR (95% CI) P 

 Difference in DNAm-  age 
(years)for IQR (95% CI) P 

 Difference in DNAm-age 
(years) for IQR (95% CI) P 

PM2.5 0.46 (-0.04, 0.97) 0.07  0.67 (0.21, 1.15) 0.005  0.48 (0.003, 0.94) 0.05 
Sulfate 0.64 (0.38, 0.89) <0.0001  0.64 (0.40, 0.88) <0.0001  0.53 (0.29, 0.77) <0.0001 
Ammonium 0.58 (0.25, 0.91) 0.0005  0.49 (0.18, 0.80) 0.002  0.53 (0.16, 0.89) 0.005 
Variant Score*         
Low ref -  ref -  - - 
High  0.62 (-0.65, 1.89) 0.34  0.67 (-0.46, 1.79) 0.25  - - 
         
All models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI, alcohol consumption, education, lifetime 
cancer diagnosis, hypertension, diabetes, and coronary heart disease.  Sulfate, ammonium and polymorphism score models are additionally adjusted for total 
PM2.5 mass. *Binary pathway polymorphism scores were created by dichotomizing each score using the median of each score’s distribution in the study sample. 
Participants had a low aging-risk if their score was less than (<) the median and a high aging-risk score if their score was greater than or equal to ( ≥) the median. 



	

	
90 

 

4.4.c. Effect Modification by Variant Scores  

Figures 1 and 2 depict the modifying role of the oxidative stress (Figure 1) and endothelial function 

(Figure 2) variant scores on the relationship of 1-year particle exposures with DNAm-age. The association 

of all three particles on DNAm-age was greater in individuals with a low aging-risk oxidative stress variant 

score when compared to individuals with a high aging-risk oxidative stress variant score (Figure 1), but 

none of these differences were statistically significant. The effect of all three particles on DNAm-age was 

greater in individuals with a high aging-risk endothelial function variant score when compared to 

individuals with a low aging-risk endothelial function variant score (Figure 2). These differences were 

significant for sulfate and ammonium exposure but not quite for PM2.5. The relationships in Figure 1 are 

quantified in Table S3.  
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Figure 2 | Difference in DNAm-age for one interquartile range increase in 1-year 
particle exposure according to endothelial function score (low versus high) in the 
fully-adjusted linear mixed effects model. 
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4.4.d. Relationships of Serum Endothelial Functional Markers with DNAm-age  
 

In our secondary analysis, DNAm-age was significantly positively correlated with both ICAM 

(r=0.13, p=0.0001) and VCAM (r=0.25, p<0.0001) (Table S4). However, DNAm-age was not significantly 

correlated with VEGF (r=0.02, p=0.54). After adjusting for chronological age, blood cell types, cancer, 

hypertension, diabetes, and coronary heart disease, ICAM1 (b=0.01, p=0.005) and VCAM1 (b=0.002, 

p=0.004) were both significant positive predictors of DNAm-age. VEGF (b=-0.00003, p=0.82) was not 

significantly associated with DNAm-age (Table 4).  

 

 

 

4.4.e. Endothelial Function Variant Score as a Modifier of the Association of PM2.5 with ICAM and VCAM 

We performed subsequent analyses, using fully-adjusted mixed effects models, where we found 

that the positive associations of 1-year particle levels with ICAM (Figure S1) and VCAM (Figure S2) were 

greater in individuals with high aging-risk endothelial function variant scores when compared to their 

counterparts. These findings were only statistically significant for ICAM.  

 

4.5. Discussion 

Table 4. Associations of Serum Endothelial Function Markers with DNAm-age 
 Difference in DNAm-age (95% CI) P N 
Marker    
ICAM (ng/mL) 0.01 (0.002, 0.012) 0.005 608 
VCAM (ng/mL) 0.002 (0.0005, 0.0026) 0.004 608 
VEGF (pg/mL) -0.00003 (-0.0003, 0.0003) 0.82 608 
     
Models adjusted for chronological age, blood cell type, lifetime cancer diagnosis, 
hypertension, diabetes, and coronary heart disease.   
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The present study employed a large longitudinal cohort of elderly men to: 1) identify pathway-

specific genetic variants that were related to DNAm-age and 2) determine if these variants modified the 

association of PM2.5 and PM2.5 component levels with DNAm-age. In each of our pathway subsets, we first 

wanted to ensure that we observed similar relationships of PM2.5, sulfate, and ammonium with DNAm-age 

as previously reported. Indeed, this was the case as sulfate and ammonium were significant positive 

predictors of DNAm-age in all three subsets. PM2.5 levels were significant positive predictors of DNAm-

age in the endothelial function and metal processing subsets, while being marginally significant in the 

oxidative stress subset – potentially due to reduced power attributed to the subset’s slightly reduced sample 

size.  

We next used components of a method developed by Bind et al. (2014) to calculate variant scores 

for oxidative stress, endothelial function, and metal processing pathways. The addition of an elastic net 

selection to the Bind et al. method allowed us to optimize the sensitivity of the approach to DNAm-age 

relationships, while allowing for the identification of genetic-pathway variants that were specifically 

important for DNAm-age. Given that each of these pathways is known to be associated with PM2.5-related 

disease, we predicted that the elastic net would select important variants from each of the pathways. This 

was the case for oxidative stress and endothelial function, but not metal processing. Published literature has 

already demonstrated that these metal processing variants do not modify the effect of PM2.5 levels on a 

panel serum physiological markers including fibrinogen, ICAM, and CRP21. Thus, it is possible that metal 

processing pathways have little or no relationship with DNAm-age physiology especially in the context of 

PM2.5 exposure. Nevertheless, no studies have examined the relationship of PM2.5’s metal component 

species with DNAm-age and no studies have examined the relationship of direct metal exposures with 

DNAm-age. Such studies will be necessary to confirm our null findings of metal processing physiology 

with DNAm-age.   

A total of 13 oxidative stress variants and 3 endothelial function variants were selected by the 

elastic net. A subsequent literature review revealed that many of the selected oxidative stress variants, 

including rs2284367 (CAT), rs2300181 (CAT), and rs1799811 (GSTP1), have already been implicated as 
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effect modifiers of the relationship of PM2.5 and its component species with numerous health endpoints38,39. 

None of the selected endothelial function variants had been implicated in PM2.5 relationships, but there is 

evidence of their role in impacting disease susceptibility following other environmental insults like 

radiation, cigarette smoke, and pesticide exposures40-42. After using the direction of the elastic net 

coefficients of these variants to construct pathway-specific variant scores, we determined if these scores 

were associated with DNAm-age. Given that the Bind et al. method constructs the scores such that a higher 

score correlates with a profile of higher risk for increased DNAm-age, we expected that individuals with 

high oxidative stress or endothelial function scores would on average have higher DNAm-ages than their 

low score counterparts. After examining the effect estimates, this was the case. High aging-risk oxidative 

stress score participants on average had a 0.62-year greater DNAm-age and high aging-risk endothelial 

function participants on average had a 0.67-year greater DNAm-age. Despite these trends, these results 

were not statistically significant.  

When we next explored the modifying role of these variant scores on particle-DNAm-age 

relationships, we found that the effect of sulfate and ammonium on DNAm-age were on average 

approximately 0.60-years greater in participants with a high aging-risk endothelial function score when 

compared to participants with a low aging-risk endothelial function score. A similar trend was observed 

with PM2.5 and endothelial score interactions, but this was not statistically significant. This result suggests 

that DNAm-age is sensitive to endothelial function physiology and is further supported by our secondary 

analysis that revealed significant associations of ICAM and VCAM with DNAm-age after adjusting for 

covariates. Numerous human and animal studies have demonstrated that PM2.5 exposure upregulates 

expression of endothelial factors, which are known to play a role in vascular dysfunction43,44. Moreover, 

vascular physiology is a ubiquitous component of many disease processes and may help explain why 

DNAm-age has been linked to all-cause mortality, malignancy, cognitive deficits and a host of other 

diseases45,46. Endothelial micro-particles from acute coronary artery patients (a surrogate marker of 

endothelial dysfunction) have been shown to promote thrombogenecity and aging phenotypes in healthy 

coronary artery cells47. In a cross-sectional study, endothelial VCAM was associated with increased 
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vascular resistance and lower cognitive performance48. On the contrary pharmaceutical agents that are used 

to treat age-related disease (e.g. statins) have been shown to increase endothelial progenitor cells, which 

may promote endothelial repair and offer benefits like cardio-protection49.  

It is interesting that endothelial variants significantly modified the associations of sulfate and 

ammonium, but not total PM2.5. As it is widely accepted that different PM2.5 species have different 

toxicological effects, this finding may speak to a specific toxicity of these component species via 

endothelial function pathways50. It has already been demonstrated that ammonium and sulfate moieties can 

impact endothelial function51,52. It is also important to highlight that VEGF was not significantly correlated 

with DNAm-age. VEGF was also not significantly associated with DNAm-age after adjusting for 

covariates. The differences between DNAm-age’s relationship with VEGF compared to its relationship 

with ICAM or VCAM could possibly be attributed to VEGF gene and protein expression. VEGF production 

is induced in cells that are hypoxic and circulating VEGF then binds to endothelial cells to promote 

angiogenesis30. ICAM and VCAM are more specifically produced by endothelial cells and play a prominent 

role in endothelial cell interactions with inflammatory cells29. Hence, our data allude to a specific 

relationship between DNAm-age and endothelial function that may be related to immune regulation. This 

finding is particularly promising, as the immune system has long been thought to play a role in the adverse 

effects of PM2.5
4. In all, our findings and the existing literature suggest that the endothelial function pathway 

is a promising place to begin understanding the molecular relevance of DNAm-age. Future studies including 

these and other endothelial function markers are necessary to confirm our findings and further define this 

relationship. 

Finally, none of the particle-oxidative stress score interactions were statistically significant, but it 

is worth noting the direction of the effect estimates for these interaction terms. Like the endothelial function 

score, individuals with a high aging-risk oxidative stress score had a higher DNAm-age when compared to 

individuals with a low aging-risk oxidative stress scores (results not statistically significant). However, 

unlike the endothelial function score, a high aging-risk oxidative stress score appeared to mitigate the effect 

of particles of DNAm-age. These results were not statistically significant but may suggest competing effects 
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between high particle exposure and a high aging-risk oxidative stress physiology. When both are 

simultaneously present (i.e. the interaction of both variables is considered) they appear to inhibit or dampen 

each other’s effects. Such a phenomenon is often observed in epidemiologic research and biological 

systems53. One air pollution related example of competing effects is the mitigation of associations of 

particles with the birth complication preeclampsia when multiple particle sources are considered 

simultaneously54. 

The strengths of the current study include utilization of novel biomarker and genetic pathway tools, 

rigorous statistical methods, and a large longitudinal cohort with repeated measures of ambient pollutant 

exposures, DNA methylation, and potential confounders. This is the first study to use genetic variants to 

study the relationship of ambient particles with DNAm-age. On the contrary, our study does have some 

notable limitations. First, given that a majority of NAS participants are retired and are very likely to spend 

most of their time at home, we use a validated chemical transport model to estimate 1-year ambient levels 

of PM2.5, sulfate, and ammonium at participants’ addresses. Such an approach at estimating personal 

exposures could potentially result in non-differential misclassification, but this is likely to attenuate 

statistical associations rather than bias them away from the null55,56. Secondly, we employ a genetic variant 

score approach that is somewhat limited because it does not provide genome-wide resolution of the three 

biological pathways. Nonetheless, the variants that are present are representative of their respective 

pathways. Third, to maximize statistical power, we used our full cohort to calculate variant scores and test 

for effect modification of DNAm-age relationships. This could be a source of bias and is a limitation of this 

study. Still, our subsequent analysis demonstrating that the endothelial function variant score was a 

significant modifier of the PM2.5-ICAM relationship demonstrates that the variation captured by our score 

impacts the association of PM2.5 with endothelial function markers that are independent of DNAm-age. 

Notwithstanding this evidence, validation of our score and findings in an independent cohort is a future 

direction of this work. Fourth, all bisulfite-mediated methods used for quantifying DNA methylation are 

limited in their ability to distinguish between 5-methylcytosine and its oxidation product 5-

hydroxymethylcytosine57. Lastly, our findings are based on an elderly cohort of Caucasian males that reside 
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in a lightly-polluted environment. To date, only one study has explicitly examined race and sex differences 

in DNAm-age and data from that study suggests that men have higher DNAm-ages than women19. 

Furthermore, there is evidence that race and sex differences can impact individual responses to PM2.5 

exposure. For instance, one study reported that urban PM2.5 levels were associated with asthma 

exacerbations in African Americans, but not Caucasian Americans58. Nevertheless, more work must be 

done to confirm if these, and similar, reported differential effects are truly due to race/sex or if they are 

instead due to differences in residential characteristics and other social determinants.  A limited amount of 

research has explicitly explored the race or sex differences of the endothelial function variants selected by 

our elastic net. One study examining gene-gene interactions that influence pulmonary tuberculosis 

susceptibility reported strong interactions between the rs2248814 (NOS2A) variant and other genes in 

African Americans but not Caucasians59. Another study reported that the rs1800779 (NOS3) variant was 

positively associated with high tension primary open glaucoma in women, but not in men60. With respect 

to the results of the present study, additional studies involving other demographic groups, in different 

environments, and using other assessments of endothelial function will be necessary to confirm our findings 

more broadly. 

 

4.6. Conclusion 

In summary, our findings add evidence that genetic variation can impact the association of long-

term fine particle levels with DNAm-age. In particular, the effect of 1-year particle levels on DNAm-age 

was greater in individuals with a high aging-risk endothelial function genetic variant profile when compared 

to individuals with a low aging-risk variant profile. We also report novel, robust positive associations of 

serum endothelial markers with DNAm-age. Although the biological relevance of DNAm-age is still greatly 

undefined, our study makes a valiant, early attempt at addressing this important research gap. Again, future 

studies in different populations using these and other endothelial markers will be necessary to broaden the 

understanding of the relationship of endothelial function with DNAm-age. 

 



	

	
97 

4.7. Contributions and Support 

Funding Information: This work was supported by grants from the National Institute of Environmental 

Health Sciences (NIEHS) (R01ES021733 and R01ES025225). Other support comes from NIEHS grants 

ES015172, ES014663, ES020010, P30ES009089; Environmental Protection Agency (EPA) grants 

RD832416 and RD83587201; and National Heart, Lung, and Blood Institute (NHLBI) grant 

2T32HL007118-41. Research reported in this publication was also supported by the Office of the Director, 

National Institutes of Health of the National Institutes of Health under Award Number DP5OD021412. The 

content is solely the responsibility of the authors and does not necessarily represent the official views of 

the National Institutes of Health. The US Department of Veterans Affairs (VA) Normative Aging Study 

(NAS) is supported by the Cooperative Studies Program/ERIC, US Department of Veterans Affairs, and is 

a research component of the Massachusetts Veterans Epidemiology Research and Information Center 

(MAVERIC). The views expressed in this paper are those of the authors and do not necessarily represent 

the views of the US Department of Veterans Affairs. Additional support was provided by the US 

Department of Agriculture, Agricultural Research Service (contract 53-K06-510). 

Contributors: JCN and JDS conceived and designed the study. EC, QD, ACJ, LH, and PV gathered data. 

JCN performed the data analyses and drafted the manuscript. MB, LD, JDS, EC, YO, MGW, and AAB 

contributed to the analyses. All authors revised and approved the manuscript. 

Conflict of interest statement: None declared 

Ethics approval: Boston VA Medical Center, Harvard T.H. Chan School of Public Health (protocol 14027-

102). 

Data Availability 

Data are from the Normative Aging Study, from which restricted data are available for researchers who 

meet the criteria. A subset of the methylation data is deposited at NCBI dbGaP (study accession number: 

phs000853.v1.p1. 

 

  



	

	
98 

4.8. References 

1 Mayor, S. Nine in 10 people are exposed to air pollution over WHO limits, warns report. BMJ: 

British Medical Journal (Online), 354 (2016). 

2 Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing Global Mortality from Ambient 

PM2.5. Environ. Sci. Technol. 49, 8057-8066, doi:10.1021/acs.est.5b01236 (2015). 

3 Martinelli, N., Olivieri, O. & Girelli, D. Air particulate matter and cardiovascular disease: a 

narrative review. Eur. J. Intern. Med. 24, 295-302, doi:10.1016/j.ejim.2013.04.001 (2013). 

4 Zhong, J. et al. Cardiac Autonomic Dysfunction: Particulate Air Pollution Effects Are Modulated 

by Epigenetic Immunoregulation of Toll-like Receptor 2 and Dietary Flavonoid Intake. J Am Heart 

Assoc 4, e001423, doi:10.1161/JAHA.114.001423 (2015). 

5 Chen, S. et al. Fine Particulate Constituents and Lung Dysfunction: A Time-Series Panel Study. 

Environ Sci Technol, doi:10.1021/acs.est.6b03901 (2017). 

6 Schikowski, T. et al. Association of air pollution with cognitive functions and its modification by 

APOE gene variants in elderly women. Environ. Res. 142, 10-16, doi:10.1016/j.envres.2015.06.009 

(2015). 

7 Power, M. C. et al. Traffic-related air pollution and cognitive function in a cohort of older men. 

Environ. Health Perspect. 119, 682-687, doi:10.1289/ehp.1002767 (2011). 

8 Raaschou-Nielsen, O. et al. Particulate matter air pollution components and risk for lung cancer. 

Environ Int 87, 66-73, doi:10.1016/j.envint.2015.11.007 (2016). 

9 Lepeule, J., Laden, F., Dockery, D. & Schwartz, J. Chronic exposure to fine particles and mortality: 

an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect 

120, 965-970, doi:10.1289/ehp.1104660 (2012). 

10 Lane-Cordova, A. D. et al. Aging, not age-associated inflammation, determines blood pressure and 

endothelial responses to acute inflammation. J Hypertens 34, 2402-2409, 

doi:10.1097/HJH.0000000000001103 (2016). 



	

	
99 

11 Rowe, J. W. & Kahn, R. L. Successful Aging 2.0: Conceptual Expansions for the 21st Century. J 

Gerontol B Psychol Sci Soc Sci 70, 593-596, doi:10.1093/geronb/gbv025 (2015). 

12 Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115, 

doi:10.1186/gb-2013-14-10-r115 (2013). 

13 Nwanaji-Enwerem, J. C. et al. Long-term ambient particle exposures and blood DNA methylation 

age: findings from the VA normative aging study. Environ Epigenet 2, doi:10.1093/eep/dvw006 

(2016). 

14 Nwanaji-Enwerem, J. C. et al. Associations between Long-term Exposure to PM2.5 Component 

Species and Blood DNA Methylation Age in the Elderly: The VA Normative Aging Study. Environ 

Int 102, 57-65 (2017). 

15 Ward-Caviness, C. K. et al. Long-term exposure to air pollution is associated with biological aging. 

Oncotarget, doi:10.18632/oncotarget.12903 (2016). 

16 Wolf, E. J. et al. Accelerated DNA methylation age: Associations with PTSD and neural integrity. 

Psychoneuroendocrinology 63, 155-162, doi:10.1016/j.psyneuen.2015.09.020 (2016). 

17 Levine, M. E. et al. DNA methylation age of blood predicts future onset of lung cancer in the 

women's health initiative. Aging (Albany NY) 7, 690-700 (2015). 

18 Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting 

time to death. Aging (Albany NY) 8, 1844-1865, doi:10.18632/aging.101020 (2016). 

19 Horvath, S. et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. 

Genome Biol 17, 171, doi:10.1186/s13059-016-1030-0 (2016). 

20 Lowe, D., Horvath, S. & Raj, K. Epigenetic clock analyses of cellular senescence and ageing. 

Oncotarget 7, 8524-8531, doi:10.18632/oncotarget.7383 (2016). 

21 Bind, M. A. et al. A novel genetic score approach using instruments to investigate interactions 

between pathways and environment: application to air pollution. PLoS One 9, e96000, 

doi:10.1371/journal.pone.0096000 (2014). 



	

	
100 

22 Dai, L. et al. Fine particles, genetic pathways, and markers of inflammation and endothelial 

dysfunction: Analysis on particulate species and sources. J Expo Sci Environ Epidemiol 26, 415-

421, doi:10.1038/jes.2015.83 (2016). 

23 Mordukhovich, I. et al. Exposure to sub-chronic and long-term particulate air pollution and heart 

rate variability in an elderly cohort: the Normative Aging Study. Environ Health 14, 87, 

doi:10.1186/s12940-015-0074-z (2015). 

24 Mordukhovich, I. et al. Association Between Particulate Air Pollution and QT Interval Duration in 

an Elderly Cohort. Epidemiology 27, 284-290, doi:10.1097/EDE.0000000000000424 (2016). 

25 Bell, B., Rose, C. L. & Damon, A. The Veterans Administration Longitudinal Study of Healthy 

Aging. The Gerontologist 6, 179-184, doi:10.1093/geront/6.4.179 (1966). 

26 Aryee, M. J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of 

Infinium DNA methylation microarrays. Bioinformatics 30, 1363-1369, 

doi:10.1093/bioinformatics/btu049 (2014). 

27 Di, Q., Koutrakis, P. & Schwartz, J. A hybrid prediction model for PM 2.5 mass and components 

using a chemical transport model and land use regression. Atmospheric Environment 131, 390-399 

(2016). 

28 Alexeeff, S. E. et al. Medium-term exposure to traffic-related air pollution and markers of 

inflammation and endothelial function. Environ Health Perspect 119, 481-486, 

doi:10.1289/ehp.1002560 (2011). 

29 Schnoor, M., Alcaide, P., Voisin, M. B. & van Buul, J. D. Crossing the Vascular Wall: Common 

and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation. 

Mediators Inflamm 2015, 946509, doi:10.1155/2015/946509 (2015). 

30 Jaipersad, A. S., Lip, G. Y., Silverman, S. & Shantsila, E. The role of monocytes in angiogenesis 

and atherosclerosis. J Am Coll Cardiol 63, 1-11, doi:10.1016/j.jacc.2013.09.019 (2014). 

31 Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. 

BMC Bioinformatics 13, 86, doi:10.1186/1471-2105-13-86 (2012). 



	

	
101 

32 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed 

Effects Models. R package version 3.1ñ120 h ttp. CRAN. R-project. org/package= nlme (2015). 

33 Safran, M. et al. GeneCards Version 3: the human gene integrator. Database (Oxford) 2010, 

baq020, doi:10.1093/database/baq020 (2010). 

34 Lever, J., Krzywinski, M. & Altman, N. Points of Significance: Regularization. Nature Methods 

13, 803-804 (2016). 

35 Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology) 67, 301-320 (2005). 

36 Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via 

Coordinate Descent. J Stat Softw 33, 1-22 (2010). 

37 Lenters, V. et al. Prenatal Phthalate, Perfluoroalkyl Acid, and Organochlorine Exposures and Term 

Birth Weight in Three Birth Cohorts: Multi-Pollutant Models Based on Elastic Net Regression. 

Environ Health Perspect 124, 365-372, doi:10.1289/ehp.1408933 (2016). 

38 Ren, C. et al. Air pollution and homocysteine: more evidence that oxidative stress-related genes 

modify effects of particulate air pollution. Epidemiology 21, 198-206, 

doi:10.1097/EDE.0b013e3181cc8bfc (2010). 

39 Ren, C. et al. Effect modification of air pollution on Urinary 8-Hydroxy-2'-Deoxyguanosine by 

genotypes: an application of the multiple testing procedure to identify significant SNP interactions. 

Environ Health 9, 78, doi:10.1186/1476-069X-9-78 (2010). 

40 Ayala-Haedo, J. A. et al. Analysis of single nucleotide polymorphisms in the NOS2A gene and 

interaction with smoking in age-related macular degeneration. Ann Hum Genet 74, 195-201, 

doi:10.1111/j.1469-1809.2010.00570.x (2010). 

41 Hancock, D. B., Martin, E. R., Vance, J. M. & Scott, W. K. Nitric oxide synthase genes and their 

interactions with environmental factors in Parkinson's disease. Neurogenetics 9, 249-262, 

doi:10.1007/s10048-008-0137-1 (2008). 



	

	
102 

42 Zhang, J. et al. Genetic variants in inducible nitric oxide synthase gene are associated with the risk 

of radiation-induced lung injury in lung cancer patients receiving definitive thoracic radiation. 

Radiother Oncol 111, 194-198, doi:10.1016/j.radonc.2014.03.001 (2014). 

43 Xiao, X., Cao, L., Wang, R., Shen, Z. X. & Cao, Y. X. Airborne fine particulate matter alters the 

expression of endothelin receptors in rat coronary arteries. Environ Pollut 218, 487-496, 

doi:10.1016/j.envpol.2016.07.028 (2016). 

44 Wu, S. et al. Chemical constituents and sources of ambient particulate air pollution and biomarkers 

of endothelial function in a panel of healthy adults in Beijing, China. Sci Total Environ 560-561, 

141-149, doi:10.1016/j.scitotenv.2016.03.228 (2016). 

45 Toth, P., Tarantini, S., Csiszar, A. & Ungvari, Z. I. Functional Vascular Contributions to Cognitive 

Impairment and Dementia (VCID): Mechanisms and Consequences of Cerebral Microvascular 

Dysfunction in Aging. Am J Physiol Heart Circ Physiol, ajpheart 00581 02016, 

doi:10.1152/ajpheart.00581.2016 (2016). 

46 Mendonca, G. V., Pezarat-Correia, P., Vaz, J. R., Silva, L. & Heffernan, K. S. Impact of Aging on 

Endurance and Neuromuscular Physical Performance: The Role of Vascular Senescence. Sports 

Med, doi:10.1007/s40279-016-0596-8 (2016). 

47 Abbas, M. et al. Endothelial Microparticles from Acute Coronary Syndrome Patients Induce 

Premature Coronary Artery Endothelial Cells Ageing and Thrombogenicity: Role of the Ang 

II/AT1 Receptor/NADPH Oxidase-mediated Activation of MAPKs and PI3-kinase Pathways. 

Circulation, doi:10.1161/CIRCULATIONAHA.116.017513 (2016). 

48 Tchalla, A. E. et al. Elevated Soluble Vascular Cell Adhesion Molecule-1 Is Associated With 

Cerebrovascular Resistance and Cognitive Function. J Gerontol A Biol Sci Med Sci, 

doi:10.1093/gerona/glw099 (2016). 

49 Ricottini, E. et al. Effect of High-Dose Atorvastatin Reload on the Release of Endothelial 

Progenitor Cells in Patients on Long-Term Statin Treatment Who Underwent Percutaneous 



	

	
103 

Coronary Intervention (from the ARMYDA-EPC Study). Am J Cardiol 117, 165-171, 

doi:10.1016/j.amjcard.2015.10.043 (2016). 

50 Zanobetti, A., Franklin, M., Koutrakis, P. & Schwartz, J. Fine particulate air pollution and its 

components in association with cause-specific emergency admissions. Environ Health 8, 58, 

doi:10.1186/1476-069X-8-58 (2009). 

51 Ando, K. & Fujita, T. Inhibitory effect of ammonium chloride on acetylcholine-induced relaxation. 

Hypertension 24, 189-194 (1994). 

52 Lin, C. J. et al. Indoxyl Sulfate Impairs Endothelial Progenitor Cells and Might Contribute to 

Vascular Dysfunction in Patients with Chronic Kidney Disease. Kidney Blood Press Res 41, 1025-

1036, doi:10.1159/000452604 (2016). 

53 Fan, A. M., Alexeeff, G. & Khan, E. Toxicology and risk assessment.  (CRC Press, 2015). 

54 Dadvand, P. et al. Particulate air pollution and preeclampsia: a source-based analysis. Occup 

Environ Med 71, 570-577, doi:10.1136/oemed-2013-101693 (2014). 

55 Kioumourtzoglou, M. A. et al. Exposure measurement error in PM2.5 health effects studies: a 

pooled analysis of eight personal exposure validation studies. Environ Health 13, 2, 

doi:10.1186/1476-069X-13-2 (2014). 

56 Weisskopf, M. G. & Webster, T. F. Trade-offs of personal vs. more proxy exposure measures in 

environmental epidemiology. Epidemiology (2017). 

57 Reinders, J. & Paszkowski, J. Bisulfite methylation profiling of large genomes. Epigenomics 2, 

209-220, doi:10.2217/epi.10.6 (2010). 

58 Glad, J. A. et al. The Relationship of Ambient Ozone and PM2.5 Levels and Asthma Emergency 

Department Visits: Possible Influence of Gender and Ethnicity. Archives of Environmental & 

Occupational Health 67, 103-108, doi:10.1080/19338244.2011.598888 (2012). 

59 Velez, D. R. et al. NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis 

susceptibility in African-Americans. Hum Genet 126, 643-653, doi:10.1007/s00439-009-0713-y 

(2009). 



	

	
104 

60 Kang, J. H. et al. Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: 

interactions with sex and postmenopausal hormone use. Invest Ophthalmol Vis Sci 51, 971-979, 

doi:10.1167/iovs.09-4266 (2010). 

 

  



	

	
105 

Chapter 5: 
 
Impacts of the Mitochondrial Genome on the Relationship of Long-term Ambient Fine Particle 
Exposure with Blood DNA Methylation Age 
 

Jamaji C. Nwanaji-Enwerema*; Elena Colicinob; Lingzhen Daia; Akin Cayira,c; Marco Sanchez-Guerraa,d; 
Hannah E. Lauea,b; Vy T. Nguyena; Qian Dia; Allan C. Juste; Lifang Houf; Pantel Vokonasg; Brent A. 
Coullh; Marc G. Weisskopfa; Andrea A. Baccarellib; and Joel D. Schwartza 

 
aDepartment of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 
02115 

bDepartment of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, 
NY, USA, 10032 

cVocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey, 17100 
 
dDepartment of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico, 
11000 
 
eDepartment of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 
New York, NY, USA, 10029 
 
fCenter for Population Epigenetics, Department of Preventive Medicine, Robert H. Lurie Comprehensive 
Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, 60611 
 
gVA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, 
Boston University School of Medicine, Boston, MA, USA, 02118 
 
hDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 02115 
 

This is a pre-copyedited, author-produced version of an article accepted for publication in Environmental 
Science & Technology following peer review. This version was reproduced with permission from 
[Nwanaji-Enwerem, Jamaji C., et al. "Impacts of the Mitochondrial Genome on the Relationship of Long-
Term Ambient Fine Particle Exposure with Blood DNA Methylation Age." Environmental science & 
technology 51.14 (2017): 8185-8195.] Copyright 2017 American Chemical Society. The version of record 
is available online at: 
http://pubs.acs.org/doi/abs/10.1021/acs.est.7b02409.  DOI: 10.1021/acs.est.7b02409. 
 
  



	

	
106 

5.1. Abstract  

Background: The mitochondrial genome has long been implicated in age-related disease, but no studies 

have examined its role in the relationship of long-term fine particle (PM2.5) exposure and DNA 

methylation age (DNAm-age) – a novel measure of biological age.  

Objective: In this analysis based on 940 observations between 2000 and 2011 from 552 Normative Aging 

Study participants, we determined the roles of mitochondrial DNA haplogroup variation and 

mitochondrial genome abundance in the relationship of PM2.5 with DNAm-age.  

Methods: We used the GEOS-chem transport model to estimate address-specific, one-year PM2.5 levels 

for each participant. DNAm-age and mitochondrial DNA markers were measured from participant blood 

samples.  

Results: Nine haplogroups (H, I, J, K, T, U, V, W, and X) were present in the population. In fully-

adjusted linear mixed-effects models, the association of PM2.5 with DNAm-age (in years) was 

significantly diminished in carriers of haplogroup V (Pinteraction= 0.01; b= 0.18, 95%CI: -0.41, 0.78) 

compared to non-carriers (b= 1.25, 95%CI: 0.58, 1.93). Mediation analysis estimated that decreases in 

mitochondrial DNA copy number, a measure of mitochondrial genome abundance, mediated 12% of the 

association of PM2.5 with DNAm-age. 

Conclusion: Our data suggests that the mitochondrial genome plays a role in DNAm-age relationships 

particularly in the context of long-term PM2.5 exposure.  
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5.2. Introduction 

Research continues to implicate long-term fine particulate air pollution (PM2.5) as a major risk 

factor for aging and age-related disease. For instance, a recent study of over 500 elderly individuals reported 

a 27% increase in the risk of an individual developing metabolic syndrome for every 1 µg/m3 increase in 

annual PM2.5 concentration1. In addition to metabolic disease, long-term PM2.5 exposure has been associated 

with an increased likelihood of all-cause mortality2 and significant deficits in cardiac autonomic function3, 

cognitive performance4, and respiratory ability5. Even on a molecular level, researchers have consistently 

demonstrated relationships of PM2.5 with more traditional measures of biological aging including, telomere 

length6 and inflammatory markers7. These PM2.5-biological aging relationships are of particular interest 

because they often persist independent of age-related diseases and they may offer insight as to how PM2.5 

interacts with biological systems to adversely impact human health. Recently, researchers reported positive 

associations of long-term PM2.5 with DNA methylation age (DNAm-age)8, a novel tissue-independent 

measure of biological age calculated from DNA methylation values at 353 age-correlated CpG 

dinucleotides9. Furthermore, the authors examined the relationships of five major PM2.5 component species 

(ammonium, elemental carbon, organic carbon, nitrate, and sulfate) with DNAm-age, and found that sulfate 

and ammonium were most associated with DNAm-age10. Although the ability of DNAm-age to reflect 

previous environmental exposures and predict multiple health outcomes makes it a promising biomarker of 

aging11-15, it is so novel that the molecular implications of these relationships remain largely unknown. 

Addressing this research gap is of paramount importance for future aging research involving this biomarker. 

Mitochondria are membrane-bound intracellular organelles tasked with energy production and 

highly involved in the biological aging processes16-17. Mitochondria possess their own genomes which exist 

as circular double-stranded molecules of DNA that code for a number of biological effectors including 

some major components of the energy-generating electron transport chain (ETC)18-19. Due to the 

mitochondrial genome’s proximity to the ETC (the major source of intracellular reactive oxygen species) 

and its diminished DNA repair capacity (in comparison to nuclear DNA), mitochondrial DNA is 

particularly susceptible to oxidative damage20. There is also convincing evidence that the mitochondrial 
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genome is susceptible to damage from exogenous oxidative stressors21-23. Overall, it is the damage to the 

mitochondrial genome that has been specifically linked to accelerated aging24-25. Given that PM2.5 exposure 

is a known risk factor of systemic oxidative stress26 and since PM2.5 exposure has already been linked to 

mitochondrial genome integrity27-28, we hypothesized that the mitochondrial genome may be involved in 

the PM2.5-DNAm-age relationship.  

In the present study, we examined the impact of mitochondrial genomic variation and abundance 

(a compensatory response to poor mitochondrial genome integrity) on the relationship of PM2.5 and its 

component species with DNAm-age. First, we examined if different mitochondrial haplogroups (forms of 

normal mitochondrial genetic variation that potentially impact ETC capacity)29-30 modified the association 

of PM2.5 and its component species with DNAm-age. Next, we determined the relationship of one 

commonly used measure of mitochondrial genome abundance, mitochondrial DNA copy number, with 

DNAm-age. Mitochondrial copy number is the ratio of a cell’s mitochondrial DNA to nuclear DNA. 

Fluctuations in mitochondrial copy number often occur with normal mitochondrial biogenesis and 

degradation, but the measure is also sensitive to exogenous stressors and is thought to be an adaptive 

response to compensate for mitochondrial genome damage31. Copy number has already been associated 

with PM2.5 levels32, but no studies have examined its relationship with DNAm-age. Finally, we determined 

if copy number mediated and/or modified the association of PM2.5 with DNAm-age.   

 

5.3. Materials and Methods 

5.3.a.  Study Population 
 

Participants in the present analysis were active participants in the Veteran Affairs Normative Aging 

Study (NAS), a longitudinal cohort study of aging established in 196333. The NAS is a closed cohort of 

now elderly community-dwelling men living in the Greater Boston area. At enrollment, all participants 

were free of chronic diseases. Participants return every 3 to 5 years for onsite, follow-up study visits. During 

these recurring visits, participants receive comprehensive outpatient medical evaluations, bio-specimens 

(including blood) are collected, and participants provide detailed information about their diets and other 
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lifestyle factors that may affect their health. All participants provided written informed consent to the VA 

Institutional Review Board (IRB), and human subjects approval was granted by the VA and Harvard T.H. 

Chan School of Public Health IRBs (protocol 14027-102). 

All NAS men with continued study participation as of the year 2000, when address-specific PM2.5 

component species levels became available, were eligible for the present study sample. We began with a 

total of 552 participants with 940 observations between the years 2000 and 2011. This was the study sample 

that was used in reporting the significant associations between PM2.5  component species and DNAm-age 

in our previous publication10. Of these 552 participants, 249 (45%) had one visit, 218 (40%) had two visits, 

and 85 (15%) had three or more visits. From this sample, we then excluded participants missing 

mitochondrial haplogroup data. This resulted in a final study sample of 508 participants with 870 total study 

visits. In the final study sample, 227 participants (45%) had one visit, 200 (39%) had two visits, and 81 

(16%) had three or more visits. 

 

5.3.b. DNA Methylation and DNA Methylation Age (DNAm-age) 

Whole blood was collected from each participant during each NAS follow-up visit. We performed 

bisulfite conversion (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, USA) on extracted DNA 

from the buffy coat of the whole blood, and then used the Illumina Infinium HumanMethylation450 

BeadChip to measure the DNA methylation of CpG probes. To minimize batch effects and ensure a similar 

age distribution across chips and plates, we randomized chips across plates and used a two-stage age-

stratified algorithm to randomize samples. For quality control, we removed samples where >5% of probes 

had a beadcount < 3 or > 1% of probes had a detection P-value >0.05. After pre-processing the remaining 

samples with Illumina-type background correction without normalization and normalizing the samples with 

dye-bias and BMIQ3 adjustments, we generated methylation beta values34. Beta values represent the 

percentage of methylation for each of the ~480,000 CpG sites in the BeadChip array. In other words, beta 

= intensity of the methylated signal (M) / [intensity of the unmethylated signal (U) + intensity of the 

methylated signal (M) + 100]. 
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DNAm age was calculated using Horvath’s publically available online calculator 

(http://labs.genetics.ucla.edu/horvath/dnamage/). DNAm-age was derived from an elastic net penalized 

regression run on multiple data sets of different cell and tissue types. After 21,369 CpG probes – shared by 

both the Illumina HumanMethylation27 and HumanMethylation450 BeadChip platforms – were regressed 

on a calibrated version of chronological age, the elastic net selected 353 CpGs that correlated with age (193 

positively and 160 negatively)9.  The model coefficients from these 353 CpGs were used by the calculator 

to predict the age of each DNA sample (i.e. DNAm-age). The calculator maintains predictive accuracy (age 

correlation 0.97, error = 3.6 years) across almost all body tissues including blood and brain9. 

 

5.3.c. Fine Particulate (PM2.5) Air Pollution 

We used the simulation outputs from GEOS-chem, a chemical transport model35, fused with land-

use variables to generate one-year exposure estimates for PM2.5 as well as sulfate and ammonium, the major 

PM2.5 component species demonstrated to be most important in predicting DNAm-age10. Ten-fold cross-

validation demonstrated that the model performed well for PM2.5 mass and its component species with R2s 

ranging from 0.70 to 0.8836. Existing literature demonstrates that the one-year PM2.5 exposure window is 

robustly associated with DNAm-age8. We generated daily estimates at the 1 km x1 km area resolution and 

one-year total PM2.5 and PM2.5 component species exposure windows by averaging daily exposures for the 

365 days prior to the day of each participants’ NAS visit. Given that greater than 90% of NAS participants 

are retired, home address exposures are expected to be a good proxy for their individual ambient exposures. 

After geocoding and linking participants’ residencies to an area level grid-point; and accounting for address 

changes and time spent away from home (>7 days), we assigned particle estimates to each participant’s 

address.  

 

5.3.d. Mitochondrial (DNA) Haplogroups 

Participant blood was genotyped using Taqman or Sequenom assays (Applied Biosystems, Foster 

City, CA)37. All samples were successfully genotyped and internal blinded quality control samples were 
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>99% concordant. Hardy-Weinberg equilibrium tests were not assessed because they are not valid for 

mitochondrial polymorphisms38. No heteroplasmy (heterozygous samples) were observed. Nine 

mitochondrial DNA haplogroups (H, I, J, K, T, U, V, W, and X) were observed in the cohort and all are 

common to populations of European ancestry. Based on the phylogenetic evolutionary tree and restriction 

fragment length polymorphisms, these haplogroups can be grouped into four clusters (Cluster 1:J,T; Cluster 

2: V,H; Cluster 3: U,K; Cluster 4: I, W, X)39. The clusters are widely known, and since overall type I error 

increases as the number of statistical tests increases, many epidemiologic studies first perform cluster 

analyses37, 40. Following this framework, we perform primary cluster analyses and subsequently explore 

individual haplogroups of interest. 

 

5.3.e. Mitochondrial DNA Copy Number (Genome Abundance) 

As noted, the mitochondrial genome is particularly vulnerable to both endogenous and exogenous 

(e.g. air pollution) oxidative stressors due to its proximity to the ETC, lack of protective barriers (i.e. histone 

proteins, chromatin organization, etc.), and relatively limited DNA damage repair activity41. We are 

utilizing one measurement of mitochondrial genome abundance (copy number) that is sensitive to oxidative 

stress. Mitochondrial copy number represents the ratio of mitochondrial DNA copy number to the nuclear 

DNA copy number (mtDNA:nDNA ) and was also calculated from whole blood samples collected at every 

visit. As previously described31, real-time PCR (RT-PCR) is used to measure the ratio of a mitochondrial 

gene (mtDNA 12S ribosomal ribonucleic acid) to a nuclear gene (Ribonuclease P gene), which is 

normalized to a reference DNA sample (a pool of 300 test samples) to obtain relative mitochondrial DNA 

copy number values controlled for plate effects. 

 

5.3.f. Statistical Analysis 
 
5.3.f.1.Covariates 

The relationships of the mitochondrial genome with DNAm-age and its role in the association of 

PM2.5 with DNAm-age were evaluated using linear mixed-effects models including a random participant-
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specific intercept to account for correlation between repeated outcome measures (i.e. multiple visits for a 

participant). In the analyses, we controlled for the following covariates a priori based on previous analyses8, 

10 and the relevant literature42-43: chronological age (continuous), blood cell proportions [plasma cells, 

CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and granulocytes] 

(continuous) determined via Houseman and Horvath methods9, 44, average 1-year temperature (continuous 

address-specific satellite measurements10), cumulative cigarette pack years (continuous), smoking status 

(current, former, or never), season of visit (spring [March-May], Summer [June-August], Fall [September-

November], and Winter [December-February]), body mass index (BMI) (lean [<25], overweight [25-30], 

obese [>30]), alcohol intake (yes/no ³ 2 drinks daily), maximum years of education (continuous), cancer 

(yes/no history of lifetime cancer diagnosis), coronary heart disease (yes/no based on electrocardiogram, 

validated medical records, or physical exam), diabetes (physician diagnosis or a fasting blood glucose > 

126 mg/dL), and hypertension (yes/no antihypertensive medication use or systolic blood pressure 

≥140 mmHg or diastolic blood pressure ≥90 mmHg). 

 

5.3.f.2. Direct Associations 

We first used fully-adjusted linear mixed effects models to evaluate previously published positive 

associations of one-year PM2.5, sulfate, and ammonium levels with DNAm-age. Sulfate and ammonium 

models were additionally adjusted for PM2.5 mass. To limit multiple comparisons and the potential for false 

positive results, we performed mitochondrial haplogroup cluster analyses – as conducted in a previously 

published NAS study of haplogroups37 – evaluating the direct relationships of mitochondrial haplogroup 

clusters with DNAm-age and mitochondrial DNA copy number. We also used fully-adjusted mixed-effects 

models to determine the associations of mitochondrial DNA copy number with DNAm-age.  

 

5.3.f.3. Mitochondrial Haplogroup as an Effect Modifier  

Since haplogroup is a genetic parameter that does not change during life, it is not on the causal 

pathway of the exposure and outcome but could potentially impact the relationship of the exposure with the 
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outcome. For these reasons, it appropriate to consider it as an effect modifier. Specifically, we evaluated if 

the haplogroup clusters modified the associations of PM2.5, sulfate, and ammonium with DNAm-age. In 

these analyses the reference group was all participants without the cluster of interest. For example, when 

we evaluated the modifying role of mitochondrial haplogroup cluster 1 on the association of PM2.5 with 

DNAm-age, we compared participants genotyped as having cluster 1 against all other participants (i.e. 

participants genotyped as having clusters 2, 3, and 4). Structuring the analyses this way allows us to 

compare the findings of each specific haplogroup cluster to a mixed population of haplogroup clusters. This 

helps with interpreting the results especially since there is no strict biological evidence that defines one 

particular haplogroup cluster as a control or reference group. After determining clusters with statistically 

significant modifying effects on the PM2.5-DNAm-age relationship, we re-ran the models testing the 

modifying role of the individual haplogroups within those particular clusters and with individual PM2.5 

components (sulfate and ammonium) as the predictors. Again, all of these models were fully-adjusted. 

 

5.3.f.4. Mitochondrial DNA Copy Number as an Effect Modifier and/or Mediator  

Unlike haplogroups, which are determined at birth and remain the same throughout life, copy 

number can change throughout life. In fact, empirical evidence exploring the relationships between short-

term versus long-term PM2.5 exposure and mitochondrial genome abundance suggest that copy number is 

subject to much change over time45. Moreover, there is experimental evidence demonstrating that depletion 

of the mitochondrial genome results in aberrant methylation of nuclear DNA at promoter CpG islands46. 

Given this evidence, we hypothesized that the association of PM2.5 with DNAm-age could be mediated 

through and/or modified by copy number. To test this hypothesis, we employed a 4-way decomposition 

mediation method. Standard methods of testing for effect modification operate under the assumption that 

the modifier is not on the casual pathway between the exposure and outcome. Thus, these results may be 

misleading if mediation is truly present and the candidate modifier is indeed on the causal pathway47. The 

4-way decomposition method circumvents the risk of these potentially misleading results by allowing one 

to simultaneously parse out: 1) the controlled direct effect [the effect of the exposure on the outcome due 
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neither to mediation nor interaction]; 2) the reference interaction [the effect of the exposure on the outcome 

due to interaction alone]; 3) the mediated interaction [the effect of the exposure on the outcome due to 

mediation and interaction]; and 4) the pure indirect effect [the effect of the exposure on the outcome due to 

mediation alone]48.  

As mentioned earlier, there is some risk of simple interaction (effect modification) models resulting 

in misleading results if the candidate modifier is indeed on the causal pathway between the exposure and 

the outcome. This is not the case for simple mediation analyses because the goal of mediation is to provide 

evidence that a variable of interest is or is not on the causal pathway47. Due to the newness of the 4-way 

decomposition method, we performed a sensitivity analysis using a standard, simple mediation approach 

where we used fully-adjusted linear mixed-effects models and modeled49-50: Step 1) PM2.5 as a predictor of 

DNAm-age; Step 2) PM2.5 as a predictor of mitochondrial DNA copy number; and Step 3) PM2.5 as a 

predictor of DNAm-age controlling for mitochondrial DNA copy number. The proportion of the effect 

mediated by mitochondrial DNA copy number was calculated as the percentage of natural indirect 

effect over the sum of natural direct and natural indirect effect. In other words, [(Step 2 βPM2.5 * Step 

3 βmtDNA CN)] / [(Step 2 βPM2.5 * Step 3 βmtDNA CN) + (Step 3 βPM2.5)]. The statistical significance 

of the mediation effect was assessed via the Sobel Z test. 

 

5.3.f.5. Additional Sensitivity Analyses 

Although all the covariates for diabetes, CHD, hypertension, and BMI were categorized using well-

known and biologically relevant definitions, we performed sensitivity analyses examining if any resolution 

on potential confounding was lost by using these discrete categories. Specifically, we re-ran our direct 

association models and the simple mediation analysis (which specifically lists out mediation steps) using 

fully adjusted models where the aforementioned categorical variables were replaced with continuous 

measures of fasting blood glucose, total cholesterol, HDL cholesterol, systolic blood pressure, diastolic 

blood pressure, and BMI. 
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Our mediation analyses used fully-adjusted models; thus, we assumed limited exposure-outcome, 

exposure-mediator, and mediator-outcome confounding. However, due to the nature of this prospective 

repeated measures study, changes in DNAm-age at one visit could potentially affect copy number at a 

subsequent visit51. Hence, we performed an analysis testing the aforementioned association to check the 

assumption of time-varying confounding.  

 

5.3.f.6. Analysis Software  

The 4-way decomposition mediation analysis was performed with a published SAS macro in SAS, 

version 9.3 (SAS Institute, Inc., Cary, North Carolina)48. All other statistical analyses were performed using 

R Version 3.1.1 (R Core Team, Vienna, Austria) and we considered a P-value < 0.05 to be statistically 

significant. 

 

5.4. Results 
 
5.4.a. Descriptive Statistics 

Table 1 describes the demographic and clinical data for all participants. Participants had a mean 

(SD) DNAm-age of 74.1 (7.89) years and mean (SD) age of 74.8 (6.97) years. A majority of the men had 

completed at least 12 years of formal education (74%), consumed less than 2 drinks a day (81%), were 

former smokers (65%), and did not have coronary heart disease (65%) or diabetes (82%). The mean (SD) 

exposure levels for PM2.5, sulfate, and ammonium were 10.3 (2.13) µg/m3, 3.39 (0.80) µg/m3, and 1.04 

(0.28) µg/m3 respectively. Most participants were genotyped as having mitochondrial haplogroup cluster 2 

(51%). 17% of the participants were cluster 1, 23% were cluster 3, and 9% were cluster 4. In regards to 

individual haplogroup frequencies, a majority of the participants were haplogroup V carriers (42%). 

Additional individual haplogroup frequencies are reported in Table S1.  
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Table 1. Characteristics of Study Subjects (2000 – 2011) 
Main Variables All Visits, N = 870 
Age (years), mean (SD) 74.8 (6.97) 
DNAm-age (years), mean (SD) 74.1 (7.89) 
One- Year Fine Particle Level (µg/m3), mean (IQR)  

PM2.5 10.3 (2.13) 
Sulfate 3.39 (0.80) 

Ammonium 1.04 (0.28) 
Mitochondrial Haplogroup Cluster, N (%)  

1 (JT) 146 (17) 
2(VH) 447 (51) 

3 (UK) 200 (23) 
4 (IWX) 87 (9) 

Lifestyle and Environmental Variables 
Alcohol Consumption, N ( %)  

<  2 drinks/day 705 (81) 
≥ 2 drinks/day 165 (19) 

BMI, N (%)  
Healthy/Lean 206 (24) 

Overweight 457 (52) 
Obese 207 (24) 

Education, N (%)  
≤ 12 years 224 (26) 

12 – 16 years 402 (46) 
> 16 years 244 (28) 

Pack years, mean (SD) 20.9 (24.8) 
Smoking Status, N (%)  

Current 40 (5) 
Former 566 (65) 

Never 264 (30) 
Season, N (%)  

Spring 219 (25) 
Summer 182 (21) 

Fall 298 (34) 
Winter 171 (20) 

Temperature (°C), mean (SD) 11.3 (0.98) 
Age-Related Diseases 
Coronary Heart Disease, N (%)  

Yes 308 (35) 
No 562 (65) 

Diabetes, N (%)  
Yes 159 (18) 
No 711 (82) 

Hypertension, N ( %)  
Yes 639 (73) 
No 231 (27) 

Lifetime Cancer Diagnosis, N (%)  
Yes 486 (56) 
No 384 (44) 
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5.4.b. One-Year Particle Levels and Haplogroup Clusters as Predictors of DNAm-age 

Table 2 summarizes the results from fully-adjusted linear mixed-effects models examining the 

independent relationships of PM2.5, sulfate, ammonium, and individual haplogroup clusters with DNAm-

age. One-year IQR increases in PM2.5 (p=0.007), sulfate (p<0.0001), and ammonium (p=0.0005) were all 

significantly associated with increases in DNAm-age of at least 0.58 years (approximately 7 months). None 

of the haplogroup clusters were significantly associated with DNAm-age.  

 

 

Table 2. Mean One-Year Particulate Concentrations and Mitochondrial Haplogroup 
Cluster as Independent Predictors of DNAm-age (N = 870) 

Predictor Difference in DNAm-age for 
IQR (95% CI) P 

PM2.5 0.64 (0.18, 1.11) 0.007 
Sulfate 0.58 (0.35, 0.82) <0.0001 
Ammonium 0.58 (0.26, 0.91) 0.0005 
Haplogroup Cluster   

1 (JT) -0.27 (-1.59, 1.05) 0.69 
2 (VH) -0.42 (-1.43, 0.60) 0.42 
3 (UK) 0.93 (-0.28,  2.15) 0.13 

4 (IWX) -0.22 (-1.99, 1.55) 0.81 
   

All models adjusted for chronological age, blood cell type, temperature, pack years, smoking 
status, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, 
diabetes, and coronary heart disease.  Sulfate and ammonium models are additionally adjusted 
for total PM2.5 mass. Haplogroup models are adjusted for all three particles.  

 

 

 

5.4.c. Effect Modification by Haplogroup Clusters and Individual Haplogroups 

Figure 1 depicts the modifying role of the mitochondrial haplogroup clusters on the association of 

one-year PM2.5 levels with DNAm-age. Only the cluster 2 mitochondrial DNA genotype significantly 

(p=0.007) modified the association of PM2.5 levels with DNAm-age. The effect of PM2.5 on DNAm-age 

was diminished by approximately 1 year when comparing individuals with the cluster 2 genotype to all 

individuals without the cluster 2 genotype. Figure 2 depicts a subsequent analysis examining the modifying 
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role of the individual haplogroups in cluster 2 (haplogroups V and H) on the association of PM2.5 levels 

with DNAm-age. The effect of PM2.5 on DNAm-age was diminished by approximately 1 year when 

comparing individuals with the haplogroup V genotype to all individuals without the haplogroup V 

genotype (p=0.01). Figure 3 depicts the modifying role of haplogroup cluster V on the association of the 

PM2.5 components sulfate and ammonium with DNAm-age. Similar to total PM2.5, the association of 

ammonium with DNAm-age was diminished in individuals with a haplogroup V genotype when compared 

to individuals without a haplogroup V genotype (p=0.03). This relationship persisted even when we 

included one-year nitrate levels as a covariate in the mixed-effects model (Figure S1). 

 

 

 

 

 

 

 
 
 
 
 

Figure 1 | Difference in DNAm-age for one interquartile range increase in one-year 
PM2.5 exposure comparing participants with and without the respective mitochondrial 
haplogroup clusters in fully-adjusted mixed-effects models. 
Cluster 1 (JT); Cluster 2 (VH); Cluster 3 (UK) and Cluster 4 (IWX). 
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Figure 2 | Difference in DNAm-age for one interquartile range increase in one-year 
PM2.5 exposure comparing participants with and without the respective mitochondrial 
haplogroups from cluster 2 in fully-adjusted mixed-effects models. 
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5.4.d. Relationships of Mitochondrial DNA Copy Number with DNAm-age 
 

In fully-adjusted linear mixed-effects models examining the relationship of copy number with 

DNAm-age, we found that copy number (b=-3.31, p<0.0001) was significantly, negatively associated with 

DNAm-age. However, copy number was not significantly associated with chronological age (b=0.57, 

p=0.17) (Table 3). These relationships persisted in sensitivity analysis adjusting for continuous variables 

instead of disease categories (Table S2).  

 

 

 

Figure 3 | Difference in DNAm-age for one interquartile range increase in one-year 
sulfate and ammonium exposure comparing participants with and without the V 
mitochondrial haplogroup in fully-adjusted mixed-effects models. 
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5.4.e. Mediation Analyses 

There was no evidence of time-varying confounding of DNAm-age on mitochondrial DNA copy 

number (Table S3). Table 4 presents the results of a 4-way decomposition meditation analysis examining 

the potential role of the mitochondrial DNA copy number as a mediator of the association of PM2.5 levels 

with DNAm-age. The controlled direct effect of one-year PM2.5 (due neither to mediation nor interaction) 

was positive and statistically significant (b=0.81, p=0.02). The pure indirect effect of one year PM2.5 (due 

to mediation alone) was also statistically significant (b=0.22, p=0.02). The percentage of the effect 

mediated by the copy number was estimated to be 12.2%. There was no evidence of any significant effect 

modification by copy number. These mediation relationships were consistent with results from the 

sensitivity analysis using the simple mediation approach (Table S4) and adjusting for continuous variables 

instead of disease categories (Table S5). 

 

 

 

 

 

Table 3. Relationships of Mitochondrial Copy Number with Age and DNAm-age 
(N=797) 

Outcome Difference in Outcome for 
IQR (95% CI) P 

Age 0.57 (-0.25, 1.39) 0.17 
DNAm-age -3.31 (-4.62, -2.00) <0.0001 

   
All models adjusted for mitochondrial haplogroup, PM2.5, sulfate, ammonium, blood cell type, 
temperature, pack years, smoking status, season, BMI, alcohol consumption, education, 
lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease. DNAm-age 
model is also adjusted for  chronological age. 
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Table 4. Results of 4-Way Decomposition Mediation Analysis of Mitochondrial DNA Copy Number as a Mediator of the 
Relationship of PM2.5 with DNAm-age (N=797) 

Effect Interpretation 
 

β (95% CI) 
 

SE t P  Pmediation 
% of Effect 
Mediated by 

Mediator 
 

Controlled 
Direct 
Effect 

 

 
Due neither to 
mediation nor 

interaction 
 

0.81 (0.15, 1.48) 
 

0.34 
 

2.4 
 

0.02 
  - - 

 
Reference 
Interaction 

 

 
Due to 

interaction alone 
 

0.12 (-0.04, 0.30) 
 

0.08 
 

1.53 
 

0.13 
  - - 

 
Mediated 

Interaction 
 

 
Due to mediation 
and interaction 

 

-0.09 (-0.20, 0.02) 
 0.06 -1.63 0.10  - - 

 
Pure 

Indirect 
Effect 

 

 
Due to mediation 

alone 
 

 
0.22 (0.07, 0.38) 

 
0.08 2.79 0.01  0.02 12.2 

Results based on fully-adjusted models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, 
BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease. Effects were calculated 
using the published SAS macro where continuous covariates were set to their mean values and categorical variables were set to the category 
with the greatest proportion of study participants.   
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5.4.f. Relationships of Haplogroup Clusters with Mitochondrial DNA Copy Number 
 

Table S6 presents the results of fully-adjusted linear mixed-effects models examining the 

association of each mitochondrial haplogroup cluster with mitochondrial DNA copy number. Only the 

association with cluster 3 was statistically significant (b=0.06, p=0.02). We also found that the association 

of PM2.5 with mitochondrial DNA copy number was greater in individuals with the haplogroup V genotype 

when compared to individuals without the haplogroup V genotype (p=0.001) (Figure S2). 

 

5.5. Discussion 

In the present study, we used fully-adjusted linear mixed-effects models to investigate the role of 

the mitochondrial genome in the relationship of long-term PM2.5 exposure with DNAm-age in a large 

longitudinal aging cohort. To our knowledge, this is the first study to demonstrate: 1) that mitochondrial 

DNA haplogroup V significantly reduces the association of one-year PM2.5 and ammonium exposure levels 

with DNAm-age and 2) that decreases in mitochondrial DNA copy number partially mediate the association 

of one-year PM2.5 exposure levels with DNAm-age. Additionally, we observed novel associations of 

mitochondrial DNA copy number with DNAm-age and the mitochondrial haplogroup cluster 3 genotype.  

The number of studies examining relationships of ambient PM2.5 with DNAm-age are limited, but 

our results are consistent with what they report8, 10, 52. Here, we observed comparable, significant positive 

associations of PM2.5, sulfate, and ammonium with DNAm-age. No existing studies have examined the 

relationships of the mitochondrial genome with DNAm-age; however, we believed that such relationships 

would exist because both DNAm-age – as previously mentioned – and mitochondrial genome integrity are 

robustly associated with PM2.5 levels31-32, 53.  

With respect to mitochondrial haplogroups specifically, only two studies have examined 

relationships of mitochondrial haplogroups with air pollution and both studies examined the modifying role 

that mitochondrial haplogroups may have on the health effects of air pollution. The first study used a panel 

of 38 subjects with 417 total observations to test if air pollutant exposure-associated inflammation was 
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stronger in carriers of mitochondrial haplogroup H versus U54. The authors justified limiting their study 

design to haplogroups H and U based on evidence suggesting that genetic variation due to mitochondrial 

haplogroups impacts the coupling of respiratory chain and the subsequent development of endogenous 

reactive oxygen species (ROS) by the mitochondria55. Haplogroup H has a relatively tightly coupled 

respiratory chain and has been associated with increased oxidative damage and risk of age-related diseases 

like Parkinson’s56-57. On the other hand, haplogroup U has a less tightly coupled respiratory chain and has 

been shown to be protective against Parkinson’s disease56. In the end, this study found that air pollutant 

(black carbon, carbon monoxide, nitric oxides and polycyclic aromatic hydrocarbons) associations with 

inflammatory markers (IL-6 and TNF-α) were stronger for individuals with the haplogroup H genotype 

when compared to haplogroup U individuals. Although this study’s results were consistent with the 

aforementioned literature, the study was only based on 38 subjects and only relationships between two 

haplogroups were explored. In a larger study of 582 subjects with multiple visits, the researchers 

investigated if 9 different haplogroups (phylogenetically grouped into 4 clusters) resulted in differential 

susceptibility to cognitive effects of long-term black carbon exposure37. These researchers observed 

impaired cognition in carriers of cluster 1 (J and T) and even worse cognition of carriers of cluster 4 (I, W, 

and X). No effects were observed in cluster 2 (H and V) or 3 (K and U) carriers. Unlike the first study, 

these authors did not observe any effect modification in the clusters that contained haplogroups H and V. 

Another major difference between the two studies is that former reported significant findings with short-

term air pollution exposures (≤ 5 days) and the second used a one-year exposure window. In all, the findings 

of these two studies suggest that the impact of haplogroups on air pollution relationships may be health 

outcome specific and may vary depending on the duration of air pollution exposure. 

Given that DNAm-age has been associated with numerous age-related diseases, we believed that it 

would be associated with haplogroups that were also associated with age-related diseases, like haplogroup 

H. Nevertheless, we found no direct associations of haplogroups with DNAm-age in our study sample. 

However, we did find that haplogroup cluster 2 (V and H) significantly lessened the positive association of 

PM2.5 levels with DNAm-age. Further analyses suggested that this protective effect was predominately due 
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to haplogroup V and it persisted even when examining the effects of the PM2.5 component ammonium. 

Although cluster 2 haplogroups, like H, have been traditionally thought to be health-adverse, there is also 

existing evidence that these haplogroups may also offer some health benefits. For instance, haplogroup H 

carriers were found to have a 2.12 fold increased chance of survival at 180 days following a septic episode 

compared to non-carriers of haplogroup H30. In the sepsis study the researchers did not measure other 

haplogroups, but it is possible that related haplogroup V could also be protective if explored. Furthermore, 

in a study that compared the frequency distributions of haplogroups in athletes versus non-athlete controls, 

researchers found that the V haplogroup was overrepresented in endurance athletes (15.7%) compared with 

controls (7.5%)58. A major issue in existing haplogroup research is that groups being compared are not 

always the same and often relative findings are being interpreted. Thus, findings of an adverse effect of 

haplogroup H when it is compared to haplogroup U may not exist when haplogroup H is compared to 

haplogroup V. In an attempt to remedy future issues with such comparisons, our study always compares 

carriers of a specific haplogroup or cluster to all other individuals who were not carriers of the haplogroup 

or cluster. Thus, we are effectively comparing carriers of each haplogroup to a mixed population of 

haplogroups. Still, future studies using this comparison paradigm will be necessary to confirm our findings 

of a protective effect of cluster 2 and haplogroup V.  

With respect to mitochondrial DNA copy number, our results agree with existing evidence that 

long-term PM2.5 exposure is associated with decreases in mitochondrial DNA copy number6. We also report 

novel evidence that mitochondrial DNA copy number is negatively associated with DNAm-age. Since 

mitochondrial copy number is viewed as a measure of the mitochondria’s ability to respond to and buffer 

biological stressors, and a reduced copy number can be due to an exhausted mitochondrial buffering 

capacity (often observed with long-term environmental stresses)31, 51, it is biologically conceivable that 

increases in buffering capacity would be associated with less of an “adverse” outcome like aging. Moreover, 

due to the strong associations of mitochondrial DNA copy number with DNAm-age and the known cross-

talk between the nuclear and mitochondrial genomes59, we believed that one measure may mediate the 

other’s relationship with PM2.5. DNAm-age and mitochondrial DNA copy number were measured from 
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blood taken at the same study visit so we took into account a number of considerations in assessing which 

would be the most biologically plausible outcome and the most biologically plausible mediator. First, 

although methylation of some nuclear genes like mitochondrial DNA polymerase γ catalytic subunit 

(PolgA) have been shown to regulate mitochondrial DNA copy number60, PolgA methylation does not 

contribute to the DNAm-age metric9. Further, evidence has shown that DNAm-age is not simply the sum 

of its component CpG DNA methylation levels8. Rather, DNAm-age is a biomarker of aging with a unique 

balance of stability and responsiveness that allows it to simultaneously reflect past exposures61 and predict 

future disease risk62. This unique balance of stability and responsiveness is best explained by the fact that, 

aside from the context of induced pluripotent stem cells, DNAm-age appears to only increase with time63. 

In the seminal DNAm-age paper by Horvath (2013), it is hypothesized that “DNAm age measures the 

cumulative work done by a particular kind of epigenetic maintenance system (EMS), which helps maintain 

epigenetic stability … This model would explain the high tick rate during organismal development since a 

high power is required to maintain epigenetic stability during this stressful time. At the end of development, 

a constant amount of power is sufficient to maintain stability leading to a constant tick rate … DNAm age 

should be accelerated by many perturbations that affect epigenetic stability9.” In line with this current 

understanding of DNAm-age, it is feasible that different environmental exposures or biological 

microenvironments that affect epigenetic stability could exacerbate the otherwise constant rate of DNAm-

age increase61, 64.  

In contrast to DNAm-age, evidence shows that mitochondrial DNA copy number is a more variable 

metric able to rapidly change (increase or decrease) in response to short-term and long-term exposures but 

unable to intrinsically record long-term trends because it must be kept within a relatively stable range to 

maintain optimal physiological function45. Moreover, mitochondrial effectors like apoptosis-inducing 

factor, which are normally localized in the mitochondria, have been shown to translocate to the nucleus 

where they trigger DNA fragmentation, chromatin condensation, and other DNA changes59. Flavin adenine 

dinucleotide (FAD) and α ketoglutarate (α-KG) are two additional co-factors that are synthesized within 

the mitochondria, but are actively involved in the processes of nuclear methylation65. Thus, for our 
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mediation analysis, we ultimately found that most evidence supported DNAm-age as an outcome with long-

term reporting ability and a mitochondrial copy number as a mediator. Given this analytical framework, we 

found that mitochondrial DNA copy number significantly mediated about 12% of the observed effect of 

PM2.5 on DNAm-age. Mitochondrial DNA copy number has been shown to decrease with age and copy 

number has been associated with other age-related outcomes like frailty and mortality66-67. Hence, our 

findings are in agreement with existing aging research but controlled experiments must be performed to 

confirm if copy number is indeed a mediator of the relationship between PM2.5 and DNAm-age. 

Finally, we explored the relationships of mitochondrial haplogroups and copy number in our study 

sample. The weaker association between copy number and DNAm-age in individuals with haplogroup V, 

may suggest that copy number is not the ultimate source of their protection against the effects of PM2.5. 

This theory is also supported by the findings that 1) copy number is not directly associated with haplogroup 

cluster 2 (V and H) and 2) copy number only mediates 12% of the association between PM2.5 and DNAm-

age.  

The current study possesses a number of strengths including the use of novel biomarker and a large 

longitudinal cohort with repeated measures of ambient pollutant exposures, DNA methylation, 

mitochondrial genome measures, and potential confounders. In fact, this is the first study to use 

mitochondrial genetic variants and genome abundance to study the relationship of ambient particles with 

DNAm-age. Still, our study has a few notable limitations. First, we utilized address-specific PM2.5
 and PM2.5 

component exposure estimates which could potentially misclassify personal exposure levels. However, the 

majority of NAS participants are retired and very likely spend most of their time at home. Moreover, any 

resulting non-differential misclassification is likely to attenuate statistical associations rather than bias them 

away from the null68-69. Secondly, the mitochondrial genotyping technique resulted in haplogroup 

designations that may not encompass more recent mutations that could potentially impact the relationship 

of PM2.5 with DNAm-age. Nonetheless, the haplogroups that were used have been utilized in many studies 

and our main objective was to identify common, normal forms of mitochondrial variation that may impact 

the PM2.5-DNAm-age relationship. Larger studies are warranted to evaluate the impact of rarer forms of 
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mitochondrial genome variation on the PM2.5-DNAm-age relationship. Finally, our findings are based on a 

cohort of elderly Caucasian males that reside in a lightly-polluted environment. Additional studies 

involving other demographic groups and in different environments will be needed to confirm our findings 

more broadly. 

 

5.6. Conclusion 

Overall, our study supports the premise that mitochondrial physiology is important for DNAm-age 

relationships, particularly in the context of ambient fine particle air pollution. Our data specifically suggests 

that mitochondrial haplogroups and copy number appear to be two different – but not necessarily mutually 

exclusive – ways that the relationship of PM2.5 with DNAm-age is impacted by mitochondrial physiology. 

Future research aimed at further understanding the relationships of mitochondrial physiology with shared 

PM2.5 and aging-related health outcomes will be critical for addressing this important public and 

environmental health topic. 
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6.1. Abstract 
 
Background: The association of long-term PM2.5 exposure, an aging risk factor, with DNA methylation 

age (DNAm-age), an epigenetic biomarker of aging, may involve mediators of gene regulation.  

Objective: Since microRNAs are heavily involved in gene regulation, we investigated the modifying role 

of genetic variation in microRNA-processing genes on the PM2.5-DNAm-age relationship.  

Methods: We conducted a repeated measures study based on 552 participants from the Normative Aging 

Study with multiple visits between 2000 and 2011 (n=940 visits). Address-level one-year PM2.5 exposures 

were estimated using the GEOS-chem model. DNAm-age and a panel of 14 SNPs in microRNA-processing 

genes were measured from participant blood samples.  

Results: From an elastic net, four SNPs were identified as important to DNAm-age. In fully-adjusted linear 

mixed-effects models, having at least one copy of the minor rs4961280 [AGO2] allele was associated with 

a lower DNA methylation age (b=-1.13; 95%CI: -2.26, -0.002). However, only the rs4961280 [AGO2] SNP 

modified the PM2.5-DNAm-age relationship. The association of PM2.5
 with DNAm-age was significantly 

(Pinteraction=0.01) weaker in homozygous carriers of the major AGO2 allele (b=0.38; 95%CI: -0.20, 0.96) 

when compared to all other participants (b=1.58; 95%CI: 0.76, 2.39). Gene network analyses revealed 

known physical, genetic, and co-expression relationships of AGO2 with genes that contribute methylation 

values to the DNAm-age measure including IPO8 and TIPARP.  

Conclusion: Our results suggest that microRNA-processing impacts DNAm-age relationships particularly 

in the context of long-term PM2.5 exposure. 
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6.2.  Introduction 

Between 2015 and 2050, the global percentage of individuals over the age of 60 is expected to 

almost double from 12% to 22%1. This shift in the age composition of the global population is particularly 

important because it will likely be accompanied by immense public health and economic burdens due to an 

unprecedented volume of aging-related diseases. For instance, in the United States alone, the 2017 disease 

prevalence and economic costs associated with Alzheimer’s dementia were 5.5 million and $259 billion. 

By 2050, those statistics are expected to be 16 million and $1.1 trillion respectively2. In an effort to curb 

these expanding disease and economic burdens, there has been an ever-growing emphasis on research aimed 

at understanding biological aging and the factors that contribute to adverse aging-related health outcomes. 

Ambient fine particle air pollution (PM2.5) – often considered the world’s largest singular 

environmental health risk – is one potentially modifiable risk factor for aging-related diseases including 

cardiovascular disease, cognitive decline, and cancer3-6. Of particular interest, is the association of long-

term PM2.5 exposure levels with DNA methylation (DNAm) age, a novel epigenome-wide DNA 

methylation-based measure of biological aging7,8. Like other biomarkers of biological aging, DNAm-age 

has been associated with all-cause mortality and aging-related diseases9,10. In contrast to other biomarkers 

of aging, researchers remain highly uncertain about what DNAm-age is capturing on a molecular 

physiological level11. By examining the relationship of DNAm-age with PM2.5, a widely studied exogenous 

exposure and aging risk factor, we can begin to understand more about DNAm-age physiology. 

As previously mentioned, DNAm-age is derived from measurements of DNA methylation. DNA 

methylation is a biological process where methyl groups are added to DNA nucleotides and often result in 

changes in gene expression12. Micro RNAs (miRNAs) are small non-coding RNA molecules that can also 

regulate gene expression and have been associated with PM2.5, aging/aging-related diseases, and DNA 

methylation13-15. miRNAs are produced from nuclear transcripts that form hairpin structures. Following 

nuclear and cytoplasmic processing by a series of enzymes, miRNAs are incorporated into a structure called 

the RNA-induced silencing complex (RISC). RISC achieves post-transcriptional gene regulation by using 

one strand of the incorporated miRNA to target messenger RNAs (mRNAs) via nucleotide complementary 
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base pairing. Once the relevant mRNA is targeted, RISC inhibits subsequent protein production by inducing 

mRNA cleavage or by reducing translation of the mRNA molecule16.  

Despite existing knowledge of the role of miRNAs in PM2.5 and aging biology, studies have not yet 

examined the role of miRNAs in the PM2.5-DNAm-age relationship. Given the shared role of miRNAs and 

DNA methylation in gene regulation17, we hypothesized that miRNA physiology would be related to 

DNAm-age and may play a role in the relationship of PM2.5 with DNAm-age. In the present study, we 

investigated if single nucleotide polymorphisms (SNPs) in miRNA processing genes modified the 

associations of long-term PM2.5 and PM2.5 component species (sulfate and ammonium) exposure with 

DNAm-age in participants of the elderly Normative Aging Study (NAS). Rather than simply testing all the 

SNPs in our panel, we utilized a methodical framework to identify and analyze significant SNPs and PM2.5–

SNP interactions. We first employed an elastic net (penalized regression) selection model to identify SNPs 

in miRNA processing genes that were specifically important to DNAm-age. Subsequently, we used fully-

adjusted linear mixed effects models to test for statistically significant direct associations of the elastic net 

selected SNPs and PM2.5-SNP interactions with DNAm-age. We also conducted a number of secondary 

analyses to better ascertain if particular PM2.5 component species were responsible for the relationships we 

observed.  

 

6.3. Methods 
 
6.3.a. Study Population 
 

The U.S. Department of Veterans Affairs (VA) Normative Aging Study (NAS) is a longitudinal 

study of aging that was established in 1963 and recruited male participants from the Greater Boston area 

that were free of any chronic disease18. The NAS is now a closed cohort, but every 3-5 years since 

recruitment, participants return for onsite, follow-up study visits. During these recurring visits, participants 

undergo thorough physical examinations, report lifestyle practices via questionnaires, and provide bio-

specimens including blood. At recruitment, all participants provided written informed consent to the VA 
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Institutional Review Board (IRB) and were at least 18 years of age. The VA and Harvard T.H. Chan School 

of Public Health IRBs granted human subjects approval (protocol 14027-102).  

Our study sample is derived from all NAS men with continued study participation since the year 

2000, when address-level PM2.5 component species estimates became available. We started with a total of 

552 participants with 940 study visits (observations) between the years 2000 and 20118. Of these 552 

participants, 249 (45%) had one study visit, 218 (40%) had two study visits, and 85 (15%) had three or 

more study visits. From this sample, we then excluded participants missing miRNA processing gene 

polymorphism data. This resulted in a final study sample of 471 participants with 808 total study visits. In 

the final study sample, 208 participants (44%) had one visit, 189 (40%) had two visits, and 74 (16%) had 

three or more visits. 

 

6.3.b. Measuring DNA Methylation and Computing DNA Methylation (DNAm) Age 
 

We extracted DNA from whole blood provided by participants during NAS visits. After performing 

bisulfite conversion on the DNA (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, USA), we 

performed methylation analysis using the Illumina HumanMethylation450 BeadChip platform (Infinium 

HD Methylation protocol, Illumina, San Diego, CA, USA). To ensure a similar age distribution across 

chips/plates and minimize batch effects, we used a two-stage age-stratified algorithm to randomize samples 

and randomized chips across plates. For quality control purposes, we removed samples where >5% of 

probes had a beadcount < 3 or > 1% of probes had a detection P-value >0.05. The remaining samples were 

pre-processed with Illumina-type background correction without normalization and normalized with dye-

bias and BMIQ3 adjustments. Next, we generated methylation beta values, which represent the percentage 

of methylation for each of the ~480,000 CpG sites in the BeadChip array. Beta = intensity of the methylated 

signal (M) / [intensity of the unmethylated signal (U) + intensity of the methylated signal (M) + 100]. 

DNAm age was computed using the publically available online calculator 

(http://labs.genetics.ucla.edu/horvath/dnamage/). DNAm-age was derived from a penalized regression (an 

elastic net) run on numerous datasets of diverse cell and tissue types where CpG probes shared by both the 
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Illumina HumanMethylation27 and HumanMethylation450 BeadChip platforms were regressed on a 

calibrated version of chronological age. 353 CpGs that correlated with age (193 positively and 160 

negatively) were selected by the elastic net11. The model coefficients from these 353 CpGs were used by 

the calculator to predict the age of each DNA sample (i.e. DNAm-age). The calculator maintains predictive 

accuracy (age correlation 0.97, error = 3.6 years) across almost all body tissues including blood, bone, and 

brain11. 

6.3.c. One-Year Address-Level Ambient Fine Particulate Matter (PM2.5) Exposure Estimation 

We focused on the one-year PM2.5 exposure window because existing literature demonstrates that 

it is robustly associated with DNAm-age7. Furthermore, greater than 90% of NAS participants are retired; 

thus, home address exposures are expected to be a good proxy for their individual ambient exposures. Using 

the GEOS-chem chemical transport model (http://www.geoschem.org), we generated daily estimates at the 

1 km x1 km area resolution for total PM2.5. The GEOS-chem model is particularly useful because it allows 

us to predict PM2.5 component species like ammonium and sulfate at the same 1 km x 1 km area resolution. 

Sulfate and ammonium are the major PM2.5 component species that have been previously shown to be 

important in predicting DNAm-age8. After geocoding and linking participants’ residencies to an area level 

grid-point, we assigned particle estimates to each participant’s address. One-year total PM2.5 and PM2.5 

component species exposure estimates were determined by averaging daily exposures for the 365 days prior 

to the day of each participants’ NAS visit. Ten-fold cross-validation demonstrated that the model performed 

well for PM2.5 mass and its component species with R2s ranging from 0.70 to 0.8819. 

 
6.3.d. Genotyping Micro RNA Processing Gene Polymorphisms  
 

The panel of 24 microRNA (miRNA) processing gene single nucleotide polymorphisms (SNPs) 

examined in this study were selected from previous studies that investigated the association of miRNA 

processing gene SNPs and chronic aging-related diseases20,21. Some of these same SNPs have been shown 

to modify relationships of ambient air pollutants with aging-related disease22,23. We performed genotyping 



	

	
145 

on DNA extracted from participants’ blood. Multiplex PCR assays were designed with Sequenom 

SpectroDESIGNER software (Sequenom, Inc., San Diego, CA). The extension product was subsequently 

spotted onto a 384-well spectroCHIP and analyzed in the MALDI-TOF mass spectrometer (Sequenom, 

Inc.). We duplicated the assay for 5% of the samples. Of all the 24 SNPs analyzed for this study, all were 

successfully detected.  

Following genotyping, we excluded ten SNPs for which the number of participants who were 

homozygous minor variant carriers was less than 10 [rs595961 and rs636832 in AGO1; rs197388 and 

rs197414 in DDX20; rs417309 in DGCR8; rs3742330 in DICER1; rs2740348 and rs3744741 in GEMIN4; 

rs1106042 in PIWIL1] and one in which Hardy–Weinberg equilibrium was not met at the 0.05 level 

[rs10719 in DROSHA]. This exclusion criteria has been utilized in already published studies that use this 

panel of SNPs22,23. The remaining 14 SNPs were used in the study analyses. Linkage disequilibrium (LD) 

of SNPs within the same gene was previously assessed using the LDPlotter tool 

(https://www.pharmgat.org/Tools/pbtoldplotform)23. 

 
 
6.3.e. Statistical Analysis 
 
6.3.e.1. Elastic Net Selection of miRNA Processing Gene SNPs: 

The aim of the present study was to examine if SNPs in miRNA processing genes modified the 

association of long-term PM2.5 and PM2.5 component species levels with DNAm-age. In an effort to A) limit 

multiple comparisons and B) identify specific miRNA processing gene SNPs that are important to DNAm-

age, we first employed an elastic net (penalized regression) via the glmnet function in the R glmnet package. 

Our elastic net method was similar to that described by Lenters and colleagues24 and the full documentation 

for running all aspects of the elastic net via glmnet is publically available (https://cran.r-

project.org/web/packages/glmnet/index.html. We have also used a comparable elastic net strategy in a 

previous publication25. In short, the elastic net regression linear models utilized a hybrid of ridge and 

LASSO penalty functions to determine which SNPs were important to DNAm-age. By combining both of 

these penalty functions, the elastic net is able to perform selection while allowing for the inclusion of highly-
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related genetic variants26,27. In our case, the highly related variants were the panel of miRNA processing 

gene SNPs. Specifically, in our elastic net selection model, all 14 SNPs and their respective PM2.5-SNP 

interactions were regressed on DNAm-age. Chronological age (continuous), blood cell proportions [plasma 

cells, CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and granulocytes] 

(continuous, determined via Houseman and Horvath methods11,28), average 1-year temperature (continuous 

address-specific satellite measurements8), cumulative cigarette pack years (continuous), smoking status 

(current, former, or never), and season of visit (spring [March-May], Summer [June-August], Fall 

[September-November], and Winter [December-February]), were also included in the selection model as 

unpenalized variables. The existing air pollution, DNA methylation, and DNAm-age literature have 

identified these variables as important potential confounders7,8,29,30. Cross-validation was performed to 

determine the optimal degree of penalization and the minimum mean-squared error (MSE) of prediction 

from repeated 10-fold cross-validation was used in the final elastic net selection model. miRNA processing 

gene SNPs with non-zero model coefficients were considered as “selected” by the elastic net. 

 
 
6.3.e.2. Covariates: 
 

The direct relationships of the miRNA processing gene SNPs with DNAm-age and the role of these 

SNPs as modifiers of the association of PM2.5 with DNAm-age were examined using fully-adjusted linear 

mixed-effects models. These models included a random participant-specific intercept to account for 

correlation between repeated outcome measures resulting from having multiple study visits for participants. 

In the analyses using fully-adjusted models, we controlled for all the variables used in the elastic net 

selection model as well as body mass index (BMI) (lean [<25], overweight [25-30], obese [>30]), alcohol 

intake (yes/no ³ 2 drinks daily), maximum years of education (continuous), cancer (yes/no history of 

lifetime cancer diagnosis), ischemic heart disease (yes/no based on electrocardiogram, validated medical 

records, or physical exam), diabetes (physician diagnosis or a fasting blood glucose > 126 mg/dL), and 

hypertension (yes/no antihypertensive medication use or systolic blood pressure ≥140 mmHg or diastolic 

blood pressure ≥90 mmHg). 
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6.3.e.3. Effect Modification by and Direct Associations of miRNA Processing Gene SNPs: 

Using the same covariates from the direct effect fully-adjusted linear mixed effects models, we 

evaluated if the miRNA processing gene SNPs selected by the elastic net modified the association of PM2.5 

with DNAm-age. Given a statistically significant modifying effect, we evaluated if the SNP of interest 

modified the associations of sulfate and ammonium with DNAm-age. In these analyses, the reference group 

was participants who were homozygous for the major variant of the SNP. For instance, if we evaluated the 

modifying role of ‘SNP A’ on the association of PM2.5 with DNAm-age, we compared participants 

genotyped as homozygous for the major variant of ‘SNP A’ against all other participants (i.e. participants 

genotyped heterozygous or homozygous for the minor variant of ‘SNP A’). We conducted secondary 

analyses exploring trends in significant modifier effects across all three genotypes (homozygous major 

variant, heterozygous, and homozygous minor variant). When we observed that a miRNA processing gene 

SNP significantly modified the relationship of a PM2.5 component species with DNAm-age, we also 

conducted an additional sensitivity analysis. In this sensitivity analysis, we subtracted that component 

species from total PM2.5 and reevaluated effect modification by the SNP. 

Also using fully-adjusted linear mixed effects models, we determined if elastic net selected miRNA 

processing gene SNPs had direct associations with DNAm-age when modeled as joint predictors with PM2.5 

levels. We also performed a sensitivity analysis, examining these direct associations, where we subtracted 

component species from total PM2.5 as previously described above.  

 

6.3.e.4. Network Analysis: 
 

We used the publically available Genemania platform (https://genemania.org) to explore gene 

network relationships (co-expression, physical interactions, and genetic interactions) between the genes 

encompassing the elastic net selected SNPs and the 353 genes that contribute CpGs to the DNAm-age 

metric. 
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6.3.e.5. Analysis Software:  

The gene network analysis was performed using the Genemania plugin for Cytoscape. All 

remaining statistical analyses were performed using R Version 3.1.1 (R Core Team, Vienna, Austria) and 

we considered a P-value < 0.05 to be statistically significant. 

 

6.4. Results 

6.4.a. Descriptive Statistics 
 

Table 1 summarizes the demographic and clinical characteristics of study participants across all 

study visits. All participants were Caucasian males with a mean (SD) chronological age and DNAm-age of 

75.0 (7.03) and 74.1 (8.02). A majority of the participants had completed at least 12 years of formal 

education (74%), were former smokers (67%), and were overweight or obese (77%). In this study sample, 

the prevalence of ischemic heart disease, diabetes, and hypertension were 35%, 18%, and 75% respectively. 

The lifetime prevalence of a cancer diagnosis was 57%. 

The mean (IQR) one-year PM2.5, sulfate, and ammonium levels were 10.3 (2.15) µg/m3, 3.39 (0.81) 

µg/m3, and 1.05 (0.29) µg/m3. Table S1 presents the Pearson correlation coefficients and the proportion of 

total PM2.5 mass of GEOS-chem transport model derived PM2.5 component species across all study visits. 

Sulfate made up the greatest proportion of PM2.5 mass (33.2%), and ammonium made up 10.2% of PM2.5 

mass. The correlation coefficients for sulfate and ammonium with total PM2.5 mass were 0.30 (p<0.0001) 

and 0.51 (p<0.0001) respectively. 
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Table 1. Characteristics of Study Participants (2000 – 2011) 
Main Variables All Visits, N = 808 
Age (years), mean (SD) 75.0 (7.03) 
DNAm-age (years), mean (SD) 74.1 (8.02) 
One- Year Fine Particle Level (µg/m3), mean (IQR)  
PM2.5 10.3 (2.15) 
Sulfate 3.39 (0.81) 
Ammonium 1.05 (0.29) 
Lifestyle and Environmental Variables 
Alcohol Consumption, N ( %)  
<  2 drinks/day 647 (80) 
≥ 2 drinks/day 161 (20) 
BMI, N (%)  
Healthy/Lean 189 (23) 
Overweight 427 (53) 
Obese 192 (24) 
Education, N (%)  
≤ 12 years 206 (26) 
12 – 16 years 379 (47) 
> 16 years 223 (27) 
Pack years, mean (SD) 21.2 (24.7) 
Smoking Status, N (%)  
Current 36 (4) 
Former 538 (67) 
Never 234 (29) 
Season, N (%)  
Spring 204 (25) 
Summer 175 (22) 
Fall 271 (33) 
Winter 158 (20) 
Temperature (°C), mean (SD) 11.3 (0.99) 
Aging-Related Diseases 
Ischemic Heart Disease, N (%)  
Yes 287 (35) 
No 521 (65) 
Diabetes, N (%)  
Yes 148 (18) 
No 660 (82) 
Hypertension, N ( %)  
Yes 604 (75) 
No 204 (25) 
Lifetime Cancer Diagnosis, N (%)  
Yes 458 (57) 
No 350 (43) 
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6.4.b. Elastic Net Selected miRNA Processing Gene SNPs 
 

Table S2 lists the 14 miRNA processing SNPs that were included in the elastic net selection model. 

Of these 14 SNPs, four (rs4961280 [AGO2], rs6877842 [DROSHA], rs910924 [GEMIN4], and rs784567 

[TARBP2]) were selected by the elastic net with DNA methylation as the outcome.  

 

 

 

 

Of the four elastic net selected SNPs, only rs4961280 (AGO2) and rs784567 (TARBP2) were 

significantly associated with DNAm-age in fully-adjusted linear mixed effects models that included PM2.5 

levels as a covariate (Table 2). For rs4961280 (AGO2), individuals who had at least one copy of the minor 

SNP allele on average had a 1.13-year lower DNAm-age than individuals with the homozygous major 

variant (allele) genotype (p<0.05). When we compared all three genotypes, on average, individuals who 

were homozygous for the minor rs4961280 (AGO2) variant (AA) had the lowest DNAm-age. Homozygous 

major carriers (CC) had the highest DNAm-age and heterozygous individuals (CA) had an intermediate 

DNAm-age (Figure S1). The trend for this relationship was statistically significant (p=0.04). For rs784567 

(TARBP2), individuals who had at least one copy of the minor SNP allele on average had a 1.35-year lower 

Table 2. Mean One-Year Fine Particle (PM2.5) Concentrations and MicroRNA Processing 
Gene Single Nucleotide Polymorphisms (SNPs) as Joint Predictors of DNAm-age (N = 808) 

Predictor Difference in DNAm-age 
for IQR (95% CI) P 

PM2.5 0.76 (0.24, 1.24) 0.003 
Elastic Net Selected miRNA SNPsa   
rs4961280 (AGO2) -1.13 (-2.26, -0.002) 0.05 
rs6877842 (DROSHA) -0.78 (-1.92, 0.37) 0.18 
rs910924 (GEMIN4) -0.41 (-1.47, 0.65) 0.45 
rs784567 (TARBP2) -1.35 (-2.61, -0.09) 0.04 
   
Note. Model adjusted for chronological age, blood cell type, temperature, pack years, smoking 
status, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, 
diabetes, and ischemic heart disease.  aValues for the miRNA processing SNPs are in reference to 
participants whose genotypes are homozygous for the major variant. Bold text specifies statistically 
significant P values (<0.05). 
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DNAm-age than individuals with the homozygous major allele genotype (p=0.04, Table 2). When we 

looked across all three rs784567 (TARBP2) genotypes, a trend similar to rs4961280 (AGO2) was observed, 

but the trend did not reach statistical significance (p=0.08, Figure S1). These relationships persisted in 

sensitivity analyses where the ammonium component was subtracted from total PM2.5 mass (Table S3).  

 

 

 

 

 

 

 

 

 

 

Out of all four SNPs, only the rs4961280 (AGO2) SNP significantly modified the association of 

PM2.5 with DNAm-age (p=0.01) – although the rs6877842 (DROSHA) SNP neared statistical significance 

(p=0.052, Figure 1). Specifically, the association of PM2.5
 with DNAm-age was greater in individuals who 

were not homozygous for the major AGO2 variant (allele) when compared to individuals who were 
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Figure 1 | Difference in DNAm-age for one interquartile range increase in one-year particle 
exposure levels comparing participants with and without a homozygous major variant 
genotype for AGO2, DROSHA, GEMIN4, and TARBP2 in fully-adjusted linear mixed 
effects models. 
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homozygous for the major allele. This trend was also observed for the ammonium PM2.5 component species. 

No significant effect modification by the AGO2 SNP was observed for sulfate levels and the rs6877842 

(DROSHA) SNP did not significantly modify the relationships of ammonium or sulfate with DNAm-age 

(Figure 2).  

 

 

 

 

 

 

 

 

 

 

We observed a significant (p=0.01) increasing trend for the association of PM2.5 with DNAm-age when 

comparing the three rs4961280 (AGO2) SNP genotypes (Figure 3). The strongest (magnitude) association 

was observed in individuals who were homozygous for the minor allele and the smallest association was 

observed in individuals with the homozygous major allele genotype. An association of intermediate 
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Figure 2 | Difference in DNAm-age for one interquartile range increase in one-year 
particle exposure (ammonium and sulfate) levels comparing participants with and 
without a homozygous major variant genotype for AGO2 and DROSHA in fully-
adjusted linear mixed effects models. 
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magnitude was observed in individuals who were heterozygous for the genotype. A similarly significant 

(p=0.02) trend across genotypes was observed for the relationship of ammonium with DNAm-age (Figure 

3). In a sensitivity analysis where the ammonium component was subtracted from total PM2.5 mass, we still 

observed a significant – though slightly attenuated – trend in the PM2.5 (less ammonium) and DNAm-age 

relationship across AGO2 genotypes (Figure S2). 

 

 

 

 

 

 

 

 

 

 
6.4.c. Gene Network Analysis 
 

Figure 4 depicts the results of a network analysis examining relationships of AGO2, DROSHA, 

GEMIN4, and TARBP2 with the 353 genes that contribute CpGs to the DNAm-age measure. IPO8 was the 

sole DNAm-age CpG contributing gene that had a physical interaction with AGO2. Many genes were found 
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Figure 3 | Difference in DNAm-age for one interquartile range increase in one-year particle 
exposure (PM2.5 and Ammonium) levels comparing participants of homozygous major variant 
(N=526), heterozygous (N=257), and homozygous minor variant genotypes (N=25) for AGO2 
in fully-adjusted linear mixed-effects models. *P value for the test of linear trend across 
genotypes was based on a linear mixed-effects regression model where the three AGO2 
genotypes were fit as a continuous measure.   
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to have genetic interactions or be co-expressed with AGO2. PAPOLG and TIPARP were the only two genes 

that had both genetic interactions and were co-expressed with AGO2. PAPOLG and TIPARP were also co-

expressed or had a genetic interaction with DROSHA (Table S4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 | Curated network map depicting relationships of AGO2, DROSHA, GEMIN4, and 
TARBP2 with genes that contribute component CpG methylation to DNAm-age. Each of the 
elastic net selected genes is surrounded by a circle of related genes that contribute CpG 
methylation to the DNAm-age metric. Solid lines that connect genes represent co-expression. 
Dashed lines that connect genes represent physical interactions. Squiggly lines that connect 
genes represent genetic interactions.  
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6.5. Discussion 
 

The present study utilized a DNAm-age elastic net selection model to identify four SNPs in miRNA 

processing genes (rs4961280 [AGO2], rs6877842 [DROSHA], rs910924 [GEMIN4] and rs784567 

[TARBP2]) of which two (rs4961280 [AGO2] and rs784567 [TARBP2]) were directly associated with 

DNAm-age in a population of community-dwelling elderly men. Additionally, the study demonstrated a 

significant modifier effect of the rs4961280 (AGO2) SNP on the associations of one-year PM2.5 and 

ammonium (one PM2.5 component species) levels with DNAm-age. More specifically, our data suggests 

that the association of PM2.5 with DNAm-age is attenuated in individuals carrying at least one copy of the 

rs4961280 (AGO2) major variant allele. Our results were consistent (though slightly attenuated) in 

sensitivity analyses where we subtracted ammonium levels from total PM2.5 mass. This suggests that the 

impact of the rs4961280 (AGO2) SNP on the relationship between PM2.5 and DNAm-age is largely – but 

not exclusively – due to ammonium is levels. Moreover, a gene network analysis revealed physical 

interactions, genetic interactions, and co-expression relationships of AGO2, DROSHA, GEMIN4, and 

TARBP2 with genes that contribute CpGs to the DNAm-age metric. To our knowledge, this is the first study 

to examine relationships of miRNA processing physiology with epigenetic age both independently and in 

the context of long-term PM2.5 exposure.  

DROSHA is a gene located on human chromosome 5 and it encodes an RNA-specific 

endoribonuclease that is involved in the initial step of nuclear miRNA processing31. GEMIN4 and TARBP2 

are located on chromosomes 17 and 12 respectively, and they both encode enzymes that are involved in the 

cytoplasmic processing of miRNAs. After a literature review examining the relationships of the SNPs in 

these three genes with air pollution, we found only one previous study – also in the Normative Aging Study 

cohort – demonstrating that in comparison to other participants, individuals heterozygous for the rs910924 

(GEMIN4) SNP genotype were more likely to have lower global cognition measurements given the same 

level of black carbon exposure22. Nonetheless, we did find a number studies implicating DROSHA, 

GEMIN4, and TARBP2 in numerous aging-related diseases including prostate cancer, and colorectal 
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cancer32,33. Since cancers are often related to changes in DNA methylation, the connections of these genes 

with cancer may be the reason why their SNPs were selected by the elastic net34.  

In contrast to the other three SNPs, we did observe significant effect modification of the PM2.5-

DNAm-age relationship by the rs4961280 (AGO2) SNP. Furthermore, we also observed a significant direct 

relationship of the rs4961280 (AGO2) SNP with DNAm-age. AGO2 (Argonaute Protein 2) is a gene located 

on human chromosome 2. Argonaute (AGO) proteins, including AGO2, form the core of the RNA-induced 

Silencing Complex (RISC) which is involved in gene silencing via RNA interference. AGO proteins are 

well-conserved across species and structurally include an amino-terminal, PAS, Piwi, and MID domains. 

Humans have eight AGO proteins; however, only AGO 1-4 are capable of loading miRNA in RISC. 

Moreover, only AGO2 appears to have the ability to cleave mRNA targets and achieve transcript 

instability/silencing35. In addition to their role in RISC, it has also been demonstrated that AGO proteins 

play a role in stabilizing and maintaining proper levels of mature miRNA strands36.  

Our data suggested that individuals with at least one copy of the rs4961280 (AGO2) major variant 

had an attenuated association of PM2.5/ammonium with DNAm-age when compared to individuals who 

were homozygous for the minor variant. However, individuals with at least one copy of the minor variant 

on average had lower DNAm-ages when compared to individuals that were homozygous for the major 

variant. Very few studies have explicitly examined relationships of the rs4961280 (AGO2) SNP and none 

of them were in the contexts of PM2.5 or aging. However, we did find one study that demonstrated that the 

minor variant was associated with a reduced risk of benign prostatic hypertrophy (BPH) in a Serbian 

population32. Since BPH is most common in aging men, this study is in alignment with our finding that the 

minor allele is associated with qualities of being “younger” (i.e. a lower DNAm-age or a lower risk of 

BPH)37. Further work will need to be done to understand why it is the major allele that attenuates the 

positive association of PM2.5 with DNAm-age, but the minor allele that is directly associated with a lower 

biological age. Moreover, it will be helpful for the field to understand why ammonium relationships with 

DNAm-age were impacted by the rs4961280 (AGO2) SNP and sulfate relationships were not.  
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Of the existing studies that examine relationships of AGO2 – not simply the SNP, but the gene – 

with aging in humans, the majority are cell culture based and describe AGO2 as a factor involved in 

molecular processes related to biological aging such as cellular senescence, stem cell renewal, and 

endothelial function38-40. We also found a few animal studies that showed relationships of AGO2 with 

chronological aging. A study examining relationships of miRNAs with aging in Drosophila revealed that 

with age, there was a global increase in miRNAs loaded in AGO2 but not AGO1. Furthermore, mutations 

in AGO2 resulted in shorter life span and neurodegeneration. Together, these data suggest that AGO2 

impacts aging-associated processes41. Another study looking to elucidate how intermittent fasting increases 

longevity in Caenorhabditis elegans demonstrated that fasting upregulates the expression of miRNA-

induced silencing complex (RISC) components including argonautes. In this study, fasting upregulated 

AGO2 by 2 fold42. 

Our network analyses of AGO2, DROSHA, GEMIN4, TARBP2, and genes that contribute CpGs to 

the DNAm-age metric demonstrated one physical interaction between AGO2 and a gene called IPO8. IPO8 

(Importin 8) is a gene on chromosome 12 that encodes a protein involved in mediating the nuclear import 

of other proteins with nuclear localization signals. IPO8 has also been shown to mediate the cytoplasm to 

nucleus transport of mature miRNAs. Moreover, this IPO8 mediated transport of miRNAs is dependent on 

the physical association of IPO8 with the AGO2 complex43. The literature primarily describes IPO8 as an 

optimum reference gene for micro-array and RT-PCR studies in multiple tissue types including the lung44. 

Two genes (PAPOLG and TIPARP) had both genetic interactions and co-expression relationships with 

AGO2. These two genes also had genetic interactions with TARBP2 and DROSHA. PAPOLG (Poly [A] 

polymerase gamma) is a gene on chromosome 2 that encodes an exclusively nuclear-localized poly (A) 

polymerase responsible for catalyzing template-independent extension of the 3’ end of a strand of 

DNA/RNA45. To our knowledge, no explicit studies have examined the relationships of PAPOLG and 

biological aging but PAPOLG has been implicated in relationships involving aging-related health outcomes. 

For instance, a 12-week trial examined if a dietary intervention of 400g/week of high-glucoraphanin (HG) 

broccoli altered plasma metabolites linked to cancer risk when compared to diets of 400g/week of standard 
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broccoli or 400g/week of peas. No other modifications were made to the participants’ diets. The study 

revealed that the levels of plasma metabolites (including FAD) of individuals receiving HG broccoli were 

differentiated by PAPOLG genotypes. This suggests that PAPOLG may interact with diet to impact the 

levels of metabolites including those that have been implicated in cancer risk46. TIPARP (TCDD-inducible 

poly [ADP-ribose] polymerase) is a gene on chromosome 3 that encodes a member of the poly (ADP-

ribose) polymerase super family47. In a study exposing human aortic endothelial cells to 10 µg/ml of fine 

and ultrafine ambient particulate matter from California, mRNA levels of enzymes including TIPARP 

increased48. Another study exposed human adenocarcinomic human alveolar basal epithelial (A549) cells 

to 10 µg/ml of winter and summer PM2.5 from Milan and found that PM2.5 from both seasons modulated 

TIPARP gene expression49. 

Strengths of our study include the combination of a novel biomarker, rigorous statistical methods, 

and access to a large cohort with extensive and repeated information regarding PM2.5 exposure levels, DNA 

methylation data, and potential confounders from multiple study visits. This is the first study to use miRNA 

processing gene variants to study the relationship of ambient fine particles with DNAm-age.  However, our 

study does have some notable limitations. First, we use a validated chemical transport model to generate 

address-level one-year PM2.5, sulfate, and ammonium exposure estimates. Given that most NAS 

participants are retired, we believe that particle exposure levels at their homes approximately capture their 

personal exposures. Still, there is some risk of exposure misclassification. Nonetheless, such non-

differential misclassification is likely to underestimate any observed associations rather than bias them 

away from the null50. Second, we utilize a panel of a miRNA processing gene SNPs that is somewhat limited 

because it does not provide genome-wide resolution of all genes involved in miRNA processing. 

Nevertheless, this panel has been successfully utilized in other environmental health studies and we use a 

rigorous elastic net approach to identify our variants of interest22. Although we did not test for effect 

modification with all the SNPs in our panel, our targeted approach identified significant interactions that 

persisted even in sensitivity analyses. These findings will be informative to more comprehensive, future 

research. Lastly, our study examines the role of the miRNA processing pathway by using genetic variants 
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of miRNA processing genes and our findings are based on a cohort of elderly Caucasian males who reside 

in a lightly-polluted environment. Future studies involving other demographic groups, in different 

environments, and using miRNA expression levels will be necessary to broadly confirm and add to these 

important but early findings. 

 

6.6.  Conclusion 

In conclusion, genotypes of the rs4961280 (AGO2) miRNA processing SNP were directly 

associated with DNAm-age and modified the associations of one-year PM2.5 and ammonium levels with 

DNAm-age in this population of community-dwelling Caucasian elderly men. Although our findings need 

to be confirmed in other individuals of this same demographic group and different populations, they begin 

to address the important research gap concerning the biological relevance of DNAm-age and the physiology 

of the PM2.5-DNAm-age relationship. Future studies will be necessary to elucidate more nuanced 

relationships of miRNA physiology with epigenetic aging.   
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7.1.  Introduction 

The work presented in this dissertation represents the first published studies examining 

relationships of any traditional environmental pollutant with DNAm-age. Since our initial study, we have 

replicated some biological aging relationships in an independent German cohort and reported relationships 

of other ambient pollutants (e.g. nitric oxide) with DNAm-age1. Moreover, other research groups have since 

explored the relationships of other environmental exposures with DNAm-age2. Here, we summarize the 

existing body of research that describes relationships of DNAm-age with chemical environmental 

pollutants.  

 

7.2.  Air Pollutants 

Of the work examining the relationships of chemical exposures with DNAm-age, the literature on 

air pollutants is the most extensive. Nwanaji-Enwerem et al. (2016) was the first group to describe 

associations of any chemical pollutant with DNAm-age and their study focused on relationships of DNAm-

age with long-term ambient fine particle (PM2.5) and Black Carbon (BC) exposures3. DNAm-age was 

measured in peripheral blood leukocytes from 1032 samples taken from 589 community-dwelling older 

men who were participants in the ongoing VA Normative Aging Study (NAS).  Using linear mixed effects 

models adjusted for chronic diseases, lifestyle factors, environmental factors, and white blood cell 

composition, the group found that a 1 µg/cm3 increase in one-year PM2.5 exposure was significantly 

associated with a 6-month increase in DNAm-age (p < 0.0001). A 1 µg/cm3 increase in one-year BC 

exposure was also significantly associated with DNAm-age (b = 2.83, p = 0.03). However, when PM2.5 and 

BC were simultaneously modeled as predictors of DNAm-age, only PM2.5 remained statistically significant. 

This prompted the authors to focus their attention to PM2.5 relationships including an analysis exploring the 

associations of PM2.5 levels with methylation at the 353 DNAm-age component CpG sites. 20 out of 353 

DNAm-age component CpGs had significant associations with one-year PM2.5 exposure, but enrichment 

analysis did not return any significant findings for these 20 sites3.  
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Given the results from the combined PM2.5 and BC models, the authors hypothesized that PM2.5 

component species besides the carbonaceous species were responsible for the association with DNAm-age. 

Hence, they performed a follow-up study in the NAS to identify which of five major PM2.5 component 

species (i.e. ammonium, elemental carbon, organic carbon, nitrate, and sulfate) were driving the DNAm-

age association. Using the adaptive least absolute shrinkage and selection operator method, the researchers 

identified ammonium and sulfate as the PM2.5 component species most associated with DNAm-age4. 

Importantly, the associations of PM2.5, sulfate, and ammonium with DNAm-age all remained statistically 

significant even when the analyses were limited to one-year PM2.5 exposures within US EPA national 

ambient air quality standards. This suggested that there was a risk of biological aging even at accepted air 

pollution levels. To further understand the underlying biology of the risks implied by this association, 

subsequent work by this same group focused on identifying potential modifiers and mediators of the PM2.5-

DNAm-age relationship in the NAS. 

First, they used elastic net penalized regression to identify endothelial function related SNPs most 

important for DNAm-age and next they calculated a polymorphism score based on the important SNPs5. 

This score, which reflected endothelial function physiology and aging risk, was then explored as a modifier 

of the PM2.5-DNAm-age association. The authors found that the magnitude of the association of PM2.5 with 

DNAm-age was significantly higher in individuals with a high aging-risk endothelial function score (bhigh 

= 1.09, 95% CI: 0.70, 1.48) when compared to individuals with a low score (blow = 0.40, 95% CI: 0.14, 

0.67, Pinteraction = 0.0007). Following this finding of significant effect modification, the authors then 

examined the relationship of DNAm-age with serum endothelial function markers in the same cohort of 

NAS participants. In these analyses, DNAm-age was positively associated with serum ICAM (b = 0.01, p 

= 0.005) and VCAM (b = 0.002, p = 0.004). This was the first study to use pathway specific genetic variants 

to understand the association of PM2.5 with DNAm-age. Furthermore, the integrated data from genetic and 

functional analyses suggests a role in the PM2.5-DNAm-age relationship for endothelial function, which is 

already appreciated as a contributor to PM2.5-related processes6-8.  
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The second molecularly focused study conducted by the group suggests that mitochondrial 

physiology may be involved in the PM2.5-DNAm-age relationship. Similar to the study involving 

endothelial function, this study is able to provide a more convincing argument for its conclusion because it 

utilizes an integration of genetic (mitochondrial DNA haplogroups) and functional (mitochondrial DNA 

copy number) measures in the NAS. Mitochondrial haplogroups represent normal mitochondrial genetic 

variation and can potentially impact energy generating capacity by the organelle. Mitochondrial copy 

number is the ratio of a cell’s mitochondrial DNA to nuclear DNA. Changes in copy number can occur 

normally with mitochondrial biogenesis and degradation, but changes can also be related to exogenous 

stressors and enable the organelle to compensate for mitochondrial genome damage9. Out of the nine 

haplogroups found and tested (H, I, J, K, T, U, V, W, and X) in the study sample, no haplogroups showed 

direct associations with DNAm-age. However, carriers of Haplogroup V (b = 0.18, 95% CI: −0.41, 0.78) 

demonstrated a diminished magnitude of the PM2.5 association with DNAm-age when compared to non-

carriers (β = 1.25, 95% CI: 0.58, 1.93, Pinteraction = 0.01). Copy number was negatively associated with 

DNAm-age (β = -3.31, p < 0.0001), and was estimated to significantly mediate 12% of the PM2.5 association 

with DNAm-age. Like endothelial function, mitochondrial genome physiology has been previously 

implicated in PM2.5-related processes10-13. Hence, these results though they need to be replicated in a 

different population, were in line with the existing literature.  

The final molecularly focused study performed by this group also utilized the NAS cohort and 

elastic net penalized regression to identify two SNPs in microRNA processing genes that had direct 

associations with DNAm-age: rs4961280 [AGO2] and rs784567 [TARBP2]. Individuals with at least one 

copy of the minor variant of either one of these two SNPs had on average at least a 1.13-year lower DNAm-

age than homozygous major individuals. However, significant effect modification was only observed by 

the AGO2 SNP. Having at least one copy of the major AGO2 allele significantly reduced the magnitude of 

the PM2.5 association with DNAm-age14. Again, the authors explored these relationships because 

microRNA physiology has been previously implicated in PM2.5 processes15-17. Hence, the findings were 

again broadly in alignment with the existing literature. Overall, each of these molecular endothelial 
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function, mitochondrial, and microRNA relationships need to be replicated in different populations and 

demographic groups, but these studies represent some of the most comprehensive data aimed at 

understanding DNAm-age’s molecular relationships with environmental exposures.  

Still, efforts have been made to replicate the direct associations of PM2.5 and BC with two variations 

of DNAm-age (IEAA and DNAmAA). Intrinsic epigenetic age acceleration (IEAA) is the residual that 

results from regressing DNAm-age on chronological age and measures of blood cell counts. Hence, IEAA 

is independent of both age and cell counts. DNAm-age age acceleration (DNAmAA) is the residual from 

regressing DNAm-age on chronological age alone. Hence, DNAmAA is independent of chronological 

age18. Ward-Caviness et al. (2016) utilized a cohort of 1777 men and women from the German KORA 

cohort and examined relationships of IEAA and DNAmAA with ambient pollutants: PM2.5, BC, coarse 

particulate matter (PM10), and nitrogen oxide (NOx)1. In a combined sex model (males and females 

included) PM2.5 was not significantly associated with IEAA (β = 0.02, p = 0.88) or DNAmAA (β = 0.04, p 

= 0.77). BC was also not significantly associated with IEAA or DNAmAA in combined sex models. 

However, unlike PM2.5, BC did show some sex-specific relationships. BC was negatively associated with 

IEAA in men, but positively associated with IEAA in women. BC was positively associated with DNAmAA 

in women but showed no association in men. With respect to the other pollutants that were examined, PM10 

had significant negative associations with IEAA and DNAmAA in men but no relationships in women. 

NOx had significant negative associations with IEAA and DNAmAA in men, but positive associations 

women.  This study also examined PM2.5 associations with IEAA and DNAmAA in a subset of the NAS 

cohort and found only the IEAA associations to be statistically significant but negative in direction (β = -

0.42, p = 0.03). The data from this study broaden the knowledge of important relationships of air pollutants 

with DNAm-age-related measures. Although, the findings using the full cohort are predominantly null, 

important sex differences were identified. This suggests that the impact of pollutants on DNAm-age may 

differ by sex, which is not farfetched given that it is already appreciated that on average chronological age-

matched DNAm-age is lower in women than it is in men19.  The results also speak to the relationships 

between the different DNAm-age measures. What is most surprising is that the relationships of IEAA and 
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PM2.5 in the KORA cohort and the subset of the NAS cohort are either not statistically significant or are in 

the opposite direction of those previously reported by Nwanaji-Enwerem et al. (2016). Using IEAA versus 

adjusting for white blood cell proportions within statistical models – which was the method employed by 

Nwanaji-Enwerem et al. (2016)3 – could potentially lead to different results even though this is not 

expected. The authors also noted that total cholesterol, age2, and physical activity were included as 

covariates in their model but were not used in the Nwanaji-Enwerem et al. (2016) models. Moreover, there 

were some differences in the sample sizes used by the two studies given that additional covariates included 

in the latter study were missing at random for some participants in the initial study sample. The initial 

Nwanaji-Enwerem et al. (2016) study was based on 1032 observations from 589 participants, while this 

latter work was based on a subset of 734 observations from 496 participants in the NAS. Ultimately, more 

work is necessary to elucidate the associations of ambient air pollutants with DNAm-age measures, but 

these future studies will need to pay close attention to consistency in model design. 

Smoking can be considered a form of personal air pollution. Gao et al. (2016) examined the 

associations of smoking with DNAmAA in a cohort of 1509 male and female participants from the 

ESTHER study in Germany20. They found that no self-reported smoking related indicators (i.e. smoking 

status, cessation time, and cumulative exposure) were significantly associated with DNAmAA. They next 

compiled a list of 150 smoking-related CpGs that were independent from the 353 DNAm-age component 

CpGs. Each of the 150 CpGs had been identified at least twice in previously published active-smoking 

related epigenome wide association studies. 66 of these 150 smoking related CpGs were associated with 

DNAmAA after a validation step and were used to create a smoking index. A one standard deviation 

increase in smoking index was associated with a 1-year increase in DNAmAA. This study doesn’t 

demonstrate direct associations of smoking self-reports with DNAm-age, possibly because self-reports and 

not the most accurate measure of smoking. However, the study does demonstrate that methylation of 

separate sites that are sensitive to certain exposures may have important associations with DNAm-age.  

Thus, DNAm-age may not always be sensitive in itself to an exposure, but it can be used with other loci to 
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develop a composite marker that is exposure sensitive. These types of integrated methylation analyses will 

likely be useful in future environmental exposure work. 

 

7.3.  Metal Exposures 

The work examining the relationships of metal exposures with DNAm-age is far more limited than 

that examining air pollutants. To the best of our knowledge, only two studies have been published in this 

area. The first examines associations of age acceleration (here defined as chronological age subtracted from 

DNAm-age) with urinary cadmium (Cd) in 40 non-smoking women from Thailand2. Urinary Cd was first 

measured in the women and used to split the cohort into a high exposure (mean chronological age = 60.4 

years) and a low exposure group (mean chronological age = 58.8 years). Then, linear mixed effects models 

adjusted for urinary creatinine, age, and white blood cells were used to examine the association of Urinary 

Cd with blood age acceleration. The study reports no significant differences in mean age acceleration 

between the groups and no associations with urinary Cd. However, secondary analyses revealed 20 of the 

353 DNAm-age CpGs were differentially methylated between the high and low exposure groups. In 

reviewing the CpGs differentially expressed between the two Cd exposure groups, four of them (EIF3I, 

TNFRSF13C, ZBTB5, and ACAP2) were also noted for being associated with one-year PM2.5 levels in the 

Nwanaji-Enwerem et al. (2016) studies3,4.  ZBTB5, which is known to be involved in transcriptional 

regulation, was identified in both Nwanaji-Enwerem et al. (2016) studies (using different prediction 

models) and this Cd study. Future work that looks for associations of the 353 DNAm-age component CpGs 

with environmental exposures could also be useful for building a deeper understanding of environmental 

exposure related DNAm-age biology.  

The second study related to metal exposure was a pilot study of 68 subjects examining the potential 

relationships of chronic cobalt (Co) and chromium (Cr) exposure from metal-on-metal hip implants with 

DNAmAA21. 34 arthritis patients with metal on metal hip replacements and 34 arthritis patients with non-

metal hip replacements were recruited from 2009 to 2010 in the United Kingdom. There were 30 men and 

4 women in each group and the average chronological age of each group was 59.7 years. Although serum 
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Co and Cr levels were significantly greater in the group with metal-on-metal hip implants, the study 

ultimately found no associations between metal exposure and DNAmAA. These findings may suggest that 

the exposure (metal rubbing off from implants) has a small biological impact with respect to DNA 

methylation or that a larger sample size is needed to detect statistically significant changes. Regardless, 

future studies exploring the relationships of metal exposure and DNAm-age will be highly useful and 

informative.  

 

7.4.  Organochlorine Pesticide Exposures 

To date, one study has examined the relationships of organochlorine pesticides with DNAm-age22. 

This study measured three organochlorine pesticides – (4-chlorophenyl)-1,1-dichloroethene (DDE), hexa- 

chlorobenzene (HCB), and transnonachlor (TNC) – in the plasma of 967 participants from the Swedish 

PIVUS study. In statistical models adjusted for lifestyle and environmental factors, but not white blood cell 

composition, TNC (b = 0.86, p = 0.006) was significantly associated with DiffAge (defined as the difference 

between DNAm-age and chronological age). DDE (b = 0.31, p = 0.10) and HCB (b = 0.15, p = 0.67) were 

not significantly associated with DiffAge. This study highlights the issue of consistency in ongoing DNAm-

age research. Consistency across study design will be important for conducting future research and 

interpreting the results of existing studies. Age acceleration, DNAm-age, and IEAA have all been used as 

outcomes in DNAm-age research. Age acceleration is at times defined as the difference between DNAm-

age and chronological age (or vice versa) or even as the residuals from regressing DNAm-age on 

chronological age. This organochloride study elects to introduce a new term “DiffAge” which has an 

overlapping definition as the difference between DNAm-age and chronological age. Consistency in 

nomenclature will be critical for limiting confusion, replicating findings, and conveying results to larger 

scientific and lay community. 

Consistency in study design is also critical to the interpretation of research findings. Again, it is 

important to note that this organochloride pesticide study did not to adjust for blood cell counts in its 
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DNAm-age statistical models. In the majority of studies, researchers adjust for blood cell counts as 

covariates or they simply use IEAA, which already accounts for blood cell proportions. It is widely accepted 

that blood cell counts should be adjusted for unless the researchers have a biological reason for why it is 

inappropriate (e.g. when HIV is the exposure and may impact DNAm-age through changes in blood cell 

count23,24). In a perfect world, each of the variations of DNAm-age that do account for blood cells would 

result in similar findings; however, to simply believe that they would is a major assumption. A future study 

showing how each of these measures does or does not vary in the context of one outcome or one biological 

process could be useful for providing this needed methodologic understanding.   

 

7.5.  Conclusion 

In conclusion, DNAm-age is a novel biomarker that is pertinent to human aging and aging related 

conditions. Moreover, DNAm-age has been associated with a range of chemical environmental exposures 

(Figure 1). Establishing a better understanding of DNAm-age’s molecular relationships will be critical for 

actualizing the maximum utility of this biomarker. DNAm-age may prove to be sensitive and specific for a 

particular disease that is related to environmental exposures. It may also prove to simply be a useful measure 

of a more general biological process with disease implications. Developing consistency in DNAm-age 

research communications/methodologies will be important for reaching either of these conclusions.  
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Figure 1 | Reported relationships of DNAm-age with chemical environmental pollutants in 
the existing literature. To date, DNAm-age has known relationships with air pollutants (e.g. 
black carbon and PM2.5), cadmium, and organochloride pesticides (e.g. transnonachlor). 
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Appendix 1: Chapter 2 Supplementary Data 

 

 
  

Table S1.  Pearson Correlations with 1-Year Particulate Matter 2.5 (PM2.5) and Black Carbon 
(BC) Estimates in NAS data (2000-2011) 
Particle Pearson Correlation Coefficient Number of Observations P 

PM2.5    
1 Year - 1032 - 
2 Year 0.97 436 <0.0001 
3 Year 0.95 321 <0.0001 
4 Year 0.91 222 <0.0001 
5 Year 0.90 182 <0.0001 

BC    
1 Year - 898 - 
2 Year 0.97 881 <0.0001 
3 Year 0.95 866 <0.0001 
4 Year 0.97 853 <0.0001 
5 Year 0.97 829 <0.0001 

    



	

	
181 

 
 
Table S2.  Significant Relationships between Mean DNAm-age and 
Dichotomous/Categorical Variables in All Participant Observations  

 Mean DNAm-age in years (SD) 

 
Coronary heart disease 

 
Yes: 75.2 (8.10) 
No: 73.5 (7.74) 

P = 0.002 
 

 
Hypertension 

 
Yes: 74.6 (7.93) 
No: 72.5 (7.60) 

P < 0.0001 
 

 
Lifetime cancer diagnosis 

 
Yes: 75.1 (8.19) 
No: 72.8 (7.34) 

P < 0.0001 
 

 
 
 

Smoking Status 
 

 
Never: 75.7 (8.05) 

Former: 73.4 (7.80) 
Current: 73.6 (6.70) 

P < 0.0001* 
 

    
* only the p value for T test between never and former smokers was statistically significant 
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Table S3. Pearson Correlations of Continuous Variables in Participant Observations  
  

DNAm-age 
 

PM2.5 

 
BC 

 

 
Age 

 

 
Tempera-

ture 
 

 
Pack years 
 

 
Telomere 

 

 
CD4 cells 

 

 
NK cells 

 

 
Monocytes 

 

 
Granulo-

cytes 
 

 
Plasma 

cells 
 

 
CD8 cells 

 

PM2.5 

0.01 
P = 0.87 
N = 1032 

     
       

BC 
 

0.03 
P = 0.33 
N = 898 

0.41 
P <0.0001 
N = 898 

    
       

Age 
 

0.60 
P <0.0001 
N = 1032 

-0.18 
P <0.0001 
N = 1032 

0.02 
P = 0.48 
N = 898 

   
       

Temperature 
 

-0.02 
P = 0.60 
N = 1032 

0.04 
P = 0.20 
N = 1032 

0.35 
P <0.0001 
N = 898 

-0.03 
P = 0.34 
N = 1032 

  
       

Pack years 
 

-0.03 
P = 0.30 
N = 1032 

0.06 
P = 0.07 
N = 1032 

0.04 
P = 0.18 
N = 898 

-0.12 
P = 0.0002 
N = 1032 

-0.03 
P = 0.33 
N = 1032 

 
       

Telomere 
 

-0.06 
P = 0.08 
N = 857 

0.04 
P = 0.22 
N = 857 

0.02 
P = 0.54 
N = 770 

-0.03 
P = 0.44 
N = 857 

-0.04 
P = 0.30 
N = 857 

-0.03 
P = 0.32 
N = 857 

 
      

CD4 cells 
 

-0.17 
P <0.0001 
N = 1032 

0.08 
P = 0.008 
N = 1032 

0.05 
P = 0.10 
N = 898 

-0.17 
P = 0.0002 
N = 1032 

-0.04 
P = 0.16 
N = 1032 

-0.01 
P = 0.73 
N = 1032 

0.01 
P = 0.77 
N = 857 

      

NK cells 
 

0.25 
P <0.0001 
N = 1032 

-0.05 
P = 0.15 
N = 1032 

-0.02 
P = 0.65 
N = 898 

0.19 
P <0.0001 
N = 1032 

0.03 
P = 0.33 
N = 1032 

-0.10 
P = 0.002 
N = 1032 

-0.10 
P = 0.003 
N = 857 

-0.14 
P <0.0001 
N = 1032 

     

Monocytes 
-0.10 

P = 0.004 
N = 1032 

-0.01 
P = 0.66 
N = 1032 

0.02 
P = 0.50 
N = 898 

-0.05 
P = 0.08 
N = 1032 

0.12 
P  = 0.0001 
N = 1032 

0.03 
P = 0.33 
N = 1032 

-0.01 
P = 0.77 
N = 857 

-0.28 
P <0.0001 
N = 1032 

-0.18 
P <0.0001 
N = 1032 

    

Granulocytes 
-0.06 

P = 0.07 
N = 1032 

0.005 
P = 0.88 
N = 1032 

-0.01 
P = 0.87 
N = 898 

0.05 
P = 0.09 
N = 1032 

-0.04 
P = 0.23 
N = 1032 

0.03 
P = 0.30 
N = 1032 

0.06 
P = 0.10 
N = 857 

-0.50 
P <0.0001 
N = 1032 

-0.53 
P <0.0001 
N = 1032 

0.08 
P = 0.02 
N = 1032 

   

Plasma cells 
-0.13 

P <0.0001 
N = 1032 

-0.16 
P <0.0001 
N = 1032 

0.01 
P = 0.82 
N = 898 

0.10 
P = 0.001 
N = 1032 

0.05 
P = 0.14 
N = 1032 

-0.02 
P = 0.39 
N = 1032 

0.03 
P = 0.43 
N = 857 

-0.51 
P <0.0001 
N = 1032 

-0.24 
P <0.0001 
N = 1032 

0.29 
P <0.0001 
N = 1032 

0.61 
P <0.0001 
N = 1032 

  

CD8 cells 
0.19 

P <0.0001 
N = 1032 

-0.06 
P = 0.05 
N = 1032 

0.07 
P = 0.03 
N = 898 

0.27 
P <0.0001 
N = 1032 

0.03 
P = 0.31 
N = 1032 

0.04 
P = 0.21 
N = 1032 

-0.11 
P = 0.001 
N = 857 

-0.39 
P <0.0001 
N = 1032 

0.36 
P <0.0001 
N = 1032 

0.10 
P = 0.001 
N = 1032 

-0.004 
P = 0.90 
N = 1032 

0.21 
P <0.0001 
N = 1032 

 

 
naïve CD8 

cells 

-0.20 
P <0.0001 
N = 1032 

0.005 
P = 0.88 
N = 1032 

-0.10 
P = 0.004 
N = 898 

 

-0.20 
P <0.0001 
N = 1032 

-0.06 
P = 0.06 
N = 1032 

-0.07 
P = 0.02 
N = 1032 

0.05 
P = 0.13 
N = 857 

0.13 
P <0.0001 
N = 1032 

-0.19 
P <0.0001 
N = 1032 

-0.06 
P = 0.07 
N = 1032 

0.29 
P <0.0001 
N = 1032 

0.08 
P = 0.01 
N = 1032 

-0.44 
P <0.0001 
N = 1032 
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Table S4. 1-Year Particulate Matter 2.5 (PM2.5) and Black Carbon (BC) as Predictors of DNA 
Methylation (DNAm) Age in Models Adjusted for 450k Plate 

Particle (1 µg/m3) Difference in DNAm-age (95% CI) P N AIC 
PM2.5     
Model 1 0.36 (0.15, 0.58) 0.001 1032 6320.22 
Model 2 0.34 (0.12, 0.55) 0.003 1032 6334.26 
Model 3 0.33 (0.11, 0.55) 0.003 1032 6334.98 
Model 4 0.31 (0.09, 0.53) 0.006 1032 6337.17 
BC     
Model 1 2.03 (-0.30, 4.36) 0.09 898 5528.47 
Model 2 2.28 (-0.23, 4.79) 0.07 898 5541.63 
Model 3 2.16 (-0.36, 4.68) 0.09 898 5542.51 
Model 4 2.10 (-0.42, 4.62) 0.10 898 5543.39 
Two-Particle Model 1   898 5527.19 
PM2.5  0.33 (0.06, 0.60) 0.02   
BC 0.93 (-1.57, 3.43) 0.46   
Two-Particle Model 2   898 5541.51 
PM2.5  0.31 (0.02, 0.60) 0.04   
BC 0.93 (-1.90, 3.76) 0.52   
Two-Particle Model 3   898 5542.71 
PM2.5  0.30 (0.01,0.59) 0.04   
BC 0.88 (-1.95, 3.71) 0.54   
Two-Particle Model 4   898 5543.88 
PM2.5  0.29 (-0.01,0.58) 0.06   
BC 0.88 (-1.95, 3.71) 0.54   
     
Model 1: adjusted for chronological age, blood cell type, and 450k plate. 
 
Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season, BMI, 
alcohol consumption, and education. 
 
Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes. 
 
Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension. 
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Table S5. 1-Year Particulate Matter 2.5 (PM2.5) and Black Carbon (BC) as Predictors of DNA 
Methylation (DNAm) Age in Participants with Only One NAS Visit 

Particle (1 µg/m3) Difference in DNAm-age (95% CI) P N AIC 
PM2.5     
Model 1 0.29 (-0.32, 0.90) 0.36 237 1505.79 
Model 2 0.38 (-0.25, 1.01) 0.24 237 1509.82 
Model 3 0.38 (-0.25, 1.01) 0.24 237 1504.55 
Model 4 0.39 (-0.25, 1.02) 0.23 237 1510.27 
BC     
Model 1 0.31 (-3.60, 4.23) 0.88 239 1521.24 
Model 2 0.46 (-3.94, 4.87) 0.84 239 1525.69 
Model 3 0.76 (-3.59, 5.10) 0.73 239 1516.33 
Model 4 0.70 (-3.79, 5.19) 0.76 239 1524.62 
Two-Particle Model 1   239 1521.52 
PM2.5  0.52 (-0.26, 1.30) 0.19   
BC -0.52 (-4.68, 3.64) 0.80   
Two-Particle Model 2   239 1526.55 
PM2.5  0.42 (-0.39, 1.25) 0.30   
BC -0.32 (-5.05, 4.39) 0.89   
Two-Particle Model 3   239 1517.14 
PM2.5  0.44 (-0.36, 1.23) 0.28   
BC -0.04 (-4.62, 4.54) 0.99   
Two-Particle Model 4   239 1525.38 
PM2.5  0.45 (-0.37, 1.26) 0.28   
BC -0.12 (-4.80, 4.55) 0.96   
     
Model 1: adjusted for chronological age and blood cell type. 
 
Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season, BMI, 
alcohol consumption, and education. 
 
Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes. 
 
Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension. 
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Table S6. Seasonal Analysis of 1-Year Particulate Matter 2.5 (PM2.5) and Black Carbon (BC) as 
Predictors of DNA Methylation (DNAm) Age 

Particle (1 µg/m3) Difference in DNAm-age (95% CI) P N AIC 
PM2.5     
Spring 0.43 (-0.14, 1.00) 0.13 249 1560.31 
Summer 1.13 (0.54, 1.71) 0.002 245 1541.28 
Fall 0.63 (0.22, 1.03) 0.003 350 2287.70 
Winter 0.37 (-0.36, 1.09) 0.29 188 1184.74 
BC     
Spring 2.85 (-3.18, 8.88) 0.30 219 1387.22 
Summer 2.85 (-7.61, 13.31) 0.36 214 1361.99 
Fall 3.09 (-1.68, 7.87) 0.20 293 1930.10 
Winter 2.61 (-4.02, 9.24) 0.37 172 1077.01 
Two-Particle Spring   219 1386.70 
PM2.5  0.59 (-0.27, 1.45) 0.14   
BC 1.00 (-5.77, 7.76) 0.73   
Two-Particle Summer   214 1352.99 
PM2.5  1.06 (-2.82, 4.93) 0.18   
BC -0.11 (-32.11, 31.90) 0.97   
Two-Particle Fall   293 1928.58 
PM2.5  0.62 (-0.002, 1.24) 0.05   
BC 0.33 (-5.22, 5.87) 0.91   
Two-Particle Winter   172 1078.58 
PM2.5  0.25 (-0.81, 1.31) 0.57   
BC 1.68 (-6.42, 9.77) 0.62   
     
Models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, BMI, 
alcohol consumption, and education. 
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Table S7. Pearson Correlation of Change in Particle Exposure and Change in DNAm-age in 
Participants with Multiple Visits 

 Pearson Correlation Coefficient with Change in DNAm-age P N 
Change in 
Particle    
PM2.5 -0.07 0.19 352 
BC 0.08 0.17 296 
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668 Total Participants with DNA 
Methylation (DNAm) Age 

Eligible Participants 
N = 657 

N = 598 

N = 591 

Study Sample 
N = 589 

Participants with a Leukemia Diagnosis (N=11) 

Participants missing PM2.5 Levels (N=59) 

Participants missing Temperature (N=7) 

Participants missing other covariates (N=2) 

Figure S1 | Eligible and ineligible participants in NAS data (2000-2011).  
Figure 1 depicts the selection scheme utilized for arriving at the final study 
sample. 
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Appendix 2: Chapter 3 Supplementary Data 

 

 

 
  

Table S1. Pearson Correlations of Particulate Matter 2.5 (PM2.5) and Component 
Species Concentrations Across All Study Visits 

Particle (µg/m3) EC OC Sulfate Nitrate Ammonium 
OC 0.64     

Sulfate 0.38 0.46    
Nitrate 0.40 0.58 0.25   

Ammonium 0.43 0.49 0.43 0.45  
PM2.5 0.62 0.67 0.30 0.46 0.53 

      
All Pearson correlations were significant with P < 0.0001  
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Table S2. Mean 1-Year Particulate Matter 2.5 (PM2.5) and 
Component Species Concentrations Across First Study Visits 

Particle (µg/m3) Mean (SD) IQR   N 
PM2.5 10.9 (1.41) 1.68   552 

PM2.5 Component Species       
EC 0.61 (0.18) 0.21   552 
OC 3.24 (0.81) 1.00   552 
Sulfate 3.87 (1.16) 0.70   552 
Nitrate 1.19 (0.27) 0.36   552 
Ammonium 1.13 (0.26) 0.19   552 
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Table S3. 1-Year Particulate Matter 2.5 (PM2.5) and Component Species as Joint Predictors of DNA Methylation (DNAm) Age Following 
LASSO Selection not Accounting for Total PM2.5 

Particle Difference in Horvath DNAm-age 
for IQR (95% CI) P Difference in Hannum DNAm-age 

for IQR (95% CI) P N 

Model Framework 4         
PM2.5 -0.03 (-0.58, 0.52) 0.97 - - 940 
Sulfate 0.45 (0.21, 0.69) 0.0003 - - 940 
Ammonium 0.34 (0.002, 0.69) 0.05 - - 940 
OC 0.42 (-0.17, 1.02) 0.16 - - 940 
Model Framework 4: adjusted for chronological age, blood cell types, temperature, pack years, smoking status, season, BMI, alcohol 
consumption, and education. No species were selected as predictors of Hannum DNAm-age. 
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Table S4. Comparison of Estimated Coefficients of PM2.5 , Sulfate, and Ammonium in the Main Analysis and in the Sensitivity 
Analysis Where Study Visits with 1-Year PM2.5 Levels ≥ 12 µg/m3 were Excluded. 

 PM2.5  Sulfate  Ammonium 

Analysis 
(no. of 
Visits) 

Difference in 
DNAm-age 

for IQR (95% CI) P  

Difference in 
DNAm-age 

for IQR (95% CI) P  

Difference in 
DNAm-age  

for IQR (95% CI) P 

Main 
analysis  

(n = 940) 
0.18 (-0.30, 0.66) 0.45  0.51 (0.28, 0.74) <0.0001  0.36 (0.02, 0.70) 0.04 

Sensitivity 
analysis  

(n = 823) 
0.12 (-0.52, 0.75) 0.72  0.50 (0.25, 0.75) 0.0001  0.46 (0.06, 0.86) 0.02 

      
All models were fully adjusted.  



	 192 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table S5. Gene Ontology Results from Horvath CpGs Significantly Associated with 1-Year PM2.5 
Levels 

GO ID GO Term Genes 
 

FDR Adjusted P 
 

GO:0006446 regulation of translational initiation RXRA, EIF3M, EIF3I 0.005 
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Figure S1 | A) The relationship between BIC, a criterion for model selection and λ (lambda), 
the adaptive LASSO penalty parameter, for DNAm-age not adjusting for PM2.5.  The lowest 
BIC occurs at λ = 9. B) LASSO coefficient paths: plot of coefficient profiles for PM2.5 
components as a function of λ. The vertical line at λ = 9 denotes the penalty parameter with 
the lowest BIC. At λ = 9, organic carbon, sulfate, and ammonium are the only PM2.5 
components with a non-zero coefficient. Again, these models did not adjust for total PM2.5 
levels. 
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Appendix 3: Chapter 4 Supplementary Data 

 

Table S1. Candidate Pathway-Specific Genetic Variants 
Oxidative Stress 

rs number Gene Chromosome Variation Type 

rs2284367 CAT 11 A/G Intron 
rs1001179 CAT 11 A/G Promoter 
rs2300181 CAT 11 A/G Intron 
rs480575 CAT 11 C/T Intron 

- HMOX1 22 Short/Long* Promoter 
rs2071746 HMOX1 22 A/T Promoter 
rs5995098 HMOX1 22 C/G Intron 
rs2071749 HMOX1 22 A/G Intron 
rs2071747 HMOX1 22 C/G coding sequence nonsynonymous 
rs1800566 NQO1 16 C/T coding sequence nonsynonymous 

rs1695 GSTP1 11 A/G coding sequence nonsynonymous 
rs1799811 GSTP1 11 Ala/Val Exon 
rs2282679 GC 4 A/C Intron 
rs1155563 GC 4 C/T Intron 
rs2301022 GCLM 1 A/G Intron 
rs3170633 GCLM 1 A/G 3’end 
rs4147565 GSTM1 1 Deletion coding sequence nonsynonymous 

- GSTT1 22 Deletion coding sequence nonsynonymous 
Endothelial Function  

rs12944039 NOS2A 17 A/G Intron 
rs2297516 NOS2A 17 A/C Intron 
rs2072324 NOS2A 17 A/C Intron 
rs2248814 NOS2A 17 A/G Intron 
rs2255929 NOS2A 17 A/T Intron 
rs1137933 NOS2A 17 C/T coding sequence nonsynonymous 
rs1800779 NOS3 7 A/G Intron 
rs1799983 NOS3 7 G/T coding sequence nonsynonymous 
rs2010963 VEGFA 6 C/G 5’ Untranslated Region 

Metal Processing Genetic Polymorphisms 
rs224572 SLC11A2 12 A/G Intron 
rs422982 SLC11A2 12 A/T Intron 

rs12227734 SLC11A2 12 A/G Intron 
rs11837720 SLC11A2 12 C/G Intron 
rs1005559 SLC11A2 12 A/T Intron 
rs1049296 TF 3 C/T coding sequence nonsynonymous 
rs1799945 HFE 6 C/G Exon 
rs1800562 HFE 6 A/G Exon 
rs1800435 ALAD 9 C/G coding sequence nonsynonymous 

     
* Short corresponds to less than 25 GT-repeats (0: short/short, 1: short/long, 2: long/long) 
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Table S2. Pathway-Specific Genetic Variants Selected by the Elastic Net 
Oxidative Stress 

rs number Variation Type Direction of Model Coefficient 
rs2284367 A/G HT, HO +, - 
rs1001179 A/G WT, HO -, + 
rs2300181 A/G HT, HO +, - 
rs480575 C/T HT, HO -, + 

rs2071746 A/T WT, HT +, - 
rs5995098 C/G WT + 
rs2071749 A/G HT - 
rs2071747 C/G WT, HT +, - 
rs1800566 C/T WT, HO -, + 
rs1799811 Ala/Val HT, HO -, + 
rs2282679 A/C WT, HO +, - 
rs2301022 A/G HO + 
rs3170633 A/G WT, HO -, + 

Endothelial Function 
rs2248814 A/G HO - 
rs1137933 C/T WT - 
rs1800779 A/G HT - 

    
WT = Wildtype. HT = Heterozygous for polymorphism. HO = Homozygous for 
polymorphism. 
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Table S3. Difference in DNA-age per an IQR Increase in 1-Year Particle Level by Variant Score   

Particle Model  Oxidative Stress  
Cohort (N = 702) 

 Endothelial Function  
Cohort (N = 779) 

         

 
 Difference in DNAm-age for 

IQR (95% CI) 
P for 

Interaction N  Difference in DNAm-age 
for IQR (95% CI) 

P for 
Interaction N 

Model 1         
PM2.5*Variant Score   0.08    0.52  

Low (<  median)  0.20 (-0.40, 0.80)  215  0.14 (-0.44, 0.72)  277 
High (≥ median  -0.64 (-1.50, 0.20)  487  0.41 (-0.32, 1.14)  502 

         
Model 2         
Sulfate*Variant Score   0.66    0.0007  

Low (<  median)  0.57 (0.28, 0.85)  215  0.40 (0.14, 0.67)  277 
High (≥ median  0.47 (0.05, 0.90)  487  1.09 (0.70, 1.48)  502 

         
Model 3         
Ammonium*Variant Score   0.17    0.03  

Low (<  median)  0.56 (0.13, 0.98)  215  0.05 (-0.33, 0.42)  277 
High (≥ median  0.18 (-0.26, 0.63)  487  0.64 (0.18, 1.11)  502 

         
All models are adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI, alcohol consumption, education, 
lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease.  Model 1: Includes an interaction for PM2.5 and variant score. Model 2:  Includes 
an interaction for sulfate and variant score and is additionally adjusted for PM2.5.  Model 3:  Includes an interaction for ammonium and variant score and is 
additionally adjusted for PM2.5. 
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Table S4. Pearson Correlations of DNAm-age and Serum Endothelial Function Markers  

 DNAm-age Age ICAM VCAM 
 

Age 
 

r = 0.64 
P < 0.0001    

 
ICAM 

 

r = 0.13 
P = 0.0001 

r = 0.05 
P = 0.19   

 
VCAM 

 

r = 0.25 
P < 0.0001 

r = 0.27 
P < 0.0001 

r = 0.42 
P < 0.0001  

 
VEGF 

 

r = 0.02 
P = 0.54 

r = -0.005 
P = 0.90 

r = -0.01 
P = 0.57 

r = 0.02 
P = 0.63 
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Figure S1 | Difference in Serum ICAM (ng/mL) for one interquartile range increase in 
1-year particle exposure according to endothelial function score (low versus high) in 
the fully-adjusted linear mixed effects model. 
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Figure S2 | Difference in Serum VCAM (ng/mL) for one interquartile range increase 
in 1-year particle exposure according to endothelial function score (low versus high) 
in the fully-adjusted linear mixed effects model. 
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Appendix 4: Chapter 5 Supplementary Data 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S1. Individual Mitochondrial Haplogroups of Study Subjects 
(2000 – 2011) 

Mitochondrial Haplogroup, N (%) All Visits, N = 870 
J 77 (9) 
T 69 (8) 
V 369 (42) 
H 78 (9) 
U 99 (11) 
K 101 (12) 
I 31 (4) 

W 20 (2) 
X 26 (3) 
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Table S2. Relationships of Mitochondrial Copy Number with Age and DNAm-age (N=797) – 
Sensitivity Analysis 

Outcome Difference in Outcome for 
IQR (95% CI) P 

Age 0.49 (-0.31, 1.29) 0.23 
DNAm-age -3.23 (-4.55, -1.92) <0.0001 

   
All models adjusted for mitochondrial haplogroup, PM2.5, sulfate, ammonium, blood cell type, 
temperature, pack years, smoking status, season, BMI (continuous), alcohol consumption, education, 
lifetime cancer diagnosis, systolic blood pressure, diastolic blood pressure, fasting blood glucose, total 
cholesterol and HDL cholesterol. DNAm-age model is also adjusted for  chronological age. 
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Table S3. Estimated Difference in Mitochondrial DNA Copy Number for a One-Year Increase in 
DNA Methylation Age at the Previous Visit  (N = 316) 

Model Difference in Copy Number 
(95% CI) P 

1 -0.005 (-0.013, 0.002) 0.16 
2 -0.004 (-0.011, 0.003) 0.29 

   
Model 1 is fully-adjusted for chronological age, blood cell type, temperature, pack years, smoking 
status, PM2.5, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, 
diabetes, and coronary heart disease. Model 2 adjusts for the same covariates as Model 1 in addition to 
the previous visit’s mitochondrial DNA copy number. 
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Table S4. Mediation Analysis of Mitochondrial DNA Copy Number as a Mediator of the Relationship of PM2.5 with DNAm-age 
(N=797) 

Steps Variable 
 

β (95% CI) 
 

SE t P Sobel Z Pmediation 
% of Effect 
Mediated by 

Mediator 
Step 1         

Outcome DNAm-age - - - - - - - 
Predictor PM2.5 0.70 (0.20, 1.20) 0.25 2.78 0.006 - - - 

Step 2         

Outcome Copy Number - - - - - - - 
Predictor PM2.5 -0.03 (-0.05, -0.002) 0.01 -2.11 0.04 - - - 

Step 3         
Outcome DNAm-age - - - - - - - 
Mediator Copy Number -3.41 (-4.74, -2.09) 0.67 -5.07 <0.001 - - - 
Predictor PM2.5 0.59 (0.10, 1.08) 0.25 2.38 0.02 2.26 0.02 13.6 

         
All steps use fully-adjusted models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI, 
alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease.  



 204 

 

Table S5. Mediation Analysis of Mitochondrial DNA Copy Number as a Mediator of the Relationship of PM2.5 with DNAm-age 
(N=797) – Continuous Disease Variables 

Steps Variable 
 

β (95% CI) 
 

SE t P Sobel Z Pmediation 
% of Effect 
Mediated by 

Mediator 
Step 1         

Outcome DNAm-age - - - - - - - 
Predictor PM2.5 0.70 (0.19, 1.20) 0.26 2.72 0.007 - - - 

Step 2         

Outcome Copy Number - - - - - - - 
Predictor PM2.5 -0.03 (-0.05, -0.002) 0.01 -2.12 0.03 - - - 

Step 3         
Outcome DNAm-age - - - - - - - 
Mediator Copy Number -3.48 (-4.80, -2.15) 0.67 -5.15 <0.001 - - - 
Predictor PM2.5 0.59 (0.09, 1.09) 0.25 2.33 0.02 2.69 0.01 13.9 

         
All steps use fully-adjusted models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI, 
alcohol consumption, education, lifetime cancer diagnosis, systolic blood pressure, diastolic blood pressure, fasting blood glucose, total 
cholesterol, and HDL cholesterol.  
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Table S6. Mitochondrial Haplogroup Clusters as Independent Predictors of Mitochondrial DNA 
Copy Number (N = 797) 

Haplogroup Cluster Difference in DNAm-age for 
IQR (95% CI) P 

1 (JT) 0.03 (-0.03, 0.08) 0.34 
2 (VH) -0.04 (-0.08, 0.001) 0.06 
3 (UK) 0.06 (0.01,  0.11) 0.02 

4 (IWX) -0.05 (-0.12, 0.02) 0.19 
   

All models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, 
PM2.5, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes, 
and coronary heart disease. 
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Figure S1 | Difference in DNAm-age for one interquartile range increase in one-year 
sulfate and ammonium exposure comparing participants with and without the V 
mitochondrial haplogroup in fully-adjusted models mixed-effects models additionally 
adjusted for nitrate exposure. 
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Figure S2 | Difference in DNAm-age for a one-unit increase in mitochondrial DNA 
copy number comparing participants with and without the V mitochondrial 
haplogroup in the fully-adjusted mixed-effects model. 
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Appendix 5: Chapter 6 Supplementary Data 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table S1. Pearson Correlations and Proportion of Particulate Matter 2.5 (PM2.5) Mass of 
PM2.5  Component Species Concentrations Across All Study Visits 

Particle (µg/m3) Sulfate Ammonium  
Ammonium 0.42     
PM2.5 Mass 0.30 0.51  

      

Proportion of PM2.5 Mass 33.2% 10.2%  

      
All Pearson correlations were significant with P < 0.0001  
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Table S2. MicroRNA Processing Gene Single Nucleotide Polymorphisms (SNPs) (N=808) 

rs number Gene Chromosome Major / Minor 
Variant 

Participants 
Homozygous Major 

Variant, N (%) 
rs4961280y AGO2 8 C/A 526 (65) 
rs197412 DDX20 1 T/C 321 (40) 

rs3757 DGCR8 22 G/A 439 (54) 
rs1640299 DGCR8 22 G/T 233 (29) 

rs13078 DICER1 14 T/A 540 (67) 
rs6877842y DROSHA 5 G/C 551 (68) 

rs7813 GEMIN4 17 C/T 258 (32) 
rs910924y GEMIN4 17 C/T 403 (50) 
rs910925 GEMIN4 17 C/G 258 (32) 

rs1062923 GEMIN4 17 T/C 510 (63) 
rs4968104 GEMIN4 17 T/A 417 (52) 
rs784567y TARBP2 12 C/T 189 (23) 
rs14035 RAN 12 C/T 401 (50) 
rs11077 XPO5 6 A/C 322 (40) 

     
Note. ySNPs selected in DNAm-age Elastic net 
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Table S3. Mean One-Year Fine Particle (PM2.5 less ammonium) Concentrations and MicroRNA 
Processing Gene Single Nucleotide Polymorphisms (SNPs) as Joint Predictors of DNAm-age (N = 
808) 

Predictor Difference in DNAm-age 
for IQR (95% CI) P 

PM2.5 (less Ammonium) 0.51 (0.06, 0.97) 0.03 
Elastic Net Selected miRNA SNPsa   

rs4961280 (AGO2) -1.13 (-2.26, -0.004) 0.05 
rs6877842 (DROSHA) -0.78 (-1.93, 0.37) 0.18 

rs910924 (GEMIN4) -0.42 (-1.48, 0.64) 0.43 
rs784567 (TARBP2) -1.32 (-2.58, -0.05) 0.04 

   
Note. Model adjusted for chronological age, blood cell type, temperature, pack years, smoking status, 
season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes, and 
ischemic heart disease.  aValues for the miRNA processing SNPs are in reference to participants whose 
genotypes are homozygous for the major variant. Bold text specifies statistically significant P values 
(<0.05). 
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Table S4. Genemania Curated Gene Interactions  
Type of Interaction Genes Related 

to AGO2 
Genes Related 
to DROSHA 

Genes Related 
to GEMIN4 

Genes Related to 
TARBP2 

Physical Interactions     

 IPO8  LGALS1  
Co-Expression     
 FXN A1BG A1BG BASP1 
 IER2 C2orf60 AGBL5 CIB2 
 PUM3 CCNF ALOX12 DDAH2 
 NOP2 CSPG5 BAZ2A DDR1 
 NRAS DPP8 NRDE2 GRWD1 
 PAPOLG HCRTR1 DEPDC1 LRRC61 
 PLK1 MGC29506 EIF3I MLLT6 
 PRPF8 MN1 ELAC2 MPI 
 TIPARP MRPS21 ENPP2 MRPL38 
  NR2F2 FAM3C MYOZ1 
  PAPOLG GRIN2C NDUFA3 
  PTPRK GRWD1 NDUFS5 
  SLC14A1 IER2 SCAP 
  SSRP1 KCTD9 SSRP1 
  UCKL1 KIAA0020 TNP1 
  USP10 MPI  
  WFS1 MPP6  
  ZMYND15 NAE1  
  ZMYND8 NOP2  
   PLK1  
   PRPF8  
   SDC2  
   ZBTB5  
     
Genetic Interactions     
 ABCA3 AFF1 EVA1C ALKBH3 
 ACOT11 CD164 DST ARSG 
 ALOX12 DPP8 IER2 C7orf55 
 APOA1BP DST KHDRBS2 CYFIP1 
 BCCIP EPHX2 MGP DOLPP1 
 C10orf35 ERG SDC2 ERG 
 CDH1 GJD4 SEC61G FES 
 CHAF1B KPNA1 SLC20A2 KLF2 
 CHI3L2 LAMA3 TNP1 MAP3K5 
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Table S4. Genemania Curated Gene Interactions (Continued) 

 CRADD LHCGR  MAPKAP1 
 DGKI MIB1  PAPOLG 
 DPP8 NAT10  RASSF4 
 DST PDCD6IP  RFC3 
 FAM50B PPP1R16B  THUMPD3 
 GALC RBPMS  TXNDC15 
 GAP43 RSPRY1  USP10 
 GLB1 TIPARP  ZNF804B 
 GPR68 TOM1L1   
 GRIA2 WFS1   
 IL6ST ZHX1   
 KCNC4    
 KLHL35    
 MPP6    
 NAA60    
 NR2F2    
 PAPOLG    
 POMC    
 RAPGEF1    
 REEP1    
 RSPRY1    
 SGCE    
 SLC9A3R2    
 SNRPB2    
 ST3GAL4    
 SYNE1    
 TIPARP    
 TNP1    
 USP10    

 ZBTB16    
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Figure S1 | Difference in DNAm-age according to AGO2 and TARBP2 genotypes in fully-
adjusted linear mixed-effects models. AGO2 genotype observation counts: homozygous 
major variant (N=526), heterozygous (N=257), and homozygous minor variant (N=25). 
TARBP2 genotype observation counts: homozygous major variant (N=189), heterozygous 
(N=434), and homozygous minor variant (N=185). *P value for the test of linear trend 
across genotypes was based on a linear mixed-effects regression model where the three 
genotypes for each gene were fit as a continuous measure.   



	

	
214 

 
 

 

 
 
 
 

 
 
 

 
 
 

 

 

 

 

 

 

−−−−−−−−−−−−
AGO2

Major Allele
Homozygous

REF
−−−−−−−−−−−−

−−−−−−−−−−−−
AGO2

Heterozygous
p = 0.01

−−−−−−−−−−−−

−−−−−−−−−−−−
AGO2

Minor Allele
Homozygous
p = 0.38

−−−−−−−−−−−−

P for trend = 0.01*

−10

−5

0

5

Di
ffe
re
nc
e 
in
 D
NA

m
−a
ge
 (i
n 
ye
ar
s)

fo
r a
n 
IQ
R 
In
cr
ea
se
 in
 1
−Y
ea
r

PM
2.
5 
(L
es
s 
Am

m
on
iu
m
) C

on
ce
nt
ra
tio
n

Figure S2 | Difference in DNAm-age for one interquartile range increase in one-year PM2.5 
(without the ammonium component) levels comparing participants of homozygous major 
variant (N=526), heterozygous (N=257), and homozygous minor variant genotypes (N=25) 
for AGO2 in fully-adjusted linear mixed effects models. *P value for the test of linear trend 
across genotypes was based on a linear mixed-effects regression model where the three 
AGO2 genotypes were fit as a continuous measure.   
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