

Ruckus Networks SmartZone 144 (SZ-144) and SmartZone 300 (SZ-300) WLAN Controllers

FIPS 140-2 Level 1 Non-Proprietary Security Policy by CommScope Technologies LLC.

Firmware Version: 5.2.1.3

Documentation Version Number: 1.1

July 13, 2021

Table of Contents

1. MODULE OVERVIEW	3
2. MODES OF OPERATION	5
2.1 APPROVED CRYPTOGRAPHIC ALGORITHMS	5
2.2 Non-FIPS Approved but Allowed Cryptographic Algorithms	
2.3 NON-FIPS APPROVED CRYPTOGRAPHIC ALGORITHMS	7
3. PORTS AND INTERFACES	8
4. ROLES, SERVICES, AND AUTHENTICATION	9
5. OPERATIONAL ENVIRONMENT	10
6. CRYPTOGRAPHIC KEYS AND CSPS	10
7. SELF-TESTS	15
8. PHYSICAL SECURITY	15
9. PROCEDURAL RULES	15
9.1 Module Initialization	16
10. REFERENCES	17
List of Tables	
Table 1: Configurations	3
TABLE 2: MODULE SECURITY LEVELS	3
TABLE 3: APPROVED CRYPTOGRAPHIC ALGORITHMS.	5
TABLE 4: NON-FIPS APPROVED BUT ALLOWED CRYPTOGRAPHIC ALGORITHMS	
TABLE 5: ALGORITHMS/SERVICES AVAILABLE IN THE NON-APPROVED MODE	
Table 6: SZ144 Ports and Interfaces	
TABLE 7: SZ300 PORTS AND INTERFACES	
Table 8: Approved Mode Roles and Services	
Table 9: Cryptographic Keys and CSPs	
TABLE 10: POWER-UP SELF-TESTS	
TABLE 12: REFERENCES	
List of Figures	
8	
FIGURE 1: ENCRYPTION BETWEEN AP AND CONTROLLER	
FIGURE 2: SMARTZONE 144 FRONT AND REAR VIEW	
FIGURE 4: \$7300 Prop View	

1. Module Overview

SmartZone 144 (SZ-144) is scalable, resilient, and high performing wireless LAN controllers within the Ruckus family of WLAN controllers. They manage up to 1,024 ZoneFlex Smart Wi-Fi access points, 2,000 WLANs, and 25,000 clients per device.

The SmartZone 300 (SZ-300) Flagship Large Scale WLAN Controller is designed for Service Provider and Large Enterprises, which prefer to use appliances. The Carrier Grade platform supports comprehensive integrated management functionality, high performance operations and flexibility to address many different implementation scenarios. The SZ-300 supports up to 10,000 AP and 100,000 Clients per unit.

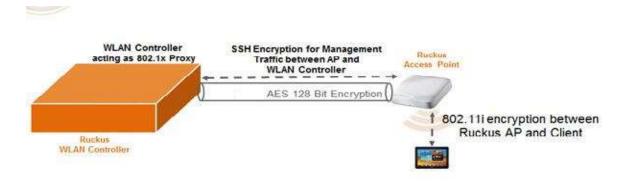


Figure 1: Encryption between AP and Controller

FIPS 140-2 conformance testing was performed at Security Level 1. The following configurations were tested by the lab.

Table 1: Configurations

Module Name and Version	HW P/N and Revision	Firmware version
SmartZone 144	PF1-S144-US00, RevA	5.2.1.3
SmartZone 300	PF1-S300-WW00, RevA	5.2.1.3
	PF1-S300-WW10, RevA	5.2.1.3

The Cryptographic Module meets FIPS 140-2 Level 1 requirements.

Table 2: Module Security Levels

FIPS Security Area	Security Level
Cryptographic Module Specification	1
Module Ports and Interfaces	1
Roles, Services and Authentication	2
Finite State Model	1
Physical Security	1
Operational Environment	N/A
Cryptographic Key Management	1
EMI/EMC	1
Self-tests	1
Design Assurance	2
Mitigation of Other Attacks	N/A

The cryptographic module is a multi-chip standalone module. The cryptographic boundary of the module is the enclosure that contains components of the module. The enclosure of the cryptographic module is opaque within the visible spectrum.

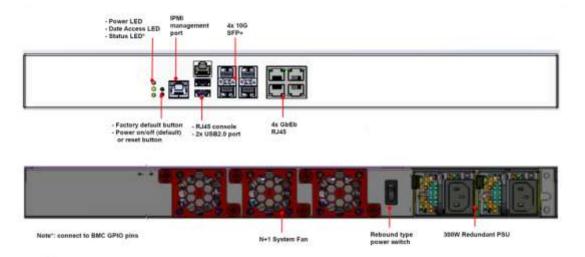


Figure 2: SmartZone 144 Front and Rear View

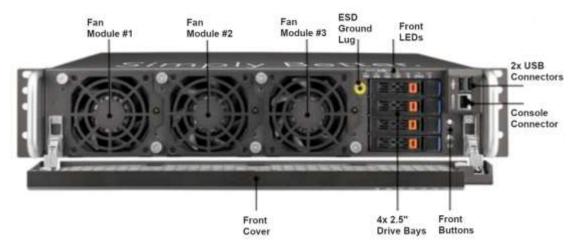


Figure 3: SZ300 Front View

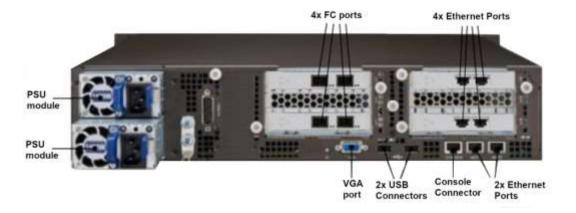


Figure 4: SZ300 Rear View

2. Modes of Operation

The module is intended to always operate in the FIPS approved mode. However, a provision is made to disable/enable FIPS mode via configuration (Login CLI -> enabled mode -> fips enable/disable). In addition to run the fips enable command, an operator must ensure to follow the procedural rules specified in Section 9 to remain in the Approved mode.

2.1 Approved Cryptographic Algorithms

The following approved cryptographic algorithms are used in FIPS approved mode of operation. Note that in some cases, more algorithms/modes of operation have been tested than are utilized by the Module.

Table 3: Approved Cryptographic Algorithms

CAVP Cert	Algorithm	Standard	Model/Method	Use			
Ruckus Sma	Ruckus SmartZone Crypto – Kernel Algorithm Implementation						
C2077	AES	FIPS 197, SP 800-38A	CBC (128, 192, 256 bits)	Data Encryption/Decryption			
C2077	НМАС	FIPS 198-1	HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-384 HMAC-SHA-512	Message Authentication			
C2077	SHA	FIPS 180-4	SHA-1 SHA-256 SHA-384 SHA-512	Message Digest			
Ruckus Sma	rtZone Crypto	- OpenSSL/OpenSS	SH Algorithm Implementation				
C2082	AES	FIPS 197, SP 800-38A, SP 800-38D	CBC, CFB128, CTR, GCM (128, 192, 256 bits)	Data Encryption/Decryption			
Vendor affirmed	CKG	SP 800-133	N/A	Key Generation			
C2082	CVL	SP 800-135 KDF	SSHv2 TLSv1.2, IKEv2, SNMPv3	Key Derivation			
C2082	CVL	SP 800-56A	ECC CDH - Curves: P-256/384/521	Key Agreement			
C2082	DRBG	SP 800-90A	CTR_DRBG (AES-256)	Deterministic Random Bit Generation			
C2082	ECDSA	FIPS 186-4	Key Generation: - Curves: P-256/384/521 SigGen/SigVer: - Curves: P-256/384/521 with SHA-256/384/512	Key Generation, Digital Signature Generation and Verification			

CAVP Cert	Algorithm	Standard	Model/Method	Use	
C2082	НМАС	FIPS 198-1	HMAC-SHA1 HMAC-SHA256 HMAC-SHA384 HMAC-SHA512	Message Authentication	
C2082	KTS	SP 800-38F	AES (128, 192, 256 bits) with HMAC-SHA-1/256/384/512	Key Transport	
C2082	KTS	SP 800-38F	AES-GCM (128, 256 bits)	Key Transport	
C2082	RSA	FIPS 186-2 FIPS 186-4 Note: only FIPS 186-2 RSA 4096 bits was used in FIPS mode	FIPS 186-4 RSA Key Generation: - Key Generation Mode: B.3.3 - 2048/3072-bits FIPS 186-4 RSA SigGen/SigVer: - PKCSv1.5 - 2048/3072-bits with SHA-256/384/512 FIPS 186-2 RSA SigVer: - PKCSv1.5 - 4096-bits with SHA-1/256/384/512	Key Generation, Digital Signature Generation and Verification	
C2082	SHS	FIPS 180-4	SHA1 SHA-256 SHA-384 SHA-512	Message Digest	

Notes:

- There are some algorithm modes that were tested but not used by the module. Only the algorithms, modes, and key sizes that are implemented by the module are shown in this table.
- The module's AES-GCM implementation conforms to IG A.5 scenario #1 following RFC 5288 for TLS and RFCs 4252, 4253 and RFC 5647 for SSHv2. The module is compatible with TLSv1.2 and provides support for the acceptable GCM cipher suites from SP 800-52 Rev1, Section 3.3.1. The operations of one of the two parties involved in the TLS key establishment scheme were performed entirely within the cryptographic boundary of the module being validated. The counter portion of the IV is set by the module within its cryptographic boundary. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, to encounter this condition will trigger a handshake to establish a new encryption key. In case the module's power is lost and then restored, a new key for use with the AES GCM encryption/decryption shall be established. The module is also compatible with SSHv2 and provides support for the acceptable GCM cipher suites from Section 7.1 of RFC 5647. The IV consist of a 4-byte fixed field and an 8-byte invocation counter. If the invocation counter reaches its maximum value 2^64 - 1, the next AES GCM encryption is performed with the invocation counter set to 0. No more than 2^64 – 1 AES GCM encryptions may be performed in the same session. The SSH session is reset for both the client/server after one GB of data (2^23 block encryptions) or one hour whichever comes first. When a session is terminated for any reason, a new key and a new initial IV are derived.

- No parts of the SSH, TLS, SNMP and IPsec protocols, other than the KDFs, have been tested by the CAVP and CMVP.
- In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation as per scenario 1 of section 5 in SP800-133. The resulting generated seed used in the asymmetric key generation is the unmodified output from SP800-90A DRBG.

2.2 Non-FIPS Approved but Allowed Cryptographic Algorithms

The following non-FIPS approved but allowed algorithms are used in the FIPS approved mode of operation.

Table 4: Non-FIPS Approved but Allowed Cryptographic Algorithms

Algorithm	Caveat	Use
	=	Used during TLSv1.2 handshake and SSHv2 session establishment
#C2082, key agreement)		Used during SSHv2, IKEv2/IPsec and TLSv1.2 handshake.
NDRNG	N/A	Used to seed the SP 800-90A DRBG.

2.3 Non-FIPS Approved Cryptographic Algorithms

The following non-FIPS approved cryptographic algorithms are used only in the non-Approved mode of operation.

Table 5: Algorithms/Services Available in the Non-Approved Mode

Algorithm	Use
chacha20-poly1305, umac-64, hmac-sha1-etm, umac-64-etm, umac-128-etm, hmac-sha2-256-etm, hmac-sha2-512-etm, hmac-ripemd160-etm, umac-64, umac-128, hmac-ripemd160, DSA, ED25519	OpenSSH
MD5, DES	SNMP
MD5, DES	OpenSSL
TDES	

Note

- In addition to the FIPS mode of operation, the cryptographic module can also be operated in a non-FIPS mode of operation. Table 5 lists the non-approved/non-allowed the algorithms and services are available to both the User role and CO role in the module. Prior to using any of the Non-Approved services with the associated non-approved/non-allowed algorithms listed in Table 5 above, the Crypto Officer must zeroize all CSPs, which would put the module into the non-FIPS mode of operation.
- Neither the User nor the Crypto Officer are allowed to operate any of these services listed in table 5 above while in FIPS mode of operation.

- To put the module back into the FIPS mode from the non-FIPS mode, the CO must zeroize all Keys/CSPs used in non-FIPS mode, and then strictly follow up the steps in section 9 of this document to put the module into the FIPS mode.
- In addition, all available services supported by the module can be found at RUCKUS FIPS and Common Criteria Configuration Guide for SmartZone and AP, 5.2.1.3, Published on 2021-04-14 with the documentation Part Number 800-72735-001 RevA, https://support.ruckuswireless.com/documents/3509.

3. Ports and Interfaces

The following tables describe physical ports and logical interfaces of the modules.

SmartZone 144

Table 6: SZ144 Ports and Interfaces

Physical Port Name	Count	Logical Interface(s)		
Ethernet Ports: 4x 1GbE 4x 10GbE	8	Data Input, Data Output, Control Input, Status Output		
Console Port	1	Data Input, Data Output, Control Input, Status Output		
USB Port	2	Not used (Disabled in factory)		
Power Receptacle	Up to 2	Power Supply		
Reset Buttons 1x Front 1x Rear	2	Control Input		
F/D Button (Reset to factory default)	1	Control Input		
LEDs		Status Output		

SmartZone 300

Table 7: SZ300 Ports and Interfaces

Port Name	Count	Interface(s)	
Ethernet Ports: 6x 1GbE ports 4x 10GbE ports	10	Data Input, Data Output, Control Input, Status Output	
USB Port	4	Not used (Disabled in factory)	
Power Receptacle	2	Power Supply	
Reset Button	1	Control Input	
LEDs		Status Output	
VGA Port	1	Data Output, Status Output	
Alarm Port	1	Not Used	
Console Ports	2	Data Input, Data Output, Control Input, Status Output	

4. Roles, Services, and Authentication

The module supports role-based authentication mechanism. Each role is authenticated by the module upon initial access to the module. There are three roles supported by the module: Crypto Officer role, User role and AP (Access Point) role. The Crypto Officer installs and administers the module. The Users and APs use the cryptographic services provided by the module.

The User role or Crypto Officer role password as well as all other shared secrets must each be at least eight (8) characters long, including at least one alphabet, one numeric character, one special character (note: The special character `cannot be used in the password and the special characters combination '\$(' cannot be used in the password). Given these restrictions, we have $52 \times 10 \times 31 \times 93 ^5 = 112,144,965,131,160$ password combinations. If the '\$(' combination was chosen in the password, then it would have $1 \times 52 \times 10 \times 93^4 = 38,898,704,520$ combinations, resulting the final correct password combinations are 112,144,965,131,160 - 38,898,704,520 = 112,106,066,426,640. Thus, the probability of a successful random attempt is approximately is one (1) in 112,106,066,426,640, which is less than the 1 in 1,000,000 required by FIPS 140-2. This calculation is based on the assumption that the typical standard American QWERTY computer keyboard has 10×1000 lnteger digits, 1000 alphabetic characters, and 1000 as special characters providing 1000 characters to choose from in total.

In addition, for multiple attempts to use the authentication mechanism during a one-minute period, under the optimal modern network condition, if an attacker would only get 60,000 guesses per minute. Therefore, the associated probability of a successful random attempt during a one-minute period is 60,000/112,106,066,426,640 = 1/1,868,434,440, which is less than 1 in 100,000 required by FIPS 140-2.

Additionally, when using RSA based authentication (AP Role), RSA key pair has modulus size of 3072 bits, thus providing 128 bits of strength, which means an attacker would have a 1 in 2^128 chance of randomly obtaining the key, which is much stronger than the one in a million chances required by FIPS 140-2. To exceed a one in 100,000 probability of a successful random key guess in one minute, an attacker would have to be capable of approximately $2.04x10^40$ ($2^128/60 = 2.04x10^40$) attempts per second, which far exceeds the operational capabilities of the module to support.

Table 8 below lists the complete services and the associated types of access to the Keys/CSPs access supported by each role.

Table 8: Approved Mode Roles and Services

Service	Corresponding Roles	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
Reboot/Self-test	Crypto Officer User	All (not including instances in NVRAM Storage): Z
Zeroization	Crypto Officer	All: Z
Firmware update	Crypto Officer	Firmware update key: R
Show status	Crypto Officer User AP	N/A
Login	Crypto Officer User	Password: R SSHv2 Keys: R, W TLSv1.2 Keys: R, W DRBG related Keys: R, W
SSHv2 Functions	Crypto Officer User AP	Password: R, W SSHv2 Keys: R, W DRBG related Keys: R, W

Configuration	Crypto Officer	Password: R, W
		SSHv2 Keys: R, W
		TLSv1.2 Keys: R, W
		DRBG related Keys: R, W
RadSec (RADIUS over TLSv1.2)	AP	TLSv1.2 Keys: R, W
		DRBG related Keys: R, W
		Radius Secret: R, W
NTP	Crypto Officer	NTP Keys: R, W
HTTPS/TLSv1.2 Functions	Crypto Officer	TLSv1.2 Keys: R, W
	User	DRBG related Keys: R, W
	AP	
	Crypto Officer	IPsec/IKEv2 Keys: R, W
IPsec/IKEv2 Functions	AP	DRBG related Keys
	AP	SSHv2 Keys: R, W
EAP authenticator		DRBG related Keys: R, W
(EAP-TLS, EAP-TTLS, EAP-PEAP)		TLSv2 Keys: R, W
SNMPv3 Functions	Crypto Officer	Password: R, W
	User	SNMPv3 Keys: R, W
FIPS mode enable/disable	Crypto Officer	ALL: Z

Notes:

- 1. Crypto Officer is the only role to conduct the firmware update service. Prior to the firmware update operation, the module shall perform the firmware load test by verifying the signature of the updated firmware image. Please note that the updated firmware shall be validated by CMVP prior to loading to maintain validation. For firmware load test, please refer to section 7 in this document.
- 2. For the services and algorithms supported by the module while in non-approved mode of operation, please refer to section 2.3 in this document for more information.

Unauthenticated Services

The module also supports the unauthenticated services, including the view to the status output from the module's LED, the reset to the module and the cycling to the power.

5. Operational Environment

The module is a hardware module. The module's operating system is nonmodifiable operating system. Thus, the requirements from FIPS 140-2, section 4.6.1, are not applicable to the module.

6. Cryptographic Keys and CSPs

The entropy source (NDRNG) within the module provides at least 256 bits of entropy to seed SP800-90a DRBG for use in key generation. The table below describes cryptographic keys and CSPs used by the module.

Table 9: Cryptographic Keys and CSPs

			oog apino no yo ama oo o		
Name	CSP Type	Size	Description/Usage	Storage	Zeroization
DRBG Entropy	SP800-90A	384-bits	This is the entropy for SP 800-	DRAM	Power cycle
Input	CTR_DRBG		90A CTR_DRBG, used to	(plaintext)	the device
	(AES-256)		construct the seed.		
DRBG Seed	SP800-90A	384-bits	Input to the DRBG that	DRAM	Power cycle
	CTR_DRBG		determines the internal state of	(plaintext)	the device
	(AES-256)		the DRBG. Generated using		
			DRBG derivation function that		

	CSP Type	Size	Description/Usage	Storage	Zeroization
			includes the entropy input from		
			the entropy source.		
DRBG V	SP800-90A	128-bits	The DRBG V is one of the	DRAM	Power cycle
	CTR_DRBG		critical values of the internal	(plaintext)	the device
	(AES-256)		state upon which the security		
			of this DRBG mechanism		
			depends. Generated during		
			DRBG instantiation and then		
			subsequently updated using		
			the DRBG update function.		
DRBG Key	SP800-90A	256-bits	Internal critical value used as	DRAM	Power cycle
,	CTR_DRBG		part of SP 800-90A CTR DRBG.	(plaintext)	the device
	(AES-256)		Established per SP 800-90A	(1-1-1-1)	
	(======		CTR_DRBG.		
User Password	Password	At least eight	Password used to authenticate	NVRAM	Procedurally
O3CI I d33WOI'd	1 433 WOT 4	characters	the User (at least eight (8)	(cyphertext)	erase the
		characters	characters).	(cypricitext)	password
Crupto Officer	Password	At least eight	Password used to authenticate	NVRAM	•
Crypto Officer Password	Password	At least eight			Procedurally
Passworu		characters	the Crypto Officer (at least	(cyphertext)	erase the
		100011	eight (8) characters)		password
Firmware Upgrade	RSA (FIPS 186-2)	4096-bits	RSA public key used to verify	NVRAM	Zeroized by
Verification Key			the signature for Firmware	(plaintext)	erasing the
			Upgrade/Load Test. The key		firmware
			was pre-installed on the system		image
			for signature verification. Note		
			that the public key is a		
			cryptographic key, but not		
			considered as CSP.		
Firmware Integrity	RSA (FIPS 186-2)	4096-bits	RSA public key used to verify	NVRAM	Zeroized by
Test Key	,		the signature for Firmware	(plaintext)	erasing the
,			Integrity Test. The key was pre-	(1-1-1-1)	firmware
			installed on the system for		image
			signature verification. Note		iiiage
			that the public key is a		
			cryptographic key, but not		
			considered as CSP.		
NTP Secret	Shared Secret	40 abauaataua		NVRAM	Due ee dowello
NTP Secret	Shared Secret	40-characters	Used to authenticate with the		Procedurally
			NTP server (40 characters in	(plaintext)	erase the
			Approved mode, no restriction		shared secret
			in non-Approved mode). The		
			key is configured by user.		
RADIUS Secret	Shared Secret	At least 8	Used to authenticate with the	NVRAM	Procedurally
		characters	RadSec server (at least eight (8)	(plaintext)	erase the
			characters). The key is		shared secret
			configured by the Crypto		
			Officer.		
TLSv1.2 Protocol K	(evs and CSPs				
		2072 hita/D 204	DH or ECDII asinota harring dis	DBANA	Automotically
TLS DH/ECDH	Keys and CSPs DH/ECDH	3072-bits/P-384	DH or ECDH private key used to	DRAM	Automatically
TLS DH/ECDH		3072-bits/P-384 curve	establish the TLSv1.2 DH/ECDH	DRAM (plaintext)	when TLS
TLS DH/ECDH		•	establish the TLSv1.2 DH/ECDH shared secret. This key was		when TLS session is
TLS DH/ECDH		•	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS		when TLS
TLS DH/ECDH Private Key	DH/ECDH	curve	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG.	(plaintext)	when TLS session is terminated.
TLS DH/ECDH Private Key TLS DH/ECDH		•	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG. DH or ECDH public key used in		when TLS session is terminated.
TLS DH/ECDH Private Key TLS DH/ECDH	DH/ECDH	curve	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG.	(plaintext)	when TLS session is terminated.
TLS DH/ECDH Private Key TLS DH/ECDH	DH/ECDH	curve 3072-bits/P-384	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG. DH or ECDH public key used in	(plaintext) DRAM	when TLS session is terminated.
TLS DH/ECDH Private Key TLS DH/ECDH	DH/ECDH	curve 3072-bits/P-384	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG. DH or ECDH public key used in TLSv1.2 handshakes. Note that the public key is a	(plaintext) DRAM	when TLS session is terminated. Automatically when TLS
TLS DH/ECDH Private Key TLS DH/ECDH	DH/ECDH	curve 3072-bits/P-384	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG. DH or ECDH public key used in TLSv1.2 handshakes. Note that	(plaintext) DRAM	when TLS session is terminated. Automatically when TLS session is
TLS DH/ECDH Private Key TLS DH/ECDH Public Key	DH/ECDH DH/ECDH	3072-bits/P-384 curve	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG. DH or ECDH public key used in TLSv1.2 handshakes. Note that the public key is a cryptographic key, but not considered a CSP.	(plaintext) DRAM (plaintext)	when TLS session is terminated. Automatically when TLS session is terminated.
TLS DH/ECDH Private Key TLS DH/ECDH Public Key TLS DH/ECDH	DH/ECDH	curve 3072-bits/P-384	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG. DH or ECDH public key used in TLSv1.2 handshakes. Note that the public key is a cryptographic key, but not considered a CSP. The shared secret used in	(plaintext) DRAM (plaintext) DRAM	when TLS session is terminated. Automatically when TLS session is terminated. Automatically
TLS DH/ECDH Private Key TLS DH/ECDH Public Key TLS DH/ECDH Public Key	DH/ECDH DH/ECDH	3072-bits/P-384 curve	establish the TLSv1.2 DH/ECDH shared secret. This key was generated by calling FIPS approved DRBG. DH or ECDH public key used in TLSv1.2 handshakes. Note that the public key is a cryptographic key, but not considered a CSP.	(plaintext) DRAM (plaintext)	when TLS session is terminated. Automatically when TLS session is terminated.

Name	CSP Type	Size	Description/Usage	Storage	Zeroization
			DH/ECDH key agreement scheme.		
TLS RSA Private Key	RSA (FIPS 186-4)	3072-bits	RSA private key, used to sign the authentication certificate during the TLSv1.2 handshakes. This key was generated by calling FIPS approved DRBG.	NVRAM (plaintext)	Zeroization by RSA Keypair delete command
TLS RSA Public Key	RSA (FIPS 186-4)	3072-bits	RSA public key, used for authentication during the TLSv1.2 handshakes. This key is derived in compliance with FIPS 186-4 RSA key pair generation method in the module. Note that the public key is a cryptographic key, but not considered a CSP.	NVRAM (plaintext)	Zeroization by RSA Keypair delete command
TLS Pre-Master Secret	keying material	At least eight characters	Keying material used in TLSv1.2 handshakes. This key was used to derive TLSv1.2 Master Secret.	DRAM (plaintext)	Automatically when TLS session is terminated.
TLS Master Secret	keying material	48-bytes	Keying material, used to derive TLS Encryption Key and TLS Authentication Key. The master secret was derived from TLS pre-master secret during the TLS session establishment.	DRAM (plaintext)	Automatically when TLS session is terminated.
TLS Encryption Key	AES-CBC or AES- GCM	AES 128/256 bits	This key is used to encrypt/decrypt the data throughout the TLSv1.2 session. This key was derived via key derivation function defined in SP800-135 KDF (TLSv1.2).	DRAM (plaintext)	Automatically when TLS session is terminated.
TLS Authentication Key	HMAC-SHA256 HMAC-SHA384	256-bits 384-bits	This key is used to protect the data integrity throughout the TLSv1.2 session. This key is derived via key derivation function defined in SP800-135 KDF (TLSv1.2).	DRAM (plaintext)	Automatically when TLS session is terminated.
SSHv2 protocol Ke	ys/CSPs				•
SSHv2 DH/ECDH Private Key	DH/ECDH	2048 bits/P-256, P-384 and P-521 curves	ECDH private key, used to derive SSHv2 ECDH Shared Secret during the SSHv2 handshakes. This key was generated by calling FIPS approved DRBG.	DRAM (plaintext)	Automatically when SSH session is terminated.
SSHv2 DH/ECDH Public Key	DH/ECDH	2048 bits/P-256, P-384 and P-521 curves	ECDH public key, used in SSHv2 ECDH exchange. This key is established per the ECDH key agreement. Note that the public key is a cryptographic key, but not considered a CSP.	DRAM (plaintext)	Automatically when SSH session is terminated.
SSHv2 DH/ECDH Shared Secret	DH/ECDH	2048 bits/P-256, P-384, P521 curves	The shared secret used in SSHv2 ECDH exchange. This key was derived per the ECDH key agreement scheme.	DRAM (plaintext)	Power cycle the device.
SSHv2 RSA/ECDSA Private Key	RSA/ECDSA	3072-bits/P-384 curve	RSA or ECDSA private key, used to sign the authentication certificate during the SSHv2 handshakes. The key was	NVRAM (plaintext)	Zeroization by RSA Keypair delete command

Name	CSP Type	Size	Description/Usage	Storage	Zeroization
			generated by calling SP800-90A		
CCLL-2 DCA/ECDCA	DCA /ECDCA	2072 hita/D 204	DRBG.	NI) /DANA	Zanainatian hu
SSHv2 RSA/ECDSA Public Key	RSA/ECDSA	3072-bits/P-384 curve	RSA or ECDSA public key, used for authentication during the	NVRAM (plaintext)	Zeroization by RSA Keypair
rublic Key		curve	SSHv2 handshake. This key is	(plaintext)	delete
			derived in compliance with FIPS		command
			186-4 RSA/ECDSA key pair		Communa
			generation method in the		
			module. Note that the public		
			key is a cryptographic key, but		
			not considered a CSP.		
SSHv2 Session Key	AES-CTR or AES-	CTR mode:	This key is used to	DRAM	Automatically
	GCM	128/256-bits	encrypt/decrypt the data	(plaintext)	when SSH
		GCM mode: 256-	throughout the SSHv2 session.		session is
		bits	This key is derived from key		terminated.
			derivation function defined in SP800-135 KDF (SSHv2).		
SSHv2	HMAC-SHA1	160-bits	This key is used to protect the	DRAM	Automatically
Authentication Key	HMAC-SHA256	256-bits	data integrity throughout the	(plaintext)	when SSH
, , , , , , , , , , , , , , , , , , , ,	HMAC-SHA512	512-bits	TLSv1.2 session. This key is	(prameteric)	session is
			derived from key derivation		terminated.
			function defined in SP800-135		
			KDF (SSHv2).		
IPsec/IKEv2 Keys a	nd CSPs				
IKEv2 ECDH Private	ECDH	P-384 curve	ECDH private key, used to sign	DRAM	Automatically
Key	ECDH	P-364 Curve	the authentication certificate	(plaintext)	when IPsec
Key			signature verification Used	(plaintext)	session is
			during the IKEv2 handshakes.		terminated.
			This key was generated by		
			calling FIPS approved DRBG.		
IKEv2 ECDH Public	ECDH	P-384 curve	ECDH public key, used in IKEv2	DRAM	Automatically
Key			EC Diffie-Hellman (DH)	(plaintext)	when IPsec
			exchange. This key is		session is
			established per the ECDH key		terminated.
			agreement. Note that the		
			public key is a cryptographic		
IKEv2 ECDH Shared	ECDH	P-384 curve	key, but not considered a CSP. The shared secret used to in	DRAM	Power cycle
Secret	LCDII	1 304 cuive	IKEv2 ECDH exchange. This key	(plaintext)	the device.
Secret			was derived per the ECDH key	(planitext)	the device.
			agreement scheme.		
IKEv2 RSA/ECDSA	RSA/ECDSA	RSA:3072-bits	RSA or ECDSA private key used	NVRAM	Zeroization by
Private Key		ECDSA: P-256,	for authentication during the	(plaintext)	RSA/ECDSA
		P384, P-521	IKEv2 protocol handshake. This		Keypair delete
		curves	key was generated by calling		command
			FIPS approved DRBG.		
IKEv2 RSA/ECDSA	RSA/ECDSA	RSA: 3072-bits	RSA or ECDSA public key used	NVRAM	Zeroization by
Public Key		ECDSA: P-256,	for authentication during the	(plaintext)	RSA/ECDSA
		P384, P-521	IKEv2 protocol handshake. The		Keypair delete
		curves	key is derived in compliance with FIPS 186-4 RSA/ECDSA key		command
			pair generation method in the		
			module. Note that the public		
			key is a cryptographic key, but		
			not considered a CSP.		
IKEv2 Pre-Shared	Shared Secret	8-63 characters	Used to authenticate IPsec	NVRAM	Configuration
Key			peers to each other. This key is	(plaintext)	changes or
			configured by the Crypto		zeroization by
			Officer.		mode change

Name	CSP Type	Size	Description/Usage	Storage	Zeroization
SKEYSEED	Keying material	160 bits	Keying material used to derive	DRAM	Automatically
			the IKEv2 session key. It was	(plaintext)	when IPsec/IKE
			derived via key derivation		session is
			function defined in SP800-135		terminated
			KDF (IKEv2).		
IKEv2 Encryption	AES-CBC	128/192/256-bits	This key is used to	DRAM	Automatically
Key			encrypt/decrypt the data	(plaintext)	when IPsec
			throughout the IKEv2 session.		session is
			This key was derived by key		terminated.
			derivation function defined in		
			SP800-135 KDF (IKEv2).		
IKEv2	HMAC-SHA256	256-bits	This key is used to protect the	DRAM	Automatically
Authentication Key	HMAC-SHA384	384-bits	data integrity of data	(plaintext)	when IPsec
	HMAC-SHA512	512-bits	throughout the IKEv2 session.		session is
			This key is derived by key		terminated.
			derivation function defined in		
			SP800-135 KDF (IKEv2).		
IPsec Encryption	AES-CBC	128/192/256-bits	This key is used to	DRAM	Automatically
Key			encrypt/decrypt the data	(plaintext)	when IPsec
			throughout the IPsec session.		session is
			This key is derived by key		terminated.
			derivation function defined in		
			SP800-135 KDF (IKEv2).		
IPsec	HMAC-SHA256	256-bits	This key is used to protect the	DRAM	Automatically
Authentication Key	HMAC-SHA384	384-bits	data integrity of data	(plaintext)	when IPsec
	HMAC-SHA512	512-bits	throughout the IPsec session.		session is
			This key is derived by key		terminated.
			derivation function defined in		
			SP800-135 KDF (IKEv2).		
SNMPv3 Keys and	CSPs				
SNMPv3	Shared Secret	8-63 characters	Shared secret, used for	NVRAM	Procedurally
Passphrase			SNMPv3 authentication. The	(plaintext)	erase the
			key is configured by the Crypto		shared secret
			Officer.		
SNMPv3	HMAC-SHA-1	160-bits	This key is used to protect the	DRAM	Automatically
Authentication Key			data integrity of data	(plaintext)	when SNMPv3
			throughout the SNMPv3		session is
			session. This key is derived by		terminated.
			key derivation function defined		
			in SP800-135 KDF (SNMPv3).		
SNMPv3 Session	AES-CFB-128	128-bits	This key is used to	DRAM	Automatically
key			encrypt/decrypt the data	(plaintext)	when SNMPv3
			throughout the SNMPv3		session is
			session. This key is derived by		terminated.
			key derivation function defined		
	1	1	in SP800-135 KDF (SNMPv3).	1	

7. Self-Tests

The module performs the following power-up and conditional self-tests. Upon failure of a power-up or conditional self-test, the module would enter into the error state (halts the operation). The following table describes self-tests implemented by the module.

Table 10: Power-Up Self-Tests

Algorithm	Test			
Linux Kernel				
AES	AES-CBC KATs (encryption/decryption)			
HMAC	HMAC-SHA-256/384/512 KATS			
SHA	SHA-1/256/384/512 KATs			
OpenSSL/OpenSSH				
AES	AES-CBC KATs (encryption/decryption)			
AES-GCM	AES-GCM KATs (encryption/decryption)			
SHS	SHA-1/256/512 KATs			
HMAC	HMAC-SHA-1/224/256/384/512 KATs			
SP800-90A DRBG	AES-256 CTR DRBG KAT (DRBG health tests per SP 800-90A Section 11.3)			
RSA (FIPS 186-4)	RSA KATs (separate KAT for signing; separate KAT for verification)			
ECDH	ECDH Primitive "Z" computation KAT			
ECDSA	ECDSA Pairwise Consistency Test (Sign and Verify)			
Firmware integrity	FIPS 186-2 RSA 4096 bits with SHA-384 for signature verification			

Table 11: Conditional Self-Tests

Algorithm	Test	
SP800-90A DRBG	Continuous Random Number Generator test	
NDRNG	Continuous Random Number Generator test	
RSA	Pairwise Consistency Test	
ECDSA	Pairwise Consistency Test	
Firmware Load Test	FIPS 186-2 RSA 4096 bits with SHA-384 for signature verification.	

8. Physical Security

The module meets requirements of FIPS 140-2 level 1 for physical security. The cryptographic module is a multi-chip standalone module consisting of production-grade components. The enclosure of the cryptographic module is opaque within the visible spectrum.

9. Procedural Rules

The module meets all the Level 1 requirements for FIPS 140-2. The module is shipped only to authorized operators by the vendor, and the module is shipped in Vendor's boxes with Vendor's adhesive. Follow the instructions provided below to place the module in FIPS-approved mode. Operating this module without maintaining the following settings prevents the module from being placed into FIPS approved mode of operation. The module was validated with firmware version 5.2.1.3 in FIPS-approved mode of operation.

- An operator shall zeroize all keys/CSPs when switching between the Approved and non-Approved mode (or vice versa).
- An operator shall not attempt to access the module's BIOS. In particular, an operator shall not change the port configurations specified in Section 3 of this Security Policy.

- The module does not enforce a limit on the number of authentication attempts without first being configured to do so. The User and Cryptographic Officer shall have an authentication try limit configured between the range of 1-100.
- An operator shall not authorize access to the Diagnostics service while in the Approved mode.
- The module's validation to FIPS 140-2 is no longer valid once a non-validated firmware version is loaded. Any firmware not identified in this Security Policy does not constitute the Module defined by this Security Policy or covered by this validation.

9.1 Module Initialization

The Crypto Officer shall follow the steps below to configure and initialize the module.

- Installation: The installation procedure for all hardware pertaining to the module is carried out at the Ruckus manufacturing facility. This includes port configurations, and BIOS settings which govern the ports. Shipping box should be checked for tampering during shipping process upon receipt of module.
- Controller Configuration with FIPS Image:
 - o Power on the module and access the CLI via its console port.
 - At the login prompt, login with the administrator username and password. And then, issue 'enable' (en) command with the privileged mode password to promote the authorization.
 - If the system is first time boot up, issue 'setup' command and follow the console's instructions to configure the system fundamental parameters, such as the mode of FIPS, the network and change the default login and privileged mode passwords. The system will reboot when FIPS mode is being changed. The CO needs to make sure the passwords and all other shared secrets used by the module must each be at least eight (8) characters long, including at least one alphabet, one numeric character, one special character (note: The special character `cannot be used in the password).
 - At the command prompt enter 'fips?' to display the list of available FIPS commands.
 - Enter 'fips status' to verify whether FIPS mode is enabled or disabled. If the FIPS mode is enabled, user should be able to observe "FIPS compliance is Enable" from the console. On the other hand, if the FIPS mode is disabled, "FIPS compliance is Disable" will be shown on the console.
 - User can issue 'fips enable' or 'fips disable' to enable or disable FIPS mode, then enter 'yes' to confirm. Enter 'fips showlog' to display the results of self-tests and verify all are passing.
 Follow steps in Section 9, above, while operating the module.

In addition, please refer to RUCKUS FIPS and Common Criteria Configuration Guide for SmartZone and AP, 5.2.1.3, Published on 2021-04-14 with the documentation Part Number 800-72735-001 RevA, https://support.ruckuswireless.com/documents/3509 for more module configuration related information.

10. References

Table 12: References

Reference	Specification
[ANS X9.31]	Digital Signatures Using Reversible Public Key Cryptography for the Financial
	Services Industry (rDSA)
[FIPS 140-2]	Security Requirements for Cryptographic modules, May 25, 2001
[FIPS 180-4]	Secure Hash Standard (SHS)
[FIPS 186-2/4]	Digital Signature Standard
[FIPS 197]	Advanced Encryption Standard
[FIPS 198-1]	The Keyed-Hash Message Authentication Code (HMAC)
[FIPS 202]	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions
[PKCS#1 v2.1]	RSA Cryptography Standard
[PKCS#5]	Password-Based Cryptography Standard
[PKCS#12]	Personal Information Exchange Syntax Standard
[SP 800-38A]	Recommendation for Block Cipher Modes of Operation: Three Variants of
	Ciphertext Stealing for CBC Mode
[SP 800-38B]	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
	Authentication
[SP 800-38C]	Recommendation for Block Cipher Modes of Operation: The CCM Mode for
	Authentication and Confidentiality
[SP 800-38D]	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
	(GCM) and GMAC
[SP 800-38F]	Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping
[SP 800-56A]	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
	Logarithm Cryptography
[SP 800-56B]	Recommendation for Pair-Wise Key Establishment Schemes Using Integer
	Factorization Cryptography
[SP 800-56C]	Recommendation for Key Derivation through Extraction-then-Expansion
[SP 800-67R1]	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher
[SP 800-89]	Recommendation for Obtaining Assurances for Digital Signature Applications
[SP 800-90A]	Recommendation for Random Number Generation Using Deterministic Random Bit
	Generators
[SP 800-108]	Recommendation for Key Derivation Using Pseudorandom Functions
[SP 800-132]	Recommendation for Password-Based Key Derivation
[SP 800-135]	Recommendation for Existing Application –Specific Key Derivation Functions